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PREFACE

Some years ago, | had lunch with a motley group of colleagues at Stanford,
mostly psychologists and economists, who were interested in decision making
in an uncertain world. We chewed our way through our sandwiches and
through the latest embellishments of the prisoner’s dilemma, trading stories of
this or that paradox or stubborn irrationality. Finally, one economist concluded
the discussion with the following dictum: “Look,” he said with conviction,
“either reasoning is rational or it’s psychological.”

This supposed opposition between the rational and the psychological has
haunted me ever since. For the economists and psychologists seated at the
picnic table with me that afternoon, it meant a division of labor. The heavenly
laws of logic and probability rule the realm of sound reasoning; psychology is
assumed to be irrelevant. Only if mistakes are made are psychologists called
in to explain how wrong-wired human minds deviate from these laws. Cher-
nobyl, U.S. foreign policy, and human disasters of many kinds have been as-
sociated with failures in logical thinking. Adopting this opposition, many text-
books present first the laws of logic and probability as the standard by which
to measure human thinking, then data about how people actually think. The
discrepancy between the two makes people appear to be irrational.

Adaptive Thinking offers a different story. I view the mind in relation to its
environment rather than in opposition to the laws of logic or probability. In a
complex and uncertain world, psychology is indispensable for sound reason-
ing; it is rationality’s fuel rather than its brake. This book is about rethinking
rationality as adaptive thinking: to understand how minds cope with specific
environments, ecological and social. The chapters in this book elaborate the
idea that human thinking—from scientific creativity to simply understanding
what a positive HIV test means—“happens” partly outside of the mind. For
instance, new laboratory instruments can inspire scientists to create new meta-
phors and theories, and new ways of representing uncertainties can either
cloud or facilitate physicians’ understanding of risks. In this sense, insight can
come from outside the mind.
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PREFACE

The chapters provide both research programs and case studies. For instance,
the program of ecological rationality studies the mind in relation to its envi-
ronment, past and present. Bounded rationality stresses that sound reasoning
can be achieved by simple heuristics that do not follow the prescriptions of
logic and probability. Social rationality is a form of ecological rationality in
which the environment consists of conspecifics and that highlights the impor-
tance of domain-specific behavior and cognition in social environments.

Adaptive Thinking is a collection of what I consider the most important of
my papers on rationality, reasoning and rituals in the 1990s. I have rewritten,
updated, and shortened them to bring out the coherent story they tell as a
whole. The papers were originally addressed to different scientific communi-
ties. This book affords readers the opportunity, for the first time, to see how
the various theoretical endeavors and practical applications fit together.

Berlin G. G.
July 1999
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WHERE DO NEW IDEAS
COME FROM?

I wrote “From Tools to Theories” in one of the cabinlike offices at the Cen-
ter for Advanced Study in Palo Alto in 1990. That was in the good old days
when the offices had no telephones, e-mail, or other communication facilita-
tors to interrupt one’s thoughts. In the meantime, the Center, like you and I,
has surrendered to technology. Chapter 1 is about the impact of new tech-
nologies on creative thinking—an impact of a productive rather than a dis-
ruptive kind. New tools can suggest new scientific ideas and metaphors
about nature, society, and the mind. When this happens, we can trace dis-
coveries back to the changing technological environment in which they
evolved rather than attributing them to some mystical process inside a scien-
tist’s head. In this sense, new insights can come from outside the mind.

Two influential tools fueled the cognitive revolution: new statistical tech-
niques and the computer. Both started as tools for data processing and ended
up as theories of mind. The power of tools to inspire new theories derives
from changes both in the technological environment (new tools} and in the
social environment in which a scientist works (the community of tool users).
The social environment is influential in several ways. First, it affects the
pragmatic use of a tool (of which there are many), which then leaves its
mark on the new theories of mind. Second, entrenchment of the tool in the
research community is an important precondition for its final acceptance as
a model of mind. Finally, new social organizations can inspire the creation
of tools in the first place, as evidenced by the invention of the machine com-
puter. Babbage’s computer was modeled after a new social organization of
work, namely, the division of labor in large-scale manufacturing. The social
origin of the computer illustrates how a metaphor can cut both ways: First
computers were modeled after minds, and later minds were modeled after
computers.

Computers and statistics have both been used to fulfill the timeless long-
ing to replace judgment by the application of content-blind, mechanical
rules. Such mechanization has become an ideal in many professions, includ-
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ing copyediting. For instance, the copyeditor at Psychological Review who
worked on “From Tools to Theories” had the rule that a single author speak-
ing in the first persnn should not use “we” but “1.” One sentence in my orig-
inal manuscript read: “Good ideas are hard to come by, and we should be
grateful for those few we have, whatever their lineage.” T lost this argument;
gvery time I reinstated the “we,” the copyeditor took it out again, until it
eventually was replaced by “one.”

The three chapters in this section elaborate and extend ideas developed
in two earlier books, Cognition as Intuitive Statistics (1987, with D. J. Mur-
ray) and Measurement and Modeling in Psychology (1981, published in
German). “From Tools To Theories” won the American Association for the
Advancement of Science (AAAS) Prize for Behavioral Science Research in
1991. It shows how statistical methods have turned into metaphors of mind.
The tools-to-theories heuristic, one of several heuristics of discovery, can ex-
plain the emergence of a broad range of theories and shed light on their lim-
itations and potentials.



From Tools to Theories

A Heuristic of Discovery

Scientiﬁc inquiry can be viewed as “an ocean, continuous everywhere and
without a break or division” (Leibniz, 1690/1951, p. 73). Hans Reichenbach
(1938) nonetheless divided this ocean into two great seas, the context of dis-
covery and the context of justification. Philosophers, logicians, and mathe-
maticians claimed justification as a part of their territory and dismissed the
context of discovery as none of their business, or even as “irrelevant to the
logical analysis of scientific knowledge” (Popper, 1935/1959, p. 31). Their sun
shines over one part of the ocean and has been enlightening about matters of
justification, but the other part of the ocean still remains in a mystical darkness
where imagination and intuition reign, or so it is claimed. Popper, Braithwaite,
and others ceded the dark part of the ocean to psychology and, perhaps, so-
ciology, but few psychologists have fished in these waters. Most did not dare
or care.

The discovery versus justification distinction has oversimplified the under-
standing of scientific inquiry. For instance, in the debate over whether the
context of discovery is relevant to understanding science, both sides in the
controversy have construed the question as whether the earlier stage of dis-
covery should be added to the later justification stage (Nickles, 1980). Con-
ceiving the two-context distinction as a temporal distinction (first discovery,
then justification), however, can be misleading because justification procedures
(checking and testing) and discovery processes (having new ideas) take place
curing all temporal stages of inquiry. In fact, the original distinction drawn by
Reichenbach in 1938 did not include this temporal simplification; his was not
even a strict dichotomy (see Curd, 1980). I believe that the prevailing inter-
pretation of the two contexts as conceptually distinct events that are in one
and only one temporal sequence has misled many into trying to understand
discovery without taking account of justification.

In this chapter, I argue that discovery can be understood by heuristics (not
a logic) of discovery. I propose a heuristic of discovery that makes use of meth-
ods of justification, thereby attempting to bridge the artificial distinction be-
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tween the two. Furthermore, I attempt to demonstrate that this discovery heu-
ristic may be of interest not only for an a posteriori understanding of theory
development but also for understanding limitations of present-day theories and
research programs and for the further development of alternatives and new
possibilities. The discovery heuristic that I call the tools-to-theories heuristic
(see Gigerenzer & Murray, 1987) postulates a close connection between the
light and the dark parts of Leibniz’s ocean: Scientists’ tools for justification
provide the metaphors and concepts for their theories.

The power of tools to shape, or even to become, theoretical concepts is an
issue largely ignored in both the history and philosophy of science. Inductivist
accounts of discovery, from Bacon to Reichenbach and the Vienna Circle, focus
on the role of data but do not consider how the data are generated or processed.
Nor do the numerous anecdotes about discoveries—Newton watching an apple
fall in his mother’s orchard while pondering the mystery of gravitation; Galton
taking shelter from a rainstorm during a country outing when discovering cor-
relation and regression toward mediocrity; and the stories about Fechner, Ke-
kulé, Poincaré, and others that link discovery to the three B’s: beds, bicycles,
and bathrooms. What unites these anecdotes is the focus on the vivid but
prosaic circumstances; they report the setting in which a discovery occurs,
rather than analyzing the process of discovery.

The question Is there a logic of discovery? and Popper’s (1935/1959) con-
jecture that there is none have misled many into assuming that the issue is
whether there exists a logic of discovery or only idiosyncratic personal and
accidental reasons that explain the “flash of insight” of a particular scientist
(Nickles, 1980). I do not think that formal logic and individual personality are
the only alternatives, nor do I believe that either of these is a central issue for
understanding discovery.

The process of discovery can be shown, according to my argument, to pos-
sess more structure than thunderbolt guesses but less definite structure than a
monolithic logic of discovery, of the sort Hanson (1958) searched for, or a
general inductive hypothesis-generation logic (e.g., Reichenbach, 1938). The
present approach lies between these two extremes; it looks for structure be-
yond the insight of a genius but does not claim that the tools-to-theories heu-
ristic is (or should be) the only account of scientific discovery. The tools-to-
thearies heuristic applies neither to all theories in science nor to all cognitive
theories; it applies to a specific group of cognitive theories developed during
the last three or four decades, after the so-called cognitive revolution.

Nevertheless, similar heuristics have promoted discovery in physics, phys-
iology, and other areas. For instance, it has been argued that once the me-
chanical clock became the indispensable tool for astronomical research, the
universe itself came to be understood as a kind of mechanical clock, and God
as a divine watchmaker. Lenoir (1986) showed how Faraday’s instruments for
recording electric currents shaped the understanding of electrophysiological
processes by promoting concepts such as “muscle current” and “nerve cur-
rent.”
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Thus, this discovery heuristic boasts some generality both within cognitive
psychology and within science, but this generality is not unrestricted. Because
there has been little research in how tools of justification influence theory
development, the tools-to-theories heuristic may be more broadly applicable
than I am able to show in this chapter. If my view of heuristics of discovery
as a heterogeneous bundle of search strategies is correct, however, this implies
that generalizability is, in principle, bounded.

What follows has been inspired by Herbert Simon’s notion of heuristics of
discovery but goes beyond his attempt to model discovery with programs such
as BACON that attempt to induce scientific laws from data (discussed later).
My focus is on the role of the tools that process and produce data, not the data
themselves, in the discovery and acceptance of theories.

How Methods of justification Shape Theoretical Concepts

My general thesis is twofold:

1. Discovery. New scientific tools, once entrenched in a scientist’s daily
practice, suggest new theoretical metaphors and concepts.

2. Acceptance. Once proposed by an individual scientist (or a group),
the new theoretical metaphors and concepts are more likely to be
accepted by the scientific community if their members are also users
of the new tools.

By tools I mean both analytical and physical methods that are used to eval-
uate given theories. Analytical tools can be either empirical or nonempirical.
Examples of analytical methods of the empirical kind are tools for data pro-
cessing, such as statistics; examples of the nonempirical kind are normative
criteria for the evaluation of hypotheses, such as logical consistency. Examples
of physical tools of justification are measurement instruments, such as clocks.
In this chapter, I focus on analytical rather than physical tools of justification,
and among these, on techniques of statistical inference and hypothesis testing.
My topic is theories of mind and how social scientists discovered them after
the emergence of new tools for data analysis rather than of new data.

In this context, the tools-to-theories heuristic consists in the discovery of
new theories by changing the conception of the mind through the analogy of
the statistical tool. The result can vary in depth from opening new general
perspectives, albeit mainly metaphorical, to sharp discontinuity in specific
cognitive theories caused by the direct transfer of scientists’ tools into theories
of mind.

A brief history follows. In American psychology, the study of cognitive pro-
cesses was suppressed in the early 20th century by the allied forces of oper-
ationalism and behaviorism. The operationalism and the inductivism of the
Vienna Circle, as well as the replacement of the Wundtian experiment by ex-
perimentation with treatment groups (Danziger, 1990), paved the way for the
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institutionalization of inferential statistics in American experimental psychol-
ogy between 1940 and 1955 (Gigerenzer, 1987a; Toulmin & Leary, 1985). In
experimental psychology, inferential statistics became almost synonymous
with scientific method. Inferential statistics, in turn, provided a large part of
the new concepts for mental processes that have fueled the so-called cognitive
revolution since the 1960s. Theories of cognition were cleansed of terms such
as restructuring and insight, and the new mind has come to be portrayed as
drawing random samples from nervous fibers, computing probabilities, cal-
culating analyses of variance (ANOVA), setting decision criteria, and perform-
ing utility analyses.

After the institutionalization of inferential statistics, a broad range of cog-
nitive processes, conscious and unconscious, elementary and complex, were
reinterpreted as involving “intuitive statistics.” For instance, Tanner and Swets
(1954) assumed in their theory of signal detectability that the mind “decides”
whether there is a stimulus or only noise, just as a statistician of the Neyman-
Pearson school decides between two hypotheses. In his causal attribution the-
ory, Harold H. Kelley (1967) postulated that the mind attributes a cause to an
effect in the same way as behavioral scientists have come to do, namely by
performing an ANOVA and testing null hypotheses. These two influential the-
ories show the breadth of the new conception of the “mind as an intuitive
statistician.” They also exemplify cognitive theories that were suggested not
by new data but by new tools of data analysis.

In what follows, I present evidence for three points. First, the discovery of
theories based on the conception of the mind as an intuitive statistician caused
discontinuity in theory rather than being merely a new, fashionable language:
It radically changed the kind of phenomena reported, the kind of explanations
looked for, and even the kind of data that were generated. This first point
illustrates the profound power of the tools-to-theories heuristic to generate
quite innovative theories. Second, I provide evidence for the “blindness” or
inability of researchers to discover and accept the conception of the mind as
an intuitive statistician before they became familiar with inferential statistics
as part of their daily routine. The discontinuity in cognitive theory is closely
linked to the preceding discontinuity in method, that is, to the institutionali-
zation of inferential statistics in psychology. Third, I show how the tools-to-
theories heuristic can help to define the limits and possibilities of current cog-
nitive theories that investigate the mind as an intuitive statistician.

Discontinuity in Cognitive Theory Development

What has been called the “cognitive revolution” is more than the overthrow
of behaviorism by mentalist concepts. These concepts have been continuously
part of scientific psychology since its emergence in the late 19th century, even
coexisting with American behaviorism during its heyday (Lovie, 1983). The
cognitive revolution did more than revive the mental; it has changed what the
mental means, often dramatically. One source of this change is the tools-to-
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theories heuristic, with its new analogy of the mind as an intuitive statistician.
To show the discontinuity within cognitive theories, I briefly discuss two areas
in which an entire statistical technique, not only a few statistical concepts,
became a model of mental processes: {a) stimulus detection and discrimination
and (b} causal attribution.

What intensity must a 440-Hz tone have to be perceived? How much heavier
than a standard stimulus of 100 g must a comparison stimulus be in order for
a perceiver to notice a difference? How can the elementary cognitive processes
involved in those tasks, known today as stimulus detection and stimulus dis-
crimination, be explained? Since Herbart (1834), such processes have been
explained by using a threshold metaphor: Detection occurs only if the effect
an object has on the nervous system exceeds an absolute threshold, and dis-
crimination between two objects occurs if the excitation from one exceeds that
from another by an amount greater than a differential threshold. E. H. Weber
and G. T. Fechner’s laws refer to the concept of fixed thresholds; Titchener
(1896) saw in differential thresholds the long-sought-after elements of mind
(he counted approximately 44,000); and classic textbooks, such as Brown and
Thomson’s (1921) and Guilford’s (1954), document methods and research.

Around 1955, the psychophysics of absolute and differential thresholds was
revolutionized by the new analogy between the mind and the statistician. W. P.
Tanner and others proposed a “theory of signal detectability” (TSD), which
assumes that the Neyman-Pearson technique of hypothesis testing describes
the processes involved in detection and discrimination. Recall that in Neyman-
Pearson statistics, two sampling distributions (hypotheses H, and H,) and a
decision criterion (which is a likelihood ratio) are defined, and then the data
observed are transformed into a likelihood ratio and compared with the de-
cision criterion. Depending on which side of the criterion the data fall, the
decision “reject H, and accept H,” or “accept H, and reject H,” is made. In
straight analogy, TSD assumes that the mind calculates two sampling distri-
butions for noise and signal plus noise (in the detection situation) and sets a
decision criterion after weighing the cost of the two possible decision errors
(Type I and Type II errors in Neyman-Pearson theory, now called false alarms
and misses). The sensory input is transduced into a form that allows the brain
to calculate its likelihood ratio, and depending on whether this ratio is smaller
or larger than the criterion, the subject says “no, there is no signal” or “yes,
there is a signal.” Tanner (1965) explicitly referred to his new model of the
mind as a “Neyman-Pearson” detector, and, in unpublished work, his flow-
charts included a drawing of a homunculus statistician performing the uncon-
scious statistics in the brain (Gigerenzer & Murray, 1987, pp. 49-53).

The new analogy between mind and statistician replaced the century-old
concept of a fixed threshold by the twin notions of observer’s attitudes and
observer’s sensitivity. Just as the Neyman-Pearson technique distinguishes be-
tween a subjective part (e.g., selection of a criterion dependent on cost-benefit
considerations) and a mathematical part, detection and discrimination became
understood as involving both subjective processes, such as attitudes and cost-
benefit considerations, and sensory processes. Swets, Tanner, and Birdsall



WHERE DO NEW IDEAS COME FROM?

(1964, p. 52) considered this link between attitudes and sensory processes to
be the main thrust of their theory. The analogy between technique and mind
made new research questions thinkable, such as How can the mind’s decision
criterion be manipulated? A new kind of data even emerged: Two types of
error were generated in the experiments, false alarms and misses, just as the
statistical theory distinguishes two types of error.

As far as I can tell, the idea of generating these two kinds of data was not
common before the institutionalization of inferential statistics. The discovery
of TSD was not motivated by new data; rather, the new theory motivated a
new kind of data. In fact, in their seminal article, Tanner and Swets (1954,
p- 401) explicitly admitted that their theory “appears to be inconsistent with
the large quantity of existing data on this subject” and proceeded to criticize
the “form of these data.”

The Neyman-Pearsonian technique of hypothesis testing was subsequently
transformed into a theory of a broad range of cognitive processes, ranging from
recognition in memory (e.g., Murdock, 1982; Wickelgren & Norman, 1966) to
eyewitness testimony (e.g., Birnbaum, 1983) to discrimination between ran-
dom and nonrandom patterns (e.g., Lopes, 1982).

My second example concerns theories of causal reasoning. In Europe, Albert
Michotte (1946/1963), Jean Piaget (1930), the gestalt psychologists, and others
had investigated how certain temporospatial relationships between two or
more visual objects, such as moving dots, produced phenomenal causality. For
instance, the participants were made to perceive that one dot launches, pushes,
or chases another. After the institutionalization of inferential statistics, Harold
H. Kelley (1967) proposed in his “attribution theory” that the long-sought laws
of causal reasoning are in fact the tools of the behavioral scientist: R. A,
Fisher’s ANOVA. Just as the experimenter has come to infer a causal relation-
ship between two variables from calculating an ANOVA and performing an F
test, the person-in-the-street infers the cause of an effect by unconsciously
doing the same calculations. By the time Kelley discovered the new meta-
phor for causal inference, about 70% of all experimental articles already used
ANOVA (Edgington, 1974).

The theory was accepted quickly in social psychology; Kelley and Michaela
(1980) reported there were more than 900 references in one decade. The vision
of the Fisherian mind radically changed the understanding of causal reasoning,
the problems posed to participants, and the explanations looked for. I list a
few discontinuities that reveal the “fingerprints” of the tool. (a) ANOVA needs
repetitions or numbers as data in order to estimate variances and covariances.

-Consequently, the information presented to the participants in studies of causal
attribution consists of information about the frequency of events (e.g., Mc-
Arthur, 1972), which played no role in either Michotte’s or Piaget’s work. (b)
Whereas Michotte’s work still reflects the broad Aristotelian conception of four
causes (see Gavin, 1972), and Piaget (1930) distinguished 17 kinds of causality
in children’s minds, the Fisherian mind concentrates on the one kind of causes
for which ANOVA is used as a tool (similar to Aristotle’s “material cause’). (c)
In Michotte’s view, causal perception is direct and spontaneous and needs no
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inference, as a consequence of largely innate laws that determine the organi-
zation of the perceptual field. ANOVA, in contrast, is used in psychology as a
technique for inductive inferences from data to hypotheses, and the focus in
Kelley’s attribution theory is consequently on the data-driven, inductive side
of causal perception.

The latter point illustrates that the specific use of a tool, that is, its practical
context rather than its mathematical structure, can also shape theoretical con-
ceptions of mind. To elaborate on this point, assume that Harold Kelley had
lived one-and-a-half centuries earlier than he did. In the early 19th century,
significance tests (similar to those in ANOVA) were already being used by
astronomers (Swijtink, 1987), but they used their tests to reject data, so-called
outliers, and not to reject hypotheses. At least provisionally, the astronomers
assumed that the theory was correct and mistrusted the data, whereas the
ANOVA mind, following the current statistical textbooks, assumes the data to
be correct and mistrusts the theories. So, to a nineteenth-century Kelley, the
mind’s causal attribution would have seemed expectation driven rather than
data driven: The statistician homunculus in the mind would have tested the
data and not the hypothesis.

As is well documented, most of causal attribution research after Kelley took
the theoretical stand that attribution is a “lay version of experimental design
and analysis” (Jones & McGillis, 1976, p. 411), and elaboration of the theory
was in part concerned with the kind of intuitive statistics in the brain. For
instance, Ajzen and Fishbein (1975) argued that the homunculus statistician
is Bayesian rather than Fisherian.

These two areas——detection and discrimination, and causal reasoning—may
be sufficient to illustrate some of the fundamental innovations in the explan-
atory framework, in the research questions posed, and in the kind of data
generated. The spectrum of theories that model cognition after statistical in-
ference ranges from auditive and visual perception to recognition in memory
and from speech perception to thinking and reasoning. It reaches from the
elementary, physiological end to the global, conscious end of the continuum
called cognitive. I give one example for each end. (a) Luce (1977) viewed the
central nervous system (CNS) as a statistician who draws a random sample
from all activated fibers, estimates parameters of the pulse rate, aggregates this
estimate into a single number, and uses a decision criterion to arrive at the
final perception. This conception has led to new and interesting questions; for
instance, How does the CNS aggregate numbers? and What is the shape of the
internal distributions? (b) The 18th-century mathematicians Laplace and Con-
dorcet used their “probability of causes” to model how scientists reason (Das-
ton, 1988). Recently, Massaro (1987) proposed the same statistical formula as
an algorithm of pattern recognition, as “a general algorithm, regardless of the
modality and particular nature of the patterns” (p. 186).

The degree to which cognitive theories were shaped by the statistical tool
varies from theory to theory. On the one hand, there is largely metaphorical
use of statistical inference. An example is Gregory’s (1974) hypothesis-testing
view of perception, in which he reconceptualized Helmholtz’s “unconscious
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inferences” as Fisherian significance testing: “We may account for the stability
of perceptual forms by suggesting that there is something akin to statistical
significance which must be exceeded by the rival interpretation and the rival
hypothesis before they are allowed to supersede the present perceptual hy-
pothesis” (p. 528). In his theory of how perception works, Gregory also ex-
plained other perceptual phenomena, using Bayesian and Neyman-Pearsonian
statistics as analogies, thus reflecting the actual heterogeneous practice in the
social sciences. Here, a new perspective, but no quantitative model, is gener-
ated. On the other hand, there are cognitive theories that propose quantitative
models of statistical inference that profoundly transform qualitative concepts
and research practice. Examples are the various TSDs of cognition mentioned
earlier and the theory of adaptive memory as statistical optimization by An-
derson and Milson (1989).

To summarize: The tools-to-theories heuristic can account for the discovery
and acceptance of a group of cognitive theories in apparently unrelated sub-
fields of psychology, all of them sharing the view that cognitive processes can
be modeled by statistical hypothesis testing. Among these are several highly
innovative and influential theories that have radically changed our under-
standing of what cognitive means.

Before the Institutionalization of Inferential Statistics

There is an important test case for the present hypotheses (a) that familiarity
with the statistical tool is crucial to the discovery of corresponding theories of
mind and (b) that the institutionalization of the tool within a scientific com-
munity is crucial for the broad acceptance of those theories. That test case is
the era before the institutionalization of inferential statistics. Theories that con-
ceive of the mind as an intuitive statistician should have a very small likeli-
hood of being discovered and even less likelihood of being accepted. The two
strongest tests are cases in which (a) someone proposed a similar conceptual
analogy and (b) someone proposed a similar probabilistic (formal) model. The
chances of theories of the first kind being accepted should be small, and the
chances of a probabilistic model being interpreted as “intuitive statistics”
should be similarly small. I know of only one case each, which I analyze after
defining first what I mean by the phrase “institutionalization of inferential
statistics.”

Statistical inference has been known for a long time but not used as theories
of mind. In 1710, John Arbuthnot proved the existence of God using a signif-
icance test; as mentioned earlier, astronomers used significance tests in the
19th century; G. T. Fechner’s (1897) statistical text Kollektivinasslehre included
tests of hypotheses; W. S. Gosset (using the pseudonym Student) published the
t test in 1908; and Fisher’s significance testing techniques, such as ANOVA, as
well as Neyman-Pearsonian hypothesis-testing methods, have been available
since the 1920s (see Gigerenzer et al., 1989). Bayes’s rule has been known
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since 1763. Nonetheless, there was little interest in these techniques in exper-
imental psychology before 1940 (Rucci & Tweney, 1980).

The statisticians’ conquest of new territory in psychology started in the
1940s. By 1942, Maurice Kendall could comment on the statisticians’ expan-
sion: “They have already overrun every branch of science with a rapidity of
conquest rivalled only by Attila, Mobhammed, and the Colorado beetle” (p. 69).
By the early 1950s, half of the psychology departments in leading American
universities offered courses on Fisherian methods and had made inferential sta-
tistics a graduate program requirement. By 1955, more than 80% of the experi-
mental articles in leading journals used inferential statistics to justify conclu-
sions from the data (Sterling, 1959). Editors of major journals made significance
testing a requirement for articles submitted and used the level of significance as
a yardstick for evaluating the quality of an article (e.g., Melton, 1962).

I therefore use 1955 as a rough date for the institutionalization of the tool
in curricula, textbooks, and editorials. What became institutionalized as the
logic of statistical inference was a mixture of ideas from two opposing camps,
those of R. A. Fisher on the one hand and Jerzy Neyman and Egon S. Pearson
(the son of Karl Pearson) on the other (see Chapter 13).

Discovery and Rejection of the Analogy

The analogy between the mind and the statistician was first proposed before
the institutionalization of inferential statistics, in the early 1940s, by Egon
Brunswik at Berkeley (e.g., Brunswik, 1943). As Leary (1987) has shown, Brun-
swik’s probabilistic functionalism was based on a very unusual blending of
scientific traditions, including the probabilistic world view of Hans Reichen-
bach and members of the Vienna Circle and Karl Pearson’s correlational sta-
tistics.

The important point here is that in the late 1930s, Brunswik changed his
techniques for measuring perceptual constancies, from calculating (nonstatis-
tical) “Brunswik ratios” to calculating Pearson correlations, such as functional
and ecological validities. In the 1940s, he also began to think of the organism
as “an intuitive statistician,” but it took him several years to spell out the
analogy in a clear and consistent way.

The analogy is this: The perceptual system infers its environment from un-
certain cues by (unconsciously) calculating correlation and regression statis-
tics, just as the Brunswikian researcher does when (consciously) calculating
the degree of adaptation of a perceptual system to a given environment. Brun-
swik’s intuitive statistician was a statistician of the Karl Pearson school, like
the Brunswikian researcher. Brunswik’s intuitive statistician was not well
adapted to the psychological science of the time, however, and the analogy
was poorly understood and generally rejected.

Brunswik’s analogy came too early to be comprehended and accepted by
his colleagues of the experimental community; it came before the institution-
alization of statistics as the indispensable method of scientific inference, and

1
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it came with the “wrong” statistical model, correlational statistics. Correlation
was an indispensable method not in experimental psychology but rather in its
rival discipline, known as the Galton-Pearson program, or, as Lee Cronbach
(1957) put it, the “Holy Roman Empire” of “correlational psychology” (p. 671).

The schism between the two scientific communities had been repeatedly
taken up in presidential addresses before the American Psychological Asso-
ciation (Cronbach, 1957; Dashiell, 1939) and had deeply affected the values
and the mutual esteem of psychologists (Thorndike, 1954). Brunswik could
not persuade his colleagues from the experimental community to consider the
statistical tool of the competing community as a model of how the mind works.
Ernest Hilgard (1955}, in his rejection of Brunswik’s perspective, did not mince
words: “Correlation is an instrument of the devil” (p. 228).

Brunswik, who coined the metaphor of “man as intuitive statistician,” did
not survive to see the success of his analogy. It was accepted only after statis-
tical inference became institutionalized in experimental psychology and with
the new institutionalized tools rather than (Karl) Pearsonian statistics serving
as models of mind. Only in the mid-1960s, however, did interest in Brun-
swikian models of mind emerge (e.g., Harnmond, Stewart, Brehmer, & Stein-
mann, 1975).

The tendency to accept the statistical tools of one’s own scientific com-
munity {here, the experimental psychologists) rather than those of a competing
community as models of mind is not restricted to Brunswik’s case. For ex-
ample, Fritz Heider (1958, pp. 123, 297), whom Harold Kelley credited for
having inspired his ANOVA theory, had repeatedly suggested factor analysis—
another indispensable tool of the correlational discipline—as a model of causal
reasoning. Heider’s proposal met with the same neglect by the American ex-
perimental community as did Brunswik’s correlational model. Kelley replaced
the statistical tool that Heider suggested by ANOVA, the tool of the experi-
mental community. It seems to be more than a mere accident that both Brun-
swik and Heider came from a similar, German-speaking tradition, where no
comparable division into two communities with competing methodological
imperatives existed.

Probabilistic Models without the Intuitive Statistician

My preceding point is that the statistical tool was accepted as a plausible anal-
ogy of cognitive processes only after its institutionalization in experimental
psychology. My second point is that although some probabilistic models of
cognitive processes were advanced before the institutionalization of inferential
statistics, they were not interpreted using the metaphor of the mind as intuitive
statistician. The distinction I draw is between probabilistic models that use
the metaphor and ones that do not. The latter kind is illustrated by models
that use probability distributions for perceptual judgment, assuming that var-
iability is caused by lack of experimental control, measurement error, or other
factors that can be summarized as experimenter’s ignorance. Ideally, if the ex-
perimenter had complete control and knowledge (such as Laplace’s superin-
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telligence), all probabilistic terms could be eliminated from the theory. This
does not hold for a probabilistic model that is based on the metaphor. Here,
the probabilistic terms model the ignorance of the mind rather than that of the
experimenter. That is, they model how the homunculus statistician in the brain
comes to terms with a fundamentally uncertain world. Even if the experi-
menter had complete knowledge, the theories would remain probabilistic be-
cause it is the mind that is ignorant and needs statistics.

The key example is represented in L. L. Thurstone, who in 1927 formulated
a model for perceptual judgment that was formally equivalent to the present-
day TSD. But neither Thurstone nor his followers recognized the possibility
of interpreting the formal structure of their model in terms of the intuitive
statistician. Like TSD, Thurstone’s model had two overlapping normal distri-
butions, which represented the internal values of two stimuli and which spec-
ified the corresponding likelihood ratios, but it never occurred to Thurstone
to include in his model the conscious activities of a statistician, such as the
weighing of the costs of the two errors and the setting of a decision criterion.
Thus neither Thurstone nor his followers took the—with hindsight—small step
to develop the “law of comparative judgment” into TSD. When Duncan Luce
(1977) reviewed Thurstone’s model 50 years later, he found it hard to believe
that nothing in Thurstone’s writings showed the least awareness of this small
but crucial step. Thurstone’s perceptual model remained a mechanical, albeit
probabilistic, stimulus-response theory without a homunculus statistician in
the brain. The small conceptual step was never taken, and TSD entered psy-
chology by an independent route.

To summarize: There are several kinds of evidence for a close link between
the institutionalization of inferential statistics in the 1950s and the subsequent
broad acceptance of the metaphor of the mind as an intuitive statistician: (a)
the general failure to accept, and even to understand, Brunswik’s intuitive
statistician before the institutionalization of the tool and (b) the case of Thur-
stone, who proposed a probabilistic model that was formally equivalent to one
important present-day theory of intuitive statistics but was never interpreted
in this way; the analogy was not yet seen. Brunswik’s case illustrates that tools
may act on two levels: First, new tools may suggest new cognitive theories to
a scientist. Second, the degree to which these tools are institutionalized within
the scientific community to which the scientist belongs can prepare (or hinder)
the acceptance of the new theory. This close link between tools for justification
on the one hand and discovery and acceptance on the other reveals the arti-
ficiality of the discovery—justification distinction. Discovery does not come first
and justification afterward. Discovery is inspired by justification.

How Heuristics of Discovery May Help in Understanding
Limitations and Possibilities of Current Research Programs

In this section I argue that the preceding analysis of discovery is of interest
not only for a psychology of scientific discovery and creativity (e.g., Gardner,
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1988; Gruber, 1981; Tweney, Doherty, & Mynatt, 1981) but also for the eval-
uation and further development of current cognitive theories. The general
point is that institutionalized tools like statistics do not come as pure mathe-
matical (or physical) systems but with a practical context attached. Features
of this context in which a tool has been used may be smuggled Trojan-horse
fashion into the new cognitive theories and research programs. One example
was mentioned earlier: The formal tools of significance testing have been used
in psychology as tools for rejecting hypotheses, with the assumption that the
data are correct, whereas in other fields and at other times the same tools were
used as tools for rejecting data (outliers), with the assumption that the hy-
potheses were correct. The latter use of statistics is practically extinct in ex-
perimental psychology (although the problem of outliers routinely emerges)
and therefore also absent in theories that liken cognitive processes to signifi-
cance testing. In cases like these, analysis of discovery may help to reveal blind
spots associated with the tool and, as a consequence, new possibilities for
cogunitive theorizing.

I illustrate this potential in more detail using examples from the “judgment
under uncertainty” program of Daniel Kahneman, Amos Tversky, and others
(see Kahneman & Tversky, 1982). This stimulating research program emerged
from the earlier research on human information processing by Ward Edwards
and his coworkers. In Edwards’s work, the dual role of statistics as a tool and
a model of mind is again evident: Edwards, Lindman, and Savage (1963) pro-
posed Bayesian statistics for scientific hypothesis evaluation and considered
the mind as a reasonably good, albeit conservative, Bayesian statistician (e.g.,
Edwards, 1966). The judgment-under-uncertainty program also investigates
reasoning as intuitive statistics but focuses on so-called errors in probabilistic
reasoning. In most of the theories based on the metaphor of the intuitive stat-
istician, statistics or probability theory is used both as normative and as de-
scriptive of a cognitive process (e.g., both as the optimal and the actual mech-
anism for speech perception and human memory; see Massaro, 1987, and
Anderson & Milson, 1989, respectively). This is not the case in the judgment-
under-uncertainty program; here, statistics and probability theory are used
only in the normative function, whereas actual human reasoning has been
described as “biased,” ‘“fallacious,” or “indefensible” (on the rhetoric, see
Lopes, 1991).

In the following, I first point out three features of the practical use of the
statistical tool (as opposed to the mathematics). Then I show that these features
reemerge in the judgment-under-uncertainty program, resulting in severe lim-
itations on that program. Finally, I suggest how this hidden legacy of the tool
could be eliminated to provide new impulses and possibilities for the research
program.

The first feature is an assumption that can be called “There is only one
statistics.” Textbooks on statistics for psychologists (usually written by non-
mathematicians) generally teach statistical inference as if there existed only
one logic of inference. Since the 1950s and 1960s, almost all texts teach a
mishmash of R. A. Fisher’s ideas tangled with those of Jerzy Neyman and Egon
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S. Pearson, but without acknowledgment. The fact that Fisherians and
Neyman-Pearsonians could never agree on a logic of statistical inference is not
mentioned in the textbooks, nor are the controversial issues that divide them.
Even alternative statistical logics for scientific inference are rarely discussed.
For instance, Fisher (1955) argued that concepts such as Type II error, power,
the setting of a level of significance before the experiment and its interpretation
as a long-run frequency of errors in repeated experiments are concepts inap-
propriate for scientific inference—at best they could be applied to technology
(his pejorative example was Stalin’s). Neyman, for his part, declared that some
of Fisher’s significance tests are “worse than useless” (because their power is
less than their size; see Hacking, 1965, p. 99). I know of no textbook written
by psychologists for psychologists that mentions and explains this and other
controversies about the logic of inference. Instead, readers are presented with
an intellectually incoherent mix of Fisherian and Neyman-Pearsonian ideas,
but a mix presented as a seamless, uncontroversial whole: the logic of scientific
inference (for more details, see Chapter 13).

The second assumption that became associated with the tool during its in-
stitutionalization is “There is only one meaning of probability.” For instance,
Fisher and Neyman-Pearson had different interpretations of what a level of
significance means. Fisher’s was an epistemic interpretation, that is, that the
level of significance indicates the confidence that can be placed in the partic-
ular hypothesis under test, whereas Neyman’s was a strictly frequentist and
behavioristic interpretation, which claimed that a level of significance does
not refer to a particular hypothesis but to the relative frequency of wrongly
rejecting the null hypothesis if it is true in the long run. Although the textbooks
teach both Fisherian and Neyman-Pearsonian ideas, these alternative views of
what a probability (such as a level of significance) could mean are generally
neglected—not to speak of the many other meanings that have been proposed
for the formal concept of probability.

Third and last, the daily practice of psychologists assumes that statistical
inference can be applied mechanically without checking the underlying as-
sumptions of the model. The importance of checking whether the assumptions
of a particular statistical model hold in a given application has been repeatedly
emphasized, particularly by statisticians. The general tendency in psycholog-
ical practice (and other social sciences) has been to apply the test anyhow, as
a kind of ritual of justification required by journals but poorly understood by
authors and readers alike.

These features of the practical context, in which the statistical tool has been
used, reemerge at the theoretical level in current cognitive psychology, just as
the tools-to-theories heuristic would lead one to expect.

Example 1: There Is Only One Statistics,
Which Is Normative

Tversky and Kahneman (1974) described their judgment-under-uncertainty
program as a two-step procedure. First, participants are confronted with a rea-
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soning problem, and their answers are compared with the so-called normative
or correct answer, supplied by statistics and probability theory. Second, the
deviation between the participant’s answer and the so-called normative an-
swer, also called a bias of reasoning, is attributed to some heuristic of reason-
ing.

One implicit assumption at the heart of this research program says that
statistical theory provides exactly one answer to the real-world problems pre-
sented to the participants. If this were not true, the deviation between partic-
ipants’ judgments and the “normative” answer would be an inappropriate ex-
planandum, because there are as many different deviations as there are
statistical answers. Consider the following problem:

A cab was involved in a hit-and-run accident at night. Two companies,
the Green and the Blue, operate in the city. You are given the following
data:

(i) 85% of the cabs in the city are Green and 15% are Blue. (ii) A witness
identified the cab as a Blue cab. The court tested his ability to identify
cabs under the appropriate visibility conditions. When presented with a
sample of cabs (half of which were Blue and half of which were Green),
the witness made correct identifications in 80% of the cases and erred
in 20% of the cases.

QQuestion: What is the probability that the cab involved in the accident
was Blue rather than Green? (Tversky & Kahneman, 1980, p. 62)

The authors inserted the values specified in this problem into Bayes’s rule
and calculated a probability of .41 as the “correct” answer, and, despite criti-
cism, they have never retreated from that claim. They saw in the difference
between this value and the participants’ median answer of .80 an instance of
a reasoning error, known as neglect of base rates. But alternative statistical
solutions to the problem exist.

Tversky and Kahneman’s reasoning is based on one among many possible
Bayesian views—which the statistician I. J. Good (1971), not all too seriously,
once counted up to 46,656. For instance, using the classical principle of in-
difference to determine the Bayesian prior probabilities can be as defensible
as Tversky and Kahneman’s use of base rates of “cabs in the city” for the
relevant priors, but it leads to a probability of .80 instead of .41 (Levi, 1983).
Or, if Neyman-Pearson theory is applied to the cab problem, solutions range
between .28 and .82, depending on the psychological theory about the wit-
ness’s criterion shift—the shift from witness testimony at the time of the ac-
cident to witness testimony at the time of the court’s test (Birnbaum, 1983;
Gigerenzer & Murray, 1987, pp. 167-174).

There may be more arguable answers to the cab problem, depending on
what statistical or philosophical theory of inference one uses and what as-
sumptions one makes. Indeed, the range of possible statistical solutions is
about the range of participants’ actual answers. The point is that none of these
statistical solutions is the only correct answer to the problem, and therefore it
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makes little sense to use the deviation between a participant’s judgment and
one of these statistical answers as the psychological explanandum.

Statistics is an indispensable tool for scientific inference, but, as Neyman
and Pearson (1928, p. 176) pointed out, in “many cases there is probably no
single best method of solution.” Rather, several such theories are legitimate,
just as “Euclidean and non-Euclidean geometrics are equally legitimate” (Ney-
man, 1937, p. 336). My point is this: The idée fixe that statistics speaks with
one voice has reappeared in research on intuitive statistics. The highly inter-
esting judgment-under-uncertainty program could progress beyond the present
point if (a) participants’ judgments rather than deviations between judgments
and a so-called normative solution are considered as the data to be explained
and if (b) various statistical models are proposed as competing hypotheses of
problem-solving strategies rather than one model being proposed as the general
norm for rational reasoning. The willingness of many researchers to accept the
claim that statistics speaks with one voice is the legacy of the institutionalized
tool, not of statistics per se.

Note the resulting double standard: Many researchers on intuitive statistics
argue that their participants should draw inferences from data to hypotheses
by using Bayes’s rule, although they themselves do not. Rather, the researchers
use the institutionalized mixture of Fisherian and Neyman-Pearsonian statis-
tics to draw their inferences from data to hypotheses.

Example 2: There Is Only One Interpretation
of Probability

Just as there are alternative logics of inference, there are alternative interpre-
tations of probability that have been part of the mathematical theory since its
inception in the mid-17th century (Daston, 1988; Hacking, 1975). Again, both
the institutionalized tool and the recent cognitive research on probabilistic
reasoning exhibit the same blind spot concerning the existence of alternative
interpretations of probability. For instance, Lichtenstein, Fischhoff, and Phil-
lips (1982) have reported and summarized research on a phenomenon called
overconfidence. Briefly, participants were given questions such as “Absinthe
is (a) a precious stone or (b) a liqueur”; they chose what they believed was the
correct answer and then were asked for a confidence rating in their answer,
for example, 90% certain. When people said they were 100% certain about
individual answers, they had in the long run only about 80% correct answers;
when they were 90% certain, they had in the long run only 75% correct an-
swers; and so on. This discrepancy was called overconfidence bias and was
explained by general heuristics in memory search, such as confirmation biases,
or general motivational tendencies, such as a so-called illusion of validity.
My point is that two different interpretations of probability are compared:
degrees of belief in single events (i.e., that this answer is correct) and relative
frequencies of correct answers in the long run. Although 18th-century math-
ematicians, like many of today’s cognitive psychologists, would have had no
problem in equating the two, most mathematicians and philosophers since
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then have. For instance, according to the frequentist point of view, the term
probability, when it refers to a single event, “has no meaning at all” (Mises,
1928/1957, p. 11) because probability theory is about relative frequencies in
the long run. Thus, for a frequentist, probability theory does not apply to
single-event confidences, and therefore no confidence judgment can violate
probability theory. To call a discrepancy between confidence and relative fre-
quency a bias in probabilistic reasoning would mean comparing apples and
oranges. Moreover, even subjectivists would not generally think of a discrep-
ancy between confidence and relative frequency as a bias (see Kadane & Lich-
tenstein, 1982, for a discussion of conditions). For a subjectivist such as Bruno
de Finetti, probability is about single events, but rationality is identified with
the internal consistency of probability judgments. As de Finetti (1931/1989,
p.- 174) emphasized: “However an individual evaluates the probability of a
particular event, no experience can prove him right, or wrong; nor in general,
could any conceivable criterion give any objective sense to the distinction one
would like to draw, here, between right and wrong.”

Nonetheless, the literature on overconfidence is largely silent on even the
possibility of this conceptual problem (but see Keren, 1987). The question
about research strategy is whether to use the deviation between degrees of
belief and relative frequenciss (again considered as a bias) as the explanandum
or to accept the existence of several meanings of probability and to investigate
the kind of conceptual distinctions that untutored people make. Almost all
research has been done within the former research strategy. And, indeed, if
the issue were a general tendency to overestimate one’s knowledge, as the term
overconfidence suggests—for instance, as a result of general strategies of mem-
ory search or motivational tendencies—then asking people for degrees of belief
or for frequencies should not matter.

But it does. In a series of experiments (Gigerenzer, Hoffrage, & Kleinholting,
1991; see also May, 1987), participants were given several hundred questions
of the absinthe type and were asked for confidence judgments after every ques-
tion was answered (as usual). In addition, after each 50 (or 10, 5, and 2) ques-
tions, they were asked how many of those questions they believed they had
answered correctly; that is, frequency judgments were requested. This design
allowed comparison both between their confidence in their individual answers
and true relative frequencies of correct answers, and between judgments of
relative frequencies and true relative frequencies. Comparing frequency judg-
ments with the true frequency of correct answers showed that overestimation
or overconfidence disappeared in 80% to 90% of the participants, depending
on experimental conditions. Frequency judgments were precise or even
showed underestimation. Ironically, after each frequency judgment, partici-
pants went on to give confidence judgments (degrees of belief) that exhibited
what has been called overconfidence.

As in the preceding example, a so-called bias of reasoning disappears if a
controversial norm is dropped and replaced by several descriptive alternatives,
statistical models, and meanings of probability, respectively. Thus probabilities
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for single events and relative frequencies seem to refer to different meanings
of confidence in the minds of the participants. This result is inconsistent with
previous explanations of the alleged bias by deeper cognitive deficiencies (e.g.,
confirmation biases) and has led to the theory of probabilistic mental models,
which describes mechanisms that generate different confidence and frequency
judgments (see Chapter 7). Untutored intuition seems to be capable of making
conceptual distinctions of the sort statisticians and philosophers make (e.g.,
Cohen, 1986; Lopes, 1981; Teigen, 1983). And it suggests that the important
research questions to be investigated are How are different meanings of prob-
ability cued in everyday language? and How does this affect judgment?, rather
than How can the alleged bias of overconfidence be explained by some general
deficits in memory, cognition, or personality?

The same conceptual distinction can help to explain other kinds of judg-
ments under uncertainty. For instance, Tversky and Kahneman (1982a, 1983)
used a personality sketch of a character named Linda that suggested she was
a feminist. Participants were asked which is more probable: (a) that Linda is
a bank teller or (b) that Linda is a bank teller and active in the feminist move-
ment. Most participants chose Alternative b, which Tversky and Kahneman
(1982a) called a “fallacious” belief, to be explained by their hypothesis that
people use a limited number of heuristics—in the present case, representa-
tiveness (the similarity between the description of Linda and the alternatives
a and b). Participants’ judgments were called a conjunction fallacy because the
probability of a conjunction of events (bank teller and active in the feminist
movement) cannot be greater than the probability of one of its components.

As in the example just given, this normative interpretation neglects two
facts. First, in everyday language, words like probable legitimately have several
meanings, just as “if . . . then” and “or” constructions do. The particular mean-
ing seems to be automatically cued by content and context. Second, statisti-
cians similarly have alternative views of what probability is about. In the con-
text of some subjectivist theories, choosing Alternative b truly violates the
rules of probability; but for a frequentist, judgments of single events such as
in the Linda problem have nothing to do with probability theory: As the stat-
istician G. A. Barnard (1979, p. 171) objected, they should be treated in the
context of psychoanalysis, not probability.

Again, the normative evaluation explicit in the term conjunction fallacy
is far from being uncontroversial, and progress in understanding reasoning
may be expected by focusing on people’s judgments as explanandum rather
than on their deviations from a so-called norm. As in the previous example,
if problems of the Linda type are rephrased as involving frequency judgments
(e.g., “How many out of 100 cases that fit the description of Linda are [a]
bank tellers and [b] bank tellers and active in the feminist movement?”), then
the so-called conjunction fallacy decreases from 77% to 27%, as Fiedler (1988)
showed. “Which alternative is more probable?” is not the same as “Which
alternative is more frequent?” in the Linda context. Tversky and Kahneman
(1983) found similar results, but they maintained their normative claims and
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treated the disappearance of the phenomenon merely as an exception to the
rule (p. 293).

Example 3: Commitment to Assumptions versus
Neglect of Them

It is a commonplace that the validity of a statistical inference is to be measured
against the validity of the assumptions of the statistical model for a given
situation. In the actual context of justification, however, in psychology and
probably beyond, there is little emphasis on pointing out and checking crucial
assumptions. The same neglect is a drawback in some Bayesian-type proba-
bility revision studies. Kahneman and Tversky’s (1973) famous engineer—
lawyer study is a case in point (see also Mueser, Cowan, & Mueser, 1999). In
the study, a group of students was told that a panel of psychologists had made
personality descriptions of 30 engineers and 70 lawyers, that they (the stu-
dents) would be given 5 of these descriptions, chosen at random, and that their
task was to estimate for each description the probability that the person de-
scribed was an engineer. A second group received the same instruction and
the same descriptions but was given inverted base rates, that is, 70 engineers
and 30 lawyers. Kahneman and Tversky found that the mean probabilities
were about the same in the two groups and concluded that base rates were
ignored. They explained this alleged bias in reasoning by postulating that peo-
ple use a general heuristic, called representativeness, which means that people
generally judge the posterior probability simply by the similarity between a
description and their stereotype of an engineer.

Neither Kahneman and Tversky’s (1973) study nor any of the follow-up
studies checked whether the participants were committed to or were aware of
a crucial assumption that must hold in order to make the given base rates
relevant: the assumption that the descriptions have been randomly drawn from
the population. If not, the base rates are irrelevant. There have been studies,
such as Kahneman and Tversky's (1973) “Tom W.” study, in which participants
were not even told whether the descriptions were randomly sampled. In the
engineer—lawyer study, participants were so informed (in only one word), but
the information was false. Whether a single word is sufficient to direct the
attention of participants toward this crucial information is an important ques-
tion in itself, because researchers cannot assume that in everyday life, people
are familiar with situations in which profession guessing is about randomly
selected people. Thus many of the participants may not have been committed
to the crucial assumption of random selection.

In a controlled replication (Gigerenzer, Hell, & Blank, 1988), a simple
method was used to make participants aware of this crucial assumption: Par-
ticipants themselves drew each description {(blindly) out of an urn and gave
their probability judgments. This condition made base-rate neglect largely dis-
appear; once the participants were committed to the crucial assumption of
random sampling, their judgments were closer to Bayesian predictions than to
base rate neglect. This finding indicates that theories of intuitive statistics have
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to deal with how the mind analyzes the structure of a problem (or environ-
ment) and how it infers the presence or absence of crucial statistical assump-
tions—just as the practicing statistician has to first check the structure of a
problem in order to decide whether a particular statistical model can be ap-
plied. Checking structural assumptions precedes statistical calculations (see
also Cohen, 1982; Einhorn & Hogarth, 1981; Ginossar & Trope, 1987).

My intention here is not to criticize this or that specific experiment, but
rather to draw attention to the hidden legacy that tools bequeath to theories.
The general theme is that some features of the practical context in which a
tool has been used (to be distinguished from its mathematics) have reemerged
and been accepted in a research program that investigates intuitive statistics,
impeding progress. Specifically, the key problem is a simplistic conception of
normativeness that confounds one view about probability with the criterion
for rationality.

Although I have dwelt on the dangerous legacy that tools hand on to the-
ories, I do not mean to imply that a theory that originates in a tool is ipso facto
a bad theory. The history of science, not just the history of psychology, is
replete with examples to the contrary. Good ideas are hard to come by, and
one should be grateful for those few that one has, whatever their lineage. But
knowing that lineage can help to refine and criticize the new ideas. In those
cases in which the tools-to-theories heuristic operates, this means taking a
long, hard look at the tools—and the statistical tools of social scientists are
overdue for such a skeptical inspection.

Discussion

New technologies have been a steady source of metaphors of mind: “In my
childhood we were always assured that the brain was a telephone switchboard.
(‘What else could it be?’),” recalled John Searle (1984, p. 44). The tools-to-
theories heuristic is more specific than general technology metaphors. Scien-
tists’ tools, not just any tools, are used to understand the mind. Holograms are
not social scientists’ tools, but computers are, and part of their differential
acceptance as metaphors of mind by the psychological community may be a
result of psychologists’ differential familiarity with these devices in research
practice.

The computer, serial and parallel, would be another case study for the tools-
to-theories heuristic—a case study that is in some aspects different. For in-
stance, John von Neumann (1958) and others explicitly suggested the analogy
between the serial computer and the brain. But the main use of computers in
psychological science was first in the context of justification: for processing
data; making statistical calculations; and as an ideal, endlessly patient exper-
imental subject. Recently, the computer metaphor and the statistics metaphors
of mind have converged, both in artificial intelligence and in the shift toward
massively parallel computers simulating the interaction between neurons.
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Herbert A. Simon’s Heuristics of Discovery and
the Tools-to-Theories Heuristic

Herbert A. Simon (1973) and his coworkers (e.g., Langley, Simon, Bradshaw,
& Zytkow, 1987) explicitly reconsidered the possibility of a logic of discovery.
For example, a series of programs called BACON has “rediscovered” quanti-
tative empirical laws, such as Kepler’s third law of planetary motion. How
does BACON discover a law? Basically, BACON starts from data and analyzes
them by applying a group of heuristics until a simple quantitative law can be
fitted to the data. Kepler’s law, for instance, can be rediscovered by using heu-
ristics such as “If the values of two numerical terms increase together, then
consider their ratio” (Langley et al., 1987, p. 66). Such heuristics are imple-

.nented as production rules.

What is the relation between heuristics used in programs like BACON and
the tools-to-theories heuristics? First, the research on BACON was concerned
mainly with the ways in which laws could be induced from data. BACON’s
heuristics work on extant data, whereas the tools-to-theories heuristic works
on extant tools for data generation and processing and describes an aspect of
discovery (and acceptance) that goes beyond data. As I argued earlier, new
data can be a consequence of the tools-to-theories heuristic, rather than the
starting point to which it is applied. Second, what can be discovered seems to
have little overlap. For Langley et al. (1987), discoveries are of two major
kinds: quantitative laws such as Kepler’s law and qualitative laws such as
taxonomies using clustering methods. In fact, the heuristics of discovery pro-
posed in that work are similar to the statistical methods of exploratory data
analysis (Tukey, 1977). It is this kind of intuitive statistics that serves as the
analogy to discovery in Simon’s approach. In contrast, the tools-to-theories
heuristic can discover new conceptual analogies, new research programs, and
new data. It cannot—at least not directly—derive quantitative laws by sum-
marizing data, as BACON’s heuristics can.

The second issue, What can be discovered?, is related to the first, that is,
to Simon’s approach to discovery as induction from data, as “recording in a
parsimonious fashion, sets of empirical data” (Simon, 1973, p. 475). More re-
cently, Simon and Kulkarni (1988) went beyond that data-centered view of
discovery and made a first step toward characterizing the heuristics used by
scientists for planning and guiding experimental research. Although Simon
and Kulkarni did not explore the potential of scientists’ tools for suggesting
theoretical concepts (and their particular case study may not invite this), the
tools-to-theories heuristic can complement this recent, broader program to un-
derstand discovery. Both Simon’s heuristics and the tools-to-theories heuristic
go beyond the inductive probability approach to discovery (such as Reichen-
bach’s). The approaches are complementary in their focus on aspects of dis-
covery, but both emphasize the possibility of understanding discovery by ref-
erence to heuristics of creative reasoning, which go beyond the merely
personal and accidental.
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The Tools-to-Theories Heuristic beyond
Cognitive Psychology

The examples of discovery I give in this chapter are modest instances com-
pared with the classical literature in the history of science treating the contri-
bution of a Copernicus or a Darwin. But in the narrower context of recent
cognitive psychology, the theories I have discussed count as among the most
influential. In this more prosaic context of discovery, the tools-to-theories heu-
ristic can account for a group of significant theoretical innovations. And, as I
have argued, this discovery heuristic can both open and foreclose new avenues
of research, depending on the interpretations attached to the statistical tool.
My focus is on analytical tools of justification, and I have not dealt with phys-
ical tools of experimentation and data processing. Physical tools, once familiar
and considered indispensable, also may become the stuff of theories. This
holds not only for the hardware (like the software) of the computer, but also
for theory innovation beyond recent cognitive psychology. Smith (1986) argued
that Edward C. Tolman’s use of the maze as an experimental apparatus trans-
formed Tolman’s conception of purpose and cognition into spatial character-
istics, such as cognitive maps. Similarly, he argued that Clark L. Hull’s fasci-
nation with conditioning machines has shaped Hull’s thinking of behavior as
if it were machine design. With the exception of Danziger’s (1985, 1987) work
on changing methodological practices in psychology and their impact on the
kind of knowledge produced, however, there seems to exist no systematic re-
search program on the power of familiar tools to shape new theories in psy-
chology.

But the history of science beyond psychology provides some striking in-
stances of scientists’ tools, both analytical and physical, that ended up as the-
ories of nature. Hackmann (1979), Lenoir (1986), and Wise (1988) have ex-
plored how scientific instruments shaped the theoretical concepts of, among
others, Emil DuBois-Reymond and William Thomson (Lord Kelvin).

The case of Adolphe Quetelet illustrates nicely how the tools-to-theories
heuristic can combine with an interdisciplinary exchange of theories. The sta-
tistical error law (normal distribution) was used by astronomers to handle ob-
servational errors around the true position of a star. Quetelet (1842/1969), who
began as an astronomer, transformed the astronomer’s tool for taming error into
a theory about society: The true position of a star turned into I’homme moyen,
or the ideal average person within a society, and observational errors turned
into the distribution of actual persons (with respect to any variable) around
I’homme moyen—actual persons now being viewed as nature’s errors. Quete-
let’s social error theory was in turn seminal in the development of statistical
mechanics; Ludwig Boltzmann and James Clerk Maxwell in the 1860s and
1870s reasoned that gas molecules might behave as Quetelet’s humans do;
erratic and unpredictable as individuals, but regular and predictable when
considered as a collective (Porter, 1986). By this strange route of discovery—
from astronomer’s tool to a theory of society, and from a theory of society to
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a theory of a collective of gas molecules—the deterministic Newtonian view
of the world was finally overthrown and replaced by a statistical view of nature
(see Gigerenzer et al., 1989). Thus there seems to exist a broader, interdisci-
plinary framework for the tools-to-theories heuristic proposed here, which has
yet to be explored.

Discovery Reconsidered

Let me conclude with some reflections on how the present view stands in
relation to major themes in scientific discovery.

Data-to-Theories Reconsidered Should psychologists continue to tell their stu-
dents that new theories originate from new data, if only because “little is
known about how theories come to be created,” as J. R. Anderson remarked
in the introduction to his Cognitive Psychology (1980, p. 17)? Holton (1988)
noted the tendency among physicists to reconstruct discovery with hindsight
as originating from new data, even if this is not the case. His most prominent
example is Einstein’s special theory of relativity, which was and still is cele-
brated as an empirical generalization from Michelson’s experimental data by
such eminent figures as R. A. Millikan and H. Reichenbach, as well as by the
textbook writers. As Holton demonstrated with firsthand documents, the role
of Michelson’s data in the discovery of Einstein’s theory was slight, a conclu-
sion shared by Einstein himself.

Similarly, with respect to more modest discoveries, I argue that a group of
recent cognitive theories did not originate from new data, but in fact often
created new kinds of data. Tanner and Swets (1954) are even explicit that their
theory was inconsistent with the extant data. Numerical probability judgments
have become the stock-in-trade data of research on inductive thinking since
Edwards’s (1966) work, whereas this kind of dependent variable was still un-
known in Humphrey’s (1951) review of research on thinking.

The strongest claim for an inductive view of discovery came from the Vi-
enna Circle’s emphasis on sensory data (reduced to the concept of “pointer
readings”). Carnap (1928/1969), Reichenbach (1938), and others focused on
what they called the rational reconstruction of actual discovery rather than on
actual discovery itself, in order to screen out the merely irrational and psy-
chological. For instance, Reichenbach reconstructed Einstein’s special theory
of relativity as being “suggested by closest adherence to experimental facts,”
a claim that Einstein rejected, as mentioned earlier (see Holton, 1988, p. 296).
It seems fair to say that all attempts to logically reconstruct discovery in sci-
ence have failed in practice (Blackwell, 1983, p. 111). The strongest theoretical
disclaimer concerning the possibility of a logic of discovery came from Popper,
Hempel, and other proponents of the hypothetico-deductive account, resulting
in the judgment that discovery, not being logical, occurs irrationally. Theories
are simply “guesses guided by the unscientific” (Popper, 1959, p. 278). In con-
trast, [ have dealt with guesses that are guided by the scientific, by tools of
justification. Induction from data and irrational guesses are not exhaustive of
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scientific discovery, and the tools-to-theories heuristic explores the field be-
yond.

Scientists’ Practice Reconsidered The tools-to-theories heuristic is about sci-
entists’ practice, that is, the analytical and physical tools used in the conduct
of experiments. This practice has a long tradition of neglect. The very philos-
ophers who called themselves logical empiricists had, ironically, little interest
in the empirical practice of scientists. Against their reduction of observation
to pointer reading, Kuhn (1970) emphasized the theory ladenness of observa-
tion. Referring to perceptual experiments and gestalt switches, he said: “Sci-
entists see new and different things when looking with familiar instruments
in places they have looked before” (p. 111). Both the logical empiricists and
Kuhn were highly influential on psychology (see Toulmin & Leary, 1985), but
neither’s view has emphasized the role of tools and experimental conduct.
Their role in the development of science has been grossly underestimated until
recently (Danziger, 1985; Lenoir, 1988).

Through the lens of theory, it has been said, growth of knowledge can be
understood. But there is a recent move away from a theory-dominated account
of science that pays attention to what really happens in the laboratories. Hack-
ing (1983) argued that experimentation has a life of its own and that not all
observation is theory laden. Galison (1987} analyzed modern experimental
practice, such as in high-energy physics, focusing on the role of the fine-
grained web of instruments, beliefs, and practice that determine when a fact
is considered to be established and when experiments end. Both Hacking and
Galison emphasized the role of the familiarity experimenters have with their
tools, and the importance and relative autonomy of experimental practice in
the quest for knowledge. This is the broader context in which the present tools-
to-theories heuristic stands: the conjecture that theory is inseparable from in-
strumental practices.

In conclusion, my argument is that discovery in recent cognitive psychology
can be understood beyond mere inductive generalizations or lucky guesses.
More than that, I argue that for a considerable group of cognitive theories,
neither induction from data nor lucky guesses played an important role.
Rather, these innovations in theory can be accounted for by the tools-to-
theories heuristic. So can conceptual problems and possibilities in current the-
ories. Scientists’ tools are not neutral. In the present case, the mind has been
re-created in their image.
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Mind as Computer
The Social Origin of a Metaphor

Have philosophers of science spent too little time inside the laboratories to
be drawn in by the glamour of technology? Tools, after all, fascinate scientists.
New tools can directly, rather than through new data, inspire new theories.
This chapter extends the thesis of a tools-to-theories heuristic from statistical
tools to the computer.! Recall that the thesis is twofold:

1. Discovery. New scientific tools, once entrenched in a scientist’s daily
practice, suggest new theoretical metaphors and concepts.

2. Acceptance. Once proposed by an individual scientist {or a group),
the new theoretical metaphors and concepts are more likely to be
accepted by the scientific community if their members are also users
of the new tools.

This chapter is divided into two parts. In the first part, we argue that a
conceptual divorce between intelligence and calculation circa 1800, motivated
by a new social organization of work, made mechanical computation (and ul-
timately the computer) conceivable. The tools-to-theories heuristic comes into
play in the second part. When computers finally became standard laboratory
tools in the 20th century, the computer was proposed, and with some delay
accepted, as a model of mind. Thus we travel in a full circle from mind to
computer and back.

The work on which this chapter is based was coauthored with D. G. Goldstein.

1. Although we are only dealing with theories of mind, this does not imply that the
tools-to-theories heuristic is not applicable in the analysis of other scientific domains.
Schaffer (1992) provided several examples from the history of electromagnetism, in
which theories stemmed from tools. For instance, in 1600, the court physician William
Gilbert described the Earth as a vast spherical magnet. This new idea stemmed from the
tool he had invented (a magnet, the small terrella) and subsequently used as an analogy
to understand the world. This projection had consequences. Gilbert inferred that, be-
cause his terrella rotated, so did the Earth. The tool proved Copernicanism.
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From Mind to Computer

“Well, Babbage, what are you dreaming about?” to which I replied, “I
am thinking that all these tables (pointing to the logarithms) might be
calculated by machinery.” (Charles Babbage, 1812/1994, p. 31)

The president of the Astronomical Society of London, Henry Colebrooke
(1825), summed up the significance of Babbage’s work: “Mr. Babbage’s inven-
tion puts an engine in place of the computer” (p. 310). This seems a strange
statement about the man who is now praised for having invented the computer.
But, at Babbage’s time, the computer was a human being—in this case, some-
one who was hired for exhaustive calculations of astronomical and naviga-
tional tables.

How did Babbage (1791-1871) ever arrive at the idea of putting a mechan-
ical computer in place of a human one? A divorce between intelligence and
calculation, as Daston (1994) argued, made it possible for Babbage to conceive
this idea.

In the Enlightenment, calculation was not considered a rote, mechanical
thought process. In contrast, philosophers of the time held that intelligence
and even moral sentiment were in their essence forms of calculation. Calcu-
lation was the opposite of the habitual and the mechanical, remote from the
realm of menial labor. For Condillac, d’Alembert, Condorcet, and other En-
lightenment philosophers, the healthy mind worked by constantly taking apart
ideas and sensations into their minimal elements, then comparing and rear-
ranging these elements into novel combinations and permutations. Thought
was a combinatorial calculus, and great thinkers were proficient calculators.
In the eulogies of great mathematicians, for instance, prodigious mental reck-
oning was a favorite topic—Gauss’s brilliant arithmetic was perhaps the last
of these stock legends. Calculation was the essence of moral sentiment, too.
Even self-interest and greed (as opposed to dangerous passions), by their nature
of being calculations, were at least predictable and thereby thought to reinforce
the orderliness of society (Daston, 1988, 1994).

The Computer as a Factory of Workers

By the turn of the nineteenth century, calculation was shifting from the com-
pany of hommes éclairés and savants to that of the unskilled work force.
Extraordinary mental arithmetic became associated with the idiot savant and
the sideshow attraction. Calculation became seen as dull, repetitive work,
best performed by patient minds that lacked imagination. Women ultimately
staffed the “bureaux de calculs” in major astronomical and statistical projects
(despite their earlier being accused of vivid imaginations and mental rest-
lessness; see Daston, 1992). Talent and genius ceased to be virtuoso com-
binatorics and permutations and turned into romantic, unanalyzable creations.
Thereby, the stage became set for the neoromanticism in twentieth-century
philosophy of science that declared creativity as mystical and the context of
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discovery as “irrelevant to the logical analysis of scientific knowledge” (Pop-
per, 1959, p. 31).

Daston (1994) and Schaffer (1994} argued that one force in this transfor-
mation was the introduction of large-scale division of labor in manufacturing,
as evidenced in the automatic system of the English machine-tool industry and
in the French government’s large-scale manufacturing of logarithmic and trig-
onometric tables for the new decimal system in the 1790s. French engineer
Gaspard Riche de Prony organized the French government’s titanic project for
the calculation of 10,000 sine values to the unprecedented precision of 25
decimal places and some 200,000 logarithms to 14 or 15 decimal places during
the French Revolution. Inspired by Adam Smith’s praise of the division of
labor, Prony organized the project in a hierarchy of tasks. At the top was a
handful of excellent mathematicians, including Adrien Legendre and Lazare
Carnot, who devised the formulae; in the middle were 7 or 8 persons trained
in analysis; at the bottom were 70 or 80 unskilled persons who knew only the
rudiments of arithmetic and who performed millions of additions and sub-
tractions. These “manufacturing” methods, as Prony called them, pushed cal-
culation away from intelligence and toward work. The terms work and me-
chanical have been linked in both England and France since the middle of the
nineteenth century. Work concerned the body but not the mind; in large-scale
manufacturing, each worker did only one thing his or her whole life.

After it was shown that elaborate calculation could be carried out by an
assemblage of unskilled workers, each knowing very little about the large com-
putation, it became possible for Babbage to conceive of replacing these workers
with machinery. Babbage’s view of the computer bore a great resemblance to
a factory of unskilled human workers. When Babbage talked about the parts
of his “Analytical Engine,” the arithmetic computation and the storage of num-
bers, he called these the “mill” and the *store,” respectively (Babbage, 1812/
1994, p. 23). The metaphor came from the textile industry, in which yarns were
brought from the store to the mill, were woven into fabric, and were then sent
back to the store. In the Analytical Engine, numbers were brought from the
store to the arithmetic mill for processing, and the results were returned to the
store. Commenting on this resemblance, Lady Lovelace said, “We may say
most aptly that the Analytical Engine weaves algebraic patterns just as the
Jaquard loom weaves flowers and leaves” (Babbage, 1812/1994, p. 27).2 In his
chapter on the “division of mental labor,” Babbage explicitly referred to the
French government’s program for the computation of new decimal tables as
the inspiration and foundation of a general science of machine intelligence.

Let us summarize the argument. During the Enlightenment, calculation was
the distinctive activity of the scientist and the genius and the very essence of

2. The Jaquard loom, a general-purpose device loaded with a set of punched cards,
could be used to weave infinite varieties of patterns. Factories in England were equipped
with hundreds of these machines, and Babbage was one of the “factory tourists” of the
1830s and 1840s.
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the mental life. New ideas and insights were assumed to be the product of the
novel combinations and permutations of ideas and sensations. In the first de-
cades of the nineteenth century, numerical calculation was separated from the
rest of intelligence and demoted to one of the lowest operations of the human
mind. After calculation became the repetitive task of an army of unskilled
workers, Babbage could envision mechanical computers replacing human
computers. Pools of human computers and Babbage’s mechanical computer
manufactured numbers in the same way as the factories of the day manufac-
tured their goods.?

The Computer as a Brain

Babbage’s dream that all tables of logarithms could be calculated by a machine,
however, did not turn into a reality during his lifetime. He never completed
any of the three machines he had started to build. Modern computers, such as
the ENIAC and the EDVAC at the University of Pennsylvania, came about dur-
ing and after World War II. Did the fathers of computer science see the mind
as a computer? We argue that the contemporary analogy stating that the mind
is a computer was not yet established before the “cognitive revolution” of the
1960s. As far as we can tell, two groups were willing to draw a parallel be-
tween the human and the computer, but neither used the computer as a theory
of mind. One group, which tentatively compared the nervous system and the
computer, is represented by Hungarian mathematician John von Neumann
(1903-1957). The other group, which investigated the idea that machines
might be capable of thought, is represented by English mathematician and
logician Alan Turing (1912-1954).

Von Neumann, known as the father of the modern computer, wrote about
the possibility of an analogy between the computer and the human nervous
system. It seems that von Neumann'’s reading of Warren McCulloch and Walter
Pitts’s (1943) paper, “A Logical Calculus of the Ideas Immanent in Nervous
Activity,” triggered his interest in information processing in the human brain
soon after the paper was published (Aspray, 1990). McCulloch and Pitts’s paper
starts with the statement that, because of the all-or-none character of the ner-
vous system, neural events can be represented by means of propositional logic.
The McCulloch-Pitts model did not deal with the structure of neurons, which
were treated as ‘“black boxes.” The model was largely concerned with the
mathematical rules governing the input and output of signals. In a 1945 report
on EDVAC (the Electronic Discrete Variable Computer), von Neumann de-
scribed the computer as being built from McCulloch and Pitts’s idealized neu-
rons rather than from vacuum tubes, electromechanical relays, or mechan-

3. Calculation became dissociated and opposed not only to the human intellect but
also to moral impulse. Madame de Staél, for instance, used the term calcul only in
connection with the “egoism and vanity” of those opportunists who exploited the
French Revolution for their own advantage and selfishness (Daston, 1994).
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ical switches. Understanding the computer in terms of the human nervous
system appeared strange to many, including the chief engineers of the ENIAC
project, Eckert and Mauchly (Aspray, 1990, p. 173). But, von Neumann hoped
that his theory of natural and artificial automata would improve understanding
of the design both of computers and of the human nervous system. His last
waork (for the Silliman lectures), neither finished nor delivered due to illness,
was largely concerned with pointing out similarities between the nervous sys-
tem and the computer—between the neuron and the vacuum tube—but added
cautionary notes on their differences (von Neumann, 1958).

What was the reception of von Neumann’s tentative analogy between the
nervous system and the computer? His intellectual biographer, Aspray (1990,
p. 181), concluded that psychologists and physiologists were less than enthu-
siastic about the McCulloch-Pitts model; Seymor Papert spoke of “a hostile or
indifferent world” (McCulloch, 1965, p. xvii), and McCulloch himself admitted
the initial lack of interest in their work (p. 9).

The Computer as a Mind

I believe that at the end of the century the use of words and general
educated opinion will have altered so much that one will be able to
speak of machines thinking without expecting to be contradicted. (Alan
Turing, 1950, p. 442}

Von Neumann and others looked for a parallel between the machine and the
human on the level of hardware. Turing (1950), in contrast, thought the ob-
servation that both the modern digital computer and the human nervous sys-
tem are electrical was based on a “very superficial similarity” (p. 439). He
pointed out that the first digital computer, Babbage’s Analytical Engine, was
purely mechanical (as opposed to electrical) and that the important similarities
to the mind are in function rather than in hardware. Turing discussed the
question of whether machines can think rather than the question of whether
the mind is like a computer. Thus he was looking in a direction opposite that
in which psychologists were looking after the cognitive revolution, and con-
sequently he did not propose any theories of mind. For example, the famous
Turing test is about whether a machine can imitate a human mind but not vice
versa. Turing argued that it would be impossible for a human to imitate a
computer, as evidenced by the human’s inability to perform complex numer-
ical calculations quickly. Turing also discussed the question of whether a com-
puter could be said to have free will, a property of humans. Many years later,
cognitive psychologists, under the assumptions that the mind is a computer
and that computers lack free will, pondered the question of whether humans
could be said to have free will. A similar story to this is that Turing (1947/
1969) contemplated teaching machines to be intelligent using the same prin-
ciples used to teach children. The analogy of the computer as a mind was
reversed again after the cognitive revolution, as McCorduck (1979) pointed out,
when Massachusetts Institute of Technology (MIT) psychologists tried to teach
children with the very methods that had worked for computers.
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Turing anticipated much of the new conceptual language and even the very
problems Allen Newell and Herbert Simon later attempted to address, as we
see in the second part of this chapter. With amazing prophecy, Turing sug-
gested that many intellectual issues can be translated into the form “Find a
number n such that . . .”; that is, he suggested that searching is the key concept
for problem solving and that Whitehead and Russell’s (1935) Principia Math-
ematica might be a good start for demonstrating the power of the machine
(McCorduck, 1979, p. 57).

Not only did Turing’s life end early and under tragic circumstances, but his
work had practically no influence on artificial intelligence in Britain until the
mid-1960s (McCorduck, 1979, p. 68). Neither von Neumann nor his friends
were persuaded to look beyond similarities between cells and diodes to func-
tional similarities between humans and computers.

To summarize, we have looked at two groups who compared humans and
computers before the cognitive revolution. One of these groups, represented
by von Neumann, spoke tentatively about the computer as a brain but warned
about taking the analogy too far. The other group, represented by Turing, asked
whether the computer has features of the human mind but not vice versa—
that is, this group did not attempt to design theories of mind through the
analogy of the tool.

Before the second half of the century, the mind was not yet a computer.
However, a new incarnation of the Enlightenment view of intelligence as a
combinatorial calculus was on the horizon.

From Computer to Mind

The computer is a member of an important family of artifacts called
symbol systems, or more explicitly, physical symbol systems . . . The hy-
pothesis is that a physical symbol system . . . has the necessary and suf-
ficient means for general intelligent action. (Herbert Simon, 1969, p. 26)

What has been called in retrospect the cognitive revolution in American psy-
chology of the 1960s is more than an overthrow of behaviorism by mentalist
concepts. The cognitive revolution did more than revive the mental; it changed
its meaning. One source of this change is the projection of new tools (i.e.,
statistics and computers) into the mind. We refer to this heuristic of discovery
as the tools-to-theories heuristic. The two new classes of theories that emerged
and that partially overlap pictured the new mind as an “intuitive statistician”
or a “computer program.”

In this section, we see how a tools-to-theories explanation accounts for the
new conception of the mind as a computer, focusing on the discovery and
acceptance of Simon and Newell’s brand of information-processing psychol-
ogy. We try to reconstruct the discovery of Newell and Simon’s (1972)
information-processing model of mind and its (delayed) acceptance by the psy-
chological community in terms of the tools-to-theories heuristic.
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32 WHERE DO NEW IDEAS COME FROM?
Discovery

Babbage’s mechanical computer was preceded by human computers. Similarly,
Newell and Simon’s first computer program, the “Logic Theorist” (LT), was
preceded by a human computer. Before the LT was up and running, Newell
and Simon reconstructed their computer program out of human components
(Simon’s wife, children, and several graduate students) in order to see if it
would work. Newell wrote up the subroutines of the LT program on index
cards:

To each member of the group, we gave one of the cards, so that each
person became, in effect, a component of the LT computer program—a
subroutine that performed some special function, or a component of its
memory. It was the task of each participant to execute his or her subrou-
tine, or to provide the contents of his or her memory, whenever called
by the routine at the next level above that was then in control.

So we were able to simulate the behavior of the LT with a computer
constructed of human components. . . . The actors were no more respon-
sible . . . than the slave boy in Plato’s Meno, but they were successful in
proving the theorems given them. (Simon, 1991, p. 207)

The parallels to Prony’s bureaux de calculs and the large-scale manufac-
turing of the new factories of the early nineteenth century are striking. At
essence is a division of labor, in which the work is done by a hierarchy of
humans—each requiring little skill and repeating the same routine again and
again. Complex processes are achieved by an army of workers who never see
but a little piece of the larger picture.*

However, between Prony’s human computer and Simon’s human computer
is an important difference. Prony’s human computer and Babbage’s mechanical
computer (modeled after it) performed numerical calculations. Simon’s human
computer did not. Simon’s humans matched symbols, applied rules to sym-
bols, and searched through lists of symbols—in short, performed what is now
generally known as symbol manipulation.

The reader will recall from the first part of this chapter that the divorce
between intelligence and numerical calculation made it possible for Babbage
to replace the human computer with a mechanical one. In the twentieth cen-
tury, intelligence and calculation are still divorced. Given this divorce and the
early conception of the computer as a fancy number cruncher, it is no wonder
that the computer never suggested itself as a theory of mind. We argue that an

4. The Manhattan Project at Los Alamos, where the atomic bomb was constructed,
housed another human computer. Although the project could draw on the best technol-
ogy available, in the early 1940s mechanical calculators (e.g., the typewriter-sized Mar-
chant calculator) could only add, subtract, multiply, and, with some difficulty, divide.
Richard Feynman and Nicholas Metropolis arranged a pool of people (mostly scientists’
wives, who were getting paid three-eighths of the scientists’ salary), each of whom re-
petitively performed a small calculation (e.g., cubing a number) and passed the result
on to another person, who incorporated it into yet another computation (Gleick, 1992).
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important precondition for the view of mind as a computer is the realization
that computers are symbol-manipulation devices in addition to being numer-
ical calculators. Newell and Simon were among the first to realize this. In
interviews with Pamela McCorduck (1979), Newell recalled, “I've never used
a computer to do any numerical processing in my life” (p. 129). Newell’s first
use of the computer at RAND Corporation—a prehistoric card-programmed
calculator hooked up to a line printer—was printing symbols representing air-
planes for each sweep of a radar antenna.

The symbol-manipulating nature of the computer was important to Simon
because it corresponded to some of his earlier views on the nature of intelli-
gence:

The metaphor I'd been using, of a mind as something that took some
premises and ground them up and processed them into conclusions, be-
gan to transform itself into a notion that a mind was something which
took some program inputs and data and had some processes which op-
erated on the data and produced output. (cited in McCorduck, 1979,
p. 127)

It is interesting to note that 20 years after seeing the computer as a symbol-
manijpulating device, Newell and Simon came forth with the explicit hypoth-
esis that a physical symbol system is necessary and sufficient for intelligence.

The Logic Theorist generated proofs for theorems in symbolic logic—spe-
cifically, the first 25 or so theorems in Whitehead and Russell’s (1935) Principia
Mathematica. It even managed to find a proof more elegant than the corre-
sponding one in the Principia Mathematica.

In the summer of 1958, psychology was given a double dose of the new
school of information-processing psychology. One dose was the publication of
Newell, Shaw, and Simon’s (1958) Psychological Review article, “Elements of
a Theory of Human Problem Solving”; the other dose was the Research Train-
ing Institute on the Simulation of Cognitive Processes at the RAND Corpora-
tion, which we discuss later.

The Psychological Review article is an interesting document of the transi-
tion between the view that the LT is a tool for proving theorems in logic (the
artificial intelligence view) and an emerging view that the LT is a mode] of
human reasoning (the information-processing view), In fact, Newell et al.
(1958) went back and forth between both views, explaining that “the program
of LT was not fashioned directly as a theory of human behavior; it was con-
structed in order to get a program that would prove theorems in logic” (p. 154);
later, they wrote that the LT “provides an explanation for the processes used
by humans to solve problems in symbolic logic” (p. 163). The evidence pro-
vided for projecting the machine into the mind is mainly rhetorical. For in-
stance, Newell et al. spent several pages arguing for the resemblance between
the methods of LT and concepts (e.g., “set,” “insight,” “hierarchy”) described
in the earlier psychological literature on human problem solving.

In all fairness, despite Newell et al.’s claim, the resemblance to these earlier
concepts as they were used in the work of Karl Duncker, Wolfgang Kohler, and
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others is slight. New discoveries, by definition, clash with what has come be-
fore, but it is often a useful strategy to hide the amount of novelty and to claim
historical continuity. When Tanner and Swets (1954) proposed (in the Psycho-
logical Review four years earlier) that another scientific tool (i.e., the Neyman-
Pearsonian techniques of hypothesis testing) would model the cognitive pro-
cesses of stimulus detection and discrimination, their signal-detection model
also clashed with earlier notions, such as the notion of a sensory threshold.
Tanner and Swets, however, chose not to conceal this schism between the old
and the new theories, explicitly stating that their new theory “appears to be
inconsistent with the large quantity of existing data on this subject” (p. 401).
As we argued before, there is a different historical continuity in which Newell
and Simon’s ideas stand—the earlier Enlightenment view of intelligence as a
combinatorial calculus.

Conceptual Change

Newell et al. (1958) tried to emphasize the historical continuity of what was
to become their new information-processing model of problem solving, as did
Miller, Galanter, and Pribram (1960) in their Plans and the Structure of Be-
havior when they linked their version of Newell and Simon’s theory to many
great names such as William James, Frederic Bartlett, and Edward Tolman. We
believe that these early claims for historical continuity served as protection:
George Miller, who was accused by Newell and Simon of having stolen their
ideas and gotten them all wrong, said, “I had to put the scholarship into the
book, so they would no longer claim that those were their ideas. As far as I
was concerned they were old familiar ideas” (Baars, 1986, p. 213). In contrast
to this rhetoric, here we emphasize the discontinuity introduced by the trans-
formation of the new tool into a theory of mind.

The New Mind

What was later called the “new mental chemistry” pictured the mind as a
computer program:

The atoms of this mental chemistry are symbols, which are combinable
into larger and more complex associational structures called lists and list
structures. The fundamental “reactions” of the mental chemistry employ
elementary information processes that operate upon symbols and symbol
structures: copying symbols, storing symbols, retrieving symbols, input-
ting and outputting symbols, and comparing symbols. (Simon, 1979,
p. 363)

This atomic view is certainly a major conceptual change in the views about
problem solving compared to the theories of Kéhler, Wertheimer, and Duncker,



MIND AS COMPUTER

but it bears much resemblance to the combinatorial view of intelligence of the
Enlightenment philosophers.s

The different physical levels of a computer lead to Newell’s cognitive
hierarchy, which separates the knowledge level, symbol level, and register-
transfer levels of cognition. The seriality of 1971-style computers is actually
embedded in Newell’s cognitive theory (Arbib, 1993).

One of the major concepts in computer programming that made its way into
the new models of the mind is the decomposition of complexity into simpler
units, such as the decomposition of a program into a hierarchy of simpler
subroutines or into a set of production rules. On this analogy, the most com-
plex processes in psychology, such as scientific discovery, can be explained
through simple subprocesses. Thus the possibility of the logic of scientific
discovery, the existence of which Karl Popper so vehemently disclaimed, has
returned in the analogy between computer and mind (Langley, Simon, Brad-
shaw, & Zytkow, 1987).

The first general statement of Newell and Simon’s new vision of mind ap-
peared in their 1972 book, Human Problem Solving. Newell and Simon argued
for the idea that higher level cognition proceeds much like the behavior of a
production system—a formalism from computer science (and before that sym-
bolic logic) that had never before been used in psychological modeling. Newell
and Simon (1972) wrote of the influence of programming concepts on their
models:

Throughout the book we have made use of a wide range of organizational
techniques known to the programming world: explicit flow control, sub-
routines, recursion, iteration statements, local naming, production sys-
tems, interpreters, and so on. . . . We confess to a strong premonition that
the actual organization of human programs closely resembles the pro-
duction system organization. (p. 803)

Here we do not attempt to probe the depths of how Newell and Simon’s
ideas of information processing changed theories of mind; the commonplace
usage of computer terminology in the cognitive psychological literature since
1972 is a reflection of this. How natural it seems for present-day psychologists
to speak of cognition in terms of encoding, storage, retrieval, executive pro-
cesses, algorithins, and computational cost.

5. In fact, the new view was directly inspired by 19th-century mathematician George
Boole (1854/1958), who, in the very spirit of the Enlightenment mathematicians such as
the Bernoullis and Laplace, set out to derive the laws of logic, algebra, and probability
from what he believed to be the laws of human thought. Boole’s algebra culminated in
Whitehead and Russell’s (1935) Principia Mathematica, desdribing the relation between
mathematics and logic, and in Claude Shannon’s seminal work (his master’s thesis at
MIT in 1940), which used Boolean algebra to describe the behavior of relay and switch-
ing circuits (McCorduck, 1979, p. 41).
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New Experiments, New Data

The tools-to-theories heuristic implies that new theories need not be a conse-
quence of new experiments and new data. Instead, new tools can transform
the kinds of experiments performed and data collected. This consequence of
the tools-to-theories heuristic is also known to have happened when statistical
tools turned into theories of mind (and around the same time).

One such case is the revolution of psychophysics through a new tool called
Neyman-Pearsonian hypothesis testing (see Chapter 1). The new theory of
mind inspired by this tool is known as signal-detection theory. The Neyman-
Pearson technique deals with two kinds of errors, Type I and Type II (or false
alarms and misses). When Tanner and Swets (1954) projected the tool into
the mind, stimulus detection and discrimination—earlier understood in terms
of “thresholds”—then became seen as a decision between two competing
hypotheses based on a criterion that balances the probability of two kinds of
errors. Consequently, the avalanche of experiments on auditory and visual
detection and discrimination that followed their proposal kept track of both
kinds of error in participants’ judgments. The important point is that earlier
experiments, such as the classical works of Fechner and Thurstone, paid
attention to only one kind of error (Gigerenzer, 1994b). What happened is that
the new statistical tool inspired a new theory of mind, which in turn changed
the kind of data generated in research. In this way, Tanner and Swets were
able, in good conscience, to discard the years of contradicting results that
preceded them.

A similar story is to be told with the conceptual change brought about by
Newell and Simon—it mandated a new type of experiment that in turn in-
volved new kinds of subjects, data, and justification. In academic psychology
of the day, the standard experimental design, modeled after the statistical
methods of Ronald Fisher, involved many subjects and randomized treatment
groups. The 1958 Psychological Review article used the same terminology of
design of the experiment and subject but radically changed their meanings.
There were no longer groups of human or animal subjects. There was only one
subject—an inanimate being, Logic Theorist. There was no longer an experi-
ment in which data are generated by either observation or measurement. Ex-
periment took on the meaning of simulation.

In this new kind of experiment, the data were of an unforeseen type—com-
puter printouts of the intermediate results of the program. These new data, in
turn, required new methods of hypothesis testing. How did Newell and Simon
tell if their program was doing what minds do? There were two methods. For
Newell and Simon, simulation was a form of justification itself: A theory that
is coded as a working computer program shows that the processes it describes
are, at the very least, sufficient to perform the task, or, in the more succinct
words of Simon (1992a), “A running program is the moment of truth” (p. 155).
Furthermore, a stronger test of the model is made by comparing the output of
the computer to the think-aloud protocols of human subjects.
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Although all of this was a methodological revolution in the experimental
practice of the time, some important parallels exist between the new
information-processing approach and the turn-of-the-century German ap-
proach to studying mental processes. These parallels concern the analysis of
individual subjects (rather than group means), the use of think-aloud proce-
dures, and the status of the subject. In the early German psychology, as well
as in American psychology of the time (until about the 1930s), the unit of
analysis was the individual person, not the average of a group (Danziger, 1990).
The two most prominent kinds of data in early German psychology were re-
action times and introspective reports. Introspective reports have been
frowned on ever since the inception of American behaviorism, but think-aloud
protocols, their grandchildren, are back (as are reaction times). Furthermaore,
in the tradition of the Leipzig (Wundt) and Wiirzburg (Kiilpe) schools, the
subject was more prestigious and important than the experimenter. Under the
assumption that the thought process is introspectively penetrable, the subject,
not the experimenter, was assumed to provide the theoretical description of
the thought process. In fact, the main experimental contribution of Kiilpe, the
founder of the Wiirzburg school, was to serve as a subject, and it was often
the subject who published the article. In the true spirit of these schools, Newell
and Simon put their subject, the LT, as a coauthor of a paper submitted to the
Journal of Symbolic Logic. Regrettably, the paper was rejected (as it contained
no new results from the point of view of modern logic), and the LT never tried
to publish again.

Acceptance

The second dose of information processing administered to psychology (after
the 1958 Psychological Review article) was the Research Training Institute
on the Simulation of Cognitive Processes at the RAND Corporation, organized
by Newell and Simon. At the institute, lectures and seminars were conducted;
IPL-IV programming was taught; and the LT, the General Problem Solver, and
the EPAM model of memory were demonstrated on the RAND computer. In
attendance were some scientists who would eventually develop computer-
simulation methods of their own—including George Miller, Robert Abelson,
Bert Green, and Roger Shepard.

An early but deceptive harbinger of acceptance for the new information-
processing theory was the publication, right after the summer institute, of
Plans and the Structure of Behavior (Miller et al., 1960). Despite the afore-
mentioned 1959 dispute with Newell and Simon over the ownership and va-
lidity of the ideas within, this book drew a good deal of attention from all of
psychology.

It would seem the table was set for the new information-processing psy-
chology; however, it did not take hold. Simon (1991, p. 232) complained of
the psychological community, which took only a “cautious interest” in Newell
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and Simon’s ideas. The “acceptance” part of the tools-to-theories thesis can
explain this: Computers were not yet entrenched in the daily routine of psy-
chologists, as we show here.

No Familiar Tools, No Acceptance

We take two institutions as case studies to demonstrate the part of the tools-
to-theories hypothesis that concerns acceptance—the Harvard University Cen-
ter for Cognitive Studies and Carnegie-Mellon University (CMU). The former
never came to embrace fully the new information-processing psychology; the
latter did but after a considerable delay. Tools-to-theories might explain both
phenomena.

George Miller, the cofounder of the Center for Cognitive Studies, was cer-
tainly a proponent of the new information-processing psychology. As we said,
Miller et al.’s (1960) Plans and the Structure of Behavior was so near to Newell
et al.’s (1958) ideas that it was at first considered a form of theft, although the
version of the book that did see the presses is filled with citations recognizing
Newell et al. Given Miller’s enthusiasm, one might expect the center, partially
under Miller’s leadership, to blossom into information-processing research. It
never did. Looking at the 1963-1969 annual reports (Harvard University Cen-
ter for Cognitive Studies, 1963, 1964, 1966, 1968, 1969), we found only a few
symposia or papers dealing with computer simulation.

Although the center had a PDP-4C Computer and the reports anticipated
the possibility of using it for cognitive simulation, as late as 1969 it never
happened. The reports mention that the computer served to run experiments,
demonstrate the feasibility of computer research, and draw visitors to the lab-
oratory. However, difficulties involved in using the tool were considerable. The
PDP saw 83 hours of use on an average week in 1965-1966, but 56 of these
were spent on debugging and maintenance. In the annual reports are several
remarks of the type, “It is difficult to program computers. . . . Getting a program
to work may take months.” The center even turned out a 1966 technical report
entitled Programmanship, or How to Be One-Up on a Computer without Ac-
tually Ripping out Its Wires.

What might have kept the Harvard computer from becoming a metaphor
of the mind was that the researchers could not integrate this tool into their
everyday laboratory routine. The tool even turned out to be a steady source
of frustration. As tools-to-thearies suggests, this lack of entrenchment in every-
day practice accounted for the lack of acceptance of the new information-
processing psychology. Simon (1979) took notice of this:

Perhaps the most important factors that impeded the diffusion of the new
ideas, however, were the unfamiliarity of psychologists with computers
and the unavailability on most campuses of machines and associated
software (list processing programming languages) that were well adapted
to cognitive simulation. The 1958 RAND Summer Workshop, mentioned
earlier, and similar workshops held in 1962 and 1963, did a good deal
to solve the first problem for the 50 or 60 psychologists who participated
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in them; but workshop members often returned to their home campuses
to find their local computing facilities ill-adapted to their needs. (p. 365)

At CMU, Newell, Simon, a new information-processing—enthusiastic de-
partment head, and a very large National Institute of Mental Health (NIMH]
grant were pushing “the new IP [information processing] religion” (H. A.
Simon, personal communication, 1994). Even this concerted effort failed to
proselytize the majority of researchers within their own department. This again
indicates that entrenchment of the new tool in everyday practice was an im-
portant precondition for the spread of the metaphor of the mind as a computer.

Acceptance of Theory Follows Familiarity with Tool

At CMU in the late 1950s, the first doctoral theses involving computer simu-
lation of cognitive processes were being written (H. A. Simon, personal com-
munication, 1994). But this was not representative of the national state of af-
fairs. In the mid-1960s, a small number of psychological laboratories were built
around computers, including those of CMU, Harvard, Michigan, Indiana, MIT,
and Stanford (Aaronson, Grupsmith, & Aaronson, 1976, p. 130). As indicated
by the funding history of NIMH grants for cognitive research, the amount of
computer-using research tripled over the next decade. In 1967, only 15% of
the grants being funded had budget items related to computers (e.g., program-
mer salaries, hardware, supplies); by 1975, this figure had increased to 46%.
The late 1960s saw a turn toward mainframe computers that lasted until the
late 1970s, when the microcomputer started its invasion of the laboratory. In
the 1978 Behavioral Research Methods & Instrumentation conference, micro-
computers were the issue of the day (Castellan, 1981, p. 93). By 1984, the
journal Behavioral Research Methods & Instrumentation appended the word
Computers to its title to reflect the broad interest in the new tool. By 1980, the
cost of computers had dropped an order of magnitude from what it was in
1970 (Castellan, 1981, 1991). During the last two decades, computers have
become the indispensable research tool of the psychologist.

After the tool became entrenched in everyday laboratory routine, a broad
acceptance of the view of the mind as a computer followed. In the early 1970s,
information-processing psychology finally caught on at CMU. Every CMU-
authored article in the proceedings of the 1973 Carnegie Symposium on Cog-
nition mentions some sort of computer simulation. For the rest of the psycho-
logical community, which was not as familiar with the tool, the date of broad
acceptance was years later. Simon (1979) estimated that, from about 1973 to
1979, the number of active research scientists working in the information-
processing vein had “probably doubled or tripled” (p. 390).

This does not mean that the associated methodology became accepted as
well. It clashed too strongly with the methodological ritual that was institu-
tionalized during the 1940s and 1950s in experimental psychology. We use the
term rifual here for the mechanical practice of a curious mishmash between
Fisher’s and Neyman-Pearson’s statistical techniques, which was taught to psy-
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chologists as the sine qua non of scientific method (see Chapter 13). Most
psychologists assumed, as the texthooks told them, that there is only one way
to do good science. But their own heroes—Fechner, Wundt, Pavlov, Kéhler,
Bartlett, Piaget, Skinner, and Luce, to name a few—had never used this “rit-
ual.” Some had used experimental practices that resembled the newly pro-
posed methods used to study the mind as computer.

Pragmatics

Some of our experimental colleagues have objected to our earlier analysis of
how statistical tools turned into theories of mind. They have argued that tools
are irrelevant in discovery and that our tools-to-theories examples are merely
illustrations of psychologists’ being quick to realize that the mathematical
structure of a tool (e.g., ANOVA) is precisely that of the mind. It is not easy to
convince someone who believes (in good Neoplatonic fashion) that today’s
theory of mind exactly fits the nature of the mind—that such a splendid theory
might mirror something other than reality pure and simple. If it were true that
tools have no role in discovery and that the new theories just happen to mirror
the mathematical structure of the tool, then the pragmatics of the use of a
tool—which is independent of the mathematical structure—would find no
place in the new theories. In this section, however, we provide evidence that
not only the new tool but also its pragmatic uses are projected into the mind.
The tools-to-theories heuristic cannot be used to defend a spurious Neoplaton-
ism.

One example is Kelley’s (1967) causal attribution theory, which postulates
that the mind draws a causal inference in the same way social scientists do,
by using Fisher’s ANOVA. As described in Chapter 1, the pragmatics, in ad-
dition to the mathematics of ANOVA, were projected into the mind. The prac-
tical use of a tool is generally undetermined by its mathematical structure. The
mathematics of significance testing, as in ANOVA, has been used both for re-
jecting hypotheses based on data and for rejecting data (e.g., outliers in astro-
nomical observations) based on hypotheses. Scientists have to get rid of both
bad hypotheses and bad data. In the psychological laboratories, however,
ANOVA was (and is) used almost exclusively for rejecting hypotheses based
on data. Dubious data, in contrast, were (and still are} dealt with informally.
When Kelley projected ANOVA into the mind, this specific, practical use (i.e.,
rejecting hypotheses) was projected along with it. In sharp contrast to earlier
theoretical accounts, such as Michotte’s and Piaget’s, causal inference was seen
as data driven, as an inductive inference from data to causes. Kelley’s new
mind used the tool in the same way the researcher uses the tool—to trust the
data (the information given) and to mistrust the hypotheses. The inductive
view of causal attribution became one of the classic topics of social psychology,
even to the point of defining the field.
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The same process of projecting pragmatic aspects of the use of a tool into
a theory can be shown for the view of the mind as a computer. One example
is Levelt’s (1989) model of speaking. The basic unit in Levelt’s model, which
he called the “processing component,” corresponds to the computer program-
mer’s concept of a subroutine. We argue that Levelt’s model not only borrowed
the subroutine as a tool but also borrowed the practical aspects of how sub-
routines are used and constructed in computer programming.

A subroutine (or “subprocess”) is a group of computer instructions (usually
serving a specific function) that are separated from the main routine of a com-
puter program. It is common for subroutines to perform often needed func-
tions, such as extracting cube roots or rounding numbers. There is a major
pragmatic issue involved in writing subroutines that centers on the “principle
of isolation” (Simon & Newell, 1986). The issue is whether subroutines should
be black boxes or not. According to the principle of isolation, the internal
workings of the subroutine should remain a mystery to the main program, and
the outside program should remain a mystery to the subroutine. Black-box
subroutines have become known as program modules, perfect for the divide-
and-conquer strategy programmers often use to tackle large problems. To the
computer, however, it makes no difference whether subroutines are isolated or
not. Subroutines that are not isolated work just as well as those that are. The
only real difference between the two types of subroutine is psychological. Sub-
routines that violate the principle of isolation are more difficult for the pro-
grammer to read, write, debug, maintain, and reuse. For this reason, introduc-
tory texts on computer programming stress the principle of isolation as the
very essence of good programming style.

The principle of isolation—a pragmatic feature of using subroutines as a
programming tool—has a central place in Levelt’s model, in which the pro-
cessing components are “black boxes” that exemplify Fodor’s notion of infor-
mational encapsulation (Levelt, 1989, p. 15). In this way, Levelt’s psychological
model embodies a maxim of good computer programming—the principle of
isolation. That this practical aspect of the use of the tool shaped a theory of
speaking is not an evaluation of the quality of the theory. Our point concerns
origins, not validity. However, this pragmatic feature of subroutines has not
always served the model well. Kita (1993) and Levinson {1992) have attacked
Levelt’s model at its Achilles’ heel—its insistence on isolated processing com-
ponents.

To summarize the second part of this chapter, we started with the separation
between intelligence and calculation and argued that the realization that com-
puters can do more than arithmetic was an important precondition for the view
of the mind as a computer. Newell and Simon seem to have been the first who
tried to understand the mind in terms of a computer program, but the accep-
tance of their information-processing view was delayed until the psychologists
became used to computers in their daily laboratory routine. We have argued
that, along with the tool, its pragmatic use has been projected into theories of
mind. Now that the metaphor is in place, many find it difficult to see how the
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mind could be anything else: To quote Philip Johnson-Laird (1983): “The com-
puter is the last metaphor; it need never be supplanted” (p. 10).

Social Computers

The tools-to-theories heuristic can reverse the commonly assumed fixed tem-
poral order between discovery and justification—discovery first, justification
second. New tools for justification enter the laboratory first, new theories fol-
low. In the case of Babbage’s computer, the tool itself was modeled after a new
social system, the organization of work in large-scale manufacturing. The
model for the machine computer was a social computer.

The argument was that economic changes—the large-scale division of labor
in manufacturing and in the “bureaux de calculs”—went along with the break-
down of the Enlightenment conception of the mind, in which calculation was
the distinctive essence of intelligence. Once calculation was separated from
the rest of intelligence and relegated to the status of a dull and repetitive task,
Babbage could envision replacing human computers with mechanical ones.
Both human and mechanical computers manufactured numbers as the factories
of the day manufactured goods. In the twentieth century, the technology be-
came available to make Babbage’s dream a reality. Computers became indis-
pensable scientific tools for everything from number crunching to simulation.
Our focus was on the work by Herbert Simon and Allen Newell and their
colleagues, who proposed the tool as a theory of mind. Their proposal reunited
mere calculation with what was now called “symbol processing,” returning to
the Enlightenment conception of mind. After personal computers found a
place in nearly every psychological laboratory, broad acceptance of the meta-
phor of the mind as computer followed.®

A question remains: Why was the digital computer used as a model of the
individual mind rather than of the social organization of many minds? As the
social roots of the idea behind Babbage’s computer shows, there is nothing
inherently individualistic about the business of computation. We can only
speculate that it was the traditional focus of psychological research on indi-
viduals that suggested the analogy between the computer and the individual
mind and that in less individualistic disciplines the computer would have had
a better chance of becoming a model of social organization. In fact, anthro-
pologist Ed Hutchins (1995) has proposed using the digital computer as a
model of how social groups make decisions, for instance, how a crew on a
large ship solves the problem of navigation. Here the computer is used to

6. The reconstruction of the path “from mind to computer and back” also provides
an explanation for one widespread type of resistance to the computer metaphor of mind.
The post-Enlightenment divorce between intelligence and calculation still holds to this
day, and, for those who still associate the computer with mere calculation (as opposed
to symbol processing), the mind-as-a-computer is a contradiction in itself.
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model the division of labor in the storing, processing, and exchange of infor-
mation among members of a social group. This notion of distributed intelli-
gence completes the circle traveled by the computer metaphor. Once modeled
after the social organization of human work, the computer has now become a
model of the social organization of human work.
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Ideas in Exile
The Struggles of an Upright Man

The sparkling intellectual atmosphere of early twentieth-century Vienna pro-
duced Wittgenstein, Popper, Neurath, and Gédel—in addition to a string of
other great thinkers. Among them was Karl Bithler, who, when he founded the
Vienna Psychological Institute in 1922, was one of the foremost psychologists
in the world. Egon Brunswik began to study psychology in Vienna in 1923
and soon became an active participant in Biihler’s famous Wednesday evening
discussion group; on Thursdays he went to Moritz Schlick’s Thursday evening
discussion group (Leary, 1987). Schlick was the founder and leading member
of the European school of positivist philosophers known as the Vienna Circle.
In 1927, Brunswik submitted his doctoral thesis to Biihler and Schlick, the
same two advisors to whom Karl Popper submitted his thesis a year later.

The intellectual tension between Wednesday and Thursday evenings was
vibrant. The logical positivist doctrine of the Vienna Circle posited that the
relation between scientific language and its sense-data referents should and
could be unambiguous. Biihler, in contrast, had shown that the relation be-
tween perceptual cues and their objects, as well as between words and their
objects, was irreducibly ambiguous. Brunswik sided with Biihler. He did try,
though, to resolve the tension by adopting the position of Hans Reichenbach,
the leader of the Berlin school of logical positivism, who argued that all knowl-
edge is probabilistic.

Influenced by Biihler’s biclogically motivated concern with the success of
organisms in their world, Brunswik’s research in the 1920s and 1930s aimed
at studying “perceptual achievement” in the presence of ambiguous cues. The
three traditional perceptual constancies—size, shape, and color—were the pro-
totype for achievement, that is, how accurate perception is when aspects of
the environment change. Brunswik extended the question of how well an or-
ganism infers size, shape, and color under varying context variables (such as
illumination) to the more general problem of studying the invariance of the
perception of one characteristic of an object when the others vary. For instance,
he studied how the perceived size of coins changed when their value and the
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number of coins were varied—coins higher in value appeared to be larger in
size and greater in number than those of lesser value (Brunswik, 1934, p. 147).
In Brunswik’s terms, what we see are perceptual compromises that he attrib-
uted to the learning of cues from experience (e.g., coins of higher value actually
do tend to be larger in size). He manipulated up to four variables simultane-
ously in factorial designs (he had not yet developed the idea of representative
design) and measured how the perception of each variable depended on the
values of the others. This Vienna program of “multidimensional psychophys-
ics” measured the context-dependency of judgment (for an introduction see
Gigerenzer & Murray, 1987, pp. 61-81}. In contrast, its independence from con-
text was assumed in the one-dimensional psychophysics associated with G. T.
Fechner and S. S. Stevens, in which one studied a variable in isolation (such
as perceived size), held everything else constant, and then compared the per-
ceived with the actual size to obtain the psychophysical function.

In the early 1930s, Brunswik was far ahead of mainstream psychophysics
in the study of context dependency. This is not to say that there was no room
for theoretical development in his multidimensional psychophysics; for in-
stance, Brunswik treated his two explanatory concepts, perceptual compro-
mises and cue learning, as equivalent, whereas these actually are different and
can lead to contradictory predictions about the effect of context (Gigerenzer &
Murray, 1987, pp. 70-74). However, his Vienna program had virtually no im-
pact on the future of psychophysics, except for a few scattered studies.

Onme reason for this lack of influence was that the Vienna Psychological
Institute’s program was destroyed soon after Brunswik accepted a position at
Berkeley in 1937. In early 1938, the Nazis entered Vienna and arrested and
dismissed Biihler because of his political views, which were considered dan-
gerous to the “peace and public order of the (Philosophical) Faculty” (Ash,
1987, p. 157). Eventually, he fled to the United States, but no one offered the
once celebrated Karl Biihler an adequate position; his brilliant career crumbled
in exile. Schlick had died a few years earlier from gunshot wounds inflicted
by a deranged student, and the political pressure of fascism caused the Vienna
Circle to disband, with many of its members fleeing to the United States. Brun-
swik had to start practically from scratch at Berkeley.

Brunswik in the Plural

Unlike the Vienna program, Brunswik’s Berkeley program—probabilistic func-
tionalism—is well known. It is so well known, in fact, that there is not just
one Brunswik, but several. One is the Brunswik absorbed by contemporary
psychology: he-was-one-of-us. These good-natured colleagues spell his name
“Brunswick,” confuse his term ecological validity with generalizability from
the laboratory to the environment and representative design with the repre-
sentativeness heuristic. In their friendly embrace, Brunswik comes out a fore-
runner and guardian of today’s status quo. No conflict surfaces, all is quiet,
nothing must be questioned.
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There is a more sophisticated image, in which Brunswik’s ideas basically
boil down to three correlations and one unorthodoxy. The correlations are
functional validities, ecological validities, and cue utilization coefficients, and
the heresy is representative design—the frightening idea of sacrificing experi-
mental control and, possibly even worse, of leaving one’s laboratory to study
people in their real-world environments. Correlations are fine, the unortho-
doxy is repugnant. This view gets some work done, but it cuts right through
the middle of Brunswik’s intellectual heart.

There is a third view of Brunswik: opposition by neglect. This is not an
active opposition against an intellectual enemy; Brunswik does not seem to
have notable intellectual enemies, unlike many other scholars. The opposition
takes the form of silence and a lack of understanding of what the fuss is all
about. For instance, in his Sensation and Perception in the History of Exper-
imental Psychology (1942), Edwin G. Boring, the dean of the history of psy-
chology and an arch-determinist, covered Brunswik’s work in Vienna, which
encompassed experimental control in multidimensional designs. But after
Brunswik had fleshed out his probabilistic functionalism and representative
design, he was not even mentioned in Boring’s A History of Experimental Psy-
chology (1957) and History, Psychology, and Science (1963). As Ken Hammond
(1980, p. 9) reported, Boring’s verdict was “Brunswik was a brilliant man who
wasted his life.” Informed neglect can be as toxic to new ideas as an unin-
formed embrace.

In the following, I describe what I think of when I think of Brunswik. I do
not think of correlations; I think of the struggles of an upright man.

intellectual Integrity

What impresses me deeply is Brunswik’s uncompromising intellectual sincer-
ity: the courage to think through the consequences of one’s ideas carefully and
to speak out in public even when the scientific community does not want to
listen and makes one pay a price for these standards. And Brunswik paid
dearly. Brunswik’s personal struggle was, in my view, about maintaining his
intellectual integrity in a scientific community in which his ideas fell on hos-
tile ground held by ignorant troops. Great thinkers often learn, to their surprise,
that new ideas are less than welcome.

What were these new ideas that inspired so much hostility? Brunswik’s
probabilistic functionalism can be summarized in the following concepts:
achievement, ambiguity of cues, vicarious functioning, and representative de-
sign. That is, an organism needs to make inferences about its environment to
adjust, survive, and reproduce (achievement); the proximal cues available to
it to make these inferences about its environment are uncertain (ambiguity);
the organism processes ambiguous cues by substituting or combining them
(vicarious functioning}; in order to study achievement and vicarious function-
ing, researchers need to use representative designs. This is Brunswik’s linking
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of biological purpose, environment, cognitive process, and research method-
ology.

The hostile ground itself was a minefield of dogmas: determinism, the Co-
lumbia Bible, and Fisher’s experimental design. Determinism was a fading, but
still strong, dogma, and the other two were newly emerging dogmas.

Refinancing Determinism

In their struggle to get psychology recognized as a science, many of Brunswik’s
fellow psychologists in America maintained an old-fashioned ideal no longer
characteristic of modern science, from evolutionary biology to quantum phys-
ics. This ideal demanded certein knowledge and universal laws, as Newtonian
mechanics had purported to deliver. As an example of this longing for cer-
tainty, Edwin Boring declared as late as 1963 that “determinism reigns” (p. 14).

The two debates of Brunswik’s program, which were then published in the
Psychological Review in 1943 and 1955, illustrated the way Brunswik’s prob-
abilism collided with the leading experimental psychologists’ belief in deter-
minism (see Gigerenzer, 1987b). Probabilism was interpreted as a confession
of failure. For instance, Clark Hull (1943) declared in the first debate in Chi-
cago that he and Kurt Lewin believed in uniform laws of behavior that corre-
spond to correlations of 1.00. Because the effort to isolate deterministic laws
is laborious and time-consuming, “all of us may as well give it up, as Brunswik
seems already to have done” (p. 204).

Twelve years later, in the second debate in Berkeley, David Krech (1955)
confronted Brunswik with his personal confession of faith:

I have always made it a cardinal principle to live beyond my income.
And although I have yet to find a one-to-one correlation in psychology
... I am always ready to make another promissory note and promise that
if you bear with us we will find uniform laws. ... And if I can’t pay off
on my first promissory note I will come seeking refinancing. . . . I have
faith that despite our repeated and inglorious failures we will someday
come to a theory which is able to give a consistent and complete de-
scription of reality. But in the meantime, I repeat, you must bear with
us. (p. 230)

Refinancing went on for some time. The fixation on uniform laws of behav-
ior was one of the reasons why many of the commentators did not understand
the nature of Brunswik’s probabilism—which was located neither in the en-
vironment, as Krech and Hilgard interpreted Brunswik, nor in the organism,
as Hull seemed to do, but rather in the relationship between the organism and
the environment.

The dogma of determinism did not survive Brunswik very long, but the
next two methodological faiths did. They are still entrenched in the minds of
most experimental psychologists—and in their hearts, because these method-
ologies have been taught as if they were moral principles.
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The Columbia Bible

The Henry Holt publishing company advertised in 1938: “THE BIBLE IS OUT.”
Robert S. Woodworth had finally published his long-awaited Experimental
Psychology. This textbook, which was known popularly as the ‘“Columbia Bi-
ble,” narrowed the many existing practices of experimentation (see Danziger,
1990) to one and only one legitimate form: vary an independent variable (or a
few), hold all the conditions constant, and observe the effect on the dependent
variable. In Brunswik’s copy of the Columbia Bible (which Ken Hammond so
kindly lent me}, on page 2, the passage “‘all the conditions constant, except for
one” is underlined twice and Brunswik’s pencil notation “imposs[ible]!” is in
the margin. It is not without irony that Brunswik taught courses for years using
Woodworth’s textbook, as the notes in his copy indicate. An estimated 100,000
North American psychology majors and graduate students learned what ex-
perimental research is from the bible and its revised edition (Woodworth &
Schlosberg, 1954). The book was translated into many languages and widely
used around the world (Evans, 1990). It was enormously successful; many
psychologists can no longer envision more than one experimental method in
science.

In this book, Woodworth excluded correlation methods and individual dif-
ferences from the domain of experimental psychology. The bible separated the
murky waters of correlation, which obscure the causes of behavior, from the
bright sun of experimentation, where cause and effect can be distinguished
clearly. The result was a strange institutional partition into “two disciplines
of scientific psychology” (Cronbach, 1957), the “Tiny Little Island” of exper-
imental psychology and the “Holy Roman Empire” of correlational psychology.

Brunswik’s probabilistic functionalism fit into neither of these disciplines.
His intellectual vision was one of coherence between theory and methodology:
to start with the purpose or function (achievement in natural environments)
and a subject matter (vicarious functioning of perception and judgment) and
to choose a matching methodology (representative design).

There is no such intellectual vision behind the creation of the two “scien-
tific disciplines.” Each was, and still is, a historically arbitrary collection of
purpose, subject matter, and method that have no necessary logical or psycho-
logical affinity to each other (Gigerenzer, 1987b). For instance, there is no psy-
chological reason why the study of intelligence is linked with individual dif-
ferences and correlations, whereas the study of thinking is linked to general
laws and experiments. Nor is there a reason why one group should rarely read
or cite the other group’s work. Like most ordinary humans who bond with
their peers, psychologists in one camp looked down on their colleagues in the
other camp, declaring their adversaries’ methods inferior and their purpose of
little scientific interest and public value. The correlation between psycholo-
gists’ esteem for their colleagues in one camp and their colleagues in the other
camp was —.80 {Thorndike, 1954)—alas, a substantial, but not perfect, corre-
lation.
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Brunswik found himself and his ideas exiled from his discipline. Ernest
Hilgard (1955), an eminent experimental psychologist, put his lack of regard
for Brunswik’s methods in no uncertain terms: “Correlation is an instrument
of the devil” (p. 228). But methods per se are neither good nor bad; the ques-
tion is whether they match a theory or not. Brunswik’s intellectual integrity
demanded that he think for himself, deciding what the proper method was,
rather than just climbing on the bandwagon. The tragedy is that he found
himself in a no-man’s-land between the two newly established disciplines.

Fisher’s Straitjacket

B. F. Skinner once told me that he had thought of dedicating one of his books
to “the statisticians and scientific methodologists with whose help this book
would have never been completed.” He had second thoughts, and, in fact,
dedicated the book to those who actually were helpful, “to the pigeon staff.”
Skinner had had in mind those statisticians who imposed Sir Ronald Fisher’s
doctrine that the design of an experiment must match the statistical method,
such as analysis of variance.

Fisher’s randomized control group experiments were tailor-made to Wood-
worth’s ideal of experimentation, and analysis of variance allowed one to study
more than one independent variable. Skinner’s resistance arose when research-
ers started to use Fisher’s method compulsively rather than in a thoughtful
way, that is, as a tool, which is—like all tools—useful only in specific situa-
tions. Editors began to make what they believed was good scientific method a
sine qua non for publication: factorial designs, large numbers of participants,
and small p values.

Statistical thinking became replaced by a mindless ritual performed in the
presence of any set of data (see Chapter 13). Skinner confessed to me that he
once tried a factorial design with some two dozen animals. But only once. He
lost experimental control because he could not keep so many animals at the
same level of deprivation, and the magnitude of error in his data increased.
Why increase error just to have a method that measures error?

The Skinnerians escaped the emerging pressure of editors to publish studies
with large numbers of animals by founding a new journal in 1958, the Journal
of the Experimental Analysis of Behavior. Brunswik, however, had no follow-
ing with which he could found his own journal. Like Skinner, he remarked
drolly that “our ignorance of Fisher’s work on factorial design and its mathe-
matical evaluation ... paid off” (1956, p. 102). As almost all great psycholo-
gists did, he analyzed individuals rather than comparing group means, and he
continued to employ his own nonfactorial representative designs. But he also
sometimes felt that he should make concessions, for instance, when he per-
formed ‘““a routine analysis of variance for the factorially orthodox part of our
experiment” (1956, p. 106).

In Brunswik’s struggle with Fisher’s ideas, unlike Skinner’s, a classic con-
troversy repeated itself. Karl Pearson, who, with Francis Galton, founded cor-

49



50

WHERE DO NEW IDEAS COME FROM?

relation methods, was involved in a terrible intellectual and personal feud with
Fisher. This fight between these towering statisticians repeated itself in psy-
chology between the proponents of their respective tools. Just at the time when
Brunswik adopted Pearson’s correlation methods around 1940, Fisherian meth-
ods began to spread. By 1955, when Brunswik died, Fisherian methods had
overrun, conquered, and redefined every branch of experimental psychology.

Then the newly institutionalized tools evolved into new theories of mind.
When Brunswik’s vision of the mind as an intuitive statistician finally became
a great success in experimental psychology, the mind’s intuitive statistician
was not of the Karl Pearson school, as Brunswik had imagined. Rather, the
homunculus statistician used the new laboratory tools, such as analysis of
variance. For instance, according to Harold Kelley’s (1967) causal attribution
theory, the mind attributes a cause to an effect in the same way as researchers
have come to do—by calculating an intuitive version of analysis of variance
(see Chapter 1). Brunswik had never been able to persuade his colleagues from
experimental psychology that the mind would use the techniques of the com-
peting discipline of correlational psychology.

The Price of Intellectual Integrity

Woodworth’s bible had excommunicated Brunswik from experimental psy-
chology, and the institutionalization of Fisher’s methods as the sine qua non
of scientific method set Brunswik’s ideas outside the realm of what was con-
sidered proper scientific method. Brunswik must have soon realized that the
edifice he had erected had become, as Ken Hammond (1966} expressed it suc-
cinctly, a significant landmark that “was virtually empty; there were visitors,
it is true, but no one stayed” (p. v). Although Brunswik, unlike the exiled
Biihler, had chosen freely to leave Vienna for the United States, he found his
ideas in exile. Unlike in Vienna, at Berkeley he seems not to have had a group
of students who worked on his ideas, nor did his working atmosphere support
the philosophical and interdisciplinary spirit that continued to enhance his
writings. But there was no way back; the Vienna program and the Vienna
Circle had been destroyed, and Brunswik himself had moved beyond multi-
dimensional psychophysics. What is one to do if one has lost the old compan-
ions and failed to enlist new ones? The obvious easy choice would have been
to conform to the new zeitgeist, but the option of surrendering his ideas seems
never to have occurred to Brunswik. It is easy to be true to one’s ideas if
everyone applauds—I admire Brunswik’s intellectual integrity because, in his
case, only very, very few applauded. Standing upright must have been difficult,
lonely, and depressing.

Do the Ideas Matter?

American psychology would hardly remember Brunswik’s ideas had not one
of his students, Ken Hammond, kept his memory alive to the present day. But
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is the memory of Egon Brunswik of more than historical interest? Are his ideas
still exiled, and if so, does it matter?

Representative Sampling

Brunswik (1956) sadly reported that his success in persuading fellow research-
ers to shift to representative sampling of stimuli is “very slow going and hard
to maintain” (p. 39). He complained that his colleagues practiced “double stan-
dards” by being concerned with the sampling of participants but not of stim-
ulus objects. Representative sampling of stimuli is one aspect of the more gen-
eral notion of representative design.

It would be an error to introduce representative sampling as a new dogma
to replace current methodological dogmas. The point is to choose the appro-
priate sampling method for the problem under discussion. For instance, rep-
resentative sampling of objects from a class is indispensable if one wants to
make general statements about the degree of “achievement,” or its flip side,
the fallacies of perception and judgment concerning this class of objects. But
if the purpose is testing competing models of cognitive strategies and flat max-
ima obscure the discriminability of strategies, then using selected stimuli that
discriminate between the strategies may be the only choice (see Rieskamp &
Hoffrage, 1999).

Is the idea of representative sampling of any relevance for present-day re-
search? Imagine Brunswik browsing through recent textbooks on cognitive psy-
chology and looking for what we have discovered about achievement in judg-
ment—now more fashionably labeled fallacies and cognitive illusions. It
would catch his eye that the stimuli used in the demonstrations of fallacies
were typically selected rather than representative: the five letters in Tversky
and Kahneman's (1973) study from which the availability heuristic was con-
cluded; the personality sketches in Kahneman and Tversky’s (1973) engineer—
lawyer study from which base-rate neglect was concluded; and the general-
knowledge questions from which the overconfidence bias was concluded
(Lichtenstein, Fischhoff, & Phillips, 1982), among others. Brunswik would
have objected that if one wants to measure achievement or demonstrate fal-
lacies in a reference class of objects, one needs to take a representative (or
random) sample of these objects. If not, one can “demonstrate” almost any
level of performance by selecting those objects for which performance is at its
worst (or at its best). In fact, when one uses representative (rather than se-
lected) samples in these three studies, performance greatly improves: The
errors in estimating the frequency of letters largely disappear (Sedlmeier,
Hertwig, & Gigerenzer, 1998); the estimated probabilities that a person is an
engineer approach Bayes’s rule (Gigerenzer et al., 1988); and the over-
confidence bias completely disappears (Chapter 7; Juslin, Olsson, & Winman,
1998). These celebrated cognitive illusions, attributed to the participants, are
in part due to the selected sampling done by the experimenters.

These examples illustrate that representative sampling of stimuli is still a
blind spot in some areas of research. In survey research, it would be a mistake

51



52

WHERE DO NEW IDEAS COME FROM?

to present the odd views of a few selected citizens as public opinion; that the
same applies to stimulus objects is still not commonly acknowledged. Unre-
flectively selected samples can produce apparently general phenomena that
occupy us for years and then finally dissolve into an issue of mere sampling.

Natural Sampling

Imagine Brunswik looking at the studies on Bayesian reasoning, which
emerged about 10 years after his death. When he learned that people neglect
base rates he might have been surprised because his rats did not (Brunswik,
1939). His rats were not perfect, but they were sensitive to the difference of
the base rates of reinforcement in the two sides of a T-maze and to the ratio
as well. Sensitized by the frequentist Reichenbach, Brunswik’s eye would have
caught an essential difference between his study and the base-rate studies of
the 1970s and 1980s: His rats learned the base rates from actual experienced
frequencies, whereas the humans in almost all studies that reported base-rate
neglect could not; they were presented summary information in terms of prob-
abilities or percentages. Rats would not understand probabilities, and humans
have only recently in their evolution begun to struggle with this representation
of uncertainty. Does representation matter? Christensen-Szalanski and Beach
(1982) presented base rates in terms of actual frequencies, sequentially en-
countered, and reported that base-rate neglect largely disappeared. This pro-
cess of sampling instances from a population sequentially is known as natural
sampling. Natural sampling is the everyday equivalent—for rats and humans
alike—of the representative sampling done by scientific experimenters. When
observed frequencies are based on natural sampling—that is, on raw (rather
than normalized) counts of events made in an ecological (rather than experi-
mental) setting—then one can show that Bayesian computations become sim-
pler than with probabilities, and people have more insight into Bayesian prob-
lems (Chapter 4).

Structure of Environments

A most important insight I gained from Brunswik’s writings is the relevance
of the structure of information in environments to the study of judgment. Brun-
swik tentatively proposed measuring environmental structure by ecological va-
lidities and measuring these in turn by correlation coefficients. Brunswik,
though, almost as much as Skinner, hesitated to look into the black box, and
s0 he failed to see the important connection between the structure of environ-
ments and that of mediation. Adaptive mental strategies can exploit certain
structures. For instance, if there is a match between the structure of the en-
vironment and that of a strategy, a simple heuristic that processes much less
information than multiple regression can nevertheless make as many (or more)
accurate inferences about its environment (Martignon & Hoffrage, 1999). Her-
bert Simon had emphasized the link between cognitive processes and envi-
ronmental structure in his famous 1956 Psychological Review article on
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bounded rationality. However, in recent years, bounded rationality has been
reduced to cognitive limitations, and the structure of environments has been
largely forgotten as an indispensable part of understanding bounded rational-
ity, sometimes even by Simon himself (e.g., 1987). The study of the structure
of environments is still in its infancy.

Much of psychology after the cognitive revolution is about what is in our
heads: Which logic does human reasoning embody? How many primary emo-
tions should we distinguish? It is little concerned with what cognition, emo-
tion, and behavior are for and how they relate to the structure of environments,
both physical and social. Brunswik’s focus on achievement, in contrast, is
functional, focusing on the accuracy of perception and judgment. Accuracy is
not the only goal; to be able to act quickly, to come in first, or to establish
social relations of trust and cooperation also exemplify achievement in a
broader sense.

The structure of environments is essential for understanding cognition and
behavior in terms of adaptation, because adaptations are relative to (past) en-
vironments. To flesh out the Darwinian aspect of Brunswikian psychology, one
needs to distinguish between past and present environments, between ecolog-
ical validities in past and in present environments, and between social envi-
ronments composed of conspecifics (where cues are actually signals) and other
environments (e.g., physical environments in which humans do not cooperate
or bargain with their inhabitants). For instance, smooth skin in female humans
may have been a highly valid cue for reproductive capability during most of
human evolution, signaling good health (Buss, 1987). In current environments
with abundant medical technology, the ecological validity of smooth skin may
have decreased to almost nil, but men’s proximal mechanisms, cognitive and
emotional, may still rely on such cues. A Darwinian psychology is a historical
psychology, one that looks into the past to learn about the present (e.g., Cos-
mides & Tooby, 1992).

Brunswik repeatedly alluded to Darwin, and the notions of function,
achievement, and environmental structure all relate to evolution by natural
selection. He, however, never developed or carried these ideas any further.
Neo-Brunswikians have done little to develop the Darwinian fragment, con-
sistent with the prevailing anxiety about evolution in the American psychology
establishment. Given that even Pope John Paul II finally announced in the
Quarterly Review of Biology (1997) that evolution (of the body, not of the spirit)
is a plausible hypothesis, more psychologists might find the courage to think
about what we can learn from modern evolutionary theory—even if some still
continue to consider such thoughts politically incorrect.

Models of Vicarious Functioning

Schlick’s Thursday evening discussion groups seem to have had a lasting effect
on Brunswik. The methodological objectivity of the Vienna Circle helped
Brunswik to focus his work on the measurement of cbjective achievement
rather than on cognitive processes (“mediation”). He hesitated to speak about
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the unobservable process of mediation, and even in 1937 still declared that
psychology is a science of “what” rather than of “how.” The question of how
mediation works should be studied only insofar as it throws light on the ques-
tion of what an organism achieves. Only later did Brunswik (e.g., 1957) grant
a place, though only a second place, to the study of cognitive processes.

Given his reluctance to open the black box, I am not sure how Brunswik
would look at the process models of vicarious functions that were inspired by
his ideas: multiple regression models on the one hand (e.g., Hammond,
Hursch, & Todd, 1964) and the theory of probabilistic mental models (PMM
theory) and the fast and frugal lens model on the other (Chapter 8). When
Brunswik coined the metaphor of the “intuitive statistician,” he tentatively
suggested that the process of vicarious functioning might be like multiple re-
gression (Doherty & Kurz, 1996). Brunswik’s measurement tool turned into a
theory of cognitive processes. In the neo-Brunswikian revival, multiple regres-
sion became the model of vicarious functioning, and, unfortunately, it remains
so. Ken Hammond, like Brunswik, has had second thoughts, but by and large,
the tool has become part of the message. It structures our thinking about Bruns-
wik.

Brunswik’s reluctance to think about processes may explain why his ex-
amples for vicarious functioning vacillated back and forth between two differ-
ent processes, substitution and combination. Some of his examples—such as
Hull’s habit family hierarchy and the psychoanalytic substitution mechanism
in which one cause can manifest itself as various symptoms—referred to sub-
stitution without combination, others to the combination of cues. The fast and
frugal lens model, based on PMM theory, assumes substitution without com-
bination, emphasizing that judgments need to be made quickly and-on the
basis of limited knowledge (see Gigerenzer & Kurz, in press). Here Egon Bruns-
wik meets Herbert Simon, creating models of bounded rationality in which
simple cognitive heuristics exploit environmental structures.

A Love of History, Philosophy, and Methodology

Just as the human species has a history, so do our theories and methods. Not
knowing where they come from can blind one to understanding why one pro-
pounds a particular theory or uses a specific method. Nevertheless, looking
down at history is symptomatic for much of current psychology. Brunswik had
written about the history of his field and had published in philosophical jour-
nals; possibly it is just that background that helped him to see that there are
differences between methodologies and that one actually needs to make in-
formed choices. Many researchers do not seem to make these choices; rather,
they take on the methodological practice of their field and then defend it as if
it were religious dogma. If one reads Brunswik, one finds a constant stream of
thought about methodology, from preferring matching tasks over numerical
response tasks in order to minimize the confounding of perception with judg-
ment to the larger program of representative design. In contrast, the enthusiasm
with which some methods have been mechanically applied as general-purpose
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tools—factor analysis, multidimensional scaling, and analysis of variance,
among others—springs from ignorance of history, philosophy, and the meth-
odologies of other scientific disciplines. Methodology is an art, not a science
of compulsive hand washing.

This is not to say that every psychologist must be a master of history, but
history can protect one against confusing present-day methodological conven-
tions with the sine qua non of scientific research.

The Search for Objectivity in the Twilight of Uncertainty

John Locke (1690/1959) remarked that “God . . . has afforded us only with the
twilight of probability; suitable, I presume, to that state of mediocrity and pro-
bationership he has been pleased to place us in here. . . .” Biihler’s psychology
opened the door for Brunswik to the twilight of uncertainty, and the Vienna
Circle inspired him to search for objective knowledge behind that door. What
Brunswik found there: that we know. What he was looking for is more: not
answers, but the right questions. From him, one can learn to rethink that which
is taken for granted. I have.

Yet there is another, deeper message in the work of Egon Brunswik: the
value of the struggle for intellectual integrity-—daring to think ideas through,
with all the consequences, and remaining true to them even if they are con-
demned to exile. Kant’s final two words in his lovely essay on the Enlighten-
ment capture the essence of this struggle: sapere aude, that is, have the courage
to know.
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The tools-to-theories heuristic generates new ideas about the workings of
the mind by looking outside of the mind. So does the program of “ecological
rationality.” Whereas the first draws on the scientist’s laboratory environ-
ment, the second draws on people’s natural environments, past and present.
Ecological rationality refers to the study of how cognitive strategies exploit
the representation and structure of information in the environment to make
reasonable judgments and decisions. The importance of studying the link be-
tween mind and its environment was emphasized by Egon Brunswik, who
compared mind and environment to two married people who have to come
to terms with each other by mutual adaptation. This couple should not be
divarced, as often is done, in research. More recently, Roger Shepard (1990,
P- 213) expressed the same insight: “We may look into that window [on the
mind] as through a glass darkly, but what we are beginning to discern there
looks very much like a reflection of the world.” This is well expressed, but
how can ecological rationality be used as a tool of research?

For instance, a puzzling phenomenon in human judgment is the apparent
neglect of base rates. Even animals do not seem to neglect base rates. Previ-
ous attempts to explain base-rate neglect focused on the shoddy software in
the human mind that might cause this cognitive illusion—could the culprit
be shortcomings in memory, motivation, or computational capabilities? Note
that this approach entails looking exclusively inside the head for an explana-
tion. The program of ecological rationality suggests a different question: In
what environments, past or present, would neglect of base rates be rational?
The answer is, when information is acquired through natural sampling,
which yields simple counts {(not normalized by base rates; see the three
chapters in this section). During most of their history—before the advent of
probability theory—humans, like animals, have acquired information about
uncertainties and risks through natural sampling of event frequencies rather
than in terms of probabilities or percentages. The important point is that un-
der conditions of natural sampling, one can make perfectly rational infer-
ences without paying attention to base rates.
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The first two chapters in this section illustrate the practical relevance of
this argument for criminal law, medical diagnosis, AIDS counseling, and
other professions concerned with uncertainties and risks. Should evidence of
wife battering be admissible in the trial of a man accused of murdering his
wife? How many 40-year-old women with a positive mammogram in routine
screening actually have breast cancer? How likely is it that a man with a
positive HIV test actually has the virus? Earlier studies have documented
that many experts—and most patients and jurors—do not understand how to
answer these questions, possibly because they neglect base rates or are con-
fused by probabilities. I show that the notion of ecological rationality leads
to a simple method for helping experts and laypersons alike. One can restore
the representation of uncertainty that humans have encountered throughout
their evolution by translating probabilities back into natural frequencies—the
outcome of natural sampling. This change can turn innumeracy into insight.

The final chapter in this section is theoretical and experimental rather
than applied. It defines the concepts of natural sampling, natural frequen-
cies, and reports experimental evidence for the impact of various external
representations on statistical thinking. The mental strategies or shortcuts
people use, not only their numerical estimates of risks, turn out to be a func-
tion of the external representation of numbers we choose.

Ecological rationality can refer to the adaptation of mental processes to
the representation of information, as in this section. It also can refer to the
adaptation of mental processes to the structure of information in an environ-
ment, as illustrated in the section on bounded rationality and, in more de-
tail, in Simple Heuristics that Make Us Smart (Gigerenzer, Todd, & the ABC
Research Group, 1999). In both cases, it is important to distinguish between
past and present environments, particularly when we are studying humans,
who change their environments rapidly. Studying how past environments
differ from present environments reminds us that an ecological perspective
has an evolutionary and historical dimension. Here we go beyond Brun-
swik’s metaphor of the married couple, which focuses on the adaptation be-
tween the mind and its current spouse while forgetting its previous mar-
riages. The program of ecological rationality is a research heuristic, not a
foolproof recipe—just as new laboratory tools do not always lead to good
theories for mental processes.
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When I left a restaurant in a charming town in Tuscany one night, I looked
for my yellow-green rented Renault 4 in the parking lot. There was none.
Instead, there was a blue Renault 4 sitting in the lot, the same model but
the wrong color. I still feel my fingers hesitating to put my key into the lock
of this car, but the lock opened. I drove the car home. When I looked out
the window the next morning, there was a yellow-green Renault 4 standing
in bright sunlight outside. What had happened? My color-constancy system
did not work with the artificial light at the parking lot. Color constancy, an
impressive adaptation of the human perceptual system, normally allows us
to see the same color under changing illuminations, under the bluish light
of day as well as the reddish light of the setting sun. Color constancy, however,
fails under certain artificial lights, such as sodium or mercury vapor lamps,
which were not present in the environment when mammals evolved (Shepard,
1992).

Human color vision is adapted to the spectral properties of natural sunlight.
More generally, our perceptual system has been shaped by the environment in
which our ancestors evolved, the environment often referred to as the “envi-
ronment of evolutionary adaptiveness,” or EEA (Tooby & Cosmides, 1992).
Similarly, human morphology, physiology, and the nervous and immune sys-
tems show exquisite adaptations. The tubular form of the bones maximizes
strength and flexibility while minimizing weight; bones are, pound for pound,
stronger than solid steel bars, and the best man-made heart valves cannot yet
match the way natural valves open and close (Nesse & Williams, 1995). Like
color constancy, however, these systems can be fooled and may break down
when stable, long-term properties of the environment to which they were
adapted change.

In this chapter, I propose that human reasoning processes, like those of
color constancy, are designed for information that comes in a format that
was present in the EEA. I will focus on a class of inductive reasoning pro-
cesses technically known as Bayesian inference, specifically a simple version
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thereof in which an organism infers from one or a few indicators which of
two events is true.

Bayesian Inference

David Eddy (1982) asked physicians to estimate the probability that a woman
has breast cancer given that she has a positive mammogram on the basis of the
following information:

The probability that a patient has breast cancer is 1% (the physician’s
prior probability).

If the patient has breast cancer, the probability that the radiologist will
correctly diagnose it is 80% (sensitivity or hit rate).

If the patient has a benign lesion (no breast cancer), the probability that
the radiologist will incorrectly diagnose it as cancer is 9.6% (false pos-
itive rate).

QUESTION: What is the probability that a patient with a positive mam-
mogram actually has breast cancer?

Eddy reported that 95 out of 100 physicians estimated the probability of
breast cancer after a positive mammogram to be about 75%. The inference from
an observation (positive test) to a disease, or more generally, from data D to a
hypothesis H, is often referred to as “Bayesian inference,” because it can be
modeled by Bayes’s rule:

plH)p(D| H)
p(H)p(DIH) + p(-H)p(D! —H)

_ (.01)(.80) - 078
(.01)(.80) + (.99)(.096)

plHID) =
(1)

Equation 1 shows how the probability p(H|D) that the woman has breast
cancer (H) after a positive mammogram (D) is computed from the prior prob-
ability p(H) that the patient has breast cancer, the sensitivity p(D| H), and the
false positive rate p(D | —H) of the mammography test. The probability p(H!|D)
is called the “posterior probability.” The symbol —H stands for “the patient
does not have breast cancer.” Equation 1 is Bayes’s rule for binary hypotheses
and data. The rule is named after Thomas Bayes (1702 [?]-1761), an English
dissenting minister, to whom this solution of the problem of how to make an
inference from data to hypothesis (the so-called inverse problem; see Daston,
1988) is attributed.! The important point is that Equation 1 results in a prob-
ability of 7.8%, not 75% as estimated by the majority of physicians. In other

1. As we know from Stephen M. Stigler’s Law of Eponymy, no scientific discovery
is named after its original discoverer, and Bayes's rule seems to be no exception to this
law (Stigler, 1983).
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words, the probability that the woman has breast cancer is one order of mag-
nitude smaller than estimated.

This result, together with an avalanche of studies reporting that laypeople’s
reasoning does not follow Bayes’s rule either, has (mis-)led many to believe
that Homo sapiens would be inept to reason the Bayesian way. Listen to some
influential voices: “In his evaluation of evidence, man is apparently not a con-
servative Bayesian: he is not Bayesian at all” (Kahneman & Tversky, 1972,
p. 450). “Tversky and Kahneman argue, correctly, I think, that our minds are
not built (for whatever reason) to work by the rules of probability” (Gould,
1992, p. 469).% The literature of the last 25 years has reiterated again and again
the message that people are bad reasoners, neglect base rates most of the time,
neglect false positive rates, and are unable to integrate base rate, hit rate, and
false positive rate the Bayesian way (for a review see Koehler, 1996). Proba-
bility problems such as the mammography problem have become the stock-in-
trade of textbooks, lectures, and party entertainment. It is guaranteed fun to
point out how dumb others are. And aren’t they? There seem to be many
customers eager to buy the message of “inevitable illusions” wired into our
brains (Piattelli-Palmarini, 1994).

Ecological Bayesian Inference: An Adaptation for Frequencies

Back to color constancy. If a human visual system enters an environment il-
luminated by sodium vapor lamps, its color-constancy algorithms will fail.
This does not mean, however, that human minds are not built to work by color-
constancy algorithms. Similarly, if a human reasoning system enters an envi-
ronment in which statistical information is formatted differently from that en-
countered in the environment in which humans evolved, the reasoning
algorithms may fail. But this does not imply that human minds are not built
to reason the Bayesian way. The issue is not whether nature has equipped our
minds with good or with bad statistical software, as the “optimists” versus
“pessimists” discussion about human rationality suggests (Jungermann, 1983).
The issue I address here is the adaptation of mental algorithms to their envi-
ronment. By “mental algorithms,” I mean induction mechanisms that perform
classification, estimation, or other forms of uncertain inferences, such as de-
ciding what color an object is or inferring whether a person has a disease.
For which information formats have mental algorithms been designed?
What matters for an algorithm that makes inductive inferences is the format of
numerical information. Eddy presented information (about the prevalence of
breast cancer, the sensitivity, and the false positive rate of the test) in terms of
probabilities and percentages, just as most experimenters did who found hu-

2. For a critical discussion of these interpretations, see Cohen (1981), Gigerenzer
(1994a, 1996a), Gigerenzer and Murray (1987, chap. 5), and Lopes (1991); for a reply,
see Kahneman and Tversky (1996).
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mans making irrational judgments. What was the format of the numerical in-
formation humans encountered during their evolution? We know too little
about these environments, for instance, about the historically normal condi-
tions of childbirth, or how strong a factor religious doctrines were, and most
likely, these varied considerably between societies. But concerning the format
of numerical information, I believe we can be as certain as we ever can be—
probabilities and percentages were not the way organisms encountered infor-
mation. Probabilities and percentages are quite recent forms of representations
of uncertainty. Mathematical probability emerged in the mid-seventeenth cen-
tury (Hacking, 1975), and the concept of probability itself did not gain prom-
inence over the primitive notion of “expectation” before the mid-eighteenth
century (Daston, 1988). Percentages became common notations only during the
nineteenth century, after the metric system was introduced during the French
Revolution (mainly, though, for interest and taxes rather than for representing
uncertainty). Only in the second half of the twentieth century did probabilities
and percentages become entrenched in the everyday language of Western coun-
tries as representations of uncertainty. To summarize, probabilities and per-
centages took millennia of literacy and numeracy to evolve as a format to
represent degrees of uncertainty. In what format did humans acquire numerical
information before that time?

I propose that the original format was natural frequencies, acquired by nat-
ural sampling. Let me explain what this means by a parallel to the mammog-
raphy problem, using the same numbers. Think about a physician in an illit-
erate society. Her people have been afflicted by a new, severe disease. She has
no books nor statistical surveys; she must rely solely on her experience. For-
tunately, she discovered a symptom that signals the disease, although not with
certainty. In her lifetime, she has seen 1,000 people, 10 of whom had the dis-
ease. Of those 10, eight showed the symptom; of the 990 not afflicted, 95 did.
Thus there were 8 + 95 = 103 people who showed the symptom, and only 8
of these had the disease. Now a new patient appears. He has the symptom.
What is the probability that he actually has the disease?

The physician in the illiterate society does not need a pocket calculator to
estimate the Bayesian posterior probability. All she needs to do is to keep track
of the number of symptom and disease cases (8) and the number of symptom
and no-disease cases (95). The probability that the new patient actually has
the disease can be “seen” easily from these frequencies:

a 8
PHID) = o = 7 o5

(2)

Equation 2 is Bayes’s rule for natural frequencies, in which a is the number
of cases with symptom and disease and b is the number of cases having the
symptom but lacking the disease. The chance that the new patient has the
disease is less than 8 out of 100, or 8%. Our physician who learns from ex-
perience cannot be fooled as easily into believing that the chances are about
75%, as many of her contemporary colleagues did.
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The comparison between Equations 1 and 2 reveals an important theoretical
result: Bayesian reasoning is computationally simpler (in terms of the number
of operations performed, such as additions and multiplications) when the in-
formation is in natural frequencies (Equation 2) rather than in probabilities
(Equation 1) (see Kleiter, 1994). As Equation 2 shows, the base rates of event
frequencies (such as 10 in 1,000) need not be kept in memory; they can be
ignored as they are implicit in the frequencies a and b.

Let me be clear how the terms “natural sampling” and “natural frequencies”
relate. Natural sampling is the sequential process of updating event frequencies
from experience. A foraging organism who, day after day, samples potential
resources for food and learns the frequencies with which a cue (e.g., the pres-
ence of other species) predicts food performs natural sampling by updating the
frequencies a and b from observation to observation. Natural sampling is dif-
ferent from systematic experimentation, in which the sample sizes (the base
rates} of each treatment group are fixed in advance. For instance, in a clinical
experiment, one might select 100 patients with cancer and 100 without cancer
and then perform tests on these groups. By fixing the base rates, the frequencies
obtained in such experimental designs no longer carry information about the
base rates. This is not to say that controlled sampling in systematic experi-
ments is useless; it just serves a different purpose. Brunswik’s (1955) method
of “representative sampling” in a natural environment is an example of ap-
plying the idea of natural sampling to experimental design.

Natural frequencies report the final tally of a natural sampling process.
There is more than one way to present the final tally. In the case of the phy-
sician in the illiterate society, I specified the total number of observations
(1,000), the frequency of the disease, and the frequencies a and b of hits and
false positives, respectively: “In her lifetime, she has seen 1,000 people, 10 of
whom had the disease. Of those 10, eight showed the symptom; of the 990 not
afflicted, 95 did.” This is a straightforward translation of the base rates, hit
rates, and false positive rates into natural frequencies. Alternatively, one can
communicate the frequencies a and b alone: “In her lifetime, she has seen 8
people with symptom and disease, and 95 people with symptom and no dis-
ease.” The former natural frequencies use a standard menu (“standard” be-
cause slicing up the information in terms of base rate, hit rate, and false pos-
itive rate is deeply entrenched today), the latter use a short menu (see Chapter
6). Both lead to the same result.

Natural frequencies must not to be confused with a representation in terms
of relative frequencies (e.g., a base rate of .01, a hit rate of .80, and a false
positive rate of .096). Relative frequencies are, like probabilities and percent-
ages, normalized numbers that no longer carry information about the natural
base rates. Relative frequencies, probabilities, and percentages are to human
reasoning algorithms (that do Bayesian-type inference) as sodium vapor lamps
are to human color-constancy algorithms. This analogy has, like every analogy,
its limits. For instance, humans can be taught, although with some mental
agony, to reason by probabilities, but not, I believe, to maintain color constancy
under sodium vapor illumination.
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Note that the total number of observations—communicated only when nat-
ural frequencies are expressed in the standard menu—need not be the actual
total number of cbservations. It can be any convenient number such as 100 or
1,000. The computational simplicity of natural frequencies holds indepen-
dently of whether the actual or a convenient number is used. For example, if
the actual sample size was 5,167 patients, one can nevertheless represent the
information in the same way as above. “For every 1,000 patients we expect 10
who have breast cancer, and 8 out of these 10 will test positive.”?

The hypothesis that mental algorithms were designed for natural frequen-
cies is consistent with (a) a body of studies that report that humans can monitor
frequencies fairly accurately (Barsalou & Ross, 1986; Hintzman & Block, 1972;
Jonides & Jones, 1992), (b) the thesis that humans process frequencies (almost)
automatically, that is, without or with little effort, awareness, and interference
with other processes (Hasher & Zacks, 1984), (c) the thesis that probability
learning and transfer derive from frequency learning (Estes, 1976), and (d) de-
velopmental studies on counting in children and animals (e.g., Gallistel & Gel-
man, 1992). This is not to say that humans and animals count all possible
events equally well, nor could they. A conceptual mechanism must first decide
what the units of observation are so that a frequency encoding mechanism can
count them. This preceding conceptual process is not dealt with by the hy-
pothesis that mental algorithms are designed for natural frequencies (but see
the connection proposed by Brase, Cosmides, & Tooby, 1998).

Thus my argument has two parts: evolutionary (and developmental) pri-
macy of natural frequencies and ease of computation. First, mental algorithms,
from color constancy to inductive reasoning, have evolved in an environment
with fairly stable characteristics. If there are mental algorithms that perform
Bayesian-type inferences from data to hypotheses, these are designed for nat-
ural frequencies acquired by natural sampling, and not for probabilities or
percentages. Second, when numerical information is represented in natural
frequencies, Bayesian computations reduce themselves to a minimum. Both
parts of the argument are necessary. For instance, the computational part could
be countered by hypothesizing that there might be a single neuron in the hu-
man mind that almost instantaneously computes Equation 1 on the basis of
probability information. The evolutionary part of the argument makes it un-
likely that such a neuron has evolved that computes using an information
format that was not present in the environment in which our ancestors
evolved.

This argument has testable consequences. First, laypeople—that is, persons
with no professional expertise in diagnostic inference—are more likely to rea-
son the Bayesian way when the information is presented in natural frequencies
than in a probability format. This effect should occur without any instruction
in Bayesian inference. Second, experts such as physicians who make diagnos-

3. However, there is a price to be paid if one replaces the actual with a convenient
sample size. One can no longer compute second-order probabilities (Kleiter, 1994).
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tic inferences on a daily basis should, despite their experience, show the same
effect. Third, the “inevitable illusions” (Piattelli-Palmarini, 1994), such as
base-rate neglect, should become evitable by using natural frequencies. Finally,
natural frequencies should provide a superior vehicle for teaching Bayesian
inference. In what follows, I report tests of these predictions and several ex-
amples drawn from a broad variety of everyday situations.

This is not to say that probabilities are useless or perverse. In mathematics,
they play their role independent of whether or not they suit human reasoning,
just as Riemannian and other non-Euclidean geometries play their roles in-
dependent of the fact that human spatial reasoning is Euclidean.

Breast Cancer

Eddy (1982) provides only a scant, one-paragraph description of his study of
physicians’ institutions and refers to a study by Casscells, Schoenberger, and
Grayboys (1978) that showed similar results. Both studies used a probability
format. Would natural frequencies make any difference to experts such as
physicians? Ulrich Hoffrage and I tested 48 physicians in Munich, Germany,
on the mammography problem. These physicians had an average professional
experience of 14 years. Twenty-four physicians read the information in a
probability format as in Eddy’s study, the other 24 read the same information
in natural frequencies. Physicians were always asked for a single-event prob-
ability (as in Eddy’s study) when the information was in probabilities; they
were always asked for a frequency judgment when the information was in
natural frequencies. The two formats of the mammography problem are
shown in Table 4.1. Each physician got four diagnostic problems (including
the mammography problem), two in a probability format and two in natural
frequencies (the details are in Gigerenzer, 1996b; Hoffrage & Gigerenzer,
1996, 1998).

Consider first the thinking of one typical physician, a 59-year-old director
of a university clinic, whom I call Dr. Average. He spent 30 minutes on the
four problems and another 15 minutes discussing the results with the inter-
viewer. As a high-status physician, he was not used to having his diagnostic
intuitions being tested, and he became visibly nervous. He first got the mam-
mography problem in the probability format (Table 4.1) and commented, “I
never inform my patients about statistical data. I would tell the patient that
mammography is not so exact, and I would, in any case, perform a biopsy.”
He estimated the probability of breast cancer after a positive mammogram as
80% + 10% = 90%. That is, he added the sensitivity to the false positive rate
(this is an unusual strategy). Nervously, he remarked: “Oh, what nonsense. I
can’t do it. You should test my daughter, she studies medicine.” Dr. Average
was as helpless with the second problem, Bechterev’s disease, in a probability
format. Here he estimated the posterior probability by multiplying the base
rate by the sensitivity, a common strategy used by laypeople (“joint occur-
rence,” see Tables 6.3 and 6.4 in Chapter 6).
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When Dr. Average saw the first problem in a frequency format, his ner-
vousness subsided. “That’s so easy,” he remarked with relief, and came up
with the Bayesian answer, as he did with the second problem in a frequency
format. Dr. Average’s reasoning turned Bayesian the moment the information
was in frequencies, despite his never having heard of, or at least not remem-
bering, Bayes’s rule. In the words of a 38-year-old gynecologist faced with the
mammography problem in a frequency format: “A first grader could do that.
Wow, if someone can’t solve this...!”

Consider now all the physicians’ diagnostic inferences concerning breast
cancer. Do natural frequencies foster insight in them?

In the probability format, only 2 out of 24 physicians (8%) came up with
the Bayesian answer. The median estimate of the probability of breast cancer
after a positive mammogram was 70%, consistent with Eddy’s findings. With
natural frequencies, however, 11 out of 24 physicians (46%) responded with
the Bayesian answer. Across all four diagnostic problems, similar results were
obtained—10% Bayesian responses in the probability format and 46% with
natural frequencies (Figure 4.1).

Table 4.1 The mammography problem: Probability format and
natural frequencies

To facilitate early detection of breast cancer, women are encouraged from a particular
age on to participate at regular intervals in routine screening, even if they have no
obvious symptoms. Imagine you use mammography to conduct such a breast cancer
screening in a certain region. For symptom-free women age 40 to 50 who participate
in screening using mammography, the following information is available for this re-
gion:

Probability format

The probability that one of these women has breast cancer is 1%.

If a woman has breast cancer, the probability is 80% that she will have a positive
mammogrant,

If a woman does not have breast cancer, the probability is 10% that she will still have
a positive mammogram.

Imagine a woman (age 40 to 50, no symptoms) who has a positive mammogram in
your breast cancer screening. What is the probability that she actually has breast can-
cer’! %

Natural frequencies

Ten out of every 1,000 women have breast cancer.
Of these 10 women with breast cancer, 8 will have a positive mammogram.

Of the remaining 990 women without breast cancer, 99 will still have a positive mam-
mogram.

Imagine a sample of women (age 40 to 50, no symptoms) who have positive mammo-
grams in your breast cancer screening. How many of these women do actually have
breast cancer? out of
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Figure 4.1 How to foster diagnostic insight in physicians. Each of 48 physi-
cians got information about four standard screening tests, two in a probabil-
ity format and two in natural frequencies. Table 4.1 shows the two forms of
information representation for mammography screening. The four diagnostic
tasks were to infer the presence of (1) breast cancer from a positive mammo-
gram, (2) colorectal cancer from a positive hemoccult test, (3) Bechterev’s
disease (ankylosing spondylitis) from a positive HL-antigen-B27 test, and

(4) phenylketonuria from a positive Guthrie test. In each diagnostic task,

the physicians reasoned more often consistent with Bayes’s rule when the
numerical information was in natural frequencies. Probabilities tended to
cloud their minds.

The lesson of these results is not to blame physicians’ or laypeople’s minds
when they stumble over probabilities. Rather, the lesson is to represent infor-
mation in textbooks, in curricula, and in physician—patient interactions in nat-
ural frequencies that correspond to the way information was encountered in
the environment in which human minds evolved.

Colorectal Cancer

The hemoccult test is a widely used and well-known test for colorectal cancer.
Windeler and Kobberling (1986) report that just as physicians overestimated
the (posterior) probability that a patient has colorectal cancer if the hemoccult
test is positive, they also overestimated the base rate of colorectal cancer, the
sensitivity (hit rate), and the false positive rate of the test. Windeler and Kéb-
berling asked these physicians about probabilities and percentages. Would nat-
ural frequencies improve physicians’ estimates of what a positive test tells
about the presence of colorectal cancer? The 48 physicians in the study re-
ported previously were given the best available estimates for the base rate,
sensitivity, and false positive rate, as published in Windeler and Kébberling
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{1986). The following is a shortened version of the full text (structured like
the mammography problem in Table 4.1) given to the physicians. In the prob-
ability format, the information was:

The probability that a person has colorectal cancer is 0.3%.

If a person has colorectal cancer, the probability that the test is positive
is 50%.

If a person does not have colorectal cancer, the probability that the test
is positive is 3%.

What is the probability that a person who tests positive actually has
colorectal cancer?

When one inserts these values in Bayes’s rule (Equation 1), the resulting
probability is 4.8%. In natural frequencies, the information was:

30 out of every 10,000 people have colorectal cancer.
Of these 30 people with colorectal cancer, 15 will test positive.

Of the remaining 9,870 people without colorectal cancer, 300 will still
test positive.

Imagine a group of people who test positive. How many of these will
actually have colorectal cancer?

When the information was in the probability format, only 1 out of 24 phy-
sicians (4%) could find the Bayesian answer, or anything close to it. The me-
dian estimate was one order of magnitude higher, namely 47%. When the
information was presented in natural frequencies, 16 out of 24 physicians
(67%) came up with the Bayesian answer (details are in Gigerenzer, 1996b;
Hoffrage & Gigerenzer, 1998).

Wife Battering

Alan Dershowitz, the Harvard law professor who advised the defense in the
first O. J. Simpson trial, claimed repeatedly that evidence of abuse and batter-
ing should not be admissible in a murder trial. In his best-seller, Reasonable
Doubts: The Criminal Justice System and the O. ]. Simpson Case (1996), Der-
showitz says: “The reality is that a majority of women who are killed are killed
by men with whom they have a relationship, regardless of whether their men
previously battered them. Battery, as such, is not a good independent predictor
of murder” (p. 105). Dershowitz stated on U.S. television in March 1995 that
only about one-tenth of 1% of wife batterers actually murder their wives. In
response to Dershowitz, I J. Good, a distinguished professor emeritus of sta-
tistics at the Virginia Polytechnic Institute, published an article in Nature to
correct for the possible misunderstandings of what that statement implies for
the probability that O. J. Simpson actually murdered his wife in 1994 {Good,
1995). Good’s argument is that the relevant probability is not the probability
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that a husband murders his wife if he batters her. Instead, the relevant prob-
ability is the probability that a husband has murdered his wife if he battered
her and if she was actually murdered by someone. More precisely, the relevant
probability is not p(G|Bat) but p(GlBat and M), in which G stands for “the
husband is guilty” (that is, did the murder in 1994), Bat means that “the hus-
band battered his wife,” and M means that “the wife was actually murdered
by somebody in 1994.”

My point concerns the way Good presents his argument, not the argument
itself. Good presented the information in single-event probabilities and odds
(rather than in natural frequencies). I will first summarize Good’s argument as
he made it. I hope I can demonstrate that you the reader—unless you are a
trained statistician or exceptionally smart with probabilities—will be confused
and have some difficulty following it. Thereafter, I will present the same ar-
gument in natural frequencies, and confusion should turn into insight. Let’s
see.

Good’s Argument in Conditional Probabilities

Good bases his calculations of p(G | Bat and M) on the odds version of Bayes’s
rule:

posterior odds = prior odds X likelihood ratio
which in the present case is:

plG| Bat and M) _ p(G| Bat) v p(MI1 G and Bat) (3)
p(—GlBat and M} p(—Gl|Bat)  p(M| -G and Baf)

where —G stands for “the husband is not guilty.”

The following six equations (Good-1 to Good-6) show Good’s method of
explaining to the reader how to estimate p(G|Bat and M). Good starts with
Dershowitz’s figure of one-tenth of 1%, arguing that if the husband commits
the murder, the probability is at least 1/10 that he will do it in 1994:*

p(G| Bat) > (1/10)(1/1,000) = 1/10,000 (Good-1)
Therefore, the prior odds (O) are:
O(G| Bat) > 1/9,899 ~ 1/10,000 (Good-2)

Furthermore, the probability of a woman being murdered given that her
husband has murdered her (whether he is a batterer or not) is unity:

pMI1 G and Baf) = p(MIG) =1 (Good-3)

4. Good possibly assumed that the average wife batterer is married less than 10 years.
Good also made a second calculation assuming a value of p(G|lBat) that is half as large.
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Because there are about 25,000 murders per year in the U.S. population of
about 250,000,000, Good estimates the probability of a battered woman being
murdered, but not by her husband, as:

p(M| -G and Bat) = p(M|-G) = 1/10,000 (Good-4)

From Equations Good-3 and Good-4, it follows that the likelihood ratio is about
10,000/1; therefore, the posterior odds can be calculated:

O(G| Bat and M) > 10,000/10,000 = 1 (Good-5)

That is, the probability that a murdered, battered wife was killed by her hus-
band is:

p(GlBat and M) > 1/2 {Good-6)

Good’s point is that “most members of a jury or of the public, not being
familiar with elementary probability, would readily confuse this with
P(G| Bat), and would thus be badly misled by Dershowitz’s comment” (Good,
1995, p. 541). He adds that he sent a copy of this note to both Dershowitz and
the Los Angeles Police Department, reminding us that Bayesian reasoning
should be taught at the precollege level.

Good’s persuasive argument, I believe, could have been understood more
easily by his readers and the Los Angeles Police Department if the information
had been presented in natural frequencies rather than in the single-event prob-
abilities and odds in the six equations. As with breast cancer and colorectal
cancer, one way to represent information in natural frequencies is to start with
a concrete sample of individuals divided into subclasses, in the same way it
would be experienced by natural sampling. Here is a frequency version of
Good’s argument.

Good’s Argument in Natural Frequencies

Think of 10,000 battered married women. Within one year, at least one will
be murdered by her husband. Of the remaining 9,999 who are not killed by
their husbands, one will be murdered by someone else. Thus we expect at
least two battered women to be murdered, at least one by her husband and
one by someone else. Therefore, the probability p(G|Bat and M) that a mur-
dered, battered woman was killed by her husband is at least %2,

This probability is not to be confounded with the probability that O.].
Simpson is guilty; a jury must take into account much more evidence than
battering. But the probability shows that abuse-and-battering is a good predic-
tor of the husband’s (or boyfriend’s) guilt, disproving Dershowitz’s assertion to
the contrary.

In natural frequencies, Good’s argument is short and transparent. My con-
jecture is that more ordinary people, including employees of the Los Angeles
Police Department and jurors, could understand and communicate the argu-
ment if the information were represented in natural frequencies rather than in
probabilities or odds.
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In legal jargon, evidence of wife battering is probative, not prejudicial. This
analysis is consistent with the impressive transcultural evidence about homi-
cide accumulated by Daly and Wilson (1988). The typical function of wife
battering seems to be to exert proprietary rights over the sexuality and repro-
ductivity of women, as well as threats against infidelity. Battering can “spill
over” into killing, and killing is the tip of a huge iceberg of wife abuse.

AIDS Counseling

Under the headline, “A False HIV Test Caused 18 Months of Hell,” the Chicago
Tribune (3/5/93) published the following letter and response:

Dear Ann Landers: In March 1991, I went to an anonymous testing center
for a routine HIV test. In two weeks, the results came back positive.

I was devastated. I was 20 years old and doomed. [ became severely
depressed and contemplated a variety of ways to commit suicide. After
encouragement from family and friends, I decided to fight back.

My doctors in Dallas told me that California had the best care for HIV
patients, so I packed everything and headed west. It took three months
to find a doctor [ trusted. Before this physician would treat me, he in-
sisted on running more tests. Imagine my shock when the new results
came back negative. The doctor tested me again, and the results were
clearly negative.

I'm grateful to be healthy, but the 18 months I thought I had the virus
changed my life forever. I'm begging doctors to be more careful. I also
want to tell your readers to be sure and get a second opinion. I will
continue to be tested for HIV every six months, but I am no longer ter-
rified.

David in Dallas

Dear Dallas: Yours is truly a nightmare with a happy ending, but don’t
blame the doctor. It’s the lab that needs to shape up. The moral of your
story is this: Get a second opinion. And a third. Never trust a single test.
Ever.

Ann Landers

David does not mention what his Dallas doctors told him about the chances
that he actually had the virus after the positive test, but he seems to have
inferred that a positive test meant that he had the virus, period. In fact, when
we studied AIDS counselors in Germany, we found that many doctors and
social workers (erronecusly) tell their low-risk clients that a positive HIV test
implies that the virus is present (see Chapter 5). These counselors know that
a single ELISA {(enzyme-linked immunoabsorbent assay) test can produce a
false positive, but they erroneously assume that the whole series of ELISA and
Western blot tests would wipe out every false positive. How could a doctor
have explained the actual risk to David and spared him the nightmare?

I do not have HIV statistics for Dallas, so I will use German figures for
illustration. (The specific numbers are not the point here.) In Germany, the
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prevalence of HIV infections in heterosexual men between the ages of 20 and
30 who belong to no known risk group can be estimated as about 1 in 10,000,
or 0.01%. The corresponding base rate for homosexual men is estimated at
about 1.5%. The hit rate (sensitivity) of the typical test series (repeated ELISA
and Western blot tests) is estimated at about 99.8%. The estimates of the false
positive rate vary somewhat; a reasonable estimate seems to be 0.01%. Given
these values, and assuming that David was at the time of the routine HIV test
a heterosexual man with low-risk behavior, what is the probability that he
actually had the virus after testing positive? If his physician had actually given
David these probabilities, David nevertheless might not have understood what
to conclude.

But the physician could have communicated the information in natural fre-
quencies. She might have said, “Your situation is the following: Think of
10,000 heterosexual men like you. We expect one to be infected with the virus,
and he will, with practical certainty, test positive. From the 9,999 men who
are not infected, one additional individual will test positive. Thus we get two
individuals who test positive, but only one of them actually has the virus. This
is your situation. The chances that you actually have the virus after the positive
test are about 1 in 2, or 50%.” If the physician had explained the risk in this
way, David might have understood that there was, as yet, no reason to contem-
plate suicide or to move to California.

We do not know what risk group David was in. Whatever the statistics are,
however, most people of average intelligence can understand the risk of HIV
after a positive test when the numbers are represented by a counselor in nat-
ural frequencies.

Ann Landers’s answer—don’t blame the doctor, blame the lab—however,
overlooks the fact that despite whatever possible reasons there may be for false
positives (such as the presence of cross-reacting antibodies or blood samples
being confused in the lab), a doctor should inform the patient that false posi-
tives occur, and about how frequently they occur. What information do pro-
fessional AIDS counselors actually provide? How do they communicate risks?
To find this out, a brave student of mine went as a client to 20 public health
centers to take 20 HIV tests. The results will be reported in Chapter 5.

Expert Witnesses

Evidentiary problems such as the evaluation of eyewitness testimony consti-
tuted one of the first domains of probability theory (Gigerenzer et al., 1989,
chap. 1). Statisticians have taken the stand as expert witnesses for almost a
century now: In the Dreyfus case in the late nineteenth century in France, or
more recently, in People vs. Collins in California (Koehler, 1992). The convic-
tions in both cases were ultimately reversed and the statistical arguments dis-
credited. Part of the problem seems to have been that the statistical arguments
were couched not in natural frequencies but in probabilities that confused both
the prosecution who were making the arguments and the jury and the judges
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who tried to understand the arguments. I will explain this point with the case
of a chimney sweep who was accused of having committed a murder in Wup-
pertal, Germany (Schrage, n.d.).

The Rheinischer Merkur (No. 39, 1974) reported:

On the evening of July 20, 1972, the 40-year-old Wuppertal painter Wil-
helm Fink and his 37-year-old wife Ingeborg took a walk in the woods
and were attacked by a stranger. The husband was hit by three bullets
in the throat and the chest, and fell down. Then the stranger attempted
to rape his wife. When she defended herself and, unexpectedly, the shot-
down husband got back on his feet to help her, the stranger shot two
bullets into the wife’s head and fled.

Three days later, 20 kilometers from the scene of the crime, a forest ranger
discovered the car of Werner Wiegand, a 25-year-old chimney sweep who used
to spend his weekends in the vicinity. The husband, who had survived, at first
thought he recognized the chimney sweep in a photo. Later, he grew less cer-
tain and began to think that another suspect was the murderer. When the other
suspect was found innocent, however, the prosecution came back to the chim-
ney sweep and put him on trial. The chimney sweep had no previous convic-
tions and denied being the murderer. The Rheinischer Merkur described the
trial:

After the experts had testified and explained their *probability theories,”
the case seemed to be clear: Wiegand, despite his denial, must have been
the murderer. Dr. Christian Rittner, a lecturer at the University of Bonn,
evaluated the traces of blood as follows: 17.29% of German citizens share
Wiegand’s blood group, traces of which have been found underneath the
fingernails of the murdered woman; 15.69% of German share [her] blood
group that was also found on Wiegand’s boots; based on a so-called
“cross-combination” the expert subsequently calculated an overall prob-
ability of 97.3% that Wiegand “can be considered the murderer.” And
concerning the textile fiber traces which were found both on Wiegand’s
clothes and on those of the victim. . . . Dr. Ernst R6hm from the Munich
branch of the State Crime Department explained: “The probability that
textile microfibers of this kind are transmitted from a human to anather
human who was not in contact with the victim is at most 0.06%. From
this results a 99.94% certainty for Wiegand being the murderer.”

Both expert witnesses agreed that, with a high probability, the chimney
sweep was the murderer. These expert calculations, however, collapsed when
the court discovered that the defendant was in his hometown, 100 kilometers
away from the scene of the crime at the time of the crime.

So what was wrong with the expert calculations? One can dispel the con-
fusion in court by representing the uncertainties in natural frequencies. Let
us assume that the blood underneath the fingernails of the victim was indeed
the blood of the murderer, that the murderer carried traces of the victim’s
blood (as the expert witnesses assumed), and that there were 10 million men
in Germany who could have committed the crime (these and the following
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figures are from Schrage, n.d., but the specific figures do not matter for my
argument). Let us assume further that on one of every 100 of these men a close
examination would find microscopic traces of foreign blood, that is, on 100,000
men. Of these, some 15,690 men (15.69%) will carry traces from blood that
is of the victim’s blood type. Of these 15,690 men, some 2,710 (17.29%) will
also have the blood type that was found underneath the victim’s fingernails
(here, I assume independence between the two pieces of evidence). Thus there
are some 2,710 men (including the murderer) who might appear guilty based
on the two pieces of blood evidence. The chimney sweep is one of these men.
Therefore, given the two pieces of blood evidence, the probability that the
chimney sweep is the murderer is about 1 in 2,710, and not 97.3%, as the
first expert witness testified.

The same frequency method can be applied to the textile traces. Let us
assume that the second expert witness was correct when he said that the prob-
ability of the chimney sweep carrying the textile trace, if he were not the
murderer, would be at most 0.06%. Let us assume as well that the murderer
actually carries that trace. Then some 6,000 of the 10 million would carry this
textile trace, and only one of them would be the murderer. Thus the probability
that the chimney sweep was the murderer, given the textile fiber evidence, was
about 1 in 6,000, and not 99.94%, as the second expert witness testified.

What if one combines both the blood and the textile evidence together,
which seems not to have happened at the trial? In this case, one of the 2,710
men who satisfy both pieces of blood type evidence would be the murderer,
and he would show the textile traces. Of the remaining innocent men, we
expect one or two (0.06%) to also show the textile traces {assuming mutual
independence of the three pieces of evidence). Thus there would be two or
three men who satisfy all three types of evidence. One of them is the murderer.
Therefore, the probability that the chimney sweep was the murderer, given the
two pieces of blood sample evidence and the textile evidence, would be be-
tween .3 and .5. This probability would not be beyond reasonable doubt.

Teaching Statistical Reasoning

The teaching of statistical reasoning is, like that of reading and writing, part
of forming an educated citizenship. Our technological world, with its abun-
dance of statistical information, makes the art of dealing with uncertain infor-
mation particularly relevant. Reading and writing is taught to every child in
modern Western democracies, but statistical thinking is not (Shaughnessy,
1992). The result has been termed “innumeracy” (Paulos, 1988). But can sta-
tistical reasoning be taught? Previous studies that attempted to teach Bayesian
inference, mostly by corrective feedback, had little or no training effect (e.g.,
Peterson, DuCharme, & Edwards, 1968; Schaefer, 1976). This result seems to
be consistent with the view that the mind does not naturally reason the Bay-
esian way. However, the argument developed in this chapter suggests a “nat-
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ural” method of teaching: Instruct people how to represent probability infor-
mation in natural frequencies.

Peter Sedlmeier and I designed a tutorial program that teaches Bayesian
reasoning, based on the assumption that cognitive algorithms have evolved for
dealing with natural frequencies (Sedlmeier, 1997; Sedlmeier & Gigerenzer, in
press). The goal of this tutorial is to teach participants how to reason the Bay-
esian way when the information is represented in probabilities, as is usually
the case in newspapers, medical textbooks, and other information sources. The
computerized tutorial instructs participants in how to represent the probability
information in terms of natural frequencies, rather than teaching them how to
insert probabilities into Bayes’s rule (Equation 1). The tutorial consists of two
parts. In the first part, participants are shown how to translate probability in-
formation into natural frequencies, visually aided by a frequency tree (or a
frequency grid); the method is illustrated by two medical problems, one of
them the mammography problem. In the second part, participants solve eight
other problems, with step-by-step guidance on what to do as well as step-by-
step feedback. If participants have difficulties, the system provides immediate
help that ensures that every participant solves all problems correctly. To see
how effective this “representation training” is, we compared it with standard
“rule training” in which people are taught how to insert probabilities into
Bayes’s rule. Both training procedures were computerized, and both were sup-
ported with the same visual aids (frequency trees). There were three criteria:
immediate learning effect after training, transfer to new questions, and stability
over time. Stability over time has proven to be the most difficult to obtain, in
experimental studies as well as in teaching practice. For instance, many who
teach statistical reasoning report that students often successfully perform in
the final exam, but a few weeks later they have already forgotten most of what
they learned.

In three studies, the immediate effect of the representation training was
always larger than that of the rule training, by 10 percentage points or more.
Transfer was about the same. The most striking difference was obtained in
stability. For instance, in the study with the longest interval—people were
called back three months after training—the median performance in the group
that had received the representation training was a strong 100%. That is, all
problems were solved—even after three months. In contrast, the performance
in the group that had received the rule training was 57%, reflecting the well-
known steep forgetting curve. Teaching how to translate probabilities into
frequencies seems to have a more lasting effect than teaching rules for proc-
essing probabilities.

Thus there is evidence that (what I take to be) the natural format of infor-
mation in the environment in which humans evolved can be used to teach
people how to deal with probability information. This may be good news both
for instructors who plan to design precollege curricula that teach young people
how to infer risks in a technological world and for those unfortunate souls
among us charged with teaching undergraduate statistics.
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Conclusions

Information needs representation. If a representation is recurrent and stable
during human evolution, one can expect that mental algorithms are designed
to operate on this representation. In this chapter, I applied this argument to
the understanding of human inferences under uncertainty. The thesis is that
mental algorithms were designed for natural frequencies, the recurrent format
of information until very recently. I have dealt with a specific class of infer-
ences that correspond to a simple form of Bayesian inferences, in which one
of several possible states is inferred from one or a few cues. Here, mental
computations are simpler when information is encountered in the same form
as in the environment in which our ancestors evolved, rather than in the mod-
ern form of probabilities or percentages. The evidence from a broad variety of
everyday situations and laboratory experiments shows that natural frequencies
can make human minds more insightful.



AIDS Counseling for Low-Risk Clients

Former Senator Lawton Chiles of Florida reported at an AIDS conference in
1987 that of 22 blood donors in Florida who were notified that they tested
HIV-positive with the ELISA test, seven committed suicide. In the same med-
ical text that reported this tragedy, the reader is informed that “even if the
results of both AIDS tests, the ELISA and WB (Western blot), are positive, the
chances are only 50-50 that the individual is infected” (Stine, 1996, pp. 333,
338). Situations like this can occur when people with low-risk behavior, such
as blood donors, test positive. The discrepancy between what clients believe
a positive HIV test means and what it actually does mean seems to have cost
human lives in addition to the toll the disease itself has taken. One of the goals
of AIDS counseling is to explain the actual risk to the client. This chapter
deals with pretest HIV counseling of low-risk clients concerning the meaning
of a positive HIV test in German public AIDS counseling centers. We address
three questions: What information do counselors communicate to the client
concerning the chances of an HIV infection given a positive test? Is this infor-
mation communicated in a way the client can understand? How can the com-
munication and the accuracy of the information be improved?

Counseling Clients with Low-Risk Behavior

We are interested in the counseling received by members of the largest pop-
ulation group: heterosexuals who do not engage in risky behavior, such as IV-
drug use. These people take HIV tests for various reasons: voluntarily, because
they want to find out whether they are infected before getting married, having
children, or for other reasons; or involuntarily, because they are immigrants,
applicants for health or life insurance, military personnel, blood donors, or
members of other groups that are required by law to take the test. The Swedish

The work on which this chapter is based was coauthored with U. Hoffrage and
A. Ebert.
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government, for instance, has encouraged voluntary testing to the point that
“people who are unlikely to be infected are the ones who take the test, in
droves” (Mansson, 1990). Involuntary testing is a legal possibility in several
countries, one that insurers exploit to protect themselves against losses. For
instance, in 1990, Bill Clinton (then governor of Arkansas) had to take an HIV
test to get his life insurance renewed. Peaple with low-risk behavior may be
subjected to HIV tests not only involuntarily but also unknowingly. For in-
stance, large companies in Bombay have reportedly subjected their employees
to blood tests without telling them that they were being tested for AIDS; when
a test was positive, the employee was fired.

Counseling people at low risk requires paying particular attention to false
positives, that is, to the possibility that the client has a positive HIV test even
though he or she is not infected with the virus. The lower the prevalence of
HIV in a group, the larger the proportion of false positives among those who
test positive. In other words, if a client with high-risk behavior tests positive,
the probability that he actually is infected with HIV is very high, but if some-
one with low-risk behavior tests positive, this probability may be as low as
50%, as indicated previously. If clients are not informed about this fact, they
tend to believe that a positive test means that they are infected with absolute
certainty. The case of the young man from Dallas described in the previous
chapter is one example. If he had committed suicide, as the blood donors in
the Florida case did, we might never have found out that his test was a false
positive. Emotional pain and lives can be saved if counselors inform the clients
about the possibility of false positives.!

We do not know of any study that has investigated what AIDS counselors
tell their clients about the meaning of a positive test. We pondered long over
the proper methodology, such as sending questionnaires to counselors or ask-
ing them to participate in paper-and-pencil tests. However, we decided against
questionnaires and similar methods because they are open to the criticism that
they tell us little about actual counseling sessions. For instance, these methods
have been criticized for not allowing physicians to pose their own questions
to get further information, to use their own estimates of the relevant statistical
information rather than those provided by the experimenter, and for removing
the element of actual concern for the patient, because either the patient is
fictional or the case was resolved years ago.

In the end, we decided to take a direct route. One of us went as a client to
20 counseling sites and took a series of counseling sessions and HIV tests. We

1. In their review of suicidal behavior and HIV infection, Catalan and Pugh (1995)
conclude that “suicidal ideas, comp