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Introduction

This book tells of adventures that took place in the land of Carmorra,
‘The story is told here b by following these ad es, You can
learn differential and i 1 calculus. This book includes material suit-
able for a first-year calculus course. It is designed to be used in a class-
room, but it can also be used by someone wishing to learn calculus on his
or her own, or as a supplement 1o a course, This book is unlike regular
math books, though. You are invited to read the book as you would read
a fantasy novel,

The subject of calculus stands at the gateway to much of higher mathe-
matics, and to applications in many different fields such as physics, biol-

ogy, Yy i and statistics. In arithmetic, opera-
tions are carried out on L in alget perations are carried out on
symbols that stand for bers; wh in calculus, operations are car-

ried out on functions that represent the relationship between two variable
quantities. Some integration techniques date back to the time of the an-
cient Greek world, but what we now know as calculus was developed in-
dependently by Isaac Newton in 1666 and Gottfried Wilhelm Leibniz in
1675. Newton called his invention the method of fluxions, which he de-
veloped at the same time that he was developing the foundations of the
branch of physics known as mechanics.




INTRODUCTION

You will best appreciate this book if you have about the same mathe-
matical background as the people of Carmorra had at the beginning of the
story. The material in this book is designed to follow high school courses
in algebra. wigonometry. and geometry. You should know basic algebra
terminology and methods, such as how to solve an equation with the
quadsatic formula. Experience in factoring second-degree polynomials
will also be beneficial. Calculus depends heavily on analytic geometry, so
it helps if you are familiar with Cartesian coordinates, the slopes of lines,
and the equation of figures such as circles, ellipses, and parabolas. Func-
tion notation, as in f(x) = x% is also used extensively throughout the
book. The book Algebra the Easy Way contains an account of how the people in
Carmorra discovered these topics.

You should be familiar with basic trigonometric functions and know some of
their properties. See the book Trigenomerry the Easy Way for more informa-
tion. A review list of trigonometric identities is included in Chapter 11. Some
familiarity with logarithmic and exponential functions will help, although it is
not essential to understand the book. Imaginary numbers play a small role in
Chapter 15, but familiarity with imaginary numbers is not needed anywhere
else in the book.

This book is designed to let you solve applied problems as quickly as
possible. Many of the results g 1 here are di ions rather than
formal proofs. If you are planning further study in calculus, you should
become familiar with some of the rigorous background theory, such as the
meaning of continuity and of limit.

The people in Carmorra use a very bizarre system of measurement, so | have
translated numerical into the metric system or else left measure-
ments in terms of general units. If you are a science student, in particular, you
will have to learn to be rigorous in your treatment of units.

At the end of each chapter are exercises 1o provide practice in applymg the

concepts developed in that chapter. Under ding any math ical material
requires work. The answers are provided at lhe back of the book so you can tell
for yourself how well you have I the probl The p in

Chapter 17 provide a comprehensive test of m:uerla! from thmughout the book.
The exercises came from a wide variety of sources; some were supplied by the
gremlin and some were d| dup by P or Stanislavsky. The final testin
Chapter 17 is presented here exactly as the gremlin presented it 1o us.

The exercises illustrate several powerful applications of calculus, such
as finding the motion of a planet around the sun. Some of the exercises are
designed to provide practice with routine techniques, while others are
designed to be very challengmg

The P progr i marked with a box, have been
added 1o illustrate some of the ways in which computers can be used to
help solve calculus problems. Many problems, such as those requiring
numerical integration, would be intractable without the aid of computers.
Sample solution programs have been included at the back of the book.
Most of these programs are written in Microsoft BASIC, which is the ver-




INTRODUCTION

sion of BASIC commonly used on IBM 1 and P
bles, They can be adapted for other versions of BASIC or for other pro-
gramming languages. Pocket calculators a.re an.othtr important tool to help

you learn calculus. Many of the are i led to be
done with calculators,
Another big advantage provided by computers is their ability to make

graphs of mathematical curves easily. It used to be a painstaking, arduous
1ask to create an accurate mathematical graph, and the work would have 1o
be totally redone if you decided to change the scale. Because visualizing
mathematical curves is an important part of understanding them, you
should learn to take advantage of the avnllublc tools. Some pocket calcula-
tors can draw graphs, as can comp i dsheet pro-
grams, Or, you can write programs in a language such as BASIC 1o draw
your own graphs. It is a good idea to experiment frequently with the
graphs of the concepts discussed in the text.

If you have never seen a calculus problem before, you are in the same
position that Recordis, the professor, and the others are at the beginning of
the story. You are now about to embark on the discovery of calculus,

x



The storm struck my ship with di i id S hing hit

me on the head, and my memory was compretcly knocked out. The next

thing I ber was being hed ashore on a strange land called Car-
morra. The farmer who first met me, Mr. Floran, decided to take me to
the capital city.

There it proved to be a time of crisis. Nobody was able to figure out the
speed of the new train, which was powered by a friendly giant named
Mongol. Mongol pushed the train with a constant force while the train
kept going faster and faster, until Mongol decided to play with something
else.

Mr. Floran and I rode the train from Coast City to the Capital, where he
took me to the Royal Palace. A heated debate was going on in a room la-
beled **Main Conference Room.""

**Have you made any more progress?”’ Mr. Floran asked after he had
introduced me.

**No,” a pleasant woman with intense blue eyes said sadly. (**That's
Professor Stanislavsky,” Floran whispered to me.)

*Yes, we have!" contradicted a middle-aged man with an elaborately
carved pen in his hand and three more pens behind his ear. **It has been
proved to be impossible to solve the problem.” (“That's Marcus Re-
cordis, the Royal Keeper of the Records,” Floran whispered.)

**We have indeed seemingly reached an impasse,” a man in a glittering
robe said. (**That’s the king,"” Floran informed me. **You had better bow
to him.”") After the necessary formalities were over, Floran introduced
me to the other people in the room: Alexanderman Trigonometeris, the
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Royal Keeper of the Triangles, and Gerard Macinius Builder, the Royal
Construction Engineer.

**You mustn’t forget Igor,”" Recordis said.

“Whao is [gor?” T asked, seeing no one else in the room.

““This is Igor,” Recordis said, slapping a large object on the wall that
looked like a combination television screen and blackboard. **This is the
only Visi ic Picture Chalkt d Machine in the world.”

“Now we can explain the problem,” the professor stated. “Up to now
we have not been able to use Mongol to his full capacity because of limi-
tations on our frictionless track. If the speed of the train ever exceeded a
certain amount, the track would break and there would be a terrible acci-
dent. The trouble is that we don’t know how fast the train is going at a
given time.™"

**Explain what you mean,” I said.

“It is a simple matter to tell the position of the train at any time. Draw
the picture, Igor. (See Figure 1-1.) Recordis boards the train with his
watch. All along the track we have markers telling how far it is from the
start at the ocean. Every time | minute goes by, Recordis shouts ‘Now!"
and Trigonometeris quickly looks outside and writes down how far the
train has gone. They made a table of their results.” (See Table 1-1.)

“With these numbers it is easy to make a position-time graph, like the
one the professor just showed you," the king said. **Igor draws two per-
pendicular lines, marks time on the horizontal line and distance on the
vertical line, and then puts a dot at every point where the time number di-
rectly under the point is equal to the time when the train is at the position
number directly to the left of it.

““The next thing we can do with the graph is figure out exactly where
the train was at some time in the middle, such as 3.5 minutes. Obviously,
the train must be somewhere on the track, and it must be somewhere be-
tween the place where it was at 3 minutes and the place where it was at 4
minutes (because it always goes in the same direction). The only way to
figure out exactly where it is is to draw a line or a curve that connects all

Pasition urE

]
I
4
9
16
25

pasition of train
=
1]
position
=
I

Figure 1-1. Figure 1-2.
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the points on the graph. The most logical connecting line is a smooth
curve.” (See Figure 1-2.)

*“This way we can represent the entire curve mathematically,”” Record-
is said. **It just so happens that the distance that the train has moved from
the starting point is equal to the amount of time it has been traveling mul-
tiplied by itself."”

(distance train has moved) = (time in mi x (time in mi )

**We can abbreviate this equation by denoting the distance traveled by
some letter, such as d.”
“*Why?"* the king asked. R

**All right, call it y if you prefer,”” Recordis said. *“Then I suppose we
should call the time the train has been traveling x.”

y=(x)x(x)
**That is the same thing as writing x*,”" the king pointed out.
y.o=x*

“*We can also wrile that as a function machine.”” the professor said.
“'We decided that a function was a machine that turned one number into
another number according to some rule. If the number we put in was
called x, then the number that came out of the machine was called fix).
For example, one simple function is flx) = 2. (Figure 1-3.} (The expression
flx) is read “fof x.")

**In this case it is easy to figure out what number will come out,” Re-
cordis said. “*If we put in 2, we'll get 4; if we put in 10, we'll get 20; et
cetera."”

**Also, we can call the in-number anything we like. We don't have to
call it x,”" the king added. *'If f(x) = 2x, then we can also say that f(g) =
2q.fla + b) = Aa + b),and f(3x* + 4x + 5) = 6x* + 8x + 10. We can
say that f{(in-number)) = 2 x (in ber).”"

**1 remember when we made lots of functions,”” Recordis said. "*We
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fix) =2
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Figure 1-3.
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time, x
Figure 1-4. Figure 1-5.

had f(x) = x% fix) = 3x® + 2x* + x + 4, f(x) = sin x, and lots of others.”

**In this case we want to use the first one you mentioned,” the profes-
sor stated. **'We want f(x) = x*. In this case x = time and f(x) = distance
that the train has traveled. We don't have any trouble getting this far. We
can tell the position of the train at any given time, but we need to know the
speed.”

"It is easy to calculate the speed of an object that is traveling at a constant
speed,” the king said. “*For example, if Recordis walks at a constant speed of 4
miles per hour, then his position function is given by flx) = 4x. If you make a
graph of his position, it looks like a straight line.™ (Figure 1-4.) *'In order to
calculate the speed, we use this formula:

_ (distance traveled)
{time elapsed)

*“Since Recordis walks 8 miles in 2 hours, his speed is %2, which equals 4.

“We have also discovered an interesting feature of this diagram,” the
professor said, "It tums out that the speed of an object is the same as the slope
of the linc that gives its position as a function of time. In this case the line has a
slope of 4, which is the same as Recordis’ speed.™

“It is easy to figure out my speed, since I walk at a constant speed,”
Recordis said proudly.

*We can figure out the average speed of the train between any two times,”
the professor said. " Attime x = | the position of the trainis 12 = L;attime x =
4 the position of the train is 4% = 16; so its average speed between those two
times is (16 — 1)/(4 = 1) = 153 = 5.

“There isa huge dlfference bemeen its average speed and its speed at any
given ly. My stomach can tell the
difference between the ead) partof the ride, whcn the train is going very slow,
and the later part of the ride, when the train is going very fast. My stomach
doesn’t care about the average speed for the whole tip.”

*Right,"” the professor agreed. **When the speed of an object is changing,

(speed)
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we need to calculate its instantaneous speed — that is, the speed it is traveling at
a given instant,™

*“We can come close to the i ous speed by calculating the average
speed over a very short time interval,” the King said. *For example, at time
3.5, the position of the train is 3.5% = 12,25, At time 3.7, the position of the
train is 3.7 = 13.69. Therefore, the average speed of the train during this
interval is (13.69 — 12.25)/(3.7 = 3.5) = 1.44/2 = 7.2.7

“That still doesn’t give us a formula to calculate the speed of the train
at a particular instant,” Recordis said sadly. “What makes it even more
frustrating is that we can come tantalizingly close. For example, we can
make the time interval smaller and smaller, which lets us come closer
and closer to the instantaneous speed.” Recordis displayed a 1able that
showed how the average speed changed as the time interval became
smaller and smaller (Table 1-2).

Table 1-2
Start  Start  Ending  Ending LGfﬂ: af  Distance  Average
Time Position Time  Position  Time Interval Traveled — Speed
35 1225 37 13.69 02 1.44 72
35 1225 3.6 12.96 0.1 0.71 71
35 1225 351 12,3201 0.01 0.0701 7.01
35 1225 3.501 12.257001 0.001 0.007001 7.001
35 1225 35001 12.25070001 0.0001  0.00070001 7.0001

The king whispered 1o me, “When 1 stare at the table, the pattern
seems to be so clear that I am almost willing to guess what the instanta-
neous speed must be at time 3.5 minutes, but I am afraid to say anything
unless I am certain I am right.”

“We do know one important clue,” the professor said. “Remember that the
speed of an object moving with constant speed is equal to the slope of the line
representing the position of that object as a function of time. In order to find the
instantaneous speed of an object with variable speed, we need to find the slope
of the curve representing the position of that object.”

“How can you figure out the slope of a curve, like flx) = 127" Tasked. ~ At
some points the curve has a very slight slope. but at other points it is sloped
very steeply.”

“The slope of the curve is changing because the speed of the train is
changing, We can't determine the slope of a curve directly, but we can draw a
line right next to the curve that has the same slope as the curve does at that
point.” (Figure 1-5.)

“We call that line the tangent line for the curve,” the king told us.
“*Notice that this curve has lots of different tangent lines.”” (Figure 1-6.)

**You should also notice that the tangent lines intersect the curve at one
and only one point,”” Recordis said.

“That means that we can define the slope of the curve at a given point
1o be equal to the slope of the tangent line at that point,”’ the professor
added.

“Therefore, to find the speed of the train, all we need to do is find the
slope of the tangent line to the curve," the king noted.
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*“That is what we have proved 1o be impossible,” Recordis said heat-
edly. **We know very well how to draw a line. First, we start out with two
points. We can call them anything we like, say (a, ) and (c, d). Now we
can easily compute the slope of the line between these two points. A long
time ago we defined the slope as equal to the distance the line goes up di-
vided by the distance the line goes sideways. (See Figure [-7.)

{up)
(sideways}
“We know that (up) is equal to (d — b), and that (sideways) is equal to

(¢ — a). This lets us say that the slope of the line is equal to (slope) =
(d = b)(c ~ a). This method works for any line in the world, as long as we

(slope) =

[t !
dl= e, d)
up
b= (. b)
sideways
1 1
& € x
x
Figure 1-6, Figure 1-7.

know nwer points on it. There is absolutely no way 1o find the slope of the
angent ling, though, because we know only one point! We know lots of other
points that are not on the line, but we don’t know one other single point that is
on the line,"

‘There was a long silence as we contemplated what he had said.

“‘We must find the answer 1o this problem,”” the king stated. **I don"t
care how we have to do it.”

*There has to be some solution,”” the professor said. **In fact, we
placed a large wager with the gremlin that we would be able to reach a so-
lution in the next few days.”

“*Who is the gremlin?"" [ asked.

**He is our arch-enemy,’’ the king told me, **It is his sole purpose to
disrupt our entire learning process and take over the kingdom of Car-
morra. We have already defeated him several times concerning matters of
algebra.”

I looked at the drawing of the graph for several minutes. Finally [ said,
It appears that our problem is that we need to find another point some-
place. Recordis is certainly right when he says that we need two points to
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determine the slope of the line. Igor, draw a graph showing the point
where we want to find the slope of the tangent line. (See Figure 1-8.)

*Let's say that this point represents the train at some time called a.
This means that the distance the train has traveled equals a®. The coor-
dinates of this point are (a, a*). We still have our position-locating func-
tion machine, so we can also write the coordinates as (a, f(a)). In order to
find the slope of the tangent line, we need another point. Since the only
points that we know very much about are the other points on the curve,
we will have to use one of those. [gor, show me another point on the curve
that is close to the first point. (See Figure 1-9.)

7

fixy
fix)
fio + aa)
@) @, fian e
a x a a+aa
Figure 1-8. Figure 1-9.

“It really doesn’t make much difference how far away the second point
is from the first point, so we can make up some distance and call it Aa.
(The little triangle A is the fourth letter—capital form—of the Greek al-
phabet. It is known as delta. The symbol Aa is pronounced ‘delta-a.”)
Then we know that the x coordinate, or the time coordinate, of the sec-
ond point is equal to (@ + Ag)."”

“The y coordinate is still y = f{x), so we can plug that into the machine
and say that the y coordinate is equal to f{a + Aa)," the professor noted.

**1 know the slope of the line between those two points,” Recordis said.

fla + da) - fla)

(slope of line between these two points) = o+ ha—a

o fta + Aa) - fla)
Aa
““We can call that line a secant line," the professor stated, "*We use that

name for a line that intersects a curve in two points, rather than one point as the
tangent line does.™
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"The secant line isn't very close to the tangent line,” Recordis protested.
*Maybe we can make the secant line move closer to the tangent line, " I said.
*Igor, make a sketch of where you think the tangent line should be."” (Figure
1-10.)

The king looked closely at the picture. **Couldn’t we make the second
fix)

curve secant

line

fla + ae) tangent
/Iin:
fia) 1
|
7 @ a+aa "ll;
Figure 1-10. Y/

point move closer to the first point? Wouldn't that make the secant line
approach the tangent line?"”

**That's it!"” [ said. **We can make the two points move closer together
by making Aa smaller and smaller. Igor, draw a series of pictures showing

what happens when the two points move closer together.” (Figure 1-11.)
fix)

secant line
maoving to
tangent line

second point
moving close N
1o first point tangent line

fer - ~-—— Aq becoming smaller

@+ da
Figure 1-11.
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**What happens to the expression for the slope?”” Recordis asked. **Re-
member what we have.”

_ fla + Aa) ~ fla)
(slope) = ——— ———

“If we let Aa become too small, some weird things will happen to this
fraction.”

*‘No, they won't,"”" the professor said. 'R ber that when a + Aa
moves close to a we will also have f(a + Aa) move close to fla). We
will end up with the ratio of two very small numbers, and there is nothing
wrong with that.”™

**But to get the slope of the tangent line we would have to let Ada be-
come zero!™ Recordis protested. “*Then we would end up with a slope of
0/0, which doesn't tell us anything."”

**This means that we cannot ever let Aa actually equal zero,” 1 said.
“The closer it gets to zero, though, the closer the slope of the secant line
will come to the slope of the tangent line. Let’s make the following defini-

tion."”
fla + Aa) - fla)
Aa

(slope of tangent ling) = Ig'm_‘l}
(The expression m is read “The limit as delta-a goes to zero.™)

“‘What does that mean?"" Recordis protested. **What do you mean by
that ‘limit’ thing?"

“1 understand,” the professor said. **We will let Aa move very, very,
very, very close to zero, but we will put up a little fence that prevents it
from ever actually equaling zero."

**That's all very nice theoretically,” the king remarked. **It still doesn't
tell us how to find a number that represents the slope of the tangent line,
though.”

“'We know what f(x) is," I said. **“We can rewrite the equation, only
this time we will use f(x) = 2%

_ . la+ Aa) - a®
(slope) = limit =
“1 know what (a# + Aa)*is,"” Recordis said. **That's algebra.""
(slope) = limit M
ope A0 Aa
“The a® and the —a* will cancel out,” the king pointed out helpfully.

= Limit 2@ 4a + Aa®
(slope) i-alfl:l_lﬂl v

*“We can divide both the top and the bottom of the fraction by Aa,"” the
professor said. **After all, we never let Aa become zero.”
_ o (MAa)2a Aa + Aa®)
(slope) = fjmit (1/Aa)(Aa)
2a + Aa
1

= limit
Ba-+0
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“‘Now it is very clear,” 1 said. **As Aa approaches zero, the quantity
(2a + Aa) will approach 2a.”
*“That’s the answer!" the king shuur.ed‘

**That is the slope of the line," the profi said re ly.
“That's amazing!"" Trigonometeris sajd
““That’s too simple,” R 1i iciously.

**We should make sure that it ma](es sense,” I said cautiously. “*Let’s look at
the graph. (See Figure 1-2.) At the place where @ = 0, we know that the train
has not yet started 1o move, so its speed must be zero. According to our formula
for the slope, the slope should equal 2a, whichis 2+ 0, which is zero, so it looks
right.”

**And if we draw the tangent line at the point where a = 0, itis parallel to the
axis,” the king added.

The professor said excitedly, *The formula for the slope of the tangent line
should work for any function, so we should record this result as our first
definition.”

The slope of the tangent line to the curve representing the function flx) at the

point (a, fia)) is given by this formula:

fimig Lo+ 8a) = fla)

Ar-a Aa

**We have to think of a name for the subject we are getting into now,"
Recordis said. **We must do this systematically. [ think [ will have to start
a new page in my record book."

Everybody thought of a name, but nobody came up with one that was
satisfactory to all. The main problem was jealousy. Each person in the
room wanted the subject named after him- or herself. The others finally
turned to me and asked me to make up a name. I had vague memories of
doing this sort of problem before, although 1 could not remember any de-
tails. For some reason the word *'calculus’ popped into my head, so I
suggested that we call the subject calculus. Everyone agreed to this sug-
gestion because the name sounded impressive,

*We will have to come back to this tomorrow,” the professor said.
**We can try other functions and see how they work out. First we should
record what we found today.”

slope of tangent line for fix) = »*is 2x

The group adjourned amidst great excitement, and they ran to the train
to tell everyone that they knew how fast it went. Farmer Floran decided
that he had better return to his home, so he boarded the train and Mongol
pushed him back to Coast City.

Later in the evening it was decided that in gratitude for my services [
would be provided with lodging in the palace. I told the king that I wanted
to go home as soon as | remembered where | had came from, but that I
would be glad to stay and help for a while. In wrn, the king promised to
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help me when I was ready to return home. *'I think you arrived at the be-
ginning of an exciting period,"" the king told me. ‘'] wonder what we will
discover tomorrow."

Exercises

1. The following pairs of points all define secant lines to the curve y = x*
through the point (2, 4). Find the slope of each secant line: (2, 4) and
(3, 9); (2, 4 and (2.5, 6.25); (2, 4) and (2.3, 5.29); (2, 4) and (2.1, 4.41);
(2, 4) and (2.05, 4.20).

2. Find the slope of the secant line defined by each of these pairs of
points: (1, 1) and (2, 4); (1.5, 2.25) and (2, 4); (1.7, 2.89) and (2, 4);
(1.8, 3.24) and (2, 4); (1.9, 3.61) and (2, 4); (1.95, 3.80) and (2, 4).

3, Find the equation of the tangent line to the curve y = x* at the point
(2, 4.

4. Find the equation of the tangent line to the curve y = x* through the
point (7, 49). Use this tangent line to estimate V/50.

5. Draw a graph of the function

= _ Bx + x?
J’—f{-\‘l—T

What is £(0)? What is |il£lél Six)?
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6. Show that the formula for the slope of the tangent line is the same as the

formula for the average speed of en object over a time interval that becomes
wvery small.

7. Use a computer or graphing calculator to draw a graph of the curve y =
x* between x = g and x = b, What happens as you make a and b closer
together while you increase the magnification to zoom in for a closer
look at the curve? (Hint: you should see the curve become more like a
straight line.)




Calculating
Derivatives

Everybody gathered around Igor the next morning. The professor said
that she had a whole series of new ideas to try out. Recordis started the
meeting with an anguished complaint.

“This will never do!"" he cried. **We must think of a shorter name for
this whatever-it-is we've discovered. 1 can’t write ‘slope of the tangent
line” all day. Already my wrist is developing a terrible cramp.”

**“Then we shall think of a name,” the professor said matter-of-factly.
“*Let's look at our definition again.””

. . flx + Ax) — fix)
(slope of tangent line) = .]\T-.ln =

(We had decided to write “lim"" as an abbreviation for “limit.”")

““Now, what does that look like?"" the professor asked.

“It looks to me like the time Mongol spilled his letter blocks and we
never could figure out all the words he had made.” Trigonometeris said.

““We must take this seriously,” the king rebuked. **We must think of a
real name."”

Everybody suggested names. but nothing sounded satisfactory. Finally
the professor turned to me and said, " You were able to think of the name
‘calculus.” Maybe you can think of a name for the slope of the tangent
line.""
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I thought for a couple of minutes and came up with another name. *'We
could call it a derivative,” 1 suggested.

**That sounds as good as any,”” Recordis said. **It surely was frustrating
to derive it."”

function ¥ = f(x)

line = lim

derivative = slope of
Ar—

flx + Ax) - f(x)
Ax

“'We still need to think of a symbol to stand for derivative,” Recordis
complained. "I can't write the word "derivative’ all the time."

Everyone looked at the board for a few minutes. I have an ingenious
idea,” the professor said as modestly as she could. *Since a derivative is
a slope, it should have units of y/x. For example, we wrote delta y over
delta x (Ay/Ax) to stand for a tiny increment of y divided by a tiny incre-
ment of x. Why don’t we say that dy/dx is the slope of the tangent line?"

Recordis was reluctant to agree to any symbol that required him to
write four letters.

“lalways liked the little prime (') symbol,™ the king said. “I liked it when
we wrote ¥ and called it ‘why prime?" We could call the derivative y' or
['(x)?" (The symbol £ (x) is read “f-prime of x."")

The professor looked hurt, but Recordis was happy. “I really like
that!" he said.

“But you could get confused!" the profs pr 1. **What if the
variable in the function isn't x? What if you have y = f(t), ¥ = f(w), or
¥ = flq)? In my system you could write dv/dt, dyldw, or dyldg.”

**But look at all that writing!"" Recordis said.

**I don’t think we need to have an argument here,” 1 told them. **We'll
use both systems. At any particular time we'll use whichever one seems
10 be the more convenient.™

function y = f(x)

derivative y' = f(x) = % = }E{nﬂf—-—u hi d;: = fx)

**We wasted too much time thinking of names,” the professor said.
**We must start with the important part. We must be systematic about
this, and make a list of different kinds of functions and their derivatives.™

**It seems to me that the simplest function is one that has the same val-
ue all the time,"" the king stated.

*I remember when we made an f(x} = 2 function,” Recordis said.
**Mongol got tired of 2's, but no matter what number he put into the func-
tion machine he always got a 2 out.”

“Let’s see what our formula says if fix) = 2.” the professor said.
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flx)y =2

ey = i SO+ AX) — fix)
' P:E'u Ax

= fim 0
-_Lllm-aﬁx

Sx)=0

*‘We should have a slope of zero,” the professor said.

“‘Let’s draw a graph of the function y = 2, just to make sure,”” Recordis
said. (See Figure 2-1.)

**That's just a straight line with no slope,” Trigonometeris pointed out.
"I could have told you the slope of that before we developed all this
hocus-pocus.”

“‘But we know that zero must be the right answer,” the king said.
“‘Let’s pretend that the graph represents the position of the train. Then
this means that the train is 2 units from the ocean and is just staying in one
place. If it is stopped, then of course its speed is zero.”

**Like the time Mongol was scared by that parakeet and just stopped in
the middle of the track, still holding onto the train,”" Recordis re-
minded us.

**The same thing should happen if y is any constant number, and not
just 2, the professor said. **We could have ¥ equals 2 or 7.6 or 8194 or
anything else, just so long as it doesn’t change. We can write that as our
next rule: The derivative of a constant function is zero.”

Function Derivative
y=rc ¥ =dylde =0  {when ¢ is a constant}
’ Table 2-1
- X ¥
6 -1 -2
1] 1]
s 12
T 2 4
e 3 6
1 y=2
1=
I

Figure 2-1.

15
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“"What if we have a tilted line?"" Trigonometeris asked. (Figure 2-2.)

““We've had functions like this before. Igor, show us a table of val-
ues.” (Table 2-1.)

“That function is easy to ize,” the profe said. **We have
J(x) = 2x. Let's plug that into our formula.”

dy _ o 2Ax + Ax) = 2x)
a7 ‘ﬂn-l Ax
 pig 2t 20x = 2
Av-sd Ax
o 2Ax
= lim 55
dy _
F=2

“But I could have told you the slope was 2,”" Trigonometeris said. **We
could have figured out the slope using the old method.” (Figure 2-3.)

wp) _ _
(sideways)

*'1 don’t think you really need calcul hods wt you have
any function that is a straight line,"" the professor stated. **However, it is
a good thing that the calculus methods give us the same answer for the
slope as the regular methods did. If calculus turned out to be inconsistent
with algebra and geometry, we'd be in real trouble.”

*'1 bet that we can generalize this rule,” the king said. ‘*Suppose that
fix) equals x times any constant number, say ¢.”

(slope) =

¥ y=1x ’

9= -

B = y=x

- -

6 -

S -

il -

i - up =4

b -

1 i T |
N T T IO x
12 3 4 56 7 x sideways = 1

Figure 2-2, Figure 2-3.
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flx) = ex
. o elx + Ax) = ex
f1e0 = fim =3y
= lim & + cdx — ex
ors Ax
_ i CAx
= fim oy
flixy=r¢
**That looks like a good rule,”” the professor agreed.
Function Derivative
y=cx y' = dylde = ¢  (when ¢ is a constant)

“1 know something that has a position function that looks like that,”
Recordis said. “R ber when we took Mongol to Ice Skating Lake
and gave him a push? We made a table of his position at different times."*
(Table 2-2.)

“‘What happened after that?"" [ asked.

**The ice cracked and he almost fell through,' the profe |
“I remember that we established that he had been traveling with a con-
stant speed of 3 units per second. Apparently whenever something travels
with a constant speed the derivative of its position function is a constant
number."

"1 ber a plicated situation,” Recordis said. 'R ber the
time we fed Mongol some Extra-Strength Tablets before we let him play
with the train? He started running very fast, and we kept a table of val-
ves.” (Table 2-3.)

Igor drew a graph of the train’s motion (Figure 2-4). We could see that
the slope was much steeper than the slope of the graph we had looked at
the day before.

¥
Table 2-2 Table 2-3
Time Maongol's Position Time Train's Position
0 0 0 0
1 3 1 4
2 6 2 16
3 9 3 36
4 64
5 100
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1 recognize that function,’" the king said. **One squared times 4 is 4, 2
squared times 4 is 16, and 3 squared times 4 is 36.
*That's it,”* the professor said. **The function is f{x) = 4x%"
We put that in the formula for the derivative:
flx) = 45
ooy o i HE o+ Ax)E - dxt
fe = fim =g

: ] -
lim 4x?+ 2x Ax + AxY) — 452
Ag==l

Ax
. 4x? 4+ BrAx + 4 A7 — 402
= lim V5
Ax-) Ax
= fim BX Ax + 4 Ax?
fim, B

_ o (8x + 4 Ax) Ax
lim A

= lim 8x + 4 Ax
)

fix) =8x

““That means the train's speed is 8x!"* the professor said. **It was going
four times faster than usual.”

“In other words, 5 minutes after the train left the station it was doing
5 x 8, or 40, units per minute,” Recordis added.

**Maybe we can generalize this rule to see what happens when f{x) =
ex?, where ¢ is any c ber,” the profi said.

Sflx) = ex?
ooy g Clx + AxP = ex?
= fim S

cx® + 2ex Av + c Ax? — cx?
= lim
Ar-d Ax

2ex Ax + ¢ Ax?
Ax

= lim
Aa=l
fix) = 2ex

““That works when ¢ = |, because then we get f'(x) = 2x, which is
what we did yesterday,” the professor reminded us.

**Or it works when ¢ = 4, because then we get f'(x) = Bx, which is
what we just did,”” Recordis said.

“Or it even works when ¢ = 0,” the king noted. **Then we get f(x) =0,
which is a constant number so f'(x) = 0.”
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We added this new rule to our list:

Function Derivative
y = cx? ¥ = dyldx = 2ex
“I remember once when the train didn’t start from the ocean,” Record-
is said. **Mongol started pushing when we were 5 units away from the
zero point. We made a table of values.™ (Table 2-4.)
Igor drew a graph (Figure 2-5).

y=x'+5 Table 2-4 Table 2-5
Time Train's Position Time Trig's Position
0 5 0 5.00
I 6 1 6.01
2 9 2 9.02
3 14 3 14.03
4 21 4 21.04
x
Figure 2-5.

**1 think the function is fix) = x* + 5" the king suggested. “*Let’s try
plugging that function into our formula for the derivative.™

flx)=x"+5

ey i (X AxP+ 5= (22 + 5)

T e
_ ].mx’+2xﬂx+$ﬁ+5-.ﬁ"—5
=ik Ax

“‘We can cancel out the (x* + 5) and the (—x* — 5),"" Recordis noted.

'(x) = lim 2XAx + Ax?
f(.t)—llrn o
= lim 2x + Ax
fri}

=2x

“That’s the same answer we got when Mongol started pushing from
point zero,"" Recordis said.
*[t seems as though it should be the same answer," the king remarked.
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“‘Mongol pushes the same amount each time, so it seems as though the
speed of the train at a given instant should not depend on where he started
pushing.”

“1 remember one time that was very complicated,” Recordis said.
*“The train started 5 units away from the ocean, and Trigonometeris
started running inside the train, We made a table of his position.” (Ta-
ble 2-5.)

"1 was very careful to make sure that [ ran at a constant speed with re-
spect to the train,” Trigonometeris stated proudly.

1 know what position function we need to use,” the king said. 1t will
be exactly the same as the time before, except this time we must add the
distance that Trig has walked from the back of the train. Let's try the fol-
lowing function.”

(Trig's position at time x) = f{x) = x* + (0.01)x + §
We put that function into the formula for the derivative.

J(x) = x* + (0.01)x + 5§
[(x + Ax)? + (0.01)x + Ax) + 5] — [2® + (0.01w + 5]

e = im Ax
- lim &+ 2rdx + Ax® + (000w + (0.01) Ax = x2 — (.00}
Alt-dl Ax
. 2x Ax + AxT + (0.01) Ax
= lim —————
Ard) Ax

= lim 2x + Ax + 0.01
jreser]

f{x) = 2x +0.01

While we were admiring this answer, the king said, "1 just noticed
something: 2x is the speed of the train, and 0.01 is the speed of Trig as he
walks along inside the train. It looks as though you just add them to-
gether.™

**Fascinating,”" the professor stated. **The original function was f(x) =
x* + (0.01)x + 5. The first term represents the position of the train, the
second term represents the position of Trig with respect to the train, and
the third term is a constant which, of course, has a derivative of zero.
Maybe, if you have a sum of functions, you can take the derivative of each
term and add them together to get the derivative of the whole function.™

**Let’s see whether we can prove that in general,'” the king said. **Sup-
pose we have any two functions, say f(x) and g(x), and we make a new
function—ecall it g(x)—which equals f(x) + g(x). Let's plug that into
the formula and see whether we can find the derivative of g(x)."”
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qlx) = flx) + gix)
@) = %ig o lim fx+Ax) + glx + Ax) = f(x) — glx)

e Ax

“*Now we're stuck,”” Recordis mourned.
“'I think we can rearrange these terms,’” the king said.

ey = e SO+ Ax) - filx) + glx + Ax) — g(x)
w0 = i, &

fix + A;: =S | g B+ AX) - glx)

= lim
e Lo Ax

“I recognize those two expressions!” Recordis exclaimed in delight.
“Those are two derivatives.” The final answer became:

g = x+g

*It does work!" The professor said in amazement. **This rule will make
life much simpler. This means that, whenever we have a function made up
of a whole glob of little functions added together, we can take the deriva-
tive of each little function and add all the derivatives 1ogether to get the
derivative of the whole glob.”

SUM RULE FOR DERIVATIVES

Function Derivative
g(x) = fix)+ glx) g (x)=f{x)+ g'(x)

“We could write the same rule if we had three functions added togeth-
er,”” Recordis added.

gUx) = f(x) + glx) + hix)
g'lx) = f(x) + g'(x) + h'(x)

*Or even four functions added together,” Recordis continued, getting
carried away.

q(x) = flx) + glx) + h{x) + i(x)
g'lx) = flx) + g'lx) + B'(x) + i'(x)

*Yes, we know what you mean,” the professor said quickly, before Re-
cordis had a chance to say that they could write the same rule for five
functions added together. **1 think we should go on to something else.™

**1 remember a long time ago when we made a list of crazy functions,”
Recordis remarked. **1 wonder if this calculus jazz will help us with any of
these. Here's a good function: f{x} = xxx, or f(x) = x*." (Figure 2-6.)

**‘We can try to find the derivative," the professor said.
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¥y
3
y=x
x
' . + Ax P~ 2
Fix)y= e'.'._".‘o % Flgure 2-6.
— i (x* 4 2x Ax + Ax®(x + Ax) - »*
= lim
Aol Ax
=i 4 27 Av 4+ x A+ 2 A+ WA + A - 20
= lim
A Ax
The x*'s canceled each other out: and then we combined the like terms:
) _ oy JxtAx + 3x Ax® 4 Ax?
fa) = lim S-S ESE ST SR

We factored out the Ax, which Recordis then gleefully canceled with
the Ax in the denominator. (Recordis likes to cancel things.)

fix) = gl'r_n«1 Ix? + Ix Ax + Ax?

The last two terms went to zero when we took the limit:
fix) =3

**Fascinating,”” the king said.

**It makes sense when you look at the graph,”” the professor told him.
(Figure 2-6.)

““When x = 0, we're saying that the slope of the curve is zero, which is
the way it looks in the picture. As v gets bigger, the slope becomes
steeper. And even if x is negative, the slope is still positive because 3x? is
positive.”

“*How about x*?" Recordis asked, dering how plicated the
world could get.

Igor slowly went through the algebra, and our eyes got tired as more
and more symbols kept floating across his picture tube. **There’s got to be
a simpler way!"" the professor said. When all of the algebra was finished,
the final answer looked like this:

Function Derivative
flx)=x* [ix) = 4x°
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“1'm afraid 1o suggest we try it with x*,"" Recordis commented.

*Still, we must find some way 1o come up with the answer,"" the profes-
sor said, thinking wistfully about how she could impress people by telling
them that she could find the derivative of a fifth-degree polynomial.

“Let’s make a list of our results and see if we see a pattern.™

Function Derivative
fy=x £ =2x
Sfixy=x S (x) =32
flxy=x* Fx)=4x

‘We stared al that table a long time. “Suppose we had to guess the result
for f(x) = x," the professor wondered. “What do you think it would be?”

"I see a pattern,” the king announced slowly. “It looks as though f(x)
= x* should have the derivative f(x) = 5x'."

“In general, it looks as though f(x) = x* should have the derivative
f'(x) = nx*~'." Recordis said.

"We must find a way of proving that it always works,” the professor
said. “I will never be able to sleep at night if we try 10 use that formula
without proving it is true,”

‘Do we have any way of testing that formula?" Trigonometeris asked.

““We could try,"" the professor said.

flx) = ex*

. . oelx + Axy - ex"
F10) = fim =

That expression looked pretty hopeless, until 1 began to remember
something. “*Did you ever develop a formula for figuring out an expres-
sion like (a + b)"?"" [ asked.

**I remember something like that,” the king answered. **We derived ita
long time ago when we were working out algebra. Look it up, Recordis.”

Recordis fumbled through his giant book. **This might be useful.” he
said. **It’s something called a binomial formula."”

o ol . n! . nt “2p2 4oL
(@t by = g @ * - @0t g T
n! -ty nl
T om T Y

**I can’t remember why it works.""

**We don’t need to know that now,”” the professor said. **The important
thing is that we derived it once and that we know it does work."”

| ber the bers with the excl: ion marks,” Trigonomet-
eris stated. **They look like such excited numbers.”

**That's not what that means!" the king said. **The exclamation mark is
just a symbol. Remember that *5!" means *five factorial,’ and that means
Sl=5x4x3x2x1=120. And, just the same, eight factorial means
Bl=8xTxbx5x4x3Ix2x]1=40320"

23
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frix) =

We put this result into the formula for the derivative

lim c(x + Ax) - cx”

sl

Ax

=l !
s,rs.[mr

T © 7 A
[ -1 n! =1
ZI(JI 6] A 4t e DI x Ax"
_nl 1 £x"
* o A ar T ar
**I remember when we said that 0! was equal to 1,”" the king said. **So
n lf{(0!n1) is the same as n !/n !, which is equal to 1.
f'(x) = lim ¢ [r‘ + I!{n l]"r' 'Ax +2'(u 1)1". AR + -
__nl__ 1 ex?
e AL Pl
1 think we can simplify nU[1{(n — 1)!)," the professor said. **We
know that 1! is equal to 1, so that leaves us with n¥(n — 1)!. We can re-
write that."
n! _nn— N —2n—-Nn -4 . .
(n—1)! (n = 1)}n —2n — 3n — 4)

AN
(432X
““That’s great!"" Recordis told her. **We can cancel out all of those, al-
most. The answer is that nl/(n — 1)!is equal to n.”"

That simplifies our expression for the derivative a little bit,” the pro-
fessor said.

f(x]=£n_1oc[x“'+u“—161+

T U
+ardw-t 4 Av] Lo

Ax
We multiplied through by the ¢ outside the hmckel
flix) = _lnp_n]] [m-* + eV Ax + ¢

2'[»
+ cnx At

+cé.t"—l:t“]$

Recordis happily canceled the cx” with the —cx®

flixy = :le.nL [m.t"" Ax + ¢

+ cnx Axr-

2);*' 2Ax2 4 e

N -z v
T - A
1

] —_—
+c M] Ax
and the professor noted that Recordis could factor out a Ax from the nu-
merator;
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ey = T - nt =y . -2 _y | Ax
f(x)-_\l;nl'[mr" *+r2!m_2}!,t" Ax + +envAxt-? + ¢ A 1]._1:

!
= iln_%m‘-’ + mx“ TAr + e+ onx A2 4 o At

“When we take the limit, Ax will go to zero, so we will wipe out all the
terms in that sum except the first one,’’ the professor said.

flix) = enx*!

*You were right!"" the professor exclaimed jubilantly to the king. **That
is a nice, simple formula.”

Function Derivative
Slx) = ex" f(x) = enx*!

**Amazing!"' Trigonometeris said. ""We already established that it
worksif n = 2orm=3orn=4."

“It also works if m = 1," the professor stated. “Then we would have
fix) = ex, and we already know that in that case the derivative is ex?, which is just
equal to e.”

Igor displayed the results of our work:

Function Derivative
y=c ¥y = dyldx =0
¥ =cx v = dyfdy = ¢
=flx) + glx) ¥ = dyide=f'(x) + g'(x)
y =ex" y' = dvldx = cax"?

““With these rules we can find the derivative of any polynomial,” Re-
cordis said. ''Remember functions like x* + 3x — Sor 2x* — 327 + 2x* -
1? 1 think that this just about wraps up the subject of calculus.” (Recordis
thinks that any problem that can’t be expressed using polynomials is not
worth bothering with.)

Just as he was saying these words, there was a loud thud out in the
courtyard, and the next thing we knew an ominous figure had darted in
through the window. Everyone in the room cowered in fear. Although [
had never seen the strange apparition before, 1 could tell from the start
that he meant trouble.

**So you think you can outwit me, do you?" he exclaimed, his voice
ringing with wicked laughter.

25
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“That's the gremlin,” the professor whispered to me. ““The Spirit of
Hopel and Impossibility. He is our arch-enemy.”™

*You have no idea what you are getting yourselves into,” the gremlin
cried. “*Jusl wait. First, with your last rule, you have never even thought
about what happens if n is a fraction. Ah, but even that is too simple. 1
can show you curves that you have no hope of unraveling.”

He held out his cape, and in it we could see misty pictures of strangely
oscillating curves of every conceivable shape, which appeared to be float-
ing in space. They seemed to be trying to reach out and strangle us.
“*What about any of these?"" he cried, and & whole chain of algebraic sym-
bols flew out in the air past us.

*This time 1 am sure to win!™" he laughed, as he slowly folded his cape
and flew out the window.

Note to Chapter 2
1t is important to note that the derivative can be defined for a particular

function only if the limit

lim
Al

Six + Ax) = fix)
Ax
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has a definite value. Some functions, suchas y = |x | (the absolute value,
defined by v = x for x = 0 and y = —x for x < 0), will not have deriva-
tives defined at all points of the function. In this case, the function has no
derivative at the point where x = 0 (Figure 2-7).

In general, any function with a cusp in it, like the ones in Figure 2-8,
will not have a derivative defined at the point where the cusp is located.

¥
F=lxl

Al
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Figure 2-7. Figure 2-8,

Find the derivatives of the following functions. Then evaluate the derivative for
the given value of the independent variable.
Ly =3¢+ 2¢ + x + 5 evaluate v' when v = 3
2.y = 4% + 1% evaluate v whenx = 10
3.y = ™ evaluate ' whenx = |
4, v = Y 4+ Yu? + x4+ 1 evaluate v when x = 6,42
Sy = (4342 + (0.98)x; evaluate v whenx = —4
6. fn) = (2r — 5)3r + 4): evaluate f'(1) when 1 = 2.
Find formulas for the derivatives with respect to x for each of these functions.
(Treat a, b, and ¢ as constants.)
Ty=ax+4
B.y=m—x
9.y = ax' + hx? + cx
W, v=a + ¢
1Ly = (a + x)b + x)
12, If y = ¢ % u(x), where ¢ is a constant and » is a function of x, then use the
definition of the derivative to prove that dv/dy = ¢ x dildx,
13, Write an expression for flv + Ax) — flx} for the function flx) = ax + by +
¢. Then use the definition of the derivative to find f*(x).
14. Using the definition of the derivative, show that, il ¥ = fix) + gix} + hix),
then dy/dr = f'(x) + g"(x) + h'(x}.

Exercises
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15.

16.

18.

19.

21

‘When Mongol throws his beach ball straight up in the air, its height
h at time ¢ is given by h = 121" + vy, (a) Find the velocity of the
ball at time ¢. (b) Find the velocity of the ball when ¢ = 0. (c) Find
out how long the ball takes to reach its highest point (i.e., at what
value of ¢ does dh/dt = 07).

When Mongol drops his ball off the Hasselbluff M in Viewpoint, its
height above the ground at time ris given by b = 64 — Yagr. (a) What is the
velocity at time 17 (Is the velocity positive or negative?) (b) How long will the
ball take to hit the ground (i.e., at what value of r does ## = 0)? (c) How fast is
the ball going the instant before it hits the ground? (d) The quantity g is known
as the acceleration of graviry and is measured in meters per second?. Find a
numerical value for g if the ball 1akes 3.61 seconds to fall to the ground.

. Find the values of x where the slope of the curve y = §x7 — x* 4 3x +

5is equal to 3.

For what values of b is the line ¥ = 8x + b tangent to the curve
y = x*?

The mean value theorem states that, if a function y = f{x) has a de-
rivative defined everywhere between x = a and x = b, then there is
some value of x (call it x,) such that a < x, < b and /" (x,) equals the
slope of the secant line between the points (a, f(a)) and (b, F(b)).
Consider the function f(x) = —x* + 10x — 15, and two points on the
graph of that function: (2, 1) and (6, 9). Find the value of x, that is pre-
dicted by the mean value theorem (i.e., find x, such that

1py = Ji8) = fla)
Sl = ===

fora = 2and b = 6).
The function

_3te x -4

hix) = =-i
is undefined for x = 1. L'Héspital’s rule makes it possible to calcu-
late the limit of &(x) in this case. L"Hospital's rule states that, if h(x)
=f(x)g(x), and lim___ f(x) =0 and lim___ g{x) = 0, then lim, __ h(x)
=lim,_ f'{x)lim, __ g'(x). Use L'Hospital’s rule to calculate

=l I =

lim It + xl— 4

Newton's method provides an iterative method for estimating the x
intercept of complicated functions. The goal of the method is to find
xo such that f(x,) = 0. First, make a guess (x,) that is reasonably close
to the true value of x,. Then calculate a better guess according to the
formula x, = x, = f(x,)f"(x,). The method can be repeated to yield a
still better guess, x; = xg — f(x)/f" (xy). Keep going until you are sal-
isfied that the result is close enough to the true answer. Now, use
Newton's method to estimate the cube root of 7. Start with x, = 2,
and find the x intercept of the function f(x) = x* — 7. Perform a total
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of three iterations, and compare the result with the true value. (See
Figure 2-9.)

¥

-~

Figure 2-9,

J 22, Write a computer program that reads in the coefficients of a polynomial and
then prints the derivative of that polynomial.

O 23. Write a computer program that finds a solution of a polynomial equation by
using Newton's method. Have the program read in the coefficients of the
polynomial and an initial guess for the solution, Use the routine from exercise
22 to determine the derivative of the polynomial, and then apply Newton's
method.



Derlvatlves

We were all uneasy as we met in the Main Conference Room the next
day. Everyone was still shaken by the visit of the gremlin.

*I have a problem you stuck me with a long time ago,"” Recordis said.
“*When we were doing algebra, we decided that we would carve sculp-
tures of various curves in the Royal Garden. You left me with the job of
determining the shapes of these curves. If you have ever tried to draw
curves involving x's to the third power by plotting points, you will appre-
ciate the problems I have been having.”

“*How far have you gone?"" the king asked.

““The curve you gave me was y = x* + 3x* — 9x + 3, I've figured out
four points so far.”

“*Four points!"" the king exclaimed. “Is that all?"

“They don’t seem to fit any pattern at all!”” Recordis moaned. “‘I've
checked each calculation at least a hundred times to make sure that [
haven't made an error, but I can check them again if you want me to.”

He told us the four points he had come up with: (=5, =2), (=2, 25), (0,
3), and (2, 5).

“*We can make an approximate sketch of the curve and see what it
looks like," the professor suggested.

“But we can't even do that!”" Recordis said. “We don't know where
the curve turns around.”
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**Turns around?”” the king asked.

*It must turn around here,”” R lis said. **S i it
seems to be going up, sometimes it seems to be going down, and then it
seems to be going up again. It must turn around somewhere in the
middle.”

**Why don't we check about ten points and see what it does?" the king
suggested. **That should give us a better idea than just four points.”

After some tedious arithmetic, we came up with ten points. (See Ta-
ble 3-1.)

“'See?"’ Recordis said. **The curve has to turn around.”

“There must be some way Lo figure out where it turns,”” the professor
insisted. (See Figure 3-1.)

**I think I know how we can figure out where it turns,”” Trigonometeris
said. **Let's look at the part of the curve near where it turns.” (Fig-
ure 3=2.)

31

Table 3-1
x fix)= 3+ 32 -9x +3
-5 -2
-4 23
-3 30
-2 25
-1 14
0 3
1 -2
2 5
3 30
4 79
¥
-
T umarcund point (point with
horizoatal
T tangent)
L] - .
L A Figure 3-2.
L
T .
a ——t—+ i =t p

Figure 3-1.
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“'If the curve is going up,” he inued, “‘then the line to the
curve slopes up.”

*And its slope is positive,"" the professor interrupted.

“If you keep drawing lines closer and closer to the turnaround point,
they gradually become flatter. At the exact point where the curve turns
around, the tangent line must be parallel to the horizontal x axis.”

**Of course!” the professor said. ** And it must have a slope of zero, just
like any other horizontal line.””

“*And we know what the slope of the tangent line at a given point is,"”
Trigonometeris contributed.

**Of course we know that!” the professor said. **The value of the deriv-
ative at a given point is the slope of the tangent line at that point. To find
the places where the curve turns around, all we need to do is find the
places where the derivative is zero."”

“Of course!”” Recordis exclaimed. **Why didn’t I think of that?"

**And the same thing happens when the curve is going down, and then
starts turning around to go up,” Trigonometeris said.

“Let's find the derivative of Recordis’ curve,” the king suggested,
“*We can use what we did yesterday.”

flx)=x+3x'=9x +3

“*The derivative of the first term is 3x%,"" the professor said.

*“*The derivative of the second term is 6x,"" the king said,

**The derivative of the third term is —9," Trigonometeris said.

**And the derivative of the last term is zero,” Recordis said. “*That
gives us the derivative of the whole polynomial."

fix)=3x+6x -9

*I think we can factor that expression,”” Recordis remarked happily.
“‘We did things like this before when we were working on algebra.” (Re-
cordis likes to factor things.) -

Fix) =32+ 6x = 9= (3x = lx + 3)

**And now we can find out when f'(x) = 0,”" the professor said. ““We
have two possibilities.™

Ix=3=0 or x+3=0

“*Which means x = 1 or x = —3,” the king stated.

“So there are two points where the curve turns around,” the professor
said.

““How can we tell whether it is turning around going down or turning
around going up?"* Recordis asked.

“‘We can tell pretty easily from the graph, since we already know quite
a few points.” Igor quickly filled in the rest of the graph (Figure 3-3), us-
ing what we knew about the points on the curve plus the two turnaround
points.
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y=xd+3el-9x+3
- original curve

o+ yExd+352-0x+3

1
[]
]
1]
1)
1
S
]
]
]
i
: derivative curve
| [y=3eax-9
1
]
1
11 +
+—
x
\ /
Figure 3-3 1
Figure 3-4,

It is obvious that the curve reaches a high point when x = -3, and
then starts going down again,” the professor said. “‘When x = +1, the
curve reaches a low point and starts going up again.”

*'But look at how many points we had to calculate before we had any
idea about the shape of the curve,” Recordis protested. “You always
make me do all the work. We had better figure out a quick way to tell
whether a point with a horizontal tangent is a high point or a low point. [
simply refuse to calculate ten points each time."

**We should be able to figure out something," the professor said.

After we had looked at the graph for a long time, [ came up with a sug-
gestion. *‘Let’s look at the graph of the curve and its derivative together.”

**How can we do that?" Recordis asked.

""When we take the derivative of some function, we end up with anoth-
er function. In this case, we have two functions; f(x) = x¥ 4+ 32* - 9x + 3
and f*(x) = 3x* + 6x — 9. There is no reason why we can’t draw a graph
of f'(x) just the same as we drew a graph of f(x). Why don't we draw
the graph of the derivative right under the graph of the main function?"”
(Figure 3-4.)
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We stared at these two graphs for a long time. “1 see something,” the
professor said. *“'Where you have drawn the derivative as a solid line, the value
of the derivative is positive and the original curve is sloping upward.™

“And where the derivative is drawn as a dotted line, the value of the
derivative is negative and the original curve is sloping downward,” the king
added.

“The places where the derivative crosses the x axis are the ones where the
value of the derivative is zero, so these are the places with the horizontal
tungents on the original curve,” Trigonometeris said.

After a long pause the king began, I want to say this slowly, or else 1 will
make a mistake. When the original curve is at a high point, it looks as though
the derivative curve is sloping downward. When the original curve is ata low
point, the derivative curve is sloping upward.™

**1 think he’s right,”” the professor gasped. **All we have to do is find
the slope of the tangent line to the derivative curve.”

There was a brief pause before Recordis shouted, **We can take the de-
rivative of the derivative!"

“There doesn’t seem to be any reason why we can’t,”” the professor
said. *"We have the function f'(x} = 3x* + 6x — 9, We should be able to
find the derivative of that function as easily as we can for any other func-
tion."”"

original function: x* + 3@ = 9x + 3
derivative: 3x* + 6x —~ 9
derivative of the derivative: 6x + 6

“*We have to think of a better name for the derivative of the deriva-
tive,”” Recordis said, **before we do anything else.”

"“That's easy,” the professor boasted, proud of herself for being able to
think of a name without asking me. **We'll call it the second derivative.””

“That means we can call the derivative of the original function the firsr
derivative, if we want to,” the king said.

“*And if we wanted to we could also have the third or fourth or fifth de-
rivative,"" Trigonometeris added.

“*What would we ever do with so many derivatives?"” Recordis asked.
“[ think we have too many derivatives as it stands now. We do need to
think of a symbol for the second derivative, though.”

*“That should be easy," the professor said. *'If the first derivative has
one prime after it, the second derivative should have two primes after it.”

function: y = fix)}
first derivative: y' = f'(x)
second derivative: y" = f*(x)

(The expression f"(x) is read *'f double prime of x.”")

I like your dyldx system," the king stated. **We should have a way of
naming second derivatives that uses that notation.™
I have an idea,”" I said. **Maybe we can clarify what the expression
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dy/dx means. We start with a function y. Then we
hit the y with the expression didx, which gives
us the derivative: dy/dx. It looks as though the
symbol didx stands for the eperation of taking

the derivative with respect to x."”
*“That sounds reasonable,”” Recordis
agreed. **1'd rather write d/dx than ‘take the

derivative of the quantity with respect to x." ™

**So let's see what happens if we take
the operator d/dx and apply it to the first
derivative: dy/dx,” T said.

“You get (dldx )(dy/dx)," the professor
told us.

oariginal curve

y=x3 +3.1.'z —0x 4+ 3

It looks as though you’re multiplying
two fractions,”” the king said.

“‘It looks like that, but that's not what
you're doing," the professor stated.

“I think we can make that notation
even shorter,” Recordis said. '*Let’s write
d dyldx dx.”

**We can make it shorter still,”
Trig is added. *'1 d of writing
that d on the top twice, we may just as
well write d with a 2 after it, like
this: d®y/dx dx.”

*‘We can also save ourselves the

first derivative
y=3x +6x—9

trouble of writing dx twice,” the professor
said. *"We can wrile d®y/dx®""
Recordis was hoping we could shorten

that even further, but we all agreed that it was

the best we could do. Igor displayed our new

function: ¥ = fix)

derivative: y' = f'(x) = dvidx

second derivative: ¥" = f'(x) = d®y/dx*

(The expression d?y/dx? is read “d
squared v over dx squared.™)

*‘Now we can have Igor draw the

second derivative
¥i=br +é

graphs of all three of these functions,”
the professor said. (Figure 3-5.)

**We can make the following rule,”
she continued. *'If the first deriva-
tive is zero and the second derivative
is positive, the main function reaches a
low point. If the first derivative is zero
and the | derivative is negative, the
curve reaches a high point.”

\'\.—.

Figure 3-5,
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“That should be easy to ber,"" Trig is said. “*You just
remember that it is backwards from the way 1t should be, Negative means
high, and positive means low. I always knew algebra was somewhat back-
wards anyway."

“The rule works in this case,” Recordis said, **but how do you know
whether it works in any other case?”’

**We've got to figure out what the second derivative means in general,”

the king stated.
“We know that the derivative is the rate at which the main function
changes,” the professor said. **For ple, if the functi the

position of the train, the first derivative represents its velocity. . Sathe sec-
ond derivative must be the rate at which the first derivative changes.” She
looked shrewdly at the board. ‘I have an idea. lgor, give me a bug with an
arrow strapped to its back."

The Visiomatic Picture Chalkboard Machine looked startled, but a few
minutes later a little hatch opened in the side of the screen and out flew a
purple bug with a red arrow strapped to its back.

1 want you to walk along this function,” the professor said, pointing to the
original function f(x) = x% + 3x* — 9x + 3, which was still sketched on
the screen. She oriented the bug so that the arrow was tangent to the
curve at the place where the bug was standing, and pointing in the positive
x direction (Figure 3-6).

P PO

R —

Figure 3-6.
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“*‘Amazing!"" Trigonometeris gasped. *'l have never figured out how
bugs are able to walk on walls."

**Look at what's happening to the arrow,"" the professor said as the bug
walked along the function.

“It's slowly getting flatter,”" the king observed.

“Of course the arrow is getting flatter when the curve is turning down-
ward,”" Recordis said. **What is that supposed T.o prove?"

“You _|usl said it!"* the professor excl dden light ing into
her eyes. “*When the curve is turning downwnrd, the slope of the tangent
line is becoming less.”

“*Right.”

**When the value of the first derivative is becoming less, the first deriv-
ative curve must be sloping downward.™

*“*Right.

“And when the first derivative curve is sloping downward, its slope
must be negative.”

“Right.”

**And when the slope of the first derivative curve is negative, the value
of the second derivative must be negative,” the professor finished trium-
phantly.

**Can you go through that again?"" the king asked.

“‘What we just said is that, when the value of the second derivative is
negative, the main curve is furning downward,”” the professor told him.

*“That means it must look like one of these curves,” Recordis said. Igor
drew a lot of curves turning downward (Figure 3-7).

“‘We invented a name for a shape like that,” the king reminded us.
"R ber the time Mongol was running along that hill and it caved in?
It made a giant hole, so we made up the name concave for something
shaped like a hole.”

**We could say that these curves (Figure 3-7) are oriented so that their
concave part is downward,” the professor said.

“I know how you can draw curves that are concave upward,” the king
stated. Igor obligingly drew some curves that were concave upward (Fig-
ure 3-8).

*“*When a curve is concave upward, you can see exactly the opposite
happen,” the professor said, The litle bug continued walking along the

37
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original function until it reached the point where the curve was concave
upward. *'As you move along the curve, the tangent arrow slowly turns
upward. That means that the slope of the tangent line is increasing, so the
value of the second derivative must be positive. We can summarize these
rules: When the second derivative is positive, the main curve is concave
upward. When the second derivative is negative, the main curve is con-
cave downward.”

**I'm still confused trying to ber which way is concave and which
way is not concave,”” Recordis confessed.

I know what we can say,” the king said. **If you have a curve that is
concave upward, you could easily pour water into it. If you have a
concave-downward curve, the water would spill right out of the curve.™
(Figure 3-9.)

concave-upward curve: concave-downward curve:
‘holds water does not hold water

Flgure 3-9,

*I think [ can remember that,” Recordis said. Igor made a table:
second derivative is positive = original curve holds water (concave upward)
second derivative is negative — original curve spills water (concave
downward)

“*That's back the way it should be,” Trigonometeris said. **Positive
means up, and good (if you're trying to save water). Negative means
down, and bad."

““Now we can tell whether a point is a minimum or a maximum,”’ the
professor continued. “'If the curve is concave downward, then the point
with a horizontal tangent is at the top of the curve, so to speak.” (Fig-
ure 3-10.)

high point

low point

Figure 3-10,
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*“The opposite thing happens with a concave-upward curve,” the king
said. **The point with a horizontal tangent is then a low point.”
Igor summarized:

¥' =0, y" positive, point is a minimum
¥' = 0, y" negative, point is a maximum

“*Wait a minute,” the professor said. *‘Look at this curve (Figure 3-
11). You can't say that point A is a maximum. The value of the curve at
point B is greater than the value of the curve at point A."

I think you could call point A a local maximum,"" 1 suggested. **Farm-
er Floran told me that Crabgrass Hill is the highest point in Coast City,
but that the mountains off in the country are higher than the hill. There's
no reason why you can't call a point a local maximum if it is higher than
all the points around it.”

*‘1 suppose you could call the highest point a curve ever reached the
absolute maximum,”" the professor suggested.

**Our original curve doesn't have an absolute maximum," Recordis
pointed out. *'It goes off to infinity."

**1 can think of a curve that does have an absolute maximum,” the king
said. Igor drew the graph of y = —x* (Figure 3—-12).

**The point (0, 0 is the highest point this curve ever reaches, no matter
how far you extend the curve in either direction,” the king went on.
**That means that (0, 0) is an absolute maximum."

=
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Figure 3-11.

Figure 3-12.
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**Let’s make sure that this curve matches our theories,” the professor
cautioned. *'If y = —x%, then y* = —2x, and y* = =2. The second deriva-
tive is negative all the time, so the curve should be concave downward all
the time."”" The professor looked carefully at the graph.

**Of course it is concave downward,”" Recordis said. **You can see that
it would spill water,”

"I just thought of something else,'” the king stated. '*What happens if
the second derivative is zero?"

“Fiddlesticks!"" the professor said. *'I knew somebody would think of a
complication.™

We looked at the graph of our original curve again (Figure 3-5).

**The value of the second derivative is zero when x = —=1,"" the profes-
sor said.

**On the original curve, that happens at the point (—1, f{—1)),"" the king
added.

*“What does that mean?"" the professor asked.

There was a long pause before Recordis began slowly. “T'll say what it
looks like to me, but I don't think this will help much."

**Go ahead," the professor said,

"*When x is less than — 1, the second derivative is negative. That means
that the curve is concave downward when x is less than = 1."

**We know that,”” the professor said.

**And when x is greater than -1, the second derivative is positive, so
the curve is concave upward."”

“*We know that," the king said.

**So the point where the second derivative is zero must be the bound-
ary between the curve being concave upward and the curve being con-
cave downward."”

**1 think you have it!"" the professor said.

*1do?"" Recordis asked.

“We will have to think of a name for such a point,” the professor
stated. **But I think you just said the only thing that we need to know
about it—that it is the boundary between the curve being concave upward
and being concave downward."”

Everyone looked at me after Recordis and the professor began argu-
lns over what we should call such a point. "We could call it a point of in-

ion,”" 1 said, g up with } . *That has a nice ring

to it.”

““What if the first derivative is zero at the same point where the second
derivative is zero?"" Recordis wondered.

**That wouldn't ever happen, would it?"* the professor asked.

**1 just thought of a case where it does,”” the king said. "*Suppose we
have f(x) = x* Then f'(x) = 3x* and f"(x) = 6x. (See Figure 3-13.)
Look at the point (0, 0). Although f*(0) equals zero, we can't say that the
point is either a local maximum or a local minimum."
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¥

point of
inflection

Figure 3-13.

““The point (0, 0) is still a point of inflection, though,” the professor
said. **When x is less than zero the curve is concave downward, and when
x is greater than zero the curve is concave upward.”

“It still is a point with a horizontal tangent,” Trigonometeris noted.

““We can summarize all the rules we've come up with for sketching
curves,” the professor said. **This subject might be useful for more than
just finding the speed of the train.”

RULES FOR CURVE DRAWING

1, When the first derivative is positive, the value of the original function is
increasing.

2. When the first derivative is negative, the value of the original function is
decreasing.

3. When the first derivative is zero, the original curve has a horizontal tangent
at that point.

4, When the second derivative is positive, the original curve is concave
upward (and it holds water).

5. When the second derivative is negative, the original curve is concave
downward {and it spills water).

6. When the second derivative is zero, the original curve has a point of inflection,
provided that the second derivative is positive on one side of the point and negative
on the other side of the point.

7. When the first derivalive is zero and:

(a) the second derivative is positive, the point is a local minimum.
(b) the second derivative is negative, the point is & local maximum.
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Exercises
For exercises | to 5, find formulas for the derivative and the second
derivative, and determine the value of x corresponding to maximum or
minimum points (and say which it is).

Ly=-3+5x-9

2.y =13 + 4x + 19

Ay =172+ llx = 10

4oy =194 — 10x + 18

S y= -+ 16x+9

6. The second derivative of a position function is known in physics as the
acceleration. Find the acceleration of Mongol's beach ball when he
tosses it straight up into the air (h = —4gr® + vyr). Is the acceleration
positive or negative?

7. Find the acceleration of the ball when Mongol throws it off Hasselbluff
Mountain (h = 64 ~3gr%).

8. Find the acceleration of Mongol when he slides on Ice Skating Lake
(x = 31).

9. Consider the curve y = ¥* — 3x on the interval x = 0to x = 5. Find the
absolute maximum value obtained by y on this interval. Find the ab-
solute minimum value obtained by y on this interval.

10. Consider the curve y = —x* + 8x* What are the coordinates of the
points where the curve has horizontal tangents? How many such
points are there? Are these points local maximum points or local mini-
mum points? In what interval is the curve concave downward? When
is it concave upward?

11. Consider the curve y = x* — 4x*. Where is the curve rising? Where is it
falling? Where is it concave upward? Where is it concave downward?

12 y = '+ 2+ x; dlyldyt = 7

13, y = ax® + bx? + cx; Pyldv® = 7

14, y = & d"y/dx" = ?

O 15, Writec a computer program that draws a graph of a function and its

DoDooooo

derivative. Assume that the function has been typed in as one of the lines of
the program, but assume that the function is so complicated that you
cannot easily find a formula for its derivative. Find a way to approximate
the value of the derivative at a given peint of the function.

For exercises 16 to 23, you are given a polynomial function y.
Determine all points where ¥, ¥, or ¥ are zero. (You will need to use the
computer program from chapter 2, exercise 23, in some cases.) Identify
which points are maximum or minimum points. Use a computer to
sketch the curve.

16, y = x" = 1567 + 48x + 12

17, y =x" = 36x7 + 432x - 37

18, y = x' + 3x% + 243x + 600

19, y=x' = 11x" = Tx* + 155x + 150
20, y =x'— 19x" + 114x° - 256x + 160
2l y=x'-4x' -5 -2+ 10

22, y=x'—- 60"+ 20 + 160+ 32

23, y=xt= 115" =75 + 155x + 800



: 8 V.
Derivatives

of
Complicated
Functions

Recordis woke everyone early the next morning. ‘'l remember another
problem!" he shouted. "'1 think we can solve it easily.”

Everyone was still sleepy as we gathered in the Main Conference
Room. Recordis had Igor draw a map. (See Figure 4-1.)

Figure 4-1.

**You remember the field I have out in the country,” he began. **There
is a stream that runs in a perfect half-circle around one end, and there isa
straight road that borders it on the other end. I've been wanting to build a
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house on the field for a long time, but I've never been able to figure out
whal its dimensions should be. 1 want the house to cover as much area as
possible. It has to have square edges, of course, because the builders
don't know how to make any other kind of house. It is obvious that you
can't build a very wide house or a very thin house (Figure 4-2). The shape
that has the largest area must be somewhere in the middle between these
two extremes. We have to figure out exactly what the maximum-area
shape is.”

“*Why did you call us all together?" the professor asked. **What does
this problem have to do with anything we have been doing?"

“Yesterday we worked on finding maximum points,” Recordis said.
**All we have to do is find the area of the house as a function of its width,
and then we can find the derivative to solve for the particular width that is
a maximum point for the area function.™

“*Can you do that?"" the king asked timidly. **1 thought functions had to
be functions of x that were set equal to y.""

“I don't see why that has to be,"" | replied. **We can make up some new
letters to stand for the variables in the problem.”

**Like what?"" the professor said sleepily.

“The first thing we do know is the radius of the semicircle, right?"" Re-
cordis didn't say anything. **We do know the radius of the semicircle,
don't we?""

“*We could measure it very quickly,”” Recordis suggested.

“We don't need to know the exact length while we're doing the calcula-
tion,” 1 said. “‘For now we will say that the length of the radius is
equal to r."”

“It should be easy to remember,” Recordis said, “that r stands for
radius.”

““The radius won't change,” Trige is offe helpfully

““Right,” 1 said, *‘r will be a constant. Unfortunately, everythmg else
will be a variable.”

“It would be easier if we tried to maximize the area of half of the
house,"”” the king pointed out. **We know that the total area is twice the
shaded area (Figure 4-3), so if we maximize the shaded area it will be the
same as maximizing the total area of the house.™

*“The shaded area will be where the living room will be,"* Recordis said.

“*We'll call the length of the living room L and the width of the living

Figore 4-2.
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room w,"" I stated. “*Then we know that (area of living room) = w x L."
*“*We can find a relationship between w and L, the professor said. " L
and w will always form the sides of a right triangle, with the radius of the
circle forming the hypotenuse. Then we can use the Pythagorean theorem
to show that L* + w? = r2"
““Now we can solve for L,"" Recordis said.

Lrwi=p
LE= p2 — yt
L=VE i

**And we can put the last expression in the equation for A = wL," the
king added.

A=wVrt —

*“That's great!” Recordis exclaimed. **We now have A expressed as a
function of only one variable: w. That means A = f(w). All we need to do
now is find dA/dw, and then set dA/dw = 0. Then we can solve for the val-
ue of w that maximizes A.""

“*Hold it!"" the professor objected. **We can’t find the derivative of that
function! We don’t know whether the f(x) = x", f'(x) = nx®' rule
works if n is a fraction, and in this case we have something raised to the ¢
power. And we don’t even have just w raised to a power; we have a weird
expression like (r* — w?) raised to a power. Not only that, but we have a
stray w in front of the complicated function that is multiplying everything
else! There is no way we can do that problem!”

“You're night!"* Recordis said, looking closely at the function. **That is
hopeless., That is really impossible.'

“Then why did you get us up so early?"” the professor complained.
Everyone began to get ready to go back to bed.

““There has to be something we can do!" the king said.

Everyone stopped. **1t looks to me as though we have three problems,™
I said. **First, we have that loose w in front of the rest of the function. We
know that it is pretty easy to find the derivative of a function if we have a
constant number multiplied by a function. (See chapter 2, exercise 12.) We just
need to find a new rule that tells us what to do if we have a variable times a
function. Then we need to see what to do about an embedded function; for
example, in this case instead of having w2 we have (rf — w22 All this
means is that we have one function of w (f{iw} = r? — w?) embedded in another
function (glg) = ¢"2). giving us g(f(w)). We need 1o figure out what to do
with a function like that. Finally, we need to see whether the rule for finding the
derivative of a power works when we have fractional powers like square roots.
If we can just solve these three problems, we can find the answer to the problem
we started with.”

“*Right,”” the professor said. **And if I could just grow 20 feet and de-
velop some huge muscles, I could beat Mongol in a wrestling match.”

“*We might as well at least give it a try,” the king stated.
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“The first problem is what to do when we have two functions multiplied
together. Suppose we have two functions, w(x) and v (x), and a function g (x)
that is set up so that g (x) = [u(x)] % [v(x)]. We need to find out what dg/dx
is.”

“I know what would be really simple,” Recordis said. “When we had
q(x) = f(x) + g(x), we just said that

dg _df  dg
dr d-t de’
Why don’t we say that if g {x) = [u(x}] = [v(x)], then we have

dg _du d'v,w
dx d'.t dx

“That would be too easy,” the king objected.
“Besides, we can’t just make something up like that,” the professor said.
I thought we were making most of this up anyway,” Recordis protested.
“I don’t think your suggestion will work,” the king said. *For example,
suppose we have the function g (x) = 6x?. Let’s make these definitions:
) =6 duldx = 0
vix) = a7 dvidx = 2x
“Then g(x) = [1(x)] = [v{x)]. According to your proposed rule, we would
have:

dg _ du dv

dy  drv dx
=0x2x
=0

“However, in this case we know that dg/dx is equal to 12x, not zero, so your
pmpohed rule does not work. If we have a function that consists of two other
WE Cannot slmply multiply the two derivatives lo
get the derivative of the whole function.”

**All right, we can look for a new rule,”" Recordis agreed. *'1 was just
trying to make life simple for all of us.”

I suggested, “First, let's see if we can find out what g (x + Ax) is."”

**That would be this expression,” the professor said.

gix + Ax) = [nlx + Ax)] % [vix + Ax))

“*We can rename & (x + Ax)," 1 said. **Show us a graph of some func-
tion, Igor." (Figure 4-4,)

““We could call the difference between u(x) and #(x + Ax) something
like Au," the king suggested.

ulx + Ax) — u{x) = Au

“We can call the difference between v{x + Ax) and v(x) something
like Av,"" the professor said. **Then we can write two equations.”

wix + Ax) = u(x) + Au
vix + Ax) = v(x) + Av
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wiy + Ax)
Ak Yty

A+ A
et
Ax

Figure 4-4.

**We can put these expressions back in our equation for g(x + Ax),”
the Kking noticed.
gix + Ax) =[x + Axi] = [vix + Ax)]
= [uix) + Au] * [vix) + Av]
“*We can multiply out the right side algebraically.” Recordis offered.
gy + Ax) = w(x) vix) + wix) Av + vix) Au + Aw Av
To save writing, Recordis decided to write w instead of ir(x) and v instead of
v(x). That works as long as we remember that both & and v are functions of x.
glx + Ax) = mv + wdv + vAr + Andv
“I know what uv is!™ the king said. “That’s equal to g(x).”
“*We can subtract ¢{x) from both sides,”” the professor said. She was

beginning to get the gleam in her eye that she gets when she thinks she
sees something that Recordis hasn’t noticed yet.

glx + Ax) = gl(x) = u Av + v Au + Aw Av
**That's beginning to look familiar,”” Recordis stated. *'I just can’t think

of what it looks like.”
**Let’s divide both sides by Ax,™ the professor suggested.

+ v — + An —

q'lx-'-ﬂx]-qi.r]_‘ av Au Av
Ax THE TV Ax Ax
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“Now | know what it is!" Recordis said. "We can take a limit on both sides,
and then the left side will be the derivative of g with respect 1o x!™

. oglx + Ax) = glx) _ . Ay . Au . Av
fim, =55 = fim v gz + lmv 3 + lim e gy
dg . Av . Auw . Ay
E_uallr—na&x‘rvll.'?a.&x*-hﬂauh

I remember what Av is,”" the king said. **We said that Av = v(x +
Ax) — v(x). And Au is the same—almost; Auw = u{x + Ax) — u(x).”

vix + Ax) = v(x) uix + Ax) = ulx)
Ax Ax

ﬂ: . .
x4 lim + v Jim

. vix + Ax) = v(x)
+ Mm Au Ax
“Three of those things are just derivatives!" Recordis exclaimed, no-
ticing gleefully that he could write the whole equation in a much shorter
fashion.

dg _  dv,  du dv
dx udx-l-v + lim Au

dr  drac—o

“1 think we can get rid of that lim,,_, Aw,"" the king said. "' have an
idea. Remember that Au = u(x + Ax) ~ wu(x). When we take the limit of
Ax going to zero, we get Au = u(x) — u(x).”

“*That's equal to zero,” the professor pointed out.

*“That means we can erase it,"” Recordis said jubilantly. *'If it is equal
to zero, it doesn't make any difference whether it is multiplied by dv/dx or
752 or 3,569,2044.”"

Igor displayed the final rule:

glx) = uv
dg _ , dv ., du
- “dx+vdx

““That isn’t nearly as bad as I thought it would be,”" Trigonometeris
said.

“‘We still had better think of a name for it,”” Recordis told him. "It will
be hard enough to remember as it is.”

*“The name will be easy,” the professor said. **We can use this rule to
find the derivative of a function if it is the product of two functions, so
we'll call it the product rale. And T can think of a sentence that will make
it a little bit easier to remember. To find the derivative of two functions
multiplied together, take the first function, multiply it by the derivative of
the second function, and add the result to the second function multiplied
by the derivative of the first function.”
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“'Let's make sure that this rule agrees with what we did before,” Re-
cordis suggested. "It would be a tremendous embarrassment if we de-
rived a new rule like this and it turned out to give us a different result for
some problem to which we already know the answer.”

“We already found the result in a simple case where a constant function is
multiplied by another function, ™ the king said. *“We had y = cx, where c wasa
constant, Let's try the product rule on that function.™

“*We can try,"”" the professor said nervously. *'First, we need the first
function. That’s c. Then we need the derivative of the second function,
That's 1. That gives us | times ¢ as the first term. Then we need to add the
second function [the sweat was beginning to build on her brow], which is
x, multiplied by the derivative of the first function, which is the derivative
of ¢, whichis. . .”

“*Zero!" the king supplied. **We end up with this expression."

diex) _ -
“dx (Die) + (0x) = ¢

“‘That is the same answer we got before,” the professor said happily.
**Our rule does work."”

“*You were lucky that time,"" Recordis objected. **I have another func-
tion. How about f{x) = x*? We already know that f*(x) = 2x. In this case
we know that f(x) = x times x. Let's try your product rule on that func-
tion."

" All right,”* the professor said, slightly more confident. **We have the
first function (which is x) times the derivative of the second function
(which is the derivative of x, which is 1). Then we have the second func-
tion (which is also x) times the derivative of the first function, which is
also 1. That means we end up as follows.”

flx)=x"x
Sfixy = (x) + (x)(1) = 2x
““That does equal 2x !"" the king said. **It is consistent with what we did
before.™
Igor added the product rule to our list.

**One down and two to go,”” the professor said to me. **1 think the other
two problems are harder, though.”

49

PRODUCT RULE
f) = [u{n] % [vx)

df _ dv  du
ax Mt Ve
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PO = EVECN

& i
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**All right,”" 1 said. **Now we have the problem of a function embedded
in another function. (The h ical term for a function of this form is
composite function. ) The problem is this: Find dy/dx when y = f(g(x))."
(The expression f(g(x)) is read as “'f of g of x."")

“What exactly does f(g(x)) mean?" Recordis asked.

**Both fand g are function machines,”” I said. ** All the embedded func-
tion means is that we have Mongol throw an x into the g machine. The g
machine spits out some number g(x), or we could call it ». Then we set
up a machine so that the g(x) number u gets thrown right into the f ma-
chine, which spits out ¥, which is the number Mongol wanted to get out of
the machine in the first place."" (Figure 4-5.)

It looks as though you would need a chain to hold the f machine and
the g machine together,” Recordis noted.

**Now suppose that Mongol throws an (x + Ax) into the machine,"" [
said.

““Then the g machine will spit out the number g(x + Ax)," the profes-
sor offered.

“‘Let’s call that number (& + Au),”" 1 said.

u 4+ Ay = glx + Ax)

*“Then the number (& + Aw) will fall into the f machine,” the king said.

**That machine will then throw out the number f(u + Au),"” T added.

I bet a hundred dollars you're going to call that number y + Ay," Re-
cordis said.

¥+ Ay = flu + Aw)

“We're looking for dv/dx,” the professor said. “That means that we
have to find the limit of Ay/Ax as Ax — 0. | don’t see how you're going to
do that.”

**We can say the following,” 1 suggested.

Ay _ Ay Bu
Ax  Au Ax

**You can’t just say something like that!"" Recordis protested.

**Sure we can,” I said. **The little numbers with the delias are all real
numbers, and they can be very, very small but we'll never let them be
equal to zero. Then the equation we wrote is valid no matter how we de-
fine Ay, Ax, or Au.”

““We could try taking the limits of both sides now,” the professor sug-
gested.

Ay Au
s Ax T arth A Ax
**The left-hand side is equal to dy/dx,”" Recordis noted.
. Ay . Au
fim, 3 Jim, 5x

dy
dx
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“‘The last part is equal to du/dx,"" the king said.

4y _ jj Ay du
E_al'l@oﬁu dx

“‘We found out a few minutes ago that, when Ax goes to zero, Au goes
to zero,”" Recordis reminded us.
“We could rewrite our expression like this,”" the professor said.
4 i By du

¥

dx 3% Bu dx
1 know what that is equal to!"’ shouted the king.

dy _ dy du
dv  du dx

*‘Is that legal?"" Recordis asked. *'I thought we had to have a dx on the
bottom all the time."”

*I don't see why it has to be that way all the time.” the professor an-
swered, ““In this case we have y = f{i), so we should be able to say that
the derivative is dy/dw, just the same as we can say that if y = f(x) the de-
rivative is dyfdx.”

“*We must have a good name for this one,” Recordis said.

“I know what we can call it,"” the king said. *'In the original design for
the posite function hine, we said that we needed a chain to hold
the two functions together. We may as well call this rule the chain rule.”

CHAIN RULE
v=flgix)) Letw=g(x).soy=f(u).
dy _ dy du
dy — du dx

“1 know a good way to remember the rule,” the professor offered. * It
looks as though derivatives behave as if they are two fractions being
multiplied wogether, and the di’s just cancel each other out.™

“Let’s try the rule on a simple example to make sure it works," the
king cautioned. The simplest functions we could think of were straight-
line functions, so we let vy =au + b, and u = cx + d, where a, b, ¢, and d
are constants. Then we could see that dyv/du = a and duldx = ¢. The chain
rule claimed:

By substitution we could see that y = acx + ad + b, and we could sce that
dyldx = ac, just as the chain rule predicted.
“That's two problems out of three,” the king said. “* Now we come to
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the hard one. What do we do if we have a fractional power?”

** *Any rational ber can be exp d as a ratio of two integers,”
Recordis proudly quoted from a page in his book. **That's the definition of
a rational number.”

**We're still stuck,”” the professor said. **Remember that an integer in
the denominator of an exponent means o take that root of the number.
For example, x'? means the square root of x, and x'® means the cube
root of x. Now suppose we use the definition of the derivative. Then we
get the following:

oo e (X AxPR — PR
¥= fim

“The problem is going to arise when we have the quantity with the ad-
dition sign (x + Ax) raised to a fractional power. That's the same thing as
WV(x + Ax}". We don't have any way of evaluating a radical sign if we are
adding together two numbers under it! We can’t do anything with that
kind of expression even if we know what the fractional power is, for ex-
ample, Va + bor?Va + b. We can't do anything with either of those ex-
pressions! It will be even harder when we don’t know what root we're
taking—in this case we know only that we're taking the gth root. We ab-
solutely cannot do it this way.""

“Then we must think of another way,"" the king stated simply.

y=xm"

“T have an idea,” 1 said. '*We know that our formula for the derivative
of a power works if we have integer powers. That means we must set up
the equation so that we are dealing only with integer powers."

**Just try.”” the professor told me.

**Suppose we take both sides of the equation and raise them to the pow-
er g, the king suggested.

Because of the properties of exponents, we could cancel the ¢'s on the right

hand side:
= (g
Y = xP

**Sure, that gets rid of the fraction,” the professor said. **But look at
how many more problems it causes! Now we no longer have a function
defined explicitly!”

*'Do we have to?"" [ asked.

“Don’t we?" Recordis said. **Everything we have done before has had
¥ = flx). We've never tried to apply a function to the y before.”

“But we've run across this kind of thing in algebra,” the king noted.
“*We derived an equation for a circle that was x* + y* = r*. We called it an
implicit function. We never said explicitly what » was as a function of x,
but we could tell from the equation what values of ¥ went with what val-
ues of x.”

**All we need to do, then, is figure out how to take the derivative of an
implicit function,” T said. Slowly I began to see a vision of a chain sur-
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g the implicit function »* = x®. **'We can use the chain ru]e |
suggew:d **Suppose we have y = (g(x))* and we want to find dy/
“We can use the chain rule,” the king said. “We have f(u) = u’. and
u = g(x). It looks like:"”
dy _dydu _ ., du
e T dude T M i

“"How does that help?'" the professor demanded. “‘Our problem is
Dl T

**We can use what we just did to find the derivative of both sides of the
equation,” I said.

**Both sides?"" Recordis asked. “*How can you do that?"

**All the equation says is that we have two functions—one of them is
¥* and the other one is x*—and that they're equal for all x. That means
that they’re really two different ways of expressing the same function,
And that means that their derivatives with respect to x should be equal.
Therefore we can apply the operator d/dx to both sides.”

d y_d
pradir i
““The part on the right is easy,” Recordis said, *'since we know that p
is an integer.”™

% £ = pxP-!
We rewrote our equation:
il L
“*How can you take the derivative of a function if it has a ¥ in it?"" Re-
cordis demanded.
““We can use what we just did,”” the king said. **We said that if (some
function) = y9, then (d/dx) (some function) = qy*~(dy/idx).”
““We don’t know what dy/fdx is,” the professor objected. **That is what
we are trying to solve for.™
“But we can solve for it now,” the king said. **Our original equation
becomes as follows.”

q w—lj_-; = px*!

Recordis looked at the equation suspiciously, as if he wasn't sure it was
a legitimate one. **You could try dividing both sides by qy*=,"" he sug-
gested.
dy _ px*t
dx ~ gyt
**We can substitute y = x*¥,* the king noted.
dy _p
dx ~ g (@Ry
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“*We can simplify that exp inthed i ,"" the king i
(Remember that (x2)* = x=b.)
dy p x!
dx g x**H

**We can use another exponent law to simplify the fraction with the x in
it,"" Recordis noted. (Remember that x*/x* = x7-)
dy = B yp-ttp-pm
q
*“That can be simplified,” the professor noted.

dy _p yP-l-peE
dy g

=P yrenm

q
o
q
“Now substitute n in place of pig:
dy
dx
““That's what we wanted to show!" Recordis cried happily. “*That
means that, if ¥ = x", ¥' = nx""!, whether or not n is an integer.”
**We should make up a name for this rule, since it seems to be true in
general,” the king said.
“Thal’s easy,” the professor announced. “*We'll call it the power

= gy}

rule.
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POWER RULE
y=flx)=x" {# is any rational number)
y' = f1x) = et

(We later established that the power rule is valid for any real number
exponent, including irrational bers, such as mor V2.)

**We should save the method we thought of to prove this,” Recordis
said. **The implicit function method.™

Igor wasn’t sure how to gencralize this. so 1 thought of a way to start.

*“The problem will come when we have an expression like this: f(y) = g(x).
If we take the derivative with respect to x of both sides,

d d
a0 = Zoeln)
we know that the chain rule tells us that

df dy _ dg
dy dv  dr
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Now we can solve for dy/dx:

=
"

dy
Igor displayed the function for which we could now allegedly find the
derivative:

A= w(r? — w2

“Remember ris a constant, w is a variable, and we want to find dA/dw,"" the
king said.

**First we should use the product rule,” the professor said. **We would
have dA/dw equals the first function (w ) times the derivative of the messy
function ((r* — w?)*?) plus the derivative of w (which is 1) times the
messy function.”

dA _ oy d
dw ) dw

**Now all we have to do is find the derivative of the messy function,”
the king noted. *'l think we'll need both the chain rule and the power
rule."”

(F = WA 5 (1)(r? — w2y

We made these definitions:
¥y == wh)?
u= -yt
y = w2
According to the chain rule:
dv _dy du
dw  du dw
“We can find dy/du using the power rule with n = /2" the professor said,
dy Lot
P G

“Iknow how to find du/dw,” Recordis said. “We have u = r? — w2 The 2
is constant, so its derivative is zero. The derivative of —w? is —2w.
Therefore:™

% (,-3 - w?}ln’l = R!! - W’)‘“"(—ZH‘)

= —w(r® — wi-ie

**We can put that expression back in our equation for dA/dw,”" the king
said.

A o WAt = W (17—

““Now we have to do what we did yesterday,” the professor pointed
out. “*‘We set dA/dw equal to zero and then solve for the optimal val-
ue of w.™

0= —wir? — wh) 1 4 (2 =y
“Now we can do it,"”" Recordis said. **That’s just algebra.”
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W = Ve = (2 - e
L L ) B e ) L Y R T L TRt

wl=(r! = wi)

2“-’=rl
Iv’l!%l
r
W= e
V2

““That’s the answer!"" Recordis shouted. I need to design my house so
that the width of the living room is equal to the radius of the circle divided
by the square root of 21"

“1 remember what the radius of your vard is,” the professor said. *'It's
10 units. So that means that the width should be as follows.” {Recordis
spent a long time looking up the square root of 2in a table and performing
the division.)

- - 10
w= 007" = g = 707

**Shouldn’t we check the second derivative?” the king asked. It
would be embarrassing if this turned out to be a minimum point and Re-
cordis ended up building the smallest possible house."

“I think we can just tell if we look at some points on the original func-
tion,” the professor said. “That would save us from having to check the
second derivative.” (See exercise 25.)

Igor made a table of values of the function A (w) = w (100 — w¥)'®
(Table 4—1 and Figure 4-6).

*Qur answer is right!"” Recordis said. **The maximum value of the area
is somewhere about 7. It is amazing the uses we are finding for this subject
of calculus. And I bet with these three new rules we can find the deriva-
tive of almost anything.” Recordis was still talking cheerfully about plans
for his house when we all went out to breakfast.

Table 4-1 Alw)=w #F - W = w100 - w3yt
A sl
0
9.95 Wl
19.60
28.62
36.66
43.30
48,00 wp
49.99

=

9.3

[=RT-N- . PSP e ]
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Note to Chapter 4

‘The assumption that has been made in the demonstration of the chain
rule in this chapter is that Auw does not equal zero. Since Aw = g(x +
Ax) — g(x), this condition means that g (x + Ax) must not equal g(x) for
small values of Ax. This condition holds true for any function without any
flat spots. For example, this demonstration of the chain rule will not work
for the function in Figure 4-7. We later were able to establish, however,
that the chain rule is indeed valid for all functions, whether or not they
have any flat spots.

¥

Figure 4-7.

Exercises

1. Use the product rule to find the derivative of the function f{(f) =
(2t — 5)3¢ + 4). (Does the answer agree with the result for exercise
2-67)

Find dy/dx for:

2, y=(2x+53x=1)

3.y = 10x/4x = 3)

4. y=(ax + b)lcx + d)

5. Use the product rule to find the derivative of ¥ = (x*)(x¥).

6. Derive the triple product rule (i.e., find y' for y = u(x) v(x) w(x)).
Use the triple product rule to find the derivative of y = x%.

7. Derive the quotient rule. (Find ¥’ for y = u(x}vi(x).)

8. Find dy/du for ¥y = u**, Find dufdx for u = x* + 3. Then find dy/dx
for y = (x* + 3"

9. Consider y = V1 + x* Let s = | + x*. Find dy/du. Find du/dx, Find
dyldx.

10. Consider ¥ = (3 + 4x)**. Let u = 3 + 4x. What is dy/du? What is

dus/dx? What is dy/dx?

11. Consider y = Vax?® + bx + c. Let i = ax?* + bx + ¢. Whatis dyfdu?
What is duldx? What is dv/dx?

12, Consider y = V1 + (* + 4" Letw = x* + 4. Letv =1 + (x* +
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4)', Find dy/dv. Find dvidu. Find du/dx. Find dy/dx.
13, Verify the power rule for n = 4. Use the definition of the derivative.
14. Use the definition of the derivative to find y* for y = 1/x.
15, Derive a generalized power rule: for & = u(x), find dy/dx for y = u".

Find dy/dx for:

16, y=V4 +

17, y = (4 + Jx)*?

18, y = Vx? + ¥ + ¢

19. y = JVat - |

20, y ="V

21, y=3Wat + 4

22, y=V1 + lix

23, y=Vx + lix

M. y =[x+ 4

25. Find the second derivative of the function A{w) = wVr? — w?at the
point where w = r/V'Z. Is the curve concave up or concave down at
that point? Is Recordis building a house that will have maximum area
or a house that will have minimum area?

26. (a) Use the implicit derivative method to find dy/dx for the circle x* +
¥? = r%, (b) Solve for y as an explicit function of x for the semicircle
where y is positive. (c) Using the chain rule and the power rule, find
dyldx for the function in (b). Does the result agree with that ob-
tained in (a)?

27. Find dy/dx for the hyperbola (y — 1)¥9 = (x = 34 = |.
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In the next few days [ saw more of the pretty countryside of Carmorra.
Recordis had announced he was starting construction of his house, and he
promised to invite us all over for a visit when it was finished.

While 1 was walking along the balcony of the castle the next afternoon,
[ noticed Trig ris leaning against the railing. He apparently hadn’t
heard me the first time I called to him, so I became concerned and ran up
to him. **Are you all right?" I asked.

He jumped and looked around at me. **Oh,"" he said, **Sure.” His voice
lacked its usual cheerful quality.

**Something’s the matter,”" 1 insisted. **Are you sick?"

**Nothing really,”” he said. **Just a feeling of uselessness.”

**Uselessness?"”

“I'suppose I can’t stand in the way of progress,” he said, I guess this
is what happens when new things are invented—the old inventors get left
behind. I always wondered what happened to the inventors of drag-sleds
after the wheel was invented, and now [ know.™

**What are you talking about?"" I asked.

“*My work was crucial when we were working on trigonometry,”” he
said. **When we were discovering the new trigonometric identities, I was
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called upon to reach the limits of my skill. Trigonometry was the in-thing
then. Now we're inventing all this new material, and trig just doesn't seem
useful any more.”

“Don't say that!"" [ exclaimed. **There's no telling what we'll run into if
we keep going like this. Trigonometry may turn out to be one of the most
important fields to investigate with the help of calculus.”

Trigonometeris still didn't look very cheery, so I asked him to show me
the Royal Triangles. He cheered up a bit and took me to the treasure room
of the pa]m where the ut‘ﬁcnal tnan,glcs were kept. The triangles were in-
tricate for lculating the sine, cosine, and tangent of
any angle. I was amazed at lhe accuracy lhay were capable of, but before
I could look at the mechanics very closely we heard a desperate cry that
echoed throughout the palace.

**Help! Everybody! We're in real trouble now!"* Recordis was running
around, trying to get the attention of everybody in the palace. We had no
time to ask him any questions before we had followed him to the outskirts
of town 1o a large brick building surrounded by a vard labeled **McCockle
Chicken Farm."

“There!" Recordis cried, pointing to a horrible machine in the middle
of the farmyard. A giant scaffolding had been erected, and hanging from it
was a heavy spring attached to a large weight. The weight was jumping up
and down because of the pull of the spring, and every time it came down
all the chickens cackled in terror and ran about the yard.

“The gremlin put it there!™ Recordis said, slowly getting his breath
back. **He's trying to sabotage the chicken farm!™

By this time everybody from the palace had gathered around the yard
(except Mongol, who was terrified by the spring and was hiding behind a
nearby mountain). **The gremlin put locks all around the spring so we
can’t take it apart,” Recordis added.

“We've got to find some way to stop it,”" the king said. **Before long
the chickens will have been scattered all over the place.”

Builder, whom [ had not seen since the day I arrived, looked thought-
fully at the block. **T could build a gremlin-block-stopping machine,” he
said. **All I need to know is how fast the block is moving at a given time.”

“*We can take a derivative!” the professor cried. ‘*That will 1ell us how
fast it is going.”

**Take a derivative of what?"" Recordis asked. **We can’t tell how fast
it is going before we know what a graph of its motion looks like.”

**It's very simple,”” the king said. **We need to find some way to make a
graph of its motion, then we find & function of time that matches the
graph, and then we find the derivative of that function to find the speed of
the block.™

**I don’t know any function that goes up and down like that!"" Recordis
protested. **And, besides, if you think I'm going to climb up on that block
with my watch to time its position . . .""

**“There must be another way to graph its motion,”” the professor said.
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**We could use a camera,” | suggested. | explained my idea, and we
all worked quickly to set the camera up. Mr. McCockle was shouting at us
to hurry because the chickens were quite hysterical by now.

*‘When the pictures are developed we will make life-sized prints of
them, and then we can measure the position of the block,” the professor
said. For some reason there is very little friction in Carmorra, and the
spring was still bouncing up and down at exactly the same rate while we
took the pictures, had them developed, and laid them out on the floor of
the Main Conference Room. (See Figure 5-1.)

£l |

Figure 5-1.
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Flgure 5-3.

15 5 15 10
time
Figure 5-2.

**Make sure you put them in the right order," the professor advised. "It
would surely confuse matters if you didn't.”

**That looks familiar,” Trigonometeris murmured, but nobody paid him
any attention.

“‘Let's have Igor draw the graph of a function that fits these points,"
the professor said. (Figure 5-2.)

*1 can’t think of any algebraic function that looks like that," the king
stated.

“I know what it is,"" Trigonometeris said softly. Finally someone paid
attention to him. **We can use a sine function.”

“You can't use a sine function!” Recordis exclaimed. **We don’t have
any angles! You can use a sine function only if you have an angle.™

**But we made a graph of what a sine wave looks like," Trigonometeris
said. “‘Igor, draw the graph of a sine wave for me." (Figure 5-3.)

**That has exactly the same shape as the motion of the block," Trigono-
meteris continued. **We can use this function.”

. . 2ot
(height) = y = 15+ 5 sm(w)

*It seems to match exactly,'" the professor agreed. ‘‘Now all we have
to do is find dyfdx if y = 15 + 5 sin(2w/10).”"
**Let's first find the derivative of y = sin x,"" [ suggested. “‘Then we can

o =2 W P
—14

y=snx
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easily use the chain rule, the product rule, and the sum rule to find the de-
rivative of the actual function that we have.”

“*We might as well start at the beginning,”" the professor said. **lgor,
show us the definition of the derivative again.”™

dy flx + Ax) - fix)
Ax

—= = lim
dx Ar-ed

If f(x) = sin x then

dy sin(x + Ax) - sin x
dx _!1'1'9. Ax

“*Now we're stuck,” Recordis said.

T have a formula for the sine of the sum of two angles,” Trigonome-
teris informed us triumphantly. He went to his book and read off the fol-
lowing formula:

sin(A + B) = sin A cos B + cos A sin B

“*We can put that formula in the equation for the derivative,” Trig sug-
gested.,

d'y_l, sin x cos Ax + cos x sin Ax — sin x
dx  As— Ax

**And we can separate the terms in the numerator,”" he added.

D im sinx (9585 =1) | jim cos x SRAX
dx a0 Ax Ar=0

Ax
dy _ . . cosAx ~ 1 . sin Ax
ar = s lim T eonx Iim Ty

“Now we have to figure out what these limits are,” Trigonometeris
said. “Let’s try this one: lim,_, (sin 8)/8. (@ is the Greek letter theta,
which is often used in trigonometry to represent angles.)

**1 think the limit will be zero," the professor said; **sin # will approach
zero, and that is on the top of the fraction. Whenever the top of the frac-
tion goes to zero, the value of the fraction is zero."”

I think it will be infinity,"" Recordis objected. **Remember that we
have a @ on the bottom. Whenever the bottom of the fraction goes to zero,
the value of the fraction goes to infinity."

** Are we measuring @ in radian or degrce measure?" the king asked

**We had better use radian * Trig; is "1
remember correctly, we found I]mt degree measure was more convenient
if we were actually building or ing a ren] angle, but for

mathematical purposes we always used radian measure.”
““Then I think the value of the limit will be 1,”" the king said. *‘Igor,
draw a picture of a circle with radius 1."" (Figure 5-4.)
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“‘Remember that this dotted line is equal to sin 6, and this deep black
curve is equal to . Tt looks as though they come closer and closer togeth-
er as & approaches zero."

**Fascinating,” the professor said. "I bet you can't prove it, though."

1 ventured a suggestion. *‘Suppose we draw another line.”” (Fig-
ure 5-5.)

It looks as though the shaded area is smaller than the striped area,
which is smaller than the area of the whole big triangle.”

-V

Q L4 A
Figure 5-4. Figure 5-5.

**We can write that as an inequality,” the professor said.

B

(area shaded) < (area striped) < (total area)

“Two of those areas are triangles, and one area is a sector of a circle,”
the professor went on. “'We should be able to figure out what all those
areas are. First, we'll label all the points. Then the area of the shaded tri-
angle is (O - C)(C - D), and the area of the whole triangle is HO -
AXA — B)."” [(O - C) is the distance from point O to point C.]

**We denved a formula for the area of a sector of a circle,” Recordis
said.

(area of sector of circle) = §0r*

where 8 is the angle enclosed by the sector and r is the radius of the circle.
**So that would make the striped area equal to $6(1)* = §6."
We then rewrote the inequality:

HO-CHC-D)<i<HO - A)A - B)

*Now we can substitute trigonometric values in the expression,” Trig
said.
(0-C)=cosf
(C-D)=sin#
(0-A)=1
(A —B)=tan @
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Igor displayed the rewritten inequality:
tcosfBsinf<if<itand

**We can multiply everything by 2,”" the king noted. **That's legal with
an inequality, as long as we multiply by a positive number."

cosfsinG< @ <tané

“‘Remember that tan 8 = sin 8/cos 8, Trigonometeris said.

t:usasinﬂ--ﬂ!-(m
cos 8

**We can divide everything by sin 8, the king suggested.

é 1
cos B < Sind < Sosh

**Now we can find the limit!"* Trigonometeris said. **As 8 goes to 0, cos
@ goes to 1, That means l/cos 6 goes 1o 1, also. And that means that lims.g
(8/sin @) gets squeezed in between two numbers that are both going to 1™

**That must be a tight fit,” Recordis remarked.

**And if 8/sin & approaches 1, then sin /8 must approach 1, too. That
means the King was right.”

ioosin@ _
1.|_r_nn = 1
Igor displayed the formula we had for the derivative of the sine func-
tion:
dy _ . . cosdAx -1
= sinx hﬂ B v + cos x(1)
“Now we're stuck,”” Recordis mourned.
**No, all we have to do is evaluate that other limit,” the king said.
That turned out to be tedious but not especially difficult, so [ just wrote
down the steps we took.

1—cosf _ n1—cosf | +cosd

lim —3 W% 8 T+cosf
= lim lL=cos?6_
'Iﬂ &1 + cos )
sin? 8

“"-’93 8 w0 | +cosb
i1 —cosf _ sin 8
I-L"; I-Iml-l-cosl?
As 6 goes to (), cos # goes to 1:
i l—cosB _ . sind
im— o =3
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“‘Now we can solve the problem!™ Trigonometeris rejoiced.
y=sinx

=cosx

“Amazing!" the king exclaimed. “The cosine function is the derivative of
the sine function! Does it make sense?"

“When x = 0 the sinc curve is sloping gemly upward,” Trigonometeris
said. (See Figure 5-6.) “Then cos x = 1, so the slope of the curve should
be 1. That looks reasonable.”

“At x = m/2 the sine curve has a horizontal tangent,"" the professor
said.

**And, sure enough, cos(w/2) is zero!" the king said.

‘We checked a few more points along the curve, and this surprisingly
simple relationship seemed to check out all along the curve. We could
see that the curve ¥ = sin x is downward sloping when cos x is negative.

**I wonder what the derivative of cos x is,”” the king wondered.

*It’s sin x, 1 bet,” Recordis said.

“*Let’s check that,” the king said. (Figure 5-6.)

““The slope of the curve can’t be sin x,"" the professor objected. “You
can tell that just by locking at these few points.”

*1t could be —sin x,"” Recordis guessed.

ya amml ddin0

]
" \
) iax ¥=sina
=0 dvids = -1
5 |dvidral
-l

-5 .\ " .

vis :
r=0 i yeemr
dvid =0
03
o 1= /]
avieds = -1 =3
25 ddvidym |
= amg
duidr=0

Figure 5-6.
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“I know a quick way to check,” Trig is said. **1 d of try-
ing to find the derivative of ¥ = cos x directly, we could take advantage of
the fact that cos x = sin(m/2 — x). With the chain rule we should be able
to find the derivative of that function easily.”

y=ooeu=sin[g—x)

Let u = w2 — x. Then

¥ =sinu
dy _ dy du
dx ~ du dx

““We know that dufdx = —1,"" Recordis said.
“And dy/du = cos u, since that is what we just did,” the king added.
dy ~1) = —cos(T - ) = -
p (cos u)(—-1) cus[ 3 x sin x
**Recordis, you were right!" the professor exclaimed.
I was? I mean—of course, I was right.’” Recordis beamed happily.
We made a table of these rules:

¥y =sinx dvidx = cos x

y =sinu dyldx = cos u(duldx)
¥ =cosx dyldx = —sin x

¥ o= Cos u dyldx = —sin w{duidx)

“‘Now we can solve the original problem and save those poor chick-
ens,”” Trigonometeris said.

)= in 27
¥ 15+551n(10J

A L cos 2T
dr =T T

Recordis quickly wrote the answer down and handed it to Mongol, who
had gotten over his fear of the spring. He ran to find Builder so Builder
could begin work on the block-stopping machine.

“Let's find the derivative of ¥ = tan x,”" Trigonometeris said. **Then
we can have a complete table.””

**We can use the product rule,” the professor pointed out,
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¥ = tan x

= (sin x){cos x)™*

Cd ad
-—sm.ralfms_r} 14 {cos x) 'd_‘_smx

= sin x %(cus )t + %

= {sin x){—1cos x)"¥—sin x) + 1
dy _ sin®x 1

dr ~ costx
*“That’s not as complicated as 1 thought it would be,”” Recordis said.
“‘We can rewrite it, using tan x = (sin x)fcos x)." Trigonometeris
told him.

dy tan* x + |

dx

“I have her one,"" Tri

g is said. **We derived this trigono-
metric identity."”

tan® x + | = sec x

We rewrote the derivative:

y=tanx
ﬂ—s«:c“:t
dx

We decided 1o find the derivatives for the rest of the trigonometric func-
tions. For cotangent we merely inserted ctn x = tan{m/2 — x), and came
up with dy/dx = —csc® x. We puzzled over the derivative of the secant
function for a minute before the professor realized we had already solved
that problem since sec x = (cos x)~'. We decided to write the answer as:

¥ =secx
y' =tanxsecx
Igor displayed the results of our work for the day:
y =sinu dyldx = (cos u) duldx
¥ = Ccos i dyfdx = (—sin u) duidx
¥ =tanu dyldx = (sec® u) dufdx
y=ctnu dyldx = (—csc? u) duldx
¥ = sec u dyfdx =(tan u sec u) duldx
¥ =CsC i dyfdx = —(ctn u cse 1) duldx

“Note the negative sign in front of the derivatives of the ‘co’ functions
(cosine, gent, and )" Trige is C 1, trying 1o
make it easier for us to remember the results.
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We decided to return to the McCockle Chicken Farm and watch Build-
er destroy the gremlin's terrible machine. As we were walking out of the
room, Trigonometeris started talking excitedly. *‘I never realized how
fascinating this whole subject—this calculus—could be. We can make
some use of these springs as toys for children, provided, of course, that
we make them small enough so they won't scare any chickens. And now
we can make sine-curve-shaped slides, and we will know what the slope is
at any point! I'll have to start designing a new playground right away!"

By the time we reached the farm we found that Builder had indeed neu-
tralized the deadly spring, and the chickens were all happily gathered
about Mr. McCockle. And I was glad that this little adventure had pro-
vided new life for the career of someone as kind and polite as Alexander-
man Trigonometeris.

Find the denivatives of the following functions:

1. ¥ = sin x*

2. y=sinfx

3y = H(sin x)

4, y=xsinx

5. y = (sin x)cos x)

6. (a) Use the formula for sin(A + B) to find y' for ¥ = sin(x* + x).
(b) Use the chain rule to find the derivative of the function in (a).
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1.
8.

10.

1.

13.

14.

15.

16.

17.

18.

If A is an angle expressed in degree measure, find ¥' for y = sin A,
Find the values of x where y = sin x has horizontal tangents. Which
of these points are minima? Which are maxima? In what intervals is

the curve concave upward? C il d?
Find the acceleration of the block in the gremlin's machine: y = 15 +
5 sin{2m1/10).

Trigonometeris knows that sin 30° = sin(#/6) = 4. Find the equation
of the tangent line to the curve ¥ = sin x at the point {(%/6, ). What is
the radian equivalent for 32°7 Use the tangent line derived above to
find an approximate value for sin 32°.

Use the power rule and the chain rule to find the derivative (dy/d §) of
¥ = (1 + tan® 6)'*, What is a simpler way to express this function?
Consider the curve y = tan @ in the interval 8 = ~m/2 to # = /2.
Where does this curve have horizontal tangents? Where is it concave
up? Where is it concave down?

Calculate the value of the function f{x) = (sin x)/x for each of the fol-
lowing values of x; 0.785, 0.5, 0.3, 0.1, 0.05,

A block with mass m = 2 kg attached to a spring behaves according to
the equation —kx = m(d*x/dr*), where k is known as the spring con-
stant for this particular spring d in kil ters per
second squared). The motion of the block is given by x = 0.8 sin 3¢,
Find the value of k.

Imagine that the level of the tide in a bay follows a perfect sine curve when
graphed as a function of time. When will the flow of the water into the bay
be the fastest”

The voltage in an AC (alternating current) circuit is described by the
following function of time: V = A sin (). (The symbol w is the
Greek lowercase letter omega. A and @ are constant.) (a) Calculate
dV/dr. (b) What must the value of @ be if the frequency of the volt-
age is 60 henz (60 cycles per second)?

A pendulum consists of a mass held up by a string. Let v represent the
angle that the string makes with the vertical. Attime ¢, the value of xis
A sinf{wr +h). (A, h, and w are constants. ) Find dd/dr. When is dA/dr the
greatest?

Consider an object with mass m attached to a spring whose position
at time ¢ is given by this equation: x = A sin (). (A and @ are con-
stant.) (a) The kinetic energy of a moving object is 4mv?, where v is
the velocity (v = dx/dr). Calculate the kinetic energy as a function of
time for this object. (b) Calculate the derivative of the kinetic encrgy
with respect to time. (c) The potential energy for this object is given
by the formula +m w’x’. Write the polential energy as a function of
time. (d) Calculate the derivative of the potential energy with
respect (o time. (¢) The total energy is the sum of the kinetic energy
and the potential energy. Write the total energy as a function of time,
(f) Calculate the derivative of the total energy with respect to time.
What does your result mean?

7
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| Carmorra Consolidated
Differentiating, incorporated

“ and Related Rates

The king had a new concern when we met in the Main Conference
Room a few days later, **'We need (o start planning some way for us to
make the results of everything we've done available to the people. It
doesn’t seem right that we should use calculus only to solve ocur own
problems."

“I know what we can do!" the professor said. **We can make lots of
money with these discoveries!™

“*That's it!"” Recordis cried. **“We'll start a company that will solve cal-
culus problems for people! 1 bet there are lots of calculus problems float-
ing around that people haven't recognized before because they haven’t
known what calculus is. If we charge people to solve these problems, we
should be able to make a nice profit,” he said, with dollar signs flashing in
his eves.

**Let's think of a catchy name for our company,” the professor said be-
fore the king had a chance to protest. **How about Carmorra Consoli-
dated Derivative-Taking Business?""

“*‘We need a shorter name,” Recordis objected. **For instance, when
we take the derivative of something, we have to say we're taking the de-
rivative of it. That's three words! We need one word that stands for the
process of taking a derivative.”

72




OPFTIMUM YALUES AND RELATED RATES

73

Everyone turned to me. Another name popped into my head, so 1 sug-
gested the word differentiate.

““That sounds good,”" the professor approved. **We'll say that when we
differentiate a function we're taking the derivative of it.””

“I like it because it's only one word,”” Recordis said.

“*And if we're taking the derivative with respect to x, we can say that
we're differentiating with respect to x,”” the professor added.

They went rushing on with their plans, although the king was uncasy
about the whole idea. **“Now we need to have Igor draw an advertising
brochure for us, which we'll have distributed all over the country,” Re-
cordis continued, A short while later they had helped Igor put together an
artistic brochure telling about Carmorra Consolidated Differentiating, In-
corporated.

*Carmorra Consolidated
Differentiating, Incorporated

This unique new firm wses sl the

mysterivus powens of the newly discovered

l'ubie:l of ealewlus m public services

mvalving & wide variety of problems thas

can oceur in any posalble spplicstion! We

offer many services m our costomens:

« We can And the sbope of the tangent line
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Our brochures were printed and distributed all over the country. Build-
er constructed a small stand just outside the palace with a prominent sign
ing the pany name and emblem. We worked out a schedule so we
could trade off our various times for running the company, but at first we
were s0 interested that we all crowded around awaiting our first customer.

**Remember the list of prices I made up,’" the professor whispered.

At first people weren't used to the business, and the first day there were
no customers. We were all getting nervous during the second day, but in
the afternoon our first customer finally showed up.

“I hear you folks can solve optimum-value problems,
drawled.

(**I know him!"" Recordis whispered to me. **He’s the man who runs
the company where I buy my supply boxes for my pens and pencils.””)

““Yes, we can,” the professor said, glad that our first customer had ar-
rived while it was her turn to be in charge of the business.

*I need to make a box,” the box-maker said. I have 2 square meters
of wood to use. The box needs to have square ends and an open top. (See
Figure 6-1.) Can you tell me the dimensions of the box that will allow me
to get the maximum possible volume for my 2 square meters of material?"

**Sure,”” the professor answered. “*First, we'll set up the variable
names we need. We'll let x equal the length of one of the square edges,
and y equal the length of one rectangular edge. Then the volume will be
(volume) = V = x?y. We can also figure out the surface area, which will
be the area of the two square ends plus the area of the three rectangular
sides: (surface area) = A = 20 + Jxy. "

The professor was getting nervous, so the king helped her figure out
what 1o do next. **We know that the surface area equals 2, since that is
what you told us.”

the man

2= 2x% + 3xy

**We can solve for y algebraically!” R said.

2- 200 =3xy x{

-2 _2x
Y=373 //'

. . S —
**We can put that expression for y back into the v

equation for the volume,” the king pointed out. Figure 6-1.
oy e ._2__25) 2
LAE7E (3:: 3)=5 73

“Now we have exactly what we want,”” the king continued. *"The vol-
ume is expressed as a function of one variable (in this case x ). All we need
to do is find the derivative and set it equal to zero to solve for the optimum
value of x."
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2
V=3-3
dV _ 3 _ 5
dx $ - 2x
0=§-2¢
§=2?
xt=4
=L
BV

“Now we can easily figure out v,”’ the professor said, regaining her
composure. After some calculations, she told the customer, ** You should
make your box with edges 0.577 meter by 0.577 meter by 0.769 meter.
That will give you a total volume of 2,56 liters.”

“‘Not bad," the box-maker said. **A box that big will hold all I need.”

**Now about the charge . ., ." The professor started looking through
her rate sheet for a typical optimum-value problem.

**Hold it!"* Recordis said. **We can’t charge him! He has always been
very generous in providing me with the boxes that I keep my pens and
pencils in, so the least we can do for him is to solve his optimum-value
problem without charge.”

The professor wanted to protest. The king agreed with Recordis, how-
ever, so the box-maker went home with a free solution to his optimum-
value problem.

**We do need a paying customer now," Recordis said.

A while later an elderly gentleman carrying a large stack of magazines
approached the stand. (*'That’s the publisher of Carmorra Magazine!”
the professor gasped.)

*I understand that if I give you some information you can tell me how
to maximize something, correct?””

“Of course,"" said Recordis, since it was his turn to run the business.

“'I need to maximize the profits of the firm I run. I need to decide what
price to charge for a subscription to Carmaorra Magazine. If the price is
lower, more people will subscribe.”

*“That sounds reasonable,’” Recordis agreed.

"I did some calculations and made some measurements to determine
how many magazines I would be able to sell at a particular price. It turns
out that the number of subscriptions will be as follows."”

(number of subscriptions) = n = =5000p + 15,000

**For example, if the price is $2,50 I will sell 2500 subscriptions.”
““Then you should sell for a very low price, and you will have lots and
lots of subscribers,” Recordis suggested.
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e

**But 1 also have to pay for each ine I publish,” the
customer went on. ‘It costs me $1.65 to print each masnzme so if [ lower
the price too much I will end up losing money. Can you figure out the
price that maximizes my profits?”

**In principle it's pretty easy,” Recordis said. '*We need two variables
—the variable to be maximized and the variable that can be adjusted to
the optimum value, We never did anything like this with magazine sub-
scriptions, though.™

“I know what we have to do,”” the king said. “'If Y is the amount of
profit, then we need to write ¥ as a function of p."

**A what of what?"" the publisher asked.

“*And profit is given by {profit) = ¥ = (revenue) ~ (cost).”

“‘We know that cost is 1.65n,"" the professor noted.

“*And revenue must be equal to pn,” Recordis added. **But we don't
know what p and n are, and we can’t solve a problem with two variables
init."

**We can use the relationship between p and »,"" the king said.

n = —5000p + 15,000

‘We put that expression into the equation for revenue:

(revenue) = pn = p(-5000p + 15,000) = —5000p% + 15,000p

“Now we can put that expression back into the equation for profit!"
Recordis said.
Y = —~5000p* + 15,000p — (1.65)(—5000p + 15,000)
= —5000p* + 15,000p + (1.65)5000p — (1.65)(15,000)
= —5000p* + 15,000p + 8250p — 24,750
Y=- p? + 23,250p — 24,750
“Now it's easy!"" Recordis said. **All we need to do is take the deriva-
tive and set it equal to zero.”

‘-}*-' = ~10,000p + 23,250

0= - 10,000p + 23,250
10,000p = 23,250

p= 23,250
10,000
=232
**And that's the opti price!" R dis said. ‘‘Now about the
charge . . .
The i blisher was 1to see sucha myslenaus number

pop out of the mlcu]us hocus-pocus so quickly. “*Hold it,"” he said. **Can
you calculate what my profits would be if I set the price at $2.327""
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“*Sure,” the king said, *First we calculate how many magazines you
will sell.”

n o= (=5000)(2.32) + 15,000 = 3400
*Then we calculate total revenue."
(revenue) = pn = (2.32){3400) = 7888
“*And we figure total cost.”
(cost) = (1.65K3400) = 5610
“‘So you would have the following profit.”
{profit) = 7888 — 5610 = 2278

“Not bad,"" the publisher commented, impressed.

““I like your magazine,™ the king said. **I like all the pretty pictures of
the streams and mountains in Carmorra.”

“That's partly why we need these profits, We want to make sure that
the streams and mountains stay unspoiled and unpolluted. I hate to seem
mistrustful, but before I set the subscription price at $2.32 I'd like 1o be
sure that this really is the best price and that I can't do better with a price
of $2.20 or $2.40 or something else.”

**Oh, that's easy,” Recordis said. He turned to a page in his notes and
was about to explain the whole theory of derivatives and horizontal tan-
gents. The king could see that the publisher wasn't i d, and
thought of a better idea.

“Let’s calculate your profits for a price of $2.20 and of $2.40 and see
what happens.” He then went through the same calculations (Table 6-1
and Figure 6-2.)

Table 6-1 E=
Price $2.20 $2.40 o

Number sold 4000 3000 ™
Total revenue 38800  $7200 ‘E_lw

Total cost 36600  $4950 10
Profit $2200 82250 i
Jum
150

Figure 6-2.

Recordis was nervous during the calculations, but when they were fin-
ished he cried out triumphantly, **See! If you make the price $2.40 or
$2.30, you will make less profit than you will if you set the price at $2.32,
MNow about the charge . . .”
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By now the publisher was deeply imp d, but the profi inter-
rupted him before he could hand over any money. **We can’t charge him!
He nceds these profits to make sure the streams and mountains stay
pretty. Also, he has been very generous to the king and the Royal Court in
his editorials in the past.”” She didn't add that Carmorra Magazine had
once done a large feature on herself and that she was hoping the staff
would do another one sometime soon.

“We'll let you have this answer free,” the king said. The publisher
walked away to plan the next issue of the magazine before Recordis had a
chance to protest.

“‘We need some paying customers now,” the professor noted.

*'1 hope we gel some other kinds of problems,”’ Recordis said. *"Not
that [ don't like maxima/minima problems, but I would prefer a little va-
riety.”

A while later a young mother came up to our desk, and it was the pro-
fessor's turn to wait on her.

(*'I recognize her!" Recordis whispered. **She lives only a couple of
houses away from me. She has such a nice family.”)

I understand you solve problems involving related rates of change,"
she said. “'I'm planning a surprise birthday party for one of the children in
the neighberhood. I worked out a very nice set of balloons that I would
like to inflate suddenly at the moment of the surprise. I designed and built
a special Variable Rate Air Pumper 1o inflate the balloons. 1 would like to
have the balloons inflate so that their radii are increasing at constant rates.
Can you tell me at what rate I should pump air into each balloon to make
this happen?"

*‘Shouldn't you pump air into the balloon at a constant rate?"" the pro-
fessor asked. *'If v represents the volume of the balloon and ¢ represents
time, then we would say in our notation that dvidr = ¢, where c is some
constant.”

“*That won't work because the balloon is getting bigger!"' the customer
said. **As the balloon gets bigger, we need to pump more air into it per
given interval of time in order to keep the radius increasing at a constant
rate.”

“‘We need the chain rule, don’t we?"" the king suggested. **That rule
tells us how to deal with related rates.”

*If you say so,"” the professor said. *'I always say that when in doubt
you should write down what you know. We know that dridr = 1, where r
is the radius. We also know from geometry that v = (4/3}rr®. And we
want dv/dt as a function of time. Now what?"

**We can find dvidr,” the king told her helpfully; ** dv/dr = 4z r2."

*‘I see how we can get dv/dr using the chain rule,”” the professor said
suddenty.

dv _ dv dr
dr

T dr dt
= (Ddar) = darr?
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**That’s the answer!"" Recordis said.

““Hold it!"" the professor objected. **We need to find dv/dr as a function
of time, but we have it as a function of the radius. Now we need to find out
what r is as a function of time."

**We should be able to figure that out, since we know that the radius is
increasing at the rate of 1 centimeter per second,”” the king said. “‘How
big is the balloon when you start blowing air into it?"" he asked the young
mother.

*'One centimeter in radius,” she said.

*Then r must be equal to r + 1,” the king said. We all agreed that this
function had the desired properties: r was | when ¢ was 0 and r increased
at a constant rate of 1 centimeter per second.

“That gives us the answer for how much air to put in at a given time,”
the professor said.

dv _ Lo
i 4wl + 1)

“*Thank you very much,” the customer said. **I had guessed that the
answer would involve the second power of time.™

**Now about the charge . . ."" the professor began.

**We can't charge someone who's planning a birthday party for some
children!" Recordis cried. **How could you be so heartless! We'll let you
have this answer free.”” The young mother went home grateful for her
neighbor Recordis.

**We must have some paying customers now,”” Recordis said. **Other-
wise we won't be able to stay in business.”

A few minutes before closing time a young man came up to our stand
outside the palace.

(*'I know him!"* the professor whispered. “*He's the lifeguard at Na-
tional Park Beach!™)

‘I understand you solve problems related to the speed of things. I'd like
to figure out how fast my shadow moves,”" he said. ** At night I tum on a
light at the top of my lifeguard station. When I start running away from the
tower at a constant speed, my shadow runs ahead of me. Can you figure
out how fast the shadow is moving?™

““Certainly,” Recordis said. “First, we'll call the height of the light /
and we’ll call your height L (for lifeguard). We'll call the distance you've
moved from the tower x.

“In the notation we use, the speed at which you're running is repre-
sented by dxidr. We'll call that constant speed v.™”

dx _

ar "

“We may as well call the distance from the shadow 1o the ower 5.

(Figure 6-3.)
“‘Now all we have to do is find ds/dt,” he continued. “*Which we
doby. ..”
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Figure 6-3.

*'Using the chain rule,"” the king interrupted. **We can use a similar tri-
angle relationship to tell us that hfs = Li(s — x).”"

““That's easy,”" the professor said. ‘*We know that corresponding sides
of similar triangles are in proportion.”

We found dx/ds:
F-—x= %
x=3- %
dx_,_L
ds h

The king showed us how we could use the chain rule:
ds _ dxidt
dr  dxlds

We inserted the expressions we had found:

ds . _ v
dt  1-Lih
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**That's the answer!"" Recordis said.

*But I want an answer that's a number,” the lifeguard said.

*In that case, all you have to do is tell us what v, L, and h are.”

My lifeguard tower is 8 meters high, I'm 1.8 meters high, and I can run
6.7 meters per second.”

Recordis did the arithmetic. The final answer turned out to be that the
shadow moved with a speed of 8.6 meters per second. **Now about the
charge . . ."" Recordis began.

**‘We can't charge him!" the professor said. **Haven't you heard how
many lives he's saved? One of my best friends was at the beach last sum-
mer and owes his life to this lifeguard. We'll let you have this answer
free.”

The lifeguard was very grateful, and he walked away just as it was time
to close up our stand.

**How much money did we make today?"" Recordis said.

The professor looked in the cash drawer. **We didn't make any,” she
said sadly,

**But we had lots of customers!™ Recordis protested.

“‘Maybe it's better this way,” the king said, 'If we can help people
solve calculus problems, I think that we should do it and not charge them
forit."”

**But what about our company?” the professor asked. ““We spent so
much time working on the brochures.'

“*We'll make it a ponprofit company,” the king said. **That way we
will still stay in business answering people’s questions, but we won't need
to worry about how much money we make.”

We all decided to accept that plan, so before we returned to the palace
we made a slight change in our sign so that it read:

Carmorra Consolidated :
Differentiating, Incorporated
A NONPROFIT AGENCY DESIGNED TO SERVE YOU!

il

Exercises

1. The conical Central Park reservoir is a units across and b units deep.
Water is flowing into it at the rate of u cubic units per minute. How
fast is the surface of the water rising when the water is & units deep?
Suppose a = 3 meters, b = 6 meters, and « = 0.2 cubic meter per
minute. What is dh/dr when h = 3 meters?
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2. One day Builder left a ladder of length L leaning against the side of the
palace, and it started to slide. The bottom of the ladder slid along the
ground with a constant speed of & meters per second. How fast was
the top of the ladder sliding down the wall?

3, Find the point on the curve y* = 8x that is closest to the point (4, 2).

4, If arectangle has a fixed perimeter equal to k, what is the shape of the

rectangle that will have the maximum area?

. If a rectangle has a fixed area of A, what shape will minimize the pe-

rimeter?

6. The profit function of a perfectly competitive firm is givenby ¥ = PQ —
TC(Q). P, the price of output, is a fixed number bevond the control of the
firm. TC(Q) is the total cost function, which measures the cost of
producing © units of output. The marginal cost (MC) is the derivative of
the cost function. Find a condition, stated in terms of MC and P, that the
firm must meet if it is to maximize its profits.

For problems 7 to 11, you are given the formula for the total cost (as &
function of guantity) and the market price (P) for a perfecily competitive firm.
Calculate the quantity of output that should be produced in order to earn the
maximum possible profits. (Round the answer for the quantity to the nearest
whole number. )

7. TC = 0.01517Q" — 5.7837507 + 751.3Q0 + 56, p =49

8, 7C = 0.1105Q* — 51.52850° + 8020.65Q + 125, P = 191

9, TC = 0.01650% — 5.06175Q° + 619.8280 + 96. P = 10

10, 7C = 0.056170% — 14.894750° + 1324.20 + 285, P = 173

1. TC = 0,008830° — 2.089750Q% + 175.1840Q + 83, P =40

12. The average cost of production is defined as the total cost divided by the
quantity. Show that the average cost will increase when the quantity is
increased if the marginal cost is greater than the average cost.

13. If the price of a good increases, then there will be a decline in the quantity
of that good that people want to buy (called the quantity demanded of that
good), Suppose the quantity demanded (Q) is given by the following
function of price (P):

th

Q=a—bP
a and b are constants. Calculate a formula for the total revenue {expressed
as a function of the quantity produced) and the marginal revenue (that is,
the derivative of the total revenue with respect 1o quantity). What should
the quantity be to eam the maximum possible revenue?

14. In economics, the elasticity of demand for a good is a way of measuring
how responsive the demand is when the price changes. If the elasticity is
zero, then the buyers always buy the same quantity, regardless of the price.
In general, the elasticity of demand at a particular point is given by the
formula:

lasticity = | —— £ :
Y= 0
The vertical lines stand for absolute value. Since the quantity demanded
declines when the price increases, dQVdP is negative. Because the absolute
value is taken, the elasticity of demand will always be a positive number. If
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16.

17.
18.

9.

20.

21.

22.

2,

24.

the demand curve is given by the formula Q = a — bP, determine a
it la for the elasticity of d d at a particular quantity Q. What is the
value of the elasticity at the revenue maximizing quantity you found in
exercise 137

Derive a general formula for the marginal revenue, expressed in terms of
the elasticity of demand and the price. Using this formula, what will be
true about the elasticity at the quantity where the revenue is at a max-
imum? Show that, in general, an increase in quantity sold results in an
increase in revenue if the elasticity is greater than one.

Consider a retail store that chooses its price by setting the marginal
revenue equal to the marginal cost. The marginal cost for each item is
constant (equal to the amount that must be paid to the wholesaler to obtain
the item). The markup percentage is equal to the difference between the
price and the marginal cost, divided by the marginal cost:

_ P - MC
markup percentage = MC

Derive a formula for the markup percentage in terms of the elasticity, and
comment on the intuition of the result.

Derive a formula for the elasticity for this demand function: = aP -,
Recordis’ special boxes have volume V and height /. The material to
be used for the base and sides of the box costs $r per square unit, and
the material to be used for the lid costs $2r per square unit. Find the
dimensions of the box that minimize the total cost of the box.
Recordis has another kind of box with the top, three sides, and the
base made of the material that costs $r per square unit, and the front
side (dimensions x by k) made of the material that costs 52 per
square unit. Find the shape of the box that minimizes the cost.

Find the shape of the right circular cylinder that has volume V and the
minimum possible total surface area.

At what point is the slope of the curve y = x* — 3x* + 5x - 10 the
greatest?

Recordis releases his toy boat from South Beach, and it travels due
north at 5 cm/sec. At the same time, Mongol releases his toy boat
from East Beach, which is 20V2 meters due northeast from South
Beach. Mongol's boat travels due west at 7 cm/sec. How far apart are
the two boats at time ¢? At what time are they closest together? How
close together are they at the moment that they are closest together?
Mongol has a rope L units long that is strung over a pulley / units
high. One end is attached to a large weight on the ground. Mongol
holds the other end and starts walking away from the pulley at a con-
stant speed of u units per second. (When he starts walking the rope is
taut.) How fast does the weight move up?

A car is to be driven on a trip D units long. The amount of fuel that the
car uses per hour is given by 10v* — 100v + 290, where v is the speed
of the car in units per hour. The car will travel with a constant speed
throughout the trip. What should v be so that the total fuel consump-
tion for the trip will be minimized?
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The Integral: /1

Derivative

The differentiation business went along smoothly. The professor told
everyone that calculus was the most enjoyable invention since the Hassel-
bluff Mountain Sky Sled, and she was confident that we had discovered
everything there was to know about mathematics.

Every day we held a meeting in the Main Conference Room. Slowly we
began 1o notice that each day Recordis arrived at the meeting out of
breath. A few days after the formation of the company he was panting so
hard that the professor finally asked him what was happening.

“It’s Rutherford. my dog,”” Recordis said. **Lately he's been very
frisky, and I have to run all over the yard to catch him.™

“*Where does he run?"" the king asked.

“He always runs in a straight line, because that’s where he buried his
baones. He treats that stretch of ground like a racetrack. He changes his
speed, though, so I can never figure out where he is. I chase him all morn-
ing until he finally gets tired and I can take him back inside the house. He
knocks down the neighbors’ flowers if T let him run around loose when
I'm not there.”

“Can’t you figure out a better way to catch him?"* the professor asked.

*I can stand on a ladder and drop his collar down on him,” Recordis
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said. ““That only works, though, if [ know exactly where he will be at a
given time, so I know the exact moment to drop the collar. I try to guess
the right moment, but T usually guess wrong. He comes by quicker than
I'm expecting. or slower than I'm expecting, so that the collar falls just in
front of him or just behind him. 1 do know how fast he goes, which might
be useful, but 1 can't figure out from that what his position will be.”

“*How do you know how fast he goes?" the professor asked.

*1 can tell because I feed him scientifically designed dogfood,” Re-
cordis answered. *'It's designed so that it releases energy to Rutherford at
a certain rate. For example, if [ feed him Special Speedup Wonder Dog-
food he will be running faster all the time. His speed at time ¢ will be equal
ta v = 41, Or [ can feed him Patented Wearout Wonder Dogfood, so that
he runs very fast right at the beginning but tires quickly and loses speed.
‘Then his speed is equal to v = 60 - 41, If only I knew his position! If, for
example, I knew that 10 seconds after he started running he would be 200
units from his can of dogfood, 1 could plan to drop the collar so that it
would land there exactly at # = 10 seconds. 1 shouldn’t bother you with
my problems, though.

*I wish we could do something for you,"" the professor said. “'It isn't
good to have a record keeper who is out of breath every day. Still, we
should get back to the business of differentiating.”

“‘Wait a minute,” the king interrupted. “‘Couldn’t we do it back-
wards?"’

**Do what backwards?"" the professor asked.

*‘Differentiation. We know that, if we start with a position function
and differentiate it, we end up with a velocity function. If we start with a
velocity function and differentiate backwards, we should end up with a
position function.™

There was a long silence.

“How would you differentiale something backwards?” Recordis
asked. *'I have enough trouble differentiating things forwards.™

“*We should be able to figure out some way to do it,” the king said.
“*For example, let’s take Recordis’ problem with Rutherford. When he
eats the speedup dogfood, we know thar his velocity is v = drldr = 41. All
we have to do is think of some function whose derivative is 4¢."

“Try i3, the professor guessed.

*That won't work.” Recordis said. “*We know that {didt)* = 2r,
which isn’t equal to 4¢.”

“Try £4." Trigonometeris suggested.

“No," the professor said. “We know that (didrie = 48,7

“41%7" Recordis guessed.,

**No,"" Trigonometeris said. ““We know that (didr }4r* = 81,7

1 know what will work,"" the king said slowly, **We know that the an-
swer must have a ¢* in it, because the derivative will have a 1 in it.
Try 262"

Igor did the differentiation:
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x=2
dx _
d'-‘_‘“

“It works!"" the professor cried.

**Maybe I can outwit that dog,"" Recordis said. **We must have a name
for a backward derivative. ['m not going to write ‘backward derivative’ all
the time."

““We could call it an antiderivative,” the professor said. We agreed that
that was one possible name.

position function = antiderivative = x = 21*

velocity function = “'}‘— =41
*“That sounds too destructive,”” Trigonometeris said. **We should think
of a constructive sounding name, too."
Everybody turned to me, and an i ting name suddenly popped into
my mind. **We'll call it an integral,”" 1 said.
*“That sounds impressive,”” Recordis agreed.

position function = antiderivative = integral = x = 2/*

velocity function = dr 4

et

**We must think of a scientific way to calculate integrals, or antideriva-
tives,” the king said. **Guessing won't work most of the time. How can
we know ahead of time that the answer is 2* and not 100:* or 2¢* + 99 or
something else?"”

“*We shall have to make a set of rules,” Recordis answered. ** We wrote
a set of rules for calculating derivatives, so we should be able to develop a
set of rules for calculating integrals.™

“*Hold everything!™ the professor objected. **We have done something
horribly wrong! How do we know that the answer is not 2¢% + 997

“"We check the derivative,” the king said.

x =21 499
di o d g d gy -
dar = d ""‘,-99 4+ 0= 4

The king stopped short.

““That position function works, too!" Recordis cried. “They both
work! However, one of them must be wrong, because I know that 1 have
only one dog and he can be in only one place at one r.ime There is no way
that two different functions can descnbe hls position.”

“You can't ever compute an " the prof said. "'Supp
you know that dx/dt = 4r. That will be the case if x = 21* + Torx = 26 +
86.234567 or, in fact, if x = 2¢* + C, where C is any constant number.
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‘That is hopelessly indefinite."

“We'll have to call it an indefinite integral,”” Recordis said.

“*We'll have to forget about this and go back to our regular business,”
the professor stated firmly.

“I'm sorry I ever brought the subjectup,”” R said.

The professor was about to go on with the day’s business when the
king came over to me and whispered something in my ear. ‘[ think you're
right,”” 1 whispered back. “'The king has an idea,”” I told everybody.
“Igor, draw a graph of several curves that obey the relationships dx/dr =
41, x = 2* + C.”" (See Figure 7-1.)

7
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Figure 7-1. Figure 7-2.

“They all look like the same curve,” the king said. ““The only differ-
ence is that they have been moved up and down.”

*That's why lhe idea of an integral should be useful,” I explained. “'I
don’t think it is hopelessly indefinite. For ple, we know that a func-
tion with a different shape won't work (Figure ?-2] because its derivative
isn't equal to 2r. The only curves that will work are the curves on the first
graph. It is useful to know that much.™

*If we knew which one of these curves is the right one, then we would
know exactly where Rutherford is all the time,” the king said. **How are
we going to tell which curve is the right one?"”

We stared hard at the collection of curves on Igor's screen. We were
looking for a clue that would make the single guilty curve stand out as the
culprit responsible for Rutherford’s devious motion.

“‘The difference between the curves seems to be where Rutherford
starts from,” the king said. ‘' For example, on the first curve it looks as
though Rutherford starts from position zero when ¢ = 0. For the other
curves, he starts farther along than the zero mark.'”

**Then it should be easy to tell which curve is the right one!” the profes-
sor exclaimed. "*Recordis, where is Rutherford when he starts running?*”
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“T put up a little stake to measure the distance along the track from the
house. He starts at his can of dogfood, which is right next to stake num-
ber 2.

**That means x = 2 when 7 = 0,"" the professor stated. **That will tell
us which curve is the right one!"”

“We need to solve for the arbitrary constant C,” the king said. **Start with
this equation:™ r=37+C
“Now put in the values x = 2 whenr = 0."

2=20+C
c=2

“‘Now that we've solved for C we don't have an indefinite equation any
more,"” the king added.
Rutherford’s position function:
x=2+2

TO FIND THE POSITION FUNCTION OF SOMETHING IF
YOU KNOW ITS VELOCITY FUNCTION:

1. Find an indefinite integral (or antiderivative) of the velocity function.

2. Find the position of the object at the start. (We decided to call that the
initial condition.)

3. Solve for the indefinite integral constant by inserting the initial condition
into the indefinite integral i

**We need a symbol for an integral,”" Recordis said.

“‘When we have a function f(x)} we call its derivative f*(x),"” the pro-
fessor offered. **Suppose we call its antiderivative F(x)."

**Using a capital letter!"" Recordis said. “'Ingenious! We need hi

symbol, too, to correspond to the dx/dr notation.™

“‘We can figure something out,”" I said. **We start with dx/dr = 41, and
we need some way to turn that dx/dr into just plain x,"

““We can get rid of the dr by multiplying both sides by dr,"" Trigono-
meteris suggested.

“No, you can't,” the professor objected. **That would work if dx/dr
were a fraction, because then it would be dx divided by dr. Butit’s nota
fraction. It's a derivative.”

“Derivatives do seem to behave a little bit like fractions,” the king said.
“Remember the chain rule:

dy _ dydu

drx ~ du dx

“*We can make a definition of what dx means,” I said. “'Igor, draw a
picture of a curve with its tangent line (Figure 7-3). Let’s let dx equal this
deep black line, and dr equal this dotted line. Then dx divided by dr will
equal the slope of the tangent line, which is what we know it must be."”
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}dx
dr

Figure 7-3. '

We made the definition;

_ dx
dx = dr dr

“Still, dx is not a number that you can specify a value for,” the profes-
sor pointed out. **We just said that it was some small number. We do need
to think of a name for it. Since these numbers come from differentiating a
function, we could call them differentials: dx means differential x, and dr
means differential r."" (We later established that the most important thing
to remember about differentials is that a differential does not mean any-
thing if it is all by itself. For example, the equation dx = 4¢ does not mean
anything. Differentials must always come in pairs, as in dr = 4r dt, orina
derivative, as in dv/df = 4t, or with an integral sign, as in x = [ f(1) dt.)

We rewrote our equation for the derivative using differential notation:

dx _
dx - 4

dx = 4t dt

““How do we get rid of the 4 in front of the x?'* Recordis asked.
“We'll cross it out," 1 said cheerfully. However, Igor missed the d when he
drew.

[ dx = 4t dt
**Hold it!"* the professor said. **That's an equation. If you do hi

to one side of the equation you must do the same thing to the other side!"
“All right,” 1 said. **We'll do it like this.”

fdx =x=[4rdr

“Pretty!" Mongol muttered.
“If he likes it we had better keep it,”” Recordis said. **We'll call [ the
integral sign.”

89
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It looks as though you need to have a dt, or a differential something,
whenever you have an integral sign,”’ the prof said.

x = [(function of ¢ that is to be integrated) dr

““We could call the function in the middle the integrand,’ the king re-
marked.

INDEFINITE INTEGRALS

Start with a function y = f(x).
The function F(x) is the antiderivative of f(x) and satisfies the following
condition:

The symbol [ f{x) dx represents the indefinite integral of f(x ), and it is equal
to F(x) + C, where F(x) is the antiderivative and C is any constant number
(it is known as the arbitrary constant of integration ).

The constant C can be determined if you know an initial condition.

dF(x) _
& fix)

(Note: In this box x is the independent variable, but at some other places
in this chapter r is the independent variable and x is the dependent variable.
At first this bothered Recordis, and he thought about asking the king to
make a decree specifying that the independent variable would always be
called x and never anything else. However, he soon realized that many
tlmes it is more convenient o usc a different variable. For example, if the

d d variable ref s time, as it does in the problem of
Rulhm'l'm-d‘s motion, it is more convenient to use 7 for the independent vari-
able. In chapter 4 the independent variable was w, which stood for width.
The independent variable will usually Ix: called x whcn a gcrx:m] r||||: is
being stated, but in other ifi ly
that it wwldbehmmluod'm’lwershnvc ulumnllhﬂlmlc,)

“We'll have to figure out lots of indefinite integrals,”” Recordis said.
“Rutherford has several different kinds of dogfood, and he'll stop eating
Special Speedup Wonder Dogfood if he knows I've figured out his posi-
tion function. For example, what should we do when his speed is given by
dxldt = 60 — 417"

First we multiplied by dr:

dx = (60 — 41) dr
Then we wrote the integral sign on both sides of the equation:

[ dx = [(60 — 41) dt
x = [(60 — 41) dt
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“It \muld be useful |.f we could find a rule for the integral of the sum of
two fi " the p said. **Supp we have the following.'

Y = [(fix) + glx)) dx
**I'bet that's equal to this,” Recordis said.
Y= [fixyde + [ glx)dr

**Why do you guess that?"” the professor asked.

““That's the way it worked for derivatives,”” Recordis answered.

*“That rule looks reasonable, ™ the king agreed. “However, we need a way to
determine if a rule for an integral is correct or not.” (The king knew that
Recordis sometimes suggested rules that looked nice but did not always work.)

The professor had a plan. “*Suppose we guess that ¥ is the antiderivative for
. This means d¥/dx = y, If we calculate the derivative of Y and find that it is
not equal to y, then we know that ¥ is not really the antiderivative of y. In our
case we have ¥ = fix) + glx)and ¥ = [ fix)dr + [ glx) dv. We want to see if
dYidx is equal to .

¥ = [fixyde + [ glx)dx

%- = Jfix)de + Jr_l'g(.\r}d:c

=L Fmy+ o)+ LG+ o)

=4 A
a‘.tH“+e£~:(-+dxm”+

=flx)+ 0+ g(x)+0
¥
% = fix) + glx)

“See! 1 was right again,” Recordis said. **We'll call that the sum rule
Jor integrals.”*
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SUM RULE FOR INTEGRALS
[Lfx) + g () de=] f(x) dx+] g (x) dx

In words: if an integral contains the sum of two functions, it can be
broken into the sum of the two i Is, one integral for each fi

Using the sum rule, we rewrote the integral we were trying to evaluate:
x=[60dt~[drdt

“It would be nice if we could figure out what to do with numbers like 60
when they occur inside an integral sign,” Recordis said. *'I wish we could
pull that 60 outside the integral sign, so we could write 60 [ dr instead of
J 60 dt. Integrals are nice, but 1 think the fewer numbers we have in the
middle of them the better."
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We tried Recordis’ suggested rule. We wanted a function whose derivative
was y = n fix), and Recordis’ guess was that we should try ¥ = n [ fix) x.

dY d d
= anff[x)tix = nafﬂx}dl
{We know that constants move across derivatives.)

dY d
xS nd—x(F(ﬂ + C)
= n{fix) + 0)
= nflx)
**It does work!"" Recordis said. **We'll call that the mulriplication rule

JSorintegrals.”

MULTIPLICATION RULE FOR INTEGRALS
Jnfixyds = n [ fix) de
(where n is any constant number)

**Let’s extend that rule to the case where we have a variable number,”
Recordis went on eagerly. “*I bet we can say that

T4 fixy dx = qlx) f fx) dx
where g is any variable number.”

Igor took the derivative of ¥ = g (x} [ fix) dr 1o see whether it was equal to
g(x) fix), as Recordis’ theory said it would be.

Y = g(x) J flx) dx

dY d
i J fix) dx

From the product rule:

dar
dx

= glv) ﬁ [1) dx + i‘d@ 1 fio) dx

= gl f (o) + "—fw’ Jf@dx # g () fe)

“That doesn’t work!"" the king exclaimed.

*I was wrong,” Recordis said apologetically.

The professor was irritated. **'We'll have to add an amendment to the
multiplication rule. It looks as though the integral sign acts as a filter. You
can move constanis across integral signs as much as you want, but you
can never move variables across an integral sign.””
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MULTIPLICATION RULE FOR INTEGRALS
Infixyde = n [ fix) dx

(where n is a constant number)

However, if n is a variable, then it may nor be taken outside the integral sign,
and [ nfix)de # n [ fix) dr.

Using the multiplication rule. we rewrote the problem for the wearout
dogfood.

dx _ g
=604

x=60fct—4frdt

(Since ¢ is a variable, it had to stay inside the integral sign.)

“‘We know what [ dr is,”" Recordis said. **That's just equal to (r + C).”

“*How do you know that?" the professor asked.

**Because [ di is really the same thing as [ (1) dr, which is the same as
dxfdt = 1. That means we need to find a function whose derivative is 1.
The function that satisfies that dition is 1 times ¢, but of course we
need to add that constant thingamajig to it."”

We decided to make that a rule. Sometime later we agreed to call an in-
tegral of the form [ df a perfect integral, so we called the rule the perfect
integral rile.

PERFECT INTEGRAL RULE
Jde=x+C

Igor rewrote our equation:
x=60t+C-4[rdr

“*Now we have to take care of that r in the integral sign,” the king said.
We thought about this problem for a long time.

Finally the professor had an idea. **What we need to do is work the
power rule backwards. The power rule says that, if ¥ = x", then dy/dx =
nx"1, Now suppose we have dvfdv = x", and we need to figure out
what v is."”

“Thetit will have an x"*"init,”" the King said. **If we take the derivative
of x**1, we get (n + Dx".""

““But we don’t want (n + 1}x","" the professor objected. "*We want (o
end up with just plain old x".""

Tt would work if we could find some way to get rid of the (n + 1), the
king said.
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“'I know how we can get rid of it,"”" Recordis contributed. “'Try this."

g = 1 +1
¥ n+l'r.

“*Are you sure that will work?" the professor said, amazed that Re-
cordis was coming up with so many answers in the same day.

1 +1
+lr

J”ﬂ

dy_d 1

T darit
1 d

= d an
n+1 -

B

= _1
—"+l[n+1].t"

dy
dx

**It does work!"" the king said. We called this rule the power rule for in-
tegrals.

= z*

POWER RULE FOR INTEGRALS

-1
Ix‘dx~"+lx’*’+f

(However, this rule has one minor flaw, which we overlooked until

we had a very unpl P in chapter 9.
Now we easily solved for Rutherford’s position when he ate the wearout
dogfood:

x = (60— 4t) dr
= [ 60 dt — 4f 1* dr
=60t - D+ C
x=601 -2+ C

Using the initial condition x = 2 when 1 = 0, we got
2= (60M0) — 2A0)* + C
C=2
X = 60r ~ 2t + 2
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*“I hate to cause more problems,” Recordis said, **but I just thought of
another kind of dogfood that Rutherford has. What do we do if we have
something other than x raised to a power? For example, what if we have
J u* dx, where u is a function of x? Rutherford has one kind of dogfood
where his speed is given by dxidr = V31 + 5. In this case we have
J uvt dt, where w = 31 + 5.

We wrote the integral:
x=[Va+5de

**We need to find some way to turn that dr into a du,”’ the king told
him. **Then we can use the power rule.”

“I bet we can do that,”™ the professor noted. *We have the derivative: du/dr
= 3. We can write that in differential notation: du = 3dt, or dt = ldu.”

“That means we can write the integral!” the king said.

x= [V £ 5dr= [ b

““We can pull that 4 outside the integral, since it is just a constant,” Re-

cordis said.
=4[ u? du
*'Now we can use the power rule!” the professor exclaimed.
r=M®Hu*+C
=fut+ C

“But we want an answer in terms of ¢, not in terms of «," Recordis
protested.

“We can always make the reverse substitution,” the king said. “ Since
u=3t+5 wehavex= $(3r+ 5=+ C"

“We had better check the derivative of that function to make sure that

it works,” the professor said.
x=$(3r+ 5

dx/dr had better equal V31 +5.

We realized that x was of the form cw*, where ¢ = §, u=3r+ 5, and n
= 4. Then the derivative comes from the formula:
- ld

%:cmi d—_gxzxuns)‘“ 'x3= ::x(3r+5)"‘ =/31+5

This was exactly what we wanted: since the derivative of #(3¢ + 5
was equal to Af3r+5, it meant that the integral of VU+5 was equal to
(31 + 5™,

We called this method the method of integration by substitution,

95
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INTEGRATION BY SUBSTITUTION

If you face an integral of the form [ u* dx, where « is a function of x, you
cannot use the power rule directly until you have converted the dx into a di.
First, find the derivative of « (du/dx) and write that derivative using differ-
ential notation. Then make the substitution dx = (dx/du) du, so the integral
becomes equal to

Jur de= ot 95 du
If dx/du is a constant, it can be moved outside the integral sign:

f ot dx = [d )Ju*duum‘-":_

(If dx/du is not a constant, as in [V1 — x* dx, you can tell that we will be in
real trouble. We worry about that kind of problem in Chapter 11.)

Wt C

*“Does Rutherford have any cans of dogfood that make his speed a trig-
onometric function?"” Tri is asked, trying to be useful. “'If he
does, it should be no problem, since we can easily say that [ cos x dx =
sin x, and [ sin x dx = —cos x.""

“Now I better hurry home and catch him!" Recordis said, ignoring
Trijgonometeris. We made a table of our rtsulls We had found e\refyﬂnng
we needed to know to integrate pol 50 Iy
thought that we had done all we would ever need to do with mlegrnls

INDEFINITE INTEGRALS

Start with a function f(x).

F{x) is a function such that dFidx = f(x}, and it is called the antiderivative
of fix).

I fix) dx is the indefinite integral of f(x) and is equal to F(x) + C.

The value of the arbitrary constant € can be determined if you know the ini-
tial condition.

SUM RULE FOR INTEGRALS
Jfx)+gx)]de=Jflx)de+ [ g(x)dx

MULTIPLICATION RULE FOR INTEGRALS
Jnf(x)de=nJfix)dx
if # is a constant, but not if  is variable.
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PERFECT INTEGRAL RULE
Jdr=x+C

POWER RULE FOR INTEGRALS

J'.t‘d'x-n_'_

i x4 C

Exercises

Evaluate the following. (Remember that the answer to an indefinite in-
tegral is a function plus an arbitrary constant.)
L ¥ =[x+ 3x + 5) dy
. v = [(ax®+ bx + ¢) dx
Ly = [(9x + 10) dx
Ly = J(14) dx
Ly =J(x*+ 1) dx
¥ = Jl6x® + 102 + 3x) ddx
yo= J(4x7 + 3 + 2x + 1) dx
o= (2 2
.;-I(3+2+x]dx
9. y= f(x™+ x") dx
10, ¥ = [I{m + Da™ + (n + Da"™ + {(p + )x*] dx
1L y = [ x'® dx
12, y = [sin 6 d6
13, y = [cos 0 dO
14. y = [sect 8 d8

1s. y=_|'(%+;l§) dx

16, y = f(x* + x7% dx

17. y = — fesct 0 do

18, ¥ = [ sec ftan 8 40

19. y= —fcscOctn 6 d6

20, [ #1 = cos 26) d6

21. [sin® 6 46

22. Evaluate x [ x* dx and [ xx? dx.

Find x (1) for each of the following situations. Think of an example of
an object that might move according to each equation.

N A NN~

23, dxldt =0 = x=35
24, dxidt =4 t=0x=2
25, dx/dt = 55 1=8x=175
26. dxldt = at 1=0,x=0

27. dxidt = at t=0,x=2x
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28, dxidi = cos at

1

29, dxldr = 1 =
30, dixidi* = a = xg 1 =0, dxldt = vy
31, d*xldrr =0 x = xy 1 =0, deldt = vy

Differentiate each of these functions and express the answer using dif-
ferential (rather than derivative) notation:

R, y=2a?

33, y=sinx

M, oy=cx

35, v o gl

6. v =1+ a3

Solve the following integrals. Use the substitution indicated to convert
the integral into a form where the power rule or some other simple rule
can be used.
3oy =TV = atdy letu=1-x*

3, v=[x*Va + be*dy;  letu=a+ bx?

39, v = [ xsin(x® dr; let w = x*
40. v = [ sin® x cos x dx; let w = sin x
Evaluate:
b =X
Ay =I5 e &

42, y o= [ X"V Ve + 2" dr

43. ¥ = [ sec? x tan® x dx

44, v = [ x"sin(x') dx

45, v = [ u* (duldx) dx

46, ¥ = [ sin 0 (dO/dx) dx

47. When Mongol throws his beach ball into the air, its acceleration is
given by dvidt = —g, with the initial condition v = v, when ¢ = 0.
() Find the velocity of the ball at time r. (b) Find the height of the ball
al time £, using the initial condition fi = O when ¢ = 0.

48. When Mongol drops his ball off Hasselbluff Mountain, its accelera-
tion is given by d*hidi* = — g, with the initial conditions & = 64 and
dhidr = 0 when r = 0. Find the velocity of the ball at time ¢. Find the
height of the ball at time ¢,

49. What is | (dy/dx)dx? What is didx | yelx?

=

O 50. Writea computer program that reads in the coefficients of a polyno-

mial and then determines the indefinite integral for that polynomial.



8
Finding Areas

with
Integrals

Two days later, while we were meeting in the Main Conference Room,
Recordis again had a problem.

I can't take these terrible busi " he f
ing. We've got to do something about this inflation.™

*'What are you talking about?"" the professor asked.

“They raised the rates for Magic Crystal Water, and now I'm stuck. |
can only afford the exact amount of Magic Crystal Water that I need.”

**What do you need Magic Crystal Water for?"” the king asked.

“Remember the house I built in the country that we had so much trouble
designing?™ We all nodded. “I decided 1o decorate the yard with some
nice pools, made out of geometric figures, I want to fill the pools with
Magic Crystal Water. I designed three curves with parabolic shapes
(Figure 8-1), and Trigonometeris told me that I should make a pool
shaped like a sine curve.”

d. **It's appall-

“

{
. X

a y=—gg—+1

y==xts 9

-3 x=3
Figure 8-1. 99

x

n
>

x=3 x
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**Since that is the world’s most beautiful shape,” Trigonometeris said
modestly.

“So 1 made one pool shaped like a sine curve (Figure 8-2). [ made each
pool a uniform depth of 1 unit; that means that all [ need to do is figure out
the area of each curve to determine how much Magic Crystal Water is re-
quired to fill the pools up to the brim. I figured the only way to do it would
be to buy a lot of Magic Crystal Water so 1 would be assured of having
enough, and then I could measure the arca of each pool by pouring water
into it until it was full. If I did that, though, 1 would have a lot left over,
and now that the water is so expensive | can’t afford to have any sur-
plus.™

**Since this doesn’t have anything to do with caleulus, we should get
back to the business of differentiating,”” the professor said. It is a sad
story, though.”

*“There must be some way we can help him," the king protested. **Re-
cordis has done so much for the kingdom that [ hate to see him left with a
yard full of empty holes. Do you think there is any way that we can math-
ematically figure out the area of one of these curves?"”

“No way!"" the professor said. “*Let me tell you what we know about
area, If we have a rectangle, we know that its area is equal to the length
of one side multiplied by the length of the other side. We can even find the
area of a triangle: (area) = {(base)altitude).” (Figure 8-3.)

yemsinx
=l I=n
Figure 8-2.
[ —
base
Figure 8-3.

““In fact,” she went on, **we can find the area of anything just so long as
it has straight sides. That's all geometry. But if we have something
curved, there is no way that we can find the area of it.””

“*We could try to fill the area of the curve with a lot of little rectangles,”
the king suggested. (Figure 8-4.)
¥

x=g ax x=b

Figure §-4, Figure B--5.
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“*You will still have a lot of area left over that is not included in the rec-
tangles!” the professor said.

“We'll at least be close to the area of the curve if we figure out the area
of all the rectangles,” the king pointed out. **Let’s suppose that each rec-
tangle has the same width."

““We can call that Ax,"" Recordis said.

““We need to figure out the boundaries of the region,” the king noted.
“Let"s call the left-hand boundary x = a, the right-hand boundary x = b,
and the lower boundary y = 0."" (Figure 8-5.)

**We can tell what the area of the first rectangle is,”” Recordis said.

(area), = (height) = (width) = fla) A x
We also found the areas of the second and third rectangles:
(area), = f(a + &x) Ax
(area); = fla + 24x) Ax

*And the total area under the curve is approximately the sum of the first area
plus the second area plus the third area plus...," the king said.

“‘Hold it!"" Recordis protested. **You must have a hundred rectangles
up there, and if you want me to add up the areas of all of them you will
have to pay me about a hundred times what you're paying me now!"

“*Don't we have a shorter way for writing a sum like that?'" Trigo-
nomelteris asked.

*Of course!” the king said. 'S ion ion! R ber that we
used a crooked letter 5, Z. (The symbol I is the Greek capital letter sig-

n"l.oa,) We put where to start at the bottom: 'gl , and where to stop at the top:
3, and we put what we want to add up along the sides: = i, For exam-
ple, we might have the following."”

2i=1+2+3+4+5+6+7+8+9+10=55

[[]
|§2i=2+4+6+3+10+12+14+lé+13+20=110

2‘.'.1=:+4+9+ 16 + 25 + 36 + 49 + 64 + B1 + 100 = 385

“I remember how that worked,’’ Recordis said. **It certainly saved usa
lot of writing.”"

“‘We can use summation notation for the area problem,’ the king told
him. **Suppose we have n rectangles. Then we can say this.”

(area of all rectangles) = E (area of ith rectangle) = ;l Ap
"'We know what the area of the i th rectangle is,”" Recordis said. "It will

be equal to f{x,) Ax, if we define x, right."* (Figure 8-6.)
Igor wrote the equation for the area of all the rectangles:

(area of rectangles) = E Ay = EI S(x) Ax
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¥

_—
X ® x3...x Av
Figure 8-6.

**We still have a problem,” Recordis said. **The summation notation
makes it simple to write a sum involving hundreds of terms, but it doesn't
make it any easier to do the actual hard work of adding them all together.
And that's what [ always get stuck doing.”

““We have an even bigger problem,” the professor pointed out. **This
expression gives us the area of the rectangles, but it still doesn't give us
the area of the curve."”

“T know how we could get closer to the curve's area,”” the king said.
““We could use twice as many rectangles. Then there would be much less
difference between the area under the curve and the area of all the rec-
tangles.”

*You could get closer, but you still couldn’t do it!"" the professor ob-
jected. “*There still is some area wasted between the curve and the rec-
tangles. You'd have to use an almost infinite number of rectangles before
you could get the right area.™

“That's it!"" the king shouted. **We'll use an almost infinite number of
rectangles! We'll say that the area of the curve is the fimir of the sum of
the areas of all the rectangles as we let the number of rectangles go to in-
finity.™

{(area under curve) = .u-ﬁf':« _% Six) Ax

“*You can’t take a limit to infinity!"* the professor said.

**1 just did,”" the king responded.

**But look what will h. I"" the profi went on. n=wx
and Ax = 0. Then f(x;) Ax would be wo all the time. You would be add-
ing together an infinite number of zeros.”

*‘But we can’t ever let Ax actually equal zero,” the king said. **We can
let it become absolutely just-aboul-there close to zero. That's what ‘limit”
means."”
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**We used limits when we found derivatives,"” Recordis added. *‘We let
Ax come very close to zero, but we never let it actually equal zero."

We were all very impressed until the professor suddenly realized that
we had not come much closer to solving the problem. “This still does
not tell us how to take a given curve, ¥ = f(x), and two given numbers, a
and &, and come up with a number that is equal to the area under the
curve.” (Sec exercises 24 and 30 for some examples of using rectangles
to calculate areas.)

We realized that our definition of the derivative in terms of limits was
simple enough, because we could easily calculate the actual numerical
value of the limit for a specific function. The area limit involved a sum
with an infinite number of terms, so we all realized there was no way that
we could directly figure out the area by adding all these terms together.
“*We couldn't solve this problem if we stayed here until Hotspot Caves
freeze over," the king said sadly.

““We'll have to give up,”” the professor mourned.

“I'll find something else to do with my pools,” Recordis said.

We were about ready to turn to the business of differentiation and inte-
gration when there came a sudden swoosh! through the window. There
was an evil, cackling laugh, and the next thing we saw was . . . the
gremlin!

*“This time | have you by the throat,” he laughed. **So you are about to
give up. | suggest that you do. Surrender to my supreme powers of evil."”
He held out his cape, and we could see misty images of Recordis’ yard
and the pools with the algebraic shapes. As we watched, a fire kindled in
each pool.

“*These fires are designed so the flames can sweep across the entire
kingdom of Carmorra,” the gremlin went on. **There is only one thing
that can put these fires out— Magic Crystal Water. But you must use ex-
actly the right amount. One drop too little in any pool—and the flames
will still escape. One drop too much—and a giant, sizzling, steaming flood
will completely engulf Carmorra! [ suggest that you give up now, and sub-
mit yourselves to my becoming King of Carmorra!™

““Never!" the king cried.

**We certainly cannot allow that!"" Recordis said.

““Unless you pour in exactly the right amount of Magic Crystal Water
the flames will escape at exactly sunset,” the gremlin langhed wickedly.
He looked at his wrist hourglass. **You have exactly 2 hours and 56 min-
utes.” Before we knew what was happening, he had whipped his cape
around himself and, with a tremendous blast of hot air, had disappeared
out the window again.

**T think we had better not give up,” the professor said.

1 wish this was a calculus problem!" Recordis moaned. **We know
how to solve those.”

We spent a long time trying to calculate the limits directly, but we made
no progress. We tried desperately to come up with another method that
might work. Finally the king decided to put Builder to work. Builder set
up a station at Recordis’ house, and the king ordered a huge barrel of
Magic Crystal Water to be paid for out of the nation’s treasury since, after
all, this problem now involved the defense of Carmorra. We worked out a
signaling system so that, as soon as we came up with the answer for the
area of the pools, Builder would know right away and could pour exactly
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the right amount of water into the pools. Still, another half-hour of work
on the area problem failed to produce any results.

“We could give the kingdom up to the gremlin,”" Recordis said.

**That would spoil everything!"* the king objected.

**But we can’t let ourselves be burned to death,” the professor said.

*Or flooded to death,” Trigonometeris added.

1 tried a couple of ideas that didn’t work. Finally 1 set out on a despera-
tion path. Igor was doing algebra as fast as any Visiomatic Picture Chalk-
board Machine could, but our time was quickly slipping way.

*‘Let’s assume that there exists some function—call it A (x)—that will
tell us the area under the curve between the lines x = g and x = x,"" |
said. (Figure 8-7.)

“How do we know that there is a function like that?" Recordis pro-
tested,

“‘We have to assume that there is one,"” I said. *'If there isn't, then
we're lost already. If there is, maybe we can see how it behaves.”

““We can tell what A (a)is,” the professor noted helpfully. ** A (a) must
be zero, because there is no area between a line and itself."

“I know what A (b) is,” Recordis said. **That’s the answer we're look-
ing for—the area under the entire curve.”

**That’s obvious,” the professor sniffed.

**We have only 9 minutes left,” Recordis said. **Now we're doomed.""

*Let’s figure out how the function changes at different points,” I said,
as a sudden inspiration struck me. “'Let’s find out what the area function
is equal to at another point, say x + Ax (Figure 8-8). This solid area is
what we know to be A (x ). This striped rectangle, when added to the solid
area, gives A (x + Ax).”
¥ ¥

area =
Alx)

a x b x a x b
e B-T. Ax
e Figure 8-8.
*“We can figure out what the striped area is,” the king pointed out. "It looks
almost like one of the rectangles we were using earlier.”
(striped area) = (height) * (width)
= flx) &x
A(x + Ax) = (striped area) + (solid area)
= flx) Ax + A(x)
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**We also know that the smaller Ax becomes, the closer the area of the
rectangle approaches the striped area,” the professor said.

“*Let's put in the limit as Ax goes to zero,” the king suggested. “Then
we will have the exact area.™

M@ Alx + Ax) = Afx) = ;i’[‘nuf(x} Ax

*'We have 6 minutes left,”” Recordis said. **Now we're really doomed."

All of a sudden, we each struck upon the same idea.

*Do you see what I see?"’ the professor asked.

Very slowly the king suggested, "'Let’s take each side and divide it
by Ax.”

s Alx +Ax) = Ax) _
o= - i@
= flx)

“We know what the lefi-hand side of that equation is,” the professor
said. “It fits right in with our definition of the derivative, so that means
that the left-hand side of the equation is the derivative of the area func-
tion with respect to x, which is equal to the original function f{x)!™
% = filx)

““This is a calculus problem!" Trigonometeris said.

*“That means we have to take an integral to find out what A is,”" the pro-
fessor said.

dA = fix) dx
JdA = [ fixy dx
A= [ flx)de

“‘We have only 3 minutes left!"”” Recordis interjected. ** And every other
time we did an integral we ended up with a constant, so we had better fig-
ure out what the value of C will be."”

“Suppose we found the antiderivative function F(x),” the professor
said. **Then the area is as follows."”

Alx)=Fix)+ C
**We need to find an initial condition to tell us what C is,” the king re-

marked.
I know an initial condition,”” Recordis said. **We said that A(a)=0."

Ala)=0=Fla)+ C
C=-Fla)

**So that means A(x) = F(x) - F(a),” the professor contributed.
**And therefore,” the king said, *‘we have this,”

A(b) = (total area under curve) = F(b) - Fla)

As fast as he could write, Recordis jotted down what he called the
Sfundamental theorem of integral calculus (see page 106).

**Let’s think of an easy way to write the area in terms of an integral,”
the professor said quickly. *'Let's write the integral, and then write the
boundary terms like this.”
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1]
A =] flx) dx | = F(b) - Fla)

(The boundary terms a and b are usually called the fimits of integration. )
“Let's forget that little vertical line and write it like this,” Recordis
said.

1]
A =I f(x) dx = F(b) — Fla)

FUNDAMENTAL THEOREM ¥
OF INTEGRAL CALCULUS

The arca below the curve y = f(x),
above the line y = 0, to the right

of the line x = a, and to the left of the
line x = b equals A = F(b) — Fla),
where F(x) is the antiderivative
function such that dF (x Vdx = f{x ).
(See Figure 8-9.)

y=fix)

a .3 x

Figure 8-9, A= _r: fx) dx = F(b) — Fla)

“*That integral will tell us exactly what number is equal to the area.”™

**That is a definite integral if I ever saw one,”” Trigonometeris observed.

“*All right, we'll call it a definite integral if it stands for an area,”’ the
professor said. ** A definite integral will look almost the same as an indefi-
nite integral, except that we have two integration limits written next to the
integral sign. Now we've got to solve these problems. Recordis, what are
the equations of your curves?”

“The first one is simple,” Recordis said. “The area is the arca under
the function y = 2 + 5 from x = 3 W x = 6." (See Figure 8-1.)

We set up the definite integral, with the limits of integration written
right next to the integral sign.

6
Azf (x* -+ 5) dr
3

**We know the antiderivative of x* is 1x%, and the antiderivative of 5 is 5x,” the
professor said. *Therefore, the antiderivative of the whole thing is Fix) = 120 +
Sx. According to the fund I th we need to eval the antiderivative
at.v = 6, and then subtract the antiderivative evaluated at v = 3.7

We decided to write the limits of integration next to a vertical bar after we had
determined the antiderivative function:

L .
A-(EA +5x]’
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‘We calculated F(6) — F(3):
1 1
=GF+56- (P +5-3

216 27
=3 -{-30—3 -15
A =78

“The next one is interesting,"” Recordis said. **The curve is f(x) =
=% + 9, with the boundary points =3 and 3.”

3
A-L (—x* + 9) dx

3 1
=-tx* | + 9x |
-3 -1
=% - +27+27=54-18=136
“The next pool is hard,” Recordis told us. *Its area is not equal to the area under
acurve; it is the area between rwo curves. The upper boundary is the curve x3/25 +
2, and the lower boundary is the curve 4x%25 ~ 1. (Figure 8-10.)

vy =axt[28 —1
yy =525 42

Figure 8-10.
““We can find the area between two curves.” the professor said quickly.
“All we need to do is define a new function equal to the difference

between the two curves.” (See exercise 29.)

2
y,=;—5+2

— A
Yz 25

“Lety =y, — yp = a%25 + 2 — (4x%25 — 1). Now we can integrate that
function from -5 to 5.

n [ v [ ()

1 3 3
= —‘2—5-.1'3 l_’ + 3x

1 !
= = 350 = [—35(=31] + M9 -3(-5)
==5-5+15+15=30-10=20
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**The area of the first curve is 78,"" the professor cried over the signaling
system. **The other two curves have areas of 36 and 20."" Builder quickly
signaled back that he had poured the exact amount of Magic Crystal Wa-
ter into those three pools, and that the fires were out.

**We have only | minute left!"” Recordis said. **There still are flames in
the pool shaped like a sine curve!"” The sun had almost completely disap-
peared behind the mountains of western Carmorra.

A FEW PROPERTIES OF DEFINITE INTEGRALS

1. The definite integral [} f(x) dx represents the arca under the curve f(x)
only if these two conditions are met:
(1) b>a
(2} f(x) >0 for all x between a and b

2. If b > a and f(x) is negative everywhere between a and b, then the def-
inite integral [: Sf(x) dx represents the negative of the area above the
curve and below the x-axis. (See Figure 8-11.)

¥
i

x

Figure 8-11. y=f=

3. If f(x) is positive at some places and negative at other places between a
and b, then the total area under the positive parts of the curve will con-
tribute a positive amount to the definite integral, but the toal area above
the negative parts of the curve will contribute a negative amount. The
final result may be positive, negative, or zero. (See exercise 17.)

4. Reversing the two limits changes the sign of the integral:

b a
[ fexae=- s
since F(b) - F(a) = -[F(a) - F(b)].
. Ifa<b<e, then:
ff(x}ir+[ﬂx>dx=£fmdv

since F(b) = Fla) + F(c)— F(b) = F(e) - F(a).

. If you look carefully at a definite integral, you will see that the name
of the variable of integration (the variable in the d-variable term) does
not make any difference to the final value of the integral:

rﬂx)dx = F(b)-Fla)

n

o

']
[ f@rdg=F)-Fi@

The value of the definite integral depends only on the function
being integrated f (which determines the antiderivative function F)
and the limits of integration a and b. Therefore, the variable of inte-
gration is sometimes called a dummy variable, not because it lacks
intelligence but because it can be replaced with another variable
without changing anything.
Notice that for an indefinite integral, however, the name of the vari-
able of integration does matter:
[rde=4dr+C=

[ydy=14y+C
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“'We need the integral of ¥ = sin x, from x = 0to x = m," the professor

said.

A=j sinxdr=—cosxy | = =—cosw+cosl
o o
= (=D 4+ 1=2
“Ten seconds left!” Recordis shouted.

“The area's 2! Exactly 2 square units!"" the professor signaled Builder.
We all closed our eyes, The last shadow disapp d as the i
blocked out the sun. Limp with fear, we waited for the flames to engulf us,
but Builder had done his job in time.

We were safe!

L. Find the area under the curve ¥ = cos x from x = -m/2 10 x = w2,
2. Find the area under the curve y = sin* x fromx = 0tox = =,
3, Find the area between the x axis and one arch of the. curve
¥ = 3sin 5.
4. Find the area between the parabola v = 2x? — 8, the line x = 2, the
line x = -2, and the x axis.
Evaluate the following.

1
s, J- (3% + 3x + 5) dy
L
5
6. J- (9x + 10) dx
1

dy
7. J (ax? + bx + ¢) dx
d

dy

8. f (ar* + bt + ¢) dt
4

9. r[4 dx
L]
1

10. I (x* + 1) dx
=1
1

1. j (5x% + 10x7 + 3x) dx
L]
1

12. J- (4x? + 3x% + 2x + 1) dx
o

13. r(x3.l’3 + x¥2 + x) dx
L]

14. r'(x" + 1) dx
.I
1

15. j[{m + Dx™ 4+ (n+ D" +(p + ") dx
L]

1
16. j 1 dx
-1
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17,

18.

20,
21.

2.

23,
2,

25,

Compare the results for these definite integrals, and sketch the curve:

4

(a) sin 846
(b) J:a sin 848
{e) I: sin 848
(d) J:. sin 848

(e) f sin 8d0

=
i
cos @ 48

—mid
c

f (x4 x7%) dx
1

1
J.(x’-l-x")d.t
i

Use definite integrals to show that the Tabie 8-1
area of a triangle is given by (b e

x sin x

b ———— e .

Show that I flx) dx = —rf[.r} dx. 0.1745 0.1736
e » 0.3491 0.3421

= 0.5236 0.5000

Evaluate the definite integral y = J: sin 8 dé. 0.6981 0.6428
Use the table of values (Table 8-1) to 08727  0.7661
estimate the area under the curve y = sin x 1.0472 0.8660
from x = 0 to x = /2, using (a) two 1.2217 0.9397
inscribed rectangles and (b) eight inscribed ‘-3ﬁ 0.9843
rectangles. M

The definite integral can be used to find the average value of a func-
tion over a given integral. The average value of the function y = f(x)
over the interval x = a to x = b is defined to be

y = [k - a)] J:f(x) dx.

Find the average value of the function y = x? in the interval x = 1 10
x=3.

Find the average value of the function y = x~2 over the interval x = 1
tox =4,

The voltage in an alternating-current circuit is described by the func-
tion V(1) = A sin w!t. The peak-to-peak voltage (V) is defined to be
Voo = 24, The rms (for root-mean-square) voltage is a measure of the
ave value of the voltage in the circuit. It is defined to be Vi, =
VTV [T averase- Find the average value of ¥ over the interval ¢ =
0to ¢ = w/w. Then take the square root of the result to find Vi, (Re-
member that sin* # = {1 — cos 26). What is V,,, when Vo, = 1?7
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28. The arca under the parabola y = x? from x = 0 to x = a is given by
the expression:

hm 2 (x; ) Ax

You can evaluate this summation directly, if you know this tricky for-
mula:

S pon

E]‘ #=2(n+ 1@+
Eval the ion, and compare the result with the definite in-
tegral r x* dx.

L}

29, Show that the area between the curves f(x) and g(x) between x = a
and x = b is given by the integral:

I: [f(x) - glx)] dx
Assume that f(x) > g(x) > 0, forallasx £ b.

O 30, Write a comy to calculate the area under one arch of the sine
curve, using IUCID rectangles (This procedure is called numerical
integration. )

O 31. Write a computer program that reads in a positive number b and then
calculates the area above the v axis, to the right of the line x = 0, to the left of
the line x = b, and under the curve

y = ——e nan?

Vin

This is the curve for the normal distribution. The area under this curve
has very important applications in probability and statistics. (e is a num-
ber approximately equal to 2.718; see chapter 9.)
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The gremlin disappeared after his defeat, and we heard no more from
him for some time. The whole kingdom was excited by our discovery of
the method for finding arcas.

**We should expand our busi " the profi said. **We should call
it the Differentiation and Integration Busi "

**Now we can do just about anything!"* Recordis boasted. **We can find
areas or velocities-given-positions or positions-given-velocities or the
slopes of tangents."

Business was great for the next few days. The first time we hit a snag
occurred one morning when I was at the Differentiation and Integrati
Business office with Recordis. We were approached by a tall, elegantly
dressed customer. ““That’s my neighbor, Count Q,"" Recordis whispered
in my ear. **After we solve his problem, he will probably give us a gift
large enough to support our business for a year.”

**What can I do for you?"" Recordis asked, making a special effort to
impress the count.

“I have a horrible problem,” the count said. “My children decided
that they wanted to construct a life-size model of Hasselbluff Mountain,
entirely out of beads. I was able to convince them to accept a one-tenth
scale model, but that still required a huge amount of beads—4 million
grams, as it turned out.”
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“Four million grams of beads!” Recordis breathed in astonishment.

“I had a large bead container built 1o hold them, but, as you might
expect, my children knocked the container over this moming. The beads
are all over the yard now. Fortunately, Rutherford, your dog, decided
that it would be fun to pick them up. He started this moming. He does
have a lot of energy, and he has been working fairly fast.”

““What's the problem?'’ Recordis asked.

“1 need to know how long it will 1ake him to pick up the beads. At first
the beads were casy to pick up, and he was able to scoop lots of them into
the container every minute. As there are fewer and fewer beads, though,
they're harder to pick up, so he can't pick them up as fast. I measured the
rate at which he can pick up the beads, and I found out that each hour he
can pick up one quarter of the beads that are in the yard at the start of the
hour. Do you think you can find out how long it will take until he's fin-
ished?™"

“Certainly,”" Recordis said proudly. *'We invented an integral, sym-
bolized by a squiggle: J. Suppose you tell me what dx/dt is (that means the
rate at which some variable x is changing with respect to some variable
). In your case x would be the number of beads left in the yard at a given
time.

“Tf you tell us dx/dr = f(r), where f( ) is some function of time, then
we can easily calculate x as a function of £."

dx = f(t) dt
Jdx = [ f(ry dr
x = [ flr) dt

Recordis was enjoying being able to show off his knowledge, but I could
see that Count @ was becoming impatient.
*‘We can also do it this way, if you tell us dv/dr = f(x)."”

dx _
dt fx)
A g =
Ty 4=
-
= &
“‘In your case we have dv/dt = —ix. So let's do this,”" Recordis said
with a flourish.
4 dx
4 ar = x
-4y =
x

(-4 =far
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“Then we use our Perfect Integral Rule,” Recordis said, making sure
that the count could hear the capital letters he had just given the name,

1
= —4=)dr
= f(—4)ar
“Since —4 is a constant, we can vse our Multiplication Rule,” he continued
t= =4[ x""dx
“*‘Now we have our Power Rule."
- 1 ~1+1
t 4 T x + C

As Recordis was about to put the grand finishing touch on the problem,
he suddenly choked and a cold, desperate sweat broke out over his face.
*Ah, yes, as I was saying, this is a very simple insert-the-numbers prob-
lem.” He suddenly turned to me. *Why don't you tell the count why we'll
have the answer for him tomorrow rather than today?"

I suddenly saw what Recordis had seen. **We have to go to lunch right
now,"" 1 said.

*Lunch right now?” the count cried. “*It’s 11:23 a.m.!™"

“*We always have lunch at 11:234 A.M., on the dot,” Recordis said. He
quickly pulled the curtain in front of the Differentiation and Integration
Business and ran into the palace.

**Help! Help! Meet right away!”" Recordis shouted. A few minutes later
we were all gathered in the Main Conference Room. Recordis told every-
one our problem.

“The power rule doesn’t work if n = —1!"" he cried. *'1 have never been
so embarrassed in my life.”

“*Calm down," the professor said. *‘I'm sure we can figure something
out. Igor, write down the power rule.”

_[.t"dx="_|;_|x"'+C
**Just try putting n = =1 in there!" Recordis yelled.
“You get 1/0 times x? which is 1/0 times 1, or 1/0,"" the professor said.
“‘But that doesn’t mean anything!"" the king protested. **We found that
out in algebra."”
**Also we can see that it doesn’t work,”" Trigonometeris said. **It is ob-
vious that (d/dx ¥ 1/0) does not equal 1/x."
“‘We better add that condition to the power rule,"" the king said.

POWER RULE

Jede =ty e itns -
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“*“That must mean that there is no such thing as a function with deriva-
tive x7,"" the professor said. “*If there is no such function, then the inte-
gral [ x~! dx does not exist. [ can’t think of any reason why we should
worry about that integral.™

““But there is such a function!” Recordis told him. He explained the
problem with the beads. He also said that if they could find an answer by
that night they would probably receive a generous gift from the count.

“*Maybe we can use a definite integral to help us out," the king said.
“'We found that an integral represents the area under the curve, so let's
draw a curve and find the area under it.”

Igor drew a graph of the function f(g) = 1/q. (See Figure 9-1.)

“I know what this definite integral means,’” the professor said.

L] L]
jf(q]‘-'q =f 1 dg = area above the g axis,
4 below the curve fig) = l/g,
to the left of the line ¢ = b,
and to the right of the line g = a

flg)

figr=—

Figure 9-1.

“*The integral function must exist!"" Recordis said. **That area is clearly
some real number that you could measure if you had to.™

**All we have to do is set up a Mysterious Function that gives us this
area and investigate what its properties are,”” the profi said. “If we
find a function that gives us the area, then that means we have also found
the function that gives us the amedenvauve we need.””

**That’s from the fund: h of integral calculus,”” Recordis
added.

“We should fix the left-hand boundary of the area,” the king said.
“Then the area will be a function of just one variable: the right-hand
boundary."
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fig)

We decided to fix the left-hand boundary at g = 1, since it was clear
that the Mysterious Function would do strange things if we fixed the left-
hand boundary at the point where g = 0. 1 suggested that we use the letter
L to stand for the Mysterious Function, so we made the following defini-
tion (Figure 9-2):

Lra)=_f L g
1]

q

“How do we find out what this function is?"" Trig is asked.

"1 would suggest that the first thing we should do is look for proper-
ties,"" the professor said. "*Does anybody see any obvious properties of
the Mysterious Function?”

““I see one obvious property,” the king replied. *'It looks as though
L) =0."

“That's a start,”" the professor said.

““We can also say that, when a is greater than 1, L{a) is greater than
0, Recordis said.

“And from the way we set up our convention for the sign of an area, we
can say that, when a is less than 1, L (@) is less than 0, Trigonometeris
added. (See the list at the end of chapter 8 and exercise 8-22,)

“What happens if & is less than or equal 1o 07" Recordis asked.

“Then everything would blow up!™ the professor said. * You couldn’t
define the area, so we may just as well say that L (a) is undefined when
a is less than 0.

We made a list of the properties we had found (see page 117).

“Does anybody recognize these propertiesT” the professor asked.

“I do!™” the king said. “They do look familiar! The answer's right at
the tip of my tongue, but [ can't think of it.”
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PROPERTIES OF L(a)

()]
1. Lil)=0.
4] 2, Lia)>0 whena=>1.
3. L{a)<0 whena<I.
T 4. L{a}is undefined for a = 0. (Figure 9-3.}
?2'1
L]
a<, gl q
Lia)
undefined g< |,
Ligy<0
Figore 9-3,

" "

MNobody else could think of any algebraic or trig tric
that fit these properties, but Trigonometeris came up with an idea that
would allow us to calculate values for L{a).

“'Remember when we i 1 my functi the trig ic func-
tions? We decided that they were more complicaled than ordinary func-
tions, so we constructed my triangles so we could measure the sine, co-
sine, or tangent of any angle. After we made the triangles, we drew up a
table of values so we could just look in the table for the trigonometric
functions of any given angle. All we have to do now is build something to
calculate L(a}, and then make a table of values. Let’s have Builder build
a pool with a sliding wall (Figure 9-4). All he has to do is set the sliding
wall at different values of @, and then measure the amount of water in the
pool.”

Builder was immediately summoned to the conference room. He was
told the urgency of the project, and he promised to put his best craftsmen
1o work right away.

“‘Make sure the pool is accurate!" the professor called after him as he
went away.

We ate lunch while we waited for Builder 1o bring us a table of values.
After a while we decided to look for some more properties. We tried to
find an expression for L(a -+ b), where a and b are any two numbers,
but we soon gave up. We quickly established that L(a + b) does not
equal L(a) + L(b) (let a = b = 1, and see what happens), but we could
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not think of anything else that worked. We decided to find an expression
for L{ab).

|
Lb-—j—d
(ab) ‘qa

**1 know how we can simplify that expression,” the king said.

ab 1 “I
Ltab}:jl —(:dq=f;dq+£ Lag

ok I
= La} + I = d
SO 4
¥
fixed diding
wall expandable
wall
Figure 9-4,

**How does that help?'" the professor said. **“We don’t know what that
second term is.””

“If we could change the a in the lower bound into a 1, we would be in
better shape,”” Recordis remarked.

**Maybe we can do that,” the king said. **We can make a substitution,
so that instead of ¢ as the integration variable we have some other vari-
able.”

Recordis suggested that we try u = gla, ¢ = au.

gt
Liab) = L(a) +j L g
S—T

“*‘Now we can't solve it because the integrand is in lerms of & while the
boundary limits and the d-variable terms are still in terms of ¢."

*“Then we will have to change them so they are in terms of «,"" the king
said. "*Since ¢ = au, we know that dg = a du.”
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**And I can’t see any reason why we can’t change the limits so that they
are in terms of &, Recordis added. **If ¥ = g/a, then & = b when g = ab
and u = | when ¢ = a.”

We put these values in the integral:

—rly -
L(ab) = L{a) + r Loy = Lia) + f L g du
ama AN umy QU

**Are you sure that is the same integral we started with?"" the professor
asked suspiciously.

It should be.” the king said. ** All we've done is change the name of a
variable.”

We made a list of the procedure for the substitution method for definite
integrals.

SUBSTITUTION METHOD FOR DEFINITE INTEGRALS

Some integrals can be made simpler by substituting some variable « in place

of the originul variable of integration. The change must be made in three

places:

t. The middle of the integral (the integrand) must be written in terms of the
new variable «.

2. The d-variable (or differential) term must be written in terms of the new
variable (du ).

3. The two limits of integration must be changed from limiting values of ¢ to
limiting values of n.

“*Mow where were we?"" Recordis said.

L]
Liab) = L(a) + j a du
yoan

**We can cancel out the a's,” the professor suggested.
13
L{ab) = L{a) + j %

““We know what the second term is!™ she said suddenly. “*That’s the
definition of L{b)!"

Liab) = Lia) + Lib)

“*That's an amazingly simple property for this function,” the professor
added.

“*Didn’t we see this property before?”” Recordis said. leafiing through
his old algebra book.

**1 recognize it!"" the King exclaimed tri hantly. R ber the log-
arithm function!™
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“The logarithm function!” the professor said in awe.

*“The logarithm function!"" Trigonometeris said in awe.

“The logarithm function!"" Recordis said in awe. *What's the logarithm
function?"”

“Don’t you remember?’" the professor chided. **We said that, if y* =
a, then x = log, a (this means that x is the logarithm to the base y of a)."”
The professor pointed to a page in the book that described the logarithm
function.

“Oh,"” Recordis said. “*Now I remember.”” (The people in Carmorra
had developed a fairly extensive list of properties of the logarithm func-
tion, If you are not familiar with logarithms to the base 10, you can con-
sult a book on algebra.)

**And the logarithm function has all the properties we found for our
mysterious function,'” the king pointed out.

logl1=0

loga >0 whena > 1
loga <0 whena < 1
log a is not defined fora = 0
log{ab) = log a + log b

**But there is something else about the logarithm function,” Recordis
said. “*“We have to specify a base. We decided that, if we wrote log a
without explicitly stating a base, we meant the logarithm to the base 10
(log @ = log,s @), and we called that the common logarithm. But we could
also take logarithms to any base: log: a, loge a, or whatever."”

**Except for the number 1,"" the professor added.

*That's right,"" Recordis said. **We found that there is no such thing as
alogarithm to the base 1(log, a ). But that doesn’t help us know what base
to use for the Mysterious Function, L{a).”

“We'll have to wait until Builder has brought us a table of values,” the
king stated. “*Then we should be able to tell what base it is."”

“I hope it's some easy number like 2 or 3,"" Recordis said. **We need to
think of some letter to stand for the unknown base until we find out what
itis.”

They turned to me, and | came up with another suggestion: that we let
the letter e stand for the unknown base.

“‘We still have to check this,"" the professor said. **You are saying that
integrating & 1/x function gives you a logarithm function. If that's true,
then differentiating a logarithm function will give you a 1/x function.””

We set up the definition of the derivative:

¥ = log x
¥+ Ay = log.(x + Ax)
Ay = log.{x + Ax) — log. x
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““We should have done this a long time ago,”" Recordis remarked. *'[
thought that we had found the derivative of every single possible function
already, but 1 completely forgot about the logarithm function.”

“We can use a logarithm property here,’” the king said. **Remember
thatlog @ — log b = log{a/b).”

Ay = Iﬂg,(Jr t '\X) = log, (1 + Avix}

**We had better divide both sides by Ax,"" the professor advised. **That
seems to be the standard way to proceed under these circumstances.™

Ay _ log(L+ Axix)

Ax Ax
“'Now we're stuck,"" Recordis said,
We puzzled over this situation for several mi until [ had a sudd

inspiration. ''Since we would like to end up with I/x, why don't we try
multiplying the numerator and the denominator by x? That way we'll
have at least one x in the denominator."”
“It can't hurt too much,” Recordis said.
Ay _ xlog. (1 + Axilx)
Ax xAx
We rearranged the order of the factors:
A _1 x Ax
Ax xAxioB'(l+ x]
**Somewhere along in here you will need to put a limit as Ax goes to
zero on both sides,” Recordis pointed out.
Ay _dy 1 x Ax
Jim 3% = = fim ¢ Ay loee (‘ +T)
Recordis wanted a shorter way to write this expression, so we made the
definition w = Ax/r. Then we could rewrite the derivative:
ay _lym L
dxr x lim W log. (1 + w)
*“I remember another property of logarithms,”" the professor said, **We
discovered that n log x = log(x")."”

dy

_I i e
prria IJ_IEJOIDg.lI + w)
= L 5 e
T log. Iﬂ.ﬂo {1+ w)

“'T have an idea,” Recordis stated. “'If we could make this weird term,
loge limy—.q (1 + w )", equal 1, then we would have the answer we want:
dyidx = 1/x."
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"That's obvious,” the professor said. “We can’t just make it be equal
to 1, though.”

“He does have something!” the king exclmmed “We might be able to
use this expression to track down the m ber e! R b
that 10€,,._ 1., (S0me base) = 1, always. Remember that log, 2 = 1, log,,
10 =1, and log,, 17 = 1, because 2' = 2, 10" = 10, and 17" = 17. S0 we
should have log e = 1! And we also want to have log, lim, _, (1 + w)™ =
1! That means lim,, _, (1 + w)" equals /™

“Of course!" Recordis said. ““The old mysterious-number-e-caught-
up-in-the-screwy-limit trick!"

*'Can we calculate that?"' the professor asked.

**It’s just a matter of arithmetic,’" the king said. **We can’t calculate ¢ if
w = 0, because then we would get ¢ = 1%, which doesn’t help much. But
we can calculate ¢ for any value of w close to zero.”

Igor and Recordis soon came up with a table of values (Table 9-1).

**Just exactly what I was afraid of!"’ Recordis moaned. **Look, ¢ turns
out to be some number between 2.7181 and 2.7196."

“But u-ﬁy"' the king asked. *Is there something special about a num-
ber that is approximately 2.718? I can't think of any reason why lhere
should be."”

**It must be an irrational ber," Trig s ked. "1 don’t
think you could ever find an exact decimal representation for it. Just like
most trigonometric functions.™

**Is there anything else like it?"" the king asked in great distress. He be-
lieved very strongly that he should be an impartial ruler, and it bothered
him that one number, more than any other, should be singled out as the
base for the L (x) function.

“I can think of only one other case,” the professor said solemnly.
“"When we found the circumference of a circle, we decided that the cir-
cumference was 27r, where r is the radius. We found there was a special
number, which we called pi, because it seemed to be so fundamental that
it worked for any circle.”

Table 9-2
Table9-1 X Ly

w ( + wyw 265 0975
0.5 2.25 266 0.978
0.1 2.5937 267 0982
0.01 2.7048 268 0.98
0.0001 2.7181 269 0.99%
~0.001 2.7196 270 0993
-0.01 2.1320 271 0997
-0.1 2.8680 272 1.001
E— 273 1004
274 1.008

2.75 1.012
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"I remember having to calculate a decimal approximation for m,"" Re-
cordis added. “*“We came up with = = 3.141592654. The professor said
that we could calculate = out to th ds of decimal places if we wanted
to, but I made it clear that we were not going to calculate it out to thou-
sands of places unless someone came up with a thousand very good rea-
sons why we should.”

“We decided that we had discovered a fundamental irrational num-
ber,” the professor said. *'I had thought  would be the only one. We'll
have to add the number ¢ to our list.”

Recordis entered in his giant record book:

e=2TI8. ..

“Don’t get carried away,” Trig is warned. 'R ber that
we still have to get the values of the L(x) function from Builder. If you
guys are right and L(x) = log. x = log, 4,4 %, then L{e} = L(2.718) must
equal 1. If Builder comes back with a different value, we're sunk.™

We waited nervously for Builder to come back with his table of values.
Nobody wanted to rush him because we knew that he must do an accu-
rate job. Finally there was a knock at the door, and Builder came in.
*“This table should have all the values you could possibly want,”" he said,
exhausted.

“Read off all the values between 2.65 and 2.75.7" the professor re-
quested. Builder looked puzzled, t these d like strange num-
bers, but he read them off (Table 9-2).

"It does work!" the professor exclaimed. *'L{x) does equal | some-
where between 2.71 and 2.72, just as it should. Then L{x) must be the
logarithm function.”

“'We had better write this as a rule,”” Recordis said. "'First we need to
think of a short way to write this function. We wrote log x to stand for
log,, x, so let's think of something to stand for log, x."”

“*We could write log, x = In x,”" the king offered. **[ don’t know why,
but it looks pretty.™

“That's good because it has fewer letters,” Recordis said: *“*And we
need to think of a name for a logarithm to the base e."” | suggested the
name natural logarithm, since it seemed as though this function had aris-
en in the natural course of our investigations of the properties of integrals,

123

NATURAL LOGARITHM OF A NUMBER
natural logarithm of x = Inx = log, x = JU: dt

(where e = 2.718...)
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FIRST AMENDMENT TO THE POWER RULE FOR
INTEGRALS

PO P
Jx dx-M_]x +C ifn#-l

Jxtdx=1n|x|+C

[W: later mvcsugamd what happens if x is negative. The logarithm of a
ber is not defined, but we can still use the logarithm function
in the power rule if we take the absolute value of x (|x |).)
“*We could also write that rule in terms of definite integrals,” the pro-
fessor said.

L
J-.t"eir- Inb-1Ina
o

“No," Recordis said firmly. **We know that the connection between
definite integrals and indefinite integrals always holds, so we definitely do
not need to write each rule once in terms of indefinite integrals and once
again in terms of definite integrals.”

We went back to Count Q's problem:

t = =4 [ x7" dx, with the initial condition x = 4 million when ¢ = 0
**We can solve that right away,” the professor said.
t==4Inx+C
*“Using the initial condition gives us the following expressions.™
0 = =4 In(4 million) + C
C = 4 In(4 million)
“Builder, can you give us a value for In(4 million)?"* the king asked.
Builder looked aghast, but a few minutes later he came back with the
answer from his logarithm pools.
In(4 million) = 15.2
C=4x152=608

“‘Now what does r equal when x is zero?" Recordis said. **That will
tell us how long it will take Rutherford to scoop up all the beads.""

t=-4Inx -+ 608
*‘Hold it,"”" the professor protested. **We said that there was no such
thing as L(0) or 10giany sase0. That means In 0 doesn't exist.”
**That means Rutherford can never pick up all the beads!"* Trigonome-
teris said in dismay.
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“Of course, that's right,” the king stated. **The count said that in any
time period Rutherford could scoop up only one fourth of the beads that
were left. That way he could never get them all. Even if there was only |
gram of beads left, he could pick up only one fourth of that gram.™

“Don’t be so picky!” Recordis said disrespectfully. **If Rutherford can
sweep up all but 1 gram of beads, I will be glad to personally pick up the
rest.”

We easily calculated the value of ¢ for x = 1:

t=—41n1 + 60.8 = 60.8 hours

*That's 2¥ days,”” Recordis said. **Not bad, considering how many
beads there were to start with."” Recordis went running off to take the an-
swer to the count. Sure enough, the count did give us a nice gift for pro-
viding him with the answer. We were still amazed at the strange paths
along which this investigation was taking us.

Note to Chapter 9

Thequ'lthe gral defining the | hm function could have been
renamed g or g or 5™ or anyihang else without affecting the value of L{x):

4\‘.[:r)=frl dq=jrl dg=r—‘,dq'=r—',.ds"
1 q L4 vy &
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See the note about dummy variables at the end of chapter 8.

Exercises

1. On one occasion the gremlin tried to take over the kingdom with a
bacteria dish. The bacteria multiplied at such a rate that dnidr = 3n.
At ¢ = 0 hour, the number of bacteria was 10. If the gremlin had not
been stopped, how long would it have been before n equaled 1000?

Find ¥’ for:
2, y=Inx?
3, y =In(-x)
4. vy =Insinx
5. y=Intanx
6. ¥ = In(x® + 4)12
7. v = In(ax® + bx + ¢)
B y=In(xVx + 1)

9. Use the definition of the derivative to find y' for ¥ = log, x.
10. Sketch the graph of the curve y = (In x)/x. Find any points with hori-
zontal tangents. Find any points of inflection.
11. Use 10 inscribed rectangles to estimate In 2. (For a helpful table of

values, see Table 9-3.)

Table 9-3
x 1ix
L1 0.9091
1.2 0.8333
1.3 0.7692
1.4 0.7143
1.5 0.6667
1.6 0.6250
1.7 0.5882
1.8 0.5556
1.9 0.5263
2.0 0.5000

x
12. Forlnx = f (1/r) dr, show that In{a/b) = Ina — In b.
1

13, Forlnx = I (1/1) dt, show that In(x") = n In x.
1

Evaluate:
Koy= I T
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= 1

18y I3x+4dx
1

l“.[x’d-?x-}-ldx

ax + b

1
. [ Grtapde

R S
1. stus‘“

2x + 4
J-x’+4x+6dx

2 f sin6 45
*J cosé

J' _cos0 4

sinf+4

23. Consider the function y = f(x) = (1 + x)**. Find f(x) for the follow-
ing values of x: 10, 8, 6, 4, 2, 1, 0.5, 0.25, 0.1, -0.1, —-0.25, -0.5,
~0.6, ~0.7, —0.8, -0.9. Make a sketch of the curve. What is £(0)?
What can you say about lime—, f(x)? What is lim;—. f(x)? .

24. The work done in compressing a container of gas is given by - A P
dV, where P is the pressure of the gas, V, is the initial volume, and V,
is the final volume. For a gas that obeys the ideal gas law (PV = con-
stant), find the work done in compressing the gas from V, to V,, What
is the work if V, = 2,7 What is the sign of the work if V, > V,?

25, Find a formula for this integral:

J:'r" dr

where n approaches very close to —1. Then find a formula for e.
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Mongol decided that the logarithm pool made a perfect adjustable
swimming pool, and he had fun splashing around in the logarithms of dif-
ferent bers. M hile, Builder had finished the table of logarithms,
and now we had to decide what to do with it.

“*Maybe we should make a graph of the logarithm function,” Trigeno-
meteris suggested. ** After we first discovered the trigonometric functions,
we found that it helped to make graphs of them."

Builder got a giant glass plate out of his supply room and brought out
his best etching equipment.

“The easiest point is x = 1,"” the king said. "“We know that y =
Inl=0."

““We also know that In x is not defined for negative numbers,"* the pro-
fessor added. **That means that we need to worry only about points that
are to the right of the line x = 0.""

**We can use what we did with derivatives,” Recordis said. **‘Remem-
ber concave up and concave down?""

The derivatives were easy lo calculate:

y=Inx

y' =

=

Yot =



EXPONENTIAL FUNCTIONS AND INTEGRATION BY PARTS

**We know that y' is never zero,” the king said. **This means that the
curve must never have a horizontal tangent."

“*And y' is always positive, so the curve is sloping upward all the time.”

“And y" is always negative,”” Recordis said. ‘"This means that the
curve is always concave downward.”

With this information, plus the results from the table of values, Builder
was able to etch the curve on the glass plate. (See Figure 10-1.)
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(1,00

Figure 10-1.

**Let's store this graph in the National Archives Room,™ the king sug-
gested. Nobody else could carry the large plate, so Mongol began to lift it.
The glass was slippery at the edges, and he had barely picked it up when
he started to slip. As he fell to the floor of the Main Conference Room, he
tried to protect the glass plate. He was able to save it from breaking, but it
landed on the ground backwards from the way it had been.

**Not fun!"" Mongol cried.

**Mongol, what did you do to the graph?"’ the professor asked, looking
at the backward view of the logarithm function through the glass plate.
Mongol began to cry, thinking that the professor was terribly angry
at him.

“You made a whole new graph!”’ the professor said. **1've never seena
graph like this before!"" She began to get excited, and she congratulated
Mongol. Mongol smiled and jumped up and down.

“‘We have created an inverse function,”" Recordis said, after the king-
dom had stopped shaking. ‘*A long time ago we said that we could do that
if we traded the x and y coordinates on a graph.™

“Let’s find out what the inverse function is," the king suggested. **We
still have y = In x. Let's trade x and y around so that the horizontal axis
is x again and the vertical axis is y again.”
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¥y y=¢
0, 1)
x

Figure 10-2.

*“That would make me feel less disori d,” the prof said. (Fig-
ure 10-2.)

We solved for v to determine the new function:

x=lIny

e = elnw

yo= et

“Let's call it an exponential function,” the professor said, “‘since
we're raising x to an exponent.””
“Is it good for anything?"' Recordis asked.
"[ thmk it" s n sood way to get big numbers fast,” the professor replied
i) pp 1 gave you a choice between having, af-
ter x days ellh:r x% or ¢ dollars. Which would you choose?” Recordis,

who knew hing about algebraic functi chose x™, so the profes-
sor was left with e*. We made a table of the number of dollars each would
have on a given day.
x (days)  x™ (Recordis) e (professor)

1 1 2.7

2 1,048,576 74

3 3.5 billion 20.1

4 1.1 trillion 54.6

5 9.5x 107 148

**It looks as though you have no chance,”” Recordis said, feeling sorry
for the professor. “Don’t worry. I'll be generous.™
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*‘Let’s wait a bit longer,” the professor said,

10 1.0 x 10°° 2.2 % 10¢
20 1.0 x 10°% 4.9 x 10#
50 9.5 x 10 5.2 10#

**The professor is catching up!™* the king remarked.
**§till, if 1 had that kind of money I could buy the whole world!"" Re-
cordis said.

100 1.0 x 108 2.7 x 10%
200 1.0 x 10% 7.2 % 10%

*“The professor was right!"" the king said, surprised. *“In less than a
year she would have 7.2 x 10% = 72,000,000,000,000,000,000,000,000,
000,000,000,000,000 times as much money as Recordis would.™

T still wouldn’t mind having 1.0 x 10* dollars,” Recordis replied de-
fensively. **Besides, how do we know that the function e doesn't turn
around and start to get smaller for larger values of x?"

*“We can check the derivative and see whether it is ever negative,"" the
professor said.

We used the power rule:

y=e
y = xet!

*“That was easy," the professor said.

**It doesn't work, though,”” Recordis pointed out, anxious to prove that
he wasn't as dumb as the professor had just made him look. '*Look
atx=0.""

x=10

N d'y)
king's idea of — |=0
[ng ||:uodx

**But if you look at the graph (Figure 10-2) it is clear that when x = 0
the slope of the curve is not zero.”

*‘What happened?'”’ the professor said. We were all stunned. ““The
power rule always worked before.™

Finally the king had a suggestion. **We proved the power rule using an

that was a Maybe it doesn’t work if you have a con-
stant number raised to a variable exponent.”

We tried to find the derivative of e* directly, using the definition of the
derivative, but a few minutes later we gave up. Finally Recordis came up
with a suggestion.

“I remember some of the work we did with logarithms,” he said. **We
found that they were most useful because they could make some calcula-
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tions a lot simpler. Naturally, I liked them very much. It seemed to me
that, whenever we had numbers raised to powers, it helped to take the
logarithm of both sides of the equation.™

y = e
Iny=lhe*=x

“Now we don't have an explicit function,” the king said, “but maybe
we can use implicit differentiation.” (See chapter 4.)
We applied d/dx to both sides:

d
dx Iny = daxt
We could differentiate the left-hand side using the chain rule; and the right-
hand side was obviously equal to I

et =

Ble &Iv

= af

**That can’t be right!"" the professor objected. **You can't have a func-
tion whose derivative is itselfl™
“Why not?"" Recordis asked. The professor couldn’t think of any rea-
son why a function couldn’t have a derivative equal to itself.
“That means you could take the second derivative and get the same
thing!"”" the king said.
y=e
&y
&T

“You could take the hundredth dcnvauv: and still get the same
thing!"™" Recordis exclaimed.
y=e"
dlwy
g
“*Amazing!"" the professor murmured. **The function is indestructible!

You could differentiate it forever and still not change it!"
““We can even work that backwards,” Recordis said.

Jetdv=e"+C

“Let’s see what happens if we raise some other number to the x pow-
er,”" the professor suggested.
We used logarithms to find the derivative of y = 2%:

=
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Iny=In2=yxiIn2

~ 2 2
vy d In2
dy

ax ZIn2

** At least its derivative isn't equal to itself,” the professor remarked.
We went through exactly the same calculations to make a general rule:

133

DIFFERENTIATION RULE FOR EXPONENTIAL
FUNCTIONS

y=a

d (Ina)a”
dx

“‘What if we have a variable in both the exponent and the base?"" the
professor asked. ““How about y = x*?"" We used the same method, and it
was only a little more complicated this time.

y=x*
Iny=xinx
Use the product rule for the right-hand side:

b L ()

(1o 1ms)

**We should remember this method,”” Recordis said, always looking for
simpler ways 1o do things, “We'll call it the method of logarithmic im-
plicit differentiation.”

"*What other kinds of functions would you use it for?"" the king asked.

I have been having nigh es about complicated functions that T was
afraid you would have me differentiate some day. Naturally, once you
people have developed all the theory, I get stuck with all the hard work.
Just imagine a function like . . . ,"" and Recordis wrote down the first
complicated function that came into his head.

y= f(x = Dix + )z + 4

TV x4+ INx + 2Hx - 3)

o B

““We could find dy/dx if we had t0,"" the professor said, **using the pow-
er rule, the chain rule, and the product rule.”



134 CALCULUS THE EASY WAY

“But it will be a lot easier like this,"” Recordis said. *'Look what hap-
pens if we take the logarithm of both sides.™
(x = x + 3P + 4)%]v2
(x4 x4+ 20 x ~3)
Using the properties of logarithms that we knew, Recordis was able to
simplify this expression quite a bit.
Iny = Hin[(x - Dix + 3%x + 4] = In [(x + I{x + 2Hx - 3)]}

Iny =1In

=4[In(x = 1)+ 2In(x + 3) + 3n(x + 4) — Infx + 1)
= In{x + 2) = In{x - 3)]

Now we applied d/dx 10 both sides:
Ly 22 fingx = 1)+ 2lntc +3) + 31ntx +4) = Inx + 1)
—In{x + 2) — In{x — 3)]
2 3 1 1 1 )

=1
2(1—1 x+3 x+4 x+1 x+2 x-3

I||(x = I}x + 3)%x + 4P

1
2V G+ Dix+ 2x =3

1 2 3 1 1 _ 1
x(x—l+x+3+x+4 x+1 x+2 x—l)

*“That's still a complicated answer,” the professor said.

*Of course the answer is just as complicated as it would be by any other
method!"" Recordis retorted. **It is just that the method involved much
less work that we would have had if we had tried to find the answer by
brute force. We definitely will r ber this hod when we have to
differentiale complicated exp ions involving powers or prod Now
all I need is a logarithmic curve pool,” Recordis went on excitedly. ** Af-
ter all, that is the function we started with before Mongol inverted our

graph.”

& _
dx

y=Inx fromx=1ltox=35

*That will give us an expression for the area.”
5
J- Inxdx =
1

Suddenly he stopped short.

“We don't know how 1o integrate the logarithm function,”” Recordis
said slowly. His enthusiasm began to fade.

“Why did you decide to make a pool like that, anyway?"" the professor
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asked him. **What if the gremlin comes back and repeats his fire-and-
water threat, only we don't know the antiderivative function?”

We pondered for a long time, but we couldn’t think of & function that
would work.

**Maybe there isn’t any function that works,” Trigonometeris said.

“That's what we said last time.”” the king reminded him.

**But then we created a Mysterious Function to represent the area un-
der the 1ix function, and we were able to find some simple propertics.
Suppose we create a Mysterious Function for the area under a logarithm
curve, and it doesn't have any simple properties?” the professor asked.

“*We can have Builder make another pool and get a table of values,”
the king said.

*But that could go on forever!"" Recordis complained. **We'll make a
pool for the integral of the logarithm, and then we'll need a pool for the
integral of the integral of the logarithm and then a pool for the integral of
the integral of the integral . . .7

**I see your point,”’ the professor said. **We have developed rules that
allow us to differentiate any function. But we still haven't developed rules
that will allow us to integrate any function.”

*“That means we just need more integration methods.” the king stated
confidently.

“*But how do we know that we will always be able to find rules that
work? Suppose there are some functions that just don’t have any kind of
simple antiderivative. Then the only way we could integrate them would
be to build a pool and measure the area directly.”

“*Maybe there are lonely functions like that—functions that lack anti-
derivatives,” the king said. “But I'm sure a nice. simple function like
In x can’t be one of them.”

There was a long silence before the professor began to develop a care-
fully planned idea. She was anxious to prove that she was the one who
came up with the ideas when they really counted.

“*The only way to write an integration rule is to rewrite a differentiation
rule backwards,” she said slowly. **We did that for the power rule, and
we did approximately the same thing for the dtfferenlmunn chain rule
when we developed the hod of integration by ion. But .
we still have not developed an integral form for the differentiation pmduct
rule!”

Igor wrote down the rule:

diuv)  “dv du
R TR

“Remember what we said about differentials,” Recordis reminded her.

“*We can simplify both sides by multiplying them by dx.”

d(uv) = u dv + v du

135
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**Let’s integrate,” the professor said.
Jdiw)=fude+ [vdu
wv=[udv+[vdu
Judv=uv-[vdu

“‘How does that help?"" the king asked.

“*Why, u and v can be anything!" the professor said. **Once we define
u and v, we can rewrite any integral we want in this form!"'

“So what?"" Recordis asked. **We still haven’t gotten rid of the integral
sign! We still have to evaluate the integral [ v du.”

*But that i 1 might be simpler!" the profi said.

**But it might be more complicated!" Recordis retorted,

““Well, it might be simpler!"” the professor said.

“There is only one way to decide," the king interrupted. **If this meth-
od results in a simpler integral, then we Wwill use it. If it results in a more
complicated integral, then we won't.™*

We went back to our problem: [ In x dx.

“‘Let's try these definitions,” the professor said.

Letu = In x.
Let dv = dx.

“That's all right,”” Recordis said. **You're just changing the name of a
variable. But now you need to find du and v."

u=Inx

du = 9%

dv = dx
v=3x

We put these values into the profi £
ended up with a simpler integral:

Judv=uv—-Jfvdu
J'In:dx-{lnxlix)—.l'x%dx

=xlnx - [dx

“1t works!"" the professor said. **We did end up with a second integral
that is much simpler than the first. We have found a new integration
method!™

finxde=xlhx-x+C
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“‘Let’s differentiate this expression and make sure it works!"”" Recordis
urged, before the professor got carried away.

%u Inx = x + C) = 7 (had better be In x)

=4 — dx  dC
ax I -
—xdxlnx.lnxdx 140
=xi+1nx—l

X

d -— =
E[;Inx x+C)=Inx

"It does wl:rk!” Recordis said. **We can find the area of the pool now."
&
A= nrdi=ine-n ‘ =5IS-5-(llnl=1
1
1

= 4.047

““What should we call this method?™ Recordis asked.
““We’ll call it the method of integration by parts,” the king suggested.
**The whole idea is to break the integral up into two parts: u and dv,"”

METHOD OF INTEGRATION BY PARTS

When an integral defies any other means of solution, split it into two parts:
call one part &, and the other part dv (which must include the differential—
the d-variable term). Then differentiate u to obtain du, and integrate dv to
get v. Then use the formula:

Judv=uv—[vdu

If [ v du looks simpler than the original integral (/ # dv), you are making
progress and can proceed to a solution. If the integral J v du looks more
complicated than the original integral, you are probably hopelessly lost and
should either (a) choose new values for 4 and dv, (b) try another method, or
(c) give up.

**Let’s try a weird integral and see whether we can do it,”" the professor
said. “‘How about [ x sin x dx?"

“*You don't want to do that!"* Recordis objected. **That first x is a vari-
able, rather than a constant, so you can't move it outside the integral

sign.””
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We tried integration by parts:
[ asin x dx
Let w = x sin x.
Let dv = dx.

Then: du = (x cos x + sin x) dx

and: v = x

Judv =uv = [ vdu
Jxsinx dr = (xsinx)x) — f(x}xcos x + sin x) dx

“That did not help!"" Recordis said. **The new integral we came up with
is nor simpler than the original integral!™

The professor was stumped, but the king suggested, ‘Let's redefine «
and dv.”

Letw = x.
Let dv = sin x dx.
Then: du = dx
and: v = —cos x
Putting that into the formula, we found that:
Jxsinx dr = (x)-cosx)— f{—cos x)dx
=-—xcosx+sinx+C

“That's the answer!” the king excla:med. We wm usaly able to daﬂ‘em—
entiate this result to prove that the my d of i by
parts had indeed produced the correct answer. (Sec exercise 20)

*1 was wondering when we would come across a last-resort method like
this."”” Recordis said. "I bet we can integrate almost anything!"

“Don’t be so hasty!" the professor warned, afraid that the gremlin
might be spying. Still, we were all in a happy mood as this time we were
able to put the glass plate of the logarithm function safely into the ar-
chives. where it would stand as a monument to the progress we had made.

Note to Chapter 10

It turns out that the exponential function will always increase faster
than any polynomial function for large values of x. This holds true no mat-
ter how big an exponent you use; for example, for large enough x, ¢ is
even bigger than x'®0_ Siating this as a theorem. we have

!inl % =0 for any 4. no matter how large
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Many functions lack antiderivatives that can be expressed in terms of
elementary functions. The only way to integrate such a function is basi-
cally the same way in our country as it is in Carmorra. The method is
known as numerical integration. Of course, in our country we would use
a Vs rather than a pool to measure the area.

Exercises

Find dy/dx for:

1. y =%

2, y=e=

y= prrieh

4. y = (e

5 y=10

6. ¥ = ¢™ sinx

7.y =a="

8. y=Vix - a)lx = b

= x+ 1
R o

- x—5
0.y =T

1. y = EZTL.']"E g-hr-rtio?)

12, Use logarithmic implicit differentiation to verify the differentiation
power rule.

13. Use logarithmic implicit differentiation to verify the differentiation
product rule.

14. Use the definition of the derivative to show that (dfdx) e* = ¢*. Usea
fact that we found later:

+<,,+£+“.

- Lol
"J"I""'"'“i"'}‘! .

2!
Evaluate:
15, y = [ e"F dx
16. y = [ em* dx
17. y = [ xe®* dx

‘s‘y=,‘-rf:s‘i”

1.y =I!"I-£ dx

20. Find dyldx for y = sin x — x cos x to verify the integration result from
the chapter.
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21.
22,

23.

25,
26.
27,
28.
29.
30,
31
32.
a3,
34,
35,

Find the area of Recordis’ new exponential pool, which is bounded by
y=ef,y=0,x=0,and x = 3.

Find dy/dx for y = x*e~*. Find points where the curve has horizontal
tangents. Make a sketch of the curve.

The integral ¥ = [ sin x cos x dx may be evaluated three ways.
(a) Find y by using integration by parts. (b) Find ¥ by making the sub-
stitution & = sin x. (c) Find y by using a trigonometric identity to sim-
plify sin x cos x. Which method is easiest? Is the answer the same for
all three methods?

Find out how many bacteria there will be at time 7 in the gremlin's
bacteria dish (dn/dt = 3n; 1 = 0 when n = 10). (Remember that ¢ is
measured in hours.) How many bacteria will there be after 5 hours?
Solvefor y:y = [ x In x dx.

Verify the above result by differentiation.

Solve for y: ¥ = [ xe*® dx.

Verify the above result by differentiation.

Solve for y:y = J x** dx.

Verify the above result by differentiation.

Solve for y: ¥ = [ x* In x dx.

Solve for yoy = [ x V1 + x dx.

Solve for y: ¥ = [ x?sin x dx.

Use integration by parts twice to evaluate y = | ¢* cos x dx.

A reduction formula is a formula that tells how to express a compli-
cated integral in terms of an integral that is slightly simpler. Use inte-
gration by parts to derive the reduction formula:

y = [sin" x dx = —sin"Tlxcosx , om—1 J sin™~% x dr.
m m

Write a computer program reads in a value for m and then determines the
integral for sin™x, using the reduction formula given in exercise 35, (This
exercise requires familiarity with the programming technique called
recursion, and it cannot be easily done in BASIC. The answer section
contains a possible solution written in Pascal.)



““We should have a party!” Recordis said the next day. “‘Let’s do
something to celebrate our escape from the gremlin and all the other good
events that have happened lately. We can invite all the children.” The
king agreed, so we quickly began to make plans for flowers, ribbons, re-
freshments, and rides.

The only person not enjoying the preparations was Trigonometeris,
who was feeling left out again. I wanted to cheer him up, so [ suggested
that we join Recordis at the office of the Differentiation and Integration
Business to see whether anything interesting was happening.

Recordis was talking to the Royal Gard and National Park Superil
tendent. **We are planning flowers for the king's rose garden,” the gar-
dener was saying. ‘*We want to fill the garden with roses that will bloom
on the day of the party. The garden is shaped like an ellipse with length 20
units and width 10 units.”

“The king always did like cllipses,”” Recordis said. *'In this case it
looks as though the ellipse has a semimajor axis of a = 10 and a semi-
minor axis of b = 5.*"

“We need to know how many rose bushes will be required to fill the
garden,” the gardener said. **And in order to do that, we need to know the
area of the ellipse. Can you tell us what the area of the ellipse is7""

141
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“You came to the right place,” Recordis said, only this time he was not
as overconfident as he had been when he was visited by his neighbor,
Count Q. **We set up what we call a definite integral."” He riffled through
his notes to find the equation for an ellipse (which he had forgotten again).

EQUATION OF ELLIPSE WITH CENTER AT ORIGIN
Xt oyt

=l

(where 4 = semimajor axis, # = semiminor axis)

**We can solve for y in terms of x, using algebra,” Recordis said.

»oox
bt a?
)
erfr-2)
y = b VI =¥

We decided that we would first find the area of the quarter of the ellipse
where x and y are both positive, so we used the plus sign in front of the
sguare Toot.

y=b VT - xtla®

**Is that the answer?"" asked the gardener, who was getting 1mpm|em
“No," Recordis said. “*Now we set up the definite integral.™

L

{area of quarter-ellipse) = b f VI = x¥a® dx
»

(area of whole cllipse) = 4b J VT = 57at de
o

“*Now, if you'll excuse us, we'll be right back after we figure out how to
do the integral,” Recordis said, and before the gardener knew what was
happening Recordis had closed the business and was running through the
palace shouting, **Help!™

“Do you always have problems?"" the professor asked as we gathered
in the Main Conference Room a few minutes later.

**This time it's the king's garden that is causing the problem,"” Recordis
said. He had Igor display the integral thal we didn’t know how to do. **We
can't use the power rule, because we don’t have [ x* dx. And we can’t
substitute like this: Let w = 1 — x¥a® because then we would have du =
—2x dx/a®, and we don't have any way to turn dx into du (since we can’t
take that x outside the integral sign)."”
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"*We could solve it if we had an extra x outside the square root sign,"
the king said. **Suppose it was written as follows.™

z-ilbj.r 1 = x¥a? dx
n
“Then we could substitute."”

=2x dx

I
w=1-= du = =
a? at

**And,” he continued, **we could turn dx into du by doing this.”

e [ on ()3
c o [ ()

= =2hbat§ i1

4 4

= =2 pa0P2 = [ =2 pad(y¥
350{01 [ 3Itmr[l] j
4ba*

z e —
**Sure, that was easy,” the professor said. **But it doesn’t help us, be-
cause we have 46 | V1 — x%a® dx without an extra x."
o
**If only we could get rid of the square root sign!"* Recordis moaned, *'1
never did like square root signs anyway.”

We stared at the integral for a long time. *We need to make a substitu-
tion like this,” the professor said.

V1 - variable? = something simple

**Can anyone think of anything that we have ever done that looks like
that?"

**I can,” Trigonometeris said, suddenly becoming cheerful. **It's obvi-
ous. We have V1 —~ sin® 6 = cos 8.

“I don’t see any need to bring trigonometry into this!" Recordis ob-
jected.

“*Try this,” Trigonometeris said.

A=4bj\f'l = x¥a* dx
o

Let £ = sin 8.
a

Xx=asin@

dx = acos 8 d6

6= msin(ﬁ)
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““What's an arcsin?”” Recordis asked. **1 remember the name, but I for-
get what it is.””

“It’s the inverse function for the sine function,” Trigonometeris said.
'In just the same way, the exponential function is the inverse function for
the logarithm function. This is what we said.”

If @ = sin b, then b = arcsin a.

“That means that sin{arcsin @) = a for any a (provided that — 1 = a = 1)."

“*What happens when you put that into the integral?" the king asked.
We made the change in the three places where we knew we had to: the in-
tegrand, the two limits of integration, and the differential dx term.

arceinia i}
A=4b V1 = sin® 8 a cos 8 do
mrcain(0e
**And we know what V1 - sin* #is,” Trigonomelteris said.
“We do?"" Recordis asked.
*It's cos 81" Trigonometeris answered. “"That's what [ just told you!"
“*Maybe you had better review the list of trigonometric identities, just
1o make sure Recordis remembers them all,”” the professor said, trying to
concenl the fact that she couldn't remember them all either.
Trigonometeris pulled a page from his book and displayed the following
identities:

TRIGONOMETRIC IDENTITIES (TRUE FOR ALL A, B)
sin* A +costd =1

sin* A = (] = cos 24)

cos? A = {1 + cos 24)

sinf—

cos(—=A) = cos A

lan A
cin A
sec A
csc A

I+ tan* A = sect A
F+ein? A =cse® A

sin{A
cos(A
tan{ A

sin 24 = 2sin A cos A
cos 24 =cos’A-sinfA =1-2sin"fA=2cos'A-1
tan 24 = 2 tan A/(1 —1an®* A)

A)=-sinA

= sin A/cos A
= ltan A
= licos A
= l/sin A

+ B)=sin A cos B +cos Asin B
+ B)=cos Acos B—sinAsinB
+ B)=(tan A + tan B)(l — tan A tan B)

(There is a longer list of trig ic fi las in appendix 2 at the
back of the book.)
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We used the identity in the integral:

i
A = 4ba I Veos? fcos 6 46
a

**Now we can get rid of the square root sign,”” Recordis said, with sud-
den excitement. ‘““Maybe this is a good method after all.”

A = 4ab I'ncos' 6 46
o
“‘How do we do that?"" the king asked.

**Use another identity,” the professor said.
cos® 0= §1 + cos 26)

il
A =4abf 1 + cos 26) d8
L]

it =2
= 2ab J- d8 + 2ab J- cos 28 d@
L] L

=2 w2
- ZabﬁL +2abysin2g |
L]
= abm — 2ab x 0 + ab(sin = — sin 0)
A = wab

“That's a pretty simple answer,”" Recordis said.

*'It makes sense,”" Trigonometeris told him. *'If you have a rectangle
(Figure 11=1), its area is 4ab. 1t stands to reason that the inscribed ellipse
would have an area of about 3ab."”

a
—

Figore 11-1.

**The formula also works for a circle,” the professor pointed out. **We
said that a circle is the same as an ellipse with @ = b. In that case the area
would be wa?, where a is the radius. We already know that that's the cor-
rect answer for the area of a circle.”
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We easily found the area of the rose garden:

A = (3.14)10)5) = 157

**“We'll call this method the method of integration by trigonometric sub-
stitution.” Everyone pr d that Tri is was ing the
method after himself, but I couldn’t think of any better name.

*Is the method very generally applicable?"” the king asked.

*“I'm sure it is,”” Trigonometeris answered. ‘1 can think of lots of inte-
grals where you would use it.”

“Name one,” Recordis challenged.

Trigonometeris gave us the first complicated integral that came into his
head:

2= J(a® + BAxY)IR dx

“*How can you do that?”’ Recordis asked. **It’s an indefinite, rather
than a definite. integral. so you can’t change the bounds after you make
the substitution.”

**We can do the same thing,"” Trigonometeris told him. ** At the end we
will have to substitute backwards and write x in terms of 8. Trigonome-
teris thought that the key identity was tan® @ + | = sec? 8. So we made the
substitution bxfa = tan 6:

z = [(a*+ btV dx

1
- —_— dx
afm
_lj B N
Cad VT Fante

Now we need to write dx in terms of 6
_atan@
b

The derivative of tan @is sec’ 8. (See chapter 5.)

dx-%scc'ﬂdﬂ
[ _1 a
z—a‘[mbscc’ﬂdﬂ
=1
—bfsecsds

*“That is a lot simpler,”” Recordis admitted. **We don’t know how to in-
tegrate the secant function, though.” Trigonometeris spent a long time
trying to figure that one out, Nothing he tried worked. Finally he said,
“I'll have the answer tomorrow, [ pmmise "

“1 don't suppose the hod of trig ric sul ion is much
good for any other type of integral,” Recnrdu needled Trigonometeris.
“Tt surely didn’t help much for that one.”
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**It will help if you have an expression like (1 + x? raised to a negative
power,"" Trigonometeris retorted defensively. He was deeply embar-
rassed that he had been stuck with an inteeral of one of his own functions
that he could not do. **Suppose you had (1 + x%'. If you had (1 + x%)
raised to a power that is a positive integer, you could multiply out the re-
sult quite easily: (1 + X3 = | + 2x* + ¥V

**Let's try the other one you mentioned,"” the professor said.

_ 1
= I 1+ 52 dx
We decided to use the secant-tangent identity again, s0 we made the

substitution:
Let x = tan 6.

@ = arctan x
dx = sec? § 40
P (N
z I T+ a5 5 6 dé
- 1
e E=r] sec? 8 40
=[de
“That's a perfect integral!” the professor exclaimed.
1=8
*“We have to substitute back in for 8,"" Recordis said.
1 -
jmdx—am:an:-ﬁc

*“That integi into a dard fi
prise.
“*But if that's the case, then we can do this,” the professor said.

d[mtanx)=£f LIPS |
dx de J 1+ xt 1+t

the king pointed out in sur-

Trig i5 was st d. “This equation tells us how to differenti-
ate the arctangent function,” he said slowly. **How could I have forgotten
to look for the derivatives of the inverse functions when we looked for the
derivatives of the other trigonometric functions?” He kicked himsell
(rather hard). **They were right under my nose. How could [ have over-
locked them?™

We decided to find the derivatives of the other inverse trigonometric
functions. After a couple of guesses that didn't work, we tried to evaluate

the integral:

Z=IVII—.t’dx
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We realized that this type of integral called for the sine-cosine identity:
Let x = sin 6.
8 = arcsin x
dx = cos @ d6
= f I\/‘-——]sinr;?cos o da
~ [ cos @ dé
cos @
=[de
=8
z = arcsin x
1
VI =

““That even fits," the king said. “'Remember that arcsin x is defined
only for =1 = x = 1, which are the same values of x where (1 — x%)~1% s
defined.”

“The derivative of ¥y = arccos x should be just the negative of the de-
rivative of y = arcsin x,"" Recordis guessed. We were able to establish
that

d arcsin x

darccos x _ _ |

dx VI-

As Recordis started to make a list of the integrals we had done, Trigo-
nometeris got up to leave the room. *"Not so fast,”” Recordis said. *'Re-
member that you still have to tell us how to integrate the secant function.
We'll be waiting for vour answer tomorrow.”

SUMMARY OF INTEGRATION BY TRIGONOMETRIC
SUBSTITUTION

The method of rigonometric substitution can be used to evaluate certain integrals
that involve expressions such as Via * x? or li{a = x?). These substitutions make
it possible to simplify the integral by taking ad ge of one of these trig-
onometric identities:
sin?6 + cos?f = 1
tan?d + 1 = sec?ft
Here are two specific results:

j;dx=amanx+c
1+ a2

f—-—l-—dx—ar:ﬁinx+f
V1 =2 )
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Mote to Chapter 11

When the functions arcsin x and arccos x are used, it is assumed that
the principal values are taken:
-m/2 < arcsin x S w2
O<arccosxsm
See Figure 11-2. The two functions are connected by the formula
arcsin x = ®f2 — arccos X

'_g___ ¥ = arcsin ¥

¥ = arccos x

Figure 11-2.
Exercises

Solve for y:
dx

L y= | =22
y a0+ x?

2_:’:[ dx
aVat -1

o= | -l
3oy I+e"d"
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L3
4. Evaluate: r Va?— bxtdx
o

5. Evaluate these two expressions: ¥, = [ x V1 — x? dx and
¥2 = x [ VI = x*dx. Compare the results.
6. Find the area of a circle of radius r.
7. One strip of pink roses will be planted at the tip of the rose garden
(Figure 11-3}. Find the arca of the strip of pink roses.
a

——t—
ajl

—A

£

Figure 11-3.
8. Evaluate this indefinite integral: z = 4b [ V1 — x¥a® dx. (This is the
same as the ellipse arca integral.) Verify the result by differentiation.
Solve for y:

9 yv= dx

1
(xfa)®+ 1

I N
10. 'U_J-.\"-i'a’dx

S [

S [ E— =
2.y J’x'+4x+lldx (Letu=x+2)

[ S R -
13, ¥ ,[x‘+2bx+rd'r (Letu = x + b. Assume that c > b.)

- 1
1. y_.,-x'+.:+sdx
15. Solve for [ V1 — x® dx using (a) x = sin @ and (b) x = cos 8. Do the
two results agree? Which method is easier?
16. Evaluate y = [ arcsin x dx. Verify the result by differentiation.
17. Evaluate y = [ arclan x dx. Verify the result by differentiation.



Integration

by

Partial
Fractions

“'I'd like to see how Trigonometeris weasels his way out of this one,"
Recordis said when we met the next moming. Trigonometeris had not
joined us yet. **Maybe there isn't any way to integrate the secant func-
tion. In my opinion, once you've introduced trigonometry to a situation
you've created worse problems than you've solved.™

The professor wanted to make a summary of all the integration tech-
niques we had developed. She said that we had finished with all the theory
that we needed to know for calculus and that all that remained were the
menial bookkeeping tasks ing that Recordis would have to do the
rest of the work). Recordis etched our results on a large plate so that we
could have them permanently.

f.t'd.t’=;—_1_—-i_r""+c (n=—1)
=In|x| +C (n=-1
£ f(u) 9 dx = f f(u) du

[sinxdr=-cosx+ C
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Jeosxdr=sinx+ C
Jtan x dx = In |sec x | + C (see exercise 9-21)
flnxdei=xlhx-x+C

Jefde=e"+ C
**We can add what we did yesterday,'’ Recordis said. **We discovered
what to do with a quadratic term in the d i of an integrand.”’ He
etched on the plate:

1 g

I 1+ x* dr =

A g =1

I 1= x? dr=?

He flipped through his notes to find the answer. *This is easy," he said.
1
I T dx = arctan x + C

Suddenly he turned pale. He stood in front of the last integral that he
had written so that we couldn’t see it. **That’s all we need to do for now,"*
he said.

“‘Wait a minute,” the professor objected. **What about that last one?
The one with f(1 — x9)~t dx?"

**What last one?"’ Recordis said, turning around. **Oh, that last one. It
looks as though we didn’t do it yesterday, so I think we should forget it."

**But you already wrote it on the plate, so we can’t erase it,” the king
said. **We should try to find out what it is. Let’s try this substitution: x =
sin 8, dx = cos 6 48.”"

“I'm warning you: this is only going to cause trouble,” Recordis mut-
tered.

1 - 1
[z [ r=tgemode
— | cos@

Icos’&ds

= 1
J.cossds

*'Oh no!"" Recordis moaned.
1
f o dr = [ sec 8 46

““That's exactly what we're trying to find the answer for," the professor
said. *'I hope Trigonometeris gets here soon with that answer.”

1 bet there is no answer, and that's why Trigonometeris isn't here
yet,” Recordis said. **There must be a way to do this integral without trig-
onometry. For one thing, we can factor the denominator, since it is the
difference of two squares.™
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[P e ®

**Does that help?" the king asked.

We were trying to figure out what to do with that integral when Builder
came in, carrying two bottles of liquids.

**Maybe you can help me,”" he said. ““I'm working on the fireworks for
the party. Your work on figuring out the speed of things might help. I have
10 grams of this red juice (call it x) and 9 grams of this yellow juice (call it
¥). If you mix them her, they form her liquid, called z. It takes
exactly 3 grams of x to combine with exactly 2 grams of y to produce ex-
actly 5 grams of z. When there is more x and y available, the reaction goes
faster; but when there is more z around, the reaction goes slower. In fact,
the speed of the reaction is proportional to the product of the amounts of
x and y and inversely proportional to the amount of z.”"

dz _ %y
dr z

**Can you figure out how much z will have been produced at a particu-
lar time after I start mixing them together?™

“We'll at least set up the integral.”” the professor said. We realized that
we would have to figure out the amounts of x and y that would be present
at a given time, and it was clear that the amounts would be equal 1o the
starting amounts (10 and 9, respectively) minus the that had gone
into the formation of the z:

x=10- 0.6z
y=9-04z

Putting these expressions into Builder’s rate equation, we were able to
set up the integral:
dz _ ay

dt z
o (10— 0.62)9 - 0.42)
z

=060 — 040 ©= ¢

= j S 2
(10 — 0.62)(9 — 0.4z)

**We can't do that one cither,” the professor said, **That's basically the
same as the other problem we're stuck on. We have two factors in the de-
nominator of a fraction.”™

I EE——
I[l—xl[l+:)dx )

“‘We need a new method to tell us what to do when we have a bunch of

factors in the denominator like that,” the king stated. If only we had a
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bunch of fractions added together, instead of one giant fraction!"

“It's so easy to take a bunch of fractions that are added together and
turn them into one giant fraction,” Recordis moaned. *'It’s too bad you
can’t do it the other way.™

“‘What did you say was easy?"" the professor asked.

**Adding a bunch of fractions together,’" Recordis said. **Suppose you
had this."

1 1
+
x—a x-=-b

y =
**You can easily add these together and turn them into one giant frac-
tion. All you need to do is find the common denominator.™

_x=-b+x-a
T(x-a¥x-b)
_2x-(b+a)

(x —a)x—b)

“It's too bad you can’t do that procedure backwards,”” Recordis said.
**Then you could start with a fraction having a bunch of factors in the de-
nominator and turn it into a sum of fractions.”

“*Why can't you do it backwards?"* the professor asked.

Recordis didn’t say anything for a while. “'I thought there was a reason
why you couldn’t do it backwards,"”" he finally said.

**An equation must work in both directions,” the king pointed out. "It
may be a little more tricky to start with a single fraction and end up witha
sum of fraclions, but we should be able to do it. Take, for example, Build-
er's problem."

[ S—
(10 = 0.6z)(9 — 0.42)

**That expression must be the sum of two partial fractions, one with de-
nominator (10 — 0.6z) and one with denominator (9 — 0.4z2).”
"'We don’t know what the numerators are, though,” Recordis said.
We decided to call the numerators A and B while we tried to solve for
them.
z A, B
(10-0.6209-04z) 10-0.6z 9-04z

**We don’t know what z is,"" Recordis remarked.

**But this equation must hold for all values of z,"" the king said.
“That means we call it an identity,” the professor stated.

We found the common denominator for the right-hand side:

H - A(9-04z) + B(10 - 0.62)
(10 = 0.6z)(9 - 0.4z) (10 = 0.6z )9 — 0.4z)
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““Since these two fractions are equal, their numerators must be equal,™
Recordis said.

2=A(9-0.47) + B(10-0.62)
z+0=94-0.4Az + 108 - 0.68z
(1%2)+0=(-044 - 0.68)z + (94 + 108B)

“‘Mow what?"’ Recordis asked.

**Since this equation must hold for all values of z, the coefficient of z on
the left-hand side (which is 1) must equal the coefficient of z on the right-
hand side, and the constant term on the left-hand side (which is 0) must
equal the constant term on the right-hand side.” (You can easily verify
that, if these two conditions are not met, you can find a value of z such
that the equation will not hold.)

coefficients of z:

| = —-0.44 - 0.68
constant terms:

0 =094 + 108

““That’s easy,” Recordis said. **That’s just two equations in two un-
knowns.""

94 = -10B

= =10
.4-98

1= —(u.an(‘T'"]B — 0.6B

-4p _3
58 - 3B

(i)

e . R
B==J 6.4

A= [-‘319](—5,4; =71

*‘So that means . . ."

z __ 71 __64
(10 = 0.62)9 - 0.4z) 10-062 9-04z
Recordis was still skeptical, so he double-checked to make sure that the

expression on the right did indeed equal the expression on the left. (See
exercise 12-6.)

“Now it's easy!"" Recordis said. ““We can break the original integral
into two integrals.”
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”Iim’.‘ﬁ{i)w_—md" ”dz Ig 0.4z
=7.1£(10 - 0.62)" dz — 6.4 f (9 — 0.42)"! dz
= (=7.1)(0.6) In| 10 — 0.6z| + (6.4)(0.4) In|9 - 0.4z| + €
= ~In|10 - 0.6z|** + In]9 - 0.4z|** + C

(9 - 0.4z

e T e

+ C

Using the initial condition (¢ = 0 when z = 0) gives:

gl.‘
0=ln{55+C
= |n 3027
=Injogss*t €
C = ~-In0.015
=4.2
The final answer became:
_ o (9 - 0.4z
=I5 =06 42
We realized that it would be pretty hard 10 solve
for z as an explicit function of 1, but Builder was _Table 12-1
satisfied when we constructed a table of values and z 1
a graph (Table 12-1 and Figure 12-1). 0 0.0
20 2 0.3
4 0.7
6 1.1
8 1.7
10 2.4
15 2 35
14 54
16 10.6

=]

-
E]
=
g
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“We must think of a name for this method,” Recordis said.

“The key seems to be to break the fraction into a sum of partial frac-
tions,” the king offered.

“Let’s call it the method of partial fractions,” the professor said.

“Now we can solve this other integral,” Recordis said.

1
J’[!—x)[l-i-x)dr
*“There are two factors in the denominator, so that means that there
should be two partial fracti with d i s{l = x}and (1 + x).”
1 A , B
(I=x)Xl+x) 1-x 1+x

Now it was just a matter of algebra to solve for A and B:

1 __AU+x) __BU-x)
(I=x}1+x) (I—x}l+x) (1=x)l+x)
1 _All+x)+ B(l -x)

(I=-x)}1+x) ~ (I-xX1+x)
Setting the numerators equal gave us:

1=A+Ax+B-Bx
Oxx)+1=(A-B)x+(A+B)

Since the equation must hold for every value of x, we could form two
equations:
coefficients of x:

0=A-8
constant terms:
Il=A+8B

These two equations imply:
A=B

1=A+4
=124
A=t
B=1}
“*Now we can do the integral easily,”” Recordis said.

1 - 1
f(l-—x](l+x} dv = ,”m-xa T
=—tn|l-x|+im|t+x|+C

] dr

L -
fﬁid" thn +C

14+ x
1-x




INTEGRATION BY PARTIAL FRACTIONS

**We must make a general plan for the method of partial fractions,” the
professor said. **This method will help whenever we have two polynomi-
als in a fraction, such as N (x)/D(x). Here N stands for numerator and D
stands for denominator. If we want to, we can say that the degree of N(x)
is less than the degree of D(x). That's what we used to call a proper ra-
tional function.”

““Why can we say that?"" Trigonometeris asked.

**If there was a higher power of x in the numerator than in the denomi-
nator, we could use algebraic division to express the fraction as the sum
of a polynomial and a proper fraction,” the profi 1. "1 al-
ways thought it was fascinating the way algebraic division worked."

“It is fascinating the way algebraic division works, but it is a lor of
work,"" Recordis said. " Anyway, we know that we can factor D(x)intoa
bunch of linear factors. Then we know that each of those linear factors
will be in the denominator of one of the partial fractions.”

**Are you sure you can factor every polynomial into linear factors?" the
king said. 'l thought . . .""

**Yes, you can factor anything,”” Recordis said. *"Take my word for it

Except . . ."" Recordis suddenly began to shiver, and then he trembled
iolently. “*No t those bers!" he d, and he fell to
the floor.
The king rushed to his assi **What | 1 to him?"

We were all puzzled, until the professor realized what had happened.
**Recordis gets like this whenever he sees an imaginary number, such as
i = V=1. You can factor any polynomial into linear factors, but some of
the factors may contain terms that are not real numbers. For example,
(at+ ) =(x - VoDix + VD) = (x - iz + .

*‘We can't lose Recordis like this!™ the king said. **We must find some
way to avoid imaginary numbers.”

159
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coefficients of x
3i=A+B
coefficients of x:
1=2A-B+C
constant terms:
S=24-C
A bit of substitution made it possible to solve this three-equation, three-

unknown system:
B=3-4

C=24A-5

2=2A-(3-A)+ (24 - 5)
=24A-34+A+24-5
=54-8

10 =54

A =12

B=1

C=-=1

The result became:

I+ 2 +5 2 =1
(x=1x*+2x+2) x-1 x'+2.r+2

= 2 x—1
y_.[x—ldx+jx'+zx+ldx

= — _x=1
= 2infx -1 +J’x'+2:+2

“[ hate to disillusion you." Recordis said, “*but we still don't know how
to do that last integral.””

“lhatettwaxpmstonx‘+2x+2." Recordis moaned. “At least I hate
having it in the d in an integral. If only there was some kind
of substitution that would get rid of the 2x term. Then it would fit in bet-
ter with the kind of integrals we have been doing lately.”

“Let’s consider the general case where we have an expression of the
form ax® + bx + ¢, where a, b, and ¢ are given,” the king suggesied.
“Recordis has the right idea—there must be some substitution that will
help.”

‘We tried the substitution u = x + k, or x = u — k. We realized this sub-
stitution had the huge advantage that dx = du (making it easier to use this
substitution in an integral). Putting x = u— k into ax® + bx + ¢ gave us:

au—ky¥+blu-k)+c=a@ -2uk+ )+ bu-k)+c¢
= au’ = 2auk + ak® + bu — bk + ¢
=au’ +(-2ak + bu+ak’-bk+c
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“If only we could choose the value of k," Recordis said. “Then let k =
#/2a, and the term involving u disappears.”

“We can choose k! the king said. He issued the proclamation:

When the expression ax® + bx + ¢ appears in an integral, it can be sim-
plificd with the substitution x = u — b/2a, which gives us the expression:

B b B, _4a'w’ +(dac-b’)
——— ——eE————
g e - 12

The new expression is easier to deal with, since it does not contain a
term involving u to the first power.

For our expression (x* + 2x + 2), we made the substitution x = u — 2/2
=u=-1.

x =1 - u—=2
j;uz”z"‘ j[u—l}'+2(n—l)+2d“
= =2
f 2u+1+2u—2+2d

| u=2
Iu’-‘-ldﬂ

Trigonometeris, in turn, realized that a trigonometric substitution
would help for this integral: Let & = tan 8, du = sec? 8 9.

x=1 _ [ (tan 6 ~ 2) sec* 8
fx’+2x+2d‘_.‘- e
(tan 8 — 2) sec* 8
(]
.[ T sect® d

= [(tan & — 2) d8
[ B -
I e Injsec 8| — 28+ €
We had performed two substitutions in evaluating this integral: first we

had substituted # for x. and then we had substituted # for u. That meant
that we had to make two reverse substitutions to get our answer back in

terms of 1
f A=l ge=In VI + tant 8- 28
Ar2+2
=1In VI + u® - 2arctan &
= }n|[l + (x + D?| - 2arctan(x + 1)
=§In[1 + (x* + 2x + 1)} = 2arctan(x + 1)
Lox= b = 249 -
_[x'+2x+2d‘ Hinlx? + 2x + 2] = 2arctan({x + 1)

After doing all this work, we stifl had to write the final answer to the original
integral.
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“How do we find sec 87"
“We'll set up a triangle to find sec 8 (Figure 12-2)," Trig said.
tan 8 = (opposite side) _ bx

- (opposite side) _ s
Ny (apeentaice) 2 -
ma.mm=(l+_a§_)

(adjacent side)
= fla® + BPx?)- V2 dx

(1+28)" b

bxfa

1
Figure 12-2,

+C

1
bin

EVALUATING INTEGRALS BY PARTIAL FRACTIONS

The method of partial fractions is useful when the integrand contains a ra-
tional function, that is, a fraction with a polynomial in the numerator of de-
gree less than the degree of the polynomial in the denominator:

j X" + @y b ay ™ e o +oag dr

bt 4 by 1 b, ax T b e byx o+ by

‘The goal of the method is to break the integrand into a sum of fractions that
are much simpler. The first step is to factor the denominator. The result will
be a product of some linear factors and some quadratic factors. All the num-
bers that result will be real, but there is no guarantee that they will be ration-
al. (Of course, if the denominator comes to you already factored, you will be
saved a for of work.) The integrand can then be resolved as a sum of partial
fractions as follows:

1. If a linear factor (such as ax +.b) occurs once in the denominator, then
there will be a partial fraction of the form A f{ax + b).

2. If the linear factor (ax + B)occurs k times in the denominator, then there
are k partial fractions of the form A lax + b), Adlax + )%, . . .,
Apflax + b)F.

3. If a quadratic factor (such as ax* + bx + ¢ ) occurs once in the denomina-
tor, then there is a partial fraction of the form (Ax + B)M(ax® + bx + ¢)
(Note that (b* — 4ac) is negative in this case. Otherwise, the guadratic
factor can be broken into a product of two linear factors.)

4. If the quadratic factor (ax? + bx + ¢) occurs j times in the denominator,
then there are j partial fractions of the form (A .x + B }(ax* + bx + ¢),

(Agx + B)lax® + bx + ¢)*, . . (Ayx + B))l(ax? + bx + c ).

(mt << n)

The numerators of the partial fractions must be solved for next. Once the in-
tegrand has been broken up into partial fractions, each integral can be solved
individually. The integrals with linear denominators can be solved with loga-
rithms, and the integrals with quadratic denominators can be solved with
trigonometric substitution, using the secant-tangent identity.
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All of us, especially Trigonometeris, were greatly relieved when we fi-
nally finished the work for that day. One result was that Recordis and
Trigonometeris realized they were very dependent on each other. After
that day Recordis was less likely to make snide remarks about trigonom-
etry, and Trigonometeris was less likely to belittle algebra.

The degree of a polynomial is the highest power that appears in the
polynomial. For example, (x + 1) is a first-degree polynomial, (x* + 2x +
3) is a second-degree polynomial, and (x* + 3x* + 4) is a third-degree
polynomial. A rational function is a fraction in which both the numerator
and denominator are polynomials. If the degree of the numerator is less
than the degree of the denominator, the rational function is called a prop-
er rational function. 1f the degree of the numerator is greater than the de-
gree of the denominator, the function is called an improper rational func-
tion. An improper rational function can always be writlen as the sum of a
polynomial plus a proper rational function. Note the analogy with real
numbers. A fraction nid is called a proper fraction if n < d, and an im-
proper fraction if n > d. An improper fraction can always be written as
the sum of an integer and a proper fraction. (For example, § can be written
as 1 + 1.) See a book on algebra for more information on polynomials.

Express each of these fractions as a sum of partial fractions:

1, —x+4 3, 3
(x=3Nx-2) (x+Hx - H
2x— 4 |-

Sl TR ) AETrE )
5 a4 x 4+
x4+ 3t 3x 4
Combine into single fractions:
71 64 I R
b 6-06z 9~ 04z T romtreE
2 x=1
8 x—l+:’+2x+2
Solve for y:
9 dy _ =7 10. dy _ x+ 9
Ydx (x—4x-3) Cdx o (dx 4+ SHx-=1)
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Exercises
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2. 2x' 4 Sx?+ 72+ Sx

25,

26.

27,

s+ 4

15 = 15x + 1
3

Sxt+ 4x?— Sx?—4x + |
A tAx —ox —dr+ ]

xt=-1

xt — x? — 33x? - 25x — 6l

xt—x—-12

28. Find a general formula for the integral

that D

MY S
ax*+ bx + ¢

Consider two cases: (a) #* — 4ac > 0. Define a new constant D so
= Vb* —dac. (b) b? ~ d4ac < 0. Let D = Vidac - b2,

Evaluate each of the following integrals. The result from exercise 28
will help. Another useful result, which can be found in a table of inte-

grals, is:

Ar + B

B - Ab I
ax‘+&x+cdx 2a]n|m¢+b\x+r. ( ) n'.t~'-'+bx+rdx
dx

. jx’+2x+2

. |-

3L

B
x4+
= =1
y_jx'—:+ld't
A N I
"'-J-.\"—l‘i'r
,..:I_r__dx
P
N .
2xt 4 2x
,=f_1_
I+ 5x + 1
g = —_—
Y fx‘-ld‘

1
y'fu—mﬂ+u“

-lx-ldx

dx

dx

dx



168 CALCULUS THE EASY WAY

39, Verify the formula from exercise 28 by differentiation.
40. Find a general formula for the integral:

1
PR [P R
ax + br + ¢ &
Assume thata < 0, and b? — 4ac >0, Hint: First perform a substitution to
eliminare the term involving x to the first power.

41. Find a general formula for the integral:

Z=J‘ﬁ&

Hint: Make the substitution x = a(l — cos 8).



HRRT with Integrals

Plans for the party were proceeding smoothly, but there were still a lot
of arrangements to be made. Every day Recordis or Builder came up with
a new problem to be solved. ““There are so many little things that need
doing,” Recordis kept saying.

The professor was working on her outline of calculus. She was con-
vinced that we were completely finished with the subject. The king,
though, was becoming uneasy. "*I'm sure there's something we're miss-
ing,” he said. **Definite integrals must be good for more than just finding
area,”

*‘No way!"" the professor said. **We know
that integrals are good for two things—
finding antiderivatives and finding arcas.”

At that moment Builder came into
the room in a very frustrated state of
mind. **I'm worried about Column
Mountain,”" he said. **That's the
mountain with the perfect

paraboloid shape at its top.”" 4 ‘
(See Figure 13-1.) / A
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"I ber what a paraboloid is," the profe said. "' You make one
by taking a regular two-dil ional parabola and ing it in three di-
mensions.""

“The top of the in is very ble,” Builder told us, “and
we're afraid that the children at the party will jump around so much that
the in could coll; So we've decided that we'll remove the dirt

from the top of the mountain. Before we start, I need to know the volume
of the dirt we have to remove.”

“It's too bad we can’t help you,” Recordis said. **Of course, if you
needed to know the area of something . . "

“*We should be able to do something,” the king protested, and he
started to call the others.

**No, we can't do anything,” Recordis said. ‘'] just flipped through all
my old tables. We don’t have any formula for the volume of a para-
boloid.™

Builder gave us the exact measurements of the mountain anyway. The
cross section of the in obeyed the relationship y = —¥x?, and we
needed to remove the dirt from y = 0to y = —100.

*I know how we can approximate the volume,” the king said. “Let's
start in the same way that we started to find the area under a curve. (See
chapter 8.) We can divide the mountain up into a series of little cylin-
ders.” (Figure 13-2.)

Figure 13-2.

(**If he wants to call them pancakes, that's what we’d better call them,""
Recordis whispered.)

“*Now all we need is the volume of each pancake,’” the professor said.

“That’s easy,” Recordis said. ""The volume of a pancake is as fol-
lows."




FINDING VOLUMES WITH INTEGRALS

““What about the limits of integration?"" Recordis asked.

““The limits must be in terms of ¥, since we are integrating along y,"" the
king said. *‘We need to set up the limits so that our pancakes will cover all
of the volume that we want.”

“Tt looks as though we start integrating where y = =100 and keep in-
tegrating until y = 0," the professor said. (See Figure 13-2.)

o
V= rrJ‘ x*dy
=100

“*Now we're stuck,” Recordis said. **We have the integrand written in
terms of x, but the d-variable term is in terms of y.""
Builder told him, I already told you that y = —ix%.""
We put that expression into the integral, and then we found everything
was quite straightforward:
xt= =2y
o
ver[
=100
L]
= (=2m)(4y?) |
—100
= =m0 = [ = w100y
= 10,0007

““That’s a lot of dirt,”” Builder whistled. *'T'Il take your word for it.”

“‘I don't take your word for it,”" Recordis disagreed. **1'm not sure that
this pancake method really works. Let’s try it for something that we know
the volume of already, such as a sphere of radius r.”

““We know that the volume of a sphere is (4/3)7r7,"" the king said.

The professor started to divide the sphere into pancakes. **Let’s find
the volume of one hemisphere first,” she suggested. **Then we can mul-
tiply by 2 to get the volume of the whole sphere.”” (Figure 13-3.)

Figure 13-3.

I suggested that we call the volume of a single pancake dV, to make it
easier to set up the integral [ dV = V. We decided 1o call the height of
cach pancake dy, because we would be integrating along v. Then the vol-
ume of each pancake would be dV = wx* dy. We set up the integral:

V=[dV=[mx*dy
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**Just what we wanted!" the professor said with relief. **If the volume
of a hemisphere is §r%, then the volume of a whole sphere is dzr."

**So this method does work!"" Recordis rejoiced. **I have a whole bunch
of party arrangements that I'm working on that this method could help
with."" He flipped to a page in one of his notebooks.

**Here is a good example. We designed special ice cream cones to give
to the children at the party. If we could figure out the volume of the cones,
then we would know how much ice cream we will need to get.””

The curved ice cream cones were formed by rotaling the curve x =
e — 1 about the y axis, from y = 0to y = h (Figure 13-4). (We used h to
stand for the height of the ice cream cones because Recordis had forgotten
what the height was.)

““We can use pancakes easily,”" the professor said. **We will be inte-
grating along y, fromy =00y = A.”

The volume of each pancake was given by:

dV = mxtdy
x=e& -1
dV = wfe¥ — 1) dy

LY
Vnﬁj(e”—le'*. 1) dv
0
L1
=1r(ie"—2¢"+y)]
W=
=mte® — 2" + h —§e+ 2°- 1)
V=mg(le?~2"+h+ 1

*1 have another problem we should be able to solve now,” the king
said. "*The gardener mentioned it to me. Remember Spike Rock, the rock
with the perfect conical top next to the rose garden (Figure 13-5)? I am
very much afraid that one of the children at the party could be hurt unless
we do something to cover up the spike. So Builder and 1 figured out how
to build a round point-cover out of clay to put on the spike. If we can fig-
ure out the volume of the point-cover, we will know how much clay we
need to buy."

It turned out that the point-cover was formed by taking the region
bounded by the two curves y = x and ¥ = x* and rotating that region
about the y axis (Figure 13-6). (Notice that we turned the point-cover up-
side down to make it a bit easier to figure out the volume.}

*I hate to disillusion you,” Recordis said, **but there is no way that we
can fit any pancakes into a shape like that."

“Do we have to use pancakes?'" the king asked. *'Maybe we could use
another shape.™
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*“That shouldn't be any problem,’ the professor told him. **Remember
that we are going to take the limit where the thickness of the shells goes to
zero."”

Next, we had to fit a representative cylindrical shell into the point-cover

(Figure 13-8).

¥
y:x’
y=x
dx
h=x—
1 2
4 n
t t
LY_J x
r=x
Figure 13-8.

“‘Now we need the radius of the shell and the height of the shell,” the
professor said, The radius turned out to be simply equal to the x coordi-
nate of the shell, and the height of the shell was equal to the distance be-
tween the two curves: h = x — x%,

“‘Now we have to put all this together into a sum,’ the king stated.

V:E 2rrh, Ax

Tal-
=ﬂ%‘21¢§l x,(x,—x7) Ax
=2r J:x(x—x’]dx

“That's an easy integral,"" Recordis said.
v-zwj"(;’-ﬁ)dx
=2r [}1"; —&x‘l;}
= 2m(} — )

-z
V=%
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*It's a good thing that we just i 1 the hod of cylindrical
shells,” Recordis said. ‘It will help with something else I need to do for
the party. We're giving out doughnuts to the children. I have been trying
to figure out what the volume of a doughnut is, so that I will know how
much doughnut mix I need to order.”

The doughnuts were formed by rotating the circle x* + y* = 1 about the
line x = 2 (Figure 13~9). (The geometric term for a doughnut-shaped fig-
ure is toroid.)

Igor drew a representative cylindrical shell in the doughnut. The next
problem was to figure out the height and radius of the shell. **The radius
must be (2 — x),"" the professor said.

¥ x=1

cylindrical shell d¥ = 2wrh dx

Figure 13-10.
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**The height must be 2y, the king added (Figure 13-10).
We set up the equation for the volume of the cylindrical shell:

dV = 2wrhdx
r=2-x
h=2
“We can solve for y,"" Recordis noted.
xt+yr= |

yim ] — x?
y=VI=H
dV =2m2 — x) 2V — x* drx

“Now we need to figure out the limits of integration,” the professor
said. **They must be in terms of x, since we are integrating along x." Af-
ter looking closely at the diagram, we decided that we could catch all of
the volume of the doughnut with our cylindrical shells if we integrated
fromx=-ltox=1.

V=Ilzm2—x}2\/l-x’d.t
=4«Jﬂ @-x)VI— 2 de
=4.1|'.|'II ZUI—x’dx—dﬂ'J’l V1 — x® dx
-~ -1

We made the substitution ¥ = | — x% du = —2x dx for the second inte-
gral, with the result:

1 a
v-s«f V']_—x’dx+21rf " du
=1 (]

““That second integral can't be right!"
Recordis exclaimed. **That’s equal to zero!"
After we had looked at the integral
for a while, the professor said,

*Of course it must be zero, Look at yax h_Z
a graph of the integrand (Figure 13-11). V4 ‘

Half of the graph is above the x axis, o its —:U 1

area is positive; but exactly half of the

graph is below the x axis, so its area

is negative. The two areas cancel out, so

the total value of the definite integral must be zero.”
“‘Anyway, we know that the volume of the

doughnut can’t be zero,” Recordis said. Figure 13-11.
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“It"s lucky for us that we still have the first integral to evaluate.”
Vv =81'rrltl — X} dx
We made the trigonomelric substitution x = sin @, dx = cos 0 49,
V=87 j“; cos* @ db

We had done the integral of cos® # before (see Chapter 11), so the final
answer for the volume turned out to be:

o)

= 4t

I have another problem related to the party,”” Builder said. **We want
to build a grandstand in one corner of the auditorium (Figure 13-12). The
height of the grandstand is i. The base of the grandstand is an isosceles
right triangle, with each side equal to s. I'm sure you can figure out the
volume under the grandstand.™

“We can?"’ Recordis asked. **That's not a figure of revolution, so it’s
not like anything else we've done. There is no way that you could fit either
pancakes or cylindrical shells into a pyramid like that. In fact, the only
shape that you could fit in there would be little triangles.’”

““That’s a good idea,” the professor said. “*We'll use little triangles.”™
(Figure 13-13.)

The volume of each little triangular segment was easy to figure out,
since it was just the area of the triangle times the thickness. **With a right
triangle it’s easy to find the area,” Recordis noted. **You just multiply to-
gether the two legs and divide by 2."" In our case the two legs were equal,
so we just needed to find one of the legs. We called x the length of one leg
for our representative triangle, and we called z the distance down from
the top of the pyramid-shaped grandstand (Figure 13-14).

side view of
grand stand

Figure 13-13. Figure 13-14,
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triangle relationship to establish that z/h = x/s.”

zs
xo=

h
We wrote down the volume of the differential triangular element:

dv = It dz =2'L}:,z’u’z

We integrated along z, from z =010z = h:

b gigd
V= L 2h7 dz

Since s and /i are constants, they slide
across the integral sign:

2
d T e
V_ﬁ"'-[f dz
2
5 0
=zl
_s:hl
Ten?
_s:h

6

“I never thought an integral could be so versatile,” Recordis said.
“This will be the best party ever, and we've made calculus do all the
work. Now I had some other problems that | think we might be able to
solve if | could only remember what they were . . .""
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Exercises

Q

13. 5

1, Find the volume of the solid formed by rotating the ellipse x¥a® +
y¥b* = 1 about the x axis.

2. The base of a solid is the region bounded by the parabola y = {x*and
the line ¥ = 2. Each plane section of the solid perpendicular to the ¥
axis is an equilateral triangle. Find the volume of the solid.

3. A paraboloid dish (cross section y = x*) is B units deep. It is filled with
water up to a height of 4 units. How much water must be added to the
dish to fill it completely?

4. Write the integral that represents the volume of the solid formed by
rolating the region bounded by y = fix), x =a,x = b, and y = 0
about (a) the x axis; (b) the line x = b; and (c) the line x = ¢, where
c>a,b.

5. Consider the solid formed by rotating the curve y = f(x)fromx = ato
x = b about the x axis, Let V{x) be the function whose value is the
volume of the solid between x = @ and x = x. (a) What is V(a)?
(b) For some small Ax, what is V{x + Ax) - V(x]" (c) Using the defi-

nition of the derivative, find the definite i 1 that the to-
tal volume of the solid. (Let F(x) be a functlon such that dF/dx =
wlf(x))*)

6. Find the volume of the top quarter of & sphere:
-
V= f wx? dy
riz

M

Find the volume of the sphere by integrating from y = —rtoy = r.

Compare the result with the one arrived at by taking twice the integral

fromy=0toy=r.

8. Find the volume of a pyramid with square base and sides that are equi-
lateral triangles.

9, Use pancakes to find the volume of the hole in the doughnut described in

the chapter.

10. One day Recordis made a mistake while making doughnuts. The dough-

nuts turned out exactly the same as the doughnuts described in the chapter
except that the hole was missing. Use pancakes to find the total volume of
one of these doughnuts.

11. Use the method of cylindrical shells to find the volume of a sphere.
12. Use the method of cylindrical shells to find the volume of the paraboloid

with cross section y = —Yu?, fromy = Otoy = =100,
ppose you have ¢ letely f¢ the value of 7. Write a computer
program that calculates the \.olume of a sphere of radius 1.
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how to figure out the length of a curve even if we do know its equation,™
Recordis pointed out,

**Builder, you should be able to figure out the shape of a hanging rib-
bon,"” the king said. Builder nodded hesitantly, as if he knew that it would
be a lot of work to find the equation of a hanging ribbon. **We should be
able to find the length of a curve,” the king went on. **We'll use what we
did yesterday. We'll make an approximation for the length of the curve in
terms of a sum, and then turn the sum into a definite integral.”

The professor was irritated because this meant we were not completely
done with calculus yet, and Recordis was irritated because it sounded as if
calculating lengths would be hard, but we all prudently agreed to the
king's plan anyway. Builder took some string and returned to his work-
room. The rest of us went into the Main Conference Room to set up a defi-
nite integral to represent the length of a curve.

**We don't know how to find the length of anything curved, except cir-
cles,” the professor said.

“Then we'll have to approximate the length of a curve in terms of
straight lines,” the king suggested. “We know the length of straight
lines.™

Igor drew a series of straight lines that approximately traced out the
curve (Figure 14-1).

We decided to call the length of each little line segment ds. It was clear
that the length of the whole curve (which we called §) was approximately
equal to the sum of all the litile lengths ds:

s:-l_Zld:.

'We can get the exact length by taking the limit as ds goes to zero,”” the
professor noted.

Figure 14-1.
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.
§ = lim 2 ds,
10 =1

“*And that, of course, is equal to the definite integral.”
5=[ds

“*We can't do very much with that integral when it is written in terms of
5,”" Recordis said. **For one thing, we don't know what the limits of inte-
gration are in terms of 5. We need to express the integral in terms of x."

Igor displayed a close-up version of one of the little segments oy (Fig-
ure 14-2).

“We can call the distance that ds goes up dy, and the distance that it
goes sideways dx,” the professor said. **That makes use of differential
notation.”

““We can use the Pythagorean theorem to express ds in terms of dx and
dy.” the king suggested.

dst = dx? + dy?
ds = Vde* + dy?

“‘Do we have to bring the Pythagorean theorem into this?"" Recordis
complained. '*Whenever you use that theorem, you end up with a square
root sign. Wouldn't it be easier to just make the approximation that, as ds
goes to zero, ds and dx are approximately equal? Then we could just inte-
grate dx to get the length of the curve.” Recordis’ method certainly
sounded simpler, until we realized that it would give the same result for
the lengths of all the curves in Figure 14-3. Sadly we went back to the
method that had the square root sign.

(length) = § = [ dy = [ Vi + dy?

¥ ¥
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5= J‘m VIFHeBm — 2+ e dr
—dn
{3

- Jd W1 +if|!h _i+.h,-ln| dx
—diz
[

- f' VIFTE T 15 50T ds

—dn

*If only we could get rid of the square root sign!"" Recordis said.
““We can,”" the professor assured him. **Watch this."”

Ir

5 -r e 4+ 2 4 7m0 dy
—di2

(67 + e™1)T = @¥H 4 ] 4 gTER

*
§= r WVi(e™™ + ™) dx
~diz

i1
atI (™ + e=Tm) dx
-t

i

= fae*"

- dge=Th

o
-2
lgetrna — lge-da — lge—dita 4 \gedla

azdm - ae =i

5

**And in our case d = 4 and a = 10, the professor said. We calculated
the length of our ribbons:

§ = (10)(e¥ — v
= 4.03

**That certainly looks about right,”* Recordis said. **We know that the
ribbons must be a little bit longer than 4, but they can’t be very much
longer than 4. I'm sure that this is a nice method, but I would feel more
comfortable if we used the method to find the length of something that we
already know, such as a circle.”

We all agreed to that plan. The professor was nervous, though. **After
we've come this far, it would be terrible to find that something we’ve done
in caleulus is inconsistent.™

We set up the equation of a circle:

x4yt = g2

Using implicit differentiation, we found dy/dx:
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dy
I A—'
2x + 2y dr ,
& _-x
dx ¥
dy\t _ §
) =3 S
* xl-ry:l:rl .
=t
ro /4
——— x
2
Figure 14-4.

We decided 1o call the length of an arc equal 10 one eighth of the cir-
cumference of the circle § (Figure 14-4).
Next we set up the integral for §:

rerivE
_ E,t 2)ve
s-_L [|+(dx)] dx
v
- f T =907 = 9] de
L%
= f Vir? = x? + )t ~ x%) dx

rive
=f VA= dx

S=r J.H“—-I--—- dx
““This is a trigonometric substitution integral,”” Trigonometeris said.
x=rsind
dx = rcos 0 d8

0= arcs{n(i]
r

We calculated the two limits of integration in terms of 8:
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" Builder said, although it was clear that he had a lot of
s as the date of the party approached. **First [ have to
know how much paint I need."”

*1t's a good thing he didn’t suggest that we should figure out how much
paint he needs,”” Recordis remarked, as he returned to ribbon-cutting.

**We should be able to,”" the king said. **We would have to calculate the
surface area of the outside of the paraboloid. Builder is so busy with all
the other arrangements that I think we should do this for him.”

“We don't know how to calculate surface areas!"" Recordis protested.
*I hope you aren’t about to suggest that we set up a sum that approxi-
mates the surface area, and then turn the sum into a definite integral!™

That was exactly what the king had in mind, so we all returned to the
Main Conference Room and had Igor draw a picture of a paraboloid (Fig-
ure 14-5).

“‘Now we need to fit some little shapes in there so we can set up a
sum,” the professor said.

frustum
dd = 2nr ds

Figure 14-5.
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R

9] poiat
Flgure 14-8,
Figure 14-7.
bvious that the balancing point (I call it the center of mass) must lie

along the center line of the semicircle, because the semicircle is sym-
metric about the center line. I don't know where to balance it along that
line, though.™

“How can we help?"' the professor asked, "I don't see how that has
any connection with what we have been doing.”

“We can use your work with discrete sums and continuous sums,”
Builder said. “'It’s easy to find the center of mass if you have a certain
number of metal bars strung out along a rod."” (Figure 14-9.)

m T myT4 msmg ™7 my my
Figure 14-9.

"It doesn't look very easy,” the king said. *‘Suppose each mass was
different, or suppose the bars weren't arranged symmetrically.”
“You find the center of mass by calculating a weighted average."

n

5 xumy

(position of center of mass) = x.m = "'T
“I use m to stand for the total mass of all the bars, and m; for the mass

of each individual bar."
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““That tells you where the semicircle balances?'" the professor asked,
puzzled. (The professor was not very skillful in dealing with practical mat-
1ers.)

“You bet it does,” Builder said.

**How can we figure out the com of the half-circle?”* Recordis asked.

““We can imagine that the circle is made up of a bunch of tiny bars,”
Builder said. (See Figure 14-10.) **That means that the center of mass is
approximately as follows.™

_ E Xim;

x =
eom m

Figure 14-10.
“I see!” the professor said suddenly. “*To get the exact center of mass

you take the limit as the number of bars goes to infinity and the mass of
each bar goes 1o zero!™

Am—0 m
“*We can write that as an integral!"" the king realized.
_Jxdm

X
eom m

“What's dm?"" Recordis asked.

““That must be dm = p dV, where p is the density of the plate and dV is
the volume of each little bar.””
_ [ xpdV
- m

Teon

“What's dV?" Recordis asked.

“That's just the volume of the little rectangular bar,” the king said. We
decided to call the thickness of each rectangular bar &k (which is also the
thickness of the semicircular plate). The length of each bar, we decided,
was 2y, and the width of each bar was dx (Figure 14-11). That made the
volume of each bar equal to dV = 2yh dx.

Iy
Yo = J‘ xphly dx
m

v

Flgure 14-11,
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Equations

Builder was making the final ar for the party. ‘1 just thought
of something,”" he said one day. **I have a few old parts in my workroom.
I could make them into a nice ride that the children would like. I've fig-
ured out the acceleration of the ride, and I'd like to know what its motion
looks like."

“*How do you know the acceleration?" the professor asked.

**Any object moves according to the equation F = ma, where F is the
force acting on the object, m is its mass, and a is the acceleration (a =
d*x/dt?). With my ride the force is given by F = —kx, and the mass of the
ride is m. So that makes the final equation of motion as follows."

m L

**Can you tell me what x is as a function of 7"

“‘We can't do that!"" Recordis said. **There’s no way to turn that into an
integral, and we can solve problems like that only if they're written as in-
tegrals.”

“If only the equation were d?x/dr? = —k1,"" the professor said. **Then
we could integrate the function of ¢ like this.”
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dr 1
o = [k di==2ki+C,

x=][-%kr‘+€',]df=—%kt’+c.r+(f;

“If only we had dx/dr = ~kx,"" the king pointed out. **Then we could
take the x over to the other side.”

dx

T = —kd

Inx= -kt +C
x = e-k+C

“We could call an equation with derivatives in it a differential equa-
tion,"" the professor said,

““No way!" Recordis objected. *“Take my word for it—as soon as we
start applying functions to derivatives, we are really going to be sunk.”

““We already know how to solve one type of differential equation,” the
king said helpfully.

dr _
E_‘ﬂ:)

**When we have an equation of that form, we know that the solution is
as follows.™

x=[fle) de

“*But that means that these differential equation things are worse than
integrals!"" Recordis said. *'You're telling me that first we have to solve
the differential equation and then we have to solve the integral. 1 didn't
think that anything could be harder than integrals.”

“*Recordis does have a point,” the professor agreed. **We had better
put some restrictions on the differential equations before we look for a
way to solve them. It looks to me as if it would be very difficult to solve an
equation if we are allowed to write an arbitrary function of lots of vari-
ables and their derivatives,”

**First, we had better say that we are considering only one dependent
variable (in this case x) and its derivative with respect to one independent
variable (in this case r),”" the king suggested. (A differential equation with
one dependent variable and its derivatives with respect to one indepen-
dent variable is known as an ordinary differential equation. If a differen-
tial equation involves derivatives with respect to more than one indepen-
dent variable, it is called a partial differential equation.)

*'We had better place some more restrictions,”" the professor said.
*Let's agree not to apply any functi to the derivatives,”” R
said. “We'll be in real trouble if we allow expressions like (d2x/dr)* or
(dPx/dr?)(dx/dr). While we're at it, let's make sure that we don't have any

a1,
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ential equation,”” the professor said.

LINEAR DIFFERENTIAL EQUATION (GENERAL FORM)
G+ o) G+ L) G+ 4 L0 B+ fox = £

Or it can be written in this form:
Tx=f(t) (where T is a differential operator)

“It would help if we did not have that f(r),” the king suggested. “Then
we would have an equation where each term contained either x or one of
its derivatives.”

1 suggested that we call this type of equation a homogeneous linear dif-
ferential equation.

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION
(GENERAL FORM)

GE+ e G+ fa G+ 0 B v fnx =0
Tx=0

“‘That still doesn’t look very encouraging,'* Recordis said. **But it does

look as if Builder's equation is lincar and homogencous.™
%,‘- I

We spent hours trying to solve lhls problem. Finally Trigonometeris
had an idea. **We could guess,” he said.

“We can't guess!"” Recordis told him sternly. **This is Ma:h. This is
Serious Business. We don’t have time for guessing games.’

“‘Where dld you get the pans that you are using to build this ride?"”

Trige 1s asked Build

Builder thought a I T ber,” he said. **I'm using the giant
spring that was originally part of the gr:mlin‘s oscillating chicken-scaring
machine."
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Chapter 7.) Builder gave us two initial conditions in this case, so I bet that
we need to put two arbitrary constanis into the solution.”
**We put one constant, A, in front of the sine function,” the professor
said. **Where could we put another one?"
**We could put another constant in the middle of the sine,” Trigonome-
teris suggested.
x = A sin(wr + B)

We tried this solution and found that we could use our two initial condi-
tions to solve for the two arbitrary constants:
1=AsinB
4= Awcos B
sin B
cos B

w

= B=—
fan 4
B= arcmn(%)

Now that we found B, we had to look for A.

|
A sin B

Since tan B = w/4, we could find sin B:
sing = —24
V1 o+ w42
We could simplify this expression to find:
V16 + w?
w

A=
Recordis summarized our result:
The solution to the differential equation:

d2x
Ziwn=0
P
with the initial conditions x = | and dx/dr = 4 when 1 = 0 can be found
from the formula:

x= (%W‘)sin [t + arctan(w/4)]

Builder was satisfied with this answer, so he left to begin work on the
ride.

E d by our we decided to look for more ways to solve
linear I 8 differential equati “*‘We can't guess all the time,”
the professor said.

Pr ) G4 L FE 4 S0+ fdx =0

*I know another restriction that would help a lot,”" Recordis offered.
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**We have all those functions of ¢ in the equation: f,_,(1), etc. It would be
much easier if we restricted each derivative to have a constant coefficient.
After all, the derivatives in Builder's equation had constant coefficients.'"

We added that restriction, and then had the general form for a linear
he diffe ial with ¢ coefficients:

d'x d"- d"ix d*x dx -

i e g+ Gaer e * gk € X 0

1 know a function that looks as thought it might fit!"” the king said.
**The exponential function!"

“Of course!™ the professor agreed. “'The indestructible exponential
function! We know that, if x = &, then d"x/dt* = x.""
We guessed that the solution to our equation might look like this:

x=¢g"
Then we established that:
e

We put that solution back into our equation:

Pe o G P G T ko™ g™ = 0
““We can factor out the ¢™,"" Recordis noted.

ET(P 4 O P Gy Tt et er el =0

“*And no matter what ¢ is, ¢ will never be zero,” the professor said.
*“That means that we can divide both sides by ™.

L i Y e R L R T ]

“‘That's just an algebra equation!"’ Recordis said with relief. **As much
as | like calculus, it is nice to see a regular old algebra equation. Now we
can solve for r. Of course,” he thought a minute more, *'it won’t be easy
to solve for r, but I'm sure we can do it somehow.™

**We could start by restricting our attention to an equation with only
two derivatives,” the professor said. “*That would simplify matters,"

We decided that we would call the order of a differential equation the
highest order derivative that appeared anywhere in the equation. For ex-
ample, dx/dt = * is a first-order equation, d*x/di* = —5x is a second-
order equation, and
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is an equation of order . Igor wrote down the general form for a second-
order linear homogeneous differential equation with constant coefficients:
d*x dx
TG tex=0
After making the test solution x = ", we found that r must satisfy this
equation:

rterde =0

At that moment Recordis began to tremble. Trigonometeris said,
““We're forgetting hing. Builder's equation was a d-order lin-
ear homogeneous differential equation with constant coefficients, but our
answer didn’t invelve an exponent at all. It involved a sine function.”

**Trigonometeris is right,”” the king said. **This is a mystery."

We realized that we could solve for the two values of r by using the
gquadratic formula:

Prter+o=10
T Vet = 4e
2
“Let’s hope that ¢;® = 4¢;,,” Recordis said. “Then we get two answers:
- [P R

-y = Vet = e
2

n=

Cmep N — Ay

ry = 3

**This way we won'l have to use any trigonometry, and we won't have

1o use any of those . . . those . . . you know, those numbers."’ Recordis
still couldn’t bring himself to ion the term *‘imaginary ber.”

**But we did get a trigonometric answer, rather than an exponential an-
swer, to Builder’s cquation,” the king said.

**Maybe trigonometric answers and exponential answers are really the
same,” the professor suggested.

**But there is a huge difference,”” the king said. **An exponential an-
swer gets bigger all the time, whereas a trigonometric answer just oscil-
lates back and forth. We must be able to figure out why we get different
kinds of answers,™

We looked at Builder’s equation again:

% + wlr =10

(Remember that «* = kim.)

We tried an exponential solution:

205
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x=g"

Putting that solution back in the differential equation:
Fe"+ are*=0
P+af=0

We could solve for r using the quadratic formula, with ¢; = 0 and
g = wh
0+ %0 - 4of
. 2
=+ YV -a?

r=iworr = —iw

X =e¢ory = g i

“No!" Recordis screamed, and fainted. Trigonometeris fanned him
absent-mindedly.

“But we can't use that answer, because we don't know what it means
when we take the exp ial of an imaginary ber,” the king said. We
were able to revive Recordis after we promised him that we would not use
any imaginary numbers. (After advancing a bit farther in calculus, we
found that it is possible to make a i definition for the exponential
of an imaginary number: & = cos @+ i sin 6.)

**We can use the imaginary root as a signal that it is time to use a trigo-
nometric answer,” the professor suggested. **It looks as though a purely
imaginary number will result only when we have an equation of this
form.”

1
B

“If cq is negative, then we want a function that is proportional to its
second derivative with the same sign as its second derivative. That means
we use an exponential function. If ¢, is positive, that means we need a
function that is proportional to its second derivative but has the opposite
sign as the second derivative. The one function that satisfies that condi-
tion is the function x = sin 1.""

**Actually there are two functions,”” Trigonometeris said. “*If x = cos 1,
then d*xfdt* = —x.” :

“*All right, we have two functions that work,"" the professor agreed.
“*The main thing is that we know we use a trigonometric answer.”

**We could use any function similar in form to this one,” the king said.

x = B,sinw! + B, cos w

“R ber that the compli i differential op is a linear opera-
tor, so that, if we have two functions, x, and x,, that satisfy the equation
(Tx, = 0 and Tx; = 0), we know that any linear combination of the two

functions will also be a solution.™
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The king guessed the following solution:
x = e~ % Asin (L66f + B)

x

x=eh,

3 3 soN !
- 2 ]
= lEnwr.

/| Figure 15-1.

**What does that function look like?"" Recordis asked. *'I never saw a
solution like that before."

Igor drew a graph of the curve x = ¢~ sin rw (Figure 15-1).

“‘That's right,”” the professor said. **The solution keeps going back and
forth, as a ride on a spring should, but the amplitude of each swing is be-
coming less. The friction acts to damp out the sine wave.”

*‘I could have told you that is what the motion of the ride would look
like before we developed all this math,” Builder said. **All you need is
some physical intuition."

**We could call that kind of curve a damped sine wave," Recordis sug-
gested. **But we better make sure that it is the right answer.”

We differentiated our trial solution and put it back into Builder's equa-
tion. The first derivative required the product rule:

x = ¢""M[A sin(1.661 + B)]

% = =% A 1,66 cos(1.66¢ + B) — 1.5¢"5" A sin(1.661 + B)

We expressed this answer in slightly simpler form:

% = (Ae™"*)(1.66 cos 6 — 1.5 sin 6)
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SECOND-ORDER LINEAR HOMOGENEOUS CONSTANT-
COEFFICIENT DIFFERENTIAL EQUATION SOLUTION METHOD
1. Make sure that the equation is ordinary (there is only one dependent
varjable and its derivatives with respect to only one independent vari-
able).
2. Make sure that the equation is second order, that is, no derivatives other
than first or second derivatives appear in the equation.
Make sure that the equation is linear, that is, it can be written in the
form:

-

dx
P f,{:] + fult)x = f(1)

. Make sure that the equation is homogeneous, that is, each term contains
an x or one of its derivatives, so it can be written in the form:

s

d,, + f.ul p Sdnx =
(Also, remember that in this chapter we have used x as the dependent
variable and ¢ as the independent variable!)

. Make sure that x and all its derivatives have constant coefficients:

A

d’x dx
P + ¢ a + g =0
6. Next, set up the characieristic equation:
Pt or+eo=10
7. Solve for r, using the quadratic formula:
_ =t Se = dc,
- 2
8. If r has two real values (r, and ry), set up an exponential solution:
x= Bt + Byt
9, If r has one real value (rg), set up a solution as follows:
x = Be™' + Byre'n’
(See exercise 14.)
10. If r has two purely imaginary values (iw and —iw), set up the trigono-
metric solution:
= B, sinwt + By cos w!
(or x = A sinfw? + B))
11. If r has two complex values (ry + iwand r, — iw), set up a solution as

follows:
x = ¢"' (B, sin wt + B, cos wi)

12. Inall of these cases the solution contains two arbitrary constants. If you
have two initial conditions, you can solve for the arbitrary constants and
complete the solution.




21 2 CALCULUS THE EASY WAY

**Solving differential equations is pretty plicated. but it may not be
as bad as I thought it would be,” Recordis said.

1 see that we have the solution,” Builder added, **but that selution
does not leave us with a very good ride. The children won't want a ride
that just swings back and forth for a little bit before it damps out and
stops. I'll put a driving motor on the ride so that it won't stop so quickly.™

Before we could protest, Builder had designed a driving motor that
would push the spring ride with a force equal to Fyyyne = D sin £)t, where
(1 is the driving angular frequency. (£} is the upper case form of the Greek letter
omega. )

“No!" Recordis cried. “Now we won't have a homogencous equation
any more! That driving force term does not have any x's in it.”

Builder gave us the equation for the driven ride:

Ex o dx = Dsi
‘m+bm+u'x D sin {1t

Again we used T 1o stand for the differential operator:

& d
F=—s+b—+wr
P dr
50 we could write the equation as:

Tx =D sin LU

““That's a second-order linear differential equation with constant coef-
fici but it’s not homog " the professor obj 1. **How are we
going to solve that?”
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(1)} D = Ccos Blw* — 1*) — b}C sin B
coefficients of cos (11
2) 0= CsinB(w® — 7)) + b{}Ccos B

We could find the conditions that 8 and C must satisfy for these two
equations to be correct. From equation (2) above:

0= (w®— (% sin B + b{lcos B
(' - oY) sin B=bNcos B

- b2
tan 8 =g
- .11}
B Bﬂ:l&l‘l(m}
From equation (1) above, we can see that C must satisfy this equation:
C= D
cos B(w? ~ {13) — bilsin B
We found expressions for sin B and cos B (which we can do because we know
tan B): .
) bl
sinB = JhtE 1 @ - o
0 = w?
cos B = U T (@ - e
Now we substi 1 these expressions into the equation for C:
c= D
0 — w? b

e @ e TG @ ey
b
(0 = wif + bE

We were all exhausted at this point, but R i y
**We can simplify that!™

Ce-w—_D
VHUE + ([ - w?)?
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Recordis put together the final answer:
The solution to the differential equation
dx dx -
mt bd:+ wiy = Dsin {1
is given by the formula:
x = Csin({i + B)

with B and C found from these formulas:

= bQ
B= aﬂ:lan[n, — m,]

b
VBHE + (1P - &

“*We've come up with an answer,”” Recordis said with relief. **Now all
we have to do is put in the numbers. And this time we were able to solve
for all the constants, rather than . . ."" He suddenly stopped.

*‘Something is wrong!"" the professor said. **We don't have any arbi-
trary constants left! We'll never be able to match the initial conditions
now. We know that, whenever we have a second-order differential equa-
tion, the solution must contain two arbitrary constants.”

We were stumped. *“That solution doesn’t have any place left to put
any constants,” Recordis complained.

We thought for a long time. **We'll have to add something to that func-
tion,” I suggested.

C=-

X=X+ Xy
x, = Csin({lt + B)
Xg=7

““Whatever x; is, it must be some function that has two arbitrary con-
stants in ir."”

**But that will wreck our solution to the equation,” Recordis pr
*“You can't just add any old thing to the solution and still expect to have a
solution.™

**Maybe we can find some special x, that will be all right,"* the king said
hopefully. **Maybe there is one xy such that x = x, + xy will still be a so-
lution."

We put this alleged solution back into the equation (written in operator
form):

P id d - P <
(3-'-,+ ba+m’)(x’.+x,)—Dsmﬂf

Tix, + x3) = Dsin
**We know that

-y d
T dr'+bd:+°'"



216

CALCULUS THE EASY WAY

is a linear operator,” the professor said. **We can rewrite our equation
like this."
Tx, + Txy = D sin {7

“*We know that Tx, = D sin {lt, since that is the right answer for the
equation that we just found.”

D sin {lt + Tx, = D sin {ir
Txg =10

*“That puts & restriction on x,"* the professor said. **We can safely add
x5 to our original solution without wrecking it if the following equality
holds.™

1
[ﬁ+b%+u’)x,- 0

**Does anybody see any clues in that equation that will allow us to de-
termine what x,is?"

We stared hard at the last equation. **We already solved that equa-
tion!" the king exclaimed suddenly. *“That's just the homogeneous equa-
tion we had before Builder added the driving machine!™

*“That means that x, is just the homogeneous solution,” Recordis said
in surprise.

Xy = e AL sin( 1661 + Ay)

*“It even has two arbitrary just as it is supposed to,”

Recordis wrote out the whole solution:

If you are given this differential equation:

%d— b% + wlx = Dsin

The complete solution for x is given by this formula:
x = Csin{{lt + B) + &0’ A, sin(ryt + A,)
The values for C, 8, ry, and r) are determined as follows:

b
C= Vs @ - ot
1]
B = arl:mrl(m)
—b
ry =5
R

ry =
2
A, and A, are arbitrary constants whose values can be found if you know
the initial conditions.
(Note that this solution holds when dw? > b*, See exercises 17 and 18.)
“What does that solution look like?" Recordis asked. *'It looks as though it
will be very complicated.™
1t will be very li

1 at first,” Builder said th htfully. *But
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after a fair amount of time has passed, it looks as if we will be able to com-
pletely ignore the second term, since it will all damp out.™

“That's right,” the professor agreed. **As 1 becomes large, =% will
go to zero. Then the only part of the solution we will have to worry about
will be the first part.

““We could say that the x, part, which comes from the homogeneous
equation solution, is a tfransiens part of the solution. If we wait long
enough, it will go away."

“‘The x, part will be a permanent part of the solution,” Recordis said.
**As t becomes large, the ride will keep oscillating. And that part doesn't
even depend on the initial conditions.™

*“That makes sense,” Builder concurred. ‘' At first, the solution should
depend a lot on the initial conditions. As time goes by, though, the effects
of the initial conditions will be less important, until ultimately it will be
only the driving force that makes a difference.””

‘We drew two graphs of an example with & = 0.75, D = 10, £ = 2n/5,
and @ = 2xt. Figure 15-2 shows the result with initial conditions A, = 3
and A, = 2. In Figure 15-3 everything is the same except A, = 20. The
larger value of A, means that the ride starts out farther from the middle
(which occurs at x = 0). This causes the ride 1o swing back and forth vio-
lently at first, but afier a while the friction slows this motion down. In
both Figures 15-2 and 15-3, the drive eventually settles down 0 that it
oscillates smoothly with the frequency of the driving motor (£2). If you
erased the parts of these two curves before r = 20, they would be practi-
cally indistinguishable, showing that, after a certain time has passed, the
difference in the initial conditions doesn't matter.

x4 T AFTT

3 3

2 2

i h 1
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Figure 15-2. Figure 15-3.
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After Builder had worked on his drawings for a few moments, he no-
ticed something else. It is a good thing that the friction is there,”” he said.
“*Suppose there was no friction (b = 0). Then the permanent solution
would be as follows,™

D
N= gy i )

I am trying to figure out the driving frequency that would give the ride
the maximum amplitude. It looks as though the maximum amplitude
would occur if the driving frequency {1 equals w. But if that happens, the
amplitude of the ride will be infinity, which means that it will shoot all
over space. The children would probably think that was a fun ride, but I
don’t think it would be very safe.”

**I remember what w is,” the king said. “*That was the angular fre-
quency of the ride before you added the driving motor. We could call that
the natural frequency of the ride. It looks as though the most amplitude
occurs if the frequency of the driving motor is close to the natural fre-
quency of the ride.”” We decided to call this occurrence resonance.

“*Fortunately, the friction is there,” Builder noted. **That means that
the ride will not go off to infinity, even if we use the resonant driving fre-
quency."”

“*I've had enough of differential equations,”” Recordis said. *It’s time
to go back to work on the party.™

We wrote down a general procedure for solving linear differential equa-
tions:

LINEAR DIFFERENTIAL EQUATION SOLUTION METHOD
1.

2.

. Next, find any function Iha: acts as a soiuuon of the actual equation.

. The final solution is the sum of the homogeneous solution and the particu-

. Use your initial conditions to solve for the arbitrary constants,

Check to see whether the equation is homogeneous, If it is not homo-
P d for the that it is.

and the solution of the resulting homogencous equation. If the equation
is second order and has constant coefficients, you can use the method
outlined earlier in this chapter, In any case, your solution should have as
many arbitrary constants as the order of the equation. For example, if
you have a second-order equation, the home solution should
have two arbitrary constanits.

(You have to stop p g that the eq ish i now.) We
call this the particular w!uuon If you don’t recognize the equation, you
will have to keep guessing until you find the right particular solution.

lar solution.

“We'd better not advertise that we can solve differential equations
yet,"”" the profi said, “'or may come to us with an equation
that is too complicated for us to solve.”

Nevertheless, we realized that our investigation of differential equations had
made it possible for us to solve a completely new type of problem.
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13,

14.

15.
16.

17.

21

CE 4% 0= 0.5 =20, dvtdr = 12

Step 9 of the method for solving a homogeneous equation says that, if
the characteristic equation has one real root (r), the solution will be
x = Ae™ + Bte". Differentiate this solution to show that it is the cor-
rect one.

Find the motion of Builder's ride if b = 3, w*= 5,00 = 2, and D = -4,
Solve for the arbitrary constants in the solution to exercise 15 by us-
ing these initial conditions: when ¢ = 0, x = —0,6484 and dx/dr =
1.B84,

Consider an undriven ride with greater friction. Let w = 2, b = 4,
What does the motion of the ride look like?

Consider another undriven ride with an even greater force of friction:
b = Sand w = 2. What does the motion of the ride look like?

Suppose a flexible string is hung between two posts, and let y(x) represent
the shape of the curve (as in chapter 14). In physics it can be found that y
must satisfy this differential equation:
nf_\_‘_[l + g“\_) 3] 112
dx? dx

Verify that the functiony = 'ara (er + ¢~ 9) satisfies the differential
equation.
Suppose that a coordinate system is drawn with the origin at the sun and
the y-axis pointing to the perihelion of a planet. (The perihelion point is the
point on a planet’s orbit where it is closest to the sun.) Then the x
coordinate of the planet's motion is given by this differential equation:

dx _ —gx
F
where:
r= Va4,
- {x + 2

veb [ f_'_aﬂL
g = 991.047; a = 1426, ¢ = (0.03568; b = 1423.79
Write a computer program that prints a table showing how the value of x
changes with time. Use these initial conditions: at ¢ = 0, x = 1346.6;
dxidr = 0. These initial conditions apply to the orbit of Saturn. In this
problem time is measured in days and distance is measured in units of
million kilometers.
If an electrical oscillator circuit contains an inductor with inductance L. a
capacitor with capacitance C, and a resistor with resistance R, then the

voltage V at time 1 is given by the solution to this il
LC &V + RCdV+ V =0
dr dr
Determine the formula for V, Assume (RC)® < 4LC.
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Partial
Derivatives

The king decided that we should print programs showing the events
scheduled for the party. We hired the publisher of Carmorra magazine to do the
printing. When we met with him to place the order. he asked for our help with
what seemed to be a routine problem.

“I am publishing a new book, Deluxe Travel Guide to Carmorra,” he
explained. I have found that the quantity of books that I will sell is given by
the formula ¢ = 420 — 3x, where x represents the price of the book (in cents).
Can you tell me what price [ should charge in order to eamn the most revenue?"

*Sure,” Recordis said. “We know revenue (R) is equal to price times
quantity, so we can write the revenue as a function of the quantity: R = 420x —
3x2. Then we take the derivative: dR/dx = 420 — 6ux; set the derivative equal
to zero: 420 — 6x = (; and we find thatx = 70."

The publisher was very grateful, and he left to work on the programs.,
However, when he returned with our order the next week he was very upset. [
have discovered that the situation is ever so much more complicated than [ had
thought,” he complained. 1t turns out that the number of deluxe travel guides
that I sell depends not only on the price of the deluxe travel guides, but also on
the price of my standard travel guides. If the price of the standard guide is
lower, people will buy fewer of the deluxe guides, everything else being equal.
To make things even worse, the price of the deluxe guides also affects the
number of standard guides that [ sell.” He gave us these formulas:

@ = 100 = 3x + 5y (quantity of deluxe guides sold)
@, = 40 + 3x ~ 8v (quantity of standard guides sold)
x = price of deluxe guides

y = price of standard guides

““We can write a formula for your total revenue,"" Recordis offered helpfully.

R =x0 + 30
100x = 3x% + Sxy + 40y + 3xy — 82
=3 = By? + 100x + 40y + 8xy

221
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“‘Now in order to find the maximum total revenue, you just have to tell me
which is the independent variable, and then we can take the derivative.”

Recordis had to explain to the publisher what an independent variable was.
“You get to choose the value of the independent variable. Once that value is
chosen, then the function rule determines the value for the dependent variable
(in this case R)."

**But I can choose the values for both x and ¥ the publisher protested. “By
your definition they are both independent variables.”

“Help!" Recordis screamed, calling the rest of us to the Main Conference
Room. “We're in real trouble now! There's no way we can solve an optimal
value problem when we have more than one independent variable! We can only
take a derivative when we know which is the independent variable.”

When he had calmed down, Recordis fully explained the publisher's
problem.

The professor had an idea. “All we need to do is write a formula that
expresses v in terms of x, then substitute that formula in the place of y, and then
we have turned the problem into a standard one-variable problem.™

“Haven't you been listening to what I've been saying?" Recordis cried.
“We can’t express y in terms of x because they are both independem, The
publisher i is free to chome whatever he wants for either x or y."

The p idenly realized Recordis was right. **This is more compli-
cated than anything we h:n‘: done before. We have never before had a function
with multiple independent variables.”

We worried about this problem for a long time.

“If only we could pretend that y was " Recordis d, “Then
we could easily calculate dR/dx:
dRidy = —6x + 100 + 8y (assuming y is constant)
**Or if only we could pretend that x was constant, Then we could calculate
dR/dy:
dRidy = —16y + 40 + 8x (assuming x is constant)

1 think you have a good idea!" the astonished professor said. “When we
have a function with several independent variables, there is no reason we can’t
calculate the derivative with respect to one of the independent variables while
pretending that the other independent variables are all held constant. Tt won't
be the derivative of the total function, but we could call it a partial derivarive.”

The king agreed with the professor’s plan, but Recordis had three anguished
complaints. *I don’t want to learn a new procedure to find a new kind of
derivative. And even if we do calculate a partial derivative, what does it mean?
And, most importantly (at least from my point of view), what symbol are we
going to use to represent it?"”

We decided that the symbol for partial derivative should look almost like the
symbol for a regular derivative, so we decided that we would use a curly d (3)
in the place of a regular d to represent a partial derivative. The king issued a
proclamation:

PARTIAL DERIVATIVES

Suppose z(x, ¥) is a function of two independent variables x and y. Then the
partial derivative of z with respect to x (symbolized by iz/dx) is found by
pretending that y is constant and then using the normal procedure to calculate
the derivative. Likewise, the partial derivative of z with respect to y (sym-
bolized by 2z/dy) is found by pretending the x is constant and then using the
normal procedure to calculate the derivative.
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Recordis brightened considerably when he realized that we did not need to
learn a new procedure for calculating partial derivatives. "1 see!™ he ex-
claimed. “We already know how to calculate partial derivatives, since the
procedure is the same trusty procedure we have used to calculate ordinary
derivatives.™

For our example we had:

R ==3x"= 8y + 100x + 40y + 8xy
DRIk = —fix + 100 + By
aRfdy = =16y + 40 + 8x

“We still need to figure out what a partial derivative means,™ the king said.

The professor had an idea. *An ordinary derivative represents the rate of
change of the dependent variable as the independent variable changes. So, a
partial derivative should represent the rate of change of the dependent variable
with respect to that independent variable. For example, if dR/ay is positive,
that must mean that B will increase if the value of v is increased, and if #R/dy is
negative then R will increase ifl ¥ is decreased.”

“But we don't want R to increase if v is increased or decreased,” Recordis
said. “If that is the case, then we can't be at the optimum, If we were at the
optimum, then it would not be possible to increase the value of R, no matter
what we did.”

The professor’s eyes widened. “That's it!" she exclaimed. * We cannot be at
the optimum if either 4R/ dy is positive or #R/dy is negative, Therefore, at the
optimum, we must have dR/ay equal to zero! That is just the same as we found
in the one-variable case —the optimum occurs where the derivative is equal to
ZCT0.

“The same reasoning works for dR/dx,” the king realized. *Therefore, if
we are at the optimum we must have both 3R/dx and 9R/dy equal to zero.”

We set both of the partial derivatives equal to zero:

—6r + 100 + By =0

—l6y + 40 + Bx =0

‘The result was a two-equation system with two variables, which we were
able to solve to find that ¥ = 60 and ¥ = 32.5. We were able to convince the
publisher that the optimum value of revenue would occur if the deluxe travel
guides were sold at a price of 60 and the standard travel guides were sold at a
price of 32.5. (See exercise 1.)

The concept of partial derivatives still bothered Recordis. I am much more
comfortable with a strange concept if we can draw a picture to represent it,” he
said. **I wish we could draw a picture that could represent a function with two
independent variables.™

The king realized that this would be very difficult. **We are able to draw a
graph that represents a function of one independent variable, since paper has
two dimensions. We can use one di ion to ref the independ
variable and one dimension to represent the dependent variable. Matters are
much more complicated when there are two independent variables, We would
need one dimension for each of the independent variables, but then we would
still need another di ion to rep the dependent variable.”

At that moment Builder came in to ask for help. He was building a domed
pavilion for the party. *The dome will be a hemisphere of radius r. [ need to set
up several temporary posts to support the domed roof during the construction
process, [ know the location of each post, but I need to know how tall to make
the post.”
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dzlax = V2(r* — x? — y)~ 13 (= 2)

o —x
ax VPR - =yt
We found a similar expression for az/@y:
az _ -y
ay Vi =t -2

“Now I can picture what the partial derivative represents!” Recordis
exclaimed. *“Suppose I took a giant knife and cut a gash through the dome
along the values where y = 2. (See Figure 16-2.) Then we can look at a cross
section of the dome. If we substitute y = 2 in the formula

wAny) = V2 =52 = 32
we can find the formula for the cross section of the dome.
x2) =V -2t -4

*This cross section represents a function of one variable (x), which in this
case happens to be a portion of a circle. If we substitute y = 2 into the formula
for the partial derivative

gz —&

n-VR-g-g
we find

d_ __—x

dv Vit =2 -4

“Therefore, if you choose a fixed value for v, then the partial derivative
dz/dx represents the slope of the cross section of the dome for that value of y."

cross-section of dome

Figure 16-2,
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Exercises
1. Calculate the value of the revenue for the publisher for each of the
following pairs of values for x and y:
(x =60,y = 32.5); (x = 60.1,y = 32.5);(x = 59.9,y = 32.5);
(x =60, y = 32.6); (x = 60, y = 32.4).

Find az/dx and 2/dy for each of the following functions. (Treat all letters other
than x, ¥ and z as constants,)

2.:=x+y

=+

4. 2=y

5,z =l

6. 2 = a*

T.z= Vel + 32

B,z = ety

Qoz=a + by + ol +dv + ev + f
0. z2=(x—ay + (y — by

1L :z = sin(ax + by)
For exercises 12 to 16, find the point where both partial derivatives are
equal to zero. These points may be either maximum points, minimum
points, or neither. As in the one-variable case, it is necessary to check the
second derivative to determine which is the case. Unfortunately, the con-
ditions involving the second derivative are more complicated when there
are multiple independent variables.

Once you have found the point where dz/dx and dz/dy are both zero,
perform the following test, using this notation for the three second-order

derivatives:
L=l 2
T Ardx
L2 93
Ty aydy
L =2 03
T3y xdy

If z,z,, > (2,)% there is o local maximum or minimum. To tell the dif-
ference, if z, and z_ are positive, you have a local minimum. This means
that a cross-section of the surface will be concave upward. If z_and 2,
are negative, you have a local maximum.

1f [.._ P> Tl the point is neither a maximum nor a minimum (it is
sorneth:ng called a saddle peint, which means you are at a minimum if
you cut a cross-section of the surfscc in one dlrcclmn. but you are at a
maximum if you cut a cross in )

If (z,)* = z,2,,, you cannot tell from this test whether you have a max-
imum, minimum, or saddle point.

Roz=3+p+3+W% =Ty + 10

13. 2 ey 4y — x-Sy~ &

. =2 = ey + 37 + By - 4y ~ 17

15, z = =0.5x* + 0.2vy — L4y? + L8x — L2y + 0.75
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16, : = &% + 2x = ¥

17. A production function with two inputs (K and L) is given by the formula

Q=(L"2+ KH)2
where Q is the quantity of output produced. The profit is given by this
formula:

ALKy = PO — wlL = rK
where P, w, and r are constants. Determine the profit maximizing ratio
between K and L.

Consider this function of three variables:

flieyz) == 1P+ (y - 3P+ (-2

Determine the coordinates of the point where all components of the
gradient vector are zero.

Exercises 19 and 20 concern the motion of planets around the sun.

19. The gravitational potential energy of a planet is given by the function

Ulx,y) = —k/Va? + ¥?, where £ is a constant, and x and ¥ represent the
coordinates of the planet in a coordinate system where the sun is the
origin. The gravitational force acting on the planet is a vector which
is the negative of the gradient of the potential energy function,
Determine the force acting on the planet. In what dircction does the
force point? (See exercises 30 and 31 for more about gravity.)

20. Let r represent the distance of the planet from the sun at time 1, and let 8

represent the angle formed by the x axis and the line connecting the planet
10 the sun, The speed of the planet about its orbit is given by:
v= NPT+

The prime symbol (") represents the derivative of a quantity with respect to
time. The kinetic energy (KE) of any object is given by KE = 1/2 mn?,
where m is the mass of the object, so the kinetic energy of the planet is:
Yom (282 + r'2)
The potential energy (U) of the planetis U = —&/r, where k is a constant,
The Lagrangian expression (L) for an object is:

Lirér' &) = KE-U
L is a function of four variables: r. 8, r', and #'.
Once the Lagrangian for an object is known, then the motion of that object
is described by a set of differential equations known as Euler’s equations:

L _d oL
a8 dr af’
L _ d oL
ar  dr ar'

(a) Determine the specific form of the first Euler equation for the example
of the planetary motion.

(b) The total energy (E) of the planet is equal to the sum of the kinetic
energy plus the potential energy:

E=KE + U= "Ym(r2f + r'3) - kir

229
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The angular momentum (A) of the planet is given by:
A= mr¢

The angular i Rewrite the formula for the
total energy in terms of A, m, r, r', and k.

(¢) Rewrite the formula from part (b) so that ' is expressed in terms of the
other quantities in the formula.

(d) Rewrite the formula from part (c) so that it expresses 8 as this integral:

mE + 2mk — |
A Ay 9
(&) Perform the integration from part (d} in order to arrive at a formula
for cos @ in terms of r and the constants m, E, A, and k. Hint: Make the
substitution v = 1/r, and then use the result from exercise 12-40.
(f) Simplify the formula from part () by making these substitutions:
B = Ak e = VI + 242E/mk?
Can you recognize the resulting formula as the equation of a curve
written in polar coordinates?
{In this problem, ithas been d that the sun is much more massive
than the planet, so it can be treated as stationary. Also, the fact that each
planet is affected by the gravity of the other planets has been ignored.)

21. Suppose you are trying 1o design a ramp so that a ball rolling down the
ramp will reach the bortom as quickly as possible. The function giving the
optimal shape must solve Euler’s equation:

aL _ d aL

o dedy

where L is defined as follows:

oo S
Lix.ny') = \/_23_‘_

Solve for y. Hint: Use the result from exercise 12-41.
Excrcises 22 to 29 cover a topic known as Taylor series.

22, Consider this function: filx) = ¢, x + ¢q. Suppose we know flx) and f'(x),
but we do not know the value of flx+ k). We can express fix+h) in this
way:

Ax+h)y = ¢ lat+h) + ¢

= (e + o) + o

= fl) + fiah

For any linear function. flx + &) can be expressed in terms of fix), f'(x),

and /. We can even try using this approximation for nonlinear functions,
but the approximation will be more accurate if we add additional terms.
For example, suppose we have the function fix) = e + e + €.
Find an expression for flx + &) in terms of flx), £/(x). £'(x), and A,

23. Consider the function fix) = c* + cax? + % + . Find an expression
for fix+ A} in terms of fix), f/(x), f7'(x), and h.

24, Taylor's theorem states that, for any function f. the value of flx + k) can be
approximated by this formula:
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S+ hy = flx) + I,f{x]h+ 1 () h + .f’{x}h’ + %f‘m&“ +oee

15,
26.
2.
Q 2.
Q 2.
Q 3.

where fi(x) represents the :lh derivative ul‘ the function f evaluated at x.
Find the Taylor series approximation for sin(0 + ).
Find the Taylor series approximation for cos(h).
Find the Taylor series approximation for e”.
Find the Taylor series approximation for In A,
Suppose your computer programming language did not have a buili-in
function to calculate sin x. Write a computer program that uses the first
four terms of the Taylor series from exercise 24 to calculate sin x for a
given number x,
(a) Find the first, second, and third derivatives of the function y = e=+72,
(b} Find the first fourteen derivatives of ¥ = =2, Write a computer
program to perform the calculations for you.
(¢) In probability and statistics it is very important to calculate values for
this integral:
.I— y w2 g

Vag Jo¢ 7T
which gives the area under a bell-shaped curve known as the normal curve.,
Unfortunately, there is no simple formula for this integral. Find a Taylor
series approximation for the area, using the result from part (b). Then
write a computer program that reads in a positive number & and then
calculates an approximate value for the area,

Write a program that plots the path of a satellite in Earth orbit. The
calculation procedure will be similar to exercise 15-20. However,
this time do not assume that the orbit will be an ellipse. Instead, do
scparate calculations for the x and y coordinates of motion. By
changing the initial conditions, you can have circular orbits, ellipti-
cal orbits, or hyperbolic orbits. You will need to experiment with
running your program to see these different effects. Another refine-
ment is o make the change in position depend on this formula:

Ax=1w, Ar+ 3!%"_
where Ax is the change in the value of the x coordinate; v, is the cur-
rent x component of the velocity, and a, is the x component of the
acceleration. The last term comes from the Taylor series approxima-
tion (see exercise 24). There will be a similar expression for Ay.
The magnitude of the force of gravity is given by:

GMm

==
where G is known as the gravitational constant (G = 6.67 x 10"
meters'/kilog ds’), M is the mass of the Earth (M = 5.98 x

10™ kilograms), m is the mass of the satellite, and r is the distance
from the center of the Earth to the satellite. The direction of the
force points toward the center of the Earth, (You knew that already;
lhet is just another way of saying that gravity pulls things down.)
F =ma, the leration of the satellite is
GM
a=—
’
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Note that the acceleration does not depend on m, the mass of the
satellite.

Use the value 3,99 x 10’ for the value of the gravitational constant

times the mass of the Earth, measuring time in seconds and distance
in kilometers. Assume that the Earth is so much more massive than
the satellite that it is motionless. (See exercises 19 and 20 for more
information on gravity.)
Write a program that plots the path of the three stars in a triple star
system. The previous program provides a starting place. The formula
for gravity between any pair of stars is the same as in exercise 30,
except that the two masses M and m now represent the masses of the
two stars. In the case of the satellite, we could ignore the fact that
the satellite pulls on the Earth, since the Earth is so much more mas-
sive than the satellite. However, now we must take into account the
fact that each star feels the pull of the other two stars.

Use the value 990.6 for the gravitalional constant, using these units:
time is d in days, di is d in million kilometers,
and mass is measured in units where the mass of the sun equals 1.
(Although you will not need this number for your program, it is help-
ful to know that the mass of the sun is 1.99 x 10 kilograms.)




e
¥

e

17 &

Comprehensive
Test

of Calculus
Problems

Two days before the party, when everyone was in the Main Conference
Room, there was a knock at the door, and we opened it to find, to our sur-
prise, the gremlin. He was dressed in the same evil-looking cape that he
always wore, but this time he had not come flying in the window and he
had toned down the cackle in his laugh. He was carrying a large scroll,
which he tossed on the table.

“*Take that!"" he commanded.

“Thank you,” Recordis said. **We appreciate this very much. What
isit?"”

**Fool!" He slyly slithered over to the trembling professor. **So you are
intending to write a book, are you? Before you can do that, you must
solve these. These are all probl leulus probl If you can do
them all, then you will have something to write about. But I think you will
not be able to."” He turned to the king. **There is no gimmick this time. 1
will not engulf the kingdom in fire or anything else if (I mean when) you
fail. I shall simply proclaim to the people at the party that you, who have
spent so much time on this calculus, cannot even solve calculus problems.
The people of Carmorra themselves will turn against you, and [ shall be
proclaimed king!™

233
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“We've defeated you every other time so far,” Recordis said. **Your
win-loss record is 0-17."

**Ah! But | realize where I have been going wrong,”’ the gremlin said.
1 have only fought you one at a time on theoretical grounds. Theory, un-
fortunately. is your strong point. Now you must apply everything you
have done. That is where I think you will fail.”

He reached inside his cloak and pulled out a giant conical-shaped hour-
glass. “"The sand in this glass has been set to run for 48 hours. Once it is
empty, I shall return and witness your defeat. I hope you appreciate the
trouble T had 1 fing up these probl It has been fun knowing you!"*
With a sudden burst of his horrible laugh he swept out the window.

““We surely got rid of him!"" Retordis said.

“‘What do you mean, ‘we got rid of him?" " the professor exclaimed.
“*We still have to do all these problems before he comes back!™

**Since you're writing the book, we'll let you do the problems for us,"”
Recaordis said, packing his notebooks and heading for the door.,

“*Stop it!” the king commanded. **We have no time for any of this argu-
ing. We all helped get us into this, and we're all going Lo help getus out."

There was a long silence while we contemplated the scroll on the table.
Mongol began 1o cry again.

“*We may as well get started,’” the professor said. Recordis began read-
ing through the 45 problems that were our final test:

1. Find the volume of the top half of the hourglass that is even now mea-
suring the time until your doom. (The hourglass is a cone: the radius
of the base is r = 15, and the height is k& = 30.)

2, The sand falls through the opening in the hourglass at the rate of «
cubic units per unit time. What is the rate of change in the height of
the sand in the cone when x = 57 (4 = 0.04.) (See Figure 17-1.)

3. You have 48 hours to solve 45 prnhlcms 1 predict that the rate at
which you solve problems will be given by:

dn _ gpeen -
dt 181¢ I

where # is the number of problems you
have solved and ¢ is the time measured
in hours (1 = 0 at the time you start
working on this test). If you follow my
prediction, how many problems will you
have finished by the time 1 = 487

Find the derivative of the following functions:
4, flx)=x*= 31"+ 4x + 10
5, flx)= 2+ 1052 = 3x* 4+ |lx
6, fix)=xt+ x+ 1+ lx+ Lix?+ 1/
7. filx)=Va-p?
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8. fix)= (10 + (3 - x¥)
9, fix)=[3 + (x + 4P
10, fix)= * V3 + 5*
1L fix) = Vix + Six — 3x +2x — 1)
12, fix) = sin® x + cos® x
13. fix) = x*" sin(x)In x
14, flx)= et~
15, When you are planning your escape from the kingdom, you will want
to reach Nowhere Island as quickly as possible. Nowhere Island is
a = 10 km directly offshore from River Mouth. When you arrive at
Shore Rock, you will be b = 12 km away from River Mouth. Assume
that you are carrying your boat with you. You can row v = 3 km/hr,
and you can walk u = 5 kmv/hr. What course should you follow to
arrive at Nowhere Island as quickly as possible? (See Figure 17-2.)

Nowhere Island

(o)

@ = 10 km
v=3 km/hr \

River Mouth \ Shore Rock
—ﬁ .
u= 5§ kmfhr

. 4

¥
b= 12 km

Figure 17-2.

Find dy/dx for the following relations (r, @, and b are constants):

16, x*+ y*=r*

17, x¥a® + y¥b* = |

18, (x + ¥)** = (x - y)12

19, (x = 3" ="+ 4

20. If Rutherford starts running on a block of ice where his speed is given
by v =3 = 12, how far will he have traveled from the time when £ =
until he stops?

21. If Mongol jumps on a muddy hillside where his speed changes at the
rate dvidt = ~2v, with v = 5 when ¢ = 0, how long will it take until
his speed is equal 10 0.01, and how far will he have traveled by the
time this happens?
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Find the values of the following integrals:
22, [(4x* = 2x + §) dx

23 [ x vt - 1y
R
n. J-l-.'—,t’d't

25, [ 4x*sin® x dy

Find the equation for v, given the following conditions:

26. dyldx = 5x + 4; y=3whenx=2

27, diyidit = 5; dyldt = 3and y = 2 when 1 = 0

28, dPyidi* = 2r: dyidt = 0and y = Owhen ¢t = 0

29. Mongol went for a ride on a spring where he was acted upon by the
following forees: Fypng = —500x; Fryue = — 10 dxfdr. The mass of
Mongol is 1000, At time ¢ = 0, his speed was zero (dy/dr = 0) and his
position was 20 (x = 20). Set up the differential equation that repre-
sents his motion, and solve it to find x as a function of .

30. Suppose that the work required to move Irving Electron from point
a to point & against a foree F is given by:

W= rF!‘rl dx

What is the work if @ = 100, b = 10, and F(x) = —kx™*?
Find the values of these definite integrals:

* v—1
- L (T A
"
3z j 4x* dy a

e
33. j tan 2x oy

1
M. J- (e = % dx

u

1
35, J ot sinlx®) dv

-
36. f sin x cos x dv

» Figure 17-3.

3
37. j A% sin xody

38. Find the area between the curves v, = sin x and v, = x? — 7x.

39, When 1 take over the kingdom, I will want a new concert hall
designed with a triangular stage. (See Figure 17-3.) Find the point
where it will balance (the center of mass).
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40. If a football is formed by rotating the sine curve y = sin x from zero to
w about the x axis, find the volume of the football.

41. Sketch a graph of the curve y = ¢~*". Make a list of places with hori-
zontal tangents and points of inflection.

42, Solve the differential equation d*v/dx?® + 2 dyfdx + 2y = 10,

43, The two towers of the Swirling Pass Suspension Bridge are 100 units
apart. The roadway is 40 units below the top of the towers. The main
cable of the bridge hangs freely between the two towers, with its low-
est point just touching the roadway. What is the length of the main
cable? (Equation of main cable: y = 18(e*™ + ¢~*™) - 36,)

44, Find the area between the curves y, = x* — Sand yy = x - 5.

45. Find the derivative of the function y = |x | (y is the absolute value of
x, defined by |x| = x for x = 0 and |x| = —x for x < 0) at the point
where x = (.

**Some of these are easy, and some are hard,”” Recordis said. **Which
should we do first?™”

“We'll split up,” the king told him. We broke into teams and set to
work on the problems. The next two days passed in a blur. The only
things we saw were problems. 1 made no effort to keep track of the steps
we took chronologically, but I did make a record of the solutions.

r=15

—

h=30<

Figure 17-4.

1. We divided the hourglass into linle cylindrical disks (Figure 17-4).
The volume of each cylinder is given by dV = #r'? dx, and #' can be
found using similar triangles: 'ix = rfh. So r' = rx/h. Then we inte-
grated from x = Ot x = h:
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Flx)=2x+1+0- x%~2x - 3¢
7. The professor wrote down the chain rule as it applied to a function
raised to a power:
flx)=u"
(x) = gt dH
Silay = m™t o
We wrote our function like this:
u=4-x
Sy = w'®
£10x) = H8 = =30 = 5 -

8. We wrote this function as a product and used the product rule:
Slx) = (x* + 10)3 - x5

Fx) = (2 + 10) % [ JE ST % (xt + 10)

_2x(at 4 10) | 4x
G-xF 3-8

9. Let u = (x + 4P, Also,

fluy=03+up
du

- 2
dx x + 4)

df _ a3
it A3+ w)
Using the chain rule gives:

£1(x) = 603+ (x + 4PI(x + 4

10. **This calls for the product rule,”” Recordis said.

fiix) = x’% (3 + X+ (3 + X7 f‘— x?
= \/S_x_‘——’Jr IV +a?
+x

11. Recordis almost fainted until he remembered the method of loga-
rithmic implicit differentiation.
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_,’(14-5)(1'—3]

Tl EDx -
Iny=4HIn(x + 5 + In{x — N —In{x +2) — In(x = 1)]

=

‘%‘—;fﬁ%f‘;[ln(x+S)+In(x—3]—-|n[x+2)—-ln(x—I]]

dy _yf.t , v _ 1 _ 1
dx " 2|x+5 x=-3 x+2 x-1

e+ sx=3 1 1 1 1
2 (___[ Fro3Txe2 -1

X+WMx—Djx+5 x=-3 x+2 x-1

12. Without thinking, we used the chain rule and the power rule:
fix} = sin® x + cos* x
S'{x) = 2sinxcosx ~ 2cos x sinx
=10

**Of course it should be zero!" Trigonometeris said, realizing the ob-
vious. **We know that sin® x + cos® x = | for any value of x, so this func-
tion is really a constant function. [t better have a derivative of zero."

13. ‘This is hopeless!"" the king said.
“We need to use the product rule several times,” the professor
told him.

f’(x)=x'§i{a’sinxlnx]+e’sinxlnx%(xl')

*“The last one is easy,” Recordis said; **(d/dx)x? = 2x."

We used the product rule again on the first part:
d . e d . d
d{{f" sinxlnx)=¢ d‘[smxln x) 4+ (sinx In x) PR I

“‘That last one is easy,”” Recordis said again; *‘(didx)e® = £*.""
d =sinx -4 A g
p (sin x In x) = sin x e Inx +Inx dr sin x
**Those two are both easy!"" Recordis said.
d =1
p Inx = T

d .
~S-sinx =cosx
dx
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Now all we had to do was put the pieces together:
fix)=xefsinx + *c*Inxcosx + ¢ sinxlnx + 2xesinxlnx

14, fix)= e~

*“That's trivial!"" Recordis said. **By definition, ¢ < = x. That means
flxy=x,s0f'(x) = 1"

15, “It's obvious what the approximate shape of our course would
be,” the king said, *‘although I do not intend to escape anywhere, We
would travel straight along the shore for some distance (call it x) and then
board our boat and sail in a straight line to the island.” (Figure 17-5.)

‘*That means that all we need to do is figure out what x is.”” Recordis
said.

“‘I know what the total time is,”" the professor said.

e on land)  (distance on water)
(speed on land) (speed on water)

(total time} = T =

=X,
w oo
“*'We can figure out y in terms of x,”"
the professor noted.
at + (b - x)' = y?
VI -
X, a* + (b — x)?
" v
(N K 4
h
b
Figure 17-5.

**T is the function we want to minimize,” the king said. **We now have
T expressed as a function of x, so all we need to do is find the derivative
dT/dx and set it equal to zero.”

L= LlaLitar 4 b - 2y @6 - x)-1)
=L b-x
u et b=
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Setting the derivative equal to zero to find the optimum x gave:
1_ b—x

N

1 th-xp

u Vi a?+ (b — x)Y

via® + (b — x)) = Wb - x)*

via® + vi{b® — 2bx + x*) = w¥(b? - 2bx + x¥)

vig? + viht — 2hxv? + vix? = b — 2hxi + wix?

XHVE — u¥) 4 x(2bu® - 2bvY) + (vial + vEBT — utb?) =0

**That looks pretty hopeless‘ lhe prul’essor sald
*“We know the It wlli help if we put

those bers in the exf ions for the n.oeel'ﬁf.lenl:. of x.*
The gremlin had given us these numbers:

vo=73, u=35, b =12, a=10

i pyl=9-25=-16

2bu? = 2bv? = (24)(16) = 384

via® + vih? — uib? = 9 x 100 + 9 x 144 — 25 x 144 = — 1404

We rewrote the equation for x with the numerical coefficients:
=167 + 384x — 1404 =0
We used the quadratic formula to find x:
¢ = D384 = V3RAT - (4)(= 16K 1404)
=32
_ =384 =240

= 19.5 or =4.5

““That first answer must obviously be an extraneous root,” the king
pointed out. **It's clear from the map that x can’t be greater than 12."
“Then the answer must be x = 4.5, the professor said.

16. The professor decided to use the method of implicit diffe
so we took didx and applied it to both sides of the equation:
d d

- 2 2y = & 2
a‘.(“+y) dxr
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19. Using the implicit method again gave us:
Ay =4 (e
a5 (x — 3y dr (x*+ 4)
O A N T ()
(x 3]dx}'+ydx[x 3)=12x

(x—3]2y%+)"=2.x

dy o -yt
de 2y(x=13)

20. “*This is a regular integration problem,”” the professor said. We let
s stand for Rutherford's position:

ds _ 4 _ = =
7 3-1  s=0wheni=0

s=f3-m™d

=3 -8
M-S+ C

Solving for C, we had:
0=cC
3
5=731- 53-
Now we needed to find out what ¢ equaled when Rutherford came to a
stop. That meant we had to find r when ds/dt = 0:
0=3~ thy
taop = V3
We put that result back into the equation for s:
s-s\r@m%ﬁ-zxﬁ-m&

21. We set up an integral;

T
v

Sviidv = -2

Inv=-2t+C
We used the initial condition:

Infs=C

Inv=-2r+In5

245
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**That integral is easy,’” Recordis said.
Iy=-zcosz+sinz+ C

Now all we had to do was put all the other subintegrals back together
and make the reverse substitution, z = 2x:

JSaxtsin® x dx = §x* — x*sin2x ~ xcos 2x + 4sin2x + C

26, dyl/dx = 5x + 4., Also,

¥ = J(5x + 4) dx
=%x‘+4x+€
C=~-15

=3 -
y—z.t’+41 15

27. **We should be able to integrate this equation twice,"” the professor
said. We let v = dyl/dt, so

dv _
il 5

v=51+C

““We have an initial condition for dy/dt,”* Recordis noted.
*That’s lucky.” the professor said.

_dy_
v= i 5r+3
Integrating again:
_3p
y=3 1" +3+C
Using the other initial condition, we got:
C=2
The final answer became:

=§l
¥ 2.‘ + 3+ 2

28. We did this problem in the same way as the preceding one:
v=1+0
y =i
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Then we calculated what the dx

differential mass element dm 7
would be (Figure 17-6):
dm=pdV
=2phy dx
From a similar triangle relation:
y_a-x
a a
y=a-x Figure 17-6.
We put these into the formula
and did the integration:

P r2ph[a - x)x dx
com o pﬁal

-%f(m’—x’)lﬁr

.l(ﬁ’_%’)“

atl 2

3
b ()8

40. We divided the football into a collection of little cylinders:
dV = wy? dx
y=sinx

Now all we had to do was integrate from x = 0to x = m:

V= u[rsin‘xdx

L
wwfi{l—l;ﬂﬁh)d.r
L]
= jut

41. We found the first derivative to look for horizontal tangents:
1
y=er

dy _

—a?
i ~2xe
“Where does that equal zero?"* Recordis asked.
**The only point is where x = 0," the professor said. **That means that
this curve has only one horizontal tangent.™
We calculated the second derivative:
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L3 = (e - (e

The second derivative will be zero if
4xt-2=0

**That means that there are two points of inflection,” the professor
noted.

*‘One more thing,” the king said. **We need to check whether the sec-
ond derivative is positive or negative at the point where the horizontal
tangent occurs.”

d’y
x=0, v -2

**That means the point is a maximum,’" the king said.

| ber,” Trig is stated. *'If the second derivative is neg-
ative, the curve spills water.”

We could easily see that ¥ = 1 when x = 0, We could also see that the
function was always greater than 0 but less than 1, so Igor was able to
sketch the graph (Figure 17-7).

¥

Figure 17-7.

42, First we found the homogeneous solution:

d.I"'+2ﬂ

Frr e ek
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dy
dx

L () ke 2 o o

=50
VI 4+ (dyldx)* = He*™ + ™) 50 40 -0 -20-10 0 10 20 30 40 50

40]
20|
(g]' = He s — 2 4 g-=it) o /

CALCULUS THE EASY WAY

We set up the characteristic equation:
r+r+2=0
_-2=V4-8
" 2

=-1+i =-1-i

Since we had a complex answer, we set up an exponential and a trigo-

nometric solution:
¥ = ¢~"(A cos x + B sinx)

Now we needed to guess a particul lution to the h
equation. We spent hours trying to find a solution that would work. After
each guess that failed we came up with a new guess that was even more

plicated than the p ling one. No guess, no matter how compli-
cated, worked.

*If only we just had 2y = 10,"" Recordis moaned. **Then we could say
¥ = 5. If only we knew a function that would allow us to ignore those de-
rivatives."

**That wouldn't help,” the professor said. **We know that the only kind
of function that has a derivative of zero is a constant function.™

**That’s it!" the king exclaimed. **We'll use a constant function! Let's
guess y = 5.7

*‘We can't use a constant function!"" Recordis said. **This is a differen-
tial equation. Differential equations are hard, and they always have com-
plicated solutions.™

We tried the king's guess anyway, and found that it did work:

&g, d =
d:,:,5 + dx5+2>(5 10
*“That is the particular solution we need," the professor said. We found
the complete solution by adding the particular solution to the homogene-
ous solution:
¥=5+ e(A cos x + B sinx)
43. We realized that we would have to use the curve length integral.
(See Figure 17-8.) First we found dy/dx:

¥ 60,

= He*R® — g~xi%)

dy -20

x

Figure 17-8.
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Now we set up the length integral:

1 Ll
L .._J- {e"“+e“"'}dx
20

Ll
= |s(fm - ‘\lﬂl}

= 1354 )

44, We set up the function ¥ = y; — ¥, = x — x* and integrated it from
x =010 x = 1in order to find the total area between the two curves:

A=_thx—x')dx=i1‘—ix'|:=!—i=i

45, Our sand was just about ready to run out. We had finished all the
problems except this one.

**‘We've got to hurry!"" Recordis said. **We have only that much sand
left!" He held his fingers a tiny distance apart.

The professor desperately guided Igor through the required calcul
tions.

It can't be done,” Recordis moaned. “*There is no answer!"

**That’s the answer!"" the professor cried.

“‘What's the answer?"

“There is no answer! Look at the graph (Figure 17-9). There is no way
to find a derivative for the absolute-value function at that point, because
there is no real tangent line, In fact, I bet that's true for any function with
& cusp in it—you would have to say that the function is nondifferentiable
at the point where the cusp is. So the answer must be that there is no an-
swer! The gremlin threw an impossible problem into the test to con-
fuse us.”

**That gremlin!"’ Recordis cried. ' hate him!"* He whipped out his pen
and wrote "‘no answer” on the large scroll where he had been keeping
track of the answers to the test. ¥

¥=ixi

Figure 17-9,
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A large puddle of tears developed around the prostrate gremlin, Re-
cordis felt so sorry for him that he patted him on the back. “'It can’t be
that bad,”" he said consolingly. **I'm sure you'll find other complications.
You'll think of something like multivariable calculus or scientifically ap-
plied problems or . . ."

**Shut up, Recordis!"" the professor cried. **What are you saying?"

**Enough of that!"* the gremlin said, suddenly ding up. **I shouldn’t
have lost control of myself like that. [ can make things more complicated,
and [ will. It is just a matter of time before you discover another subject,
and then I shall win and rule Carmorra!”” He grabbed his two attendants
and whooshed out the window.

**We surely got rid of him,"" Recordis said, and we all laughed, for the
first time in a long while.

The party the next day was very festive and bright. The shining ribbons
decorated the grounds. The roses in the garden were all in bloom, and
Spike Rock was safely covered. The children loved the doughnuts, the ice
cream cones, and the ride on the spring.

That night the king asked me how long I could stay. ‘I will have to re-
turn home when I regain my memory,” [ said, *‘but I will be glad to stay
in Carmorra for the present."

*“We deeply appreciate your services,” the king said. *'If you ever want
to return home, we'll do our best to help you, even if we need to invent a
new subject.”

As we looked out at the moon, Farmer Floran said, **1 wonder whether
you could figure out how the moon moves.”

*“We wouldn't have had a chance before,”" the king said. “*Maybe we
could now."

This brings to an end my part of the story. There were indeed more ad-
ventures, and we were constantly amazed at the applications of the sub-
Jject of calculus. I'll let the prof ize what we did in her book,

which she graciously granted me permission to reprint here as Chapter 8.
“It's been great having another woman in the Main Conference Room,”
she said wistfully.

I hope that this entire account has been as much fun for the reader as it
was for me, and that it will be beneficial to anyone who is interested in dis-
covering the mysteries of calculus.
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Calculus begins by trying to solve the following problem: What is the
slope of the tangent line for a particular curve at a given point? It turns out
that this problem is exactly the same problem as finding the speed of an
object if we are given its position function.

The slope of the tangent line to the curve y = f(x) is given by the fol-
lowing expression, known as the derivative:

(slope of tangent line) = (derivative) = f'(x) = %

 F(x 4 Ax) = f(x)
= fim =7

The operation **lim'" means to take the limit of the expression as Ax
moves very close to zero, but we don’t ever let Ax actually equal zero.

We can derive a set of rules that make it possible to find the derivatives
of different functions, (We call this process differentiating the function.)

y=c y'=0

¥y=cx ¥e=c

258
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SUM RULE 5
y=flx)+glx) ¥y =fu)+gix)

PRODUCT RULE
y=flx)glx) ¥y = flx)g'x)+ f(x)gix)

POWER RULE

CHAIN RULE

= =¥
y=fgx) ¥ dg dr

TRIGONOMETRIC FUNCTIONS

y=sinx y =cosx

¥ = CO5 X y' = —sinx
¥=tanx ¥ =sectx
y=cinx ¥ = —csctx
y=secx ¥y =secxtanx
y=Cscx ¥y = —gcscxcinx

¥ = arcsin x ¥y ={(l-xy
y=arctanx  y' = (1 + %

EXPONENTIAL FUNCTIONS

y=a* ¥ =(na)a*

LOGARITHM FUNCTIONS

¥y=Inx y o=

-
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An integral containing the product of two different types of functions,
or some other hard integrals, can be solved by using the method of inte-
gration by parts.

INTEGRATION BY PARTS
Judve=u=fvdu

The amazing feature of integral calculus is that an integral represents
not only the antiderivative but also the area under a curve. This is oflen
written as a definite integral.

(area under fix), fromx = atox = b) = Ib Slx) dx

= F(b) - F(a)
where F(x) is a function such that dFidx = f(x).
Integrals can be used for more general probl such as vol sur-

face arcas, or the center of mass, by comparing the formula for an integral
with the formula for a continuous sum:

L] "
f_ﬂx)dx = lim 2 fix)Ax  (x,=a, x=b)
The natural logarithm function is defined in terms of definite integrals:
c 3
Inx = f L
i

The base of the natural logarithm function is the mysterious number e, ap-
proximately equal to 2,71;

LT



Appendix 1

Answers
to

Exercises

Chapter 1
1. and 2. See Table A-1 and Figure A-1.
Table A-1
x y=x Slope of Secant Line
3 9 5
25 6.25 4.5
23 5.29 4.3
21 4.41 4.1
2.05 4.2025 4.05
1.95 3.8025 3.95
1.9 3.61 39
1.8 3.24 3.8
1.7 2.89 a7
1.5 225 35
1 1 3

Note: The slope column gives the slope of the secant line
between the point (2,4} and the point (ry).
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6. If f(r) represents the position of an object as a function of time, then the
speed of the object between time 1, and time 15 is [f(t3) — f(r,)]1/(1; = 1,). Note
that this is the same formula that is used to find the slope of a curve.

Chapter 2

Ly =02+4dr+1 x=3y=9%

2. =200 + 2r. x o= 10,y = 200,020

oy =35M x=1,y =135

4.y =22 +x+ 1 x=0642y = 48,636

5.9 = 868r + 098 x= -4,y = -33T4

6. (1) =612 — 15t + 8 — 20, f(N =12 = T. 1=!frp=—1

Ty =a
8y = 2ax — 1
9. ¥ = 3Jax? + 2 + ¢
10, ¥" = bax®—!
Il.y=ab+{a+bx+xhy =x+a+b
dy _ . oculx + Ay —culx) _ . #lx + Ax) = ulx)
12 4 = lim ar = ¢ lim Ar
du
dr

13, fix + Ax) = ax? + 2ax Ax + g Ax* + bx + b Ax + ¢.
Six + Ax) — fix)=2ar Ax + a Ax? + b Ax.

friay = lim 2ax Ax + a A+ b Ax _ i (20x 4 g Ax + b)
frrar) Ax o)

= 2ax + b.
4,y + Ay = flx + 4x) + g(x + Ax) + hix + Ax).
Ay _ flx + Ax) — fx) + g(x + Ax) — g(x) + h(x + Ax) — hix)
Ax ~ Ax '
dy - lim fix + Ax) = flx) + glx + Ax) - gix)
dx A Ax Ax

. hix + Ax) - k[l)]

Ax

= f1(x)+ g'(x)+ h'ix).
15, (a) v(1) = dhldt = —gt + vy (b) v(0) = vy (¢) dhidt = 0 when 0 =
—8l+ Vo I = vylg.
16. (a) v(1) = —gt. The velocity is negative, which means that A is be-
coming smaller (the ball is going down). (b) /1 = 0 when 0 = 64 — §gi%. 1 =
8V2Ve, (c) When t = VIV, v(1) = —8V2g. (d) 3.61 = BVVG.
g =98
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3090 IF A(0)<O THEN PRINT A(0):

REM THIS FROGRAM FINDS ONE ROOT OF A POLYNOMIAL EQUATION
11 REM USING NEWTON'S METHOD
20 MAXDEG = 20 "MAXINUM DEGREE POLYNOMIAL
30 DIM A(MAXDEG) "COEFFICIENTS OF POLYNOMIAL
40 DIM B(MAXDEG) *COEFFICIENTS OF DERIVATIVE

100 GOSUB 1000 READ IN COEFFICIENTS
110 GOSUB 2000 ‘CALCULATE DERIVATIVE
120 GOSUB 4000 ‘CALCULATE SOLUTION
130 EHD

999

1000 REM READ IN COEFFICIENTS

1010 INPUT 'DBGRBB OF POLYHOMIAL:",N

1020 FOR I = 0 TO N

1030 PRINT "INPUT COEFFICIENT FOR XA":I

1040 INPUT A{I)

1050 NEXT I

1060 INPUT "INITIAL GUESS FOR SOLUTION:":§
RETURN

1599 -
2000 REM CALCULATE DERIVATIVE
2010 FORI = 1 TON
2020 B(I-1) = I #* A{I)
EXT I

2040 BN} =
2063 RETURN

2200 REH = EVALUATE POLYNOMIAL AND ITS DERIVATIVE
2210 =0 * VALUE OF FUNCTION
2220 DYDX -0 * VALUI OF DERIVATIVE

TO N
2240 Y = Y+A(I)*S~I
2250 DYDX = DYDX+B(I)*S~I
2260 NEXT I
2270 R-ETI.I‘R-N

4000 REM CALCULATE SOLUTION

4010 T = 0 ‘HUMBER OF ITERATIONS

4020 GOSUB 2200 ‘EVALUATE POLYNOMIAL AND ITS DERIVATIVE
4020 IF ABS(Y)<.00001 THEN GOTO 4080 ‘*SOLUTION FOUND
4040 § = S-Y_:"D‘IDX

4050 T = T +

4060 IF 'r:-mn 'l‘HEN PRINT"NO SOLUTION AFTER 100 ITERATIONS":GOTO 130
4070 GOTO 4020

4080 REM - SOLUTION FOUND

4090 FRINT 5

4100 RETURN

Chapter 3

1.y = —6x + 5;¥" = —6:x = 5/6 is a maximum

2.y = 26r + 4y = 26;x = =213 is a minimum

3oy = Mr+ Iy = M x = = 11/34 is a minimum

4, ¥ = 3Bx — 10;y" = 38; x = 5/19 a minimum

Sy = —I18¢ + 16;¥" = —18; x = 8/9 is a maximum

6. (Acceleration) = 4" = —g. The acceleration is negative.

7. H' = —g. Note that the acceleration due to gravity is the same whether
Mongol drops the ball or throws it into the air.
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8. x" = 0. Mongol is traveling with a constant velocity. Any object travel-
ing with a constant velocity has zero acceleration.

9, ¥ = 2x — 3.y = 0 when x = 32, y" = 2. Since y" is positive, the
curve has a local minimum at x = 3/2. The curve never turns down, so the
absolute minimum occurs at ¥ = 32, y = —9/4. Since there are no other
points where the curve has horizontal tangents, the maximum value of the
function must occur at one of the end points of the interval (x = Dorx =
5). Such a case is known as a corner solution. In this case the maximum
value occurs at x = 5, ¥ = 10,

10,y = =43 + 16x. ¥ = = 12¢% + 16, v =Owhenx =0, x =2, orx =
=2, At x = 0 the curve has a local minimum. At x = 2and x = -2 it hus
local maxima. It is concave upward when 16 — 12x? is positive, which
means that —2'V3 < x < V3,

11, ¥" = 2x — x* The curve is rising when 0 < x < 2, y" = =2x + 2. The
curve is concave downward when x > |,

12, d*yidx* = 0.
13, Pyldx® = 6a.
14. d" yldx* = n! (n factorial)

REM IF Y1 REPRESENTS THE VALUE OF Y WHEN X EQUALS X1
11 REM AND Y2 REPRESENTS THE VALUE O. rvmnxzwusxz
12 REM THEM THE DERIVATIVE DY/DX AT THE POINT X1
REM BE APPROXIMATED BY THE FORMULA
REM  (¥2 - ¥1)/(X2 - X1)
15 REM PROVIDED THAT X1 AND X2 ARE CLOSE TOGETHER.
REM THE EXACT FORM OF THE GRAPHING PROGRAM WILL DEPEND
REM ON THE GRAPHICS COMMANDS THAT ARE AVAILABLE FOR YOUR
18 REM PARTICULAR COMPUTER

16, y=x'— 155 + 48x + 12; 5" = 3 — 30x + 48; y" = 6x — 30; y = 0 when
x = -0.2328, x = 5.0741, or x = 10.1587; ¥" = 0 when x = 2 (local maxi-
mum and x = 8 (local minimum}). ¥ = 0 when x = 5. See Figure A-3.

¥ 200
1ol x=2
o /J\

100} \‘;{

200

~300 =

=400 -

500} two points| with horizonta] tengents

L 1
-m-\i 5 10 15

Figure A-3, ¥
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17, y=x' = 36x" + 4320 = 3T,y = 3 - T2 + 432, ¥ = 6w - 72.y =0
when x = 0.0863; ' = 0 when x = 12; " = 0 when x = 12. See Figure A—4.

¥ 6,000

5,000

4,000

3.000

2,000

1.000

x=12

one point with horizontal tangent

1

5

1
1o 15

Figure A-4,

0 25 30
x

18, y =2 305 + 243x + 600; Y = 3 + 6 + 243, )" = 6x + 6,y =0
when v = -2.4823; y" is never zero; ¥* =0 when x = =1. See Figure A-5.

¥ 20000
15,000
10,000 =
5,000
<
0
5,000 ) )
no pointy with horizontal tangents
=10,000
000 L 1 i 1
150005 ~10 =T 10 20 30
x
Figure A-5.

19, y=x* - 1x' = T + 1552 + 1505 y" = 4x' - 33¢° - ldx + 155, y" =
126 - 66x— 14, y=0whenx=-3, x=-1, x =5, 0orx = 10; ¥ = 0 when
x = -2.1103, (local minimum), x = 2.2696, (local maximum), or x =
8.0906 (absolute minimum); y* = 0 when x = —=0.2045 or x = 5.7045. Scc

Figurce A-6.
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¥ 1000
N -~
-500 -
four real| roots: x=-3,-1, 5, 10
10600 L L
=5 5 10 15

Figure A-6. ¥
20, y =2~ 192" + 1142 — 2560 + 160; 3" = 4z’ — 574 + 228x — 256; y" =
126 - 114x + 228, y=0whenx=1l,x=4, orx = 10; ¥ =0 when x =
1.9210 (local minimum), x = 4 (local maximum), x = 8.3290 (absolute
minimum); ¥ = 0 when x = 2.8625 or x = 6.6375. See Figure A-T7.

¥ 200
100
o
v
-100}
=200
three real roots: x = 1,4, 10
300 1 1 1 1 1
2 4 6 3 10 12
Figure A-7,

2L y=x—dxt = Sx -2+ 105y =40t - 120 = 10x = 2; v" = 1 20 - 24x
~10;y=0whenx=1orx=35;y =0 when x = 3.7102 (absolute mini-
mumy}; y* = 0 when x = -0.3540 or x = 2.3540. Sec Figure A-8.
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v 50
o —
-501
rwo real rootsdr =1, 5
100 | 1 1 1 1 1 1
= -2 =l 1 2 5
Figure A-8. £

22, y=x -G + 20 4 Lo+ 32, y =40’ - 1B + do + 16; ¥ = 120 -
36x +4; y = 0 when x = 4; ¥ = 0 when x = -0,7808 (local minimum), x =
1.2808 (local maximum), x = 4 (absolute minimum); ¥* = 0 when x =
0.1156 or x = 2.8844, See Figure A-9.

¥ 80

TOb=

60

50k

404

-

208

10

o one real rootfr =4

1mn L 1 1 1 1 1 1
R ] 2 3 4 5

Figure A-9. x

23, y=x'= 112 = 7% + 1555 + 800; ' = 42 = 33" - 14x + 155; y" =
12 — 66x — 14, y does not ever equal zero; ' = 0 when x = -2,1103,
(local minimum}), x = 2.2696, (local maximum), or x = 8.0906 (absolute
minimum); " = 0 when x = —0.2045 or x = 5.7045. See Figure A-10.
(Compare this answer with exercise 19.)
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y 1100

-]

Figure A-10.

Chapter 4
Loy =23+ 4) + 321 - 5).

a2 N+ 5
LR vy B P 1

P [ I 11
SRl oy Sl o
PR clax + b}

ex+d  (ex +dP
5. ¥ = (3% + (2 Ha?) = Ixt + 2t = Sxt.

e Y ey = dv , , du
6. ¥ = uv e + w .-ix[m] " + w (u dx-t Y dv
dw dv du'

= MY S5+ ot S+ oy
dx dx
y=,r‘.)"-.rx.\xI+xxxx]+;x.txl=3:’.

v e at=npr Ay o du L v duldy  u dvidx
7. ¥ = ul=ly ,d!x+dx . v o

8, dyfdu = (32)u't. duldx = 2x. dyldr = (J2)x* + 3N 2x),
dvfde = 3xVx? + 3.
9. dyldu = tu=", duldy = 2x. dyldy = x{] + x%)~12,
10, dyldu = (32)u"", duldx = 4. dyldx = 6V3 + 4x.
11. dyldu = gu=", duldx = 2ax + b. dyldx = Hax? + bx + ¢ ) Y} (2ax + b).
12, dyldv = v, dvidu = —(Vu®). duldy = 2x.
dy o -x
d (x4 VT + TG + )
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Chapter 5

1. y' = cos(x¥)2x.
2. y'=2sinxcos x.
3. ¥ =(=Dsin"? x cos x = —cin ¥ csc ¥,
4. y'=xcosx +sinx.
5. ¥ = (sin x)(—sin'x) + (cos x)cos x) = cos® x — sin? x = cos 2x.
6. (a) ¥ = sin(x®) cos x + sin x cos(x?).
¥ = sin(x®(—sin x)} + (cos ¥ N 2x)cos(x + sin x(2x)(—sin 1T
+ cos(x®) cos x
= (2x + IMcos x cos x* — sin x sin x7)
= (2x + 1) cos(x® + x).
(b) When the chain rule is used, the answer comes directly:
¥ = cos (x2 +x) (2x + 1),

7. If A is measured in degrees and 8 in radians, then A = (1808/7). y =
sin{ 1808/w). y* = (180/7) cos( 1B08/7) = (180/w) cos A.

8. ¥’ = cos x. The curve will have horizontal tangents when cos x = 0,
This happens when x = nm + m2, where n is any integer. When n is
even, there is a maximum (as at x = a/2), When n is odd, there is a mini-
mum (as at x = 3m/2). " = —sin x. The curve is concave downward from
x = 0to x = m itis concave upward from x = 7 to x = 2m; elc.

9. y' = weos(2m/10), ¥' = —(7?/5) sin{ 2w/ 1.

10, 32° = 0.559, x = o/6, y' = cos(w/6) = 0.866. Using the point-slope
formula for the tangent line gives: (v — $/(x — 7/6) = 0.866. y = 0.866x +
0.047. When x = 0,559, y = 0.531. The best decimal approximation for sin
32° = 0.5299.

11, y" = H1 + tan® 8)"'%(2 tan 8 sec? §) = %ﬂ = tan # sec 6.
Remember that sec 8 = (1 + tan® §)'2,

12. ¥’ = sec? @ = ljcos? #; y* will never be zero, so this curve has no hori-
zontal tangents. y" = 2 sec @ sec 8tan #; y" = 2 sec? 6tan 8. y" will be posi-
tive when tan 8 is positive, so the curve will be concave upward in the in-

terval @ = 0 to § = #/2. It will be concave downward in the interval 8 =
-m2to b =0.

13. See Table A-2. Table A-2
X (sinx)ix
0785 0.9004
0.5 0.9589
0.3 0.9851
0.1 0.9983
0.05 0.9996

14, dx/dr = (0.BX3) cos(Ir). d2x/di? = —(0.8X9) sin(31) = —9x. From the
equation of mation: —kx = m dx/drt. —kx = m(=9x). k = 9m. k = I8,
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Chapter 6

CALCULUS THE EASY WAY

15. midway between low tide and high tide.

16. (a) dVidr = a cos (ax). (b) w= 2m x 60.

17. dA/dt = wA cos (we + k).

dA/dr will be the greatest when (wr + k) = 0 or 2x or other values coter-
minal with these. These are the values where sin (w? + k) is O—in other
words, when the pendulum is hanging straight down.

18. (a) v = wA cos (o), kinetic energy = KE = @’A? cos’(@n/2. (b)
dKEldt = -marA* cos(ar) sin{ar). (c) potential energy = PE = mawrfA®
sini(a)/2 (d) dPEIdr = marA® sin(ar) cos(av). (e) total energy = TE =
KE + PE = w’'A'2. (f) dTE/dt = 0; that is, total energy is constant.

1. Let r equal the radius of the cone formed by the water, r = ha/2b.
V = bnrth = wah¥12b% dVidh = wa*h¥4b® dVidt = u. dhidt =
4b%u/math® = 0.11 meter/minute.

2. Let x be the distance from the wall to the bottom of the ladder, and
let y be the distance up the wall to the top of the ladder. x* + y* = L2,
dxldt = u. dyldx = —x/VL? = x*. dvldt = —uxiVL? — x% (The result is

negative yishb 2 as the ladder slides down.)}

3. Let D be the distance from the point to the curve:
D=V -+ -2

It will be easier to minimize D* than to attempt 1o minimize D

§=D%=(x*-8x + 16) + (y* - dy + 4)
=x?—Br+ y' -4y + 20

Solving for y, using the equation of the curve, gives:
§=x*— 8277 4 20,
9 <2 - aVEm 0,
x=2y=4,

4. Maximize A = xy subject to 2x + 2y = k: A = by — x% dA/dy =

tk = 2x = 0. x = }{k; ¥ = }k. The shape with maximum area will be a
square.

5. Minimize z = 2x + 2y subjecttoxy = A: z = 2x + 2A/x, dz/dxr = 2 ~
2A/x* = 0. x = VA. The shape with minimum perimeter will be a square.

6. dY/dQ = P - (dC/dQ) = 0. P = dCIdQ = MC. To maximize profits
the firm must choose @ so that price is equal to marginal cost,

7. Take the derivative of the total cost to find the marginal cost:
MC = .0455Q% — 11.5675@ + 751.3
Set the marginal cost equal to the price:
49 = 045507 — 11.5675Q + 751.3
Rewrite the equation:
045507 — 11.5675Q + 7023 =0
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Use the quadratic formula:

_ 11.5675 = V11.5675° — 4 x 04535 * 702.3
g= 2 % 0455

@ = 100.22 or 154
By evaluating the second derivative of the function

490 — (0.01517Q° — 5.7B3T50* + 75130 + 56)
we can find that the optimal quantity is 154.

8.0=179
9.0=15
10. 0 = 120
i Q= 12

12, AC = TC/Q = TC Q™!
Use the product rule for derivatives to find the derivative of the average cost
with respect to quantity:
dAC _ 1C Q™Y + 1dTC
aQ dQ Q dQ
=TC(=Q73) + @' MC
c -1 MC
(P %5
_ MC - AC
!

If MC > AC, then the derivative of the average cost with respect to quantity is
positive, so average cost will increase if the quantity increases.
13. P=alb - Qb
TR = aib Q0 — (P1b
MR = alb - 2Q/b
Set MR = (:
atb = 201h
Q=al2
W, dQidP = —b
elasticity = | —bp/@| = | =blalb — Qib)Q| = | =al/Q + 1]
when { = a/2, then the elasticity = |
15. TR = PQ
To find the marginal revenue, use the product rule for derivatives:

dIR _ pdQ ., dP

dg " dQ dg
- dp
~r+of
=p(1+24)

P dQ
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22, Let the origin be ar the point 20 meters due north of South Beach.
(Notice that this point is also 20 meters due west of East Beach.) Let x
equal the distance from Mongol's boat to the origin, and y be the distance
from Recordis’ boat to the origin. Then y = 2000 — 5¢, and x = 2000 — 7¢,
Let D be the distance between the two boats. D = Vi* + y3, DF =
2000° % 2 + 74 — 48,0001, To minimize D%, ¢ = 48,000/148 = 324,32,
When 1 = 324.32, D = 465 cm.

23, Let y equal the distance that the weight has moved off the ground.
and x be the distance from Mongol to the point on the ground directly un-
derthe pulley. dx/dt = . h*+ x¥= (L = i + ¥ )% dyldx = x/(L = h + y).
dyfdr = uxi(L = h + ¥).

24, Let fbe the amount of fuel that the car uses per hour. Then the total
fuel used on the trip will be F = Tf, where T is the total time that the trip
takes, T = Div.
F = (Div)(10v? = 100v + 290)

= D(10v = 100 + 290/v).
dFidv = D(10 - 290/v%) = 0. 10 = 290/v%. v = VI3 = 5.39.

Chapter 7

1L (13)2 + (¥2x* + 5x + C.
2. (a3 + (b)x* + ex + C.
3 (92 + 10x + C.

4, W4x + C.
S i+ x+ C

6. X%+ (572)x' + (32t + C.
Txt+xd+at x4+ C

8 A+ i+ i+ C

9. x™(m + 1) + 2 Yn + 1) + C.
10, ¥+ 4 1"+ 3 O

11 (1101)x'™ & C.

12. —cos @+ C.

13, sinf + C.

14. tan @ + C (remember what the derivative of the tangent function is).
15, (-Hx? -7t + C.

16. #x3 — x'+ C.

17. ctn 8 + C.

18, sec b + C.
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40, du=cosx dr.y = [ u du=4}sin' x+ C.
4l. Letw=5+6xt du = 2x de.y = A Jutdu.y = —f (5 + 6x9)°1,

42, Letu = a + x". du = nx"Vdv. y = {l/n) [ u'® du. y = (23n)
(a + 2"+ C.

43, Letw =tan x. du = sec* x dx. v = [ 0 du =4 1an* x + C.
44, Letw = x" du = 10x*dx. y = [ sin w dit (f9). ¥y = —fhcos ¥+ C.
45, y = ["*Mn + )] + C
46. y = —cos 8.
47, (a) Integrate once: v = [ —g dt = =gt + C. Since v = vowhen 1 =0,
v = —gt + v,. (b) Integrating again gives h = [(—gr + v} dr.
h==lgit+ vyt + C.h=0whent=0,50C=0h=—=kgr* + 1.
48, v = —gt. h = —igr* + 64.
dy d

 Lae=yirC S ydv=y.
49. | Srdr=y+ G —f yde=y
50.

10 REH THIS PROGRAM READS IN THE COEFFICIENTS O
11 REM A POL\"IIO!IIAL AND CALCULATES ITS I!IDB‘FHI’ITZ INTEGRAL
FMAX. ALLOWED

20 MAXDEG = IMUM DEGREE POLYNCMIAL
30 DIM n(mxm) *COEFFICIENTS OF POLYNOMIAL
40 DIM B{MAXDEG+l) 'COEFFICIENTS OF INTEGRAL
100 GOSUB 1000 "READ IN COEFFICLENTS

110 GOSUB 2000 *CALCULATE INTEGRAL

120 GOSUB 3000 fOUTPUT

130 EII'D

1000 REM READ IN COEFFICIENTS
1010 INFUT "DEGREE OF POLYNOMIAL:™,N
1020 FOR I = 0 TO N
1030 PRINT "INPUT COEFFICIENT FOR X~";I
1040 INPUT A(I)
0 MEXT I

1060 RETURN
1999

2000 REM CALCULATE INTEGRAL
2010 FOR I = 0 TO N

2020 B(I+1) = A(I)/(I+1)
2030 NEXT I

279

2050 N = N+1 'THE DEGREE OF THE INTEGHAL IS5 ONE MORE THAN THE

2051 'DEGREE OF THE ORIGINAL POLYNOMIAL
2060 B(D) = O
RETURN

2999 *
3000 REM PRINT OUTPUT
3010 FOR I = N TO 2 STEP -1
nzo IF B(I) = 0 THEN GOTO 3050
3010 IF B{I)>0 THEN PRINT * + ";
3040 FRINT B{I};"X*"iI;

I

EXT
3060 IF B(l)>0 THEN PRINT " + 'Jlelr'x"f
1)<0 THEN PRINT B(1):"X";
3060 PRINT ™ + C"
RETURN
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L3
{e) _L sin 8 d8 = - cos(n) + cos(-n) =—(-1) - 1 = 0.
18, sin(w/d) — sin(—m/4) = 2V2 = V2 = | 414,
2 2
19, (—lr3]x"'| - ix'*' =
1

z
20, bt —x"| = 17/6.
1

21, The area of the triangle will be the same wherever the triangle is lo-
cated, so we may as well choose the most convenient location. We can
put one vertex of the triangle at the origin, and we can let one side coin-
cide with the x axis. The base of the triangle we can call b, and the height
we can call & (Figure A-2). We need to solve two integrals to find the to-
tal area of the triangle. The first integral represents the area under the line
¥ = hxla, from x = 0to x = a. The sccond integral represents the arca
under the line y = hx/{a — b) + bhi(b — a). fromx=atox = b.

_ [ ' _he bk)

A fﬂdx+.[.(a—b+b—adx
bh__|"
b-a

H
1

o

L
=%ix’ e+

a h .
n+a—bh

= h B _ gh
§ha+a_bi{b at) + bh

= h -
= tha + Kb — a)b + a) + bh

= tha — th(b + a) + bh
= tha — thb - tha + bh
A = tbh.

b
2. J.f(xl dx = F(b) - F(a) = —[F(a) - F(b)]= ~f:fm dx.

aw
3, v= —vcossl = =cos(2m) +cos 0= =1+ 1=0.
o
24, (a) Ax = w6, A= (m/6)(0.5 + 0.8660) = 0.7152. (b) &x = #/18. A =
L

(/18) § = 0.9102. (Here § = ,2. sin(wi/18) = 5.21, which is the sum of

the first eight elements in Table 8-1.) Evaluating the definite integral
shows that the true area is 1.00.

3
25, yay = (V3 - 1] f X dr = 133,
1

26. ya =1
27, Vi, = AL V,p = A 2712 = (,707A. Since V,, = 24, it follows that
Voo = 2.8V me. When Vg, = 1, Vi = 2.8,

28. Since the space from x = 0 to x = a is divided into n rectangles of
uniform width, we can see that Ax = a/n. We can also tell that x, = ia/n.
That makes the area equal to:
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Since a%n® is constant, we can pull it across the summation sign:
PR
A=lim% X A
a== 1% (=]

Now we use the formula:

A =gt Ilm F E 2n?+3n + 1)
= a* 1y L, L
a Ilm( n (m‘)
= 4a?

(This result is the same as the result of the definite integral.)

29. The arca between the curves is the difference of the areas under the

curves:
A=[ forde- st ds
= [ o e+ (-ngeny e
= [0 -gtonds
30.

10 m msmnn THE APPROXIMATE AREA UNDER ONE ARCH OF

11 ¥ = SIN(X) BY NUMERICAL INTEGRATION
20 DX = 3,14159/1000 ‘WIDTH OF EACH RECTANGLE

30 X = DX/2

40 A=0

50 FORT =1 1000

60 A = A+SIN(X)

70 - DX

80 1

:: PRINT "THE AREA IS:";A*DX

31.

10 REM THIS PROGRAM READS IN A VALUE B AND THEN CALCULATES THE

11 REM AREA WDB‘R THE STANDARD NORMAL CURVE TO THE LEFT OF X=B
12 REM AND TO THE RIGHT OF X=0, BY WUMERICAL INTEGRATION

20 DX = 1/1000 ‘WIDTH OF EACH RECTANGLE

30 X = DX/2

40 Am=o0

S50 K = SQR(2+3.14159)

&0 INPUT “ENTER THE VALUE OF B:";B

70 REM -- START LOOP

a0 IF X>B THEN GOTO 120
90 A = A + EXP(=-X"2/2)
100 X=X+ DX

110 GOTO 70

120 REM -- IIUHBRICAL IHTI}GRA‘.I‘ION COMPLETED
130 FRINT "THE
140 BNP%IH‘T UBING “lfi llil":nx-a/::

Chapter 9

Ldnfn=3drLInn=3t+C n=10whent=0,50C=In10.r=%In
(n/10). n = 1000 when ¢ = {In 100 = 1.5 hours.

2, y=2Inx.y = 2x

3. y' = l/x. (Notice that this function is defined only when x < 0)
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W Letw = 0 + 4y + 6.odn = (x + dde vy = [l du v =
Infx? + 4x + 6|+ C.

2. Letu =cos@. du = -sinfdb.y = ~f u™ du = ~In|cos 6] + C.
22. Letu=sin8+4.du=cos8 do.y = [ u~* du = In|sin 6 + 4| + C,
23. See Table A-3. Since f(0) is undefined, it should be marked on the
graph with an open circle (Figure A-12). It is clear that lim,_, f(x) is
somewhere close to 2.8, and of course the actual value of the limit is the

mysterious number ¢. As x goes to infinity, the value of the function goes
to 1. Note that the curve is not defined for x < =1,

¥

Table A~3

x (I+x]lrl -+

10 1.271

8 1.316 3

6 1.383

4 1.495 2 y=(1+ )z
2 1.732 1

1 2,000

0.5 2250 . o

0.25 2.441 +— —t—tt

0.1 2.594 =3 2 - 12 3 4 T
~0.1 2,868

-0.25 3.160

~0.5 4.000

-0.6 4.605

=0.7 5.584

-0.8 7.477

0.9 12915 Figure A-12.
24. Let K = PV. Then the work is given by W = — J'k'v- av.

W = K In(V\/Vy). If ¥, > V,, the gas is being compressed and positive work
by some outside force is required to accomplish this, If V, =2V;, then W=KIn 2,

1
v

25, LetL:J:I'"dI=,:—

+11

En‘l ]|¢|
Tndl n+l
_rﬂ‘ﬂ _I

n+l

m+ L=l
e'=m+ 1)L +1
e=[(n+ DL+ 17™n
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As n approaches =1, L will approximately be equal to the natural log-
arithm of e (which is 1), so:

e= lim [(1+ D+ 1]%"
Letw=n+1:
e= Ijn}] [wr+ 1]

which is the same formula that was found in the chapter.

Chapter 10

1. ¥' = ae™,

2. ¥ = =2xe-t,

3. ¥ = 2aren?,

4. y' = maem,

5.y = (ln 10)107.

6. ¥ = (e™™)cos x — ae™ sin x.

7. Iny =2 Ina. (VyNdy/dx) = In alx* + 2 In x).
dyldx =a” Ina(x* + x* In x).

8. Iny=4In(x —a)+In(x - b).

dyldx = (x = a)"™x — b)Y [i{x - a)"' + Hx - b)),

dy_[ 1 3 2ar+d

9.
x+1 2 ac’+bx+c

10. Iny =In(x = 5} - In{x + 2) - In(x + 3).
¥ =y =5 = (x+2)" = (x + 3]

11, y' = (2p)-V2 g to-w%e [_ 3y — u)io?).

12. y = x".Iny = ninx. (VyNdylde) = nx~'. dvidx = nx*x~', dyidx =

nat-h,

B.oy=w.lny=Inu+Inw
ldy _ldu, 1d
yvdy wde vd

dy 1 du | 1
d@x ""(;a* v dx

dx d. dx”
14, L+ Ax) = flx) _ 7227 = o7 eTed - o
" Ax Ax Ax
_eerr — 1) e (1 + Ax + Ax¥2 4+ Ax¥3 4 -0 — )
Ax Ax '
dy . Av  Axt
E-Eme’{l+-2—!-+—3r-+ )

= gt
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15. (l/a)e™ + C.
16. (l/a)e** + C.

17. Letw = x% du = 2x dx. y = [ $e* du = 4 + C.

18, Letw = ¢" 4+ 5.du = e dx.y = u" du =In|e* + 5| + C.
19. Letw =1Inx. du = x dv.y = f udu = i(In|x|)* + C.

20, y' = cos x — (cos x — x sin x) = xsin x.

21 19.1.

22, y' = (x-e~) + (e~ )2x) = xe" (2 ~ x). This curve has horizontal
tangents where x = Qor x = 2.

23, (a) Let u = sin x. dv = cos x dx. du = cos x dr. v = sin x.
y=sin*x - [sinxcosx dy=sinfx—y+ C.2y=sin'x+ C.
y=tsin*x+ C.y =41 =cos 2x) + C = = {cos 2x + C. (Note that we
can consider the { term to be part of the constant.} (b) & = sin x.

du = cos x dr.
y=Judu=4u'+ C.y=4sintx + C=-}cos2x + C.

(€)y =#Jsin2x dx =~} cos2x + C.

(Remember that sin 2x = 2 sin x cos x.) The trigonometric identity
method seems to be easiest in this case.

24, 3t = In{n/10). €' = n/10. n = 10¢*. When t = 5, the number of bac-
leria will be n = 10e** = 3.3 x 107,

25. A problem of this type, where two different types of functions are
multiplied t her, calls for integration by parts. Let # = xin x. dv = dx.
du -ll-‘-lnx)d'.r v—x‘y‘-x‘lnx—fxdx j'xlnxdx Our first
reaction on seeing that last integral was to k aged, since it is
no simpler than the original integral. In fact, it is exactly the same as the
original integral. But that means we can substitute: ¥ = [ x In x dx, Then
y=x'lnx —4x* - y. 2y = x*lnx ~ §a*. ¥y = §x¥In x - §x* + C. (Re-
member this trick, because it can be used often.)
26, y' = fx}l/x) 4+ xlnx—fx=xlnx.

27. Using integration by parts: Let ¥ = x. dv = e* dr. du = dx. v = ¢*.
y=xef = [ e dx = xe* - 67+ C.

28, y' = xet 4+ ef ~ £F = xet,

29, Letu = x% dv = e~ dx. du = 2xdx. v = e*. y = x*¢* — 2 [ xe* dx.
Now we have to apply integration by parts again, or we can use the re-
sults from exercise 27. y = x%¢* — 2xe™ + 2 + C.

30, ¥ = x%e" + 2xeT — Qxet — 2T + 2eF = xlet,

M. Letu=x*lnr.dv=drdu=x}x"+2xlnx.v=ry=xlnx -
J(x® + 2x*In x) dx. y = x®In x — §x* — 2y. (Here we used the same trick
asinexercise 25.) y = 4x¥Inx = 4x* + C.

32 Letu=x.dv=(1+x)"dr.du=dr.v=3l+xP%y=(203)l+
AP~ (1 + xP2 dx.y = (20301 + x)*2 — @B + )P + C.

3. Lletu=xtdv=sinxdede=2xdx.v=-cosx.y=—x"cosx +
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* cos(x) sin"’ k,

IF a[k]>0 THEN WRITELN(® + *, . (X) sin~*k
ces(x) sin*’,k,

a
IF ak]<0 THEN WRITELN( a

END7

BEGIN ({main program block}
H'RITE[‘B:!I:QI‘ value for m:*};

READLN (m
1nm1c(n, a):
printout(a)

Chapter 11
1. Let x = tan 8. dx = sec® § 8. 8 = arctan x.

- f sec* 6 df J"“””’ d6 = [ctnBcsc O do

tan? @sec @ Jsin®d

= —(sin@)~' + C. sin 8 = x/V1 + x%
- —Vl:—\" +C.

2. Let x = sec 8. dx = sec @tan § d6. & = arcsec x.

sec B tan 8 d6 _ =[di=0+C

y= sec 8 tan &

= arcsec x + C.
A Letu = e*. du = & dx.

y= l_:"!dn=mtanﬂ+c

= arctan ¢* + C.
4. Let x = (a/b) sin 8. dx = (a/b) cos 8 d0. 8 = arcsin (bx/a).

L] "
y= f Va® - a?sin? 0 (a/b) cos 8 d6 = (a¥h) J’ cos? @ df
L] L]

wal

4b "

5. ¥, = (-1 — x®* + C. To evaluate y,, use the substitution x =
sinf. dx = cos 8 d8. 6 = arcsin x. y,lr = [cos*8 df = §# + bsin20 + C =
larcsin x + sin @ cos # + C. We know that sin 8 = x, and cos ¢ =
V1 - sin®8 = V1 — x2 Therefore ¥, = §x arcsin x + x®'1 — x* + C.

6. To find the area of one quarter of the circle, set up the integral: A =
LVr‘—x’ dx. Let x = rsin 8. dr = r cos 8 d8. 8 = arcsin(x/r). A =

Ll ]
J- ricos? 8 d8 = wr¥4. (You can use the result of exercise 4, with @ =
L

rand b = 1.) The area of the entire circle will therefore be w2,
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7. The area will be given by the definite integral A = 2b r V1 = x¥a?
are
dx. Make the substitution x = @ sin 8 and the integral becomes:

it
A = 2ab f cos? 8 dif = Zab[l - ﬁ) = (.61ab.
L] 6 s

8. Make this substitution: x = a sin 8. z = 4ab [ cos® 8 d8.
z = 2ab [(1 + cos 26) d6
= 2ab(# -+ 4 sin 26)

= Zablarcsin (:-] + (i)mq
% = Zab[é[l - ﬁ;)*"‘ - z—:(l - :—:)"‘ + % x V1= x’\"a’]

- 25(1 - i_:)'"' - 2bx’a"(1 - :_:)-v- + 2b( - ;-;-:)m

a8 (r-5) w15

L zb(l -:—:)'“+2b(1~;-:)’”=4bm
9. L:tn=xfa.dx-ndu.y=afﬁd’u,y=ﬂmun(da]+ C.

0. y=— j(.ﬁn]’ o dx = (la) arctan(x/a) + C. (Use the result

from exercise 9.)
11, y = farctan(x/5) + C. (Use the result from exercise 10.)

12, y = J-ugljdn = farctan [(x + 2/3] + C.

B.y= J.;'_:c]qi du. Define d so that d* = ¢* — b,
y = (I/d) arctan[(x + b)d] + C.

14. Lcln=x+i.y=juz+lwdu, Let d = VIU/A. y = (1/d) arc-
lan[(x + 4/d] + C.

15, (a) x = sin @ dv = cos Bd6.0 = arcsinx. v = [ cos? BB, v = 16 +
isin20 + C = taresiny 4+ 1V = 2% + C. (b x = cos 6. dv =
—sin 86, § = arccos.x.y = — [ sin?0dé = =9 + isin20 = —larccosx +
15(1 = ¥)'2 + C. You can decide for yourself which method is easier.

16. There is one last hope for an integral that seems to defy any other
means of solution: integration by parts, Let # = arcsin x. dv = dx. du =

_ o - L x L
(1 = x%712 dx, v = x.y = xarcsin x mdx. This integral can

be solved with a regular substitution: Let 4 = 1 = x* y = x arcsin x +
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%-71___A_, B _
(x-—4x -3 -4 (x-3)
xx-T=Ax~-3A+Br-4B.A=1L.B=1.
y=Jllx=H'+(x=N"dr=Mnjx—4| +In|x-3] + C.
2x+9 A B
m‘(ix+5)(x—]]-ix+5+x—l'
B=2A=1Ly=2jtx+5 +2mlx-1] + C.

1Ly =(=2-3VI)In|x - Vi| + 3+ 2V In|x - 1].
12 y=tin|lx - 1] +iIn|x + 1| + C.

13. y = ¢In{1 + x) - §In(] - x).
a1 . 1
00+x) Al—x) (x—-Iix+1)

14, ¥’ = (sec x + tan x)~'(sec x tan x + sec? x)
= (sec x + tan x)~'(sec x + lan x) sec x = seC x.

15. ¥' = —=(cos x)~Y—sin x} = tan x.

IG.y'={(x'+2x+2]—‘(2x+2]—m+x—:—l
__x+1 _ 2 2
+2x+2 x*+2x+2 x-1
=2 4, x=1

PSR T A

17. This integral requires integration by parts. It is hard to tell at first
glance what the best parts are, but after some trial and error it turns out
that the best strategy is 1o set ¥ = sec x, dv = sec? x dv. du =

secxtanxar. v = tanx. y = secxtanx — [ tan? x sec xdv,
Using the secant-tangent identity gives:
y = sec xtan x — J sec® x dx + [ sec x dx
=secxtanx -y + In[secx + tanx| + C
=fsecxtanx+4nfsecx +tanx| + C.

Differentiating, we obtain:
¥ = §{sec x sec? x + sec x tan® x) + ¥ sec x
= f{sec® x + sec’ x — sec x + sec x)
= sec? x.

18. Theareaisgivenby A = 2 I”b V¥a® — 1 dx. Make the substitu-
tion x = a sec 8. The final result uis 2.14ab.
19, Let x = tan 6. y = [ sec® 6 d0. Use the result of exercise 17:
y=tdsecHtan @+ §In|sec @ + 1an 8] + C
=4xV1 + 2+ {Inlx + VI + 33| + C.

20. Letx=tanf.y=[sec 8 df.y=In|sec O+ tan8| + C.y =In|x +
VT +it| + C.

291
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bx+5-V| , -

36, b* = dac = 13. C sy = 13711 .
ac ase @y "ex + 5+ VI3

denomi = X
37. Factor the Ty f{x,+ e -+ D dx.
After solving the partial fractions the result is:

= —-Xx 1 1
y “2{:*4»»*4&-1;*4(”11]“

= ~}ln|x*+ 1| +dln|x - 1| + iln|x + 1} + €.
38, After solving for the partial fractions:
=1 - _x+1
r= Hzcx D e n] &
= §1n|r— 1] - l'ln|.\"+ 1| — farctan x + C.

2= ()

ey (3)

IS
D2 D2+ 4a?? + daxk + B
4a

= dac — B + da’s + daxb + I
[
art + by + ¢

40, Letx; = x + b/2a. Then:

1
Z= f < = dx,
Valx? — xbla + b*ida?) + bx, — b2a + ¢
S [ E—
Vax,? + (dac—bDda

Let K = (4ac — b*)/da. Then:

1
B
Klax2iK + 1)

Lelcos&=\/ix (Note that t of the plions in the probl
[ n(l].K>0.nnd\'rrz_°=.g,;

dy = = ‘_fasin ade

2=ﬁj(ﬁ)(-\/§sin&)d&

] __ 1 I /~a
Z= \/-_afda_ \qﬂ— v_—aam:us(\/x—x,)
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Ax) — V(x))/Ax = n SO, dVidx = 7lfCol [ dV = [ alf (0] dx. V(x) =
F(x) + C. V(x) = 0 when x = a. Solving for the arbitrary constant gives
C = =F(a). Therefore V(x) = F(x) — F(a). The total volume of the solid
will be V= F(b) - F(a).

6 V= j wri— ¥ dy. V = (524)mrd,
iz

7, V= j wlrt = yO dy. V = 72 — m{23)r? = (4/3)mr.

8. Divide the pyramid into little squares of side x. Let z be the distance
from the top of the pyramid 10 each square. Let h be the height of the pyr-
amid, and s* be the area of the base. z/x = his (by similar triangles).

o
V= I x* dz = 4s°h.
-k

9. volume = f w2 - Py

1
= Trf' (4 = dy + xfydv
=x f' 14 = VT = 3% = (1 = ¥ dv
I
- 11'[5_!'

1 F—1 1
] f_' VT = Vv - m_\-‘l_ll
=w(l0 - 2m + )

= 0% =2u7

10. The calculations are almost the same as the previous exercise. except the
radius of each pancake is now (2 + v}, The resulting volume is 107 + 272

.
1. volume = j; 2wl

= 2% ) Vit = vy
y

2wy

Letir = r2 = x2, Then the integral becomes:

-2 iy = (= 2m) U3 a3 s
= 43 o
R
11, volume = o 2mx (00 = x32) dy

=2r (S‘D.\'l Iir:ﬁ - l.f8,14||‘nﬁ.)

= 2w (30200 ~ 40.000:8) = 10.000=

10 REM THIS PROGRAM FINDS THE VOLUME
11 REM OF A SFHERE WITH RADIUS 1

12 REM BY DIVIDING THE VOLUME INTO BARS

o DX 1/100 *LENGTH OF ONE SIDE OF THE BASE OF THE BARS
40 = 0

30 FoR X = o (2%/2), 10 1 STE

60 FOR ¥ = (DX/2) TO snn::. - ¥X~2) STEP DX

70 z = SQR(1 - X*2 - ¥~2)  'HEIGHT OF EACH BAR
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B0 V=vV+Z
90 NEXT ¥
100 NEXT X

110 PRINT "THE VOLUME OF ONE EIGHTH OF THE SPHERE IS:";VaDX~2
120 PRINT "THE VOLUME OF THE WHOLE SPHERE IS:";8+V4DX*2
130 END

Chapter 14

1. |+ (dyvldx) = | + 9x/4, L = 2.09.
2. 1+ (dyldx)f=1+x% L = r\"l+z‘dx L=4aVi+a®+ ¢In
(g +V1+a%) Whena =2, L =296

3 1+ (dvldx)* = 1 + tan® x = sec® x, L = 0.88. The length of the curve
from x = 0to x = =2 is infinity.

4 1+ (dyldx)®=1+a® L=bV1+a*
5. L=FVI+{r"dx.
o

6 L =fmdx

7. L=J"VI + cos?x dr.
8 1 + (deidy)t = 1 + lidy. A = 2w m\/y'\fl F Vdy dy. A =
4 e
nfw Viay ¥ 1dy = 28m/3.
34

9. 1+ (dvldx)*= 1+ a* A = 2maV1 +a"r.t dx. A =mab™'l + a’.
o

L
10. 1 + (dyide)? = 1 + cos? x. A wzﬂf sin x VI ¥ cowr dx. Let
o
u=cosx. A =w[2V2 + In{l + V2) - In(VZ - 1)] = 14.42.
1L 1+ (@l =14 x4 = zwj'ixa VT xidr. Letu = 1 + x4,
-(ﬂ'-‘E)I u"’ du. A = (@[(l + a)¥* — 1]. When a = 2, the sur-
face area is 24.12.
12, 1+ (dylds) =1+ e=. A = erJ‘e‘\/l+9‘“tix Letu=e' A =
Zwr VI+utdu A =nle® VI+e® + In(e + V1 +e®) — V2~
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20 INPUT "J\. .J\
30  INPUT "
40 DEF mtm = SIN(X) ‘THIS LINE CAN BE CHAMGED TO USE THIS
41 *PROGRAM FOR OTHER FUNCTIONS
50 DX -a”m“

-

= FNY(X+ x) - x)
= SQR(DX~2 + DY"2)
+
+

PLETED
150 PRINT "THE LENGTH OF THE CURVE I5:";S
160 END

1. Nonlinear (because of the y? term).

2. Linear and nonhomogeneous.

3. Nonlinear (because of (dy/dx ).

4, Nonlinear (unless f(y) is a linear function of y).
5. Linear and nonhomogeneous.

6. Nonlinear.

7. Nonlinear.

8. Tiax, + bxg)

= i'l'%:ﬁi + e+ filn) %(u. + bxy) + fdtHax, + bxy)

d" d"
ar "l"'bd- 2 ¥

+ bfir) 2 "" + afdre + bt

+ afun G

=a—

a [F*""*fn(”%*fui”lh

d
'”’[d:- '+f|(f)ﬁ+fdff)]h

Tlax, + bxg) = aTx, + bTx,.

9. Set up the characteristic equation; 2 + r — 6 =0.r = 2, — 3.
x=Aet + Be ¥ A=12,8=19,

0.2 +r+1=0r=%=1=iVIo=e?(AsinVIin2

+ Bcos V@HE}.A =23, B = 4/3.

IL P +9=0.r= =3 x=Asin}+ Beos 3. A = 160, 8 = 20,
.2+ Zr+l=0r==lx=Ae" "+ Bre-l. 4= -4 8= -7,

Chapter 15
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1B. P2 —d4r=0r=04x=A+8%A=1T8=3

14. In order for the characteristic equation to have one real root, the dif-
ferential equation must be of the form;
dix dx bix _
gt b 3 0.
When x = Ae™ + Bre™, dxldt = (Ar + B)e™ + Brte", and dx/de® =
(Ar* + 2Br)e™ + Br’.re" {No1e that b = —2r.) Therefore:
d'x | pde y B _ (47 4 2Br)em + Brite — AAr + Bre™

ra dr 4
— 2Brite™ + r*Ae™ + Birte”
=0

15, x = 0,658 sin(2t — 1.4) + e™"¥ A, sin(1.66  + A,).

16, —0.6484 = 0,658 sin(—1.4) + A, sin A;. 1.884 = 2(0.658) cos(—1.4) +
1.664, cos A; + 1.54, sin A;. 0 = A, sin A;. 1.66 = 1.664, cos 4; +
1.5A,5in A;. Ag =0, A, = 1, x = 0,658 sin (2r — 1.4) + £~"*' sin(1.66 ).

17. The equation of motion in this case is: (dx/dt®) + (dx/dr) + 4x =0,
rPtdr+d=0r=-2 x=Ae™™ + Bre™™. Notice that, if the friction
is strong enough, the ride will not oscillate at all. This situation is known
as critical damping.
18. The characteristic equationis: r*+ Sr +4=0.r= =l,orr = —4,
x = Ae™ + Be~¥. This situation is known as overdamping.
19.y" = 1/2(e™ - &™)

= A - 24

L4+ y™ = 114 + 2 4+ )

= [1/2(e™ + ™)
= l2a)(e™ + ™)
Therefore, ay” = JT+y'*

10 REM PLANETARY MOTION PROGRAM

100 REM DEFINE CONSTANT VALUES

110 G = 991.047 'GRAVITATIONAL CONSTANT TIMES MASS OF SUN
120 REM ORBITAL ELEMENTS FOR SATURN

130 A = 1426 * BEMI MAJOR AXIS
140 B = 1423.7% ¢ SEMI MINOR AXIS
150 E = .05568 ! ECCENTRICITY

124:.6 'X COORDINATE OF PLANET

260 DT = 1/48 *THE PROGRAM WILL UPDATE THE POSITION

261 *AND VELOCITY OF THE PLANET EVERY HALF HOUR
270 INPUT “ENTER NUMBER OF DAYS PROGRAM WILL RUN:";DMAX

300 REM == START LOOP

310 Y= B L SQRQL - (X ¥ E4A)“2/A°2)

320 IF DXDT>0 THEN Y=-¥Y

330 R = SQR(X*2 + ¥~2)

340 D2XDT2 = -GAX/R*3
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as0 DADT = DXDT + D2XDT2 * DT
DT & DT

160 X=X+ DX

370 T =T + DT

1] I=3I+1 E NUMBER OF HALF HOUR PERIODS

180 IF (m(l{l&)l-tbﬁlflﬂl 'I‘I'IBN GOTO 300

a0 D=D+ 1 HT.INBBR OF DAYS THAT HAVE ELAPSED
410 FRINT "DAY:" l'ﬁ:" x:':x Y:miy

420 IF D<DMAX THEN GOTO 300
0 END

21. Substitute into the formula given in the chapter.

Chapter 16
1. 3?% 3649.97; 364?.93: 3649.92; 3649.92
271 T
3 u 2
4. ¥ x
5, 2o 2y
[ A T R [
T AVE+ 2 WVE T 2
8. qew+hr bear i
9 2ar + by +d by + 2ey+ e
10, nix—ay =" n{y—by ="

1. acosfax+bv) b coslax+by)
12, & . Gx+y+9
dx
9z
— =x+4y-7
dy
Set both of these equal to zero, and solve the resulting two-variable, two-
cquation system to find x = =1.87, y = 2.217. Now calculate the sccond
derivatives:

a2
z,,ﬂax,=—[6x+y+9] 6
zw=§--a—y[x+4y-71=4
Fz _ 2
== 4y-T]=
2, 39y alr[x-l- y=T]=1

Since 6 x 4 > 1, therefore z,z > (f, )", and this point is either a maximum
or a minimum. Since z, and z, are both positive, the point (x = -1.87,
y=2217) is a minimum.
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13, x=0.5, y =0, saddle point

14, x=25, y= 1.5, saddle point

15, x=1.739, y =-0.304, maximum
16, x =1,y =-2/3, saddle point

1o P Ky R (- - w
8z _ 1 -2 =32 (-1 —
2 o W KR (-2 -

Set the partial derivatives equal to zero and divide the top equation by the
bottom equation:

(&)

=
-0

B.x=1Ly=3:=2
19. aUax = W2 ka2 + 3332
atliay = U2 k(x* + y3)=32 2y
Simplify the result, and let r = Va2 + 32 (the distance from the planet to
the sun). Then the gradient vector is:

(E ky
Pt
Let #represent the angle formed by the x axis and the line connecting the sun to

the planet. Then cos 8 = x/r and sin § = y/r. Therefore, the negative of the
gradient is: /

(—krc:c:s 8‘ —k;in 8)

The magnitude of the force is proportional to 1/+2; in other words, if the
distance from the planet to the sun doubles, then the force becomes one-fourth
as strong. By experimenting with different values of # you can discover that the
force is always pointing toward the origin (in other words, toward the sun).

20, (a) Since 6 does not appear in the Lagrangian expression, aL/af = 0.
3Lid8 = mr® @'. The Euler equation then states that

Therefore, AL/@8" does not change as time changes. So mr? @' is a constant
(call it A), which rey the angular of the planet. This result is
used in the next part of the problem.

2
®E=12m(E5 4 1) -4

2 AT L%
mo omirt o omr

©r =

. dr _r &
(d) From the chain rule, il ordf = r,dr
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Therefore, smceﬂ’ Almrd:

N e
A%

-r-" mr

lfr— dr
3'.‘. 2mE % 1

et TR
(e)v = Urdr= —dvii?

j —_—dv
6= 2m£ 2mkv
A..
Use the furmul.a from chapter 12, exercise 40, witha = =1, & = 2mk/AZ,
and ¢ = 2mE/A%

¢mos( —2fr + 2mkiA? )
V1 VaAmkHAY + SmEIA®

§ o kAN (1 — A2Irmk)
€08 0= ViEamRIAY (1 + 2AEImid)

=

cos 8 = 1 = A¥rmk
V1 + 2AZE/mk?

(f)cos 6 = l—_rﬁ

B
| — ecos @

This is the polar coordinate equation for an ellipse with eccentricity e with
one focus at the origin (which represents the location of the sun). This problem
establishes that planets move in orbits shaped like ellipses, which is a fact
discovered by Johannes Kepler in the early 1600s. However, Kepler was not
able to derive that fact from the principle of gravitation, as we have done here.
Instead, he needed to rely on many observations of planetary positions, which
is much harder than solving this problem has been. For more information on
polar coordinates, see a book on trig y such as Trig v the Easy
Way. For more information on the physics of planetary molnon. see a book on
mechanics such as Marion, Classical Dynamics of Particles and Systems
(Academic Press, 1970).

21. Note that L does not depend on v, so éL/dy = 0. This means that the right
hand side of the Euler equation must also be zero, or that §L/dy' must be a
constant (call it K). Solve for aL/dy":
aL 11+ ¥t 2y
a2 V2gx

v

= Vgl + y'?)

re=

303



ANSWERS TO EXERCISES 305

29, [a)f(x} = —xe—v,
Fx) = (3 = De=vr
[ = (—x‘ + e -
(b) The derivatives all follow a pattern: they consist of the factor e
multiplied by a polynomial in x. Therefore, all that is needed to determine the
derivatives is to determine the coefficients of the polynomial, The coefficients
for the ith derivative can be determined if you know the coefficients of
derivative i — 1.
REM THIS PROGRAM FINDS THE COEFFICIENTS IN THE
REM DERIVATIVE OF Y=EXP(-X~2/2)
REM THE PROGRAM ONLY DISPLAYS THE POLYNOMIAL IN X
REM TO GET THE COMPLETE DERIVATIVE, YOU MUST INCLUDE
REM THE FACTOR EXP(-X"2/2)
N=14
100 DIM A[!H-l N+1)
110 A(0,0)=1

140 A;ru,:uu-- (.0 n(1+1,.:r+1)
IF J>0 THEN A(I+1,J-1)=J%A(I,T)+A({I+1,7-1)
160 NEXT J
170 NEXT I
200 FOR I=0 TO N
205 PRINT “DERIVATIVE ":I
210 FOR J=0 TO N

215 IF A(I,J)=0 THEN GOTO 210

220 IF A(I,J)>0 THEN PRINT " +";A(I,J);
221 IF A(I, J <0 THEN PRINT ™ ";A(I,J):
222 IF J>0 THEN PRINT "X";

223 IF J>1 THEN PRINT "*":J;

230 NEXT J
240 PRINT
245  PRINT "--=-=%
250 NEXT I
260 END
(c) Let fix) represent the antiderivative function such that

flxy = Jr:— 7 dy
dffdxy = e—+>2, We do not know a formula for fix). However, we know that fi0) =
0. We also know all the derivatives for flx), since the ith derivative of flx) is the
same as derivative i — | of e =**2. As shown in the previous problem, the formula
for these derivatives is very complicated. However. in order to use the Taylor series
we only need to evaluate the derivatives where v = 00, which is convenient because
it means we can ignore most of the terms in the polynomial contained in the
derivative.

1 REM THIS PROGRAM CALCULATES AN uvmxmnou FOR THE
2 REM AREAR UNDER THE STANDARD NORMAL CURVE

3 REM USING A TAYLOR SERIES

10 K-(O‘L%‘H(l] 1.5

10 Z=B=BA1/6+BA5/40-B~7/316+B~9/3456=B11/42240+4B413/599040
40 Z2=Z/K

50 PRINT B,

60 PRINT USING "$#¥##88. 4444722

70 END

30.

1 REM  THIG FROGRAM PLOTS THE ORBIT OF A SATELLITE IN EARTH
F REM  ONBIT USING NUMERICAL INTEGRA

10 PRINT ENTER SCALE FACTOR (FOR EXAMPLE, 10 MEANS 10 EARTHO®

11 FPRINT -mwmi ]
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15 INFUT ESCALE

20 XMAX~-SCALE*TO00

25 THAX=SCALE*T000

30 BH=200 "SCREEN HEIGHT

2 BH=400 ‘SCREEN WIDTH

s DT=.5 'TIME INTERVAL FOR UPDATE (SET AT 1/2 SECOND)
36 ‘EMALLER VALUES OIVE MORE ACCURATE RESULTS, BUT
a7 "REQUIRE MORE TIME TO CALCULATE

40 GM=3.99+105 ‘GRAVITATIOHAL CONSTANT TIMES MASS OF EARTH
41 ‘IN UMITS OF KILOMETERS*1/SECOND*2

49 v

50 PRINT “ENTER INITIAL DISTANCE FROM CENTER OF EARTH (IN"
51 PRINT “KILOMETERS) : "

60 INPUT RO

70 PRINT "ENTER INITIAL FOBITION ANGLE (IN DEGREES):";

[1] INPUT 1.14159/180 ™

L] 'SET INITIAL X AND Y POSITIONS:

91 X=RO*COS (THETAD) : ¥=RO*SIN{THETAD}

85 R=BQR(X*2+Y*2)

100  VCIRC=SQR(GM/R)

110 FRINT AT THIS POSITION, A VELOCITY OF "jVCIRC

111 PRINT "KILOMETERS PER SECOND IS NWEEDED FOR A CIRCULAR ORBIT®
120 FRINT "ENTER INMITIAL VELOCITY:";

110 INPUT VO

140  PRINT "AT THIS POSITION, A VELOCITY AMGLE OF J (THETAOD+30)
11 nm "DEGREES IS NEEDED FOR A CIRCULAR

150 “ENTER INITIAL VELOCI "

160 r.l!vr PHIOD:FHIO=PHIOD®3.14159/180 *CONVERT TO RADIANS

170 X AND ¥ ¥

i mw-coetmo:: VY=VO*SIN(FHIO)

190 SCREEN 2 ‘SET TO GRAPRICS MODE

152 cLs

195  GOSUB 500 "MARK POSITION OF EARTH

159 "

200 REM *** BEGIN LOOP

205 IaI+l

210 R=SQR(X*2+Y*2) 'DISTANCE OF SATELLITE FROM CENTER OF EARTH
213 IF R<6370 THEN LOCKTE 1,1:PRINT "CRASHI": END

230 A=OM/R*1 'MAGNTTUDE OF ACCELERATION DUE TO GRAVITY
230 AX=-A*X/R 'X COMPONENT OF ACCELERATION

240 AY==AY/R 'Y COMPONENT OF ACCELERATION

250 XaX+VE*DT+(AX*DT*2}/2 ‘UPDATE X COMPONENT OF POSITION

260  Y=T+VY*DT+ (AY*DT*2) /2 'UFDATE ¥ COMPONENT OF POSITION

270 VESVX+AX*DT 'UPDATE X COMPONENT OF VELOCITY

280  VI=VI+AY*DT "UFDATE ¥ COMPOMENT OF VELOCITY

290 GosUB 400 "PLOT LOCATION COF mm O SCREEW

300 GOTO 300 "THIB RUNS AS LOOF;
0L mmmmmmwnmmr
359 :

400 REM *** PLOT POINT

410  X1=SW*X/XMAX+SW/2

415  Y1=50/3-SH*Y/YMAX

420 Te=I*DT

435 LOCATE 1,60:PRINT "Xu"; :PRAINT USING*RRRIN.HN";X

430 LOCATE 1,60:PRINT "T="; :PRINT USING"FHEEERE.0E";Y

435 LOCATE 3, 60:FRINT *Tw=";:FRINT USIHG™HHSIE. M ;T 'TIME, IN SECONDS
440 VeSQR(VX*2eVY*1)

445 LOCATE 4, 60:FPRINT *Va=";:FRINT USING®#S4R83E.08";V 'VELOCITY, KM/BEC
450 LOCATE 5,60:PRINT "Rw";:PRINT USING “#iH#dd 1R 'DISTANCE
451  'FROM CENTER

460 PSET (X1,Y1)

470  RETURN

(11 *

500 REM MARK POSITION OF EARTH

505 EARTHRaG180 'RADIUS OF EARTH IN RKILOMETERS

510 FOR ANG=0 TO 380

530 ANJR=1.14159*ANG /1080 'CORVERT TO RADIANS

530 X1=SWYEARTER*COS (ANGR) /XMAN+EW/2

YleSH/3-SH*EARTHR*SIN (ANGR ) /YMAX
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