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Foreword to the German First Edition

The Golden Section has turned up, since antiquity, in many aspects of ge-
ometry, architecture, music, art, and even philosophy; but it appears also
in the newer domains of engineering and fractals. In this way the Golden
Section is no isolated phenomenon but, in many cases, the first and, indeed,
simplest example in the context of a sequence of generalizations of a com-
mon idea.

The purpose of this book is, on the one hand, to describe examples of
the Golden Section, and, on the other, to reveal developments of the idea.
And because the Golden Section is the simplest example in this chain of
generalizations, it takes on as well a pedagogic significance, since in an
instructional situation one has a strong inclination to give the simplest non-
trivial case prominence.

One chapter is devoted to the construction of fractals, which, in the
simplest examples, lead likewise to the Golden Section. Golden geometry,
golden folds and cuts, golden number sequences, and golden regular and
semiregular solids are central to the chapters following.

The book is aimed at students, scholars, teachers of mathematics, and
interested non-experts. The text is constructed on a modular pattern, so that
the individual chapters may be read independently of each other. The reader
will be led into appropriate geometric and algebraic activities, but he (or
she) also receives tips and procedural hints in the area of creative handi-
crafts.

The conceptual richness of the Golden Section carries with it the im-
plication that each representation can serve in an exemplary capacity. Thus
we include some references to literature in domains that are not explicitly
discussed in the text; architectural and artistic aspects are featured in [Ghy]
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viii Foreword to the German First Edition

and [Hag); and [Hun] is devoted to the esthetic side of the mathematics.
Finally [B/P] and [Tim] provide broad introductions to various aspects of
the Golden Section.

Several examples and suggestions have been communicated to me by
teaching colleagues. I owe particular thanks to my colleagues Hans Rudolf
Moser, who has provided me with a rich supply of exercises on the Golden
Section, and Reto Schuppli for his critical scrutiny of the manuscript.

I thank Mr. Jiirgen Weiss of B. G. Teubner, Leipzig publishers, for his
generous supervision of this work.

Frauenfeld, February, 1993 HANS WALSER



Foreword to the German Second Edition

In the second edition a chapter has been added, at the request of several
readers, which brings together the questions distributed throughout the text
and provides succinct answers.

Frauenfeld, February, 1996 HANS WALSER






Foreword to the English Edition

As with our earlier translation of Hans Walser’s book Symmetrie (Sym-
metry), published in this series, we have been as faithful as possible to the
original German text, and, as in that case, this has one unfortunate con-
sequence for the English-speaking reader. For we have, in the main, been
obliged to retain the original references to German language sources. This
is because the references are usually too specific to permit any replacement.
However, we have referred to English-language versions of the texts where
such exist, and we have added a few English-language references as well.
We do not believe that our readers will be faced with serious difficulties
due to this problem, as virtually all the references are to suggested further
reading. Walser’s own text is very much self-contained.

Moreover, this monograph is not a comprehensive text covering a spe-
cific area of geometry. As the author’s own foreword makes clear, the pur-
pose of the monograph is to describe the Golden Section and indicate how
it shows up in various aspects of mathematics and in our culture. In this
respect, the relation of the Golden Section to the modern theory of fractals
is an especially significant feature of the text.

We should indicate two respects in which we have enlarged the origi-
nal text. Most important we have numbered chapters, sections, and subsec-
tions, for easier reference, and we have numbered those questions, scattered
through the text, to which the author has provided answers (in a final chap-
ter). Where the author has not provided an answer, we have included the
question (unnumbered), but not provided it with an answer. In fact, in most
cases, the answer to such a question is contained in the material immedi-
ately following the posing of the question.

Xi



Xii Foreword to the English Edition

Our second innovation is to add a short extra section (Section 4.4) to
explain to American readers the properties of DIN A4 paper. “A4 paper” is
a term familiar where the metric system is in use, and “DIN” simply refers
to the German version of this paper.

We have also made a few modifications of the original text in order
that the English version should not sound too obviously like a translation
from German.

It is (once again!) a pleasure to acknowledge the invaluable, and highly
efficient, assistance of my colleague Jean Pedersen in preparing this trans-
lation for publication, and to express my appreciation to my colleague Jerry
Alexanderson for his careful and critical perusal of the translation. Finally,
I am happy to acknowledge the very valuable (and prompt!) contributions
of my colleagues Rudolf Fritsch and John Holdsworth to the final version
of this translation.

Binghamton PETER HILTON
May, 2001



Author’s Note to English Edition

It is a pleasure to express my appreciation of the careful work done by my
colleagues Peter Hilton and Jean Pedersen in making available an English
version of my text. i

I would also like to take this opportunity to thank Jerry Alexanderson
for his editorial work, and Beverly Ruedi and Elaine Pedreira Sullivan for
their careful attention to detail in the production of this translation.

Frauenfeld HANS WALSER
May, 2001
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CHAPTER 1
What's It All About?

1.1 WHAT IS THE GOLDEN SECTION?

The Golden Section is a ratio which turns up in various geometrical and
arithmetical situations. In the examples of Figure 1, which are made up of
equilateral triangles, squares, regular pentagons, and circles, we always find
the same ratio between the designated points A, B, C (that is, the ratio of
AC to AB).

FIGURE 1
The three points A, B, C are in each case in the same ratio.



2 The Golden Section

FIGURE 2
The ratio of the Golden Section in the “Golden Triangle fractal”

The same ratio also turns up in the fractals of Figures 2 and 3. We will
see in what follows how this ratio is related to the Golden Section.

What then is the Golden Section? To answer this we make the follow-
ing

Definition. We say that a line-segment is divided in the ratio of the
Golden Section, or in the Golden Ratio, if the larger subsegment is re-
lated to the smaller exactly as the whole segment is related to the larger
segment.

The Golden Ratio is thus the ratio of the larger subsegment to the
smaller.

If the whole segment has length 1 and the larger subsegment has length
x (Figure 4), then

Thus x is a solution of the quadratic equation

2 =1—x.
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Dividing in the Golden Section

This equation has the two solutions

1445 ﬂrv_]ﬂg
5 .618.

x| = — ~0.618 and x; =



4 The Golden Section

The length x must be positive, SO

_—1+4/5

o 2

Let us denote this number by p.
The definition of the ratio of the Golden Section may be illustrated

with the help of theorems of geometry as in Figure 5.

FIGURE 5
If the ratios AB/AC and A’B’/A’'C’ are both p, and if D’ is the reflection of C’ in
the center B’. then the line segments AB’, BD’ and CA’ coincide.

1.2 NOTATIONS

According to the foregoing

_—1+45

I3 ~ (0.61803.

We denote the reciprocal of p by 7. Thus 1, the Golden Section®, or
Golden Ratio, is given by

1445
==

P

T ~ 1.61803.

I'n the literature we find the names Golden Mean, Divine Section. and Divine Proportion for
the Golden Section t (sce, for example [Hun]). It is interesting to note that the Golden Section
had already attracted Euclid’s attention: he called it the division into “mean and extreme ratio.”
We use the terms Golden Section and Golden Ratio interchangeably for t: we also remark that
the Greek letter ¢ is often used instead of t (see, for example, [Kap]).
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For the two numbers p and 7 the following relations hold:

o =1
r+p=~/§
T—p=
p*+p=
?—r=1

Of course, if two quantities are in the ratio t or p, they are in the
Golden Ratio. Thus we will sometimes even refer to p as the Golden Section
or Golden Ratio.

The quadratic equation
x> 4+x—-1=0
has the two solutions x; = p and x, = —t. The quadratic equation
¥ —x—1=0

has the two solutions x; = t and x; = —p. We will be constantly meeting
these two quadratic equations in what follows; they are the two key equa-
tions for the Golden Section.






CHAPTER 2
Fractals

Ich bin ein Teil des Teils, der existiert,
allein und doch vernetzt im Sein des Ganzen.

Immerzu gehorchend, immerzu gebietend,
dem Kleinsten und dem Grossten dhnlich,
bin ich ein Teil des Teils, der existiert.! (Chantal Spleiss)

Fractals are figures that exhibit self-similarity, that is, figures in which
subfigures are reduced copies of the total figure.

The notion of fractal was introduced by Benoit B. Mandelbrot [Mal,
MaZ2], who was thereby able to bring together various already known pat-
terns and concepts into a unified framework. In particular, Mandelbrot con-
cerned himself with the non-integral dimensions of fractals.

We will next describe a few examples from nature and from engineer-
ing, and then see that, with simple geometric model-building, the Golden
Section will appear. With this example we can then also describe the fractal
dimension.

2.1 FRACTALS IN NATURE AND ENGINEERING

In nature and engineering fractals often present themselves as “exchange
profiles.” Let us think of the complicated external forms of radiators and
combustion engines: In both cases it is a matter of optimizing the heat ex-
change over as large a surface as possible. Another example of an exchange

It is beyond the competence of the translator to produce a translation of a good German poem
into a good English poem. We encourage the reader to learn German.
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5

a) b)

FIGURE 6
a) Drainage system b) Electrical discharge

profile is a drainage system (Figure 6a). A drainage system consists, as a
rule, of a main flow which takes up side-flows. Each of these side-flows is
itself a drainage system with its own side-flows and represents, as an en-
tity, a smaller copy of the original drainage system. Here this copy is not
to be understood as a geometrical copy, but as a “functional” copy. If we
follow such a drainage system back to the smallest pools and streams, we
become certain that there 1s no proper separation between earth and water.
The report of the Creation in Genesis:

And God said, Let the waters under the heaven be gathered together unto
one place, and let the dry land appear: and it was so.(Genesis, Ch. 1, verse 9)

could thus be interpreted today as saying

On the third day of the Creation, the Fractal was created.

As further examples from nature the following suggest themselves:

* Trees with their branching: The exchange-profile serves for assimila-
tion, the carbon dioxide—oxygen exchange.

* Human lungs with their lung-bubbles: The exchange-profile serves for
dissimilation, the oxygen—carbon dioxide exchange.

* The street system of a residential area: The exchange-profile serves
here for the exchange between civilization and nature.

Figure 6b shows a photograph of an electrical discharge.



Fractals 9

2.2 THE GOLDEN TREE

Nature gives us, with trees and drainage systems, examples of fractals
whose principal property is branching. The simplest geometrical model
begins with a stem of length 1 which divides at angles of 120° into two
branches of length f. These first-generation branches then each divide,
at angles of 120°, into two branches of length f2, and each subsequent
branching employs the angle of 120° and the associated reduction factor f.
Figure 7a shows the starting arrangement, Figure 7b the completed tree
fractal for the reduction factor f = %

a) b)

FIGURE 7
The tree fractal with reduction factor f =
a) Starting arrangement  b) Fractal

1

N

We see from Figure 7b that, with the chosen reduction factor f = %
we get a nice well-lit treetop with spaces between the branches serving as
subfractals. Increasing the factor f leads at first to a diminution of these
spaces and eventually to an overlapping of the individual branches.

Question 1. What figure do we get if we don’t reduce at all, but work with
the factor f = 1?

We will now determine the reduction factor f such that the branches
touch, that is, no intervening space is left but the branches do not overlap.
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b)

FIGURE 8
a) The branches touch each other b) The Golden Tree

From Figure 8 we recognize that this leads to the following condition:
£cos30° = f3cos30° + f*cos30° + f2cos30° 4 - -

SO

f3

_ £3 4 54 ... —
f=rPaft e =

This leads to the equation
l—f=f

with positive solution the Golden Section f = p. Figure 8b shows the
associated “Golden Tree’ with reduction factor p.

Question 2. How big is the reduction factor f for the corresponding tree
with T-shaped branching (Figure 9a)? (Notice: The first generations of this
T-fractal can be drawn on the fold-grid of a modified DIN A4 paper. See
Section 4.4 for details about the size of DIN A4 paper.)

Question 3. How big is the reduction factor for a three-fold forking (Fig-
ure 9b)?

2.3 FRACTAL DIMENSIONS

If a length of string is cut in two at its midpoint, we get two pieces of
string half as long. In the language of geometry, this means that bisecting a
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a) b)

FIGURE 9
a) T-shaped branching b) Three-fold forking

segment results in two subsegments of half the length (a reduction factor of
f= %). If, on the other hand, a square is divided into subsquares of half the
side-length (f = %), there arise 4 = 22 subsquares; if the new side-lengths
are only one third (f = %) of the original side-length, there arise 9 = 32
subsquares. The division of a cube into subcubes of half the edge-length
(f = %) produces 8 = 23 subcubes; if the new edge-length is only a third
of the original edge-length (f = %), there arise 27 = 33 subcubes.

The number n of subobjects thus depends on the one hand on the
length-reduction factor f and on the other hand on the dimension D, and
we have, as in the examples above,

()

Thus we have for the dimension D the relation

logn
log

We now want to use this formula to calculate the dimension of the
Golden Tree (Figure 8b). The Golden Tree arises by breaking the trunk
into two Golden Trees which have undergone a length-reduction factor of
f=p= % relative to the original Golden Tree. Thus the dimension D of
the Golden Tree satisfies the condition

D =logqs)n) = —

2 =1P

and hence
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_log2

D ~ 1.4404.

~logt

This dimension of the Golden Tree is no longer an integer, but an irra-
tional number. (The substitution “fractional dimension” for “fractal dimen-
sion” is misleading insofar as we usually understand by “fraction” a rational
number.)

Question 4. What are the dimensions of the tree-fractals in Figures 10
and 117

2.4 CREATING FRACTALS

In the real world there are no straight lines or circles: these two basic con-
cepts of geometry are “idealized” or “abstract”; they exist only in our minds.
Equally absent in our world are fractals. Thus, for example, a drainage sys-
tem does not continue back as far as infinitely small water-veins; we push
up against boundaries due, say, to properties of the materials. The fractal
of the Golden Tree (Figure 8b) is, in the same way, not drawn all the way
to infinity. Since, in any case, only some ten branching-generations can be
recognized with the naked eye, we can break off in the process of building
the fractal after ten generations. In the tenth generation there are already
210 = 1024 boughs to our tree; to regard this as merely the “beginning” of
a fractal is, if we have only conventional drawing tools, not reasonable. So it
is not surprising that the idea of a fractal only came into greater prominence
when correspondingly hi-tech drawing devices became available, above all
the computer.

The successive branching of the fractal of the Golden Tree leads to
an iterative drawing procedure, in which a simple fundamental step is re-
peated, in such a way that care is taken, with each new generation, to apply
the length-reduction factor f. Since, with each new generation, the number
of branches doubles, the total amount of work to be done increases expo-
nentially as a function of the generation.

Question 5. (For those interested in making up computer programs.) Can
you devise a computer program to produce Figure 10 or Figure 117

The fundamental property of self-similarity of these fractals suggests
the idea of exploiting similarity transformations in the construction. Such
can, for example, be given by a computer or quite simply by means of a
copying machine which can reduce size. In our tree-example the problem
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FIGURE 10
Tree-fractal with T-shaped branching
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FIGURE 11
Tree-fractal with three-fold branching

presents itself that line-graphics also become thinner when reduced and thus
soon cannot be perceived by the eye. Therefore we must work with suitable
two-dimensional figures, for example with the two-vertex starting figure of
Figure 12.

0 Pl
NN

FIGURE 12
Evolution of the Golden Tree
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From the initial Figure 12a, called a lune, we construct two copies
reduced by a factor f = p and attach these to the initial figure as in Fig-
ure 12b. This attachment is made by cutting and then pasting the two re-
duced lunes onto the initial figure. From Figure 12b we make 4 lunes re-
duced by a factor f = p and these are attached to the initial figure 12b as
in Figure 12c, and so on. Figure 13 shows the tree-fractal, complete as far
as the eye can see.

FIGURE 13
The Golden Tree made from two-vertex shapes (called lunes)

The workload consists, for each successive generation, of making two
copies of the existing figure, reduced by a factor f = p, and attaching these
to the initial figure (Figure 12a), the total workload thus increases linearly
with the number of generations. The copying procedure is thus superior
to the iterative procedure with exponential time-expenditure. Moreover, in
recent times, even more efficient procedures have been developed for the
construction of fractals [Bar].

Figure 14 is a similar picture of the fractal with three-fold forking
(compare Figure 11).
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FIGURE 14
Fractal with three-fold forking

2.5 THE SQUARE FRACTAL

In this and the two following sections we describe fractals that are built
with squares and equilateral triangles. These fractals too may be constructed
using the reduction and copying procedures we have described.

We place at each corner of a square of side-length 1 a square of side-
length % (first generation). These four first-generation squares each have
three free corners; on each free corner we put a square of side-length %
(second generation). On the free corners of the squares of the second gen-
eration we now put squares of the third generation, of side-length -é—, and
continue this way, always halving the side-length from generation to gener-
ation (Figure 15).

Figure 16 shows the completed square fractal, where, here too, only
finitely many generations are visible to the naked eye.



16 The Golden Section

a) b)

FIGURE 15
Evolution of the square fractal

Question 6. How do we compare the tree-fractal (Figure 11) with the
square fractal (Figure 16)?

)

~

o

FIGURE 16
The square fractal
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FIGURE 17
The triangle fractal

2.6 TRIANGLE FRACTALS

If we replace the role of the square in the square fractal of Figure 16 by
that of an equilateral triangle, we obtain the triangle fractal of Figure 17.
This triangle fractal differs in an essential way from the square fractal of
Figure 16. While the four boughs of the square fractal touch each other, the
three boughs of the triangle fractal leave some space between. In order to
achieve touching, a greater reduction factor for the passage from one gener-
ation to the next must be chosen. [By the author’s definition, in Section 2.3,
a “greater reduction factor” means “less reduction”!]

To calculate this reduction factor f, we extract from the equilateral
triangle ABC of Figure 18 the condition:

f2

1—f

1+ Ff+2=22+ 7+ +FP+--)=2
This leads to the cubic equation

A+2f2—-1=0.
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ju—

FIGURE 18
Calculating the reduction factor f

This equation clearly has the solution f; = —1. Division by the associated
linear factor f + 1 yields for the remaining solutions the quadratic equation

fAf+f-1=0

with solutions f> = p and f3 = —rt. The only positive solution thus pro-
duces the reduction factor f = p. Figure 2 shows the associated Golden
Triangle fractal.

While in plane Euclidean geometry the Golden Section appears mostly
in connection with the regular pentagon, we find it also in fractal geometry
with figures constructed on the basis of the equilateral triangle.

Figure 19 is put together from three Golden Trees as in Figure 13.
A comparison with the Golden Triangle fractal of Figure 2 allows one to
recognize significant relations with regard to contours and internal structure.
Here it is clear that it is much less the geometric shape of the initial figure
than the iterative construction procedure that plays a central role. After the
first step, the attachment of reduced equilateral triangles at the two free
corners of the triangle of the previous generation corresponds to a branching
of the Golden Tree.

Question 7. The square fractal of Figure 20 also contains a T-shaped
branching structure, just like the tree fractal of Figure 10, but there is, in
comparison with the latter, an essential difference. What is it?
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FIGURE 19
Three Golden Trees
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FIGURE 20
Golden Square fractal with T-branching
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2.7 THE GOLDEN SQUARE FRACTAL

In the square fractal of Figure 16 we worked with the reduction factor

= %; a reduction factor f > % has as consequence an overlapping of

the boughs. We seek now explicit examples with f > % in which an over-
lap arises which is “absorbed.” The simplest case is, of course, f = 1; the
overlapping occurs here in the second generation, and the associated fractal
is an infinitely big chessboard pattern. The simplest non-trivial case arises

through overlapping of the squares of the third generation (Figure 21).

FIGURE 21
Overlapping in the third generation

Then the reduction factor f satisfies the condition
L=2f"+f°

that is, the same cubic equation as with the Golden Triangle fractal, with
the single positive solution f = p.

Figure 22 shows this Golden Square fractal. The by-passed white rect-
angles are Golden Rectangles, with their sides in the Golden Ratio.

Question 8. What is the overlap-behavior of the fractal with three-fold
forking (compare Figure 11 and Figure 14), if the reduction factor f = p is
chosen?
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FIGURE 22
The Golden Square fractal

Question 9. To what extent is Figure 23 merely a variant of the square
fractal of Figure 227



The Golden Section

292

Tal PO e S

B AT R e 4 SRR A
SRR RPN XK X ¢N_Wl.v¢h¢ RPN IERD

<, ¢Nvﬁ

SNg

:)
£
-v
%
".vv

<
%
>,
£ )
9

>
&
Y,

23
2l

Ratha

k2

SRR
NG

¥ ?M?AV Aﬂ.v Gce

AR D e D O D e BT

20N

.n.#.mqu. SRR

AT SIS ey

AN\

. &ﬁv

RN

<+¢ %
¢.

O e
SVRSIENE
4

QRERSOES
N
N5

3

<L
(o

FIGURE 23

Variant of the Golden Square fractal



CHAPTER 3
Golden Geometry

3.1 CONSTRUCTIONS OF THE GOLDEN SECTION

3.1.1 The Classical Construction

Figure 24 shows the best-known construction of the Golden Section: In a
right triangle ABC with cathetus! @ = 1,6 = % a circle 1s drawn with
center A and radius b = %; this cuts the straight line AB in the internal

point D and external point E.

D
p
[~
B o T c
FIGURE 24

Construction of the Golden Section

1 A cathetus is a side, not the hypotenuse, of a right triangle. We take the plural of cathetus to
be cathetus!

23
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Then

5 1 J5-1 \/? 1 V541
'BDl_\/;_E_ 2 P |BEl=\zt3=——F5 ="

We now replace in Figure 24 the cathetus b = % by a cathetus of
length b = 5 with n € N and give the circle with center A the radius 5.
Then | BE| — | BD | = n, since the circle, center A, has diameter n. The
point B has, with respect to this circle, the power 1 (thatis, | BC 12 =1),so
that | BD | and | BE | are reciprocals of each other. For each n € N we thus
obtain two lengths which are reciprocals of each other and which differ by
a natural number n, that is, in their decimal representations they have the
same fractional parts.

Question 10. Why do the powers of the Golden Section arise from the con-
struction of Figure 257

FIGURE 25
Powers of the Golden Section

3.1.2 The Construction Using Angle Bisectors

Figure 26 shows another method of construction of the Golden Section. In
a right triangle A BC with cathetus a = 2 and b = 1, we draw the internal
and external bisectors of the angle «. These cut the straight line BC in the
interior point A_j, and the exterior point A4.
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FIGURE 26
Construction using angle bisection

Since A_; divides BC in the ratio of the sides b and ¢, we have

CA-Ll — L Together with [CA_;| + [BA_1| = 2, this yields
| CA_1| = p. Analogously, or using a well-known theorem on the length

of the altitude of a right triangle, we conclude that | CA41 | = 7.

Question 11. Figure 27 is an extension of Figure 26. Why is | CAy | = t¢?

FIGURE 27
The Golden Spiral

Question 12. An isosceles triangle is inscribed in a square of side-length 2
(Figure 28). How big is the radius of its incircle?
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FIGURE 28
How big is the radius of the incircle?

3.1.3 Construction in a Triangular Lattice

Question 13. In a lattice built from equilateral triangles (Figure 29) the
segment through the lattice points A and C is intersected by the circle with
center D, radius | DE |. The point of intersection B is not a lattice point, but
the three points A, B, C stand in the relation of the Golden Section. Why?

FIGURE 29
Construction in a triangular lattice

Question 14. An equilateral triangle is attached to a square of side-length
1 (Figure 30a). Why does the construction of Figure 30b yield the Golden
Section?
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a) b)

FIGURE 30
Construction with square and triangle

3.2 THE REGULAR PENTAGON AND THE REGULAR DECAGON

In the regular pentagon (Figure 31a) and in related figures like the penta-
gram built from the extended sides of a regular pentagon (Figure 31b) or a
regular decagon (Figure 31c), the Golden Section turns up in many places.
A key figure is the isosceles triangle with apex-angle 36°, the so-called

“acute Golden Triangle.”

a) b) c)

FIGURE 31
Isosceles triangle with apex-angle 36°

This acute Golden Triangle has a base angle of 72° (Figure 32), the
bisector of a base angle thus separates from the whole triangle a triangle
DAB similar to it.

The complementary triangle BC D, the so-called “obtuse Golden Tri-
angle,” is also isosceles. Normalizing the arm-length, at a = 1, of the acute
Golden Triangle ABC produces, from the similarity of the triangles ABC
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FIGURE 32
Subdivision of the acute Golden Triangle

and D A B, for the base ¢ the condition

. l1—c

C
1 C

From this we conclude that ¢ = p (Figure 33a).

36°

1 1 L7 1080 N\

36° 36°
1
720 720

P
a) b)
FIGURE 33

Side-ratios in the acute and obtuse Golden Triangle

In the obtuse Golden Triangle with base angle 36°, the ratios of the
side-lengths are as in Figure 33b. Thus, in the regular pentagon, the sides
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A

FIGURE 34
The diagonal in the regular decagon

and diagonals are in the ratio of the Golden Section. In the regular decagon
(Figure 34) with circumradius 1, the side A B has length p and the diagonal
AD has length T.

Question 15. In what ratios do the radii M B and M C divide the diagonal
AD of the regular decagon of Figure 347

Question 16. Why do the regular pentagons obtained by the three construc-
tions of Figure 35 agree?

Question 17. Is the construction procedure for the regular decagon indi-
cated in Figure 36 valid?

3.2.1 Fractals with Five-fold Rotational Symmetry

Corresponding to the earlier procedure, fractals may now be constructed
that are based on the regular pentagon with a branching through 72°. Fig-
ures 3, 37, 38, 39 show examples with and without overlapping.

Question 18. How big is the reduction factor in the fractals of Figures 3,
37, 38,397
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a) b) c)

FIGURE 36
Construction of the regular decagon

FIGURE 37
The pentagon fractal
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FIGURE 38
Tree fractal with 72° branching

The Golden Section
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Tree fractal with overlapping
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3.3 THE GOLDEN RECTANGLE

By the Golden Rectangle we understand the rectangle whose side-lengths
are in the Golden Ratio.

Question 19. How long are the individual pieces relative to each other of
the zigzag path ABC D in the Golden Rectangle of Figure 407

D

FIGURE 40
Zigzag path in the Golden Rectangle

3.3.1 Subdivision of the Golden Rectangle

We first look for a rectangle with the following property: After cutting off a
square from the rectangle, the remaining rectangle is similar to the original
rectangle (Figure 41a). Let the original rectangle have length 1 and width x.
If we cut off a square of side-length x, there remains a rectangle of length x

X 1—x

FIGURE 41
The Golden Rectangle
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and width 1 — x. The similarity of the original rectangle with the remaining
rectangle yields

X
x l—x
and hence the quadratic equation
1 —x = x2.

This equation has the positive solution x = p. Hence the rectangle
we seek is the Golden Rectangle. Since the remaining rectangle is again a
Golden Rectangle, we may cut off a further square so that the remaining
rectangle of the second order is again a Golden Rectangle. The iteration of
this dissection process yields a sequence of squares which exhaust the orig-
inal rectangle and whose sides form a geometric progression with common
ratio p (Figure 41b).

With a Golden Rectangle of length 1 and width p, the side-lengths of
the squares are p, 02, p3, . ... Since the areas of the squares sum to the area
of the rectangle, we have the relation

p=p"+p"+p°+--
which we can, of course, deduce directly.

Question 20. Where do the midpoints of the squares of Figure 41b lie?

After drawing in a diagonal of the Golden Rectangle and of the first
remainder rectangle (Figure 42), the subdivision shown by the sequence of
illustrations in Figure 43 can be carried out quite simply [Hun, p. 67].

FIGURE 42
Starting position for the subdivision
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FIGURE 43
Continued subdivision with help of the diagonals

Figure 44 shows a fractal subdivision of the Golden Rectangle by
smaller squares and Golden Rectangles.

|
i1 11 ||

FIGURE 44
Fractal exhaustion of the Golden Rectangle

3.3.2 Spirals in the Golden Rectangle

If we draw, in an appropriate way, quarter-circles in each square of the sub-
division of the Golden Rectangle (Figure 45), there arises a curve which is
a good approximation to the logarithmic spiral [Co2, p. 204]. The fractal of
Figure 46 is built from such Golden Spirals.

If we replace the quarter-circles by their complementary arcs (three-
quarter-circles), we get the “great spiral” of Figure 47.

Likewise a spiral-shaped figure arises by drawing a diagonal in each
square of the subdivision of the Golden Rectangle (Figure 48).
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FIGURE 45
A spiral in the Golden Rectangle

FIGURE 46
Fractal with Golden Spirals

37
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)
_~

FIGURE 47
Great spiral of the Golden Rectangle

FIGURE 48
Semi-linear spiral of the Golden Rectangle

If we think of the spirals described above as extended outward to in-
finity by attaching suitable squares, then we obtain spirals which are trans-
formed into themselves by magnifying and rotating. The magnification and
rotation center is Z (the point of intersection of the two diagonals drawn in
Figure 49), the magnification factor is 7, and the angle of rotation is 90°. By
this process of magnifying and rotating the square ABC D is mapped onto
the square A’B'C’'D’.

3.3.3 Existence of Irrational Numbers

The Euclidean Algorithm The greatest common divisor (gcd) of two natu-
ral numbers a and b can be calculated by means of the Euclidean Algorithm,
as follows: We work out how many times b is contained in a, dividing a by
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FIGURE 49

Stretch-and-turn in the Golden Rectangle

b, and calculate the remainder. Then b is divided by the remainder, produc-
ing a new remainder. In each further step the old remainder is divided by
the new remainder, and this continues so long as the division “makes sense,”
that is, until there is no remainder. The last non-zero remainder is then the
ged of a and b. Every common factor of a and b is also a factor of the ged.
[We regard b here as the Oth remainder.] For the example a = 42, b = 15,
we obtain step-by-step:

42=2-15+12
15=1-12+3
12=4-3+0

Thus ged(42, 15) = 3.

Geometrical Representation of the Euclidean Algorithm From arectangle
of side-lengths a and b (a > b) squares of side-length b are cut off, so
long as it is possible. Then a remainder rectangle is left over, from which
again squares are cut off, and so on. The procedure continues, so long as
the subdivision into squares is possible, that is, until no rectangle remains
left over. The side-length of the smallest square is then the gcd of a and b.
Figure 50 illustrates the procedure for a = 42 and b = 15.

Since the side-length of the smallest square is a common measure (in-
deed, the greatest common measure) of the original rectangle’s side-lengths
a and b, the entire rectangle can be broken up into squares of this side-length
(Figure 51).

If now two lengths a and b have a common measure g, then a = mg
and b = ng with m, n € N, and the ratio b:a can be represented as the ratio
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15 15 12

5 12

42

FIGURE 50
Geometrical representation of the Euclidean Algorithm fora =42 and b = 15

FIGURE 51
Subdivision into squares

n:m of two integers, that is, as a rational number --. We then say that a and
b are commensurable.

Application to the Golden Rectangle If we apply the Euclidean Algorithm
to the Golden Rectangle with side-lengths a = 1 and b = p, then the
process never ends since always, after cutting off a square, there remains
a rectangle similar to the original rectangle. The side-lengths 1 and p thus
have no common measure; the ratio p:1 = p cannot be given as a ratio of
integers, and p is an irrational number. One may conjecture that, histori-
cally, the first proof of incommensurability was carried out by Hippasos of
Metapont, in the second quarter of the 5th century BC, on the number p; but
it would certainly have employed different geometrical considerations [Tro,
p. 132].
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e d e b e L
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FIGURE 52
Cutting off rectangles with sides in the ratio 3:2

A False Deduction We modify the geometric execution of the Euclidean
Algorithm by cutting off rectangles whose sides are in the ratio 3:2 instead
of squares. We think of these rectangles as put together from 6 squares
(Figure 52).

If the procedure stops, we can divide the original rectangle into
squares; for this the last rectangle-sides must certainly be further subdi-
vided (Figure 53). We obtain in this way a common measure of the two
sides a and b of the original rectangle.

| 1 1
| i m g
] . ]
] ! wi|
: . i
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i i j
1 i n il
| 1
| 1
1 |

FIGURE 53
Subdivision into squares
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If we apply this procedure to a rectangle whose sides are in the ratio
2:1, the process never breaks off, because the remainder rectangle will again
have sides in the ratio 2:1 (Figure 54).

1 ] ! I
1 —— L ——= (- L == =l
I | I I I I uy

FIGURE 54
Application to a rectangle with sides in the ratio 2:1

We obtain in this way no common measure for the lengths 2 and 1.

Question 21. Does this mean that the number 2 is irrational?

3.3.4 Generalization of the Golden Rectangle

We study next rectangles such that, if we remove n (n € N) squares, a
rectangle similar to the original rectangle remains (Figure 55 for n = 4).

n squares

FIGURE 55
The remaining rectangle is similar to the original rectangle

Let the original rectangle have length 1 and width x. From the similar-
ity with the remaining rectangle we get for x the condition

l_x

x 1l—nx

SO

x2+nx—1=0.
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The positive solution

—n++/n?2+4
2

X =

we have already met (in connection with Figure 24); there it was the number
which differed from its reciprocal by n.

The application of the Euclidean Algorithm to the rectangle described
here leads, by arguments analogous to those used with the Golden Rectan-
gle, to the conclusion that numbers of the form

—n++/n%2+4
2 1

X =

n e N,

are irrational.

This number x turns up in several geometric contexts. For example,
consider the rectangle of length 1 and width b, of Figure 56, where the seg-
ment BC is n times the segment A B. Since all right triangles in Figure 56
are similar, we get

b AB
1  BC+iCD

FIGURE 56
The segment BC is n times the segment AB

From CD = AB and BC = nAB we get

SO

and thus b = x.
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We want now to look more closely at the case n = 2, that is, at the
rectangle with sides of length 1 and /2 — 1. This rectangle arises by cutting
a square of a piece of DIN A4 paper, since a piece of DIN A4 paper has
edges in the ratio of +/2 to 1. [DIN A4 paper is commonly used in many
countries outside the U. S. How to convert other paper to the appropriate
size is discussed in Section 4.4.]

This rectangle may be subdivided symmetrically into squares; the di-
agonals support the subdivision process (Figure 57).

FIGURE 57
Symmetric subdivision

With the help of this subdivision, we may draw two point-symmetric
spirals, consisting of quarter-circles, which run into each other (Figure 58).

h
\

FIGURE 58
Double spirals

3.4 GOLDEN POLYGONS

In this section we will get to know some further figures in which, after
cutting off appropriate simpler figures, a figure similar to the original figure
remains.
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3.4.1 The Golden Parallelogram

Given the Golden Parallelogram, with sides in the Golden Ratio and acute
angle 60°, we can cut off two equilateral triangles in such a way that the
remaining figure is again a Golden Parallelogram. The Golden Parallelo-
gram can, in a manner similar to the Golden Rectangle, be subdivided into
equilateral triangles and can be used to generate spirals (Figure 59).

VARV A

FIGURE 59
Subdivision and spirals in the Golden Parallelogram

Question 22. Figure 60 shows some generalizations of the Golden Paral-
lelogram. Can we also draw in some spirals here?

VA\VARRRvIVAY

FIGURE 60
Variations on the Golden Parallelogram

If we join the midpoints of the sides of a parallelogram we again get a
parallelogram. When is this parallelogram similar to the original one? For
an answer see [Sch], [Wa3].

3.4.2 Golden Triangles

In Section 3.2 we met the acute- and obtuse-angled Golden Triangles (Fig-
ures 32 and 33) with base angles of 72° and 36°.
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We can remove an obtuse-angled Golden Triangle from the acute-
angled Golden Triangle, so that an acute-angled Golden Triangle remains;
this leads to a subdivision of the acute-angled Golden Triangle into obtuse-
angled Golden Triangles. This subdivision can be furnished with a spiral
put together from circular arcs (Figure 61). Conversely, the obtuse-angled
Golden Triangle can be subdivided into acute-angled Golden Triangles
(Figure 62).

A g

a) b)

FIGURE 61
Subdivision of the acute-angled Golden Triangle

AN AN

FIGURE 62
Subdivision of the obtuse-angled Golden Triangle

In both cases there is a similarity between the remaining triangle and
the original triangle, with a similarity factor p.

The diagonals of a regular pentagon separate the pentagon into a
smaller regular pentagon, 5 acute-angled and 5 obtuse-angled Golden Tri-
angles (Figure 63).

The Golden Triangles may themselves be subdivided in such a way as
to produce a regular pentagon and Golden Triangles (Figure 64).
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FIGURE 63
Subdivision by diagonals

a) b)

FIGURE 64
Subdivisions of Golden Triangles

We can therefore, step-by-step, further subdivide the pentagon of Fig-
ure 63, so that the original pentagon is exhausted by progressively smaller
pentagons. Figure 65 shows the next stage of this process. This subdivision
1s related to the fractal of Figure 3.

3.5 GOLDEN ELLIPSES

We will meet in this section ellipses, the ratio of whose axes is the Golden
Section or the square of the Golden Section.
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FIGURE 65
Subdivisions of the pentagon

3.5.1 Area Comparison with a Circle

We compare the area enclosed by an ellipse with semi-axes a and b with
the area of the circle of Thales through the foci F} and F; of the ellipse
(Figure 66). For which axis-ratio g are the two areas the same?

1=
.

FIGURE 66
The ellipse and the circle should have the same area



Golden Geometry

The ellipse has area abrm; half the distance between the foci is
va? — b?. Since this is the radius of the circle of Thales, its area is

(a® — b*)x. Equating the two areas yields

2
a* — b = ab,

b\? b
(—) 4= = ]| =0,
a a

Thus g = p; the semi-axes of the ellipse are in the Golden Ratio.

or, dividing by a2,

3.5.2 Geometry in the Music Cassette

I am indebted to Peter Gallin of Ziirich for the following example. In a run-
ning cassette, the radius g of the attracting spool increases, while the radius
of the repelling spool p decreases. How does the distance x (p) between the

two spools vary (Figure 67)?

FIGURE 67
Music Cassette

At the beginning of the unwinding process let p = R (outer radius)
and g = r (inner radius). As the tape plays away there is a “Tape-invariance
Theorem”: the sum of the circular areas on the two spools remains constant.
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Thus
7T(R2 — r2) — Jr(q2 — r2) + yr(p2 — r2).
From this we get
R? +7r? = p* 4+ 4*

and

4(p) =[R2+ 12— p?

For the distance x(p) between the two spools, we infer

x(p)=B—p—RE 12— p2.
The substitution x’ = x — B yields
(xl+p)2 — R2+r2 _p2’
2p? +2x'p +x? = R* +r?

In a Cartesian coordinate system (p, x’), the graph of the function
x'(p) thus lies on an ellipse. The matrix

2 1
1 1
of the associated quadratic form has eigenvalues

34+4/5 3—5

)\.= .)\,= 5
: 2 i 2

that 1s

Thus the ellipse has principal axes

1
a=—vVR?2+r2=1vR?+r2?,

Jo,

1
b=—-VR2+r2=p/R2+r2.

T

The ratio of the axes is g = % = pz. For the direction ¢; of the major

axis we have

tan (b] = -1,
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and for the direction ¢, of the minor axis we have

tangy =

p.

51

Figure 68 illustrates the case B =4, R =2.5,r = 1.
(In Figure 68, “real region” refers to the region of values of p for which

q is real.)

B

Ve
A4

FIGURE 68

<—->
real
region

B=4R=25r=1

The ellipse of Figure 68 may also be very simply obtained by shearing
a circle as in Figure 69.
Following the methods of David Rytz (1801-1868), we can construct
the principal axes of the ellipse from the pair of conjugate diameters given
in Figure 69. This gives us a further way of constructing the Golden Section.
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FIGURE 69
Shearing a circle

3.5.3 The Ellipse in a Square Lattice

Question 23. In a square lattice (Figure 70) we draw an ellipse with foci
the lattice points F; and F3, and passing through the lattice point B. The
vertex A on the major axis is not a lattice point. The point F> then divides
the segment Fj A in the ratio of the Golden Section. Why?

3.6 GOLDEN TRIGONOMETRY

From the measure-ratios found in the Golden Triangle (Figure 71) we obtain
first of all the following relationships:

i p tT—1
18° = — =
sin > 5
2 2
cos 18° = 1—£—= T
4 2
T—1

tan 18° =

V24T
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FIGURE 70
The ellipse in a square lattice

FIGURE 71
Trigonometry in the acute-angled Golden Triangle

53
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With the help of the addition theorem, these give rise to the following
values:

sin CcOS tan
180 T—1 V24T T—1

2 2 V24T

3—1 T 3—1
36° —

2 2 T

T 3—1 T
54° —

2 2 3—1
790 V24T T —1 N2+ T

2 2 T—1

There follow some examples and problems on the theme.

sin 66° — sin 6°

1. =T
cos 60°
5 sin 78° — sin42° _
‘ sin30° 7

3. From the construction of Figure 26 it follows that
(3]
tan| —arctan2 | = p
2
o 1
tan (90 =5 arctan 2) =71

4. Let a curve be given in polar coordinates by

_ sin2¢ —2cos2¢
- sin ¢

r

, 0<¢ <2m.

The origin is a double point of the curve. We seek the gradients of the
tangents to the curve at this point.

5. In a circle with center M and radius 1, a chord AB makes an angle «
with AM. The line through the midpoint C of the arc AB, parallel to
AM, cuts the chord AB in S and the circle in D. Find

(a) the lower bound for ¢, such that § is an inner point of the chord AB,
(b) the angle ¢, given that S is the midpoint of the chord C D.



CHAPTER 4
Folds and Cuts

In this chapter we will describe methods for obtaining figures related to the
Golden Section by knotting strips of paper or folding square Origami paper.

4.1 PAPER-STRIP CONSTRUCTION OF THE
REGULAR PENTAGON

The basic idea of the procedure consists of producing, from a strip of paper
about 2 cm in width, a simple knot according to the layout of Figure 72a.
Figure 72b shows the loose paper-strip knot.

FIGURE 72
The knot

55
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Careful tightening of the knot results in a regular pentagon with two
“tails” (Figure 73a). If we use transparent paper and bend back one of the
two tails, there appears inside the pentagon a regular five-pointed star, a
so-called pentagram (Figure 73b). For other methods of building a regular
pentagon from a strip of paper, see [H/P].

Questions and Variations

Question 24. In an isosceles trapezoid the short parallel side has the length
of a sloping side. and the long parallel side has the length of a diagonal (as
shown by the trapezoid on the top layer of Figures 73a and 73b). What is
the ratio of the lengths of the parallel sides of this trapezoid?

Question 25. From two strips of paper of the same width, colored differ-
ently, a true Samaritan (reef) knot (Figure 74a) and a false Samaritan knot

(Figure 74b) are produced. How do their appearances differ?

Question 26. What figure arises from a double knot (Figure 74c)?

FIGURE 73
Pentagon and pentagram
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FIGURE 74
Knot variants

b)

57
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4.2 ORIGAMI

Origami is the traditional Japanese art of paper-folding. From a square sheet
of paper there emerges, through folding and occasionally through cutting,
various flowers and animals, but also purely geometrical figures. An in-
troduction to the Origami art of folding is given by the books of Irmgard
Kneissler [Kn 1, Kn 2]. The production of geometric figures in the plane and
in space is treated, along with instructive sketches, in [CRD, pp. 113-176].
The symbolism for the figures used there will be adopted in the following
sections. In the books of Masahiro Chatani [Ch 1, Ch 2], cutting rather than
folding plays the prominent role.

In what follows we describe some folding constructions, based on a
square sheet of paper. If we use, to obtain the square sheet of paper, the
usual DIN A4 format, there remains after cutting off a square a rectangle
whose side-lengths are in the ratio —21_—1, which is a generalization of the
Golden Rectangle (compare the discussion between Figures 56 and 57).

4.2.1 The Golden Rectangle

Figure 75 illustrates, step-by-step, the folding operations to produce the
Golden Rectangle.

(1) (2) (3)
D F C F F
! /
— | \«/\ > -1 G—|>
i / -
; ' -
A E B A A B

4) ﬁ )

A B

FIGURE 75
The Golden Rectangle
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Description of the folds in Figure 75: (1) Center-line E F, (2) Diagonal
AF, (3) Bisecting the angle BAF. (4) Bending back at the height of G,
(5) Golden Rectangle ABGH.

(1) (2)

K

B

FIGURE 76
Folding the diagonal of a rectangle

Helpful technical remark: In the second step of Figure 75 it is neces-
sary to fold the diagonal of a rectangle. This is most simply achieved with
the auxiliary construction of Figure 76.

Description of the folds in Figure 76: (1) The right bisector of the
segment A F' is obtained by placing the vertex A on the vertex F' and making
the consequent fold, (2) Fold the right bisector of / K by placing the vertex
I on the vertex K.

Question 27. Which geometric construction of the Golden Section forms
the basis of the folding procedure of Figure 75?

4.2.2 Five-fold Symmetry

The usual method of producing a fan-shaped scissor-cut is based on the right
angle, which comes from folding twice. Through further folds angles of 45°,
22.5°, 11.25°, etc. arise and, hence, scissor-cuts may be made with four-
fold, eight-fold, sixteen-fold symmetry, etc. To produce a five-fold scissor-
cut (Figure 77), the paper must be folded in such a fan-shaped manner that
the angle at the apex is 36°.

Figure 78 shows how an angle of 36° can arise by folding a sheet of
square Origami-paper. The folding procedure is, however, very tricky and
often leads in practice to unsatisfactory results.

Description of the folds in Figure 78: (1) Center-line LN, (2) Center
line EF, (3) Center-line O P, (4) Diagonal LP, (5) Bisecting the angle
NLP, with Q the point of intersection with the center-line EF'. (6) and
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FIGURE 77
Scissor-cut with five-fold symmetry

(7) Bending back the right half-square, (8) Q comes to lie on the center-line
O P, the fold-line runs through M, (9) The angle F M L measures 36°.

Now, with the help of the angle F M L, the sheet of paper can be folded
fan-shaped with an apex-angle of 36°

Question 28. Which construction from elementary geometry corresponds
to step (8) of the folding procedure illustrated in Figure 787

Question 29. How does a regular pentagon arise from a fan with apex-
angle of 36° through folding or cutting?

Question 30. How can a three-fold or six-fold scissor-cut be achieved
without the use of a protractor?
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FIGURE 78

Producing an angle of 36°

4.3 PENTAGONS

Figure 79 illustrates a procedure for folding, from a rectangular piece of
paper, a pentagon which, while not regular, is still symmetric. The idea for
this construction was given to me by my student Ruedi Guhl of Frauenfeld
(Switzerland).

Description of the folds for Figure 79: (1) Diagonal AC, (2) Laying A
on C, (3) Laying the edge F B on the center-line through A, (4) Laying the
edge DE on the same center-line through A, (5) Pentagon PQARS.

Because of the folding procedure, the pentagon PQARS has an axis
of symmetry through the vertex A. Independently of the choice of original
rectangle, the following relations hold in the pentagon PQARS (Why?):
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(1)
C A
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E S P - S P
FIGURE 79
Folding a pentagon

(a) The three segments SP, QA, and AR have the same length, (b) The
four angles ARS, RSP, SPQ, and P QA are equal.

The procedure fails, however, with a square as the starting rectangle.

A regular pentagon arises with a starting rectangle whose sides are in
the ratio of tan 54°, since, for a regular pentagon the angle Q AR, step (5),
must measure 108°, so that angle AC D, as shown in Figure 79, step (1) is
necessarily 54°. In view of properties (a) and (b) of our constructed pen-
tagon, this condition is also sufficient for a regular pentagon. The required
starting rectangle for a regular pentagon, with sides in the ratio of tan 54°,
may be produced in accordance with Figure 80, from an Origami-square.

Description of the folds for Figure 80: (1), (2) and (3) as in the Golden
Rectangle, (4) and (5) G is brought to lie on the center-line E F, with the
fold-line passing through B, (6) Fold back along BG, H is the intersection
of the fold-line with the side AD, (7) Unfolding to the original Origami-
square, (8) Folding back at the height of H, (9) The rectangle ABI H has
the required side-ratio of tan 54°.
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Rectangle with sides in the ratio of tan 54°

4.4 APPENDIX: DIN A4 PAPER

The abbreviation DIN stands for Deutsche Industrie Normung (German In-
dustrial Standard). It is not only a standard system for paper sizes, but also
for nearly everything in industrial manufacturing and daily life. It is based
on the metric system. Today it is not only the German standard, but the
standard for most European countries.

We now discuss the paper sizes according to the DIN standard.

The essential thing is that all these sizes are rectangular with a ratio of
~/2 between the width and height. Thus there is similarity between all sizes,
and, if you fold in the middle, you get two rectangles with the same ratio as
the original rectangle. Consequently this paper turns out to be very useful,
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as the reader may see from this chapter, for teaching a lot of nice things in
geometry that can be done by folding and cutting.

The paper size AQ has an area of 1 square meter, so that the metric
system is introduced by means of area, rather than length. The height of AO
is +/2 meter, which is approximately 1.189 meter. From AO you obtain Al
by folding or cutting in the middle (along a line parallel to the shorter side).
Then Al has a height equal to the width of A0 and a width equal to one half
of the height of AO. Subsequent sizes A2, A3, ... are obtained in the same
way.

The approximate sizes, in centimeters, are as follows:

Height Width Area
Name | in centimeters | in centimeters | in square meters
A0 118.92 84.09 1
Al 84.09 59.46 :
A2 59.46 42.04 x
A3 42.04 29.73 3
A4 29.73 21.02 i
AS 21.02 14.87 5
A6 14.87 10.51 o

The A4 size is commonly used in cases when you want to approximate
the US letter size. A6 is a common size for postcards; it is approximately 6
by 4 inches.

In Switzerland this system was introduced by law during World War 1I
to save raw materials and energy in the paper mills. In many places around
the world (e.g., Switzerland, New Zealand, Australia, and South Africa) the
people omit the DIN and speak only of A4 paper. In Germany the DIN A4
format is used.

If you want to do the folding and cutting exercises in this chapter you
can, of course, convert US paper to the appropriate size by trimming off one
side. Unfortunately, paper that sells in the US as 8% by 11 inches may be
off in one or the other direction by as much as a quarter of an inch. So our
advice 1s to measure the width w and height h(w < h) of the paper you
plan to use and then
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(a) if ’—’2 is less than w, then trim off an amount of w — % from the short

side of the paper, but

(b) if % is greater than w, then trim off an amount of h — /2 w from the
long side of the paper.






CHAPTER 5
Number Sequences

5.1 LINEARIZING POWERS OF THE GOLDEN SECTION
(OR RATIO)

Since 7 is a solution of the quadratic equation
x> =x+1,
we have

‘L’2=T+1.

We can therefore substitute for 72 the linear expression (T + 1). Similarly
we can substitute a linear expression in 7 for any positive power of t. For
example,

‘L’3=‘L'2‘L'=(T+1)T=‘L’2+T=T+1+‘L’=2‘L’+1.

The third power t> may be calculated more simply by the following
argument: From

?=t+1
it follows directly, by multiplication by 7, that

r3=t2+r.

67
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Now one has only to replace 72, on the right, by its linear expression in .
Generally, it follows from

=1 +1,
by multiplication by ", that

‘L’"+2 — 1.'"+1 + ™

If we know the linear expressions for 7! and ", we obtain the linear
expression for 72 by addition.

Explicitly we have

0= 1 = 1
=1 = T

=7 +1= 7+1
PB=1=24+1=21+1
=3 4+12=31+2
P=1t*4+3=51+3
=74+t =81+5

The new row is each time the sum of the two preceding rows. This
linearization of the powers of T was already known to Leonhard Euler.

The Swiss mathematician and physicist Leonhard Euler was born in Basel
in 1707. He was a student of Johann Bernoulli. He spent a great part of his
life in St. Petersburg. We are indebted to him for giving us over 600 impor-
tant publications in mathematical analysis, algebra, astronomy and mechan-
ics. Despite going blind in 1766 he continued to publish frequently. He died
in 1783 in St. Petersburg.

The coefficients a, in

n

T =ayt+ap-1, nef{2,34,...}

are the so-called Fibonacci numbers: they obviously satisfy the recurrence
relation

ap42 = ap41 + ap

with initial values a; = 1, ap = 1. A similar argument yields the lineariza-
tion formula

(_p)" = a'l(—p) +an—17 n e {27 3’ 41 o e -}1
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for the powers of the number (—p), which satisfies the relation

(=) =(—p) +1.

5.2 FIBONACCI SEQUENCES

By the (special) Fibonacci sequence we understand the sequence given by
the recurrence relation

An42 = Qn41 + Gy
with initial values a; = 1, ap = 1; that is, the sequence
1,1,2,3,5,8,13,21, 34,55, ...

We will later meet generalizations of this special Fibonacci sequence.

“Fibonacci” is an abbreviation of “Filius Bonacci” that is, “son of
Bonacci.” In fact, his name was Leonardo of Pisa, and he was born be-
tween 1170 and 1180; he learnt everything that was known at the time about
arithmetical procedures on his business travels which led him to Algeria,
Egypt, Syria, Greece, Sicily and Provence. His great epoch-making work of
459 pages, “Liber Abaci,” which appeared in 1202, made the Indian art of
computation known to Europeans, and introduced the Arabic notation, used
today, for the integers. The year of Fibonacci’s death is not known; the last
report on him is a decree from the year 1240, in which the Republic of Pisa
set aside an annual salary for him.

The numbers of the Fibonacci sequence arose in our discussion from
the linearization of the powers of t. To obtain an explicit formula for these
numbers, we form the difference of the linearization formulae for " and
(—p)". Thus we have

" — (=p)" = an(t + p),

and, since T + p = /5, we have the formula

1
NS
This formula has been named after Jacques P. M. Binet (1786-1856), but it
was already known to Daniel Bernoulli (1700-1782).

an =

(=" = (=p)").
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The Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, .. .} is thus the difference
of two geometrical sequences with quotients = and (—p). Since T > 1 and
| — p| < 1, it follows that, for large n,

1

n
an  — T
V5
The numbers of the Fibonacci sequence can thus be approximated us-
ing powers of the Golden Section. For the quotients of successive Fibonacci
numbers we obtain the limiting value

) an+1
lim £a =T

n—oo qy

Hence the Golden Section (or Ratio) can be approximated by the quo-
tient of successive Fibonacci numbers, as the following table illustrates.

a . — Qn+1
h n —
ap
1 =1
1 %2=2
2 2=15
3 3~ 1.6666
5 $£=16
8 2 =1625

5.2.1 The Family Tree of a Drone

The family tree of a drone provides an illustration of the Fibonacci se-
quence. Since a drone arises from an unfertilized bee’s egg, and a queen
or a working bee from a fertilized egg (this last depends on the nourish-
ment received), a drone has only a mother parent, and a queen two parents
(Figure 81).

@ Q Jd

| \ /

S} Q

FIGURE 81
Ancestors of a drone and a queen bee
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FIGURE 82
Family tree of a drone

For the family tree of a drone there arises Figure 82. This family tree is
asymmetric; the females predominate. For the nth parental generation there
will be g, females and a,—; drones, the proportion of females to drones
tendsasn —> ocoto v = % (see [Hof, p. 136] and [Hun, p. 160]).

Let us think of this family tree as being continued indefinitely into
the past (is this biologically meaningful?); then we obtain a fractal, since
every branch is a copy of the whole tree. This family tree fractal can also be
obtained by joining together the centers of adjacent Golden Rectangles and
squares in Figure 44. The centers of the Golden Rectangles correspond to
female ancestors, the centers of the squares correspond to the less numerous

male ancestors.

5.2.2 Approximation of the Golden Rectangie by
Fibonacci Squares

We saw that, in the partitioning of the Golden Rectangle into squares, there
is no smallest square at which the process breaks off. We consider now,
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conversely, what happens if we begin with a smallest square, to which we
assign unit side-length, and we build up the figure to a rectangle by at-
taching further squares. Figure 83 shows the first 5 steps of this successive
adjunction of squares.

FIGURE 83
The adjoining of squares

The successive squares have side-lengths 1, 1,2, 3,5, 8, ...; asis also
clear from Figure 83, the side-length of each new square is the sum of the
side-lengths of the two preceding squares. The sequence of side-lengths is
thus the Fibonacci sequence. The rectangles arising have two successive Fi-
bonacci numbers as side-lengths. As the ratio of two successive Fibonacci
numbers tends to the Golden Section, the rectangles so constructed are ap-
proximations to the Golden Rectangle.

The application of the Euclidean algorithm to these rectangles leads
back to the smallest square of side-length 1; two successive Fibonacci num-
bers thus have only the number 1 as common factor: they are coprime.

Question 31. Which Fibonacci numbers have one of the previous Fi-
bonacci numbers as a factor?

Corresponding to the Golden Rectangle, the Golden Square-Fractal of
Figure 22 can also be approximated by squares with the Fibonacci numbers
as side-lengths. For the last generation to be drawn, we choose the side-
length of the square to be 1, for the penultimate generation again 1, then
successively as side-lengths the numbers 2, 3, 5, 8, .. . of the Fibonacci se-
quence. Figure 84 shows an example with a total of 6 generations. The rect-
angles picked out in white are the Fibonacci approximations of the Golden
Rectangle described above.

Analogously the Golden Square-Fractal with T-branching of Figure 20
can be approximated by Fibonacci Squares.
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FIGURE 84
Approximation of the Golden Square-Fractal

5.2.3 Arbitrary Initial Values

If we start the Fibonacci sequence
bn+2 = bn+1 + by,

with arbitrary initial values by = d, by = c, there results

b = d
b, = ¢
" b3= c+ d
‘' by=2c+ d
bs = 3c+2d

be = 5c + 3d.

73
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Obviously,
by = ap_1c+ap—2d,

where a, is the special Fibonacci sequence with initial values a1 = 1,
a, = 1. From the Binet formula there follows for » > 1 the explicit formula

by = % (ter + )72 = (—ep + d)=p)"?).

If ct + d # 0, we have, for large #,

ct+d ,_,
= T
V5

We again obtain the limiting value

bn

. bn+l
lim == 7

n—oo b,

The sequence of quotients of a Fibonacci sequence thus has in general
the Golden Section as limit. This limit is independent of the initial values.

One can now ask if there is a Fibonacci sequence which is also a geo-
metric sequence. From the relation b, = ag” there follows by substitution
in the recursion formula

ag"*? = ag"*! +ag",
so that
7> =q+1.
The quotient g of the sequence must thus be g; = 7 or g = —p.

Question 32. We choose every second member of the Fibonacci sequence.
What recursion formula is satisfied by this sequence?

Question 33. How does a sequence behave with arbitrary initial values and
the recurrence relation

An4+2 = Gn4| — an?
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Question 34. How does a sequence behave with natural numbers as initial
values and the recurrence relation

an42 = Ian+l —anl|?

5.3 POWERS OF 1 + +/2

We seek, by analogy with our preceding discussion in connection with the
Golden Section, to linearize the powers of t = 1 + /2 . Straightaway we
have

2 =342V2=2014+vV2)+1=2t+1.
Thus, by multiplication by #”,

tn+2 —_ 2tn+l + t"

Thus
t=t
2 =2+1
=542
=12t +5
> =29t 4 12

The coefficients in the linearization formula
t" = ant + an—1
obviously satisfy the recurrence relation
Ant2 = 20n41 + an
with initial values a; = 1, a; = 2. This is a modification of the Fibonacci

recurrence relation.

Remarks and Questions

This example of a generalized Fibonacci sequence has the following prop-
erties:
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(a) We have the explicit formula:

(a+v2"—a-v2r).

1
ap = ——
22
(b) The limit of the quotients of successive members of the sequence is

given by

lim s d 142,

n—00 a,
Question 35. For an arbitrary sequence {b,,} with the recurrence relation
bn+2 . 2bn+l + by,

we have, in general,

b
lim —* — 1442,

n—>0o0o n

Which are the exceptional cases?

Question 36. Which geometric sequences satisfy the recurrence relation
an+2 = 2an+1 + an?
In a tree with “a-elements’” and “b-elements,” let an a-element have

one a-element and two b-elements as parents, and let a b-element have one
a-element and one b-element as parents (Figure 85).

FIGURE 85
Parentage of an a-element and of a b-element

Question 37. How does the ancestral tree of a b-element look? Is there a
suitable biological interpretation of this?
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FIGURE 86
Approximation by squares

The rectangle with sides in the ratio (1 + +/2):1 = 1:(+/2 — 1) (Fig-
ure 57) may be approximated by adjoining squares as in Figure 86. The
sides of the squares then form our already familiar sequence {1, 2, 5, 12,
29, 70, 169, ...} with recurrence relation a,4+2 = 2a,41 + a, and initial
values a) = 1, ap = 2. The subsequence, consisting of the members of the
sequence of odd index, that is, the sequence {1, 5, 29, 169, ...} has a re-
markable property in connection with Pythagorean triangles, that is, right-
angled triangles with side-lengths in integer ratios. Namely, one has

2= 0+ 1?
5= 324 4°
292 = 207 + 21°
169? = 119 4 120
These numbers are therefore the lengths of hypotenuses of Pythagor-
ean triangles whose cathetus lengths differ by just I, that is, triangles which

are nearly isosceles [Ru2]. (Recall that a cathetus is one of the two shorter
sides of a right triangle.)

Question 38. Which Pythagorean triangles are lurking behind the follow-
ing numbers, based on the Fibonacci sequence?
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1

1

2 22= (02422
3

5 52= 32442
8

13 132 = 524122
21

34 342 = 162 + 302
55

80 892 = 392 4 80?2

5.4 POWERS OF A SOLUTION OF A QUADRATIC EQUATION

The thinking behind the preceding sections can be subsumed under the fol-
lowing aspect (compare [Rul]). For a solution ¢ of the normed quadratic
equation

xz—px—q=0
we have
t2=pt+q.

Thus each power of ¢ can be reduced in degree by 1 and, in finitely many
steps, linearized. From the linearization formula

t" = aut + by,
it follows, on the one hand, that
" = a1t + buy,
and, on the other, that
" = a,t2 + byt = an(pt + q) + bat = (anp + bu)t + anq.
Comparing coefficients yields

apy1 = anp + by,

bny1 = anq.



Number Sequences 79
To eliminate b,, we write

Qn42 = Qn41D + bpyy

and replace b, by a,q. Thus we obtain for the sequence {a,} the recur-
rence relation

an42 = papy1 + qay.

Similarly, we have

bnt2 = pbny1 + qby.

The two sequences {a,,} and {b,} thus satisfy the same recurrence rela-
tion and are generalized Fibonacci sequences. For the initial values we ob-
tain fromt! = rand¢? = pt+gthevaluesa; =1,a, = p,b) =0, b; = g¢.
Thus:

a1=1

-
a3 =p’+q
as = p> +2pq

as = p* +3p’q +¢°
as = p° +4p°q +3pg°
a1 = p®+5p*q +6p°q* + ¢’
ag = p’ +6p°q + 10p°q* + 4pq’
The associated triangle of coefficients (Figure 87a) is surely an affinely

skewed Pascal Triangle of binomial coefficients.
In fact, one may prove by induction that

/2l g, o
iy = Z( j ) RETNS

j=0

The row sums of Figure 87a yield the Fibonacci numbers (Figure 87b).
In the affinely skewed representation these Fibonacci numbers appear as
“sums of slanted rows” of the Pascal Triangle (Figure 88).
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1 1 = 1
1 = 1
I +1 = 2
1 +2 = 3
1 +3+1 = 5
1 +4+3 = 8

l1+5+6+1=13

1 +6 +10 +4 =21
a) b)

FIGURE 87
Triangle of coefficients and row sums

o
2
IZ/NZ 5 | 1

e d

1 6 15 20 15 6 1

e

1 7 21 35 35 21 7 1

FIGURE 88
Fibonacci numbers as sums of slanted rows in the Pascal Triangle
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Generalization: The power " of a solution ¢ of the cubic equation
x3 = p1x? + pox + D3 1s to be represented in the form

" = ayt? + byt + c,,.
Then the sequences {a,}, {b,}, {c,} all satisfy the same recurrence relation
an43 = P1Gn+2 + P2an+1 + p3an.

Question 39. How can this be further generalized?

5.5 GENERALIZED FIBONACCI SEQUENCES

The linearization of the powers of solutions of the quadratic equation

xz—px—q=0

led to generalized Fibonacci sequences with the recurrence relation
Gn42 = Pan+1 + qan.

For the quotient sequence

an+1
Cn =
an

we obtain from this the recurrence relation

q
Cnyl =P+ —.
n

If the limit y = lim,_, o ¢, exists and is non-zero, it follows from
substitution in the recurrence relation that

q
y=p+—.
14
Thus
2 _
Yy =py+4q,

that is, y is a solution of the quadratic equation

xz—px—q=0.
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Putting all this together, we see that, by linearizing the powers of the
solutions of a quadratic equation, we obtain a generalized Fibonacci se-
quence, and conversely the limit of the quotient sequence of this generalized
Fibonacci sequence leads us back to the original quadratic equation.

We study the example with p = 1 and ¢ = 6. Here we have the
recurrence relation

ap+42 = Apy] + 6an
with the associated quadratic equation
y2—y —6=0.

This equation has the two solutions y; = 3 and y», = —2. The question
now to be asked is — which of these two solutions arises as the limit of the
quotient sequence ¢, ? We will approach this experimentally. With the initial
values a; = 1, a; = 1, we obtain

n a, ¢y = an+1
Qn
1 1 1
2 1 7
3 7 1.85714
4 13 4.23076
5 55 2.41818
6 133 3.48120
7 463 2.72354
8 1261 3.20301
9 4039 2.87323

10 11605  3.08823
11 35839  2.94285
12 105469  3.03883
13 320503  2.97444
14 953317  3.01718
15 2876335  2.98861

On the basis of these numbers we conjecture that ¥ = lim,,_, o0 ¢, = 3.
The altered initial values a; = 0.5, a3 = —1 yield:
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n a, = ap+1
an
1 0.5 -2
2 -1 -2
3 2 -2
4 —4 -2
5 8 -2
6 —16 -2
7 32 -2
8 —64 -2
9 128 -2
10 —-256 -2
11 512 -2
12 —-1024 -2
13 2048 -2
14 —4096 -2
15 8192 -2

Here {a,} is the geometric sequence

1
anp = _Z(_z)n

and thus ¢,, = const = —2, so

y = i, on = 2.

Question 40. How are the cases with the following initial values

(@) a1 = 1000 and a; = —2000,
(b) a; = 1000 and a; = —2001,

distinguished from each other?

We study now which cases produce, for the limit y = lim,,_, ¢y, the
value 91 = 3, and which the value y» = —2.

On the basis of the examples we conjecture that the sequence {c,} is
either constant at —2 or has the limit 3. To see this we adopt a graphical
method to follow through the recurrence

=1 .
C -+ .
n+1
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For this we need, in the Cartesian x, y-coordinate system, the hyper-
bola with the equation y = 14 g as well as the straight line y = x. In order
to find the successor ¢,+ to a given ¢,, we travel from the point (¢, ¢,),
which lies on the line y = x, vertically to the hyperbola y = 1 + £, and
from there horizontally to the straight line y = x. We then reach the point
(cn+1, cna1) (Figure 89a).

FIGURE 89
Graphical iteration

With an arbitrary initial point (c;, ¢1) with c; # 3, ¢ # —2 there
thus arises a spiral which converges to the point (3, 3). In the right half-
plane the spiral travels inwards (Figure 89b), in the left half-plane the spiral
first travels outwards and then reverses in the right half-plane, in order to
converge in the same way to (3, 3) (Figure 90).

The reason for this asymmetric convergence behavior is that the hy-
perbola is not symmetric with respect to the line y = x.

For ¢; = —2 and for ¢; = 3 the sequences are constant, the spirals
degenerate to the point of intersection of the straight line and the hyper-
bola. The value ¢; = —2 is thus an unstable special case, because, with the
smallest deviation from —2, a sequence {c,} arises which moves from —2
and converges to 3. The value ¢; = 3 is, on the other hand, stable.

Question 41. What is the convergence behavior of the spirals for the hy-
perbolas with equation (a) y = —1 + g, b))y = g?
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FIGURE 90
Starting point in the left half-plane
As the next example we study the case p = —1,qg = —1. We thus

have the recurrence relation
an42 = —ap41 — ap,

which, except for sign, is the original Fibonacci recurrence relation, and the
associated quadratic equation

y*+y+1=0,

which has no real solutions, but has the two conjugate complex solutions

n=y(-14V3), n=3(-1-iv3).



86 The Golden Section

These two complex numbers are the so-called complex cube roots of
unity, that is, we have y13 =1, y23 = 1. In the complex plane they form, with
the number 1, an equilateral triangle. With the initial valuesa; = 1, a2 = 2,
we have the following:

me o, e an+1
an

1 1 2

2 2 —-1.35

3 -3 —0.333333
4 1 2

S 2 —1.5

6 -3 —0.333333

We conclude that the sequences {a,} and {c,} are periodic with period
3. How would it be with other initial values?

The examples allow us to conjecture that this periodicity property does
not depend on the initial values. To show this we must prove that, for arbi-
trary initial values a; and a;, we have a4 = a; and as = ap. With initial
values a; = ¢, az = d it follows from the recurrence relation that

a3=—d—c

ag=—(—d—-c)—d=c

as =—c—(—d—c)=d.
Thus the periodicity of the sequence {a,} is proved. From this the period-
icity of the sequence {c,} obviously follows. From the periodicity of the

sequence {cy} there arises a geometric cyclic-figure: The graphical method
for following through the recursion by means of the hyperbola

1
y=—-1-—-
X

and the straight line y = x yields, for an arbitrary initial point, a hexagon
with sides parallel to the axes, as in Figure 91.

Question 42. How do the sequences with the given recurrence relations
behave?

(1) any2 = any1 — an
(ii) an+2 = _2an+1 - 2an
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y
1
5 P x
1
FIGURE 91

A cyclic-figure

(iii) ap42 = \/Qan+l — apn
(V) any2 = pap41 — an
(V) ani2 =3 any1 — ay
(V1) any2 = 2ap41 — an
(vil) apy2 = %an+l — Qn

From the graphical method it follows, for the quotient sequence of the
original Fibonacci sequence a,+2 = a,+1+ap, that is, for the sequence {c, }
with the recurrence relation ¢,+1 = 1 + é, that the hyperbolay = 1 + %
and the straight line y = x intersect in the points (z, ) and (—p, —p)

(Figure 92).

FIGURE 92
Points of intersection in the Golden Section
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5.6 CONTINUED FRACTIONS

The quotient sequence {c,} of the Fibonacci sequence satisfies the recur-
rence relation

1
Cny1 =1+ —.
Cn

With the initial value ¢; = 1 we obtain successively

cp =1,

1
C2=1+T=2

1+ : 1.5

c3 = = .

1+ 1

1

+1—-i¥

Since lim,_,o ¢, = T we can represent 7 in this way as a so-called
continued fraction:

1
=1+ ;
I+ 1+—4
l+r
The generalized continued fraction
q
y=pt———
U — —
Pt pf=

correspondingly may be interpreted as the limit of the sequence {c,} given
by the recurrence relation

Cn+1 =p -+ i
Cn

Then y is a solution of the quadratic equation
x? = px +q.

In the following example let p = 1,g = 6. With the initial value
c1 = 1 we obtain the values below:
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n C
1 1.00000
2 7.00000
3 1.85714
4 423077
5 241818
6 3.48120
7 2.772354
8 3.20301
9 2.87324
10 3.08824
11  2.94286
12  3.03884
13 297444
In fact, lim,_, 0 ¢, = 3: thus 3 can be represented as a continued
fraction as follows:
3=1+ i ¢
I+ 1+1+6L
o

This example is ultimately just another representation of the example
in Section 5.5 (with p =1, g = 6).

For the initial value ¢; = —2 (and only for this initial value) we obtain
the constant sequence {c,},c, = —2,and so y = lim, 0 ¢, = —2.

5.7 LINEAR COMBINATIONS OF TWO GEOMETRIC SEQUENCES

For the Fibonacci sequence we have the explicit Binet formula:

1, 1
==t — —= (0"
V5 V5
that is, the Fibonacci sequence is a linear combination of two geometric
sequences. We now investigate general sequences of the form

an

a, =ru" + sv".

For this linear combination of two geometric sequences the recurrence re-
lation

a2 = (U + v)any1 — UV an
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holds, as we verify by substitution. If the limit

. an+1
y = lim
n—>oo an

exists, it must be a root of the quadratic equation

xz—(u—i-v)x—i-usz

(see Section 5.5); by Vieta’s Theorem!, this equation has the roots u

and v. The coefficients r and s are obtained from the initial values by
ay =ru—+sv,ay = ru? + svz; thus

a\v — ap
r=———7
uv — u
and
aju — ap
§=——.
uv — v

In the following example we choose for u and v the complex numbers

U = % (—1 +i«/3_), vV = % (—1 — iﬁ); u and v are thus the complex
cube roots of unity and can be written in the form

: 2 2
u=e?Im _ cosZx +isin=w
3 3
. ; 2 L2
v=e @A _ o5 Zp _isin=x
3 3
Thus u + v = 2 cos %7’( = —1 and uv = 1; and the recurrence relation
1S
Qp+2 = —0ap41 — ap.
Moreover,
: 2 o2
u" = 2Amin _ cos Zon 4isin =mn
3 3
IThe general case of Vieta’s Theorem expresses the coefficients ¢y, ¢3, . . ., ¢, of the equation

x" +c1x" 1 4 .- 4 ¢y 1 x + ¢n = 0 as symmetric functions of the roots of the equation. In
particular, with n = 2, the quadratic equation x2 + c1x + ¢y = O has roots 4 and v if and only
ifcy = —(u + v), and ¢ = uv.
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and

n _ o~ 2/3nin 2 2

v = COS —7Tn — I Sin —7N.
3 3

If, for example, we choose the initial values a; = 1, a; = 2, we obtain
the coefficients

_9+iv3  _9-iV3
6 T T 6

r

These coefficients r and s are, like u" and v", complex conjugates;
thus a, = ru” + sv" is real. We obtain

2 J3 2

a, = —3cos gnn -3 sin 5””'
From this follows the periodic behavior of this sequence, with period 3.
Remarks: A sequence put together from 3 geometric sequences
an = riu| + rauy + rau;
satisfies the recurrence relation

an+3 = (U1 + ug +uzdapyr — (uiu2 + uiuz + uau3)an41 + uiuousay.

In the same way we can, using the general case of Vieta’s Theorem, proceed
with a sequence put together from k geometric sequences, for any k.

5.8 CHAIN-ROOTS

How big 1s

w=\ﬁ+\ﬁ+ 142

To study this question, we consider a sequence {wy,} with initial value
wy = 1, satisfying the recurrence relation

Wptl =+ 1+ wp.

Numerically,
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n Wy,
1 1.00000
2 141421
3  1.55377
4 1.59805
5 1.61185
6 1.61612
7 1.61744
8 1.61785
9 1.61798

10 1.61802

11 1.61803

12 1.61803

13 1.61803

14 1.61803

We conjecture that

w= lim w, =rt.
n—>oo

To prove this, we substitute the limit w into the recurrence relation and
obtain

w=4+14+w
or
w2=1+w,

with the two solutions T and —p. The second solution must be abandoned,
since all w,, as square roots, are positive. We should verify that {w,} does
converge. In fact, it is easy to see that {w,} is monotonically increasing with
Wy < T.

Question 43. How does the sequence {w,} behave with another initial
value?

Question 44. Howbigiswz\/l—\/l—«/l—---
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(a) with the initial value wy = 1?
(b) with the initial value w; = 0.5?

Question 45. How bigis w = \/q + pJqg+pSgF -2
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CHAPTER 6
Regular and Semi-regular!Solids

6.1 THE REGULAR SOLIDS

The cube is bounded by six congruent squares, three of which come together
at each of its vertices. In general, one speaks of a regular solid if the solid is
convex, that is, contains no concavity, if it is bounded by congruent regular
polygons (side regularity), and if the same number of sides come together at
each vertex (vertex regularity). These requirements are very restrictive, and

L

C

e)

FIGURE 93
The five regular solids

YOr quasi-regular, in the Coxeter terminology (see [Col]).

95
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there are in fact only five regular solids: the tetrahedron bounded by four
equilateral triangles (Figure 93a); the octahedron bounded by eight equilat-
eral triangles (Figure 93b); the cube (Figure 93c); the icosahedron bounded
by twenty equilateral triangles (Figure 93d); and finally the dodecahedron
bounded by twelve regular pentagons (Figure 93e).

The dodecahedron and the icosahedron contain pentagons. For the do-
decahedron these are the faces. For the icosahedron five triangles come to-
gether at each vertex; the edges of these triangles that do not pass through
the vertex form a regular pentagon. The Golden Section also turns up with
these two regular solids, for example in the following question.

Question 46. At what heights are the vertices of a regular dodecahedron,
or icosahedron, when the solid rests on one of its faces (see Figure 94)?

FIGURE 94
What are the heights of the vertices?

6.2 CONSTRUCTIONS ON THE BASIS OF THE CUBE
AND THE OCTAHEDRON

The icosahedron and the dodecahedron can be inscribed in or circumscribed
round the cube and the octahedron in appropriate ways. As an example an
icosahedron can be inscribed in the unit cube as in Figure 95.

We denote by s the edge-length of the icosahedron. Thus we obtain as
coordinates of the vertices A, B, C

1 = 1 s ) 1
A ~ s B ™ ’ AV T ).
(2 2 O) (2 2 O) C(2 0 2)

The triangle ABC should be equilateral with side-length s: in particu-
lar, | BC| = s, so
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<

>
gl

FIGURE 95
The icosahedron inside the unit cube

or, equivalently,
s24+s—1=0.

This equation has the two solutions s; = p and s,

97

= —1. To the first

solution belongs the icosahedron of Figure 95. From this it follows that the
mutually penetrating rectangles drawn in Figure 96a,b have side-lengths 1

and p, and so are Golden Rectangles.

FIGURE 96
Golden Rectangles in the icosahedron

b)

Such a scaffolding for the icosahedron, consisting of 3 Golden Rectan-
gles, can easily be constructed from 3 cardboard Golden Rectangles, each
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FIGURE 97
Building blocks for the scaffolding of the icosahedron

with a slit of length p up the middle; in order to carry out the construction
one of the three slits should be continued up to the boundary (Figure 97).

The edges of an icosahedron may then be picked out, on this scaffold-
ing, by attaching cords, with pins, between the appropriate vertices of the
rectangles.

Question 47. How many such scaffolds made from 3 orthogonal Golden
Rectangles are there in the icosahedron?

The negative solution s, = —t of the equation s> +s — 1 = 0 leads to
a triangle ABC in the position of Figure 98a.

FIGURE 98
The second solution: The Great Icosahedron

This triangle is part of the “great icosahedron” [Col, p. 94]. The great
icosahedron is also called the Poinsot-star polyhedron after its discoverer
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Louis Poinsot (1777-1859). It consists, just like the usual icosahedron, of
20 equilateral triangles, 5 of which come together at each vertex; the poly-
hedron however has self-intersections and is not convex. Figure 98b shows
the great icosahedron, with an equilateral triangle emphasized by shading.

There follow some problems and exercises in connection with the reg-
ular solids.

Question 48. With the help of appropriate diagonals of the icosahedron,
20 equilateral triangles may be constructed that are parallel to the triangular
faces and are enlarged, with respect to them, by a factor r. How does this
work?

Question 49. A dodecahedron is inscribed in the unit cube (Figure 99a).
How long is an edge of the dodecahedron in relation to an edge of the cube?

<

EN e %

FIGURE 99
Inscribed dodecahedron and icosahedron

Question 50. An icosahedron is inscribed in the octahedron (Figure 99b).
At which points along the edges of the octahedron do the vertices of the

icosahedron lie?

Question 51. Where do the vertices of the dodecahedron lie, relative to the
octahedron (Figure 100a)?

Question 52. A dodecahedron can be circumscribed about a cube (Figure
100b). Where do the vertices of the dodecahedron lie, relative to the cube?
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a)

FIGURE 100
Dodecahedron with octahedron and cube

6.3 RHOMBIC SOLIDS

Rhombic solids are figures that are bounded exclusively by congruent
rhombi. The simplest example is the cube, which is in fact bounded by
squares. We will see that these rhombic solids are closely related to the
regular solids. With some of these rhombic solids the Golden Section turns
up as the ratio of the lengths of the diagonals of the rhombi.

6.3.1 The Rhombic Dodecahedron

We place on each of the 6 faces of a cube a pyramid, whose triangular faces
are at an inclination of 45° to the base (Figure 101). Thus the triangular
faces of neighboring pyramids lie in a plane; the entire solid, that is, the
union of the cube and the six pyramids, is bounded not by 24 triangles but by
12 congruent rhombi. It is called the rhombic dodecahedron (Figure 102a).

We see from the design of the rhombic dodecahedron (Figure 101a)
that the diagonals of the rhombic faces are in the ratio of +/2:1. The 12
short diagonals are the edges of the original cube. The 12 long diagonals of
the rhombic faces form the edges of an octahedron (Figure 102b).

We can thus also construct the rhombic dodecahedron by placing eight
triangular pyramids on the faces of an octahedron; the angle of inclination
of the side-planes to the base triangle must then be chosen so that a smooth
passage to the side-planes of the neighboring pyramids can be guaranteed.

Question 53. How big is this angle of inclination between the faces?
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FIGURE 101
Pyramids are erected on the faces of the cube

a) _ b)

FIGURE 102
Rhombic dodecahedron with inscribed octahedron

The rhombic dodecahedron is a semi-regular solid. Certainly the rhom-
bic faces are congruent to each other, but they are not regular polygons.
Moreover, the rhombic dodecahedron has two different kinds of vertices;
in six of the 14 vertices, four rhombi come together at their acute angles.
These six vertices are the vertices of an inscribed octahedron. In the eight
other vertices, the vertices of the inscribed cube, three rhombi come together
at their obtuse angles.

The rhombic dodecahedron is a so-called “space-filler.” Space may
be filled with equally big rhombic dodecahedra without leaving any holes
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[Col, p. 70]. To see this, we think first of all of space filled with equally
big cubes, whose vertices form a cubical lattice. Further, we think of these
cubes in the sense of a spatial chessboard pattern colored alternately black
and white. Then we subdivide each black cube into six pyramids with their
apex at the center of the cube and their bases the square faces of the black
cube. When we attach the bases of the black pyramids to the neighboring
white cubes, we obtain a partition of space into rhombic dodecahedra.

Question 54. What planar pattern arises if we carry out the corresponding
procedure with a two-dimensional chessboard pattern?

To show the space-filling property with an empirical model, we need
a sufficiently large number of equal rhombic dodecahedra. The next section
1s concerned with this.

By means of Figure 103 we see that the rhombic solid belonging to the
tetrahedron is the cube.

FIGURE 103
The cube as rhombic solid belonging to the tetrahedron

6.3.2 Braided Models for Cubes and Rhombic Dodecahedra

In this section we will get to know a simple method for constructing
cubes and rhombic dodecahedra by braiding straight strips of paper (see
[H/P], [Wal]).2 Braiding is indeed one of the oldest cultural techniques,
and, on its own, gives us many ways for producing a cube-shaped basket.
Pargeter [Par] has, in fact, shown that every polyhedron can be built as a

2Braiding is sometimes called plaiting, particularly in the U.K.
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braided model. Here we will aim to find the simplest possible braided mod-
els, with the smallest number of strips.

For the simplest braided model of the cube we need three strips of
paper (Figure 104a). The three strips are folded along the dashed lines, so
that, in theory, six squares are produced. For practical reasons the strips
must be cut a little narrower than the theoretical correct breadth, so that,
in braiding, the thickness of the paper can be allowed for. With paper the
strength of 80g/m? (in the U.S. 24 Ib paper works fine) it is enough to
allow about 0.5 mm of play. These strips are then braided together as in
Figure 104b.

FIGURE 104
Braiding strips and the braided cube

The last two squares on the strips (emphasized in Figure 104a) are to
be identified with the first two; in the braided model these squares which
are to be identified lie on top of each other and serve to stabilize the figure.

If we think of the width of the strips as reduced, we obtain an insight
into the structure of the braid (Figure 105a). This structure consists of three

b)

FIGURE 105
The braided structure
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linked rings with the following property: If one of the rings is removed, then
the other two separate. Figure 105b shows the same structure represented
by three rings lying in a plane. This design was the emblem of the Bor-
romeo family. To this noble Italian family, going back to the 13th century,
also belonged the Prince of the Church Cardinal Carlo Borromeo (1538—
1584), who was canonized in 1610 [Fri]. This configuration has become
well-known as the Borromean rings.

Question 55. What connection is there between the braided structure of
Figure 105 and the skeletal Golden Rectangle of Figure 96b?

The braided model of the rhombic dodecahedron requires zigzag
strips. Figure 106a shows how such a zigzag strip runs round the rhombic
dodecahedron. This zigzag strip consists of six rhombi whose diagonals
are in the ratio 4/2:1; it runs like an “equator,” round the rhombic dodec-
ahedron. The associated “North-South axis” is an interior diagonal of the
cube used to construct the rhombic dodecahedron. Since a cube possesses 4
interior diagonals there are 4 such strips round the rhombic dodecahedron.
Figure 106b shows the unwinding of such a zigzag strip; there are again
two additional elements added (emphasized in the figure), which serve to
stabilize the braided model.

FIGURE 106
Zigzag strips round the rhombic dodecahedron

We now give some practical tips for producing the zigzag strips of this
model: the acute angle o of a rhombus with diagonals in the ratio +/2:1 is
given by & = arctan~/8 =~ 70.53°. We fold a rectangular sheet of paper
three times and cut from the resulting eight-layered strip of paper rhombi
with acute angle « (Figure 107). To prevent the paper shifting during the
cutting, we cut “against the main fold,” that is, in the direction of the arrows
as shown in Figure 107. Unfolding the rhombi provides the required zigzag
strip.

Particularly beautiful, crystal-like models are obtained by using trans-
parency film (of the type used on overhead projectors). We can also work
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FIGURE 107
Scissor-cut technique

with colored transparencies. If, in particular, we use, for the four strips, three
transparencies in the primary colors yellow, red and blue, and one colorless
transparency, the result is a remarkable play of color. The rhombic dodeca-
hedron affords six viewpoints, each through two opposite parallel rhombic
faces. In 3 of these 6 cases the colorless strip crosses a strip in a primary
color, so we see thombi in the three primary colors. In the other 3 cases two
primary colors cross each other, leading to the mixed colors orange, green
and violet.

We can now create at small expense a great number of models of the
rhombic dodecahedron braided from paper, and thus illustrate the space-
filling property of the rhombic dodecahedron. To demonstrate this property
we can with advantage use a foundation (or base) in the form of an “egg
carton.” Such foundations may just as well be braided from the strips of
Figure 106b; the length of the strips depends on the desired size of the
foundation. There are two possibilities for braiding a foundation from such
strips (Figures 108 and 109). The space-fillings resulting from these differ-
ent foundations are, however, congruent, and one may be obtained from the
other by turning it appropriately.

FIGURE 108
Acute-angled egg carton
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FIGURE 109
Obtuse-angled egg carton
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FIGURE 110
Slanting-strip braided model of the cube

The braided model of Figure 104b is not the only possibility for pro-
ducing the braided cube. The *‘slanting-strip braided model” of the cube
(Figure 110b) can be built with the four strips of Figure 110a; the braided
structure of the model is the same as for the rhombic dodecahedron.

6.3.3 The Rhombic Triacontahedron

By analogy with the procedure for constructing the rhombic dodecahedron,
we now place triangular pyramids on the faces of an icosahedron, in such a
way that triangular faces of neighboring pyramids combine to form rhombi.
Each of the 30 edges of the icosahedron thus becomes the long diagonal of
a rhombus; we obtain a solid bounded by 30 rhombi, the so-called rhombic
triacontahedron (Figure 111a).
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FIGURE 111
The rhombic triacontahedron

In the same way we can erect pentagonal pyramids on the faces of the
dodecahedron; we obtain the same rhombic triacontahedron (Figure 111b).
The 30 dodecahedral edges become the short diagonals of the rhombic
faces.

To ascertain the ratio of the lengths of the diagonals of the rhombi we
need to take a frontal view of the rhombic triacontahedron (Figure 112).

FIGURE 112
Frontal view of the rhombic triacontahedron

In this frontal view the individual rhombi appear distorted, but, when
drawn in, neither the short diagonal k nor the long diagonal d are distorted
with respect to real length. We interpret this figure as a planimetric plane
figure. For the circumradius r we have

k cos 36°

P En36° | sin36°
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and, further, for the length d we have
d = 2r sin36° = 2k cos 36°.

Since cos36° = 5 (see Section 3.6), it follows that d:k = ; the di-
agonals of the rhombi are therefore in the Golden Ratio, which justifies the
description “Golden Rhombi.” For the acute angle of the Golden Rhombus
there results

o = arctan 2 =& 63.435°.

Analogously with the rhombic dodecahedron, the rhombic triaconta-
hedron can be built as a braided model from zigzag strips. Six zigzag strips
run round the rhombic triacontahedron (Figure 113a). These zigzag strips
are put together from 10 Golden Rhombi; Figure 113b shows the unfolding
of such a strip.

FIGURE 113
Zigzag strip for the rhombic triacontahedron

6.3.4 Rhombohedra

A rhombohedron, or more precisely a rhombic hexahedron, is a paral-
lelepiped bounded by six congruent rhombi, that is, a “distorted cube.”
With six given congruent rhombi there are two different possible rhombo-
hedra, the *“‘acute” and the “obtuse” rhombohedron (Figure 114).

We can think of the acute rhombohedron as arising from a cube which
we pull apart at two opposite vertices. At these two vertices we thus have
only acute angles, while at the other six vertices there are two obtuse
rhombus-angles and one acute rhombus-angle. We obtain, correspondingly,
the obtuse rhombohedron by compressing a cube at two opposite vertices,
at which, then, only obtuse angles occur, while at the other six vertices there
are two acute rhombus-angles and one obtuse rhombus-angle.



Regular and Semi-regular Solids 109

FIGURE 114
The acute and obtuse rhombohedra

Figures 115a and 115b show an “unfolding” of the acute and of the
obtuse rhombohedron.

FIGURE 115
Unfolding the acute and the obtuse thombohedron

These unfoldings are affine distortions of the corresponding unfold-
ing of the cube. There are, however, also unfoldings of rhombohedra which
are not affine distortions of the corresponding unfolding of the cube (Fig-
ure 116) [Kow, p. 25].

a) b)

FIGURE 116
Another unfolding of the acute and of the obtuse rhombohedron
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Question 56. The acute and obtuse rhombohedra have, trivially, the same
surface area. How are their volumes related?

Despite their differences, both the acute and the obtuse rhombohedra
can be constructed as braided models using the same “zigzigzagzag™ strips
(Figure 117).

FIGURE 117
Zigzigzagzag strips for the rhombohedron

We will see in the next section that the rhombic triacontahedron can be
broken up into “Golden Rhombohedra,” that is, into rhombohedra bounded
by Golden Rhombi.

6.3.5 Subdivision of the Rhombic Triacontahedron

The rhombic triacontahedron is built with closed zigzag strips, which are
put together from Golden Rhombi. The subdivision process described be-
low is, however, valid not only for the rhombic triacontahedron, but, in gen-
eral, for convex bodies that are bounded by parallelograms that may be put
together to form closed zigzag strips.

The simplest example of such a body is the parallelepiped, which may
be made from 3 strips. Figure 118 shows an example of three such strips.

Question 57. How many different parallelepipeds can be braided from
these three strips?

A solid bounded by parallelograms, built with at least 4 zigzag strips,
can be taken apart as follows: We remove one strip, and shorten each of the
remaining strips by removing the two diametrically opposite parallelograms
by which the strip we have removed was crossed. Further, one half of the
braided model must be “rebraided,” that is, “strip on top” and “strip below”
must be interchanged, since through the removal of a strip the braided struc-
ture would be disturbed. Through this dismantling step we obtain a reduced
solid, which can be further dismantled. Continued dismantling leads finally
to a parallelepiped, which is braided from 3 zigzag strips.
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FIGURE 118
Strips for a parallelepiped

Such a dismantling step can be understood geometrically as follows:
The “braided” part of the surface of the solid undergoes a parallel shift of
one edge length inward, in fact, in the direction of those edges that break up
the zigzag strip to be removed into parallelograms. The part of the solid that
falls away under the parallel shift may be subdivided into parallelepipeds;
each parallelepiped of this subdivision has one parallelogram face on the
original surface of the body and one on the shifted surface, as well as four
other parallelogram faces that are parallel and congruent to certain parallel-
ograms of the removed zigzag strip.

We now apply this dismantling step to the rhombic triacontahedron.
The first dismantling step provides five acute and five obtuse Golden Rhom-
bohedra, leaving a rhombic icosahedron bounded by 20 Golden Rhombi
(Figure 119a). The braided model of the rhombic icosahedron consists of 5
zigzag strips as in Figure 119b. These strips arise by shortening the zigzag
strips for the rhombic triacontahedron, that is, by removing two diametral
rhombi (Figure 120).
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FIGURE 119
The rhombic icosahedron

TIITIRE

FIGURE 120
The black diametral rhombi are removed

The second dismantling step reduces the rhombic icosahedron. It pro-
vides three acute and three obtuse Golden Rhombohedra, leaving one solid
bounded by twelve Golden Rhombi. This solid will be called a “Rhombic
Dodecahedron of the second kind” (Figure 121a) to distinguish it from the
rhombic dodecahedron described earlier. The rhombic dodecahedron of the
second kind was first described by Bilinski in 1960 [Bil]. Bilinski showed
that it is likewise a “‘space-filler.”

FIGURE 121
The rhombic dodecahedron of the second kind

The braided model of the rhombic dodecahedron of the second kind
requires the two strips of Figures 121b and 121c.

The third and final dismantling step separates the rhombic dodecahe-
dron of the second kind into two acute and two obtuse Golden Rhombohe-
dra.
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Conversely, the figures occurring in the subdivision of the rhombic
triacontahedron can be built up from Golden Rhombohedra. The following
table gives information on the number of acute and obtuse rhombohedra
required:

Number of Golden Rhombohedra

acute obtuse total
Rhombic triacontahedron 10 10 (5) =20
Rhombic icosahedron 5 5 () = 10
Rhombic dodecahedron (2nd kind) 2 2 () =4
Golden Rhombohedron G) =1

By using 6 different colors for the six zigzag strips for the rhombic tri-
acontahedron, the 20 rhombohedral tricolored building bricks can be char-
acterized by the (g) = 20 possible color combinations. This combinatorial
property can be explained as follows: The rhombic triacontahedron con-
tains exactly 6 edge-directions. To each such direction belongs exactly one
color, namely, the color of that zigzag strip whose transverse folds form
the parallel edges in the given direction. The rhombic icosahedron contains,
then, 5 edge-directions, the rhombic dodecahedron of the second kind 4,
and, finally, the Golden Rhombohedron 3.

Question 58. How big are the so-called dihedral angles (angles between
two faces coming together along an edge) in the acute and the obtuse Golden
Rhombohedra?

Question 59. What symmetries do the rhombic triacontahedron, the rhom-
bic icosahedron, the rhombic dodecahedron of the second kind, and the
acute and the obtuse rhombohedra exhibit?

6.3.6 Pictures of Hypercubes

Hypercubes are figures in higher dimensions corresponding to the cube in 3
dimensions. Two-dimensional pictures of such hypercubes may be obtained
by the following procedure (Figure 122, compare [Col, p. 123]): We begin
with a point (“zero-dimensional cube”) and displace it along a vector. The
segment defined by the initial and terminal points (‘“‘one-dimensional cube”)
we displace in another direction and thus obtain a square (“two-dimensional
cube”). In Figure 122c¢ this square is represented as distorted. Through dis-
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FIGURE 122
Hypercubes

placement in further directions there result the familiar three-dimensional
cube (Figure 122d), the four-dimensional hypercube (Figure 122¢), etc.

This building process proceeds in reverse compared to the dismantling
process described in the previous section. The three building steps from
cube to 6-dimensional hypercube thus correspond to the three dismantling
steps from rhombic triacontahedron to Golden Rhombohedron. Since the
rhombohedron may be viewed as a distorted image of a 6-dimensional hy-
percube, it turns out that the rhombic triacontahedron may also be inter-
preted as a distorted image of a 6-dimensional hypercube. The key point,
that the 6-dimensional hypercube has 26 = 64 vertices, while the rhom-
bic triacontahedron has only 32, is to be understood as meaning that the
remaining 32 vertices are hidden, just as in a 2-dimensional picture of the
3-dimensional cube one vertex 1s, in general, hidden. Similarly, the rhombic
icosahedron is an image of the 5-dimensional cube (with 22 of the 32 ver-
tices visible) and the rhombic dodecahedron an image of the 4-dimensional
hypercube (with 14 of the 16 vertices visible).
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6.3.7 A Star Body

We have seen that the rhombic triacontahedron may be regarded as put to-
gether from 10 acute and 10 obtuse Golden Rhombohedra. We now con-
struct a solid that is put together from 20 acute Golden Rhombohedra.
As preparation we first subdivide the icosahedron into 20 triangular pyra-
mids, whereby we join the vertices of the icosahedron to its midpoint (Fig-
ure 123).

These pyramids have an angle of 72° between their faces. Since the
acute Golden Rhombohedron has the same angle bet veen its faces, we can
replace the triangular pyramids by acute Golden Rhombohedra.

In this way there arises a star-shaped solid (Figure 124) that is assem-
bled from 20 acute Golden Rhombohedra. It has 20 peaks and is bounded
by 60 Golden Rhombi.

The braided model of this rhombic star-body requires exactly the same
zigzag strips as the rhombic triacontahedron (Figure 113b), but twice as
many, that is, 12. Since the star-body is not convex, the strips must also be
folded on a zigzag principle (as for the accordion).

Figure 124 shows how such a strip runs round the star-body. It does
not go round like a “great circle,” but goes round the star-body like a “small
circle,” since the point-reflection of this zigzag strip in the center of the star-
body maps the strip not onto itself, but onto a second strip which nowhere
crosses the first strip. In creating the braided model we can therefore use the
same color for both strips, so that, as with the rhombic triacontahedron, we
can manage with 6 colors without having two neighboring Golden Rhombi
of the same color.

FIGURE 123
Replacement of the triangular pyramid by an acute Golden Rhombohedron



.m
G
Q
v
c
Y
32
O
O
o
L
-

A\
e

Yo7\
SN, &

7y

116



CHAPTER 7
Examples and Further Questions

In this chapter we find individual examples which can be further studied
independently of each other. Sometimes the solutions are given, sometimes
they are left to the reader.

7.1 NUMBER GAMES

Example 1

What positive number x is smaller by 1 than its reciprocal?
We obtain the condition x + 1 = % so x2 + x — 1 = 0 with the
positive solution p =~ 0.61803, and reciprocal % = 7 & 1.61803. These

two numbers are therefore the same “after the decimal point.”

Example 2

Are there other positive numbers with the property that they and their
reciprocals are the same after the decimal point (compare Section 3.1)?
We seek positive numbers x which are smaller by n than their recipro-
cals, thus

x+n=—-, nelN.

b
We find as positive solutions of x2 + nx — 1 = 0 the values

—n+4++/n2+4
5 :

X =

117
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For the reciprocals we find

n++n?+4
x 2 '

The following table shows some solutions; even the trivial case n = 0
is included. The Golden Section appears in the first non-trivial case.

n number reciprocal
0 1 1
1 p=="15%061803 ©=155 161803

2 —14++/2=041421 1+ +/2 ~ 2.41421

3 =2/Bx5030278 21 330278

4 —2+44/5=0.23607 2 4 /5 ~ 4.23607
Example 3

What positive numbers are smaller by 1 than their squares [Lau, p. 173]?
The condition x> = x + 1 yields the positive solution t. The question
about positive numbers that are smaller by n € N than their squares leads

to the equation x? = x + n with the positive solution
14++/14+4n
X = .
2

Here, too, the Golden Section is the first non-trivial case.

Example 4 The Golden Number System

Our decimal system is built on the base 10: the digits and their positions
tell us how often the corresponding power of 10 is contained in the number.
Thus for example

70215 = 70000 + 0000 -+ 200 + 10 + 5
—7x10*4+0x10°+2 x 102+ 1 x 10! +5 x 10°

We can use any natural number b > 1 as base for a number system:
the best-known system after the decimal system is the binary system, which
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is based on the number b = 2. The binary system only uses the digits 0 and
1, since the number two is already represented by the sequence 10 of digits.
The binary numeral z = 10011011, for example, signifies in the decimal
system

2=1x2"4+0x2°4+0x 2 +1x2*+1x23
+0x224+1x2 41 %20
=1284+04+0+164+8+0+4+2 41
= 155
To check: To the binary fraction 1001101.1 corresponds the decimal frac-
tion 77.5, to the binary fraction 100110.11 the decimal fraction 38.75.

In general, the number system with the whole number base b only uses
the digits 0,1,2,...,b— 1.

We seek now to construct a number system with the base b = 7. In this
“Golden Number-System” we must therefore break down given numbers
into powers of t. For the natural numbers we obtain:

Number Representation in the
in base 10 Breakdown Golden Number System
1 P 1
2 rl 4772 10.01
3 N 100.01
4 24194172 101.01
5 TN NE Sal N 1000.1001

These breakdowns are certainly not unique. Thus the number 1 can
also be broken down in the following way:

1 =11 +t—2

or
1=‘L'_2-|—‘L'—3-I—‘L'_4-I—---=Zr_k.

The number 1 can thus be written in the Golden Number System:

1=0.11=0.0111...
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For your consideration: The number 3 can be written in the Golden Num-
ber System as 100.01, but also as 11.01; the digit sequences ... 100... and
...011... are always equivalent in the Golden Number System.

We obtain a unique breakdown if we require that we always use the
biggest possible powers of t. Thus we find the representations:

Decimal system Golden Number System

0 0

1 1

2 10.01

3 100.01

4 101.01

5 1000.1001

6 1010.0001

7 10000.0001
8 10001.0001
9 10010.0101
10 10100.0101
11 10101.0101
12 100000.101001
13 100010.001001
14 100100.001001
15 100101.001001

Question 60. How can we continue the table? Why are there never two 1’s
in neighboring positions?

With regard to the frequency of 1’s there are two extreme cases:

(a) The number of 1’s is maximal. Since 1’s only appear in isolated posi-
tions, 1’s and 0’s must alternate. This is the case, for example, with the
numbers 4 and 11.

(b) A 1 appears only at the beginning and the end. This is the case, for
example, with the numbers 1, 2, 3 and 7.

The following table collects together the first occurrences of these ex-
treme cases:
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Decimal system  Golden Number System

1 1

2 10.01

3 100.01

4 101.01

7 10000.0001

11 10101.0101

18 1000000.000001
29 1010101.010101
47 100000000.00000001
76 101010101.01010101

Question 61. With the exception of the number 2 all these numbers require
in the Golden Number System an odd number of digits. The sequence of
these numbers, with 2 excluded, that is {1, 3,4, 7, 11, 18, 29, 47, 76, .. .}
satisfies the recurrence relation a,4+2 = ap4+1 + a, with initial values
a; = 1,a2 = 3. Why? It is thus a generalized Fibonacci sequence. This
sequence with initial values 1 and 3 is called the sequence of “Lucas num-
bers.”

1 1

b

Question 62. What representation do the fractions have in the

Golden Number System?

Lnj—

’ ?

N
w
N

7.2 GEOMETRY, POINTS OF INTERSECTION
Question 63.

(a) Where does the parabola y = x2 — 1 cut the straight line y = x (Fig-
ure 125a)?

N
Cd

FIGURE 125
Intersections with parabolas
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(b) Where does the hyperbolay = 1 + % cut the straight line y = x?

Question 64. Where do the circle x2 + y? = 3 and the hyperbola xy = 1
intersect?

Question 65. Show that the four points of intersection of the parabolas y =
a —x? and x = a — y? lie on a circle. What are the coordinates of the points
of intersection fora = 1 and a = 27

Question 66. In the square of Figure 125b an upright parabola and a
parabola on its side are given. Show that the four points of intersection lie
on a circle.

Question 67. Find the points of intersection of the parabola y = x? — 1
with the hyperbola y = % + 1.

Question 68. Where, and at what angle (Figure 126), do the curves
y = cos x, y = tan x intersect [Reu, p. 298]?

Question 69. How big is the area of the sector ABC D in Figure 126?

Question 70. A cross constructed from 5 squares of side-length 1 is cut by
a square enclosing an area equal to that enclosed by the cross (Figure 127a).
Find the indicated length x.

y tan x
A
D
1¢ C
COS x
O O >.x
A B 1
FIGURE 126

Graphs of cos x and tan x
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FIGURE 127
Figures enclosing the same content

Question 71. A pyramid with rectangular base is divided by a plane, which
contains a base-edge, into two parts of equal volume (Figure 127b). Find the
ratio AB:BC.

Question 72. A square is inscribed in a semicircle (Figure 128a). Find the
ratio AB:BC.

FIGURE 128
The Golden Section in a circle

Question 73. To an equilateral triangle we draw the circumcircle and a line
joining midpoints of sides (Figure 128b). How does the point B divide the
segment AC? (Construction of the Golden Section due to George Odom
[B/P, pp. 22, 23].)
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Question 74. In a right triangle with hypotenuse ¢ = 1, let the cathetus! b
be equal in length to the non-adjacent hypotenuse segment p (Figure 129a).
Show that then b = p = p.

From this triangle we obtain the relation

, /1
arcsin p + arcsin ,/p = 5

Example 5

The isosceles trapezoid with parallel sides of length 1 and > and slop-
ing sides of length p has its circumcenter on the long parallel side (Fig-
ure 129b). From this we obtain

. . 3 T
2 arcsin p + arcsin p” = 5

7.3 EXTREMAL VALUE PROBLEMS

Question 75. An isosceles triangle, of sloping side of minimal length, has
inradius 1. How long is the base-altitude [Reu, p. 299]?

Question 76. In an isosceles triangle, with sloping sides of a given length,
the inradius is to be maximal. How big is this?

FIGURE 129
Right triangle and isosceles trapezoid

I'We recall that a cathetus is one of the short sides of a right triangle.
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Question 77. A rectangle with sides in the ratio A:1 is inscribed in a cir-
cle and then rotated about the center through 90°. For what A is the area
enclosed by the union of the two rectangles (a cross) maximal?

Question 78. A right circular cylinder of maximal surface area is inscribed
in a sphere [Reu, p. 299]. How big are its base-radius and height?

Question 79. In a rectangle of length 1 a right triangle with cathetus-ratio
2:1 is inscribed according to Figure 130a. For what value of the parameter
p is the ratio of the area of the triangle to that of the rectangle a minimum?

v 4

1 1
a) b)
FIGURE 130

The contribution of the triangular area is to be a minimum

Question 80. In a rectangle of length 1 a right triangle, with the cathetus-
ratio 2:n, is inscribed according to Figure 130b. For what value of the pa-
rameter p is the ratio of the area of the triangle to that of the rectangle a
minimum?
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7.4 GOLDEN PROBABILITIES

Example 6

First, an “unfair” game: Two persons A and B alternate in throwing a
coin. A starts. Whoever first throws a “head” wins.
The game is obviously unfair, since A has the bigger chance of win-
ning. If we denote by p the probability of obtaining a “head” on a throw, it
follows that the probability that A wins is:

D _ 1
1-(1-p)? 2-p

P(AWinS)=p+(1—p)2p+(]—p)4p+ v =

For p = % it follows that P(A wins) = %— We now change the game
so that A still starts, but B has two throws to A’s one; that is, we use the
throwing sequence ABBABB - --. Then

N 3 N6 e — p
P(Awins) =p+(1—-p)yp+A—-p)p+ T~ a=p3

For p = % it follows that P(A wins) = %. This is still unfair, and

indeed favorable to A. So long as A starts this is always the case if p > %
We try now, by reducing p, to make the game fair. A probability p < %
cannot be achieved with a perfect coin, but could, for example, be achieved

by a Wheel of Fortune. For a fair game we set P(A wins) = %, thus

p 1

1—(1-p3 2

This yields the cubic equation 2p = 1 — (1 — p)3 with the three so-
lutions p; =0, py= % (3 - \/5) ,» D3 = % (3 — \/5) Of course, the

solution p; = 0 is spurious. Since 0 < p < % p3 is the solution we seek,
the desired probability. As one easily calculates

1 2
p3—--2—<3—‘\/§)—ﬂ =1-0p.

The game is thus fair if the probability at each turn, of not being successful,
is p.
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Example 7

Unfortunately it is not possible, by altering p, to make the game with the
sequence ABABAB - - - fair. From the fairness condition

P(A wins) = —1— = l
2—-p 2
it follows that p = 0. Thus the game is unattractive.Z On the other hand,
we can alter the game, in that we choose the winning sectors on the Wheel
of Fortune (Figure 131) for A and B to be complementary. If it is A’s turn,
then A wins if the pointer lands in sector A. If it is B’s turn, then B wins if
the pointer lands in sector B. We denote by p the ratio of the sector area A
to the area of the circle. Then

P(Awins) = p+(1 - p)p* +(1 - py?p> 4+ = — .
1-(1—-pp

FIGURE 131
Wheel of Fortune

The fairness condition yields

P (A wins) = £ =

1
1-(1-pp 2
or p2 —3p +1=0.For0 < p < 1 this is satisfied by
1 2
= = —_ = =l— .
p 2(3 ~/§) p p

The Wheel of Fortune must therefore be divided in the ratio of the Golden
Section (notice that B is the larger sector).

Examples 6 and 7 were conveyed to me by Hansjiirg Stocker, Waidenswil
(Switzerland).

2Actually, P(A wins) = 0if p = 0; for then neither A nor B can win!






Answers to Questions

We give below the answers to the numbered questions in the text.

Question 1. There arises a regular hexagonal net (Honeycomb net).

Question 2. The reduction factor is f = —“é—i .

Question 3. The reduction factor is f = %

Question 4. Figure 10: Dimension D = 2.

Figure 11: Dimension D = %3 = 1.5850.

Question 5. Answers will, of course, vary.

Question 6. A quadrant of Figure 16 corresponds to the outlines of Fig-
ure 11.

V2

Question 7. In the fractal of Figure 10 the reduction factor is f = 5= on
the other hand, in the fractal of Figure 20, f = p.

Question 8. The same as in Figure 22.

Question 9. The vertices of the two-vertex shapes (lunes) of Figure 23 cor-
respond to the midpoints of the squares of Figure 22.

Question 10. Repetition of the construction of Figure 24 leads to a geo-
metric sequence with common ratio t.

Question 11. Iteration of the construction of Figure 26.

129
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Question 12. Inradius = p.

Question 13. With grid length 1 we have | AB | = 3p; the calculation uses
the Law of Cosines on the triangle ABD.

Question 14. In the right triangle with hypotenuse V2 (the radius of the
circle) and one cathetus 4 (the altitude of the triangle), the other cathetus

measures % From this the assertion follows.

Question 15. The diagonal of length t is divided into 3 segments of length
p, p* and p.

Question 16. In Figures 35a and 35c¢ the construction of the Golden Sec-
tion according to Figure 24 is used, and in Figure 35b the construction ac-
cording to Figure 26 is used.

Question 17. Yes; the construction accords with Figure 30.

Question 18. Figure 3, f = p; Figure 37, f = p?; Figure 38, f = p?;
Figure 39, f = p.

Question 19. In the Golden Rectangle of length 1 and width p, we have

|AB| = |BC| = |CD| = \/li_pf' The zigzag path has pieces of equal

length.

Question 20. The midpoints lie alternately on one of two mutually perpen-
dicular straight lines of gradient —% and 3.

Question 21. Fallacy: If the procedure terminates, the numbers are com-
mensurable. It does not follow from this that, if the procedure does not
terminate, the numbers are incommensurable.

Question 22. Basically one can draw through any sequence of points a so-
called “basket curve,” that is, a sequence of circular arcs with smooth tran-
sitions at the given points. In Figure 60a a sequence of alternating 60°- and
120°-arcs may be drawn, in Figure 60b a sequence of 120°-arcs.

Question 23. The segment F| A measures 2t grid units.
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Question 24. The long parallel side measures t times the short parallel
side.

Question 25. The proper Samaritan knot yields a hexagon with a symmet-
ric color arrangement about a vertical axis; the false Samaritan knot pro-
vides a hexagon with alternating color sectors.

Question 26. There arises the contour of a baseless pentagonal pyramid
with equilateral sloping faces.

Question 27. The construction according to Figure 26.

Question 28. The intersection of the circle, center M, through Q with the

straight line P O yields a right triangle with hypotenuse o and cathetus %

For the angle « at M in diagram (9) of Figure 78. we have: coso = .

2p
From this it follows that o« = 36°.
Question 29. Solder perpendicular to a leg at a 36° angle, then fold up.

Question 30. Fold-construction of a right triangle with hypotenuse 1 and
cathetus %

Question 31. a, | a,, if m is an integer multiple of n.
Question 32. If the sequence is written {a,}, then a,4+2 = 3an+1 — an.
Question 33. It is periodic with period 6.

Question 34. After finitely many steps, the sequence simply repeats c, ¢, 0,
where c is the gcd of the initial values.

Question 35. Sequences of the form b, = c(1 — V2)n.
Question 36. Sequences of the form a, = c¢(1 £+ N
Question 37. The total number of ancestors, the number of a-ancestors,

and the number of b-ancestors, all satisfy the recurrence relation
an+2 = 2ap41 + an.
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Question 38. The Pythagorean triangles have almost the cathetus-ratio 1:2,
which is necessary with the constructions of the Golden Section.

Question 39. The power " of a solution ¢ of the mth degree equation
X" = pix™ 4 pox™ 2 4 4 pue1X + Pm
can be represented in the form
t" = apt™ 4 agnt™ 2 - @it + Gmn.

Then the sequences {a;,}, j = 1,2, ..., m, all satisfy the same recurrence
relation

Ajn+m = P18jn4m—1 + P28jn4m—-2 + - -t + Pm—-1Gjn+1 + PmQjn.

Question 41. (a) For ¢c; = —3 and for ¢; = 2 the sequences are constant.
The value —3 is stable, the value 2 unstable. (b) The values +4/6 are con-
stant. For an arbitrary initial value a # O there arises the period 2 sequence

Question 42.

(1) Period 6, Antiperiod 3 (i.e., a,43 = —ay,).
(1) We have a,,14 = —4a,.

(111) Period 8, Antiperiod 4.

(iv) Period 5.
(v) Period 12, Antiperiod 6.

(vi) Anthmetic sequence.

(vii) No recognizable pattern.

Question 43. Any initial value w) > —1 leads to a limiting value 7.

Question 44. (a) No limiting value; we get the periodic sequence {1, 0, 1,0
(b) Limiting value p.

- 2 .« o
Question 45. w = pEN P A ”5"4‘] (w must be positive).
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Question 46. Dodecahedron: height-levels 0, p2, p, 1. Icosahedron: the
same.

Question 47. 5

Question 48. Let the base triangle be at level 0, the roof triangle at level 1.
Then the triangle parallel to the base triangle and enlarged by a factor of t
will be at level p.

Question 49. The reduction factor is p2.

Question 50. The vertices of the icosahedron divide the edges of the octa-
hedron in the Golden Ratio.

Question 51. The vertices of the dodecahedron divide the edges of the oc-
tahedron in the ratio p2:1.

Question 52. The “top edge” of the dodecahedron has height g and length
p relative to the covering square of the cube (with edge length 1).

Question 53. It measures arctan v/2 =~ 54.7456°.
Question 54. A square grid with mesh width /2.
Question 55. They are topologically equivalent.

Question 56. The obtuse rhombohedron has a smaller volume. If the acute
angle of the face-rhombi is smaller than 60°, only the acute rhombohedron
is possible.

Question 57. There are two shapes: the “‘acute” parallelepiped, which con-
tains two opposite vertices at which exclusively acute parallelogram-angles
come together, and the “obtuse” parallelepiped, which contains two op-
posite vertices at which exclusively obtuse parallelogram-angles come to-
gether. For each shape there are two braid-variants, obtained by interchang-
ing the “top” and “bottom” strips as they cover each individual face.

Question 58. Acute Golden Rhombohedron: 72°. Obtuse Golden Rhom-
bohedron: 36°.
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Question 59. Rhombic triacontahedron: the same as for the icosahedron
or dodecahedron. Rhombic icosahedron: point symmetry, a five-fold axis
of symmetry and five two-fold axes of symmetry, five planes of symme-
try: Rhombic dodecahedron of the second kind: the same as for the right
parallelepiped: point symmetry, three two-fold axes of symmetry (pairwise
orthogonal), three planes of symmetry (pairwise orthogonal). Acute and ob-
tuse rhombohedron: point symmetry, a three-fold axis of symmetry, three
two-fold axes of symmetry.

Question 60. The first part is left to the reader. The second part is a conse-
quence of the equivalence of ...100...and...011..., together with the
requirement that we always use the largest possible power of .

Question 61. This follows from the rules of addition and the writing of the
numerals in the Golden Number System.

Question 62. They are:

1 — 1 R
= 0.010, 3= 0.00101000,

N

1 e
1= 0.001000, % = 0.00010010101001001000.

The part under the bar is, of course, repeated.
Question 63. (a) At (7, 7) and (—p, —p). (b) At (7, t) and (—p, —p).
QueStion 64. At (T’ p)v (_Ta _p)’ (p, T)a (_pv _T)-

Question 65. The four points of intersection have in general coordinates:

( 1+«/1+4a —1+«/1+4a)

1—+/1+4a — 1+4a

1+J—3+4a 1— —3+4a

|
(1 J=3+4a 1+«/—3—+4a)
( )
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These points lie on the circle given by the equation

1\? 1\?> 144a
X+ =] = ;
( 2) +(”2) 2

This equation may be obtained by just adding the two given equations. In
the special case a = 1, the 4 points become (p, p), (-1, —1), (0, 1), (1, 0).
For a = 2, they are (1, 1), (-2, —=2), (—p, 7)., (z, —p).

Question 66. The 4 points of intersection (1, —1), (z, p), (=2, 2), (—p, T)
lie on the circle with equation

G+ly+ 1\* 9
2 Y732) T2
2

(This equation is obtained by just adding the equations x* = y + 2,

y? = —x + 2 of the two parabolas.)

Question 67. They are (—1, 0), (t, 7), (—p, —p).

Question 68. They intersect at (arcsin p, ,/p) at an angle of 90°.
Question 69. o

Question 70. x = p

Question 71. B divides AC in the Golden Ratio.

Question 72. B divides AC in the Golden Ratio.

Question 73. B divides AC in the Golden Ratio.

Question 74. Since the cathetus b is tangent to the circle on a as diame-
ter, we have b2 = gc = (¢ — p)c. Forc = 1 and b = p, this becomes
p? =1 — p, whence the assertion.

Question 75. Base altitude = 2.

Question 76. Inradius = pv/+/5 — 2.

Question 77. For A = p.
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. _ (5+/5\!/? s—5\?2
Question 78. r = (—1—0—) and h = 2 (—IOL—) , 80 5= = p.

Question 79. For p = p.

. ... _ 2
Question 80. It is minimal for p = "—+2"¢1.
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