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 Introduction to Math 

1 · 1 · 1 · 1 · 1     1     1 · 1 · 1 · 1 · 1 

Grab some paper. Get 
out your scissors and tape. It 
is time to make some math. 

Yes, that’s right: math is more than 
just a pencil-and-paper activity! In 

this book you will explore, create, and 
experiment with math. In the process, 

you’ll find math in all sorts of unlikely 
places. There is math in bubbles, 
snowflakes, and stars. There is math 
in buildings, bridges, and art. Without 
math, you couldn’t use computers, 
travel by car, or watch TV, because it is 
essential to all of these inventions.

Math exercises the logical left side of your brain. 
But this book will also work the right half of your brain, as you investigate 
patterns and seek out spatial relationships. Build the models in this book. 
Do the activities. You will have fun and learn more by holding these models 
in your hands and seeing how they work.

INTRODUCTION						      to MATH
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 Introduction to Math 

I hope you’ll discover that math is more than just fractions and 
multiplication tables. It is as beautiful as a sunflower, as challenging as a 
puzzle, and as fun as a video game. The skills you learn in math class are 
vital, but not the only goal. Instead, they are tools you can use to discover, 
figure out, and create things.

If a topic in this book sparks your interest, please visit the companion 
website at www.amazingmathprojects.com for more information and 
activities. The website also has video instructions for many of the projects 
in this book. So if you learn better by observing, rather than reading 
directions, be sure to check it out. 

Project Tips
Some projects use templates that are printed in this book. You can either 
photocopy the templates or download templates from the website to print 
out. To make sturdy card stock templates, photocopy the templates onto 
regular paper, then staple the paper to card stock. The staples will keep 
the templates from moving as you cut out the pieces. When you are done, 
you can throw away the regular paper, and you will be left with clean card 
stock templates that don’t have lines printed on them.

You can use recycled items from around the house for the projects. Instead 
of buying card stock, for example, use old manila folders. Or use empty 
cereal boxes for boxboard.
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 Numbers & Counting 
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Do numbers have their own personalities? In this 
section you’ll discover properties of numbers that 
set them apart from each other. Numbers can 

be triangular, square, or cubic. Numbers can be prime 
or perfect. One number is even called “golden.” This 
number holds a special place in art and architecture and 
shows up in the most unlikely of places.

Numbers &
Counting
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 Numbers & Counting 
You might think that there is not much more to learn 

about counting. After all, you probably learned to 
count when you were very young. The way that you 
were taught to count is not the only way! We use 
10 digits when we count and write numbers, but 

different cultures throughout history 
have used other systems. 

In this section, we’ll explore what it 
is like to use a system of numbers with 

only five digits. Computers use even 
fewer. They work with numbers represented by only 
ones and zeros.

Let’s explore the world of numbers to see what surprises 
it has in store for us.

WORDS + 2 + KNOW
prime number: a number larger 
than 1 with only two factors: 1 and 
itself.

perfect number: a number whose 
factors (excluding the number itself) 
add up to that number.

factor: a number that divides 
evenly into another number. For 
example, the numbers 1, 2, 3, 4, 6, 
and 12 are factors of 12. To factor a 
number is to find the numbers that 
divide evenly into that number.

digit: a symbol used to write a 
number.

mathematician: an expert in 
math.

Mathematicians think that 
every even number greater 

than 2 is the sum of two 
prime numbers, but they 
aren’t totally sure. Even 

though mathematicians used 
computers to verify that 
this is the case for every 

number up to one quintillion 
(1,000,000,000,000,000,000), 
they haven’t proven that it 
works for all even numbers.
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 Numbers & Counting 
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❂ Counting in Different 
	   Numeral Systems
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It is so natural for us to use 10 digits to write numbers that 
we might not realize that there are other ways to do it. 
However, if we all had hands like Homer Simpson’s, with 
only 4 fingers on each hand, we’d probably find it more 
natural to use 8 digits instead of 10. 

In this imaginary world, we could still count as high as we wanted and 
add, subtract, multiply, and divide numbers using only the digits zero 
through seven. We might even find it easier to learn multiplication facts, 
because we would need to memorize up to only seven times seven!

Why doesn’t it matter how many digits a number system has? The 
main reason is that we write numbers with place values. Each number 

has a ones’ place, a tens’ place, a hundreds’ (10 x 10) place, and 
so on. 
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 Numbers & Counting 
For example, for the number 117, there are seven elements in the 

ones’ place, one element in the tens’ place, and one element in the 
hundreds’ place. Since each place is 10 times as great as the previous 

one, our system is called a base-10 system, or a  
decimal system. The word decimal comes from the Latin 

word decem, which means “ten.” In our imaginary 
world, numbers would have a ones’ place, an 
eights’ place, and a sixty-fours‘ (8 x 8) place. It 

would be a base-8, or octal system.

Almost 4,000 years ago, the ancient Babylonians 
wrote numbers in a base-60 system. To represent the 
number 73, for example, they drew a symbol for 1  

( ) next to a symbol for 13 ( ), showing one 
group of 60 plus thirteen 1s. The Babylonians’ system didn’t have 

a symbol for zero, though. So you couldn’t be sure whether the symbol   
alone meant 1 or 60!

Understanding how to use number systems with different bases is 
important in computer programming. Computers store numbers in a base-
2, or binary, system. The number 73, 
for example, is 1001001 in binary. 

Base-16, or hexadecimal, is a system 
used to specify colors in web  pages. The 
color sea green, for example, is 2E8B57 
in hexadecimal. Notice the letters mixed 
in with the numbers. Since hexadecimal 
numbers use 16 digits, they use the 
first 6 letters of the alphabet, A–F, to 
represent the numbers 10–15. 

Instead of using letters, we could have 
invented new symbols for these digits. 
Wouldn’t it be fun to design them? 
What would your symbols look like?

WORDS + 2 + KNOW
base 10: a number system with  
10 digits, the numbers 0 through 9.

decimal: a base-10 number system 
(digits 0 through 9). 

octal: a base-8 number system  
(digits 0 through 7).

binary: a base-2 number system 
(digits 0 and 1), used by computers  
to store data.

hexadecimal: a base-16 number 
system (digits 0 through 9 and letters 
A through F).
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1Draw three columns on a piece of paper. 
Label the first (left) column “25,” the 
second (middle) column “5,” and the 

third (right) column “1.” Each column 
represents a number that is 5 times 
larger than the number of the column 
to its right. 

2Using the fewest possible coins, 
place quarters, nickels, and 
pennies in the proper columns 

(quarters = “25” column, nickels = 
“5” column, pennies = “1” column) 
until you have 73 cents on the paper.

Learn Base-5 with Money
Our system of writing numbers is called base-
10 because we use 10 digits: the numbers 0 
through 9. Let’s try writing numbers with 
a base-5 system, using only the digits 0 
through 4.

Supplies

1 +
+

0

2
2

=
=

We still use the base-60 number 
system developed by the ancient 
Babylonians in order to tell time. 
This is why we have 60 seconds in 
1 minute and 60 minutes in 1 hour.

Did you get 2 quarters, 4 
nickels, and 3 pennies? 
Perfect! You just figured out 
how to write the number 
73 in base-5: 243base-5. The 
base-5 in small letters tells 
us that the number 243 
represents 2 quarters (2 x 
25 = 50 cents), 4 nickels 
(4 x 5 = 20 cents), and 3 
pennies (3 x 1 = 3 cents). 

paper•	
pencil•	
mixture of pennies, •	
nickels, and quarters 
(about 20 coins in all)
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Make Base-5 Conversions

1 Place coins in the correct 
columns on the paper to figure 
this out. Note that you should 

never need more than four coins 
of any type. For example, if you 
have 5 pennies on the paper, you 
can replace them with 1 nickel.

2How much money do  
you have if you have  
314base-5? 

3What does 1000base-5 
represent? Hint: you  
will need to add a fourth 

column (“125” = 25 x 5). See  
page 131 for the solutions to 
these problems.

Try to do some simple arithmetic entirely in base-5. For 
example, add 234base-5 and 142base-5. Basic addition, subtraction, 
multiplication, and division still work with numbers in different 
bases. You just need to make sure that the final number is 
correctly expressed in that base. 
For example, 4base-5  + 2base-5 doesn’t equal 6base-5 because there is 
no such number. Since base-5 uses only the digits 0 through 4, 
you write the decimal number 6 as 11base-5.

In our decimal (base-10) 
system, it is very easy to 

multiply by 10: just add a zero 
to the end of the number that 
you are multiplying by 10. For 
example, 65 × 10 = 650. In a 
base-5 system, it is equally 
easy to multiply by 5: just 

add a zero to the end of the 
number you are multiplying 
by 5. For example, 314base-5 
multiplied by 5 is 3140base-5. 

How would you multiply by 2 in 
the binary system?

How do you represent the numbers 45 and 124 in base-5?



❂ Abacus
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For thousands of years, 
people used marks in 
the sand, pebbles on a 
board, or beads on an 

abacus to help them add 
and subtract numbers. Some 
shopkeepers in China and 
Japan still use an abacus 
to calculate how much their 
customers owe. They do it as 
quickly as they could on an 
electronic calculator.

Roman numerals are tricky 
to work with because they 
don’t have place values. To 
solve problems, the Romans 

translated their numerals 
onto an abacus, carried out 
the necessary calculations, 

and then translated the 
results back into Roman 

numerals.

WORDS + 2 + KNOW
abacus: an instrument used to 
perform calculations by moving beads.

sorobon: a Japanese abacus.

earthly bead: a bead on an  
abacus with a value of 1.

heavenly bead: a bead on an 
abacus with a value of 5.
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1Using the nail, gently poke 
three evenly spaced holes 
near the top of each long 

side of the shoebox.

2	Insert one end of each 
skewer into a hole on one 
side of the box. Add four 

beads of one color and one of 
the other color to each skewer. 
Insert the other end of the 
skewer into the appropriate 
hole on the other side of the 
box. If you are using pieces of 
string, make sure to 
tie a knot at each end 
of the pieces once they 
have been inserted into 
the box. You want the 
string to be taut across 
the width of the box, 
but not so tight that 
it pulls the sides of the 
box in. 

3Push the 
one bead 
that is 

a different color 
on each skewer or 
string to the far 
side of the box and 
pull the four beads 
that are the same color 
to the side closest to you. 
Make a mark on each skewer or 
piece of string midway between 
the beads.

You can make your own sorobon, a Japanese abacus. Each of the 
four beads closest to you has a value of 1 and is called an earthly 
bead. Each of the beads at the far end of the skewers has a value 
of 5 and is called a heavenly bead. 

Supplies

1 + 1

+

00
2
2

=
=

nail •	
shoebox•	
15 large beads •	
(12 of 1 color, 
3 of another)
marker •	

3 bamboo •	
skewers or 
3 pieces of 
string that are 
longer than 
the shoebox’s 
short side

Make an Abacus
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Use an Abacus
Place numbers onto your abacus by pushing earthly and heavenly 
beads toward the midway mark of the skewer. For example, the 
number 7 consists of 1 heavenly bead (representing 5) plus 2 
earthly beads (representing 2) at the midway point. Let’s add 
148 and 312 on our abacus.

1Place the number 148 on your abacus 
by pushing 1 earthly bead toward the 
midway point of the leftmost skewer 

(first column), 4 earthly beads towards 
the midway point of the middle skewer 
(second column), and 1 heavenly bead and 
3 earthly beads to the midway point of the 
rightmost skewer (third column).  1

4
8

4
4

8

4
5

8

4
6

0

Count to 99 on Your Fingers
Most people count to 10 on their fingers, but here is a simple 
way to count to 99 on your fingers. Think of your fingers as 
earthly beads on an abacus, with each finger having a value 
of 1. Your thumbs are heavenly beads, with a value of 5. 
Four fingers raised on your right hand represent the 
number 4. Your thumb and four fingers are 9. Your 
left hand is the tens’ column, representing 
the numbers 10, 20, 30, and so on.
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An abacus uses a mix of a  
base-10 system and a base-5 

system. The heavenly and earthly 
beads represent numbers in  

base-5 but each column represents 
a base-10 place value.

2	To add 312, add 3 to the first 
column by pushing 3 more earthly 
beads towards the midway point. 

This adds 300.

3Then, add 1 to the second column. 
This is a little more challenging 
because there are no more earthly 

beads left in the second column to 
move. To solve this problem, you will 
need to move the 4 earthly beads away 
from the midway point and bring 1 
heavenly bead there. This adds 10.

4	To add 2 to the third column, 
you will need to “carry” a bead 
to the second column, because 

2 + 8 equals 10. Push all beads in 
the rightmost column away from the 
midway point and add 1 earthly bead 
to the second column. 

Read your answer by 
looking at the value of the 
beads: 460. This may seem 
like a difficult way to add 
numbers, but with practice, 
abacus users’ motions 
become as automatic as 
typing.

1

4

8

4

4

8

4

5

8

4

6

0

1

4

8

4

4

8

4

5

8

4

6

0

1

4

8

4

4

8

4

5

8

4

6

0
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 Numbers & Counting 
❂ Triangular Numbers
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1 penny on the top row of the triangle
2 pennies on the second row of the 
triangle (3 pennies total in the top 2 rows)
3 pennies on the third row of the triangle 
(6 pennies total in the top 3 rows)
4 pennies on the fourth row of the 
triangle (10 pennies total in the top 4 rows). 

The first few triangular numbers, then,  
are 1, 3, 6, and 10.

Numbers can have shapes! For 
example, the number 10 is called a 
triangular number because you 
can arrange 10 pennies into the 
shape of an equilateral triangle. 
When you do this, each side of the 
triangle will be 4 pennies long.
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 Numbers & Counting 

In addition to triangular numbers, 
there are also rectangular and square 
numbers, as well as numbers in many 
other shapes. The shape of a number 
reveals interesting properties, and can 
even make calculations easier.

Triangular numbers are associated 
with many different types of problems 
in math. For example, the total number 
of games in an athletic tournament, 
where each team plays every other 
team once, is a triangular number. 
You can also use triangular numbers 
to sum a series of consecutive 
numbers.

WORDS + 2 + KNOW

triangular number: a number of 
items that can be arranged into rows 
to form a triangle.

equilateral triangle: a triangle 
with all sides of equal length.

sum: the result of adding items 
together (the total).

consecutive: one after another in 
a list.

If 4 people each want to shake 
hands with every other person in 

the group, it will take 6 handshakes. For 5 
people, it will take 10 handshakes. 

Both 6 and 10 are triangular 
numbers. Try this with a group 
of friends to see if you can 

discover why the number 
of handshakes is always a 

triangular number.
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Sum a Series of Numbers
Carl Friedrich Gauss was a famous German mathematician who lived 
200 years ago. When he was in elementary school, his teacher 
asked his class to add up all the numbers from 1 to 100, possibly 
to keep the class occupied for a while. However, Gauss gave the 
teacher the correct answer almost immediately. 

Using penny triangles, we can figure out how he might have 
reached a solution so quickly. Look at the number of pennies in 
each row of the triangle. There is 1 penny in the first row, 2 in the 
second row, 3 in the third row, and so on. A triangle with four rows 
has a total of 1+2+3+4 = 10 pennies in it. What does this mean? 
The total number of pennies in a triangle with a certain number 
of rows is the same as the sum of the consecutive numbers up to 
that number. 

In this activity, instead of making a very big triangle with 100 
rows of pennies and counting them all up, we’ll figure out how to 
calculate the number of pennies in a triangle with fewer rows, and 
then apply that knowledge to solve our problem. 

1Create a triangle of 
pennies next to an upside-
down triangle of nickels.

Push the triangles together 
into a rectangle. 

1
+2=

Supplies
10 pennies•	
10 nickels•	
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2Find the total number of 
coins in the rectangle by 
multiplying the number of 

columns by the number of rows. 
This is why we made a rectangle: 
calculating the number of coins 
in a rectangle is easy.

3	Divide this number by 2 
in order to find the total 
number of pennies in your 

original triangle. 

Place 10 pennies on a table in the shape of a triangle. 
Moving only three pennies, turn it into a triangle that points 
in the opposite direction. (See page 131 for the solution.)

Count the number of rows and the number of columns in the 
rectangle. What do you notice? The number of columns (5) is 1 
more than the number of rows (4). What does this mean? We can 
calculate the number of pennies in any size triangle by multiplying 
the number of rows by the number of columns (which is the number 
of rows + 1) and dividing by 2. 
Returning to our original problem, what is the sum of all the 
numbers from 1 to 100? Again, this question is the same as asking 
how many pennies are in a triangle with 100 rows. Multiply the 
number of rows (100) by the number of columns (100 + 1 = 101) 
and divide by 2. 100 × 101 ÷ 2 = 5,050. This is the answer that 
young Gauss gave his teacher.
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 Numbers & Counting 

Have you ever wondered why 5 × 5 is called five squared? 
What does a square have to do with multiplication? We can 
find out the answer by arranging pennies into the shape of a 
square. A square with 5 rows and 5 columns, also called a 5 
by 5 square, will have 5 × 5, or 52, pennies in it. 

❂ Square Numbers

17 · 17 · 17 · 17 · 17     17     17 · 17 · 17 · 17 · 17 

Calculator Fun: Find a Square Root
Try to guess the square root of 2, to as many digits 
as you can. Enter your guess into a calculator and 
square the number. If your guess was too large, pick a 
smaller number. For example, if you square 1.5, you 
will get 2.25, which is too large. Try squaring 1.4. 
That is too small, so try 1.45. Narrow in on the 
best approximation you can. 
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 Numbers & Counting 
❂ Square Numbers

A number is called a perfect square 
if it is an integer squared. The first 12 
perfect squares are 1 (1 × 1), 4 (2 × 2),  
9 (3 × 3), 16 (4 × 4), 25, 36, 49, 64, 
81, 100, 121, and 144.

The opposite of squaring, or  
multiplying a number by itself, is taking 
the square root of a number. When 
you take the square 
root of a number, you 
find out what number 
is necessary to square 
in order to get that 
number. For example, 
the square root of 49 
is 7 because 7 × 7 = 49.

Unless a number is a perfect square, 
the square root of a whole number will 
have decimal digits that go on forever 
without repeating. Today, calculators 
quickly display approximate values 
for square roots that are accurate 
to several decimal places. For early 
mathematicians, square roots weren’t 
so easy to figure out.  

Mathematicians in ancient Greece 
had only fractions to work with, but 
there is no fraction that exactly equals 
a number like the square root of 2. For 
this reason these numbers are called 
irrational, a word that means “not 
a ratio.” 

square: to square a number is 
to multiply a number by itself. For 
example 5 squared (written 52) is  
5 × 5 = 25.

perfect square: a number that is 
the square of an integer.

integer: a whole number, a number 
that does not include a fraction.

square root: a number that is 
squared to produce the original 
number. For example, the square root 
of 9 (written ) is 3. 32 = 9.

irrational number: a number 
that cannot be written as a fraction.

cube: to cube a number is to 
multiply a number by itself and then 
by itself again.  For example, 4 cubed 
(written 43) is 4 × 4 × 4 = 64.

WORDS + 2 + KNOW

The sum of any two consecutive 
triangular numbers is a square 

number. For example, the 
triangular numbers 6 and 10 add 
up to 16, a perfect square. You 

can see why this is true by looking 
at this diagram. Two triangles 
combine to make a square.
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1Place 1 penny on a flat 
surface. Add 3 pennies 
to make a 2 by 2 square.

2Record the number of 
pennies that you add 
each time you make a new 

square. For example, your list 
should include 1 (the number 
of pennies added to create 
the first 1 by 1 square) and 3 
(the number of pennies added 
to create the second 2 by 2 
square). 

3Add more pennies to make 
a 3-by-3 square. Repeat 
this process until you run 

out of pennies. 

The list of numbers you wrote down should be familiar to you. First, 
you placed 1 penny on the surface, then you added 3, 5, and then 7 
pennies. These numbers are the odd numbers. What does that mean? 
Perfect squares are the sum of consecutive odd numbers. If you add 
up the first five odd numbers, for example, you get 5 squared.

If 5 squared (52) is 5 × 5, then what is 5 cubed (53)? It is 5 × 5 × 5, 
or 5 multiplied 3 times! Five squared (25) can also be thought of as 
the area of a square that is 5 units wide and 5 units tall. It makes 
sense, then, that 5 cubed is the volume of a cube that is 5 units tall, 
5 units wide, and 5 units long.

1
+2=

Supplies
paper•	
pencil•	
approximately 25 •	
pennies

Find Patterns  
in Square Numbers

An interesting pattern emerges as you progress through the 
sequence of perfect squares. See if you can discover this pattern.

WORDS + 2 + KNOW



Rectangular Numbers
If you were to arrange a prime number of pennies in rows and 

columns on a table, you could place the pennies all in a row, but you 
couldn’t arrange them into any other rectangle.
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Prime Numbers ❂

Prime numbers are the 
building blocks of numbers. 
The number 7 is prime 
because it can be produced 
by the multiplication of only 
two whole numbers: 1 and 
7. In other words, 1 and 7 
are the only factors of 7. 

The number 24, on the other 
hand, is composite, not prime, 
because it has many factors: 1, 2, 
3, 4, 6, 8, 12, and 24. The fi rst 
few prime numbers are 2, 3, 5, 7, 
11, 13, 17, 19, 23, 29, 31, and 
37. Notice that 1, by defi nition, is 
not prime, and that 2 is the only 
even prime number.

WORDS + 2 + KNOWWORDS 2 KNOW
prime number: a number larger 
than 1 with only two factors: 1 and 
itself. The number 1 is not a prime 
number.

composite: any number greater 
than 1 that is not a prime number.



21

1Draw a 10 by 10 grid. List 
the numbers from 1 to 100 
in the boxes of the grid.	

Cross off the number 1 because 
by definition it isn’t prime.

2Circle the number 2 
and then cross off every 
number greater than 2 

that is divisible by 2 (4, 6, 8, 
etc.). The number 2 is the only 
prime number that is even.

WORDS + 2 + KNOW

Sieve of Eratosthenes: a 
method for finding prime numbers.

perfect number: a number 
whose factors (excluding the number 
itself) add up to that number.

Find Prime Numbers
Here is an easy way to find all the prime numbers between 1 and 
100. Eratosthenes, a mathematician from ancient Greece, invented 
this method around 200 BCE. It is called the Sieve of Eratosthenes 
because it filters out prime numbers from a list in much the same 
way that a sieve filters out pebbles from a pile of sand. 

+=
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pencil•	 paper•	
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The number 6 is a “perfect 
number” because its factors, 

excluding itself (1, 2, 3), add up 
to 6. The number 496 is also 
a perfect number because its 

factors, excluding itself, (1, 2, 4, 8, 
16, 31, 62, 124, and 248) add up to 
496. Can you find the only perfect 

number between these two 
numbers? Hint 1: It is between 20 
and 30. Hint 2: All perfect numbers 
are also triangular numbers! (See 

page 131 for the solution.)

You may be wondering why we didn’t look for multiples of 11, 13, 
or greater prime numbers. Couldn’t some of the remaining numbers 
have 11 as a factor? A quick look at the chart will convince you that 
all multiples of 11 (22, 33, 44, etc.) have been crossed off already. 
We eliminated them when we dealt with the smaller prime numbers. 
On a chart with 100 numbers, we need to check primes only up to 
10, the square root of 100. On any chart, stop checking primes when 
you reach the square root of its largest number.

3Circle the number 
3 and cross 
off every third 

number after that. 
Some of these numbers 
will be crossed off already. 
This step removes all the 
numbers divisible by 3, 
which we know can’t be 
prime. Repeat with the 
numbers 5 and 7.

4Circle every number 
not crossed off. The 
circled numbers are 

all the prime numbers 
between 1 and 100.
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Today, we express parts of a whole in three different ways: 
through fractions, decimals, and percents. However, if you 
were doing math in ancient Egypt or ancient Greece, you 
would have worked in fractions only. Decimals and percents 
didn’t really catch on until a thousand years later.

Adding and multiplying fractions can be tricky. Here are a couple 
of activities that will help you see the concepts behind adding and 
multiplying fractions.
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1To multiply ¾ x 1/5, draw a rectangle 
4 squares across (4 columns) 
by 5 squares down (5 rows). The 

number of rows and columns are the 
denominators of the two fractions.

2	Color ¾ of the rectangle, or 3 of 
the 4 columns. With a different 
color, shade 1/5 of the part you just 

colored, or 1 of the 5 rows of already 
shaded squares. 

3	Find the answer by counting 
squares that are shaded twice, 
which represent 1/5 of ¾. Three out 

of the 20 squares in the rectangle are 
shaded twice, so the answer is  3/20 . 

Multiply Fractions
You don’t need to find a common denominator to multiply fractions.

The first step of this activity shows that multiplying fractions involves 
multiplying denominators. The 4 in ¾ times the 5 in 1⁄5  equals 20 
squares. The key to this method, and being able to take a fraction 
of a fraction, is to have the right number of squares in the rectangle 
starting out. Setting the dimensions of the rectangle to the values of 
the two denominators ensures that we can divide the rectangle evenly 
in the next step.
Your finished diagram also shows you that you multiply numerators 
when you multiply fractions. The doubly shaded part is one numerator 
wide by the other numerator long. The area of this part is the product 
of the numerators, the 3 in ¾ times the 1 in 1⁄5 .

1
+2=

Supplies
graph paper•	
colored pencils or •	
crayons
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+=
Supplies

Make a  
Fraction Addition Dial

1Photocopy and 
cut out the three 
template disks.  

In this activity, you’ll create a simple tool to help you add 
fractions. We’ll practice by adding the fractions ³⁄8 and ¹⁄6 .
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2	Cut a slit in each disk  
from the edge to the 
center of the circle along 

the thick line.

3Slip the two smaller disks 
onto the larger one at 
the slits. Place the disk 

divided into eighths on top of 
the one divided into sixths.

4	To add the fractions 3⁄8  
and 1⁄6, rotate the top disk  
until the fraction  3⁄8   

is showing.

5Rotate the second disk so 
that the fraction 1⁄6 lines 
up with the end of the top 

disk. In other words, 
the second disk 
sticks out 
from under 
the top 
disk by 1⁄6.

6	Read 
the answer 
13⁄24 off of the 

bottom circle where the 
second disk ends.

The fraction dial illustrates 
why you need to get 
common denominators to 
add fractions. If the bottom 
disk had only eighths and 
sixths marked on it, the 
answer would fall between 
two lines. You wouldn’t be 
able to read the answer. 
Here we have more lines, 
showing 24ths, which is the 
common denominator.
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27 · 27 · 27 · 27 · 27     27     27 · 27 · 27 · 27 · 27 27 · 27 · 27 · 27 · 27     27     27 · 27 · 27 · 27 · 27 

What number comes next in the 
following sequence?

0, 1, 1, 2, 3, 5, 8, ___. Did you 
figure it out? The next number is 13. Why? Each new number 
in the sequence is the sum of the two numbers before it. To 
find the next number in this sequence, then, you needed to 
add the two previous numbers, 5 and 8.  

Here is the sequence with a few more numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 
34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, …

This pattern of numbers is called the Fibonacci sequence, after a 
nickname given to a man named 
Leonardo of Pisa. He was an Italian 
mathematician who included it 
in a book he wrote in the year 
1202. The nickname is short for 
filius Bonacci, meaning “son of the 
Bonacci family.” 

WORDS + 2 + KNOW
Fibonacci sequence: a series 
of numbers formed by adding the 
previous two numbers to get the 
next one.

27 
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1Cut out an 8 by 8 square of graph 
paper. Cut the square into pieces 
along the thick lines shown. 

Make a  
Square Magically Appear
Amaze your friends with this fun 
trick that uses Fibonacci numbers!

1
+2=

Supplies
graph paper•	
pencil•	
scissors•	

2Rearrange the pieces into a 
rectangle of 5 by 13 squares.

Numeral Systems
Fibonacci’s book, Liber Abaci (Book of Calculation) introduced 

Europeans to the numerals 0–9 that we use today. At the time, most 
people in Europe used Roman numerals. Fibonacci described the 

decimal system that he had learned from Arab mathematicians and 
explained how to perform calculations in this new system. Some of 
the same methods that you learn in school today are the ones that 

Fibonacci taught 800 years ago. 

The 8 by 8 square is made up of 64 smaller squares. However, when you 
rearrange the pieces, the rectangle has 5 × 13 = 65 squares. Where did 
the extra square come from? Show this to your friends and see if they 
can figure out what is going on. (See page 131 for an explanation.)

3

5

8

3 5

3

5

8

3 5
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Find Spirals  
in a Sunflower

The numbers of the Fibonnaci sequence appear in some surprising 
places, including nature. For example, look at the pattern of the 
seeds in the center of this sunflower. The seeds arrange themselves 
in spirals radiating out from the center. Similar patterns of spirals 
occur in the center of daisies, on the bottom of pine cones, and in 
the bumps of a pineapple.

At first, it may appear that the spirals turn in only one direction. 
However, if you look closely, you will notice that there are two sets 
of intertwining spirals: some turning right and some turning left. 

  Can you find the spirals in this drawing of sunflower seeds?

1Connect the dots to form 
spirals. Use one color for 
spirals turning in one direction 

and another color for spirals 
turning in the other direction. 

+=
Supplies

colored pencils or •	
crayons
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Look again at the drawing of sunflower seeds. There are 
more spirals than the two kinds you colored. See if you can 

find other spirals in the drawing. (See page 131 for the solution.)

2	Don’t worry 
if you can’t 
follow the 

spirals all the way 
to the center: it 
gets a little more 
complicated there. 
When you are done 
coloring, count the 
number of spirals of 
each color.

The remarkable thing about these spirals is that you’ll find a 
Fibonacci number of them. For example, on a pine cone, there may 
be 8 spirals turning in one direction, and 13 turning in the other. 
On a pineapple, you might be able to find three sets of spirals: 5, 8 
and 13 of each type. The next time you see a pineapple or a pine 
cone, see if you can find their spirals.

arm 21

arm 34

arm 55 o10

arm 13
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 Numbers & Counting 
❂ Golden Ratio
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Use a calculator to divide two consecutive numbers in the 
Fibonacci sequence. For example, try dividing 13 by 8. Now 
try dividing larger consecutive numbers in the sequence. 
Do you see a pattern? The results of these divisions are all 
slightly greater than 1.6. As you divide larger and larger pairs 
of numbers in the Fibonacci sequence, their ratio comes 
even closer to 1.61803, closing in on a special number. This 
number is called the golden ratio. It is one of the few 
numbers lucky enough to get its own Greek letter. It is often 
referred to as phi (pronounced “fie” and rhymes with pie) 
and the Greek letter looks like this: φ.

The golden ratio has fascinated people for centuries. For example, some 
architects and artists use it in their work. They may design a rectangle φ 
times as wide as it is tall, a so-called golden rectangle, because they 
think it has a pleasing shape.
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 Numbers & Counting 

The golden ratio has even been 
called the “divine proportion.” 
People have searched for the golden 
ratio in all sorts of places: in the 
dimensions of the human body, in 
the spiral of a shell, even in patterns 
in the stock market. Historians 
have looked for the golden ratio in 
famous paintings like the Mona Lisa 
and in the design of ancient Greek 
buildings. No one knows for sure 
whether the golden ratios found in 
these places are there by chance or if 
they were deliberately included, but it 
is fun to guess.

WORDS + 2 + KNOW
ratio: a comparison of two numbers 
or measurements, dividing one 
number by another.

golden ratio: the number (1+ )÷2 
or approximately 1.61803, sometimes 
represented by the Greek letter φ.

golden rectangle: a rectangle 
with a ratio of its length to width of φ   
          to 1.

Fibonacci’s Rabbits
The Fibonacci sequence comes from a word 
problem in Fibonacci’s book, Liber Abaci. He 
calculated how many pairs of rabbits you would 
own each month if you started with one pair of 
rabbits. The pair of rabbits takes one month 
to mature and one month to reproduce, 
creating a pair of baby rabbits. These baby 
rabbits repeat this process themselves, having babies of their 
own during the second month and every month thereafter. 
The total number of pairs of rabbits each month follows the 
Fibonacci sequence. Can you sketch out the reproduction of 
the rabbits and calculate the Fibonacci sequence the way 
Fibonacci did 800 years ago?
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1Photocopy and cut out the  
four pieces from the template  
to the right.

2	With a craft knife, cut out the 
holes and cut along the lines 
that form the tabs.

3Lift up and curl in the 
tabs so that they fit through 
the holes.

Find the Golden Ratio 
Around You

You can check objects around you to 
see if they contain the golden ratio by 
making these golden ratio dividers. 
When you open the dividers, the 
middle pointer will divide the opening 
into two parts with the larger part ϕ 
times as long as the shorter part. (The 
full span of the dividers is also ϕ times 
as large as the larger part.)
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more on the Web
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You can look for the golden ratio in other places as well. 
Look in the shapes of buildings, the layout of artwork, 
the shapes of leaves, and the lengths of the bones in 
your hand. Happy hunting!
Let’s go back to the sunflower. Why do the Fibonacci 
numbers appear there? A sunflower plant packs as 
many seeds as possible into its flower. Each new seed 
grows a certain angle away from the previous seed. The angle 
that allows the most seeds to fit is an angle based on the 
golden ratio. Each seed is φ revolutions away from the one 
before it, about 222.5 degrees. Since Fibonacci numbers are 
related to the golden ratio, they appear as spirals.

4	Slip the tabs marked “A” 
through the hole marked 
“A” and flatten the tabs 

once they are through the hole. 
Assemble the rest of the pieces 
in the same way, matching the 
tabs with the holes marked with 
the same letter.

5Find a photo of your 
favorite celebrity on the 
Internet. Hold the dividers 

up to the photo to see if this 
person has golden ratios hidden 
in the proportions of their face. 
Open the dividers so that the 
longer part measures the height 
of the face. Now check to see 
if the width of the face is the 
length of the shorter part. If 
so, the person’s face is φ times 
as long as it is wide. 
Does the nose split the 
distance between the 
eyes and the chin in 
the golden ratio? 
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Draw a Golden Spiral
If you cut a square off of a golden rectangle, you are left 
with a smaller golden rectangle. If you continue doing this, you 
will keep producing smaller and smaller golden rectangles. We’ll 
use this pattern to create a golden spiral.

1Draw an approximate golden 
rectangle that is 21 units wide 
and 13 units tall (two Fibonacci 

numbers) on graph paper. 

2	Draw a vertical line 13 units 
from the left edge of the 
rectangle that splits the 

rectangle into a square and another 
approximate golden rectangle.

3Draw a horizontal line 8 units 
from the top that cuts the new 
rectangle into 2 pieces.

4	Continue to divide each new 
rectangle in this way. Use a 
compass to draw arcs in each 

square to create a spiral.

You can use a larger pair of 
consecutive Fibonacci numbers 
to create an even longer spiral.

1
+2=

Supplies
graph paper•	
ruler•	

pencil•	
compass•	
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  Angles, 
Curves, and Paths

We see lines 
and  angles 
all around us 

in manmade items. Nature, on the other hand, is filled 
with curves. In this section, we’ll marvel at the graceful 
path that a baseball takes when it is thrown into the 
air. We’ll see how this curve is related to other curves 
like the path of a planet’s orbit around the sun. Finally, 
we’ll analyze all sorts of paths, from the route of a 
person taking a stroll to the chaotic path of a randomly 
moving molecule.

0000=0000=000=0000=000
0=

00
00

=

section

2
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Two lines that meet at a point form angles. Angles are used 
everywhere. Carpenters use angles to cut wood accurately. 
Civil engineers use angles to construct roads. Astronomers 
use angles to locate stars in the sky. Angles are a way to 
measure and describe shapes.

The angle you see the most 
in architecture is a 90-degree 
angle, called a right angle. The 
ancient Egyptians who built the 
Great Pyramid of Giza needed to 
make accurate right angles in the 
pyramid’s square base. How did 
ancient Egyptians measure right 
angles? While no one knows for 
sure, many historians believe they 
used a triangle made of rope. 

90°

45°

❂ Angles

WORDS + 2 + KNOW
right angle: a 90-degree angle.

right triangle: a triangle with a 
right angle in it.

leg: either of the two shorter sides  
of a right triangle.

hypotenuse: the longest side of  
a right triangle.

Pythagorean theorem: an 
equation relating the side lengths of  
a right triangle.
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1Mark the string with  
a marker every 4 inches  
(10 centimeters) until you 

have made 13 marks. 

2Tie the string into a loop 
so that the first and last 
marks meet at the knot. 

Tape the knot down onto a flat 
surface.

3Count four marks, stretch 
the string tight in any 
direction, and tape the 

mark down onto the flat surface.

4Count three more marks, 
stretch the string tight, 
and tape the mark down 

onto the flat surface. Each side 
of the triangle should now be 
tight.

You just created a right triangle 
like the ones the Egyptians may 

have used to build the pyramids. 
You can use the right angle at the 

corner of this book to see how close the 
angle in your rope triangle is to 90 degrees.
So why does the rope triangle make a right angle? Count the number 
of marks to see how long each side of the triangle is. One leg of the 
triangle is three marks long, the other leg is four, and the longest 
side (the hypotenuse) is five. The Pythagorean theorem tells us 
that if you square the lengths of the two legs of a right triangle and 
add the results together, you will get the square of the length of the 
hypotenuse. If you use the letters a and b for the lengths of the legs 
and the letter c for the length of the hypotenuse, the equation looks 
like this: a2 + b2 = c2.

 Try putting the numbers 3, 4, and 5 into this equation to see that it 
really does work.  Does 32 + 42 = 52? 

Find Right Angles
In this activity, you can try out the Egyptian’s method of measuring 
right angles yourself!

1
+2=

Supplies
5 feet of •	
string
marker•	

ruler•	
tape•	
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1Photocopy and cut out the 
template shapes. These are 
Pythagorean theorem puzzle 

pieces. The two right triangles have 
side lengths of a, b, and c.

Illustrate the 

+=
Supplies

scissors•	 paper•	
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bc

a

bc

a

a

b

b

c

c2b2

a2

c

Even though the Pythagorean theorem is named after the 
Greek mathematician Pythagoras, he wasn’t the first to 

discover it. Mathematicians in ancient Babylon calculated the 
side lengths of right triangles 1,000 years before he did.

2Arrange the pieces 
to fit into the first 
shape. This pattern 

forms two squares with 
areas of a2 and b2. 

There are many different ways to show 
that the Pythagorean theorem works. 
Here is a simple way, developed by 
the mathematician Thabit ibn Qurra in 
Baghdad over 1,000 years ago.
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3Using the same pieces, arrange them to fit the 
square with area c2. You just showed that a2 plus 
b2 equals c2.

a

bc

a

bc

a
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b

b

c

c2b2

a2

c

In the movie “The Wizard 
of Oz,” the Scarecrow tries 
to recite the Pythagorean 

theorem, but gets it wrong. 
Sadly, this occurs after he visits 

the Wizard to get a brain!
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b
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c2b2
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First Shape

Second Shape

Pythagorean Theorem
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Measure Angles with  
	 an Inclinometer
On a piece of paper, you can measure angles using a protractor. 
But how do you measure how steep a ski slope is or how high in 
the sky the moon is? In this activity, you will create a model of an 
inclinometer, a tool that measures angles like these.

0°

60° 6 0
°

50° 50
°

40° 40°
30° 30°

20° 20°10° 10°

80° 80
°

70 ° 7 0
°

90
°90°

more on the Web

WORDS + 2 + KNOW

Supplies

1+ 0
02=paper •	

scissors•	
pushpin•	

string •	
tape•	
washer•	

thread•	
cardboard tube (from an •	
empty roll of paper towels)
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1Photocopy and cut out the 
template. Use the pushpin 
to poke a hole at the dot, 

and then slip the string through 
the hole. Tape the end of the 
string to the back of the scale. 

2Tie a washer onto the 
other end of the string 
so that the washer hangs 

below the scale. Tape the scale 
to the bottom of the tube.

3Cut a short slit on the 
top, bottom, left, and right 
sides at one end of the 

cardboard tube. 

4Slip the thread into the 
slits to form crosshairs 
in the tube and tape the 

thread in place.

5	Measure an angle by 
looking through the tube 
toward the object you 

would like to measure. When the 
washer stops swaying, pinch 
the string against the scale to 
hold it in place. Read the angle 
of the string on the scale.

0°

60° 6 0
°

50° 50
°

40° 40°
30° 30°

20° 20°10° 10°

80° 80
°

70 ° 7 0
°

90
°90°

Poke a hole for
the string here .

Tape this edge to the tube . Tape this edge to the tube .

WORDS + 2 + KNOW
protractor: a device for drawing 
and measuring angles.

inclinometer: an instrument for 
measuring angles.
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1Measure the angle to the 
top of the tree with your 
inclinometer. Measure  

how far away from the 
tree you are standing, as 
well as how high above the 
ground your inclinometer 
is when you use it.

2	In the table, find the 
row with the angle that 
is closest to the angle 

you measured. Multiply your 
distance from the tree by 
the number in the second 
column of the row.  
(If you have a scientific 
calculator you can find the 
multiplier for your angle 
by entering the angle and 
pushing the button TAN. TAN 
is short for tangent.)

Find the Height of a Tree
Your inclinometer can help you measure 
how tall a tree is without climbing it.

Angle	   Multiply by

20°	  0.36 
25°	  0.47 
30°	  0.58 
35°	  0.70 
40°	  0.84 
45°	  1.00 
50°	  1.19 
55°	  1.43 
60°	  1.73 
65°	  2.14 
70°	  2.75
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3Add the height 
your inclinometer 
was above the 

ground to the number 
you calculated in 
step 2 to get the 
height of the tree.

You can approximate how high 
in the sky the moon is by 

holding your arm straight 
out in front of you and 

making a fist. Your fist is 
approximately 10 degrees 
from top to bottom. Count 
how many fists above the 

horizon the moon is.

1
+2=

Supplies

=
inclinometer from the •	
previous activity
tape measure•	
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❂Parabola

When you toss a ball into the air, the path it takes is a 
very graceful up-and-down curve called a parabola. This 
remarkable curve appears in many places in nature and in 
many objects made by humans. It is the shape made by 
water streaming out of a drinking fountain, as well as the 
shape of the cable on a suspension bridge.

When you stir a glass of water, the surface of the water forms a concave 
shape called a paraboloid, which is a three-dimensional version of a 
parabola. Telescope mirrors, satellite dishes, and reflectors on super-
sensitive microphones all take the form of paraboloids, because they 
are able to reflect waves coming from far away to a single point, 
called the focus. 

WORDS + 2 + KNOW

45 · 45 · 45 · 45 · 45     45     45 · 45 · 45 · 45 · 45 



46 · 46 · 46 · 46 · 46     46     46 · 46 · 46 · 46 · 46 

 Angles, Curves, and Paths 

Parabolas are made up of square 
numbers. To draw a simple parabola 
on a piece of graph paper, draw one 
dot where you want the bottom of the 
parabola to be. This spot is called the 
vertex. Draw a second dot 1 grid 
mark to the right and 1 grid mark up 
(12) from the vertex. Draw a third dot 
2 grid marks to the right and 4 grid 
marks up (22) from the vertex. 

Continue drawing dots on the right 
side following this rule: however 
many units you move to the right, 
move up that number squared. Then 
repeat this process on the left side of 
the vertex. Connect the dots on both 
sides with a smooth curve.

WORDS + 2 + KNOW
parabola: a U-shaped curve that  
is a cross section of a cone.

concave: curved inward like a  
bowl or the letter “C.”

paraboloid: a dish-shaped surface 
made by rotating a parabola.

focus (of a parabola): the point 
inside a parabolic reflector where 
incoming light rays meet.

vertex (of a parabola): the 
lowest point of a parabola that  
opens up like a “U.”

catenary: a curve that is the  
shape of a hanging chain.

Hold a piece of rope by each end and let it sag in the middle. 
This curve looks like a parabola, but actually it is a slightly 

different curve called a catenary. Don’t worry if you 
can’t tell the difference. Even the great Galileo mistakenly 
thought that a hanging rope formed a parabola. This curve 

is an excellent shape for making a strong arch. The Gateway 
Arch in St. Louis is in the shape of an upside-down catenary. 
Thomas Jefferson, our third president, invented the word 

catenary. It comes from the Latin word for chain.
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1Draw a dot on a piece of paper about 
2 inches (5 centimeters) above the 
middle of the bottom edge.

2Fold the paper so that the bottom 
edge of the paper touches the dot. 
Unfold the paper after you have left a 

clear crease. 

3Make many more creases, touching a 
different location on the bottom edge 
to the dot each time. The creases 

form a parabola.

Fold a Parabola

1
+2=

Supplies
paper•	 pencil•	

The “Vomit Comet” is a nickname for 
an airplane that lets its passengers 

experience the feeling of weightlessness 
for about 25 seconds at a time. This 
airplane travels a parabolic path to 

simulate this condition.

You can make a parabola out of  
the creases on a piece of paper.
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1Cover a large section 
of the fl oor with 
newspaper. 

2Create a shallow 
ramp by leaning the 
piece of cardboard 

or wooden board on a stack 
of bricks. For example, 
raise the end of a board 
that is 3 feet long (1 
meter) about 1 foot high 
(30 centimeters). 
Place a large piece of 
paper on the ramp.

3Practice rolling the tennis 
ball up the paper-covered 
ramp at an angle so that it 

forms a nice arc on the ramp and 
rolls back down again.

4Now cover the tennis ball 
with paint. Repeat step 3 
with the paint-covered ball. 

Try rolling diff erent parabolas, 
some skinny and some fat.

Record a Parabolic Arc
The path of an object tossed into the air is a parabola. It 
can be diffi cult to see this, however, because the motion 

happens so fast. In this activity, you will record and study the 
parabolic path formed by a ball rolling on a ramp.

Supplies

1 + 11

+

000
22
22

=
=

newspaper• 
large piece of • 
cardboard or a 
wooden board
several bricks• 
paint• 

large pieces of • 
paper (such as  
posterboard 
or fl ip-chart 
paper)
tennis ball• 

more on the Web



❂ Ellipses

The earth travels around the sun in an orbit that is nearly, 
but not quite, a circle. In January, we are a little closer to the 
sun than we are in July. The shape of our orbit is an ellipse, 
which is the mathematical term for an oval. 

The earth not only has an elliptical 
orbit, it also has an elliptical shape, 
bulging in the middle. If you cut 
the earth in half from pole to pole, 
you would see an elliptical cross 
section.

The easiest way to see an ellipse is 
to hold a glass of water at an angle. 
The surface of the water forms an 
ellipse in the glass.

WORDS + 2 + KNOW
ellipse: an oval-shaped curve that  
is a cross-section of a cone.

cross section: the two-
dimensional shape you would see if 
you were to cut a three-dimensional 
object in two with one straight cut.

focus (of an ellipse): the points 
that define an ellipse. Waves that 
start at one focus and reflect inside 
an ellipse meet at the other focus. 
The plural of focus is foci.
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1Tape a piece of paper onto the 
cardboard. Push two pushpins 
into the middle of the paper, 

about 6 inches (15 centimeters) 
apart from each other.  

2Tie about 16 inches (40 
centimeters) of string into 
a loop and place the loop 

loosely around the pushpins.

3Hook the end of the pencil 
into the loop and pull the 
string taut.

4Draw with the pencil around 
the pushpins, keeping the 
string tight the whole time.  

Draw an Ellipse
Supplies

1 2=tape •	
paper•	
cardboard•	

two pushpins•	
string•	
pencil•	

Each pushpin marks a focus of the 
ellipse. Try drawing another ellipse 
with the pushpins set farther apart. 
What happens to the shape of the 
ellipse? What shape would you get if 
you used only one pushpin?

Whispering galleries in science 
museums and other locations 
are shaped like ellipses. In 

these rooms, you can whisper 
something very quietly at one 
end, and have another person 

at the other end hear you 
clearly. Your voice travels out 
from one focus of the ellipse, 
reflects against the walls, and 

arrives at the other focus.
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❂	Cutting a Cone

What does a parabola have in common with a circle and an 
ellipse? All three of these curves can be made by cutting a 
cone in different ways, called conic sections.

If you cut a cone horizontally at its tip, you will see a surface in the shape 
of a circle. Likewise, if you cut it slantwise at its tip, you will reveal an 
ellipse. Furthermore, if you cut it at an even steeper slant across the cone—

at the same angle as the side of 
the cone—you will produce a 
parabola. 

Finally, if you cut it any steeper, 
you will get yet another curve: a 
hyperbola. A hyperbola has two 
branches, so you need to cut two 
cones placed tip to tip to see both 
parts of the curve. 

WORDS + 2 + KNOW
conic section: a curve that is 
a cross section of a cone: a circle, 
ellipse, parabola, or hyperbola.

hyperbola: a curve with two 
branches formed by cutting a double 
cone.
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1Photocopy and cut out 
the templates from card 
stock.

2	Roll the first one up into 
a cone and glue (or tape) 
the tab to the other 

edge.

3Cut out the circle and 
ellipse from the second 
template. 

4Place this template on 
the cone in different 
orientations to see 

how it cuts a cone into the 
different conic sections.

Explore Conic Sections

1
+2=

Supplies
card stock•	
scissors•	
glue•	
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If you scale this template, also scale the “conic section plane template” the same percentage. They go together.

Circle

Ellipse

Parabola
Hyperbola

If you scale this template, also scale the “conic section cone template” the same percentage. They go together.
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❂ Paths

The old German town of 
Königsberg had seven bridges 
connecting two islands and 
the shores of the river 
Pregel. Leonard Euler, 
the great mathematician, 
was given the problem of 
determining whether it was 
possible to take a walk that 
crosses each bridge only once. 
Here is a simple map of the bridges of 
Königsberg. Try drawing a path that 
crosses each of the seven bridges only 
once without lifting your pencil.

Give up? No surprise: the task is impossible! 
Most likely, the citizens of Königsberg tried to 
solve the problem enough times to suspect that their search for a solution 
was hopeless. 

53 · 53 · 53 · 53 · 53     53     53 · 53 · 53 · 53 · 53 
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Why was Euler interested in this seemingly simple problem? He was an 
important mathematician, the head of the mathematics department 

of St. Petersburg Academy of Sciences. Euler recognized that this was 
a completely new type of problem for mathematicians. 

Through his work on the problem, Euler created a 
totally new field of mathematics that has a wide range of 
applications today. The techniques used to solve problems 
like this one are crucial to analyzing Internet connections. 

They are used to find the shortest route between points, 
analyze traffic flow, and design printed circuit boards for 

electronics. 

Four-Color Maps
Mapmakers use different colors to shade countries that are next 
to each other. Did you know that no matter how  complicated 
the map is, mapmakers need only four 
colors to avoid shading any adjacent areas 
the same color? Here is a simple map that 
takes four colors to shade. If you add a 
fifth area onto the map, you won’t need 
a fifth color, because the new region will 
touch only three of the four other regions.
Following simple rules, you can create a 
map that you can always shade with only 
two colors. Draw a loop on a piece of 
paper that curves around and crosses itself as many 
times as you’d like. Just make sure you don’t lift 
up your pencil until you reach the end of your 
drawing, and that you finish up where you 
started. Then shade the map that you 
created with only two colors!

Red

Green

Blue

Yellow
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The problem of Königsberg’s bridges is made 
easier if you draw a very simple diagram: 
essentially, a stick figure. Instead of drawing 
islands and bridges, we’ll draw dots with lines 
connecting them. Each dot, called a vertex, is 
a landing place, while each line, called an edge, 
is a bridge. 

This diagram is called 
a network or graph. 
Once you have a graph, 
you don’t even need the 
underlying map. The graph shows 
the important relationships in a 
simple way. 

Graphs can represent just about 
any connection you want! For 
example, the vertices can represent 
individual students in your class, 
and the edges can show their 
friendships. 

WORDS + 2 + KNOW
vertex (of a graph): a dot on 
a graph that represents a place or 
a thing that you are studying. The 
plural of vertex is vertices.

edge (of a graph): a line that 
connects two vertices of a graph 
that represents their relationship.

graph: a diagram used to analyze 
the relationships or connections 
between different things.

Can you connect nine dots with four straight lines? Draw 
four straight lines that connect these nine dots without lifting 
your pencil from the paper. (See page 131 for the solution.)
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Likewise, the vertices can represent individual websites, while the edges 
can show how they are connected on the Internet. In this way, lessons we 
learn about one network can apply to other, very different networks.

Euler discovered a simple way to prove the impossibility 
of crossing each of Königsberg’s bridges only once on a 
single walk. His solution revolved around looking 
at each vertex and seeing how many edges were 
connected to it. For each vertex in the middle 
of the walk, Euler reasoned, edges connected 
to it will always come in pairs, with one edge 
representing your trip to the place and another 
symbolizing your trip away from it, as you continue 
your journey. 

Therefore, vertices in the middle of your walk must have 
an even number of edges touching them, while only two 
vertices, one each at the beginning and end of your walk, 
can have an odd number of edges. Look at the graph of 

the bridges again.

More than two vertices have an odd 
number of edges connected to them. This 
is a clear sign that a path crossing all of the bridges only 
once is impossible. 

Here are other puzzles to try 
with this method. Can you 

draw a box with an X in the 
middle without lifting your 

pencil?   What about this 
box with a roof on it? 
(See page 132 for the 
solution.)
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Six Degrees of Separation
The mathematics of graphs can be 

used to analyze networks of 
friends and acquaintances. 
For example, if you know 100 
people, and each of these 
people knows 100 others, then 
you are connected to 10,000 
people through your network 
of friends. 

The pop culture idea of “six 
degrees of separation” is 

based on the belief that you 
are linked to everyone else in 

the world by six steps of connection 
or less. In other words, you know 
someone, who knows someone, who 

knows someone, who knows someone, 
who knows someone else who knows 
my uncle in Budapest, Hungary.

This diagram is a floor plan of a 
house with blank spaces showing 
the location of all its doors. Does a 
path exist that goes through each 
door only once? Hint: To draw a 
graph, place a vertex in each room 
and one outside the house. (see 
page 132 for the solution.)
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At the lake by my house, children 
play a game on a raft. The game 
starts with two people in the 

middle of the raft, facing 
each other. They then 
play a game of rock-
paper-scissors. The 
loser of the game 

has to take a step 
backward. The children 

continue playing rock-paper-
scissors until someone backs up 
so far that they step off the raft 
and fall into the water.

You can play a solo version of this game right at home 
by flipping a coin. Determine where on the ground the 
ends of your “raft” lie, and then start flipping. If your 
coin shows “heads,” take one step forward. If your 
coin shows “tails,” take one step backward. Depending 
on the outcome of your flips, you may end up in the 
“water” sooner rather than later. It is more likely, however, 
that you will move back and forth for a while. Since your 
steps are random, this is called a random walk.

Random Walk ❂
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This may sound like fun and games, but to 
mathematicians it is serious business. Entire books 

are devoted to the properties of random walks. 
Random walks are important because many 
real-life systems behave like them. For example, 
molecules in a gas or liquid are knocked back 

and forth randomly by other molecules, so you 
can think of any one molecule as being on a 

random walk.

When molecules move randomly through a material, this 
process is called diffusion. You can see diffusion in action if you 

carefully place a drop of food coloring 
into a glass of water. At first, the color 
is concentrated in the place where you 
dropped the dye. Slowly, however, the 
dye spreads out until the entire glass of 
water is the same color. The molecules 
of dye are traveling in random walks.

WORDS + 2 + KNOW
random walk: a path whose steps 
are taken in random directions.

diffusion: mixing of molecules due 
to random movements.

Is the Stock Market Random?
Stock prices move in unpredictable ways. Minute by minute, 
day by day, they go up and down. Can you learn something 
about the stock market 
by thinking of stock prices 
as random walks? On this 
graph, one line shows 
actual stock prices, and 
the other represents a 
random walk. Can you tell 
which is which? (See page 
132 for the answer.) Time
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1Each player places his or her nickel 
at the 6-inch (15-centimeter) 
mark on the ruler. All players flip 

their pennies at the same time.

2Players whose pennies come 
up “heads” should move their 
nickels 1 inch (or 1 centimeter) 

to the right. Players whose pennies 
come up “tails” should move their 
nickels to the left.

3Players should continue flipping 
coins until one player’s nickel 
reaches either end of the ruler. 

That player is the winner.

Run a Random Ruler Race
Challenge your friends to the Random Ruler Race to see 
who can reach the end of a ruler first.

+2=
Supplies

1 penny and 1 nickel •	
for each player
12-inch •	
(30-centimeter) ruler 

Here is a graph of a sample 
game that shows the position of 
each player’s nickel for every 
turn. Bob got lots of “tails” in 
a row and on the 5th turn was 
only 1 inch away from winning. 
Finally, on the 16th turn, Alice 
reached the end of the ruler 
and won the game.
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You may think that, because each step is random, you will not be able 
to predict many things about a random walk. True, no one can predict 
exactly where you will be at any point in your walk. However, you can use 

probability to learn some general properties.

When you played the Random Ruler Race, 
were you surprised by how many coin 

tosses it took to reach one end of 
the ruler? The fastest possible way 
to win the race would have been 

with either six straight moves 
to the right or to the left. 
However, the probability of 
tossing six “heads” or “tails” 

in a row is only 1/32. On 
a 30-centimeter metric 

ruler, the probability of 
tossing 15 “heads” or “tails” in 

a row, and achieving 15 straight 
moves in the same direction, is even 

less: 1/16384.  

On the other hand, you might be 
wondering why you were ever able 
to finish the race. Shouldn’t your 
coin come up “heads” and “tails” 
approximately the same number 
of times, so that your coin wiggles 
back and forth near the starting 
point and never really moves that 
far away? Surprisingly, in a one-
dimensional random walk like 
this one, you are sure to reach any 
point you want, provided that your 
walk is long enough.

WORDS + 2 + KNOW
probability: how likely it is, 
mathematically, that something will 
happen. 

dimensions: different directions 
that you can measure. A line is a 
one-dimensional object because 
it can only be measured in terms 
of its length. A rectangle is a two-
dimensional object because it can be 
measured in terms of its length and 
width. A cube is a three-dimensional 
object because it has length, width, 
and depth.
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On average, it takes 36 coin 
tosses to reach the end of the 12-
inch ruler (and 225 tosses to reach 
the end of the 30-centimeter 
ruler). How can you figure this 
out? Just square the distance you 
would like to move! To move 6 
units from the starting point, for 
example, it will take an average 
of 62 = 36 moves. For longer 
distances, the number of moves 
required to reach the end point 
gets much larger very quickly. For 
example, if you play this game 
on a 36-inch yardstick, you will 
need an average of 182 = 324 
moves to reach one of the two end points. How long would a random walk 
take to your friend’s house? Should you pack a lunch or pack a suitcase? 

Try experimenting with random walks on a chessboard instead of a 
ruler. Now, your coin can move in four directions, instead of just two: 
left, right, forward, backward. Roll a die to determine which direction 
to move, assigning each direction a 
number from 1 to 4. If you roll a 5 or 
a 6, roll the die again. This scenario 
is an example of a two-dimensional 
random walk. Here is a graph of a 
two-dimensional random walk with 
1,000 steps. 

In a one- and two-dimensional random 
walk, if you walk long enough, you will 
always make it back to your starting 
point. In three dimensions, however, 

you could wander around forever 
without ever returning home. In fact, 

in any three-dimensional random walk, 
you have only about a 34% chance of 
making it back to your starting point.
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❂ Shortest Shoelace
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What would you do if your shoelace broke 
during a basketball game? Fortunately, there 
are many different ways to lace your shoes. 

If you re-laced your shoe in a pattern that 
required a shorter length of lace, you might be 
able to retie your shoe with what you had left 

and then return to the game.

There are an astounding number of 
ways to lace your shoes. With six pairs 

of eyelets you could lace your shoes so that 
the laces go across the shoe at each eyelet in 

3,758,400 different patterns. With eight pairs of 
eyelets, there are 52,733,721,600 possible arrangements. 

Your options include messy lacings and neat ones, strong lacings and weak 
ones, and lacings that require very long or very short shoelaces.

Here are a few different ways to lace your shoes. Which pattern do you 
think uses the shortest shoelace? How can you tell? If you know how far apart 
the eyelets are from each 
other, both horizontally 
and vertically, you can 
calculate the length of 
the shoelace up to the 
top eyelets.  

2

4
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4

Let’s assume that the eyelets on this shoe are 4 centimeters apart 
horizontally and 2 centimeters apart vertically. How long are the shoelaces? 
First, let’s calculate the length of each segment of shoelace. For example, 
the first pattern is made up of 1 horizontal segment and 6 slanted ones. 
To figure out the length of the slanted segments, imagine a right triangle 
with the slanted segment as the hypotenuse, and then solve for the length 
of the hypotenuse using the Pythagorean theorem.  

Once you’ve found the lengths of all the segments, 
add them together to find the total length of the 
shoelace. In the first pattern, the horizontal segment 
has a length of 4, and each of the slanted segments 
has a length of approximately 4.47. The total length 
of the shoelace in the first pattern, then, is 30.83 cm. 
What are the lengths of the shoelaces in the other two 
arrangements? Which pattern uses the shortest length 
of shoelace? (See page 132 for the solution.)

Even Shorter
The shoelace patterns above are not the shortest or the 
longest possible ones. The first pattern is the shortest only if 
you are required to zigzag back and forth across the shoe at 
each eyelet. Crossing the shoe at every other eyelet, you can 
use a much shorter shoelace. Here are two patterns using this 
method. 
The first is the shortest lacing 
pattern possible. Compared to the 
first pattern we calculated above, 
you save almost 10 centimeters if 
you lace your shoe this way. The 
savings in length might be enough 
to recover from a broken shoelace.

2

4
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1Draw two columns of four 
dots each to represent 
eight eyelets.

2	Try to connect the 
dots with lines in a 
way that makes the 

longest possible path. Don’t 
go through the same eyelet 
twice, and be creative! For 
example, you don’t have to 
start at the bottom two 
eyelets or end at the top two.  

3 Try different 
arrangements until you 
think you’ve found the 

best one. Repeat this process 
with 10 eyelets. (See page 
132 for the solution.)

Design the  
Longest Shoelace Pattern
Up to this point, we’ve focused on the shortest possible shoelace 
patterns. Now, let’s find the longest possible lacings for shoes 
with 8 and 10 eyelets.

+=
Supplies

pencil•	 paper•	
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Shapes

Look around you. What 
shapes do you see? Do 
you see triangles, squares, 

and circles? Math helps us 
define these basic shapes and 
describe their properties. In this 
section, we’ll explore new ways 
to create these shapes and 
others like them. We’ll fold 
some out of paper and draw 
others. You may already 
know how to find the area of 
a triangle and a circle, 
but we’ll take a fresh 
look at these familiar 
formulas to see where 
they come from. 

These simple shapes are the building blocks of more elaborate shapes, 
including three-dimensional ones like cubes and spheres. This section will 
introduce you to a family of solid shapes made up of triangles, squares, and 
pentagons. We’ll also create exotic shapes with elegant curves that have 
the surprising property of being made entirely of straight lines. Maybe you 
will discover your new favorite shape. 
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 Shapes 
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❂ Polygons
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From the simple rectangle of a picture frame to the complex 
shapes used in computer graphics, shapes are all around us. 
Mathematics provides us with ways to describe these shapes 
and learn about their properties.

Polygons are shapes made out of 
line segments on a plane that are 
connected to enclose an area. They 
are named for how many sides they 
have. Polygons that have sides that 
are all the same length and angles 
that are all the same size are called 
regular polygons. They are the 
fundamental shapes in geometry 
and are used in many projects in 
this book. 

WORDS + 2 + KNOW

polygon: a shape on a plane made 
up of line segments.

plane: a flat surface that extends 
forever.

regular polygon: a polygon  
with each side the same length and 
each angle the same size.

geometry: the study of shapes  
and their properties.



68 · 68 · 68 · 68 · 68     68     68 · 68 · 68 · 68 · 68 

 Shapes 

Sides			   Name	 Examples

3				    triangle

  

4				    quadrilateral

  

5				    pentagon

  

6				    hexagon

  

7				    heptagon

 

8				    octagon

  

9				    nonagon

 

10			   decagon
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Many polygons with more than 10 sides have official names. However, 
you can also refer to them as n-gons, inserting the number of sides where 
n is. For example, a 13-sided shape is called a 13-gon.

Polygons
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1Cut a long strip of paper about 1 
inch (2 centimeters) wide. Tie a 
simple overhand knot in the paper 

(crisscross the two ends, tuck one end 
under, and pull).

2Slowly and carefully pull the ends 
of the knot to tighten and flatten 
it. You want to end up with a tight 

knot that lies completely flat. 

Form a Pentagon by  
Tying a Knot

Squares and equilateral triangles are much easier to draw than 
regular pentagons. It is difficult to estimate the exact angles that 
you need to draw in order to make a regular pentagon look right. 
In this activity, however, you will discover a simple way to create a 
regular pentagon by tying a knot in a strip of paper.

1
+2=

Supplies
paper•	
scissors•	

WORDS + 2 + KNOW
regular pentagon: a five-sided 
regular polygon.

vertex (of a polygon): a corner 
point.

radius: the distance from the center 
of a circle to any point on the circle. 

3Continue folding 
over the ends until 
you are left with a 

regular pentagon.
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1Draw a circle with a compass. 
Hold the compass open the same 
distance that you used to create 

this circle for the rest of this activity.

2	Place the point of the compass on 
the outside edge of the circle, and 
make a mark on the circle where the 

other arm of the compass reaches.

3Place the point of the compass 
on this mark, and repeat step 2. 
Continue around the circle.

4Connect the marks on the circle 
with straight lines to create a 
regular hexagon.

Draw a 
Hexagon in a Circle

All regular polygons fit neatly inside a circle with each vertex 
touching the circle.  The vertices divide the circle into arcs of equal 
lengths. You can use this fact to draw a regular polygon. For example, 
if you draw a circle and place a dot every 36 degrees around its 
outside edge, you will divide it into 10 sections. If you connect all 
of the dots using straight lines, you will create a regular decagon.

In this activity, you will draw a regular 
hexagon without measuring angles. 

To find out why this works, draw lines from the center of the circle 
to each of the hexagon’s vertices. What do you see? The hexagon 
consists of six equilateral triangles. Two sides of each triangle lie 
along a radius of the circle. Since your compass was also set to the 
radius, it made the third side of each triangle the right length.

1 +2=
Supplies

paper•	
compass•	

pencil•	
ruler•	



❂ Triangles
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Triangles, the simplest polygons, have some very useful 
characteristics. Triangles often appear in structures that need 
to be very strong, like bridges and building frameworks. 
Why? Three beams connected in a triangle can form only 
one shape. In contrast, four beams connected in the 
rectangle can form more than one shape. If you put enough 
weight on one side of a rectangle, you can smash it into a 
parallelogram.

Triangles are also important to understanding more 
complex polygons. If you know how to calculate 
side lengths, angles, and areas of triangles, you 
can figure out these values in other polygons. 
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Triangular Numbers
If you draw lines connecting every vertex of a polygon to every  
other vertex, including the ones immediately next to them, you  

will have a triangular number of lines.
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Show the Angles in a Triangle  
Add Up to 180 degrees°

WORDS + 2 + KNOW
parallelogram: a quadrilateral 
(four-sided shape) whose opposite 
sides are parallel.

height
height

base

height

base

A simple way to prove that the angles in 
a triangle always add up to 180 degrees 
is to cut a triangle out of paper, tear 
off its corners, and put the corners 
together so that the vertices 
of the triangle meet at a single 
point. Try this process with 
triangles of other shapes and sizes. No 
matter what triangle you start with, 
the corners will always add up to make a 
straight line (a 180-degree angle).
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Show the 
Triangle Area Formula

In this activity, you’ll be able to see why the area of a triangle is 
one-half the length of the base times the height. We’ll use the same 
method as the one we used with penny triangles: we’ll calculate 
the area of two triangles, and then cut the value in half.

1 +
+

00
2
2

=paper•	
scissors•	
pencil•	

Supplies

1Cut out two identical triangles. 
Draw a dashed line showing the 
height of one triangle. Label the 

base on the other triangle.

2	Turn one triangle upside 
down and place the two 
triangles together to make a 

parallelogram. Cut off the tip of the 
parallelogram at the dashed line.

3Move the piece you just  
cut off to the other side of 
the parallelogram to form  

a rectangle.

4	Calculate the area of the 
rectangle. The area is the 
length (the base of the 

triangle) times the width (the 
height of the triangle). Since  
this is the area of two triangles,  
divide it in half to find the area of 
one: one-half of the base times  
the height.

height
height

base

height

base



Stars ❂

Stars are a popular symbol in our culture, often used to 
represent quality. For example, you may rate your favorite 
movie by giving it five stars. Likewise, the more stars 

that army generals have, 
the higher their rank. 
Stars appear on flags, 
company logos, and 
police officers’ badges. 
In this section, we’ll 
explore this shape and 
see how it relates to 
other ideas in math.

If you cut an apple in half right 
across the core, the seeds 
form a five-pointed star. 
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WORDS + 2 + KNOW
star polygon: a star formed by 
connecting every other (or every 
third, fourth, etc.) vertex of a regular 
polygon.

Draw a Star Polygon
You can make a star by connecting the vertices of a regular 
polygon. For example, if you connect every other vertex of 
this regular pentagon (five-sided polygon), you will make a 
five-pointed star. A star made this way is called a star polygon. 
You can also create stars with more than five points using 
this method. Try making a seven-pointed star polygon 
inside this heptagon (seven-sided polygon). 

Did you connect every other vertex? Try it again, this 
time connecting every third vertex. You will create 
a different seven-pointed star. If you connect every 
third vertex of the pentagon above, however, you will 
produce the same star as connecting every other 
vertex. Try it, and see if you can figure out why.

In some cases, connecting the vertices of a polygon will  
not produce a star polygon. For example, if you connect  
every other vertex of a hexagon (six-sided polygon), you will 
return to your starting point having formed only a triangle. 
Three vertices of the hexagon will remain unconnected. You 
can still make a star, however, if you continue connecting 
vertices starting with the next available vertex. This activity 
shows that a six-pointed star is really just two overlapping  
triangles. Can you make a star 
out of two overlapping 
squares? How about three 
overlapping squares? What 
regular polygons should you 
use to create these stars?

more on the Web
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Polygons Inside Star Polygons
There is a pentagon in the center of every five-pointed star 
polygon. In fact, in the center of every star polygon, there is 

a smaller version of the regular polygon used to 
create it. This fact leads to another method 
of creating star polygons. Start with a regular 
polygon and extend the lines forming the 
sides of the polygons until they meet.

1Cut 1 inch (2.5 centimeters) 
off the bottom of the sheet 
of paper to make it 8½ 

by 10 inches (21.6 by 25.4 
centimeters).

2	Fold the sheet in half.  
Fold it in half again, make  
a crease, and open it.

3Fold so that 
the top 
right corner 

touches the middle 
of the left edge.

4Fold the top 
left corner flap 
down. Fold the flap 

over again. Cut along the 
dashed line. Open it up to 
see your star. 

To make the star look 
 prettier, push all the long  
folds up and pull all the  
short folds down.

Fold and Cut a Star
If you fold a piece of paper just right, you can 
cut out a five-pointed star with only one cut! 

1
+2=

Supplies
sheet of paper, 8½ •	
by 11 inches
scissors   •   ruler•	

�

�

more on the Web
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 Shapes 
❂ Circles

Aristotle, an ancient Greek philosopher, 
called the circle “the perfect, first, most 
beautiful form.” It is not hard to see why. 
The circle is a simple and highly 

symmetrical shape.
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The Circumference of the Earth
In addition to developing his method for finding 
prime numbers, Eratosthenes also calculated the 
circumference of the earth using the angle of the sun 
overhead in two different cities. He knew that in Syene, 
the sun was straight overhead on the longest day of the 
year. About 500 miles (800 kilometers) away in Alexandria, 
where he lived, the sun was 7.2 degrees lower in the sky 
(or, as he put it, “one fiftieth of a circle”). Using this 
information, he calculated the circumference of the earth, 
coming very close to its actual value—a remarkable feat 
for the time. Not only did he believe that the earth was 
round in the year 250 BCE, he had a good sense of just how 
big it was.
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 Shapes 

Despite the circle’s apparent simplicity, it puzzled mathematicians for 
thousands of years as they struggled to find its circumference and area. A 
circle 1 foot in diameter has a circumference of slightly more than 3 feet. 
Its circumference is equal to π (written as the Greek letter and pronounced 
“pie”) feet, to be exact. Calculating the value of π is not an easy task.

Ancient mathematicians narrowed in on the value of π by calculating 
the perimeters of regular polygons with many sides. The more sides they 
used for their polygons, the closer 
the shapes came to a circle, and 
thus the better their perimeters 
approximated that of a circle. If 
you look at the polygons on page 
68, for example, you will see 
that even a decagon (a 10-sided 
polygon) somewhat resembles 
a circle. Imagine, then, how 
much more closely a 1000-gon 
resembles a circle.

WORDS + 2 + KNOW
symmetrical: a property of a 
shape that looks the same if you rotate 
it or look at it in a mirror.

circumference: the distance 
around a circle.

diameter: a straight line running 
from one side of a circle to the other 
through the center.

Chinese Value of π
Around the year 480, the Chinese astronomer Zu Chongzhi  
and his son, Zu Gengzhi, found that π is approximately 
355/113. Enter 355 into your calculator and divide 
it by 113 to see how close they came to 3.14159265. 
This approximation held the world record for the most 
accurate value of π for over 1,000 years. 
The current record for the number of digits to which π 
has been computed stands at over 2.7 trillion digits. π 
was first calculated using binary digits, then converted to 
decimal.
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This activity will show that the 
area of a circle is π times the radius 
squared or πr2.

Show the 
Area of a Circle

+2=
Supplies

yarn•	
tape•	

scissors•	

Notice that the height of the 
triangle is the radius of the circle 
and that the base of the triangle 
is the circumference of the circle 
(2 × π × radius). Half of the base, 

then, is π × radius. Put these 
expressions into the triangle area 
formula and you will get the circle 

area formula A=πr 2.

1 Wind the yarn into a flat 
spiral. Place a piece of tape 
onto the yarn from the middle 

of the spiral to the edge.

2 Cut the yarn next to the 
tape. Unwind the yarn to 
form a right triangle.

3 Calculate the area 
of the triangle using 
the equation A= ½ bh 

where b is the length of the 
base and h is the height of 
the triangle. 

If you want a fence to enclose 
the largest area, arrange it in the 
shape of a circle. You will get 27% 
more area inside a circular fence 
than you will with a square fence 

of the same length.



We found that to shade any map on a plane so that no two 
bordering regions are the same color, it takes four colors (see page 

54). On a Möbius strip, it takes six colors. Challenge yourself by drawing 
a six-color map on a Möbius strip made from an overhead transparency 

sheet. Making the strip transparent is like using a strip with zero thickness.

A strip of paper connected  
into a loop with a half twist 
is one of the most intriguing 
shapes that you may ever 
encounter. For such a 
seemingly simple shape, 
it has some amazing 
qualities.

A sheet of paper has two sides. An ant crawling on one side of the paper 
couldn’t get to the other side without crossing an edge. A Möbius strip, in 
contrast, is one-sided. In other words, an ant could walk from any point on 

the surface to any other point without 
ever crossing an edge. If you try 

coloring a Möbius strip with 
crayons, you will see that you 
can’t color one side blue and 
the other side green because 
there is only one side.
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Möbius Strip ❂
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1Cut a long strip of 
newspaper about 2 inches 
(5 centimeters) wide.

2Bring the ends of the 
strip together to form a 
loop. Before you tape the 

ends together, give one end of 
the paper a half-twist. 

3Now tape the ends 
together to form your 
Möbius strip.  

1
+2=

Supplies
newspaper•	
scissors•	
tape•	
pencil•	

Marvel at a Möbius Strip
In this activity you will create your own Möbius strip, then 

explore some of its amazing qualities.

Joke
Q: Why 

did the 
chicken 

cross the Möbius 
strip?

A: To get to 
the same 
side.
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       Activity 1:
First, place your pencil in the middle of your 
Möbius strip and draw a line along the length 
of the strip, keeping your pencil on the paper 
the whole time. 

What happened? Your pencil line is on both 
sides of the paper. How did you accomplish this 
without your pencil ever going over an edge? A 
Möbius strip really does have only one side.

Activity 2:
Now cut the Möbius strip along the line you just drew. 
Does the strip fall into two pieces? No? Welcome to 
the wacky world of the Möbius strip!

Cut the strip down the middle again.  
Another surprise!

Activity 3:
Cut a Möbius strip along a line  one-third of the way 
from the edge of the strip. 

Make more Möbius strips, experimenting with different 
numbers of twists: a half twist, a whole twist, 1½ twists, and 
so on. What happens when you cut them? Is there a pattern?



❂ Platonic Solids

There is something special 
about the five solids 
shown here that sets them 

apart from other polyhedra. 
For example, look at the 
dodecahedron, the second 
shape from the right, above. 

It is made up of 12 regular 
pentagons, so each face is the same. 

Moreover, each vertex has the 
same number of pentagons 
meeting there. 

The other four solids shown here 
also have regular polygon faces and 
the same number of faces at each 
vertex. These five solids are called 
Platonic solids after Plato, the 
ancient Greek philosopher who 
studied them.

Wouldn’t these solids make great 
dice? They certainly are symmetrical 
enough.

83 · 83 · 83 · 83 · 83     83     83 · 83 · 83 · 83 · 83 

WORDS + 2 + KNOW
solid: a three-dimensional  
geometric shape.

polyhedra: The plural of 
polyhedron, which is a solid formed 
with polygons as faces. 

face: a flat surface on a solid.

Platonic solids: the five solids 
made up of regular polygons with the 
same number of faces meeting at 
each vertex. The Platonic solids are 
the tetrahedron, cube, octahedron, 
dodecahedron, and icosahedron.
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Grow Your Own Crystals

Supplies

1 + 1

+

00
2
2

=
=

pot•	
1 cup of water•	
stove•	
salt•	
spoon•	

small glass jar•	
string•	
paper clip•	
pencil•	
magnifying •	
glass

1With an adult’s help,  
bring 1 cup of water  
to a boil in the pot. 

2Take the pot off the 
stove and stir in 
some salt. Dissolve 

as much salt as you 
possibly can in the water. 

3After the salt water 
cools, pour it into the 
glass jar.

4Tie a paper clip on one end 
of the string. Tie the other 
end of the string around 

the middle of the pencil, so that 
when you place the pencil over 
the jar, the paper clip hangs 
into the solution and almost 
touches the bottom. After 
a few days, crystals should 
form on the paper clip. Look 
at them through a magnifying 
glass to see their shape.

Some minerals form crystals in the shape of Platonic solids. 
A crystal of tetrahedrite looks like a tetrahedron. A diamond 
naturally forms octahedral crystals. In this activity, you can grow 
your own crystals to see what shapes they make.
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Make Platonic Solids
Why are there only five Platonic solids? Shouldn’t there 
be more? For example, why isn’t there a Platonic solid 
with hexagonal faces? In this activity, you will construct the 
five Platonic solids, and discover why only that many exist.

Tetrahedron

Octahedron

Cube

Dodecahedron Icosahedron

a solid with 4 triangular faces
3 polygons meet at each vertex

4 big triangles

a solid with 6 square faces
3 polygons meet at each vertex

6 squares

a solid with 20 triangular faces
5 polygons meet at each vertex

20 small triangles

a solid with12 pentagonal faces
3 polygons meet at each vertex

12 pentagons

a solid with 8 triangular faces
4 polygons meet at each vertex

8 small triangles

more on the Web
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+2=
Supplies

paper or •	
card stock

scissors•	
tape•	

1Photocopy and cut out the 
polygons in the template. 
Check at the left to see how 

many polygons you will need for 
each Platonic solid.

2Tape the polygons together 
so that the right number 
of faces meets at each 

vertex. For prettier models, 
tape the pieces together on the 
insides of the models.  

3Once you have made all 
the models, you may have 
a better idea why more 

Platonic solids don’t exist. 
To make the tetrahedron, 
octahedron, and icosahedron, 
you taped three, four, and 
five triangles together at one 
vertex. The next option is to 
tape six equilateral triangles 
at each vertex. Cut out six 
more triangles and try it. What 
happens? When taped together, 
the six triangles just lie flat 
on the table. You can’t make a 
solid out of them. The same is 
true of four squares and three 
hexagons. No matter how hard 
you try, you won’t be able to find 
other combinations of regular 
polygons that form a Platonic 
solid.

Although there are only five Platonic solids in total, there are 
many other solids built with different combinations of regular 
polygons. While not as symmetrical, they are equally beautiful. 

Tetrahedron

Octahedron

Cube

Dodecahedron Icosahedron

a solid with 4 triangular faces
3 polygons meet at each vertex

4 big triangles

a solid with 6 square faces
3 polygons meet at each vertex

6 squares

a solid with 20 triangular faces
5 polygons meet at each vertex

20 small triangles

a solid with12 pentagonal faces
3 polygons meet at each vertex

12 pentagons

a solid with 8 triangular faces
4 polygons meet at each vertex

8 small triangles

Tetrahedron

Octahedron

Cube

Dodecahedron Icosahedron

a solid with 4 triangular faces
3 polygons meet at each vertex

4 big triangles

a solid with 6 square faces
3 polygons meet at each vertex

6 squares

a solid with 20 triangular faces
5 polygons meet at each vertex

20 small triangles

a solid with12 pentagonal faces
3 polygons meet at each vertex

12 pentagons

a solid with 8 triangular faces
4 polygons meet at each vertex

8 small triangles

Tetrahedron

Octahedron

Cube

Dodecahedron Icosahedron

a solid with 4 triangular faces
3 polygons meet at each vertex

4 big triangles

a solid with 6 square faces
3 polygons meet at each vertex

6 squares

a solid with 20 triangular faces
5 polygons meet at each vertex

20 small triangles

a solid with12 pentagonal faces
3 polygons meet at each vertex

12 pentagons

a solid with 8 triangular faces
4 polygons meet at each vertex

8 small triangles
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1Using the directions from 
the previous activity, make a 
tetrahedron, an octahedron, and a 

cube. Tape only one edge of the top of 
the cube, so that the top can be opened 
like a lid. 

2Place the octahedron inside the 
cube so that each vertex of the 
octahedron touches a face of the 

cube. This arrangement demonstrates 
that the cube and the octahedron are 
duals. The relationship is reciprocal: 
if you made a bigger octahedron, the 
cube would fit inside it the same way.

3Remove the octahedron and 
place the tetrahedron inside 
the cube. At first, it seems like 

the tetrahedron is too large to fit 
inside, but if you position it correctly, 
it will slide into place. Notice that the tetrahedron shares four 
vertices with the cube. Until you try this, it is hard to visualize 
how this could possibly be the case.

See How
Platonic Solids are Related
Certain Platonic solids are closely related to each other. For example, 
the octahedron and cube are both capable of fitting snugly inside 
each other, with each vertex of one solid touching the middle of 
the face of the other. For this reason, they are called duals of each 
other. The dodecahedron and the icosahedron are also duals. The 
poor tetrahedron stands alone: it is the dual of itself.

1
+2=

Supplies
card stock•	
scissors•	
tape•	



For all its advantages in terms of strength, the tetrahedron rarely 
occurs in architecture, except as part of a framework to hold up 

a large roof. Even then, it needs a partner shape to work best. You 
can’t stack tetrahedra together to fill space, because they just don’t 
fit together nicely. They need to be combined with octahedra. Make 

a few tetrahedra and octahedra to see how they fit together.

Tetrahedron ❂

The simplest Platonic solid is 
the tetrahedron, made out 
of four equilateral triangles. 

Tetrahedra are all around us, 
although most are too small to see.

The atoms in molecules, for example, sometimes arrange 
themselves into the shape of a tetrahedron. Methane, one of the 
gases in farts, has a tetrahedral structure. A carbon atom sits in the 
center of the tetrahedron, and is attached to 4 hydrogen atoms. 

The hydrogen atoms repel each other, so they retreat to the vertices of a 
tetrahedron to be as far apart from each other as they can. 

A tetrahedron, like the triangles that form it, is a very rigid shape. 
This is why tripods are so stable. A frame made in the shape of a 
cube can be deformed much more easily than one made in the shape of a 

tetrahedron. The carbon atoms in 
diamonds, which are among the 
hardest materials in the world, 
are connected in a tetrahedral 
arrangement.

88 · 88 · 88 · 88 · 88     88     88 · 88 · 88 · 88 · 88 
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1Cut a 3½-inch (9-centimeter) 
section off the end of the 
envelope. For other envelope 

sizes, cut a section that is 0.87 
times as long as the envelope is 
wide.

2Fold the end that you just 
cut in half and make a short 
crease to mark the middle  

of the open side.

3Make a fold that goes from each 
corner to the middle mark. Fold 
these creases back and forth.

4Open the envelope wider and 
wider until the edges meet again. 
Tape the edges together.

Create a Tetrahedron  
from an Envelope

Supplies

1 +
+

0

2=
=

sealed, U.S. •	
standard 
business 
envelope

ruler•	
scissors•	
tape•	

One easy and surprising way to make a tetrahedron is to quickly 
fold one from an envelope. �

3 ½ inches

4 ⅛
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c
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3 ½ inches
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1Photocopy and cut out two 
copies of  the template 
from card stock.

2	Fold along the dashed 
lines and glue each piece 
together at the tabs.

3Assemble the two 
pieces to form a 
tetrahedron. You 

may struggle for a few 
minutes, but once you 
figure it out, you will 
wonder why it took you 
so long! (See page 132 
for the solution.)

Make a 
Tetrahedral Puzzle

Ready to challenge yourself? In this activity, you’ll create a puzzle 
that’s surprisingly difficult, considering that it has only two pieces.

1
+2=

Supplies
card stock•	
scissors•	
glue•	
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1Cut a piece of string 40 
inches (1 meter) long and 
another piece 30 inches 

(75 centimeters) long. Slip 
both strings through a straw 
together. 

2Slip each end of the shorter 
string through straws and 
tie the two ends together 

to create a triangle of straws. 
The triangle should be taut, but 
not so tight that it buckles the 
straws. Don’t trim the extra 
string yet.

3Slip each end of the 
longer string through 
straws. Gather most 

of the extra string on one 
side, and then tie a knot, 
reserving this extra string.  

Fly a Tetrahedral Kite 
Alexander Graham Bell worked on many other inventions  
after he invented the telephone. Bell believed that if he 
could invent a kite that was strong, light, and flew very well, 
he could use its design to make the first airplane. He eventually 
created an enormous kite consisting of 3,393 small tetrahedra that 
was capable of carrying a person 168 feet (51 meters) into the 
air as it was towed behind a steamship. Meanwhile, the Wright 
brothers made their historic first flight at Kitty Hawk.

Supplies

1 +
+

0

2=
=

24 feet of string •	
(8 meters)
ruler•	
scissors•	
tissue paper•	

24 plastic •	
drinking straws
pencil•	
tape•	
kite string•	

more on the Web
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4Slip a straw over the extra 
string from step 3. Tie the 
free end of the string to 

the extra string at the top of 
the first triangle of straws in 
order to form a tetrahedron. 

5	Trace the outline of two 
straw triangles onto 
tissue paper. Draw tabs 

that extend about an inch (2 
centimeters) past the straws. 
Cut out the shape. Cover two 
faces of the tetrahedron with 
the tissue paper and tape it 
into place.

6	Repeating steps 1 
through 5, make three 
more tetrahedra.

7Tie the four tetrahedra 
together at their 
corners to form a larger 

tetrahedron. 

8Tie a small loop in the 
middle of a 2-foot-long 
(60-centimeter) piece of 

string and tie the ends of the 
string to the top and bottom of 
the topmost tetrahedron.

9Tie your kite string to this 
loop and fly it in a steady 
wind.

When you stack four tetrahedra 
to make the kite, notice that they 
alone don’t fit together to fill 
space. The gap in the middle of 
the kite is an octahedron.



❂ Icosahedron

Three of the five Platonic solids are 
made up of equilateral triangles. The 

most elaborate is the icosahedron with 
20 faces. Every icosahedron is made of 
three interlocking golden rectangles.

The Magic 8-Ball® toy contains 
an icosahedron with answers 
printed on each of its faces. 

The face that floats to the top 
shows up in the clear window.

93 · 93 · 93 · 93 · 93     93     93 · 93 · 93 · 93 · 93 
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1Use a compass to draw 20 circles 
on colored paper. Cut them out. 
You can save time by folding the 

paper in half and cutting out two circles 
at a time.

2Fold a circle so that any  
point on the edge touches  
the center.

3Fold the circle two more  
times to make an 
equilateral triangle.

4Use this triangle as a  
guide to fold tabs on the 
other circles. Partially  

open the tabs.

5Glue five triangles together 
at the tabs to make a “hat.” 
Make a second hat.

6Make a “belt” out of 10 
triangles in a row alternately 
pointing up and down. Glue 

the belt into a loop. Glue the two 
hats onto the belt to finish your 
decoration.

Make Icosahedral  
Decorations

1
+2=

Supplies
compass•	
colored paper•	
scissors•	
glue•	

Here is a fun way to make decorations based 
on an icosahedron. 

more on the Web
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1Photocopy and cut out three 
rectangles from boxboard 
using the template.

2	Use a craft knife to cut the 
vertical center slot on all 
three rectangles. Cut the 

horizontal side slot on only one 
rectangle. Make the slots wide 
enough so that the other pieces 
easily slide into them.

3Cut a short slit in each 
corner of the rectangles. 	
Fit the three rectangles 

together.  Challenge yourself by 
trying to figure out how to do 
this alone. If you do need more 
detailed instructions, however, 
see page 132.

4Slip the craft 
thread into 
the slits to 

connect each 
corner to its 
nearest neighbors.

Build an Icosahedron 
from Golden Rectangles

Use golden rectangles to 
construct an icosahedron.
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(cut this slot on only one rectangle)

WORDS + 2 + KNOW

more on the Web
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Supplies
boxboard •	
scissors•	
craft knife•	
craft thread•	



Pyramids ❂

You don’t have to travel to Egypt to see a pyramid. 
For example, church steeples often take the shape of 

a pyramid, with triangular 
roof sections meeting each 
other at one point. Any 
polygon can form the base 
of a pyramid. Tetrahedra, 
one type of pyramid, have 
a triangular base. The 
pyramids of Egypt have a 
square base, while quartz 
crystals have a hexagonal 
base.

WORDS + 2 + KNOW
pyramid: a solid with a polygon for 
a base and triangles that meet at a 
point for all the other faces.

base (of a pyramid): the bottom 
face of a pyramid, the one that 
doesn’t meet at the point where the 
other faces meet.

volume: the amount of space an 
object takes up.

96 · 96 · 96 · 96 · 96     96     96 · 96 · 96 · 96 · 96 
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1Photocopy and cut out 
the templates from 
card stock. Fold them 

along the dashed lines.Tape 
the tabs to make an open 
pyramid and cube. 

2Place the pyramid 
inside the cube. Notice 
that the pyramid and 

the cube have bases with the 
same area, and they are both 
the same height.

3Completely fill the 
pyramid with rice 
and empty it into 

the cube. Count how 
many times you have to 
do this to fill the cube.

Discover the Volume  
of a Pyramid

How much rice does a pyramid hold compared to a cube 
with the same base and height? Half the volume? One 
third? Even less? In this activity, we’ll construct a cube 
and a pyramid to find out.

1
+2=

Supplies
card stock•	
scissors•	

more on the Web

tape•	
uncooked rice•	

WORDS + 2 + KNOW



Geodesic Domes ❂

Platonic solids are simple and beautiful. It is difficult to 
imagine any shapes that could improve on them. About one 
hundred years ago, however, an engineer named Walther 
Bauersfeld designed a new type of dome to hold the first 
modern planetarium. The architect R. Buckminster Fuller 

later reinvented, refined, and 
popularized the dome.

A geodesic dome begins as a 
Platonic solid, often an icosahedron. 
Each face is then split into smaller 
triangles, whose vertices are shifted 
outward to make it more spherical. 
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WORDS + 2 + KNOW
geodesic dome: a dome built  
out of triangles to approximate a 
part of a sphere.

spherical: shaped round, like  
a sphere.
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1Spread out a full sheet 
of newspaper on a flat 
surface. Moving from the 

bottom right corner to the top 
left corner, roll the newspaper 
up as tightly as possible, and 
then tape it. The more tightly 
you roll the newspaper, the 
stronger the dome will 
be. For this reason, it 
may be helpful to roll the 
newspaper around a bamboo 
skewer for the first few turns, 
before removing the skewer and 
continuing without it. 

2Create 65 of these 
newspaper rolls. The rolls 
will serve as struts, or 

supports, of the geodesic dome.

Make a Geodesic Dome 
Big Enough to Sit In

Simple domes split each triangular face into 4 smaller triangles. 
Elaborate domes have 9, 16, 25, or even 36 smaller triangles for 
every face of the underlying icosahedron. Unlike a Platonic solid, 
though, a geodesic dome has edges that are not all the same 
length.

In this activity, you’ll build a 
geodesic dome large enough for 
you to sit in. You might want to 
ask some friends or classmates 
for help, because this model 
requires making many parts.

more on the Web
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3Cut 35 of the struts to 
be 21 inches long (50 
centimeters) and 30 

struts to be 18½ inches long 
(44 centimeters). 

4Place 10 long struts on 
the floor in the shape of a 
decagon. Place 2 long and 

2 short struts in alternating 
pairs around the inside of the 

decagon, as shown. 
Tape the ends 

of all the 
struts 
together 
with 
masking 

tape.

5Tape 10 short 
struts in place 
around the 

inside of the dome. 
This will start 
raising its walls. 
The structure 
will remain floppy, 
however, until the last 
strut is in place. 
Continue adding 
struts as 
shown in the 
diagram. 

1
+2=

Supplies
lots of newspaper•	
bamboo skewer •	
(optional)
masking tape•	
ruler•	
scissors•	

long strut
short strut

Note that the diagrams are 
not to scale, but do show 
the placements of struts.
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 Shapes 
❂ Hyperboloid

Think of a circle mounted on a stick like a lollipop. If you spin 
the stick, the circle forms the shape of a sphere. Do the same 
with an ellipse, and you create an ellipsoid, a shape that 
looks like a stretched-out sphere.

If you rotate a parabola or a hyperbola, you don’t produce a solid shape, 
but rather a surface. Spin a parabola, and you create a dish-shaped 
paraboloid. Depending on how you rotate a hyperbola, you can produce 
two different surfaces. Spinning a hyperbola one way makes two separate 
bowl-shaped parts,  and spinning it the other way produces a single curved 
surface. In this section, we’ll explore the properties of the second type of 
hyperboloid, called the hyperboloid of one sheet.

101 · 101 · 101 · 101 · 101     101     101 · 101 · 101 · 101 · 101 
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 Shapes 

You may have already seen a hyperboloid before. Cooling towers for 
nuclear power plants are made in this shape because it allows builders to 
make the tower walls much thinner than those of a cylindrical tower. In 
fact, if a hyperboloid cooling tower 
were shrunk to the size of an egg, 
its walls would be thinner than an 
eggshell.

Amazingly, although a hyperboloid 
has graceful curves, you can construct 
one using only straight lines. 

WORDS + 2 + KNOW
ellipsoid: a solid with elliptical 
cross sections.

hyperboloid of one sheet: 
a surface formed by rotating a 
hyperbola.

sphere ellipsoid paraboloid

hyperboloid of two sheets hyperboloid of one sheet
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2	Wrap the strip of paper 
around the straight 
section of the bottle, and 

cut it so that it is just long 
enough to fit.

3	Fold the strip in half four 
times to make creases 
that divide it into 16ths. 4	Unfold the strip, wrap it 

around the bottle, and 
tape it in place.

5	With a pushpin, poke a hole 
in the bottle at the top 
and bottom of each crease 

to produce 2 rings of 16 holes 
each. Remove the paper strip. 
Use the tip of the pencil to 
enlarge each hole.

6	Cut off the top and 
bottom of the bottle about 
½ inch (1 centimeter) 

above the top ring and ½ inch  
(1 centimeter) below the 
bottom ring of holes.

Make a Hyperboloid
We’ll create a hyperboloid out of string to see how it 
can be made using only straight lines.

1
+2=

Supplies
paper•	
scissors •	
empty 2-liter •	
plastic soda 
bottle

tape•	
pushpin•	
pencil•	
craft thread•	

more on the Web

1Cut two strips of paper 4 
inches wide (10 centimeters) 
and tape them together to 

make one long strip of paper.
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7	Insert the thread through 
a hole in the bottom ring of 
holes. Pull the thread out 

through a hole in the top ring 
of holes about five holes to the 
left of the bottom hole that you 
started with.

8Insert the thread back into 
the cylinder through the 
next hole to the left in the 

top ring of holes. Pull the thread 
out the next hole to the left in 
the bottom ring of holes.

9Continue around the 
cylinder until you reach 
the hole you started with. 

Pull the string taut and tie the 
beginning and the end together.

The shape you just formed is a hyperboloid of one 
sheet. Notice that even though the hyperboloid 
is curved, each string that makes it up is straight. 
You can make your model even more beautiful by 
threading the holes with another color of string 
slanting in the opposite direction. The two strings 
will form a crisscross pattern on the surface. 

Surfaces made up of straight lines, like this 
one, are called ruled surfaces, where “ruled” refers 

to straight lines, as in the word ruler. Other ruled surfaces include 
planes, cylinders, and cones. Hyperboloids take this concept one step 
further. Since they can be made of two sets of lines slanting in different 
directions, they are doubly ruled surfaces.
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1Photocopy and cut out 
the template on page 
107 from card stock. 

Cut one straw 5 inches 
(13 centimeters) long.

2Poke a hole through 
the middle of the 
two straws with a 

pushpin.

3Push the bamboo 
skewer through both 
holes and position 

the 2 straws 1¼ inches  
(3 centimeters) apart on 
the skewer.

4Cut off the extra 
lengths of bamboo 
skewer on both sides.

Pass a Straight Line 
For many people, the fact that straight lines are able to 
produce a curved surface is very surprising. In this activity, 
you can take advantage of this fact to astound your friends 
by showing them how you can pass a straight line through a 
curved slot in a piece of paper.

1
+2=

Supplies
card stock•	
scissors•	
2 drinking •	
straws
pushpin•	

bamboo skewer  •	
(or sturdy 
round 
toothpick)
tape•	
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5Place the long straw 
on the tabs of the 
card stock piece 

so that the bamboo 
skewer lines up with the 
horizontal slot. 

6Curl the tabs around 
the straw and tape 
them to the card 

stock so that the short 
straw can spin freely.

7	Twist the short 
straw so that it is no 
longer parallel to the 

long straw, but is slanted 
45 degrees.  

8	Spin the long straw 
so that the short straw 
passes through the curved 

slot. You may have to adjust the 
distance between the straws 
and the angle of the short straw 
to keep it from hitting the sides 
of the slot.  

Through a Curved Slot
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Hyperbolic Paraboloid ❂

Potato chips often take a saddle shape that 
curves differently in different directions. A chip 

may curve upward lengthwise and at the 
same time curve downward widthwise. 

Now imagine an ideal potato chip with curves that are parabolas. This 
potato chip has the shape of a hyperbolic paraboloid. If you cut this 
shape vertically, you will see a parabolic cross section. Likewise, if you 
cut it horizontally, you will find a hyperbola. A hyperbolic paraboloid, 
then, combines these two conic 
sections in one amazing surface. 
Sports arenas, airport terminals, 
and even restaurants have been 
built with roofs in the shape of 
hyperbolic paraboloids.

WORDS + 2 + KNOW
hyperbolic paraboloid:  
a surface with parabolas and 
hyperbolas for cross sections.
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1Photocopy and cut out 
the square and rectangle 
templates from boxboard. 

Cut short slits around the 
square at the marks.

2Fold along the dotted line 
and cut the long slit in 
the middle of the square. 

Partially open the square again 
to make a 90-degree angle.

3Slip the rectangle into the 
slit in the square to form 
a base. You may need to 

cut the slit a little wider to 
allow the rectangle to fit.

4Tape the end of the craft 
thread to the underside 
of the square near slit 

number 1. Pull the thread up 
through slit 1 and down slit 2. 
Bring the thread up slit 3 and 
down slit 4 and so on.

5Using a different color 
thread, repeat the process 
on the other pair of sides.

Make a Hyperbolic 
Paraboloid

Like the hyperboloid, the hyperbolic paraboloid is a doubly 
ruled surface, which means that it can be built from only 
straight lines.  

1
+

2
=

Supplies

more on the Web

boxboard•	
scissors•	
craft thread or •	
string
tape•	



110

1 4 5

2 3 6...



111 · 111 · 111 · 111 · 111     111     111 · 111 · 111 · 111 · 111 

Patterns

Throughout this 
book we’ve 
witnessed the 

beauty of math. We’ve 
created the graceful curve of a 

parabola, the pleasing symmetry of a dodecahedron, 
and the elegant form of a hyperboloid. We’ve seen 
examples in nature and architecture of striking shapes 
that exhibit mathematical beauty. 

In this section, we’ll focus on the artistic side of math by making patterns, 
shapes, and designs. We will create parabolas out of string art, tile 
designs out of polygons, and drawings on cones. We’ll look at patterns 
in bubbles and snowflakes and see how simple rules create surprisingly 
complex patterns. 
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Placed according to simple rules, 
a series of straight lines can 
create beautiful curves. You’ll 
craft incredible string art 
based on a parabola. With 
different string patterns, 
you can make other shapes 
as well. There are heart-shaped 
curves, called cardioids, and kidney-
shaped curves, called nephroids. 
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String Art ❂

Cardioid Microphone
To sound engineers, cardioids are familiar shapes. They often 
use cardioid microphones to record sound for music or movies. 
These microphones are very useful because they pick up 

sounds coming from the front of them better than 
sounds coming from the sides or back of them, which 
are often unwanted noise. The shape of a cardioid 
shows this pick-up pattern. If you draw a cardioid 

around a microphone, the distance from the 
microphone to the edge of the cardioid indicates 
how well the microphone will pick up sound. If 
the distance is large, pick-up will be strong. If the 
distance is short, pick-up will be weak.
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Make String Art  
in a Circle 

In this activity, you will connect points around a circle 
to make a heart-shaped curve known as a cardioid.

1Photocopy and cut 
out the template 
from boxboard. Cut 

short slits around the 
circumference of the 
circle where marked.

2Tape the end of 
the thread to the 
back of the circle.

3	Slip the thread 
up through slit 
number 1 and 

down through slit number 
2. Slip the thread up 
through slit number 4 
and down through slit 
number 2.

4	Continue connecting slits in the 
following pattern: up through slit 3, 
down through slit 6, up 8, down 4, up 5, 

down 10, and so on. In other words, always 
connect one number to another number that 
is twice as large. To avoid having lots of extra 
thread on the back of the circle, however, 
switch the direction of the thread every 
other time. 
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Supplies
boxboard •	
scissors•	
craft thread•	
tape•	

more on the Web
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Make String Art  
in a Circle 5Here's what to do when you reach the large numbers. For 

example, according to the instructions, you should connect 
slit 36 to slit 72, but there is no slit 72! Since we are going 

around a circle, think of the numbers as starting all over again 
after slit 71, so the 72nd slit around the circle is actually the 
same as slit 0. Likewise, the 73rd slit around is the same as slit 
1, and so on.  

Try using modulo arithmetic to create a new 
string art design. Cut out another version of 
the template, but this time connect slits 
1 and 3, 2 and 6, 3 and 9, and so forth. 
The curve that you’ve created is as 
beautiful as the cardioid, but carries the 
unfortunate name of nephroid, meaning 
“kidney-shaped.” This curve shows up in 
a surprising place. When you look inside a 
coffee mug, you can see part of a nephroid 
formed by the reflected light there.

Modulo Arithmetic
As the numbers get larger, it gets more difficult to figure 
out which slits represent them. To easily find this out, just 
divide the large number by 72, keeping only the remainder. 
For example, to find out which slit is equal to slit 81, divide 
81 by 72, to yield a remainder of 9. What does this mean? 
Slit 81 is the same as slit 9. This type of operation is called 
81 modulo 72. Although you may not realize it, you perform 
modulo arithmetic when you solve problems involving time. 
For example, 8 hours from 9 a.m. is 5 p.m. because the hours 
start over again after they reach 12.
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By connecting evenly spaced points on two lines, you can 
create a parabola.

Make String Art Parabolas

1Photocopy and cut out a 
square from the template on 
page 110. Use boxboard. 

2Cut a short slit at each 
mark around the perimeter 
of the square.

3Tape one end of the thread 
to the back of the square.
Pull the thread around 

from the back and up through 
the top slit on the left-hand 
side of the square, and then 
down through the fi rst slit on 
the bo� om of the square.

4Pull the thread up through 
the second slit on the 
bo� om of the square, and 

then down through the second 
slit from the 
top on the 
left-hand 
side.

5Continue 
this 
process 

until you have 
used up all the 
slits on the 
left-hand and bo� om sides of 
the square. The curve you have 
created is a parabola.

6 If you want, you can repeat 
steps 3 through 5, using a 
second thread color, on the 

other sides 
of the square 
to create 
interesting 
designs.

+222=
Supplies

boxboard • 
scissors• 

craft thread• 
tape• 
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Bubbles ❂

Leonardo da Vinci studied bubbles 500 years ago, describing some of their 
properties in his notebooks. However, the figure who probably interested 
the most people in the math and science of bubbles is Charles Vernon 
Boys. In 1890, Boys wrote a book about experiments with soap bubbles 
that became a classic for generations of children.

A few simple mathematical rules determine the shapes of bubbles. 
Surface tension pulls soap film into the smallest possible area. Bubbles 
are spherical, for example, because a sphere is the shape with the smallest 
surface area that is capable of holding the air trapped inside. 

People have been playing with 
bubbles for hundreds of years, 
and most people are content 
to blow bubbles for fun. We’ll 
discover their secrets. Don’t 

worry that this will ruin the fun, 
though. The more you know about 

bubbles, the more amazed 
you’ll be by them.
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MATH

When two bubbles join, they create a more complex shape, but the same 
rule applies. Bubbles naturally solve this math problem every time they 
arise. However, it has taken mathematicians a long time to catch up to the 
power of bubble math. They didn’t prove that 
a double bubble is indeed the shape with the 
smallest surface area for two joined bubbles 
until the year 2000.

When you dip a bubble wand with a circular 
opening into bubble solution and then pull 
it out again, the soap film forms a flat 
disk in the wand, exactly the shape that 
you might expect. What if the wand were 
bent or fashioned into a different shape? 
You might be surprised at what shape 
the bubble film takes as it minimizes 
its surface area.

Colors in a Bubble
The colors in a bubble are a result of the light waves 
reflected by both the front and back surfaces of the soap 
film. Light waves reflected back from these two surfaces are 
out of sync, which causes some colors to be canceled out. 
The colors that you end up seeing depend on how thick the 
soap film is, with thicker areas of the film appearing reddish. 
As the film thins, the colors progress through the colors of 
the rainbow. When the film reaches silvery white or even 
black, it may be so thin it is likely ready to pop.
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MATH
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1Pour the bubble solution 
into the bowl so that the 
solution is about 4 inches 

(10 centimeters) deep.

2	Construct different 
shapes out of craft wire 
to dip into the solution. 

For example, try making a 
tetrahedron, a cube, and a 
corkscrew with a wire going 
down the middle.       

3Dip the shapes into the 
bubble solution and slowly 
pull them out to see how 

the soap film connects the 
edges of the shapes. 

Make Mathematical 
Bubble Films

You can make your own bubble 
solution by mixing: 
o  9 cups water (2 liters) 
o  1 cup dish detergent  
    (250 milliliters) 
o  ¼ cup (60 milliliters) glycerin  
    or corn syrup 

+2
Supplies

2 quarts (2 liters) •	
commercial bubble 
solution 
large bowl •	
craft wire •	
wire cutters•	

more on the Web
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1Create two circles of equal size 
with handles out of wire. Dip 
both circles into the bubble 

solution and then pull them out.

2Touch the two circles together 
so their soap films join 
together.  

3Slowly pull the circles about 
1 inch (3 centimeters) 
apart, and then pop the flat 

disk cutting across the middle of 
the surface. The soap film should 
go from one circle to the other.

4Continue slowly pulling the 
circles apart to observe the 
shape of the soap film.

Create a Catenoid
You might expect the soap film connecting two circles to 
go straight from one circle to the other, forming a cylinder 
between them. Try it and see what shape you get.

1
+2=

Supplies
bubble solution•	
craft wire•	
wire cutters•	

The surface that connects the two circles isn’t a cylinder, after all. It 
narrows in the middle, forming a surface called a catenoid, the shape 
you would get if you rotated a catenary. Until recently, the catenoid 
was one of only a few known surfaces with minimal surface area. 
Other members of this group include the plane and the helicoid. A 
helicoid is the bubble film created by a corkscrew-shaped wire that 
looks like a spiral staircase or DNA molecule. Today, mathematicians 
know of all sorts of exotic-looking minimal surfaces.    

more on the Web
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In this activity, you will discover some rules that 
control the angles at which bubble films meet.

	 Discover Patterns 
in Bubbles

Did you notice that no more than three bubbles meet at any 
point, and that, wherever they meet, the angles at which they 
do so are the same? For example, wherever three bubbles meet, 
they make three 120-degree angles. It may seem like there are 
some exceptions to this rule at first glance, but if you look very 
closely right where the bubbles meet, you will see that it holds 
true. The reason why the bubbles join with each other in this 
way is simple: air pressure is the same everywhere inside the 
bubble foam. Since the forces acting on the bubbles are the 
same, the angles at which they meet will be the same, too.

1Remove the paper labels and the 
plastic tray that the CD snaps onto 
from the CD case.

2Pour bubble solution into a 
shallow pan. Stand the empty 
CD case vertically in the bubble 

solution, so that the open slot in the 
case is in the bubble solution.

3Place a straw at the bottom of the 
CD case, and use it to blow bubbles 
into the case. Look closely at the 

bubbles and see if you can discover any 
patterns in how they come together. 
How many bubbles meet at any point? 
What angles do you see?

1
+2=

Supplies
empty CD case •	
(normal thickness) 
bubble solution•	
shallow container•	
drinking straw•	

more on the Web
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 Patterns 
❂ Snowflakes
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Snowflakes are beautiful examples of symmetry in nature. 
An ideal snowflake has six points, and looks exactly the same 
rotated to any angle that is a multiple of 60 degrees or 
reflected in a mirror placed on a line of symmetry.  

Like a regular hexagon, an ideal 
snowflake has six lines of symmetry. 
Look at this picture of the snowflake. 
Can you determine where its lines 
of symmetry are? (See page 132 for 
the answer.)  

WORDS + 2 + KNOW
symmetry: the property of a 
shape that looks the same if you 
rotate it or look at it in a mirror.
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 Patterns 

Koch Snowflake
A special shape called a Koch 
snowflake has a perimeter that is infinitely long! You 
can make this shape by starting with an equilateral triangle. 
Erase the middle third of each side of the triangle, and 
then draw two new segments that point outward like a new, 
smaller equilateral triangle in the blank space. Repeat this 
process again with each new line segment. With each step, 
the shape looks more and more like a snowflake and the 
perimeter gets longer and longer. If you 
repeat this process enough times, you 
can get a perimeter as long as you’d 
like.
This type of shape is called a 
fractal because each section of the 
curve resembles a larger section 
of the shape, just at a different 
scale. In other words, if you 
“zoom in” on any small bump, you 
will find that it has smaller bumps 
on it and so on.

Snowflakes have six points because the water molecules inside an ice 
crystal naturally arrange themselves according 
to hexagonal symmetry. A snowflake often 
starts out as a hexagon. As more water 
molecules join the snowflake, however, 
they attach themselves to the pointy 
parts of the crystal more quickly, 
which causes those parts to grow 
faster. Soon, the familiar shape of 
a snowflake emerges.
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Make a Paper  
Snowflake

You exhale water vapor every 
time you breathe. The scientist 

Kenneth G. Libbrecht estimates that roughly 1,000 water 
molecules from your breath are in each snowflake.





1Fold a piece of paper in half. 
Fold it in half again just enough 
to make a small crease mark at the 

middle of the folded edge.

2Fold the paper at 60-degree angles. 
If you don’t have a protractor to 
measure the angles, just try folding 

it in thirds.

3Cut off the extra paper horizontally, 
starting from one corner. Fold 
the paper in half along the dashed 

vertical line.

4Cut a zigzag out of the paper. Then 
open it up to see your beautiful 
creation.

1+2=
Supplies

paper•	
scissors•	

protractor •	
(optional)





more on the Web
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Distorted Images ❂

If you look at yourself 
in a fun-house mirror, 
you will see your image 
distorted in strange 
ways. One mirror might 
make you look tall and 
skinny, while another 
might make you look 
short and fat.

Distorted images like these aren’t just for fun. Understanding how to  
transform images is an essential skill for mapmakers and artists. In order 
to represent the countries of a round world on a flat map, mapmakers 
must distort the countries’ shapes and/or sizes. Painters distort the scenes 
they create to make them look three-dimensional on a two-dimensional 
canvas. To show depth, painters must 
make objects in the background 
smaller than identical objects in the 
foreground, and draw lines that are 
parallel in real life coming together 
as they recede. 

WORDS + 2 + KNOW
anamorphic image: a distorted 
image that can be restored to its 
original form by looking at it in a 
particular way.
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Anamorphic images are images that are distorted in such a way that 
you can see the original, undistorted images if you look at them from a 
certain perspective or in a specially shaped mirror.

Look at the tall image on this page. It spells a word that you can 
read if you look at the image from a low angle. Hold this book 
flat, almost at eye level. What word can you see?

Anamorphic images are 
used for traffic markings 
on pavement. When you 
are riding your bike on a 
bicycle path, you might see 
the symbol for a bicycle 
painted on the path.  While 
the symbol might appear 
normal to you, it seems 
so because you are looked 
at it from a low angle. If 
you looked down on the 
image from directly above 
it, you would see that it is 
intentionally stretched.  

In 1533, Hans Holbein the 
Younger painted an anamorphic 
image of a skull in his famous 
painting “The Ambassadors.” 

This isn’t the only anamorphic 
image in paintings from around 
that time. Anamorphic images 
seem to have been popular in 

the mid-1500s.
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1Photocopy and cut out the 
template. Roll the template 
into a cone  with the 

distorted picture of the horse 
on the outside of the cone.

2	Glue or tape the tab to 
the edge to form a cone.
Look straight down on 

the cone to see the horse in its 
original shape.

Make Anamorphic Art  
      on a Cone

1
+2=

Supplies
paper•	
scissors•	
tape or glue•	

In this activity, you will create a type 
of anamorphic art on a cone.
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1Photocopy the circular 
and semicircular grids 
in the template.

2Draw a simple image 
on the circular grid 
paper. Transfer each 

section of your image into 
the corresponding section 
on the semicircular grid. 
You will need to stretch 
and/or compress the image 
in each section to fit the 
new section.

3Cut out the 
semicircular grid. Roll 
up the paper into a 

cone and tape the tab to 
the other edge.

4	Look straight down 
on the cone to see 
your image.

Draw Your Own  
Anamorphic Art

In this activity, you will draw your own anamorphic art.

1
+2=

Supplies
paper•	
pencil•	

scissors•	
tape•	
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more on the Web
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Tilings and Patterns ❂

Patterns are all around us. 
Wallpaper designs, decorative 
tile patterns, and patterns 
on clothes can be made by 
repeating a shape or design 
to cover a larger area. A 
pattern made from simple 
shapes that are shifted, 
rotated, or reflected to cover 
an area is called a tiling or 
tessellation.

The pattern that you probably see most frequently is one made from a grid 
of squares. You can also create a tessellation out of equilateral triangles 
or regular hexagons. These three polygons are the only regular polygons 

capable of tiling a plane themselves. 

WORDS + 2 + KNOW
tiling: a pattern made from simple 
shapes that are repeated to cover a 
plane without gaps or overlaps.

tessellation: a tiling of a plane 
with regular polygons.



129 130 · 130 · 130 · 130 · 130     130     130 · 130 · 130 · 130 · 130 

 Patterns 

1Cut out a square from card 
stock. Draw a curve that goes 
from the top left-hand corner 

to the bottom left-hand corner 
of the square. You can make any 
type of curve you like – it doesn’t 
matter how wiggly!

2Cut along the curve and 
tape the piece you cut off to 
the right-hand side of the 

square, without flipping it upside 
down.

3Repeat Steps 2 and 3 with 
the two other sides of the 
square.  Use this piece as a 

template to trace many copies 
onto a piece of paper.

Design Your Own 
Tiling Pattern

If you don’t restrict yourself to regular polygons, you can make many 
more interesting patterns. Any triangle or any quadrilateral will tile 
a plane, even oddly shaped ones. Design your own quadrilateral, 
and then cut out many copies to see 
how they fit together to make a tiling. 
To create even more elaborate designs, 
you can alter a shape that you know 
tessellates. As long as you follow some 
basic rules in making your changes, the 
new shape you create will also tile the 
plane. 1

+2=
Supplies

card •	
stock
a pencil•	

scissors•	
paper•	



130 · 130 · 130 · 130 · 130     130     130 · 130 · 130 · 130 · 130 

 Patterns 

Did you notice that you never had to rotate or flip the template to 
make your design? You only had to shift it. This is one of 17 different 
types of symmetry that a pattern like this one can have. If you start 
with a hexagon from the template, you can create another pattern 
belonging to a different symmetry group. In this case, instead of taping 
each cut-out piece to its opposite side, tape it to a neighboring side.

  If you try to fit regular pentagons together, you will quickly 
find that they leave gaps that you cannot fill with other 
regular pentagons. To determine whether a shape will 

successfully tile a plane without gaps or overlaps, look at 
the angles at its vertices. The angles that meet in a tiling 

must add up to 360 degrees. This is why triangles, squares, 
and hexagons tesselate. The sum of the six 60-degree angles 

that meet at a point of the triangle tiling is 360 degrees. 
Likewise, the four 90-degree angles that meet in a square 

tiling and the three 120-degree angles that meet in a 
hexagonal tiling also add up to 360 degrees.



131 · 131 · 131 · 131 · 131     131     131 · 131 · 131 · 131 · 131 

Page 8: 1) 45¢ is 1 quarter, 4 
nickels, and 0 pennies, so the number 
45base-10 is written as 140base-5.  
The number 124base-10 is written  
444base-5.

2) The number 314base-5 is  
84base-10, so you would have 84¢.

3) The number 1000base-5 is  
125base-10.

Page 16:	  

Page 22: 28 is a perfect number 
because 1 + 2 + 4 + 7 + 14 = 28. 
The first few perfect numbers are 6; 
28; 496; 8,128; 33,550,336; and 
8,589,869,056.

Page 28: The mysteriously appearing 
square is an illusion. The answer lies 
in the fact that the pieces don’t fit 
together perfectly to make a rectangle. 
They leave a small gap with the area of 
1 square.  This trick uses the Fibonacci 
numbers 3, 5, and 8, but you can use 

the other 
Fibonacci 
numbers 
to create 
puzzles, 
as well. If you cut apart and rearrange 
a 13 by 13 square into an 8 by 
21 rectangle, 1 square seems to 
disappear. 

Page 30: Here are examples of 
three other spirals that appear in the 
drawing of a sunflower. There are a 
Fibonacci number of spirals like these 
in the drawing: 13, 21, and 89 spirals 
respectively.

Page 55: You can 
connect nine 
dots with four 
straight lines. 

If you “cheat” 
and make fat dots, you can 
connect them with only three 
lines. 

Solutions
arm

 21

arm
 34

arm
 55 o10

arm
 13

132 · 132 · 132 · 132 · 132     132     132 · 132 · 132 · 132 · 132 



Page 56: The box with an “X” in it is 
impossible to draw without lifting your 
pencil. You can see this is true because 
four vertices have an odd number of 
edges connected to them. Adding 
the roof makes it possible, but only if 
you start at one of the two bottom 
corners.

Page 57: There is no path that goes 
through all doors. The graph of the 
problem shows that there are too 
many vertices 
with an odd 
number of edges.  

Page 59: The 
thicker line is the 
random walk.

Page 64: The first shoelace pattern 
is the shortest of the three. It has 
a length of 30.83 centimeters. The 
second pattern has a length of 32.3 
centimeters, and the third pattern has 
a length of 32.6 centimeters.

Page 65:  The longest 
lacings are:   

Here are two 
more that are 
not quite as long, 
but still make 
a complicated 
pattern that 
might be fun to 
try.

Page 90: Here is how 
to arrange the two 
puzzle pieces to form 
a tetrahedron.  

Page 95: Slip one 
rectangle partially into 
the slot of another.  

Slip the third rectangle (the one with 
the extra cut) into the slot with the 
extra cut facing the first rectangle. 

Curl tabs out of 
the way and slide 
both rectangles 
the rest of the 
way into the slot. 

Bend the tabs 
back into place. 

Page 121: This snowflake would look 
the same if you reflected it in a mirror 
placed on any of the six dashed lines.  
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abacus: an instrument 
used to perform calculations 
by moving beads.

anamorphic image: a 
distorted image that can 
be restored to its original 
form by looking at it in a 
particular way.

base (of a pyramid): the 
bottom face of a pyramid, 
the one that doesn’t meet 
at the point where the other 
faces meet.

base-10: a number system 
with 10 digits, the numbers  
0 through 9.

binary: a base-2 number 
system (digits 0 and 1), used 
by computers  
to store data.

catenary: a curve that 
is the shape of a hanging 
chain.

catenoid: a surface 
formed by rotating a 
catenary.

circumference: the 
distance around a circle.

composite: any number 
greater than 1 that is not a 
prime number.

concave: curved inward 
like a bowl or the letter 
“C.”

conic section: a curve 
that is a cross section of 
a cone: a circle, ellipse, 
parabola, or hyperbola.

consecutive: one after 
another in a list.

cross section: the two-
dimensional shape you 
would see if you were to cut 
a three-dimensional object 
in two with one straight cut.

cube: to cube a number 
is to multiply a number 
by itself and then by itself 
again. For example, 4 cubed 
(written 43) is 4 × 4 × 4 = 64. 
Also a Platonic solid with six 
square faces.

decagon: a 10-sided 
polygon.

decimal: a base-10 number 
system (digits 0 through 9).

diameter: a straight line 
running from one side of a 
circle to the other through 
the center.

diffusion: mixing of 
molecules due to random 
movements. 
digit: a symbol used to 
write a number. 

dimensions: different 
directions that you can 
measure. A line is a one-
dimensional object because 
it can only be measured 
in terms of its length. 
A rectangle is a two-
dimensional object because 
it can be measured in terms 
of its length and width. A 
cube is a three-dimensional 
object because it has 
length, width, and depth.

dodecahedron: a Platonic 
solid with 12 pentagonal 
faces.

dual: a solid that fits into 
another solid with each 
vertex touching the center 
of the other solid’s faces.

earthly bead: a bead on 
an abacus with a value of 1.

edge (of a graph): a line 
that connects two vertices 
of a graph that represents 
their relationship.

ellipse: an oval-shaped 
curve that is a cross section 
of a cone.

ellipsoid: a solid with 
elliptical cross sections.

equilateral triangle: 
a triangle with all sides of 
equal length. 
face: a flat surface on a 
solid.

Glossary
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 Glossary 

factor: a number that 
divides evenly into another 
number. For example, the 
numbers 1, 2, 3, 4, 6, and 
12 are factors of 12. To 
factor a number is to find 
the numbers that divide 
evenly into that number.

Fibonacci sequence: a 
series of numbers formed 
by adding the previous two 
numbers to get the next 
one.

focus (of a parabola): 
the point inside a parabolic 
reflector where incoming 
light rays meet.

focus (of an ellipse): 
the points that define an 
ellipse. Waves that start at 
one focus and reflect inside 
an ellipse meet at the other 
focus. The plural of focus is 
foci.

geodesic dome: a dome 
built out of triangles to 
approximate a part of a 
sphere.

geometry: the study of 
shapes and their properties.

golden ratio: the number 
(1+ )÷2 or approximately 
1.61803, sometimes 
represented by the Greek 
letter φ.

golden rectangle: a 
rectangle with a ratio of its 
length to width of φ to 1.

graph: a diagram used to 
analyze the relationships 
or connections between 
different things.

heavenly bead: a bead 
on an abacus with a value 
of 5.

helicoid: a surface that 
looks like a spiral staircase 
or a DNA molecule.

heptagon: a seven-sided 
polygon.

hexadecimal: a base-
16 number system (digits 
0 through 9 and letters A 
through F).

hexagon: a six-sided 
polygon.

hyperbola: a curve with 
two branches formed by 
cutting a double cone.

hyperbolic paraboloid: 
a surface with parabolas 
and hyperbolas for cross 
sections.
hyperboloid of one 
sheet: a surface formed by 
rotating a hyperbola.

hypotenuse: the longest 
side of a right triangle.

icosahedron: a Platonic 
solid with 20 triangular 
faces.

inclinometer: an 
instrument for measuring 
angles.

integer: a whole number, 
a number that does not 
include a fraction. 
irrational number: a 
number that cannot be 
written as a fraction. 
 
 

leg: either of the two 
shorter sides of a right 
triangle.

mathematician: an 
expert in math. 

modulo: the remainder of 
a division. For example, 11 
modulo 3 is 2.

nonagon: a nine-sided 
polygon.

octagon: an eight-sided 
polygon.

octahedron: a Platonic 
solid with eight triangular 
faces.

octal: a base-8 number 
system (digits 0 through 7).

parabola: a U-shaped 
curve that is a cross section 
of a cone.

paraboloid: a dish-shaped 
surface made by rotating a 
parabola.

parallelogram: a 
quadrilateral (four-sided 
shape) whose opposite sides 
are parallel.

pentagon: a five-sided 
polygon.

perfect number: a 
number whose factors 
(excluding the number 
itself) add up to that 
number. 
perfect square: a 
number that is the square of 
an integer.

plane: a flat surface that 
extends forever.



135 · 135 · 135 · 135 · 135     135     135 · 135 · 135 · 135 · 135 

MATH

Platonic solids: the 
five solids made up of 
regular polygons with the 
same number of faces 
meeting at each vertex. 
The Platonic solids are 
the tetrahedron, cube, 
octahedron, dodecahedron, 
and icosahedron.

polygon: a shape on 
a plane made up of line 
segments.

polyhedra: the plural of 
polyhedron, which is a solid 
formed with polygons as 
faces. 

prime number: a number 
larger than 1 with only two 
factors: 1 and itself. The 
number 1 is not a prime 
number.

probability: how likely 
it is, mathematically, that 
something will happen.

product: the result of 
multiplying numbers.

protractor: a device for 
drawing and measuring 
angles.

pyramid: a solid with 
a polygon for a base and 
triangles that meet at a 
point for all the other faces.

Pythagorean theorem: 
an equation relating the side 
lengths of a right triangle.

quadrilateral: a four-
sided polygon.

radius: the distance from 
the center of a circle to any 
point on the circle. 

random walk: a path 
whose steps are taken in 
random directions.

ratio: a comparison of two 
numbers or measurements, 
dividing one number by 
another.

regular pentagon: a  
five-sided regular polygon.

regular polygon: a 
polygon with each side the 
same length and each angle 
the same size.

right angle: a 90-degree 
angle.

right triangle: a triangle 
with a right angle in it.

Sieve of Eratosthenes: 
a method for finding prime 
numbers.

solid: a three-dimensional 
geometric shape.

sorobon: a Japanese 
abacus.

spherical: shaped round, 
like a sphere.

square: to square a 
number is to multiply 
a number by itself. For 
example 5 squared (written 
52) is 5 × 5 = 25
square root: a number 
that is squared to produce 
the original number. For 
example, the square root of 
9 (written ) is 3. 32 = 9.

star polygon: a star 
formed by connecting every 
other (or third, fourth, etc.) 
vertex of a regular polygon.

sum: the result of adding 
items together (the total).

symmetrical: a property 
of a shape that looks the 
same if you rotate it or look 
at it in a mirror.

symmetry: the property 
of a shape that looks the 
same if you rotate it, slide 
it, or look at it in a mirror.

tessellation: a tiling of a 
plane with regular polygons.

tetrahedron: a Platonic 
solid with four triangular 
faces.

tiling: a pattern made 
from simple shapes that are 
repeated to cover a plane 
without gaps or overlaps.

triangular number: a 
number of items that can be 
arranged into rows to form a 
triangle.

triangle: a three-sided 
polygon.

vertex (of a graph): 
a dot on a graph that 
represents a place or a thing 
that you are studying. The 
plural of vertex is vertices.

vertex (of a parabola): 
the lowest point of a 
parabola that opens up like 
a “U.”

vertex (of a polygon): a 
corner point.

volume: the amount of 
space an object takes up.
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catenary, 46, 119
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ci�rcles, 51–52, 70, 77–79, 101, 

113–114. See also spheres
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co�mputers, 1, 4, 6, 54, 56
co�nes/conic sections, 51–52, 
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counting, 4, 5–12
cubes, 66, 83, 85, 87, 97
cubic numbers, 3, 19
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37–38, 96
ellipses, 49–52, 101
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odd, 19
perfect, 3, 22
prime, 3, 19, 20–22
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square, 3, 14, 17–19, 46
triangular, 3, 13–16, 18, 72
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87, 92
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pa�rabolas, 45–48, 51–52, 101, 

111, 112, 115
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pa�tterns, 19, 63–65, 111–130. 

See also Fibonacci sequence
pe�ntagons, 66, 68, 69, 75, 76, 

83, 85, 130
percents, 23
perfect numbers, 3, 22
perfect squares, 18, 19
phi (φ), 31–35
pi (π), 78–79
pl�anes, 67, 80, 104, 119, 

128–130
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pl�atonic solids, 83–95, 96, 98. 

See also specific types
po�lygons, 67–76, 78, 83, 96, 

111. See also platonic solids; 
tiling/tessellation; specific 
types 

prime numbers, 3, 4, 19, 20–22
probability, 61
project tips, 2
pyramids, 37, 96–97
Pythagorean theorem, 38–40

Q
qu�adrilateral polygons, 68. 

See also parallelograms; 
rectangles; squares

R
radius, 70, 79
random walk, 58–62
re�ctangles, 15–16, 24, 31, 35, 

71, 73, 93, 95
rectangular numbers, 14, 20
Roman numerals, 9, 28
ruled surfaces, 104, 109

S
sh�apes, 66–110. See also 

specific shapes 
shoelace patterns, 63–65

snowflakes, 121–123
so�lids, platonic. See platonic 

solids
solutions to puzzles, 131–132
sp�heres, 66, 101, 102. See also 

bubbles; geodesic domes
spirals, 29–30, 34–35
sq�uare numbers, 3, 14,  

17–19, 46
square roots, 17, 18
sq�uares, 28, 66, 75, 85,  

128–130
stars, 74–76
stock market, 59
string art, 112–115
symmetry, 77, 83, 121, 130

T
te�trahedron, 83, 84, 85–86, 87, 

88–92, 96
tiling/tessellation, 128–130
tr�iangles, 37–40, 66, 70, 71–73, 

75, 79, 85, 88, 91–92, 93–94, 
96, 98, 128–130

tr�iangular numbers, 3, 13–16, 
18, 72

V
vertex

of graph, 55–57
of parabola, 46
of platonic solids, 83, 87
of polygons, 70, 72, 75

W
website, 2

Z
Zu Chongzhi and Zu Gengzhi, 78



Children’s Activity/Education Resource 		  Ages 9 and Up

Make a geodesic dome big enough to sit 
in. Solve one of the world’s hardest two-
piece puzzles. Pass a straight line though 
a curved slot. 

From prime numbers to paraboloids, Amazing 
Math Projects You Can Build Yourself introduces 
readers ages 9 and up to the beauty and wonder of 
math through hands-on activities. Kids will cut apart 
shapes to discover area formulas, build beautiful 
geometric models to explore their properties, and 
amaze friends with the mysterious Möbius strip. 
Learning through examples of how we encounter 
math in our daily lives, children will marvel at the 
mathematical patterns in snowflakes and discover 
the graceful curves in the Golden Gate Bridge. 
Readers will never look at soap bubbles the same 
way again!
Amazing Math Projects You Can Build Yourself 
includes projects about number patterns, lines, 
curves, and shapes. Each activity includes intriguing 

facts, vocabulary builders, and connections to 
other topics. A companion website, 

www.amazingmathprojects.com 
includes video instructions for many 
projects in the book and provides 

additional activities.

Who would have thought that 
math could be so much fun?

focus on science focus on social studies

focus on environment

$15.95 USA | $17.95 CAN
ISBN: 978-1-934670-57-6

“A wonderful book, I am utterly 
delighted and pleased with its vast 
mathematical content. The book 
begins with the simplest notions 
of arithmetic and proceeds on to 
geometry and all kinds of higher 
math, with plenty of hands-on 
constructions and do-it-yourself 
suggestions.”

— Magnus Wenninger 
http://www.saintjohnsabbey.org/

wenninger/

“…Very hands-on and easy 
to get into and draws students 
into an active engagement with 
mathematical ideas. Well done!”

— David Bressoud,  
the DeWitt Wallace Professor  

of Mathematics, Macalester College; 
President, Mathematical Association 

of America

❂ The sum of any
two consecutive triangular 

  numbers is a square number.

❂ If you cut an apple in 
half right across the core, the 

seeds form a five-pointed star. 
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