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Introduction

Master Math: Trigonometry is part of the Master Math series,
which includes Master Math: Basic Math and Pre-Algebra, Master
Math: Algebra, Master Math: Pre-Calculus and Geometry, and Master
Math: Calculus. Master Math: Trigonometry and the Master Math series
as a whole are clear, concise, and comprehensive reference sources pro-
viding easy-to-find, easy-to-understand explanations of concepts and
principles, definitions, examples, and applications. Master Math: Trigo-
nometry is written for students, tutors, parents, and teachers, as well as
for scientists and engineers who need to look up principles, definitions,
explanations of concepts, and examples pertaining to the field of
trigonometry.

Trigonometry is a visual and application-oriented field of
mathematics that was developed by early astronomers and scientists to
understand, model, measure, and navigate the physical world around
them. Today, trigonometry has applications in numerous fields, includ-
ing mathematics, astronomy, engineering, physics, chemistry, geo-
graphy, navigation, surveying, architecture, and the study of electricity,
light, sound, and phenomena with periodic and wave properties. Trig-
onometry is one of the more interesting and useful areas of mathematics
for the non-mathematician. This book provides detailed, comprehensive
explanations of the fundamentals of trigonometry and also provides
applications and examples, which will hopefully provide motivation for
students to learn and become familiar with this truly interesting field of
mathematics.

Trigonometry involves measurements of angles, distances,
triangles, arc lengths, circles, planes, spheres, and phenomena that
exhibit a periodic nature. The six trigonometric functions, sine, cosine,
tangent, cotangent, secant, and cosecant, can be defined using three
different approaches: as ratios of the sides of a right triangle (Chapter
3), in a coordinate system using angles in standard position (Chapter 4),
and as arc lengths on a unit circle, called circular functions (Chapter 4).
Trigonometric functions are found, described, and illustrated in numer-
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ous venues including graphs, equations, vectors, polar coordinates, com-
plex numbers, exponential functions, series expansions, and spherical
surfaces.

The contents of this book include a review of basic geometry,
definitions pertaining to triangles, definitions of the trigonometric
functions and circular functions, graphs and the periodic nature of
trigonometric functions, inverse trigonometric functions, trigonometric
identities, trigonometric equations and inequalities, vectors, polar
coordinates, complex numbers, relationships between trigonometric
functions and exponential functions, hyperbolic functions, and series
expansions, as well as spherical trigonometry.

A note on calculators and computers: A widely used tool in
trigonometry is the graphing calculator. More than 60 of the graphs in
this book are drawn using a graphing utility that is a computer-software
version of a graphing calculator. Graphing calculators and graphing
utility software packages provide a means to quickly graph both simple
and complicated equations containing trigonometric functions that
would be tedious to do by hand. Many graphing calculators and graph-
ing software packages will graph a range of equation types, including
rectangular, polar, and parametric equations. In this book, I used the Tl
Interactive! software package by Texas Instruments. Computers, in gen-
eral, are extensively used in mathematical calculations and in recent
years have provided a means to model and measure extremely complex
aspects of the physical world that would be virtually impossible to do by
hand. Computers also allow us to accurately analyze complex measure-
ments and to design intricate structures that expand from strict geo-
metric shapes created by hand to geometrically elaborate architecture.



CHAPTER 1

Review of Numbers
and Coordinate Systems

1.1. Review of numbers, including natural, whole, integers, zero,
rational, irrational, real, complex, and imaginary numbers

1.2. Absolute value

1.3. Significant digits and rounding numbers and decimals

1.4. Review of coordinate systems, including two- and three-
dimensional rectangular coordinates, polar coordinates,
cylindrical coordinates, and spherical coordinates

1.5. Chapter 1 summary and highlights

1.1. Review of numbers, including natural, whole, integers, zero,
rational, irrational, real, complex, and imaginary numbers

« The following is a hierarchy of numbers, in which groups above
encompass groups below. Each group of numbers is described after the
hierarchy.

Complex numbers

l Imaginary r:umbers

Real numbers
R

Rational numbers Irrational numbers
Integers
Whole numbers

Natural numbers

e Natural numbers are the original counting numbers beginning with
number 1. The set of natural numbers written in the form of a set is:
Natural numbers = {1,2, 3,4, 5,6, 7, ...}

o Whole numbers include zero and the natural numbers greater than
zero. Whole numbers are depicted on the number line and include zero
3
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and numbers to the right of zero.

>

01 2 3 4 5 6 7
Whole numbers written in the form of a set is:
Whole Numbers = {0, 1,2, 3,4,5,6,7,8,9, 10, 11, ...}

» Negative numbers and numbers in the form of fractions, decimals,
percents, or exponents are nof whole numbers.

e Integers include positive numbers and zero (whole numbers) and also

negative numbers. Integers can be depicted on the number line:
I

-5-4 -3-2-1 0+1+2+43+4+5

The set of all integers represented as a set is:

Integers = {... -6, -5,-4,-3,-2,-1,0,1,2,3,4,5,6,7, ...}

* Consecutive integers are integers that are arranged in an increasing
order according to their size from the smallest to the largest without any
integers missing in between. The following are examples of consecutive
integers:

{-10, -9, -8, -7}

{-2,-1,0,1,2,3,4,5}

{99, 100, 101, 102, 103, 104, 105)

¢ Numbers that are not integers include numbers in the form of
fractions, decimals, percents, or exponents.

¢ To add or subtract negative and positive integers, remember the
number line:

A

-5-4 -3-2-1 0+14+2+3+4+45

When numbers are added and subtracted, think of moving along the
number line. Begin with the first number and move to the right for pos-
itive numbers and addition or left for negative numbers and subtraction
depending on the sign of the second number and whether it is being
added or subtracted to the first number.

* Multiplication and division of negative and positive integers: If a neg-
ative and a positive number are multiplied or divided, the result will be
a negative number. If two negative numbers are multiplied or divided,
the result will be a positive number. Summarizing, where (+) denotes a
positive number and (-) a negative number:

4
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BB =), O =, HE) =)
HH =, O =E), HEO =), H=0)

» Zero is both an integer and a whole number, and is also an even
number.

If zero is multiplied by any number n, the result is zero:n x0=0
If zero is divided by any number n, the result is zero: 0 /n=0
Dividing any number n by zero is undefined: n / 0 = undefined

* A number is a rational number if it can be expressed in the form of a
fraction, x/y, and the denominator is not zero. Every integer can be
expressed as a fraction and is therefore a rational number. Whole
numbers are included in the set of integers, and whole numbers are also
rational numbers. The result of dividing two integers (with a nonzero
divisor) is a rational number. Rational numbers can be represented in
the form of decimals that either terminate or end, or as a decimal that
repeats one or more digits over and over. For example, 1/3 = 0.33333...
and 1/4 = 0.25 are both rational numbers. Remember: The notation for
repeating decimals is a bar above the digit or digits that repeat:

1/3=0.3

* A number is an irrational number if it is not a rational number and
therefore cannot be expressed in the form of a fraction. Examples of
irrational numbers are numbers that possess endless non-repeating digits
to the right of the decimal point, such as, = 3.1415..., and

V2= 1.414213562..., V3 =1.732050807..., v/5 =2.236067977...

where the ... represents that endless non-repeating digits follow.
Irrational numbers not only include square roots but also cubed roots
and other roots. Remember: Roots are represented by

\/; for square roots, 3/x for cubed roots, and i/; for fourth roots.

An alternative notation is xm, xm, and x" 4, respectively. (See Master
Math: Basic Math and Pre-Algebra, Chapter 9 Roots and Radicals, for

an in-depth explanation of roots.)

* The real number system is comprised of rational and irrational num-
bers. Real numbers also include natural numbers, whole numbers, inte-
gers, fractions, and decimals. Real numbers can be expressed as the sum
of a decimal and an integer. All real numbers except zero are either
positive or negative. All real numbers correspond to points on the real
number line, and all points on the number line correspond to real
numbers. The real number line reaches from negative infinity (—0) to
positive infinity (+c0).

5
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4 -3 -2-1-50 1V22523n4

Real numbers include —0.5, -2, 5/2, and & (where © = 3.14159...).
All numbers to the left of zero are negative.
All numbers to the right of zero are positive.

e Complex and imaginary numbers: Every real number corresponds to
a point on a number line. There is, however, no real number equal to

+/—1 and no point on a number line corresponding to 4/— 1 . This
means that the equation x* = —1 has no real solutions. Because there is
no number that when squared equals —1, the symbol i was introduced,

such that /—x = iJ; , where x is a positive number and (i)* = —1. For
example, (V-4 Y’ = (iv4)(iv4) =i* J(4)(4) = —4 . Numbers
involving 4/— 1 are called complex numbers.

e Complex numbers involve i and are generally in the form (x + iy),
where x and y are real numbers and i is imaginary. In the expression,
(x + iy), the x term is referred to as the real part and the iy term is
referred to as the imaginary part. A real number multiplied by i forms
an imaginary number, such that:

(real number) x i = (imaginary number)

A real number added to an imaginary number forms a complex number,
such that:

(real number) + (real number)(7) = (complex number)

* Complex numbers are added or subtracted by adding or subtracting
the real terms and imaginary terms separately. The result is in the form
(x + iy). For example:

(1+2))+(B+4i)=(1+3)+Qi+4i)=4+6i

« Complex numbers are multiplied as ordinary binomials, and (i)’ is
replaced by —1. For example:

(1 +20)(3 +44i) = (1)3) + (1)(4:) + (21)(3) + (2i)(40)
=3+4i+6i+831)=3-8+10i=-5+10i

* Complex numbers are divided by first multiplying the numerator and
denominator by what is called the complex conjugate of the denomi-
nator. Then the numerator and denominator are divided and combined

as with multiplication. For example, the complex conjugate of (3 + 2i) is
(3 — 2i). The product of a complex number and its conjugate is a real
number. Remember to replace (i)’ by -1 during calculations. For
example, divide the following:

6
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(1+2i) = (B +4i)=(1 +2)3 - 4i) + 3 + 4))(3 - 4i)
=3 -4i+6i—87) +(9-12i+12i - 16
= (3+2i-8(-1))+ (9 - 16(-1)) = (11 +2/)/25 = 11/25 + 2i/25

1.2. Absolute value

¢ The distance between zero and a number on the number line is called
the absolute value or the magnitude of the number. The absolute value
is always positive or zero, never negative. The symbol for absolute
value of a number represented by n is |n|. For example, positive 4 and
negative 4 have the same absolute value: |4} =4 and |-4] =4

¢ Properties of absolute value include (x and y represent numbers):
X|=0, x-yl=ly-x|, x|yl =Ixyl, [x+y|<[x|+]y].

1.3. Significant digits and rounding numbers and decimals

* When solving complex mathematical or engineering problems, it is
important to retain the same number of significant digits in the
intermediate and final results. The significant digits of a number
indicate the accuracy of the number. The significant digits in a number
are determined from actual measurements. For example, if the length of
a rod is measured in meters to be 22 meters, the number of significant
digits is 2. If the rod is measured to the nearest tenth of a meter, and the
result is 22.0 meters, the number of significant digits is 3.

* In general, the number of significant digits in a number with no
decimal point include each of the digits from left to right up to the last
nonzero digit. The number of significant digits in a number with a
decimal point includes each of the digits from left to right beginning
with the first nonzero digit and up to the last digit which may be zero.
For example, 22,022 has § significant digits; 22,000 has 2 significant
digits; and 22.200 has 5 significant digits.

« It is often easier to determine the exact number of significant digits
when a number is written using scientific notation. Remember:
Scientific notation uses powers of 10 to represent a number. For ex-
ample, 2,200,000 = 2.2 x 10%. The exponent is +6 because the decimal
point was moved from the far right six places to the left. Consider a very
small number written using scientific notation, 0.00000023 = 2.3 x 107,
The exponent is ~7 because the decimal point was moved from the far
left seven places to the right. Positive exponents describe very large
numbers and negative exponents describe very small numbers.

7
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¢ When two or more numbers are combined, the number of decimal
places in the resulting numbers should not exceed the number of deci-
mal places in the initial numbers, because the resulting numbers cannot
be known with greater accuracy than the original numbers. The number
of decimal places is equal to the number of significant digits to the right
of the decimal point. Therefore, depending on the least number of sig-
nificant digits in the initial numbers, rounding intermediate and final
results will be required to maintain the decimal places to ones, tenths,
hundredths, thousandths, etc. For example, if 45.689 and 1.9654 are
added, the accuracy of the result cannot be greater than three decimal
places. 45.689+ 1.9654 = 47.6544 = 47.654

* Numbers can be rounded to the nearest ten, hundred, thousand, etc, or
in decimals to the nearest tenth, hundredth, thousandth, etc. To round
numbers and decimals, the last retained digit should either be increased
by one or left unchanged according to the following rules:

1. If the left most digit to be dropped is less than 5, leave the last
retained digit unchanged.

2. If the left most digit to be dropped is greater than 5, increase the last
retained digit by one.

3. If the left most digit to be dropped is equal to 5, leave the last retained
digit unchanged if it is even, or increase the last retained digit by one
if it is odd. In other words, when the left most digit to be dropped is
5, if the digit preceding the 5 is even, do not change the last retained
digit, or if the digit preceding the 5 is odd, round the last retained
digit up. For example, 8.45 rounds to 8.4 and 8.55 rounds to 8.6.
(Note that other rules for rounding suggest that if the left most digit
to be dropped is 5 or greater, always increase the last, retained digit
by one.) Rounding up and down for odd and even may be particu-
larly beneficial in reducing rounding errors when many digits are
being rounded off.

* Decimals may be rounded to the nearest tenth, hundredth, thousandth,
etc., depending on how many decimal places there are and the accuracy
required. For example:

45.64 rounded to the nearest ones is 46.

45.689 rounded to the nearest tenth is 45.7.

1.545454 rounded to the nearest ten-thousandth is 1.5454 using
even/odd strategy.

1.545454 rounded to the nearest ten-thousandth is 1.5455 using the
always round 5 up strategy.
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* Remember when comparing the size or value of decimals, such as

0.0076 and 0.00076, in order to determine which decimal is larger or

smaller, the following procedure can be applied:

1. Place the decimals in a column.

2. Align the decimal points.

3. Fill in zeros to the right so that both decimals have the same number
of digits to the right of the decimal point.

4. The larger decimal will have the largest digit in the greatest column
(farthest to the left).

1.4. Review of coordinate systems, including two- and three-
dimensional rectangular coordinates, polar coordinates, cylindrical
coordinates, and spherical coordinates

* Real numbers can be identified with points on a number line and
depicted on the real number line. A number line is a one-dimensional
coordinate system. If a number is represented by a point on the number
line, the number is called the coordinate of that point. Pairs of real
numbers that define a point on a plane can be depicted by identifying
them with the two axes of a two-dimensional coordinate system. Points
in three-dimensional space can be depicted by identifying them with the
three axes of a three-dimensional coordinate system. Graphing on a
coordinate system is often used to visualize quantitative data in a man-
ner that will provide insight into trends, patterns, relationships, and so
on. Graphing an equation on a coordinate system provides a depiction of
the slope (in the case of a linear equation) or the shape of a curve in the
case of a nonlinear equation. Geometrical figures defined by equations
are also depicted on a coordinate system.

* Two-dimensional, planar rectangular coordinate systems consist of
two axes, generally denoted x and y, for the horizontal and vertical axes
that are at right angles to each other. A three-dimensional rectangular, or
Cartesian, coordinate system consists of three axes, generally denoted x,
y, and z, which are all three at right angles to each other. Types of
coordinate systems include rectangular, cylindrical, and spherical.

* A point on the number line is represented in one dimension. On a
number line, the numbers to the right are greater than the numbers to the
left. Therefore, a number to the left of another number is less than a
number to the right. To define the position of a point on a number line,
the number the point corresponds to is identified.

“T332101234°

The point is at the —3 coordinate position on the number line.
9
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* A point on planar rectangular coordinate system with two intersecting
axes that are perpendicular to each other is represented in two dimen-
sions. X represents the horizontal axis and Y the vertical axis. X is often
called the abscissa and Y the ordinate. The axes intersect at zero on the
X-axis and zero on the Y-axis. To define the position of a point on a
two-axis planar coordinate system, the numbers on each axis that the
point corresponds to are identified.

Y axis

X axis

The point corresponds to —3 on the X-axis and +2 on the Y-axis.

« Each point on an X-Y coordinate system corresponds to a unique
ordered pair of real numbers (x;, y;) where x,; and y, are the coordinates
of the point. In the preceding coordinate system, (-3, 2) are the coor-
dinates of the point depicted. The convention for writing numbers that a
point corresponds to on each axis is: (X-axis-number, Y-axis-number).

* To identify the point (x, y) on an X-Y coordinate system:
A positive x value is on the right of the Y-axis.

A negative x value is on the left of the Y-axis.

A positive y value is above the X-axis.

A negative y value is below the X-axis.

* A point on a spatial three-dimensional rectangular coordinate system
(see figure below) with three intersecting axes that are all perpendicular
to each other is represented in three dimensions. X represents the hori-
zontal axis, Y the vertical axis, and Z the axis that comes out of the page
and is perpendicular to the page with the positive side of the axis above
the page and the negative side of the axis below the page. The point is
represented in the 3-dimensional space. The axes intersect at zero on the
X-axis, Y-axis, and Z-axis. To define the position of a point on a three-
axis (three-dimensional) coordinate system the number on each axis that
the point corresponds to is identified.

10



Review of Numbers and Coordinate Systems

Y axis

Z axis

The point corresponds to x = 3, y = -3, and z = 3, or +3 on the X-axis,
-3 on the Y-axis, and +3 on the Z-axis, and can be identified by

(%, ¥, 2) = (3, -3, 3). (The position of the point with respect to the Z-axis
cannot be accurately visualized in two dimensions.)

* A line can be defined by either a two-axis or a three-axis coordinate
system, such that each point on the line corresponds to a position on
each axis.

X axis

e Coordinate systems include rectangular coordinates and polar coor-
dinates, cylindrical coordinates, and spherical coordinates. Rectangular,
or Cartesian, coordinates described in the preceding paragraphs
represent points in a plane or in space. Polar coordinates describe
points in a plane or in space, similar to rectangular Cartesian
coordinates. The difference is that in polar coordinates, there is an r-
coordinate that maps the distance of a point from the origin of the
coordinate system, and there is a 6-coordinate that measures the angle
the r-ray makes from the horizontal positive X-axis.

M

rsin 6
2]
rcos 0

11
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e The relationship between polar and rectangular coordinates can be
visualized in the grecedmg figure using the Pythagorean Theorem for
a right triangle, r* = x* + y*. The r-coordinate is the hypotenuse and
measures the distance from the origin to a point of interest. The angle 9,
between r and the positive part of the X-axis, can be described by

tan 0 = y/x. The relationships between these two coordinate systems are:

X=rcosf, y=rsin0, r=\/x2 +y? ,and

tan 0 = y/x or § = tan"'(y/x)

¢ [n three dimensions, polar coordinates become cylindrical coordinates
and are given in terms of r, 6, and z, where:

. 2
X=rcosf, y=rsinf, z=1z, r=\fx2 +y~

* When comparing the Cartesian and cylindrical coordinate systems, the
x- and y-components of the Cartesian coordinate system are expressed
in terms of polar coordinates, and the z-component is the same
component as in the Cartesian system. The r-component is measured
from the Z-axis, the 6-component measures the distance around the Z-
axis, and the z-component measures along the Z-axis.

z

0 (.6, 7)

r,6, 0)

s It is possible to transform data from one coordinate system to another.
Consider polar coordinates. To find x and y if r and 0 are given:

r=>5 and 9 = 7/2, simply calculate x =rcos @ andy =rsin 9:

x =(5) cos(n/2) =0 and y = (5) sin(n/2) = 5.

Alternatively, to find r and 0 if x and y are given:

x=2andy = 3, calculate r =\lx2 + y2 and 0 = tan"'(y/x):
r=+22 +32% =3.6 and 0 = tan"'(3/2) = 56° = 0.98 rad

12
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* Different shapes can be depicted on coordinate systems. For example,
a circle on a coordinate system can be represented by the polar equa-
tions r = cos © or r = sin 0, where substituting values of 0 around the
coordinate system will produce points on the circle. Note that polar
coordinates are more suitable and less complicated than Cartesian, or
rectangular, coordinates for representing certain shapes, such as circles.

y y

) r=sin ©
r=cos 0
r r

]
X 0
\/ )

* Another coordinate system that is related to Cartesian coordinates is
spherical coordinates. In three dimensions, spherical coordinates are
expressed in terms of p (rho), 0 (theta), and ¢ (phi), where p can range
from 0 to oo, 6 can range from 0 to 27, and ¢ can range from 0 to 7. In
spherical coordinates, the p component is measured from the origin, the
6 component measures the distance around the Z-axis, and the ¢
component measures down from the Z-axis and is referred to as the
polar angle. Note that p is measured from the origin rather than the Z-
axis as is the case with r in cylindrical coordinates. Also, 6 and ¢ are
similar to longitude and latitude on a globe. Spherical coordinates can
be defined in terms of Cartesian coordinates, x, y, and z as:

x=pcosOsing, y=psin0sin, z=pcos ¢, p=,/x2 +y2 + 72

(p,,9)

13
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1.5. Chapter 1 summary and highlights

« This chapter provides a brief review of selected mathematics defini-
tions that are pertinent to learning trigonometry. Included in this chapter
is the basic hierarchy of types of number groups, as well as definitions
and operations. In summary, complex numbers encompass both real and
imaginary numbers, real numbers encompass both rational and irrational
numbers, rational numbers include integers, which include whole num-
bers, which include natural numbers.

« Included also is a brief introduction to complex and imaginary num-
bers and their operations, (which are described in detail in Chapter 11.)
Complex numbers involve i and are generally in the form (x + iy),
where x and y are real numbers and i is imaginary. In the expression,
(x + 1y), the x term is referred to as the real part and the iy term is re-
ferred to as the imaginary part. A real number multiplied by i forms an
imaginary number, such that: (real number) x i = (imaginary number).
A real number added to an imaginary number forms a complex number,
such that: (real number) + (real number)(i) = (complex number), or
equivalently, (real number) + (imaginary number) = (complex number).

» This chapter also provides basic definitions of different types of
coordinate systems, including two- and three-dimensional rectangular
coordinates, polar coordinates, cylindrical coordinates, and spherical
coordinates.

14



CHAPTER 2

Review of Geometry

2.1. Introduction

2.2. Lines and angles

2.3. Triangles

2.4. Polygons and quadrilaterals

2.5. Conic sections, including circles, arcs and angles, ellipses,
parabolas, and hyperbolas

2.6. Three-dimensional objects, including cubes, rectangular solids,
cylinders, spheres, cones, and pyramids

2.7. Chapter 2 summary and highlights

2.1. Introduction

* Most ancient peoples thought the Earth was flat, but as time went by
there were signs that the Earth is in fact spherical. For instance, as a ship
approaches from over the horizon, its mast becomes visible. As the ship
comes closer, more of it comes into view. More recent evidence that the
Earth is round was provided by circumnavigating the globe and by
photographs taken from space. In order to measure and navigate the
Earth, as well as the heavens, we need to understand geometry and
trigonometry. Have you ever wondered how the radius and circum-
ference of the Earth and Sun were determined?

« The Greek geographer and astronomer Eratosthenes is thought to be
the first person (about 240 B.C.) to successfully measure the circum-
ference of the Earth. The basis for his calculations was the measure-
ment of the elevation of the Sun from two different locations. Two
simultaneous observations were made, one from Alexandria, Egypt, and
the other 5,000 stadia away from a site on the Nile near the present
Aswan Dam. At noon in Syene (now Aswan) in Egypt when the Sun
was directly overhead on the day of the summer solstice, which is the
longest day of the year, the Sun’s rays beamed down to the bottom of a
deep well. North of Syene in Alexandria, at the same time, the Sun’s
rays shown at a 7.2° (which is 1/50th of a 360° circle) angle from the
zenith when measured by the shadow of a pole sticking straight up out
of the ground. Eratosthenes imagined that if the Earth was round, the
noonday Sun could not appear in the same position in the sky as seen by
15



Master Math: Trigonometry

two widely separated observers. He therefore compared the angular
displacement of the Sun with the distance between the two ground
locations. Because the Sun is so far away, it could be assumed that the
Sun’s rays at the two locations were parallel, and that the difference in
the Sun’s rays at the two locations was due to the spherical shape of the
Earth.

Although the observer at Syene saw the Sun directly overhead at noon,
the observer in Alexandria found the Sun was inclined at an angle of
7.2° to the vertical. Because a measure of 7.2° corresponds to one-
fiftieth of a full circle (360°), Eratosthenes reasoned that the measured
ground distance of 5,000 stadia must represent one-fiftieth of the Earth’s
circumference. (See the following figure.) Therefore, using the distance
of 5,000 stadia between the two locations and the angle differing by 7.2°
(or 1/50th of a 360° circle), the circumference ofthe Earth could be deter-
mined to be 50 times 5,000 stadia, or 250,000 stadia. A stadium is esti-
mated to be equivalent to somewhere between 607 and 738 feet, there-
fore Eratosthenes’ determination was between 29,000 and 35,000 miles.
Today’s measurements are 24,902 miles at the equator and 24,818 miles
at the poles (as the Earth is an oblate spheroid flatter at the poles).

un’s rays nearly parallel

5,000 stadia from well to pole

center
Earth

From geometry (discussed in Section 2.2) we know that if lines s; and s,
are parallel, then angles o and B have the same measure.

a___ lines;
B line s,

If we know the circumference C of the Earth, the diameter of the Earth
d and the radius r can be found using the formulas:
C =2nrand d = 2r. Remember: n = C/d for all circles.

* Data from orbiting Earth satellites have confirmed that the Earth is
actually slightly flattened at the poles. It is an oblate spheroid, the polar
circumference being 27 miles less than at the equator. The following

16
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measurements are currently accepted: average diameter 7,918 miles,
average radius 3,959 miles, and average circumference 24,900 miles.

» It is possible to estimate the diameter of the Sun using the known
value of the distance from the Earth to the Sun as 93,000,000 miles and
given the Sun subtends an angle of 0°31'55" on the surface of the Earth.

Intercepted arg s

0 =0°31'55"
Earth

r = 93,000,000

Diameter of Sun
and chord of intercepted arc

Because the central angle 0 is so small relative to the radius r, the arc
opposite the central angle (or intercepted arc s) and the chord of the
intercepted arc (in this case the diameter of the Sun) can be approx-
imated as the same length. Using the relationship that the arc s over the
circumference 2nr is equal to the angle of the arc 6 over the circum-
ference 360°, s / 2nr = 0 / 360°, and given that 6 = 0°31'55" = 0.532°,
we can estimate the diameter of the Sun as:

s =27 / 360 = 27(93,000,000 mi)(0.532) / 360 = 864,000 mi

2.2. Lines and angles

« It is important to be familiar with the basic definitions of lines and
angles. Different lines and angles have specific names according to their
environment, position, size, measurement, and so on. This section
includes common definitions for lines and angles. Additional definitions
can be found in the discussion on circles in Section 2.5.

* The shortest distance between two points is a straight line. The
distance between points (x,, y,) and (x,, y,) is given by:
d=[(x2—x)Y + (2~ y)1"”?

The coordinates of the midpoint between the two points are:
(x,+x,)/2 and (y, +y,)/2

* A line segment is a section of a line between two points. There are
three line segments in the line below.
—eo—o

17
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* Two lines are perpendicular if they intersect at right (90°) angles, and
parallel if they do not intersect each other.

__+_

* A ray has an end point at one end and extends indefinitely in the other
direction. If two straight lines meet or cross each other at a point, an
angle is formed. The point where the lines meet is called the verfex of
the angle (A) and the sides are called the rays (AB and AC) of the
angle.
B

e ,4:'

B A C

A

* The symbol for an angle is L. The angle above can be called LBAC
(where the middle letter names the vertex) or simply LA. Angles are
also denoted by Greek letters, such as a, B, 8, ¢, and 6.

* An angle can be formed by rotating a ray around its endpoint. If an
angle is formed by rotating a ray counterclockwise, a positive angle

results. If an angle is formed by rotating a ray clockwise, a negative

angle results.

terminal sids initial side
+o —0
initial side terminal side

* Angles are measured in degrees or radians. The symbol for degrees is
°, and radian is often shortened to rad. (A full circle is360° or 27 rad.)
Degrees can be divided into minutes (denoted by ') and seconds
(denoted by ").

1 minute = 1/60th of a degree

1 second = 1/60th of a minute = 1/3600th of a degree

Examples:

30°15'22" = 30° + 15/60 + 22/3600 = 30.26°

63.23° = 63° +0.23(60') = 63°13.8' = 63° + 13' + 0.8(60") = 63°13'48"

* A 180° angle is a straight line. In the following, LABC = 180°.
*r—o =
A B C

* A right angle, measures 90° and is drawn with a square at the vertex.

h

18
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* Angles smaller than 90° are called acute angles, and angles larger than
90° are called obtuse angles.

N

* If two angles have the same initial and terminal sides, they are called
coterminal angles. In the drawing there are two positive angles and one
negative angle that are coterminal.

Coterminal angles can be formed by beginning at the same initial side
and circling in a positive or negative direction more than 360° and
ending with the same terminal side. Coterminal angles can therefore
contain multiples of 360° if the angle circles more than one time.

« Iftwo angles have the same vertex and are adjacent to each other, they
are called adjacent angles. La and Lb are adjacent angles.

p

» If the sum of any two angles equals 180°, the two angles are called
supplementary angles. The following examples are of angles that are
adjacent and supplementary. Note that supplementary angles do not
have to be adjacent. In the drawing, a + b = 180°.

a / b / a
Y/
« If the sum of any two angles equals 90°, the two angles are called
complementary angles. For example, if LABC is a right angle, then

angles LABD and LDBC are adjacent and complementary angles. Note
that complementary angles do not have to be adjacent.

A
Iéf
B C

19
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* If two lines intersect each other, there are four angles formed. In the
following diagram the sum of the four angles a, b, ¢, and d is 360°. The
sum of the adjacent angles, a and b, ¢ and d, a and ¢, and b and d are
each 180°. The angles opposite to each other, a and d and b and ¢, are
called vertical angles and they are equivalent.

a/b
c/d

« If two lines are perpendicular to each other, four righr angles, each
measuring 90°, are formed. In the drawing, angles a, b, ¢, and d each
measure 90°, and the sum of angles, a + b + ¢ + d, is 360°.

alb
cld

* A transversal is a line that intersects two other lines.

a/b Line A
c/d
e/f Line B
g/h

If lines A and B are parallel to each other, the following is true:
Angles a=d=e=h

Angles b=c=f=¢g

Angle ¢ + Angle e = 180° (Supplementary)

Angle d + Angle f=180° (Supplementary)

« As described in Section 2.5. on circles, there are 360° in a circle, 180°
in a semi-circle, 90° in a quarter-circle, and 45° in an eighth-circle.

2.3. Triangles (planar)

« Trigonometry involves triangles, and it is necessary to be familiar with
the properties of triangles. Triangles are three-sided polygons and
contain three angles. The symbol for a triangle is A. The three points
where the three line segments that make up the triangle intersect or meet
are called vertices.

* The sum of the angles in a planar triangle is always 180°. This is found
by using the formula for sum of angles in a polygon: (n — 2)180°. Using
this formula we find that the sum of the angles of every triangle is 180°.
For a triangle, n=3, (3 —2)180°=(1)180° = 180°.

20



Review of Geometry

* Properties of planar triangles include:

1. If the value of two angles in a triangle is known, the third angle can
be calculated by subtracting the sum of the two known angles from
180°.

2. The length of one side of a triangle is always less than the sum of the
lengths of the other two sides.

3. In a triangle, the largest side is opposite the largest angle, the smallest
side is opposite the smallest angle, and the middle-length side is
opposite the middle-size angle.

* Types of triangles include:

ANVARARAR VRN

Equilateral, Isosceles, Scalene, Acute, Obtuse, Right

1. In an equilateral triangle, all three sides have equal lengths and all
three angles have equal measurements of 60°.

2. In an isesceles triangle, two sides have equal lengths and the angles
opposite the two equal sides have equal measurements.

3. Ina scalene triangle, all three sides have different lengths and all
three angles have different measurements.

4. In an acute triangle, all of the angles in the triangle are smaller than
90°.

5. In an obtuse triangle, one of the angles in the triangle is larger than
90°.

6. In a right triangle, one of the angles in the triangle is a right angle
measuring 90°.

* In a right triangle, the side opposite to the right angle is called the
hypotenuse and the two sides that meet to form the right angle are
called legs. The hypotenuse is always the longest side.

Hypotenuse
Leg
Leg

In a right triangle, the square of the length of the hypotenuse is equal to
the sum of the squares of the lengths of the legs.
(Leg)’ + (Leg)’ = (Hypotenuse)’
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This is called the Pythagorean Theorem and it only applies to right
triangles. If the lengths of the legs are x and y and the length of the
hypotenuse is z, the Pythagorean Theorem can be written: x> +y* = 2%,

« The acute angles of a right triangle are complementary and therefore
sum to 90°.

B&
A C

Angle B + Angle C = 90°

» Two noteworthy right triangles are the 30°:60°:90° and the
45°:45°:90° (right isosceles triangle). For a 30°:60°:90° triangle, the
length of the hypotenuse equals two times the length of the leg opposite
the 30° angle, and the length of the leg opposite the 60° angle equals the
square root of 3 times the length of the leg opposite the 30° angle. For
the 45°:45°:90° triangle, the length of the hypotenuse equals the square
root of 2 times x, where X is the length of a leg,

30°:60°:90° triangles are often drawn as:
1
12 60° X 2x 1 2
307
V32 x3 V3
45°:45°:90° triangles are often drawn as:

45°
X N 1 M 1/ \/5 1
90°" X 45° 1

1/42

* Other noteworthy right triangles are called triplet right triangles. The
most common triplets are 3:4:5, 5:12:13, and 7:24:25.

E l : 13
S 25
3 5 K
7
4 12
24

Any multiple of the ratios of these triangles is also a triplet, such as
6:8:10 and 10:24:26.
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* If two corresponding sides of two right triangles are equal, the third

corresponding sides are also equal, and the triangles are congruent. This

can be proven using the Pythagorean Theorem. Any two triangles,

whether they are right triangles or not, are called congruent triangles if:

1. All three corresponding sides are equal; this is called side-side-side.

2. Two corresponding sides with their vertex angles are equal; this is
called side-angle-side.

3. Two corresponding angles with the side in between are equal; this is
called angle-side-angle.

4. Two angles and a non included side are equal.

side-side-side

A side-angle-side

angle-side-angle

f>?>

» If all three pairs of corresponding angles in two triangles are equal to
each other, the two triangles are called similar triangles. Two similar
triangles can be created by drawing a line parallel to one of the sides of
a triangle. In the figure below, triangle ADC is similar to triangle AEB
because the three corresponding angles are equal.

C
B
A
E D
« The corresponding sides of similar triangles have the same propor-
tion; therefore if one side is 3 times the length of its corresponding side
in a similar triangle, then the other two sides of the similar triangle will

be 3 times the lengths of their corresponding sides. In the following
triangles, angles A; = Ay, B;=B,,and C, =C,

A Ay
a; b, a/ >b2
By ¢ G
B ¢ C

. . . a, by, ¢
and corresponding sides are in proportion: —2 = ;2— =%,
a; 1 <

23
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» Example: Determine the height of a tree using similar triangles.

To find the height of a tree, set a post of a known height next to the tree
and measure the length of the shadow. Then measure the length of the
tree’s shadow. The post and the tree and their shadows form similar
triangles as they are both right triangles and have an acute angle of the
same measure (assuming the Sun’s rays are parallel).

‘d4 feet %

3 feet 30 feet

The height of the tree, x feet, is proportional to the height of the post, 4
feet, and the length of the shadow of the tree, 30 feet, is proportional to
the length of the shadow of the post, 3 feet. Therefore, the height of the
tree represented by x is:

% - % ,or x = (30)(4)/3 = 40 feet.

* [ftwo corresponding angles of two triangles are equal, then the third
angles are also equal. Remember, the sum of the angles in a triangle is
180°.

* The following two triangles are similar providing AB and DE are
parallel:

Angles c and c are vertical angles and therefore equal.

Angles a and e are equal because if parallel lines are cut by a
transversal, then the alternate interior angles measure the same.
Angles b and d are equal because if two corresponding angles of two
triangles are equal, then the third angles are also equal.
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¢ Note the following angle properties for triangles:
A B

=

angle 6 = angle A + angle C, angle A + angle B + angle C = 180°,
angle B + angle 6 = 180°

When the dashed line (following) is parallel to the AB base of the
triangle

B

angle A =angle 6 and angle B = angle ¢.

* The perimeter of a triangle is the sum of the sides, and the area of a
triangle is (1/2)(base)(height)

height (dashed)
=3in

base =6 in

For example, in this triangle area is:

(1/2)(6 inches)(3 inches) = 9 inches or 9 square inches

where the height is a perpendicular line from the base to the opposite

angle. Note that the area of an equilateral triangle is (1/4) (side? )ﬁ .
See Chapter 3 for a detailed discussion of triangles.

2.4. Polygons and quadrilaterals

s A polygon is a closed planar figure that is formed by three or more
line segments that all meet at their end points. There are no end points
that are not met by another end point in a polygon. The line segments
that make up a polygon only intersect at their end points. Examples of
polygons include:

NOlOouGEAD

Triangle, Square, Rectangle, Octagon, Hexagon, Trapezoid, Heptagon, Pentagon
Note that rectangles, squares, and trapezoids are quadrilaterals (having
four sides).

* Polygons are named according to the number of sides they contain.
For example 3 sides is a triangle, 4 sides is a quadrilateral, S sides is a
pentagon, 6 sides is a hexagon, 7 sides is a heptagon, 8 sides is an
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octagon, 9 sides is a nonagon, and 10 sides is a decagon. In a polygon,
the number of sides equal the number of angles.

« Ifthe lengths of the sides are equal and the angle measurements are
equal, the polygon is called a regular polygon. A square is a regular
quadrilateral. Tf two polygons have the same size and shape, they are
called congruent polygons. If two polygons have the same shape such
that their angle measurements are equal and their sides are proportional,
however one is larger than the other, they are called similar polygons.

« A useful equation for polygons is the equation that gives the sum of
the angles in a polygon: (n — 2)180° = Sum of all angles in n-gon,
where n is the number of angles (or sides) in the polygon.

For example, because a pentagon has five sides and five angles, what is
the sum of all angle measurements?

(n - 2)180° = sum of all angles in n-gon

If n=5, then (5 — 2)180° = (3)180° = 540°.

Therefore, the sum of the angles in a pentagon is 540°.

* The perimeter of polygons and planar figures is the sum of the lengths
of its sides or the distance around. The units for perimeter are always
singular because of the one dimension described. Remember to convert
all measurements to the same units before adding. To find the area of
polygons and planar objects that are not triangles, squares, rectangles,
parallelograms, or trapezoids, find the area of sections of the polygon
that form one of these figures, then add the areas of the sections. Units
for area are always squared because of the two dimensions described.

* Quadrilaterals are four-sided polygons. The sum of the angles in a
quadrilateral is: (n — 2)180° = (4 — 2)180° = (2)180° = 360°.
Therefore, the sum of the angles in all quadrilaterals is 360°.

* A parallelogram is a quadrilateral in which both of the two opposite
sides parallel to each other.
A B

C D

AB is parallel to CD. AC is parallel to BD. Both pairs of opposite sides
are the same length. Both pairs of opposite angles are the same size. The
diagonals of a parallelogram bisect each other. Consecutive interior
angles are supplementary (A + B, B + D, etc.). The area of a parallel-
ogram is base times height. In the figure below, area is (base)(height)
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=(5 f)(3 fi) = 15 feet’.

/ 1 ; height (dashed)
=3f

base=5 ft

* A rectangle is a parallelogram with all four angles having equal
measurements of 90°.

Opposite 51des of a rectangle are also equal to each other. Diagonal lines
have the same length, and their length can be determined using the
Pythagorean Theorem if the side lengths of the rectangle are known.
(long-side length)” + (short-side length) = (diagonal length)?

The area of a rectangle is length times height, or area = (length)(height).

* A square is a parallelogram in which the four angles and four sides are
equal. A square is also described as a rectangle in which two adjacent
sides are equal. A square is a regular polygon.

4, Ix
X

The angles in a square each measure 90°. Diagonal lines have the same

length, and their length can be determined using the Pythagorean

Theorem if the side lengths of the square are known

(side length)* + (side length)? = (diagonal ]ength)

For example, if the side length is x and the diagonal length is d:

X +x “dz ord?=2x% ord= x\/_

The area of a square is the length of a side-squared or (sxde):Z
Area for a square can also be given by: (1/2)(d1agonal)

We can see this by applymg to dlagonal formula & = 2x2
Area = (1/2)d = (1/2)(2x%) = x*, where x is the side length.

» A rhombus is a parallelogram with all four sides of equal length, or
equivalently, a parallelogram in which two adjacent sides are equal
(because if adjacent sides are equal and opposite sides are parallel, then
all four sides are equal). Opposite angles of a rhombus are equal to each
other. Diagonal lines in a rhombus are perpendicular to each other. The
area of a rhombus is (side)(height). In the diagram below, angle A and
angle B are supplementary.

Eheight
1
A B
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* A trapezoid is a quadrilateral having only one pair of opposite sides
parallel to each other. (In an isosceles trapezoid, the non-parallel sides
have equal lengths.)

AB is parallel to CD. AC is not parallel to BD. AB and CD are called
bases. AC and BD are called legs. The area of a trapezoid is the
average of the bases times height, or area = (average of bases)(height).

2.5. Conic sections, including circles, arcs and angles, ellipses,
parabolas, and hyperbolas

» Parabolas, circles, ellipses, and hyperbolas are important curves in
mathematics. They are often referred to as conic sections, because each
of these curves can be represented as the intersection of a plane with
right circular cones.

X221

"4
Parabola Circle Ellipse Hyperbola

» Examples of applications where conic sections are used for modeling
include ellipses for orbits of planets, parabolas for the path of a
projectile, and hyperbolas for the reflection of sound.

Circles, arcs, and angles

* A circle is a planar shape consisting of a closed curve in which each
point on the curve is the same distance from the center of the circle.

* The radius of a circle is the distance between the center and any point
on the circle. All radii drawn for a given circle have the same length.
The radius is one-half of the diameter. A line segment drawn through

the center point with its end points on the circle is called the diameter of
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the circle. The diameter is twice the radius, or (2)(radius) = diameter. A
diameter line divides a circle into two equal semicircles. Any line
segment whose ends are on the circle is called a chord (including the
diameter line segment). A semicircle is an arc joining the endpoints of a
diameter of a circle.

E

radius

A X B
diameter

C chord
D

X depicts the point at the center of the circle. AB is the diameter chord.

CD is a chord. XE, AX, and XB are radii. If two chords are equal, then

they are of equal distance from the center of the circle.

* Pi, or =, defines the ratio between the circumference and the diameter
of a circle. More specifically, Pi is equivalent to the circumference
divided by the diameter of a circle. The value of Pi is 22/7 or approxi-
mately 3.141592654.

* A circle always measures 360° around, equivalent to 27 radians. Half
of the circle measures 180°, which is equivalent to  radians. A quarter
of a circle measures 90°, which is equivalent to /2 radians. The degrees
of a circle are:

90°,m/2

180“( > 360°, 2n

270°,3n/2

2n radians = 360 degrees

1 radian = 360°/21 = 180°/%

1 degree = 27 radians/360° = = radians/180°

Because there are 360° in a circle, 1° = 1/360th of a circle

1 Minute, denoted by ', is defined as (1/60) of 1°, or 0.0167°

1 Second, denoted by ", is (1/60) of 1 Minute or (1/3600) of a degree or
0.00027778°
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* A tangent line passes through only one point on a circle. If a radius
line segment is drawn from the center of the circle to the point of
tangency, the tangent line and the radius line segment are perpendicular
to each other.

Tangent Line

@

* A secant is a line that intersects a circle in two points.

O~

« If two or more circles have the same center point, they are called
concentric circles.
concentric circles

©

* If angles or polygons are drawn inside circles, any angle whose vertex
is at the circle’s center point is called a central angle, and any angle
whose vertex is on the circle is called an inscribed angle. The sides of a
central angle are radii of the circle.

€

central angle inscribed angle

* Arc length: A section of a circle defined by two or more points is
called an arc.
Arc length = (radius)(central angle measure in radians)

=10, with O measured in radians

= (n/180°)r6°, with 0 the central angle measured in degrees
For example, ifr = 10 and 8 = 90° = 71/2 radians:

30



Review of Geometry

Arc length = (r)(6) = (10)(w/2) = 15.7
= (n/180°)r6° = (n/180°)(10)(90°) = 15.7

r arc length = Or

0
I

» The measure of a central angle is proportional to the measure of the
arc it intercepts. Note the following relationship for central angles and
arcs:

A
C
LABC = Arc AC
measure ofangle B length ofarc AC _ _ area of sector BAC
360 circumference area of circle

* A central angle subtended by an arc equal in length to the radius of a
circle is defined as a radian. In other words, a radian is the measure of
the central angle subtended by an arc of a circle that is equal to the
radius of the circle. Using the definition, 2r radians = 360°, then:

1 radian = 360°/2n = 180°/n = 57.296°

1 degree = 21/360° = 7/180° = 0.017453 radians

« The measure of an inscribed angle is equal in measure to half of the
arc it intercepts (measured in radians). In the following drawing,
LABC = (1/2)(Arc AC).

A
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« If an inscribed angle has its rays ending at the end points of a diameter
chord, the vertex of the angle will be a right angle (90°), which is one-
half of the 180° measurement of the arc. In the diagram below,

LABC =90° = (1/2)(Arc AC) = (1/2)180°.

diameter

» Inscribed angles with the same endpoints defined by the same arc,
have the same measure. In the diagram below, LADC has the same
measure as LABC.

D,

C

* An inscribed angle is equal to one-half of the central angle formed
from the endpoints of the same arc.

@

In both cases, angle LABC is an inscribed angle with endpoints on arc
AC. Angle ADC is a central angle with endpoints on arc AC. Because
they are formed by the same arc, LABC is one-half the measure of
LADC or, alternatively, angle LADC = 2LABC.

* The perimeter of a circle is called the circumference.
Perimeter of a circle = circumference = 2nr = nnd
where r = radius, d = diameter, and & ~ 3.14.

r=2in
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In this example, perimeter = circumference = 2nr
= 2n2 inches = 4= inches ~ 12.56 inches

Because circumference = 2nr = td , we can see that Pi is:
7 = circumference/diameter

* The area of a circle is given by:
Area of a circle = 7’ = m(d/2)’
where r = radius, d = diameter, and &t ~ 3.14.

r=2in

In this example, area = nr” = n(d/2)>
= (2 inches)* = m4 inches ~ 12.56 inches?

* The area of a sector of a circle is a fraction of the area of the whole
circle.

A

4

C

For a circle with its central angle = ABC, the following is true:

measure of angle B length ofarc AC  area of sector BAC

360 circumference area of circle

If LB = 60°, then the central angle is 60°/360°, or 1/6th of the circle.
Also, the length of arc AC is 1/6th of the circumference of the circle.
Finally, the area of sector BAC is 1/6th of the area of the circle. The
area of a sector is also given by: (1/2)(radius)*(central angle in radians).

For example, use two different equations from the above relationship to
calculate the area of sector ABC.
If LB = 90° = #/2 and r = 10, find area of sector ABC.
Area of sector ABC = (LB/360°)(area of circle) = (110%)90°/360° = 78.54
Area of sector ABC = (length of arc AC/circumference)(area of circle)

= (nr?)(r0/2xr) = (*)(6/2) = (1/2)(radius)*(central angle in radians)

= (1/2)(10°)(n/2) = 78.54

» Equations for a circle located at the origin of a coordinate system can
be written in the form: x*> + y> =%, where r is the radius and r > 0.
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For a circle whose center is located at a point (x = p, y = q) other than
the origin, the equation becomes: (x — P +(y- q’=r.

* To plot an equation of a circle, choose values for x and solve for the
corresponding y values. Alternatively, set x = 0 and solve for the
corresponding y value, and set y = 0 and solve for the corresponding x
value. If a circle has its origin at (0, 0), it is possible to choose x values
in one quadrant of the coordinate system and use symmetry to complete
the circle.

Ellipses
* Ellipses are flattened circles.

ﬁﬂ.lz)\
(-a, m( F2. 2,0) < major axis

-C +C

b

minor axis

A circle has one focus at the center. An ellipse has two foci, designated
F1 and F2, along the major axis on either side of the center. The sum of
the distances of the foci to any point on an ellipse is 2a. Therefore at any
point on the ellipse: (the distance to F1) + (the distance to F2) = 2a.

The ellipse can also be described by:

[ + Y1 +[(x +0)’ +y]" =2a

= distance from F1 + F2 to a point (x, y),

where +c¢ and —c represent the location of F1 and F2 on the major axis.

* Because the distance from F1 to F2 is 2a, as sound waves, etc, are
reflected off the ellipse, a sound generated at F1 will be concentrated at
F2. (Note that there is also a direct path between F1 and F2 where sound
is not reflected.)
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* The equation for an ellipse at the origin can be written:
(x*/a®) + (y’b*) =1, wherea # b, a> 0, b> 0, origin at (0, 0).

Ifa = b, the ellipse becomes a circle. The equation for an ellipse with
a=b =r is the equation for a circle: x> +)2

For an ellipse located at a point (x = p, y = q) other than the origin, the
equation becomes: ((x — p)*/a%) + ((y — q)*/b*) =1

where a # b, a> 0, b > 0, origin at point (p, q).

* The equations for ellipses and circles having the form

(x¥a%) + (y*/b®) = 1, with origin at (0, 0) and a = b for ellipses anda = b
for circles, can be solved for y as follows:

y/b = +[1 - (x*/a®)]"? = +[(a’/a?) — (x*/a®)]"? = £[(a’ - x*)/a®)]"?

=+ (1/a)[a® - x*]"*

Therefore, y = + (b/a)[a® - x’]"?

where the (+) values represent the top half of an ellipse or circle and the
(-) values represent the bottom half of an ellipse or circle. The curve
crosses from(+)to(-)or (-)to(+)aty=0,x=a,andy=0, x =-a,
respectively. The maximum and minimum of the curves are aty = b and
y=-b.

« The shape of an ellipse (rounder or flatter) is designated by its

eccentricity, which is given by e =4/a> —b?/a , where a is the length of
the semimajor (longer) axis (from center to point a on X-axis) and b is
the length of the semiminor axis (from center to point b on Y-axis).
Eccentricity ranges from 0 to 1 with higher numbers indicating flatter
ellipse. If a = b, eccentricity = 0, which is a circle.

« To plot an equation of an ellipse, choose values for x and solve for the
corresponding y values. Alternatively, set x = 0 and solve for the
corresponding y value and set y = 0 and solve for the corresponding x
value.

Parabolas

* Parabolas are sets of points in a plane that form a curve with
symmetry. Parabolas can point in any direction. Equations for parabolas
are quadratic equations.

— -
—] /|
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* The equations for a parabola with a vertical and a horizontal axis are:
y=ax’+bx+c with a vertical axis
x =ay’+by + ¢ with a horizontal axis
Following are vertical-axis parabolas:
y y

vertex at bottom vertex at top

« In the vertical form of the equation, y = ax® + bx + ¢, if a is positive,
the parabola is open at the top with the vertex at the bottom. Conversely,
if a is negative, the parabola is open at the bottom with the vertex at the
top. For y = ax’ + bx + c, the graph crosses the X-axis at y = 0, and the
vertex point is a minimum or maximum point (where dy/dx = 0.)

« For a vertical-axis parabola, if the parabola lies above its vertex, then
the y-coordinate (X, y) of its vertex is the smallest y value of the
parabola that satisfies the equation for that parabola. Conversely, if the
parabola lies below its vertex, then the y-coordinate (x, y) of its vertex is
the largest y value of the parabola that satisfies the equation for that
parabola.

* The axis of symmetry can be drawn through the center of a parabola to
divide it in half. The equation for the axis of symmetry in a vertical
parabola is x, = —b/2a. For example, if the solution to this equation is

x, = 2, then a vertical line through the point 2 on the X-axis can be
drawn to represent the axis of symmetry.

* The vertex point of a parabola can be found by substituting x, into the
equation y = ax” + bx + ¢ (if x, is known) and solving for the corres-
ponding y or y, value resulting in (x,, y,). The vertex point of a parabola
with a vertical axis can be found using the equation for the parabola as
follows:

(1.) Separate the terms that contain x from the terms not containing x.
(2.) Complete the square on the terms that contain x.

(3.) Set each side of the equation equal to zero.

(4.) Solve the resulting equations for x and y resulting in (x,, y,).

For example, ify = x> — 2x — 3, what is the vertex point?
Rearrange: XX -2x=y+3
Complete the square by finding 1/2 of the coefficient b (b = 2). Square
1/2 of the coefficient b, (b/2)%, and add the result to each side of the
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equation. First, square 1/2 of the coefficient b:
(b2 = (=2/2)* = (-1)*=1.

Add the result to each side of the equation:
X-2x+1=y+3+1

X-2x+1=y+4

Factor the resulting perfect square, and set each side of the equation
equal to zero and solve:

x-DE-D=y+4

(x- 1)’ =0, therefore, x = 1

y + 4 =0, therefore, y = -4

The vertex point is (1, —4).

* The focus of a parabola is a point on the axis of symmetry on to
which any ray (for example, light, sound, etc.) coming toward the
bottom of the parabola, parallel with the axis of symmetry is reflected.
An example of the use of the focus point is a receiver of radio waves or
TV signals where the rays are concentrated at the focus. This principle
applies in reverse as well. When light energy is emitted from a focus
point and reflected off the inner surface of the parabola, it will point out
of the parabola parallel to the axis of symmetry.

* The directrix is a line that exists perpendicular to the axis of symmetry
such that every point on the parabola is the same distance from the focus
point as it is from the directrix line. Therefore, the distance from the
vertex to the focus (d2 on graph) is equal to the distance from the vertex
to the directrix (d1 on graph).

The following is a horizontal-axis parabola with its vertex at the left:
y

directrix
/—
/\dz
X daifa \: axis of symmetry
) focus
distances d1 = distances d2
vertex

« For a vertical-axis parabola with its vertex at the bottom, if the focus
is at (0, a), the directrix is a line at y = —a, and the vertex is at (0, 0),
then the equation for the parabola can be written: y = x */aa. If the focus
is at y = 1/4 and the directrix is aty = —-1/4, theny = X%
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y-axis

b (0/ a) point of focus
x-axis

directrix aty =-a

* To graph a parabola, which is a quadratic equation, one method
involves finding the x component of the vertex point, x, = —b/2a, and
substituting x, into the equation, y = ax’ + bx + ¢, and solving for the
corresponding y or y, value, resulting in (x,, y,). Then, choose other
values for x on both sides of x, and solve for their corresponding y
values using the original equation. Finally, the points can be plotted and
the parabola sketched.

» It is possible to solve a quadratic equation graphically using the fact

that it forms a parabola as follows:

1. Write the equation in the standard formy = ax* + bx +c.

2. Graph the parabola by identifying x, = —b/2a, substitute x, into the
equation y = ax> + bx + ¢ and solve for y, resulting in the vertex
point (X, yy). Then choose other values for x on both sides of x, and
solve for their corresponding y values using the original equation to
plot the parabola.

3. Determine the solutions for x (called the roots of the equation
because of the x* term) by estimating the two points where the
parabola crosses the X-axis (aty = 0).

Hyperbolas

* Hyperbolas are a set of points in a plane that form two parabola-like
curves that are mirror images of each other. The equations for
hyperbolas can be written in the form:

(xa%) - (") =1 or — (x¥a®) + (y/b) =1

where a and b have opposite signs and the center of the hyperbola is at
the origin, (0, 0).
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2 e (x*/a%) - (16" = 1

X

* For a hyperbola located at a point (x = p, y = q) other than the origin,
the equation becomes: ((x—p)*/a’) — ((y-q)*/b%) = 1

» The equation for a hyperbola can be solved for y:

y/b ==[1 + (x’/a%)]? = +[(a’/a®) + (x*/a})]"?

= £](@* +x)/a)]"? = + (a)a’ + %"

Therefore, y = + (b/a)[a’ + x’]"?

where the (+) expression represents the side of the hyperbola withy > b,
and the (-) expression represents the side of the hyperbola withy <b.

In the following figure, v1 and v2 are vertexes at (0, b) and (0, —b), and
F1 and F2 are foci. The ray drawn coming toward one focus, F2, and
contacting the outside of that side of the hyperbola will be reflected to
the other focus, F1. The foci of the hyperbola are inside the curve of
each side such that for the points on the hyperbola, the difference
between the distances to the foci is 2b.

Yy

asymptote

asymptote /

* A hyperbola can be drawn along the X-axis or Y-axis and is sym-
metric with respect to its axis. The diagonal lines are called asymptotes,
and each hyperbola has two asymptotes such that the curve of a
hyperbola approaches its asymptotes. The equations for the asymptotes
have zero replaced for the constant terms, and for a hyperbola centered
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at the (0, 0) in a coordinate system, the equations for the asymptotes are
y = +(b/a)x, and the slopes are +b/a and —b/a.

* Another equation for a hyperbola is Xy = k. Ifk is positive, the
hyperbola will graph in the upper right and lower left quadrants.
Conversely, if k is negative, the hyperbola will graph in the upper left
and lower right quadrants.

y y

\\k>0 / a

X X

A 4

* To plot an equation of a hyperbola, choose values for x and solve for
the corresponding y values. Because the graph of a hyperbola is sym-
metric with respect to both axes, the points plotted in one quadrant (for
example, x > 0, y > 0) will mirror the points in the opposite quadrant.

2.6. Three-dimensional objects, including cubes, rectangular solids,
cylinders, spheres, cones, and pyramids

* Three-dimensional objects take up space in three dimensions. Mea-
surements of three-dimensional objects include volume and surface
area. Volume is a measure of the three-dimensional space that an object
occupies. The units for volume are always cubed because of the three
dimensions described, (x)(x)(x) = x°. Remember to convert all measure-
ments to the same units before calculating. The surface area of three-
dimensional objects such as cubes, rectangular solids, cylinders, and
spheres is a sum of the areas of the surfaces. The units for surface

area are always squared because of the two dimensions described,
(x)(x) = x°. Remember to convert all measurements to the same units
before calculating. Following are sample formulas of volume, surface
area, and main diagonal measurements.

* Cubes have six surfaces that are each squares and have the same
measurements. The cube below has a side length of 5 inches:
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Volume of a cube = (edge)’ = (5 inches)’ = 125 inches’
Surface area of a cube = (6 sides)(area of each side)

= (6 sides)(25 inches®) = 150 inches’ or 150 square inches

The main diagonal d of a cube is given by: d* =1 + w* + h’, or
SP+si+s’=3s"= dz, where s = the length of the edge.
d*=3s"=3(5)* =75, d ~ 8.7 inches

* Rectangular solids have six rectangular surfaces with three pairs of
opposite surfaces that have the same measurements. The rectangular
solid below has length 8 inches, width 2 inches, and height 3 inches:
2in
3in

8in
Volume of a rectangular solid = (length)(width)(height)
= (8 in.)(2 in.)(3 in.) = 48 inches” or 48 cubic inches
Surface area of a rectangular solid = sum of area of 6 faces where
opposite sides are identical
= (2)(len§th)(width) + (2)(len%th)(height2) + (2)(width)(height)
= (32 in.%) + (48 in.}) + (12 in.*) = 92 in.” or 92 square inches
The main diagonal of a rectangular solid is given by: & =rF+w +h
d*=(8in.)* + (2 in.y’ + 3 in.)’ =77 in.%, d = 8.8 inches

e Cylinders, or circular solids, are three-dimensional objects that have
two identical circles connected by a tube. In the cylinder below, r =2

inches and h = 10 inches.
T

.

Volume of a cylinder = (area of circle)(height) = (ar)(h)

(m)(2 in)’(10 in) = 125.6 inches® or 125.6 cubic inches

Surface area of a cylinder or circular solid

= (area of both circles) + (area of tube) = 2nr® + 2nrh
(where 2nr = circumference)

= (2)@)2 in)’ + (2)®@)(2 in)(10 in) = 150.72 in.?

* Spheres or spherical solids are three-dimensional objects consisting of
points that are all the same distance from the center.

S,

Volume of a sphere = (4/3)nr3
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If the radius is 2 feet, volume is: (4/3)(n)(2 ft)® = 33.49 feet®
Surface area of a sphere = 4mr’ = 4n(2 f)* = 50.24 feet’

* Cones are three-dimensional objects that have a circle connected to a
point. The depth of a cone forms a triangular solid.

/\

Volume of a cone = (1/3)(area of circle)(height) = (1/3)nr’d
Note that the volume of a cone is one-third the volume of a cylinder of
the same radius and height.

* Pyramids are three-dimensional objects that have a square, rectangle,
or triangle base connected to a point.

él;T T
N L il

Volume of a pyramid

= (1/3)(area of base)(height) = (1/3)(area of base)(d)

Remember: The area of a triangle is (1/2)(base)(height), the area of a
square is (side)’, and the area of a rectangle is (length)(height).

2.7. Chapter 2 summary and highlights

« This chapter provides a brief review of basic principles of geometry
that are pertinent to learning trigonometry. Geometry and trigonometry
are important for modeling the world around us. Early scientists used
simple calculations to determine such measurements as the circumfer-
ence and radius of the Earth. There are fundamental principles, relation-
ships, and formulas from geometry that should be known when learning
trigonometry. These include definitions pertaining to lines and angles,
especially degrees, radians, right angles (90°), acute angles (<90°), and
obtuse angles (>90°), as well as supplementary angles (sum to 180°),
complementary angles (sum to 90°), and coterminal angles (same initial
and terminal sides).

* Trigonometry involves triangles, and it is necessary to be familiar with
their properties. One particularly important property of planar triangles
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is that the angles always sum to 180°. Right triangles are also especially
useful in trigonometry. Properties and relationships of right triangles
should be known, including the Pythagorean Theorem, which is

x> +y? =1, and special right triangles, such as the 30:60:90 and
45:45:90 triangles, and the 3:4:5, 5:12:13, and 7:24:25 triplet triangles.

» Conic sections are curves that can be represented as the intersection
of a plane with right circular cones. Important conic sections include
parabolas, circles, ellipses, and hyperbolas. Especially relevant to
trigonometry are circles. It is important to know basic definitions
relating to circles, such as 7t (circumference/diameter), degrees and
radians (27 radians = 360°), minutes (1/60th of a degree), seconds
(1/60th of a minute), central angles (vertex at center), inscribed angles
(vertex on interior), and arc length (radius x central angle measured in
radians).

« It is also important to be familiar with the shapes of common polygons
and the equation for the sum of the angles in a polygon which is:

(n — 2)180° = sum of the angles in a polygon, where n is the number of
angles in the polygon. This chapter concludes with a brief review of
three-dimensional objects and the formulas for volume, surface area,
and main diagonals.
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CHAPTER 3

Triangles and Trigonometric Functions

3.1. Right triangles and the trigonometric functions

3.2. Solving right triangles

3.3. Examples and applications of right triangles

3.4. Oblique triangles and the Law of Sines and Law of Cosines
3.5. Solving oblique triangles

3.6. Examples and applications of oblique triangles

3.7. Finding the area of a triangle

3.8. Chapter 3 summary and highlights

» Why are triangles and trigonometry so interesting and important?
‘What can the use of triangles help us figure out? There are many
questions that can be answered by setting up a model involving a right
triangle or an oblique triangle. For example, how do we measure the
distance to a star, the distance across a canyon, the angle of elevation of
the Sun, the distance of a ship from to a lighthouse, the height of a
mountain, the distance of a UFO from radar towers using bearing, or the
distance across a lake? We can set up triangles and determine unknown
distances and angles as well as finding the area of a model triangle. See
sections 3.3 and 3.6 for examples of applications of triangles.

3.1. Right triangles and the trigonometric functions

* Right triangles consist of one right (90°) angle and two acute (<90°)
angles that sum to 90°, so that the total sum of the angles is 180°.
Solving right triangles involves measuring distances and angles.

« Trigonometric functions can be defined using ratios of sides of a right
triangle. Sine, cosine, tangent, cotangent, secant, and cosecant are the
trigonometric functions. As we will see in Chapter 4, trigonometric
functions can also be described using the coordinates of points on a
circle of radius one. Trigonometric functions have a periodic nature that
can be depicted on a graph, as described in Chapter 5.

* Right triangle relationships: The six trigonometric functions are
defined according to the ratios of the three sides of a right triangle. A
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right triangle can be drawn alone or at the origin of a coordinate system.
Consider the right triangle with sides x, y, and r:
Y axis

r=
hypotgruse y = opposite
to @

o

-
x = adjacent
to @

X axis

If r is the hypotenuse and the terminal side of the angle, y is the side
opposite 9, and x is the side adjacent to @, then the six trigonometric
Junctions are:

sine @ = sin © = opposite/hypotenuse = y/r

cosecant @ = csc @ = hypotenuse/opposite =r/y =1/ sin @

cosine @ = cos @ = adjacent/hypotenuse = x/r

secant @ = sec @ = hypotenuse/adjacent =r/x = 1/ cos @

tangent @ = tan @ = opposite/adjacent =y/x =sin @ /cos @
cotangent @ = cot @ = adjacent/opposite = x/y = 1/ tan @

Also note that (y/r)* + (x/r)’ =1 or y* +x*=r

and that the Pythagorean Theorem is r* = x> + y’

(To remember sin@ = y/r, cos @ = x/r, and tan @ = y/x, think of the
word SohCahToa or S°,C?,T°; or SO/LC¥LT%,.)

« In a right triangle the trigonometric functions can be written with
respect to either of the acute angles. Consider the following triangle
with trigonometric functions for angle o rather than angle @.

4

/N
X

sin 0. = opposite/hypotenuse = x/r
csc o = hypotenuse/opposite = 1/x
cos o = adjacent/hypotenuse = y/r
sec a = hypotenuse/adjacent = rfy
tan o = opposite/adjacent = x/y
cot o = adjacent/opposite = y/x
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Notice how these functions differ from the functions written for angle @
listed above.

* There are a few common right triangles that it is a good idea to be able
to recognize. These include the 30°:60°:90° triangle and the 45°:45°:90°
triangle (right isosceles triangle). For the 30°:60°:90° triangle, the
length of the hypotenuse equals two times the length of the leg opposite
the 30° angle, and the length of the leg opposite the 60° angle equals the
square root of 3 times the length of the leg opposite the 30° angle. For

the 45°:45°:90° triangle, the length of the hypotenuse equals the square
root of 2 times x, where x is the length of a leg,

45:45:90 triangles are often drawn as:
45°

XBJE 1& 2 1
90° *  45° 1 /42

where 45° = 1t/4 and 90° = &/2.
30:60:90 triangles are often drawn as:

12 60° 1 x 2x 1(\
7 303
3 x43 V3

where 30° = /6, 60° = n/3, 90° = /2.
The 30°:60°:90° triangle is half of an equilateral triangle:

* Other noteworthy right triangles include triplet right triangles. The
most common triplets are 3:4:5, 5:12:13, and 7:24:25.

| Z 5 l : 13 25
3 5 N
7
4 12
24
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Note that any multiple of the ratios of these triangles is also a triplet,
such as 6:8:10 and 10:24:26.

» The two acute angles in a right triangle are always complementary
angles (sum to 90°) because the angles in all triangles sum to 180°,

There are cofunction identities that describe the complementary nature

of the acute angles in a right triangle. The trigonometric ratios of cosine,
cotangent, and cosecant are the cofunctions of sine, tangent, and secant,

respectively:

sin @ = cos (90° — @); cos D = sin (90° - Q)

tan @ = cot (90° — @); cot @ = tan (90° — O)

sec @ = csc (90° - @); csc @ =sec (90° - O)

* Other relationships for right triangles include the following reciprocal
relationships:

csc@D=1/sin@ or sin@=1/csc @

sec@=1/cos@ or cos@=1/secD

cot@=1/tan@ or tan@=1/cot @

These can be verified by rearranging:
csc@sin@=1=(l)(yr)=1
sec@cosD=1=ax)(xr)=1
cot@tan @ =1=(xy)y/x)=1

r
y
]
X
» In a right triangle, the distance between points can be calculated using
the Pythagorean Theorem. These points can be defined by X and Y axes

of a coordinate system. The distance d between the points is represented
using: & =(x~x)*+ (y2— y1)2, and depicted by:
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X1.¥1)

ly21 vl

(X2,y2)

| X5 - x4

Note that the distance d between two points in three-dimensional space
is represented using: d° = (xo — x,)* + (Y2 - )’ + (z2 — 2,)>

3.2. Solving right triangles

* Solving right triangles involves finding the measurements of the un-
known sides and angles. In a right triangle we know that the measure of
one of the angles is 90°; therefore if we know the measures of 1 acute
angle and 1 side, or if we know the measures of 2 sides, we can find all
measures of all sides and angles. To solve right triangles, trigonometric
ratios, complementary angles (sum to 90°), reciprocal relationships, and
the Pythagorean Theorem can be used. There are usually several
approaches that can be used to solve a right triangle, such as solving
sides and angles in different orders or using different trigonometric
ratios.

* In general, when solving a right triangle:

1. If you know one of the acute angles, you can find the other angle
because acute angles of a right triangle are complementary and sum
to 90° (the sum of all angles in a planar triangle is always 180°).

2. To find the first acute angle, use one of the trigonometric functions
for sin @, cos @, tan G, csc G, sec G, or cot @, depending on which
sides are known.

3. To find the third side, use the Pythagorean Theorem or one of the six
trigonometric functions in combination with a known angle.

* When solving triangles and other problems involving degree measure-

ments, the general guidelines for the accuracy of the results are:

1. Angles expressed to nearest degree, 1°, correspond to length measures
expressed to 2 significant digits.
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2. Angles expressed to nearest degree, 0.1° (10"), correspond to length
measures expressed to 3 significant digits.

3. Angles expressed to nearest degree, 0.01° (1'), correspond to length
measures expressed to 4 significant digits.

4. Angles expressed to nearest degree, 0.001° (0.1'), correspond to
length measures expressed to 5 significant digits.

Remember: ' denotes minute.

* When using a calculator to solve trigonometric functions for the value
of the function or for an angle, use the indicated buttons on the face of
your calculator, and also make sure the calculator is in degree mode for
calculations involving degrees or in radian mode for calculation using
radian angle measurements. For example, to calculate the cosine, sine,
or tangent of an angle, enter the angle and press the cosine, sine, or
tangent key. To calculate the secant, cosecant, or cotangent of an angle,
enter the angle and press the secant, cosecant, or cotangent key if it is
present on the calculator. If the secant, cosecant, and cotangent keys are
not present on the calculator, then use the reciprocal relationships:
cscd=1/sin@, sec@=1/cos D, and cot @ =1/ tan @ to calculate
the values. If the cosine, sine, or tangent of an angle is known, to find
the value of the angle @, use the appropriate inverse function key on
your calculator: if y = cos @, then @ = cos”y; if y = sin @, then

@ =sin'y; or if y = tan @, then @ = tan™'y. The inverse keys are usually
labeled as cos™!, sin'l, and tan_l, but may be shown as arccos, arcsin, or
arctan. For secant, cosecant, or cotangent, if the inverse keys are not
present, use the reciprocal relationships in the calculations.

3.3. Examples and applications of right triangles

» There are many questions that can be answered by setting up a model
involving a right triangle. In this section we will describe methods for
measuring the distance to a star, the distance across a canyon, the angle
of elevation of the Sun, the distance of a ship from to a lighthouse, the
height of a mountain, the distance of a UFO from the radar towers using
bearing, and the distance across a lake. First, consider a couple of
simple examples that describe angle and side measurements of right
triangles.

« Example: Find x, y, and o.
r=100 ft
’
<0 =40°
X
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Because the sum of the angles in a planar triangle is 180° and a right
triangle has one 90° angle: 40° + . = 90°, therefore o = 50°.

To find x and y use trigonometric ratios involving the known and
unknown values. To find y, use sin 40°=y/r=y /100 fi.
Therefore, y = (100)(sin 40°) = 64.3 fi.

To find x, use cos 40°=x/100 ft

Therefore, x = (100)(cos 40°) = 76.6 ft.

In summary the solution of this right triangle is: @ = 40°, o = 50°,
x=76.6ft,y=643 ft,andr=100 ft.

T20 chezack Itg)e side calculations, use the Pythagorean Theorem:
X"ty =r.

Is it tyrue that 76.6> + 64.3° = 100°? Yes.

* Example: Find x, @, and a.

X
To find a, use sina =y/r=31.7m/ 60.2 m=0.527.
Therefore, a. = sin_1(0.527) =31.8°
To find @, use 90° — o = Q.
Therefore, 9 = 90° - 31.8° = 58.2°
Note that a right, 90°, angle is an exact angle and does not limit
significant digit accuracy.
To find x, use tan o =y/X, or tan 31.8°=31.7m/ x.
Therefore, x =(31.7 m) / (tan 31.8°) =51.1 m.
In summary, the solution of this right triangle is: @ = 58.2° o = 31.8°,
x=51.1m,y=31.7m, and r = 60.2 m.
T20 cl;.;ck tgle side calculations, use the Pythagorean Theorem:
X +y =r.
Is it true that 51.12 + 31.7% = 60.22? Yes.
Note that we could have calculated x, given r and y, using the
Pythagorean Theorem.

* The following are examples of applications that use right triangles.

« Example: How can we measure the distance to a star? The most direct
measurements of distance for stars are made with trigonometric
parallax. The trigonometric parallax is the apparent angular displace-
ment of an object’s position when viewed from two different locations.
This technique works because when an object is viewed from two
different locations, it appears to shift position. (Think about looking at
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an object through binoculars and closing one eye and then the other.) As
the Earth moves in its orbit around the Sun, we observe stars from
different points of view, and they appear to shift back and forth by
differing amounts, depending on how far they are from us. Objects
farther away exhibit a smaller shift. The parallax method measures the
apparent displacement or dislocation of a star relative to a background
field of much more distant objects out in space.

If we know the distance between the two locations where the observa-
tions are made (location of Earth in opposites sides of its orbit around
the Sun), and if we can measure the angle through which a star appears
to shift position (the angle of parallax) against background stars, then by
using trigonometry the distance from the Earth to the star can be calcu-
lated. Unfortunately, for stars that are very far away, the parallax
method breaks down because the angle of parallax is so small. Other
methods that rely on relative distances are used to estimate distances of
stars, galaxies, etc.

To use the parallax method to determine a star’s distance from Earth,
the star’s location is observed (using a telescope) against background
stars at two opposite points in the Earth’s orbit around the Sun. The an-
nual parallax is defined as half of the angular shift (or angle of parallax)
in a star’s position against background stars when the Earth is at its two
opposite locations in its orbit around the Sun, and is depicted by 0.

o-Earth at time 1
o — d = distance from star to Earth

The distance from the star to the Earth, d, is calculated using the right
triangle formed by Earth, the star, and the Sun, with r being the distance
from Earth to Sun. To find d we can use the simple trigonometric
relationship for a right triangle: sin 6 = opposite / hypotenuse = r/d, and
rearranging,

d=r/sin@

Given that r = 150,000,000 km, and if @ is measured as, for example,

0 =0.314", then we can calculate d. (In the early 1800s Friedrich Bessel
found that the star 61 Cygni in the constellation Cygnus had a parallax
0f 0.314 arc seconds.)

Using the conversion 1 second = 1/60 of a minute = 1/3600 of a degree,
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0.314" / 3600 = 0.00008722°.

(Note that there are 1/3600 = 0.00027778 degrees per second, so

0 = 0.314" times 0.00027778 degrees/second equals 0.00008722°.)
Therefore, the distance from the Earth to the star is:

d=1/sin ® = 150,000,000 km / sin(0.00008722°) = 9.85 x 10" km
To convert to light years, divide km by speed of light times number of
seconds in a year:

9.85 x 10" km /[(3 x 10° km/s)(3,600 s/hr x 24 hr/day x 365 day/yr)]
resulting in the distance to the star being approximately 10 light years.
More recent measurements of the parallax of 61 Cygni resulted in
0.294" and a distance of 11.1 light years.

* Example: A geologist uses a surveyor’s transit, or theodolite, which is
an instrument having telescopic sight that is used to measure horizontal
and vertical angles. To measure the distance across a canyon, the geolo-
gist first measures a known length of 50 feet along one side of a canyon.
She uses the transit at point B, sets a 90° angle to a point C, and then
uses the transit at point A and measures a 40° angle from B to C with its
vertex at A.

C

40° canyon

.

A 50 ft B
Knowing two angles and a side, she determines the width of the canyon
(length BC) using tan A = opposite/adjacent.
tan 40° = BC/ 50 fi, rearranging, gives the width BC:
BC = (50 ft)(tan 40°) ~ 42 feet

* Problems involving angle of elevation and angle of depression can be
solved using a right triangle. The angle of elevation is an angle
measured from the horizontal upward, and an angle of depression is an
angle measured from the horizontal downward.

horizontal

angle of depression
angle of elevation

borizontal

» Example of angle of elevation: What is the approximate angle of
elevation of the Sun, if a 100 foot telescope dome casts a shadow 70 feet
long?
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%0t shadow

To find the angle of elevation, E, use the known sides of the formed
right triangle and the tangent trigonometric ratio:

tan E = opposite/adjacent = 100 ft / 70 ft

Therefore the angle of elevation, E = tan™'(100/70) = 55°

 Example of angle of depression: Suppose you are in a lighthouse
communicating with ship offshore and you want to determine how far
the ship is from the cliff that the lighthouse is on. The top of the
lighthouse is 200 feet above sea level.

30° angle of depression from lighthouse to ship

The angle of depression from the lighthouse to the ship is 30°; therefore
angle S is 30°. To find the distance from the cliff, C, to the ship, S, use
the trigonometric ratio for a right triangle:

tan S = opposite / adjacent = 200 ft / CS

Therefore, CS =200 ft / tan 30° = 346 feet

« Example of angle of elevation: Suppose you need to find the height of
a mountain using a right triangle model in which you can make two
angle of elevation measurements at two distances, point A and point B.

Bt

A | aE
i |
35° Ao v | B0HR

~ mountain
A 100m B C

You measure the distance between point A and B as 100 meters, but the

terrain between B and C is too treacherous to measure. We know that

angle C is 90° for both triangles, AMC and BMC.

To find the height of the mountain, MC, we need to know the distance

AC and therefore BC. Because AB + BC = AC, then AC =100 + BC.
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Begin by developing an equation for MC and then using right triangle
ratios to find BC and AC:

tan 25° = MC/AC

Therefore, MC = AC tan 25° = (100 + BC) tan 25°

=100 tan 25° + BC tan 25°

tan 45° = MC/BC

Therefore, MC = BC tan 45° = 100 tan 25° + BC tan 25°
Rearranging,

BC tan 45° — BC tan 25° = 100 tan 25°

BC (tan 45° - tan 25°) = 100 tan 25°

BC =100 tan 25°/ (tan 45° — tan 25°) = 87.4 meters

Therefore, AC = 100 m + BC = 187.4 meters.

To determine the height MC use: tan 25°=MC/ AC

Therefore, the height of the mountain,

MC = AC tan 25° = (187.4 m) tan 25° = 87.4 meters.

Alternatively, we can find the height of the mountain using:

MC = BC tan 45° = (87.4 m)tan 45° = 87.4 m.

Note that triangle BMC is a 45°:45°:90° triangle, which has both legs of
equal length. Therefore, side BC and MC are equal lengths.

* Bearing is generally used in navigation and aeronautics, and
calculations can be made using right triangle relationships. Bearing
specifies a direction and is expressed in two ways: (1) with a direction
being designated beginning with a north-south line toward an east or
west direction with N, S, E, W specified, or (2) with a direction being
designated beginning with due north and measured in a clockwise
direction. See figures.

(1.) Bearing beginning with the north-south line toward an east or west
as specified:

NS5O0°E S35°E S45°W

&

(2.) Bearing beginning with due north and measured clockwise:
50° 125° 225°

)

~
‘—J
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* Bearing example: Two radar towers 5 miles apart are tracking a UFO.
Tower A tracks the UFO at a bearing of 50° and tower B tracks it at
320°. The triangle formed between the two towers and the UFO is a
right triangle. How far is the UFO from the radar towers?

5 miles

A right triangle can be drawn for triangle ABU with U as the 90° angle.
Angle A of the right triangle at tower A can be obtained from the
bearing of 50° as: 90° — 50° = 40°.

Angle B at tower B can be found using the fact that the sum of the
angles in a planar triangle is 180° and the two acute angles of a right
triangle sum to 90°. Therefore, angle B is 90° — 40° = 50°.

The distance from tower A to the UFO, or side AU, can be found using:
cos 40° = adjacent/hypotenuse = AU / 5 mi

Therefore, AU = (5 mi)(cos 40°) = 3.8 mi.

(We can also use sin 50°= AU/ 5 mi, or AU = (5 mi)sin 50° = 3.8 mi.)
The distance from tower B to the UFO, or side BU, can be found using:
cos 50° = adjacent/hypotenuse = BU / 5 mi

Therefore, BU = (5 mi)(cos 50°) = 3.2 mi.

(We can also use sin 40° = BU/5 mi, or BU = (5 mi)sin 40° = 3.2 mi.)

The Pythagorean Theorem could also have been used to compute the
third side, or as a test of the result. Does 3.8% + 3.2% = 5?2 Yes.

In summary, the distance of the UFO to the radar towers is 3.8 miles
from tower A and 3.2 miles from tower B.

3.4. Oblique triangles and the Law of Sines and Law of Cosines

 Oblique triangles are triangles in planes that are not right triangles and
therefore do not contain a right angle. They are described and solved
using primarily the Law of Sines and Law of Cosines, and occasionally
the Law of Tangents. Solving oblique triangles is helpful in situations
where measuring distances and angles is required. Oblique triangles
may have all acute angles (measuring less than 90°) or may contain an
obtuse angle (measuring more than 90°).
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X Y
X ; Y z

* The Law of Sines (along with the Law of Cosines) is used to deter-
mine unknown side and angle measurements of an oblique triangle. The
Law of Sines is given by:
X _y _ z

sinX sinY sinZ

Where X, y, and z represent sides of a triangle and X, Y, and Z represent
the angles opposite to the sides x, y, and z, respectively. By rearranging
using algebra, the following forms of the Law of Sines are obtained:

x sinX 'y sinY z _ sinZ

y sinY z sinZ’ x sinX

x sinX y sinY z sinZ

. 2 . b .
z sinZ x sinX y sinY

xsinY=ysinX, ysinZ=zsinY, zsinX=xsinZ
x=ysinX/sinY, x=zsinX/sinZ
y=zsinY/sinZ, y=xsinY/sinX
z=xsinZ/sinX, z=ysinZ/sinY
sinX=xsinY/y, sinX=xsinZ/z
sinY=ysinZ/z, sinY=ysinX/x
sinZ=zsinX/x, sinZ=zsinY/y

» The Law of Cosines (along with the Law of Sines) is used to deter-
mine unknown side and angle measurements of an oblique triangle. The
Law of Cosines is given by:

=y’ +22 - 2yzcos X

y=2+ x* - 2zx cos Y

z2=x2+y2—2xycosZ

where x, y, and z represent sides of a triangle and X, Y, and Z represent
the angles opposite to the sides x, y, and z, respectively. (For a right tri-
angle where cos 90°=0, this reduces to the Pythagorean Theorem.) By
rearranging, the following forms of the Law of Cosines are obtained:
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cos X =(y>+ 2’ - x)) / 2yz

cosY=(zz+x2—y2)/22x

cos Z=(x*+y* - 2) / 2xy

To find the angles X, Y, and Z, use the inverse cosine key cos”' on your
calculator.

* Note that the Law of Sines and the Law of Cosines can be used to
solve right triangles as well as oblique triangles, although the methods
previously used to solve right triangles are easier to use when
confronted with a right triangle. The Law of Sines and the Law of
Cosines are derived from the principles of right triangle relations.

* Derivation of Law of Sines.

B:

c ‘E a h

X

A b C A b C

To derive the Law of Sines, we can use either an acute triangle or an
obtuse triangle. The first step in either case is to create two right tri-
angles out of the obtuse or acute triangle by extending a perpendicular
line or altitude line, h, from angle B perpendicular to side b to vertex X.
This results in:

Right triangle ABX, where sin A = opposite/hypotenuse = h/c
Therefore, h =c sin A

Right triangle BCX, where sin C = opposite/hypotenuse = h/a
Therefore, h=asinC

Becauseh=h, csinA=asinC

. . a
Rearranging results in the Law of Sines:

sinC sinA
By drawing a perpendicular line, h, from angle A to side a or from angle
C toside ¢, derivations can also be shown for the other Law of Sines
relationships:

a b and b c

sinA sinB sinB sinC

Written together we obtain the standard form of the Law of Sines:
a b ¢

sinA sinB sinC

* Derivation of Law of Cosines. There is more than one approach to
derive the Law of Cosines. See textbooks for various derivations.
Following is one method for deriving the Law of Cosines.
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Consider an acute triangle with an altitude line, h, drawn from angle C

to side c:
b ‘a a

A c B

i -
X X

Two right triangles are formed, ACX and BCX.
For right triangle ACX, cos A = adjacent/hypotenuse = x/b
Therefore, x =b cos A
For each right triangle, ACX and BCX, the Pythagorean Theorem can
be written:
ACX: X’ +K =1
BCX: (c-x)*+h*= a’
Rearranging the BCX equation gives: -2cx+x*+h’=a’or
BCX: x> +h?=a’- ¢* + 2¢cx
Combine right triangle equations by substituting x>+ h? =b? from ACX
into BCX equation:
b’=a%- ¢+ 2cx , or
a’=b"+c’ - 2cx
For the large triangle ABC substitute x = b cos A to obtain the
Law of Cosines: a’ = b” + ¢? — 2bc cos A

By drawing different perpendicular h lines from the other two angles
perpendicular to their opposite sides, the other two formulas for the Law
of Cosines can be derived using this same procedure. The three
equations for the Law of Cosines are:

a’=b’+c>— 2bc cos A

b>=a’+c’ - 2ac cos B

=a’+b> - 2abcos C

¢ The Law of Cosines can also be derived using an obtuse triangle.

Xx A ¢ B

Note that angle A is indicated by the dark arc and angle (180°— A) is
indicated by the dashed arc.

The following is true for right triangle AXC: cos (180° — A) =x/b
Therefore, x = b cos (180° — A)
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Because cos (180° - A)=—cos A, thenx=-b cos A

Proceeding with Pythagorean Theorem for both right triangles:
Triangle ACX: x> +h’=b?

Triangle BCX: (x +¢)* +h%=a?

Rearranging gives: X° + 2xc+c’ +h2=a’ora’= x>+ h’ +c* +2xc
Substitute x* + h* = b” form triangle ACX: a® = b® + ¢? + 2xc
Substituting x = —b cos A gives the Law of Cosines with respect to
angle A: a” =b* + ¢* - 2bc cos A

By drawing different perpendicular h lines, the other two formulas for
the Law of Cosines can be derived.

Law of Tangents

* The Law of Tangents, which was stated in modern form by Viéte
about 1580, is included here for completeness, although it is rarely used
today. It is given by:

1
x+y tan—z—(X+Y)

x-y tan%(X—Y)

The Law of Tangents can be used to solve triangles when two sides and
the angle in between are given (SAS case). Today the Law of Cosines is
used to find the missing side, and then one of the unknown angles is
found using the Law of Sines.

3.5. Solving oblique triangles

* Right triangles and oblique triangles are used to determine lengths,
distances, and angles for various applications and problems. Solving a
triangle generally means finding the three angle measurements and the
three side lengths. In many problems, however, not all side or angle
measurements will be required. The Law of Cosines and the Law of
Sines are used to find side and angle values and to solve oblique
triangles. To solve a triangle and find all six measures, at least three
measures must be known and at least one of these known measures must
be a side length. In other words, to solve an oblique triangle we need to
know at least one side length and any other two measurements.

» There are five possible scenarios of what we may know to solve an
oblique triangle. These scenarios are:

3 sides are known, which is a SSS triangle;

2 sides and 1 angle are known, which can be a SAS or SSA triangle; or
1 side and 2 angles are known, which can be an ASA or AAS triangle.
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Following are the five possible cases with X, Y, and Z representing the
angles and x, y, and z representing the sides opposite to the angles.

Z
¢ SSS case: where sides X, y, and z are known.
y X
X VA Y

To solve, we need to find the three angles X, Y, and Z.

First, find the largest angle Z (opposite to the largest side z) using the
Law of Cosines: cos Z = (x> +y* — ) / 2xy.

Note that if one of the other angles was largest, we would use

cos X =(y*+Z2—x?)/2yz or cos Y =(Z +x* - y?) / 2zx.

Once you know cos X, cos Y, or cos Z, use the inverse cosine key cos™!
on your calculator find the angles X, Y, or Z.

Next, find either remaining angle using the Law of Sines or the Law of
Cosines. Remember: The Law of Sines is: x /sin X =y /sinY = z/sin Z.
Finally, find the third angle using the sum of angles in a triangle rule:
X°+Ye+Z°=180°.

Z
* SAS case: given sides x and y and angle Z in between.
%{ :K
X z Y

To solve, we need to find the third side z and angles X and Y.

First, find third side z opposite given angle Z using the Law of Cosines:
Z2=x*+y’ - 2xycos Z.

Next, find the smaller unknown angle using the Law of Sines or the
Law of Cosines.

Finally, find the third angle using the sum of angles in a triangle rule:
X°+Y°+Z°=180°.

Z
* ASA case: given two angles Y and Z and the side x between.
X z Y

To solve, we need to find the third angle X and sides y and z.
First, find the third angle X using the sum of angles in a triangle rule:
X°+Y°+Z°=180°

60



Triangles and Trigonometric Functions
Next, solve the remaining two sides y and z using the Law of Sines:
y=xsinY/sinX
z=xsinZ/sin X

Z
* AAS case: given two angles Y and Z and side z not between.
A
X z Y

To solve, we need to find the third angle X and sides x and y. Note that
this is similar to ASA case.

First, find the third angle X using the sum of angles in a triangle rule:
X°+Y°+Z°=180°.

Next, find the remaining two sides x and y using Law of Sines:
x=zsinX/sinZ

y=zsinY/sinZ

Z
* SSA case: given two sides y and z and an angle Y nor between.
7Y
X z Y

This is known as the “ambiguous case” because SSA triangles may not
always have a unique solution and therefore represent one triangle. In
the ambiguous case there may be:

1. No solution for the angle so that no triangle exists;

2. Two solutions—the angle and its supplement—so two triangles exist; or
3. One solution for the angle so that one triangle exists.

To solve, we need to find the third side x and angles X and Z.

First, solve the angle opposite the other known side using the Law of
Sines. In this case find angle Z:

sinZ=(zsinY)/y.

(Use sin"! on your calculator to find angle Z.)

Next, find the third angle X using the sum of angles in a triangle rule:
X°+Y°+Z°=180°

Finally, use the Law of Sines to find the third side x:
x=zsin X /sin Z.

If two triangles exist, then steps need to be repeated to solve both
triangles. Following is a discussion of the ambiguous case.
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* Ambiguities of the SSA case become obvious when we attempt to
draw the triangle after we begin to solve the triangle in question. As a
reference, consider the following possible triangle of the SSA case
where we are given sides x and y and angle X. Note that h is the
perpendicular drawn to create two right triangles.

Consider if X is an acute angle:

When side x < h, then no triangle exists.
Note h =y sin X.

Z
}Ah =x When side x = h, then one triangle can exist,
X and it is a right triangle.
z
y h X  Whenside x >y, then one triangle can exist.

y A X When side y > x > h, then two triangles may exist,
one with side x; and one with side x,.
Y

Consider if angle X is obtuse:
Z_ x

When side x <y, then no triangle exists.

Y
X

Z

X When side x >y, then one triangle can exist.
y Y
X

* In general, when solving triangles remember the following:
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1. The sum of the lengths of any two sides must be greater than the
length of the third side.

a atb>c
Qc b+c>a
b atc>b

2. The smallest angle is opposite to the smallest side, the middle size
angle is opposite the middle length side, and the largest angle is
opposite to the largest side.

3. Supplementary angles have the same sine value, and the sine of an
angle cannot be greater than |1].

sin 0 = sin(180° - 0) (180"—9)/749

4. The sum of the angles in a planar triangle is always 180°.

3.6. Examples and applications of oblique triangles

* Example 1: Find all measures of a triangle given that the lengths of the
three sidesarea=10m,b=15m, and c=20 m.
This is an SSS triangle. We need to find angles A, B, and C. First, use
the Law of Cosines to solve for the largest angle, C, (which is opposite
the largest side.) This will tell us if C is acute or obtuse. Note that when
cos C <0, C is obtuse. The Law of Cosines is: ¢?=a’+ b’ - 2ab cos C.
Rearranging:
C = cos [(a% + b% - ¢?) / 2ab] = cos '[(10? + 15% - 20%) / 2(10)(15)] =
C=104.5°
B
a=10 c=20
\19

C b=15 A

Next, find angle B using the Law of Sines: ¢/sinC =b/sinB.
Rearranging:

sinB=bsinC/c

B = sin"'[(15 sin 104.5°) / 20]

B =46.6°

Finally, find angle A using A = 180° — (B° + C°).

A =180° — (46.6° + 104.5°)

A=289°

Therefore, the solution of the triangle is:

a=10m b=15m, ¢=20m, A =28.9°, B=46.6° and C = 104.5°.

Note: To check results, repeat calculations using different formulas.
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» Example 2: Find all measures of a triangle given the side lengths

a =24 feet and b = 9 feet, and angle B = 54°.

This is an SSA triangle (the ambiguous case). We need to find angles A
and B and side c.

If we try to draw the triangle, it looks questionable:

B=54° A

Use the Law of Sines to see if sin A < 1:

sinA=(asinB)/b

sin A = (24 sin 54°) / 9 =2.157, which is greater than 1

Sine cannot be greater than 1 (if you press sin”' on your calculator an

error message should appear). Therefore, no such angle A can exist and
no triangle can be formed.

* Example 3: Find all measures of a triangle given the side lengths
a = 10 meters and b = 8 meters, and angle A = 42.0°.

This is an SSA triangle (the ambiguous case). We need to find angles B
and C and side c.
Find sin B using Law of Sines, b/ sin B=a/ sin A, to see if sin B < 1:
sin B =(bsin A) /a=(8sin 42.0°)/ 10 =0.5353
which is less than 1, so angle B exists. Taking sin™":
B=324°
Is it possible that an obtuse B (or its supplement) also exists?
The supplement would be: 180° — 32.4° = 147.6°
To see if this is possible, add angle A + 147.6°, or
42.0°+ 147.6° = 189.6°
Because 189.6° > 180°, a triangle cannot exist as all angles in a triangle
must sum to 180°. Therefore, two triangles cannot exist.
Continue with angle B = 32.4°, and find angle C using triangle sum rule:
C=180°- (A + B) = 180° ~ (42.0° + 32.4°)
C=105.6°
Finally, find side c using Law of Sines, ¢ / sin C =a/sin A:
c=(asin C)/sin A = (10 sin 105.6°) / sin 42.0°
¢ = 14 meters
Therefore, the measurements of the triangle are:
a = 10 meters, b = 8 meters, c = 14 meters, angle A = 42.0°, B=32.4°,
and C = 105.6°.
The triangle looks something like this:
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b=8 A0s5.65_a=10
20° 324

A c=14 B

» Example 4: Find all measures of a triangle given the side lengths
a = 10 meters and b = 17 meters, and angle A = 28°.

This is an SSA triangle (the ambiguous case). We need to find angles B
and C and side c.

Find sin B using the Law of Sines, b/sinB=a /sin A:
sinB=(bsin A)/a=(17 sin28°) /10 =0.7981

which is less than 1, so angle B exists. Taking sin™":

B=53°

Is it possible that an obtuse B (or its supplement) also exists?

The supplement would be: 180° — 53°=127°

To see if this is possible, add angle A + 127°, or

28° +127°=155°

Because 155° < 180°, a triangle can exist.

Therefore, two triangles with B = 53° and B = 127° can exist.

Solve Triangle 1: B =53°, A =28° a = 10 meters, and b = 17 meters.
Find C using the triangle sum rule:

C=180° - (28° + 53°) =99°

Find ¢ using the Law of Sines, ¢ /sinC = a / sin A:
c=asinC/sin A= 10 sin 99°/ sin 28° = 21 meters

Therefore, Triangle 1 has measures B =53°, A=28° C=99° a=10
meters, b = 17 meters, and ¢ = 21 meters. Draw this triangle to see ifit
looks reasonable:

C
a=10/" 99° b=17
530 28°
B c=21 A

Solve Triangle 2: B =127°, A = 28°, a = 10 meters, and b = 17 meters.
Find C using the triangle sum rule:

C=180° - (28°+127°) =25°

Find c using Law of Sines, ¢ /sin C=a/sin A:

c=asin C/sin A = 10 sin 25°/ sin 28° = 9 meters

Therefore, Triangle 2 has measures B = 127°, A =28° C = 25°,

a = 10 meters, b = 17 meters, and ¢ = 9 meters. Draw this triangle to see
if it looks reasonable:
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C

> b=17
a=10 g

B ¢9 A

 Example 5: Find the distance to a point C across a canyon from two
selected points, A and B, 100 feet from each other. (Note that in section
3.3 we used a right-triangle model to solve a canyon problem requiring
that we find the distance directly across the canyon.)

First, measure out the 100 feet along the side of the canyon between two
points A and B. Next measure angles A and B using a surveyor’s transit
device, or theodolite, pointing toward point C on the other side of the
canyon.

Angle A measures 100° and angle B measures 60°.

This is an ASA triangle with A = 100°, B = 60°, and side ¢ = 100 feet.
We need to find angle C and sides a and b.

100

Calculate angle C using the triangle angle sum rule:

C = 180° - (100° + 60°) = 20°

Use the Law of Sines to find b, b/ sin B=c¢ /sin C:

b =c sin B/ sin C = 100 sin 60° / sin 20° = 253 feet

Use Law of Sines to find a, a /sin A=c/sinC:

a=csin A/sin C= 100 sin 100°/ sin 20° a = 288 feet

Therefore, the distance from A to C is 253 feet and the distance from B
to C is 288 feet, which seems correct.

* Example 6: Find the distance across a lake.

2~
S
b=40 =150

A =96.9°

Measure distance b = 400 feet

Measure distance ¢ = 450 feet

Measure angle A using a surveyor’s transit as A = 96.9°

This is an SAS triangle with A = 96.9°, side b = 400 feet, and side
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¢ =450 feet.

We need to find the distance a across the lake between points C and B.
Use the Law of Cosines to find a: a> = b? + ¢ — 2bc cos A.

We need to calculate the square root of a” to find a:

a=(b*>+ ¢ - 2bc cos A)"?

a = [(400” + 450> - 2(400)(450) cos 96.9°)]"

a =637 feet

Judging from the drawing, the distance of 637 feet across the lake seems
reasonable.

3.7. Finding the area of a triangle

» Several methods can be used to determine the area of a triangle, and
the method used will depend on what information is known. Methods
used to find area described in this section are based on knowing the
following:

1. Base and height;

2. Two sides and the angle in between (SAS);

3. Two angles and one side (ASA or AAS);

4. Two sides and an angle not in between {(SSA); and

5. Three sides (SSS).

Following are descriptions of each of these cases.

1. Find the area of a triangle given base and height.

height =3 in

base =6 in
Area of a triangle = (1/2)(base)(height)
The height is an altitude line drawn from an angle perpendicular to the
side opposite that angle. The height or altitude is the length of that line,
and the base is the side to which the height is perpendicular. To obtain
the height, draw a perpendicular line from the base to the opposite angle.
In this triangle area is:
(1/2)(6 inches)(3 inches) =9 inches” or 9 square inches

2. Find the area of a triangle given two sides and the angle in between
(SAS).

« If we know two sides and the angle in between them, we can draw an
altitude or height line, h, perpendicular to the opposite base and deter-
mine the length of h using trigonometric functions for right triangles.
Drawing an altitude line from an angle perpendicular to the opposite
side forms two right triangles. When calculating area, the height line can
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be drawn from any angle. The angle chosen will depend on which
triangle dimensions are known. Consider the following triangles:

Triangle 1 Triangle 2 Triangle 3
given bAc given cBa given aCb

Right triangles formed by the h line are used to determine the value of h
using right triangle trigonometric functions:

Triangle 1: sin A = opposite/hypotenuse = h/c; therefore h = c sin A
Triangle 2: sin B = opposite/hypotenuse = h/a; therefore h = a sin B
Triangle 3: sin C = opposite/hypotenuse = h/b; therefore h =b sin C
Because the area of a triangle is: area = (1/2)(base)(height), we can
substitute for h from the information obtained from the right triangle
functions. Remember: The base is the side of the triangle that h is drawn
perpendicular to. Substitute into the area equation for the above three
triangles: area = (1/2)(base)(height).

Triangle 1: Area = (1/2)(b)(c sin A)

Triangle 2: Area = (1/2)(c)(a sin B)

Triangle 3: Area = (1/2)(a)(b sin C)

Therefore, area equals one-half the product of two sides and the sine of
the angle in between them. This is true for acute, obtuse, oblique, and
right triangles.

Note that the area of an equilateral triangle is (1/4) (side? W3.

« Example: Find the area of the following triangle with h drawn
perpendicular to side AC.

A 14m X C
For right triangle ABX, sin A = opposite/hypotenuse, or
sin 40° = h/10
Therefore, h = 10 sin 40° = 6.4 meters

Now use the area formulia:
Area = (1/2)(base)(height) = (1/2)(14m)(6.4m) = 45 meters*
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» Example: For an obtuse triangle, the height h can be drawn perpen-
dicular to the opposite side but outside of the triangle. Find the area of
the following triangle with h drawn perpendicular to side AC.

For right triangle ABX, sin(180° — 155°) = opposite/hypotenuse = h/12,
sin(180° - 155°) =h/12 =sin 25°=h/12

Therefore, h =12 sin 25°= 5.1 feet

Now use the area formula:

Area = (1/2)(base)(height) = (1/2)(6f®)(5.1ft) = 15 feet®

3. Find the area of a triangle given two angles and one side (ASA or
AAS).

* If two angles and one side of a triangle are known, the area can be
found using the triangle sum rule, the area formulas we derived in the
previous case (2) and the Law of Sines. Consider the following
triangles:

A b C C

If two angles are know we can calculate the third angle using the
triangle sum angle rule: A° + B°+ C° = 180°.
Next, use the area formulas derived in the previous case (2) for two
sides and the angle in between:
Area = (1/2)(a)(b sin C)
Area = (1/2)(b)(c sin A)
Area = (1/2)(c)(a sin B)

b ¢
sinA sinB sinC
Rearrange to obtain three equations:

Combine with the Law of Sines:

asinB=bsinA; bsinC=csinB; asinC=csin A

bs.;mA_ b=

csinB o= asinC
sinB ’ sinC ’ sin A
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Substitute for a, b, and ¢ into the three area formulas:

. 2 . .
Area = (1/2)@)(b sin C) = (12)( 2504 yp sin 0y = 2 sinAsinC
sin B 2sin B
- 2 . .
Area = (12)(b)c sin A) = (12% S50 B y e sin oy = S SMAsnB
sinC 2sinC
. . 2 . .
Area=(172)(c)a sin B) = (172 232C ya sin ) = 2 S0 BsinC
sin A 2sin A

Select the area formula to use depending on which side, a, b, or c, is
known.

« Example: Find the area in this AAS triangle, given angles A = 55° and
C = 50° and side ¢ = 25 meters.

B

A=55° b C=50°

First, find the third angle B: B = 180° — (55° + 50°) = 75°
Find area using the area formula where side ¢ is known:
_ c¢’sinAsinB _ 25% sin 55°sin 75°
- 2sinC 2sin50°

Area = 323 meters’

« Example: Find the area in this ASA triangle, given angles A = 55° and
B = 75° and side ¢ = 25 meters.
B=75°

c=25 a

A=55° b C
First, find the third angle C: C = 180° — (55° + 75°) = 50°
Find area using the area formula where side c is known:
_ c?sinAsin B _ 25% sin 55°sin 75°
-7 2sinC 2sin50°

Area = 323 meters?

4. Find the area of a triangle given two sides and an angle not in
between (SSA).
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« If we know two sides and the angle opposite one of the known sides
(not the angle in between), the area can be found using the Law of
Sines, the triangle sum rule, and the area formulas derived in the
previous case (3). To determine area:

First, find the second angle (and check its supplement) using the Law of
Sines:

a b ¢

sinA sinB sinC
Next, use the triangle sum rule to find the third angle.

Then, calculate area using the applicable formula from (3):

_a’sinBsinC Area=b25inASinC =czsinAsinB
2sin A ’ 2sin B ’ 2sinC

Note that there may exist two triangles, because there may be two
solutions for the second angle (the angle and its supplement).

Area

* Example: Find the area in a SSA triangle given angle A = 25° and
sides a = 100 inches and b = 200 inches.

Find angle B using the Law of Sines: a/sin A = b/sin B. Rearranging:
B = sin'[(b sin A / a] = sin'[(200 sin 25° / 100} = 58°

Does angle B have a supplement that could represent a second triangle?
The supplement of B is 180° — 58° = 122°

To see if a second triangle exists, add angle A = 25° plus supplement
angle B = 122° 25°+ 122°=147°

Because 147° < 180°, a triangle can exist. Therefore, we must consider
two triangles with B = 58° and B = 122°.

Triangle 1: A =25°, B =58°, a = 100 inches, and b = 200 inches.

Find the third angle C using triangle sum rule:

C=180°-(25°+58°) =97°

Use the area formula with the known values to obtain the area of
Triangle 1:

_ a’sinBsinC _ 1007 sin 58° sin 97°

Area _ : = 9,958 inches’
2sin A 2sin 25°
C
100/ 97° 200
58° 25°
B A

Triangle 2: A =25°, B=122° a = 100 inches, and b = 200 inches.
Find the third angle C using triangle sum rule:
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C=180°-(25°+122°) = 33°
Use the area formula with the known values to obtain the area of
Triangle 2:

_ a’sinBsin C _ 1002 sin 122° sin 33°

k = 5,465 inches’
2sin A 2sin25°

Area

C
; 200
100 °
B A

5. Find the area of a triangle given three sides (SSS).

« If three sides of a triangle are known, Heron’s formula can be used to
determine the area of the triangle. Heron’s formula is:

Area = ‘/Rs —a)(s—b)s—c)

where s is one-half of the perimeter, called the “semiperimeter”, and is
given by: s =(1/2)(a+b +c).

« Heron’s formula can be derived as follows.

Begin with the area formula for angle A, the Law of Cosines, and the half-
angle identities for sine and cosine, which are discussed in Chapter 7.
Area = (1/2)(b)(c)sin A, as determined in SAS triangle,

2, .22
Law of Cosines for angle A: cos A= b;#
c
Half-angle identity for sine in terms of angle A:sin? % = 1—:_—(:2%
1
Half-angle identity for cosine in terms of angle A: cos? _{;_ _1+ C;s A

Note that this derivation provides a good example of the usefulness of
trigonometric identities, which are discussed in Chapter 7.

Substitute the Law of Cosines into the half-angle formula for sine:

b? +¢? —a?
A - T 2be
sin2 o 2bc
2 2
Multiply by 2bc/2bc:
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b2 +02 —a2
sin®? == @bl 1~ T_] _ 2bc-b’-c’ +a’
2 (2bc)2 Ibo

Factor the numerator:
sin? é: (a+b-c)a—b+c)
4bc

Next, we want to get the two factors in the form of the semiperimeter,
s=(1/2)(a+b+c).
First rearrange factor (a + b — ¢):
atb-c=a+b-2c+lc=a+b+c-2c=(2/2)(a+b+c-2c)
_ 2[(a+b+c) _q]

2
Next, rearrange factor (a — b +¢):
a-b+c=a-2b+1b+c=a+b+c-2b=(22)a+b+c-2b)

_latb+c)
A——-b]

Substitute factors back into sin> i;— = (@a+b- Z)éa —b+¢) :
I

c]

2[(a+b+c) _b]z[(a+b+c) 3

sinzi: 2 2
2 4bc
[(a+12>+c) _b][(a+12)+c) —_q
- be

Substitute s = (1/2)(a+ b +¢):

A _(s=b)s—0)
2 bc
Take the square root to obtain sin(A/2):

inA_ [6=D)E=9)
2 be

Work through a similar procedure beginning with the half-angle identity
for cosine with respect to angle A:

2A_l+cosA
2 2

sin

COS
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Substitute the Law of Cosines into the half-angle formula for cosine:

b’ +c¢* —a?
1+—
cos? A_ 2bc
2 2
Multiply by 2bc/2bc:
b2 +c2 —a?
cosz—=(2bc)[1 + 2be ] _ 2bc + b? +¢% —a?
2 (2bc)2 4bc
Factor the numerator:
cosz—é— _(@a-b-c)a+b+c)-1
4bc

Next, we want to get the factors in the form of the semiperimeter,
s=(12)a+b+¢)
First, rearrange factor (a + b + c):
(a+b+c) 1

2
Next, rearrange factors (a — b — c)(~1):
(@a-b-c)(~-l)=-a+b+c=-2a+la+b+c=a+b+c-2a
(a+b+c)

atb+c=2

=22} a+b+c-2a)= 2 5 a]
Substitute factors back into cos? A_@-b-c)a+bre)-1) :
2 4bc

2[(a +b+c¢) ]2[(a+b+c) _a]

cos? 2 = 2 2
2 4bc
(a+b+c) (a+b+c)
=[ 2 I 5 aj
be

Substitute s = (1/2)(a + b +¢):
oA _()Xs—a)
2 bc
Take the square root to obtain cos(A/2):

cos = [©X5=2)
2 be

CO!
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Now we can combine the formulas for sin(A/2) and cos(A/2) using the
double-angle identity sin A = 2 sin(A/2) cos(A/2).
Substitute sin(A/2) and cos(A/2) into the double angle identity:

sinA=2 \/ (- b)(s ©) (S)(Zc 3 _ o J s(s—a)(s—b)(s—c)

Finally, to obtain the area substitute this formula for sin A into the area
formula area = (1/2)(b)(c)sin A:

area = (1/2)(b)(c) Ezc"/s(s —a)(s—b)(s—¢)
area = ,/g(s —a)(s—b)(s—c)

which is Heron'’s formula for area of a triangle.

Note: If this derivation seems laborious and non-obvious, remember that
Heron would not have had it named after him if it had been obvious.

« Example: Find the area of a triangle given three sides a = 4 meters,
b = 6 meters, and ¢ = 8 meters.

A~
=8

First, find the semiperimeter s = (1/2)(a +b +c):
s=(12)4+6+8)=9

Substitute into Heron’s area formula, area = ,/ s(s—a)(s—b)(s—c):
area = \[9(9 —4)(9 — 6)(9 —8) = /95)3)1)135

area ~ 12 meters>.

3.8. Chapter 3 summary and highlights

« Triangles enable us to determine distances, heights, and angles. By
drawing a model of a system, drawing a triangle in the model with its
sides and angles representing key features, we can use the properties of
triangles to calculate side lengths and angle measurements. Triangles
can be used to determine such values as distance to a star, distance
across a canyon or lake, or the angle of elevation of the Sun.

« The six trigonometric functions can be defined according to the ratios
of the sides of a right triangle. This makes right triangles especially use-
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ful. Right triangles are triangles with one angle equal to 90°. For the
right triangle below:

Ay

X
the six trigonometric functions are:
cos o =X/r, sino =y/r, tano =y/x,
seca=r/X, csco=rly, coto =Xx/y
The Pythagorean Theorem is 1° = X° + y

« Important relationships include the reciprocal identities

cos a = 1l/sec a, sina = l/csc a, and tan o = 1/cot a,

the quotient identities tan oo = sin o. /cos o and cot o0 = cos a. /sin .,
and the cofunction identities for sine and cosine

cos o = sin(90° — o) and sin o0 = cos(90° — ).

* There are special right triangles commonly used in calculations, which
include the 30:60:90 and 45:45:90 triangles and the 3:4:5, 5:12:13, and
7:24:25 triplet triangles.

» To solve right triangles and find the unknown sides and angles, we can
use the six trigonometric functions, the Pythagorean Theorem, and the
fact that the two acute angles in a right triangle sum to 90° (because all
three angles in a triangle sum to 180°).

* Oblique triangles are planar triangles that do not have a 90° angle and
therefore are not right triangles. Oblique triangles may have all acute
angles (<90°) or two acute angles and one obtuse angle (>90°). Like
right triangles, oblique triangles can be used to model problems that
require measurements of distances, lengths, and angles, such as deter-
mining the distance across a lake or canyon.

* To solve an oblique triangle and find all six measurements, the Law of
Sines, the Law of Cosines, and the fact that the angles in a triangle sum
to 180° are used. For the oblique triangle:
Z
y
X z Y
The sum of the angles is: X + Y + Z = 180°
The Law of Sines is: (x/sin X) = (y/sin Y) = (z/sin Z)
The Law of Cosines is: x° =y* + 2* — 2yz cos X,
y2=zz+x2—22xcosY, and 2 =x*+y* — 2xy cos Z
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* The area of a triangle can be determined using several approaches
depending on what information is known. For the triangle:
B
C

A b C

The simplest equation for area is: area = (1/2)(base)(height), or
area = (1/2)(b)(h), where h is a line perpendicular to the base and
extending to the opposite angle.

An extension of this equation calculates the height:

area = (1/2)(b)(c sin A).

A further extension of this equation is:

area = (c? sin A sin B) / (2 sin C).

If three sides are known, Heron’s formula can be used to find area:
area = [s(s — a)(s — b)(s — ¢)]"%, where s =(1/2)(a+ b +¢).

* A general note: When solving any problem in mathematics, science, or
engineering, including trigonometry, look at your final answer and any
drawings that may result and check to see if the answer seems correct
with respect to the problem. For example, if you calculate the distance
across a stream to be 10,000 miles, you know you have made an error in
the way you set up the problem or in one or more of the calculations.
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CHAPTER 4

Trigonometric Functions in a Coordinate
System and Circular Functions

4.1. Review of functions and their properties

4.2. Types of functions, including composite, inverse, linear,
nonlinear, even, odd, exponential, logarithmic, identity, absolute
value, squaring, cubing, square root, cube root, reciprocal, and
functions with more than one variable

4.3. Coordinate systems, radians, degrees, and arc length

4.4. Angles in standard position and coterminal angles

4.5. The trigonometric functions defined in a coordinate system in
standard position, quadrant signs, and quadrantal angles

4.6. Reference angles and reference triangles

4.7. Negative angles

4.8. Reciprocal functions and cofunction relationships

4.9. Circular functions and the unit circle

4.10. Linear and angular velocity

4.11. Chapter 4 summary and highlights

» Trigonometry involves measurements pertaining to triangles, angles,
distances, arc lengths, circles, planes, and spheres. Trigonometry is used
in engineering, navigation, the study of electricity, light and sound, and
in any field involving the study of periodic and wave properties. The six
trigonometric functions were defined in Chapter 3 for triangles as ratios
of the sides of right triangles. In this chapter, we define the six
trigonometric functions in a coordinate system using angles in standard
position, and then define them as arc lengths on a unit circle, called
circular functions. Circular functions have as their domains sets of real
numbers rather than exclusively angles or triangles. Circular functions
allow the use of trigonometric functions beyond angles and triangles
into the study of electricity, sound, music, projectile motion, and other
phenomena that exhibit a periodic nature.

4.1. Review of functions and their properties

« Functions are an integral part of mathematics and reflect the fact that
one or more properties can depend on another property. For example,
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how fast a trolley cart can carry a rock up a hill is a function of how
much the rock weighs, the slope of the hill, and the horsepower of the
motor. Common functions include algebraic functions represented as
mathematical operations such as addition, subtraction, multiplication,
division, powers, and roots, as well as trigonometric functions, inverse
trigonometric functions, logarithmic functions, and exponential
functions.

* A function is a relation, rule, expression, or equation that associates
each element of a domain set with its corresponding element in the
range set. For a relation, rule, expression, or equation to be a function,
there must be only one element or number in the range set for each
element or number in the domain set. The domain set of a function is
the set of possible values of the independent variable, and the range set
is the corresponding set of values of the dependent variable.

* The domain set is the initial set and the range set is the set that results
after a function is applied: domain set — function f ) — range set

For example, x* is a function that is applied to the domain set resulting
in the range set:

domain set x = {2, 3, 4}

through function f{x) = X%, (2) = 22 f(3) = 3%, f{4) = 4>

to range set {x) = {4, 9, 16}.

* The domain set and range set can be expressed as
(x, f{x)) pairs. In the previous example, the function is
f{x) = x° and the pairs are (2, 4), (3, 9), and (4, 16).

» For each member of the domain set, there must be only one
corresponding member in the range set. For example:
F=(2,4),3,9),(4,16) whereF is a function.
M=(2,5),(2,-5),(4,9) whereM is not a function.

M is not a function because the number 2 in the domain set corresponds
to more than one number in the range set.

« Functions can be expressed in the form of a graph, a formula, or a
table. To graph functions, the values in the domain set correspond to
the X-axis and the related values in the range set correspond to the
Y-axis. For example:

domainsetx=-2,-1,0, 2

through function f{ix) =x+1

to range set f{ix)=-1,0, 1, 3

resulting in pairs (%, y) = (-2, -1), (-1, 0), (0, 1), (2, 3).
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When graphed these resulting pairs are depicted as:

y-axis = Range f(x)

* Graphs of functions only have one value of y for each x value:
y Yy

Graph is a function Graph is not a function
y

Graph is not a function

If a vertical line can be drawn that passes through the graph more than
one time, there is more than one y value for a given x value and the
graph is not a function. This is called the vertical line test.

* In general, a function is increasing when y = f(x) increases as x
increases, and a function is decreasing when y = f{x) decreases as x
increases.

* The following are examples of (a) addition, (b) subtraction, (c)
multiplication, and (d) division of functions. In these examples the
functions f{x) and g(x) are given by f{x) =2x and g(x) = X%
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(@) flx) + gx) = (F+ Px) =2x +x°

(b) f1x) — g(x) = (F- g)(x) = 2x — x°

() fix) x g(x) = (fx g)(x) =2x x x> =2x°

(d) fx) + g(x) = (f+ g)(x) = 2x + %" = (2x)/x° = 2/x

4.2. Types of functions, including composite, inverse, linear,
nonlinear, even, odd, exponential, logarithmic, identity, absolute
value, squaring, cubing, square root, cube root, reciprocal, and
functions with more than one variable

» Composite, or compound functions, are functions that are combined,
and the operations specified by the functions are combined. Compound
functions are written fg(x)) or g(f{x)) where there is a function of a
function. For example, if f{ix) = x + 1 and g(x) = 2x - 2, then the
compound functions for f{g(x)) and g(f(x)) are:
flgx)=f2x-2)=(2x-2)+1=2x -1
gfx)=gx+1)=2x+1)-2=2x+2-2=2x

o Inverse functions are functions that result in the same value of x after
the operations of the two functions are performed. In inverse functions,
the operations of each function are the reverse of the other function. No-
tation for inverse functions is f"'(x). Iff{x) =y, then f '(y) =x. If function
fis the inverse of function g then function g is the inverse of function f.
A function has an inverse if its graph intersects any horizontal line no
more than once.

* An inverse of a function has its domain and range equal to the range
and domain, respectively, of the original function. If function fx) =Yy,
then f"(y) = x. For a function f{x, y) that has only one y value for each
x value, then there exists an inverse function represented by f'(y, x).
For example, reversing the ordered pairs in function

fx, y) = {(0, 3), (2, 4), (3, 5)} results in the inverse function

fli(y, x) = {(3, 0), (4, 2), (5, 3)}. Therefore, the domain of f equals the
range of f, and the range of f equals the domain of f .

« If function f is represented by f{x) = u, then its inverse f"' can be found
by solving f{x) = u for x in terms of u: f u = £ '(fx)) = x.

Therefore, if §x) = u then £ '(u) = x, or if f '(u) = x then fx) =u.

For more complicated or composite functions, if y = flu(x)], then the
inverse can be written in the opposite order: x = u”'(f \(y)).

» When two functions are inverse functions, then they will return to the
first value. For example, ify = f{x) =2x - 1 and
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x = f(y) = (y + 1)/2 are inverses, and if x = 3, then substituting x =3
into y = f{x) = 2x — 1 results in:

f3)=2(3)-1=5

If we then substitute 5 into inverse function x = f'(y) = (y + 1)/2:
fi5)=G+1)12=3

we return in the starting value of x.

* Not all functions have inverses. If a function has more than one
solution, it does not have an inverse. If u(x) = z, only one x can result
from x = u”'(z). If there is more than one solution for u™'(z), it will not
be the inverse of u(x) = z.

* Graphs of inverse functions are mirror images. For example, if
z =u(x) = 2x, then x = (1/2)z. Note that the slopes are the derivatives
(dz/dx) = 2 and (dx/dz) = 1/2.

Z X
z=2x x=(1/2)z
4 4
3 3
2 2
1 1
X z
1 2 3 4 1 2 3 4

* Following are examples of functions and their inverses:

z = X" is the inverse of x=\/-z- orx =z"

z=¢"is the inverse of: x =Inz
z=a" is the inverse of: x = log,z

o Inverses of trigonometric functions, described in Chapter 6. Inverse
Trigonometric Functions, exist in defined intervals. For example, the
inverse of sine is sin”'y = x for 1 > y > -1, which pertains to sin x =y
for n/2 > x > —n/2. The inverse brings y back to x.

The graph of y = sin x is a mirror image of sin”'y = x.

y=sinx and x=sin y
near the origin
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Only certain intervals of the sine function have inverses:

In the interval /2 > x > —w/2, sin"l(sin X) =X.

In the interval 1 >y > ~1, sin(sin”'y) =y.

There are many points on the sine function where sin x = 0.

All of the trigonometric functions have inverses in defined intervals.
(See Chapter 6 for a complete discussion.)

* Functions can be linear or nonlinear. Remember: Linear equations
are equations in which the variables do not have any exponents other
than 1. These equations, if plotted, will produce a straight line. A
general form of a linear equation is Ax + By = C, where A, B, and C are
constants, and x and y are variables. Another general form of a linear
equation is y = mx + b, where m is the slope of the line and b is where
the line intercepts the Y-axis on a coordinate system. The equation for
the slope of a line passing though point (x,, y;) can be written

y -y =mx - xy).

* A linear function can have the formy = f{x) = b + mx, where m is the
slope of the line and represents the rate of change of y with respect to x
and b is the vertical intercept where the line intercepts the Y-axisona
coordinate system that is the value of y when x equals zero. The slope m
of a linear function can be calculated at two points (x,, f(x,)) and

(X2, f(x3)) using the equation:

f(xy) - f{x1) =m(x; — X;) or m =f(_x2t£(x_l)_

X2 =Xy

The quantity (Rx,) — f{x;))/(x2 — X,) is the quotient of the two
differences and is referred to as a difference quotient.

f(x)

(x,fx )

fix)

2

flx )
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* Nonlinear functions have variables with exponents greater than 1.
Remember that nonlinear equations are equations containing variables
that have exponents greater than 1. Graphs of nonlinear functions form
curved lines and surfaces.

* A function can be an even function or an odd function. A function is
evenif f{x) = f{—x) for all x, and a function is odd if f(x) = —f(—x) for all x.
Examples of ever functions include:

) =¢, fix) =x’, f{x) =x", fx) = x*

£ = (x)(x) =x°

Cosine is an even function such that: cos(—x) = cos x

Examples of odd functions include:

fx) =x, fx) =x’, flx) =x°, f{x) =x"""

f(%)?) = (0x)(-x) = (-x)°

Sine is an odd function such that: sin(—x) = —sin x

* By observing the graph of a function, it is clear whether the function is
even or odd. If the area between the curve and the X-axis on the section
of the function to the left of the Y-axis is equivalent to the area between
the curve and the X-axis on the section to the right of the Y-axis, the
function is even. Therefore, in an even function, the area for negative
values along the X-axis is equal to the area for positive values along
X-axis. Alternatively, if a function is odd, the area between the curve
and the X-axis on the section of the function to the left of the Y-axis is
equivalent but opposite to the area between the curve and the X-axis on
the section to the right of the Y-axis. Therefore, in an odd function, the
area for negative values along the X-axis is equal but opposite to the
area for positive values along the X-axis, and the two areas subtract and
cancel each other out.

y even function y odd function

* Exponential functions form curved lines and contain variables in their
exponents. Examples of exponential functions include €*, a*, and 2,
where a is a constant. Some properties of e* or a* include:

e’ =" e =&, (Y =e9, =1,

where e ~ 2.71828 18284 59045235360287471353.
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* The inverse of e* is In X, or the natural logarithm of x. Some
properties of In x include:

In(xy) =Inx + Iny, In(x/y)=Inx-Iny, Inx’=yInx,

In(e") =x, e™=x, e™ =" =1/, Inx=log.x =(2.3026)logx

 Logarithms can have any base. Base 10 logarithms are the most
common and are written logjox or just logx. The inverse of logx is 10™.
Some properties of log x include:

108X =%, 107°8*=1/x, log(xy)=logx + logy,

log(x/y) = logx - logy, log x’ =y logx, log(10™)=x

* It is important to remember that when a number has an exponent, the
logarithm is the exponent. For example:

log(10%) =x, In(e¥) =x, log(10%) =3, log(107%) =1log(1/10%) = -2,
log(b*) = x, where b represents any base.

« The exponential function e and the natural logarithm In x are depicted
with &* as the thicker gray curve and In x with the thin black curve.

Graph of € (gray curve) and In x (black curve)

y
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“10 5 5 10

-10

See Master Math: Basic Math and Pre-Algebra Chapters 7 and 8 for
additional information on exponents and logarithms.
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* The identity function is an increasing linear function given by f{x) = x.
In the equation for a line, f{ix) = mx + b, if m= 1 and b = 0, the result is
the identity function. The identity function pairs each real number with
itself. The absolute value function, f(x) = [x|, pairs each real number
with its absolute value. The absolute value function decreases from

— infinity to 0 and increases from 0 to + infinity and exists above the
X-axis. In the following graph, the identity function fx) = x is depicted
as the thin black line existing above and below the X-axis, and the
absolute value function f(x) = x| is the thicker gray v-shaped curve with
the upper part on the positive side of the Y-axis overlapping f{x) = x.

Graph of f(x) = x (black line) and f(x) = [x] (thick gray v-line)

y

{ I I N U I N I BN |

« The squaring function, f{x) = x*, pairs each real number with its
square, and its graph forms a parabola. The graph is symmetric with
respect to the Y-axis, so that {x) = {—x). The cubing function,

f(x) = x°, pairs each real number with its cube, or third power. The
graph has an inflection point and is symmetric with respect to the
origin, so that f(—x) = —f(x). The squaring function fx) = x> is
depicted as the thicker gray curve and the cubing function f{x) =x is
the thin black curve.
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Graph of f(x) = x* (thick gray curve) and f(x) = x° (black curve)
y

-
o

(3]

UL LA L L L L

| A T NS TN D NN NN U N . NN TN O TN I T T N - |

-10 -5 5 10 X

Frrr17r 1 17rrr1 T

-10

» The square root function is fx) =‘/;(- =x"2 x> 0. The cube root
q

JSunction is f{x)= ¥x =x" xisa positive, zero, or negative real number.
Graph of f(x) = ix”z (thick gray curve) and f(x) = x'? (black curve)
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« For a function, f{x) = x, the reciprocal function is f{x) = 1/x. The
graph of a reciprocal function forms a vertical asymptote at every point
where the graph of the original function, f{x) = X, intersects the X-axis.

Graph of f(x) = x (black line) and f(x) = 1/x (thick gray curve)

y -

Functions with more than one variable

« Many functions depend on more than one variable. A function that
depends on two variables can be written as z = f{x,y), where z is called
the dependent variable, x and y are called the independent variables,
and frepresents the function. For example, the volume V of a pyramid
depends on the height h and the area of its base A, which are
independent variables. The function describing this is: V = (1/3)hA,

» Another example of a function that depends on more than one variable
is the ideal gas law, PV = nRT, where P is pressure, V is volume, n is
the number of moles in the sample, R is the universal gas constant
(8.314 J/mol-k), and T is temperature. Pressure P = nRT/V can be stud-
ied by changing one variable at a time while holding the others constant.
The data for functions that depend on more than one variable can be
represented in tables or graphs in two or three dimensions. Temperature
values for a system modeled by the ideal gas law can be listed on one
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axis and values for volume listed on another axis, such that resulting
pressure values that correspond to a given temperature and volume will
be within the table or on the third axis of the coordinate system.

* The graph of function y = f{x) represents all of its points with coor-
dinates (X, y) and is generally comprised of curves or lines. The graph of
a function z = f{x, y) that depends on two variables represents the points
with coordinates (X, y, z) and generally represents a surface in three-
dimensional space. In general, graphs of one-variable functions form
curves or straight lines, whereas graphs of two-variable functions form
planes or surfaces represented in three-dimensional space (which
comprises a family of level curves in the form of f{x, y) = constant).
Graphs of three-variable functions form solids in four-dimensional
space (which comprises a family of level surfaces in the form of

f(x, y, z) = constant).

* For example, the graph of a linear two-variable function forms a plane
in which the slopes of the lines parallel to the X-axis are the same, and
the slopes of lines on the plane parallel to the Y-axis are the same.

z

The graph of {x, y)=z= \/x 2y y2 forms a curved surface in three-
dimensional space:

z
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4.3. Coordinate systems, radians, degrees, and arc length

« Trigonometric functions are used in coordinate systems to describe the
position, location, and distances of points with reference to the axes of
the coordinate system. A point P in a coordinate system can be identi-
fied and located by its distance from the axes, which is called its
coordinates.

M
l o P(xy)

I. )

The distance from P to the origin is a radius vector r = x> +y? .

» The axes of a planar Cartesian coordinate system divide the plane into
quadrants 1, 11, 111, and IV, which are typically labeled counterclockwise
beginning with the top right quadrant 1.
y
I (+x, +y)
X

I (-, +y)

I (=, —-y) | IV (+x,-y)

* A point in a coordinate system can also be described in terms of the
angle o that its radius vector makes from the X-axis. Angle o can be
measured in degrees or radians.
y

V P(X’Y)
B\
I X

* As discussed in Chapter 2, an angle is formed by a rotation of a ray
about its endpoint. Angles are measured in degrees or radians. Degrees
can be divided into minutes (denoted by ") and seconds (denoted by ").
The degrees of a circle are:

00
18 ,360°

270°

A circle always measures 360° around, equivalent to 2x radians. Half of
the circle measures 180°, which is equivalent to « radians. A quarter of
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a circle measures 90°, which is equivalent to /2 radians. Following are
important definitions to remember when working with coordinate
systems, angles, and circles:
1° = 1/360th of a circle
1° = 2z radians/360° = &t radians/180° = 0.017453292519943 radian
1 minute = 1' = 1/60th of 1°, or 0.0167°
1 second = 1" = 1/60th of 1' = 1/3600th of 1°, or 0.0002778°

° = 60'=3600"
1 radian = 360°/2n = 180°/n = 57.2957795131°
27 radians = 360 degrees
The relationship, 180 degrees = & radians, can be used to convert
between degrees and radians.
Other degree-radian equivalents include:
7/6 = 30°, n/4 = 45°, n/3 = 60°, and =/2 = 90°

* A radian is the measure of the central angle subtended by an arc of a
circle that is equal to the radius r of the circle. In other words, a central
angle subtended by (opposite to) an arc equal in length to the radius of a
circle is defined as a radian.

In a circle having a radius of one, or a unit circle, a radian is equal to
the angle at the center that cuts across an arc of length 1.

* Arc length: By the definition of radian measure, we see that the length
of an arc, s, of a circle is given by s = 10, where 0 is measured in radians
and r is the radius of the circle. Therefore, the angle 0 is the arc length
divided by the radius, or = (s/r) radians.

1f 0 is 180°, then it is equal to & radians because it is one-half of the
circumference, which is 2x radians. Therefore, for 6 equal to 180°,

0 = s/r = nr/r = n radians. In general, the central angle 0 subtended by an
arc of length s is determined by the number of radius r lengths that are

contained in the arc length s.
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* A section of a circle’s perimeter defined by two or more points is
called an arc. The central angle can be measured in degrees or radians.
(There are 2x radians in 360° and & radians in 180°.) Arc length is
defined as follows:
Arc length = (radius)(central angle measure in radians)

=10 with 0 measured in radians

= (n/180°)rg°, with 0 the central angle measured in degrees

arc length = Or
Z N\

T

 Example using arc length: Estimate the diameter of the Sun given that
the distance between the Earth and the Sun is approximately
150,000,000 kilometers and that the angle subtended by the Sun on the
Earth is measured as 0.0093 radians.

—-150.000.000 kilometers _____ ______:\;__,,O

0 = 0.0093 radians Earth

Sun

We can estimate that the arc length s subtended by the Sun on the Earth
is approximately equal to the diameter of the Sun. Therefore, the Sun’s
diameter can be approximated to be arc length s:

s = r@ = (150,000,000 km)(0.0093 radians) = 1,400,000 kilometers

4.4. Angles in standard position and coterminal angles

« When an angle is drawn in a rectangular coordinate system with its
vertex at the origin (x = 0, y = 0) and its initial side coincident with the
positive X-axis, it is called a standard position angle. In other words,
an angle is said to be in standard position if its vertex is at (0, 0) of the
X-Y coordinate system and if its iritial side lies on the positive part of
the X-axis. If the standard position angle is measured in a counter-
clockwise direction, it is positive. If the standard position angle is
measured in a clockwise direction, it is negative.

* The initial side of an angle is where its measurement begins and the
terminal side of an angle is where its measurement ends. For a standard
position angle, the initial side is always coincident with the positive
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X-axis. The following figures are examples of standard position angles
with their terminal sides in different quadrants:

y y y
) ‘\ . f\ )
positive angle positive angle positive angle
in first quadrant in second quadrant  in third quadrant
y y y
(] N
\< / X ‘(J X X
negative angle positive coterminal angle negative angle
in first quadrant in second quadrant in forth quadrant

« Coterminal angles: Two angles are coterminal if their terminal sides
coincide when both angles are placed in their standard positions in the
same coordinate system. These angles have the same initial side because
they are in standard position. There are an unlimited number of
coterminal angles with any given angle, because coterminal angles
represent integer multiples of 360°, or 2. Following are examples of
coterminal angles:

y y y

-310° +50 \Q 140° +75°
ﬁ ™

N \\iy

positive and negative coterminal angles coterminal angles
coterminal angles +140° and +500° +75° and +795°
+50° and ~310°

For any angle o, coterminal angles exist in radians with angles
2n + a), (47 + o), (6% + ), and so on, or in degrees, ((1)360° + o),
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((2)360° + o), and so on. Formulas representing coterminal angles are
(2nn + o) and (n360° + o). The value of the trigonometric functions
sine, cosine, tangent, cotangent, cosecant, and secant are the same for all
angles that are coterminal:

sin(n360° + ) =sina, csc(n360°+ o) = csc a

cos(n360° + a) =cos a, sec(n360°+ a) = sec o

tan(n360° + o) =tan o, cot(n360°+ ) = cot o

sin(2nr + o) = sin ., csc(2nw + o) = csc a

cos(2nt +a)=cosa, sec(2nw + @) =sec o,

tan2nx + o) =tana, cot(2nw + o) =cot o

4.5. The trigonometric functions defined in a coordinate system in
standard position, quadrant signs, and quadrantal angles

¢ In Chapter 3, the trigonometric functions were defined with respect to
right triangles. Trigonometric functions can also be defined in a coor-
dinate system for an angle of any size in standard position. The six
trigonometric functions can be defined using a standard position angle
having its vertex at the origin and its initial side coincident with the
positive X-axis. Following are positive standard position angles depic-
ted in the four quadrants:

Y y y Yy
P(xy) P(xy)
v/ N | o

i H 4]
2y x ¥i ™~ X i P N X 7 _
x x vi y

P(xy) : ' P(xy)

The six trigonometric functions can be defined as ratios of the quantities
X, Y, and r, with point P(x, y) as the point on the terminal side of the
standard position angle and r as the distance from the point to the origin.
Because r is the square root of the sum of the squares of x and y,

r= ,fxz + y2 , if the coordinates of point (x, y) are known, r and the six
trigonometric function values can be determined.

Therefore, the trigonometric functions defined in standard position
in terms of the angle @, x, y, and radius r are:

sin@=y/r, cscO=rly

cos@=x/r, sec@=r/x

tan D@ =y/x, cot@=xfy
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» Example: If the terminal side of a standard position angle is through
point P(-2, -2), calculate the six trigonometric functions.

P(-2,-2)

We are given x = -2, y = -2, so we need only r to make the calculations.

r=Vx’ +y? =2 + (-2 =B = J@@) =242
sin@=yh=-2/242=-1/N2, csc@=ry=22/-2=-2

c0s0=x/r=—2/2«[2—=~—1/\/—2_, sec0=r/x=2\/5/—-2=—x/—2_
tanP=y/x=-2/-2=1, cotP=xly=-2/-2=1

* Quadrant signs: In a coordinate system the signs of the trigonometric
functions depend on the signs of x and y in the quadrant in which the
terminal side of the standard position angle lies. Because the signs of
the six trigonometric functions correspond with the quadrants of the
terminal side of the standard position angle, the sign can be determined
if it is unknown. The signs of x, y, and r for each quadrant are depicted:

y y y
QuadrantI  Quadrant II
X X T x
'A =
Quadrant ITI Quadrant IV

Note that r is always positive.

» The signs of the six trigonometric functions are determined by the
quadrant in which the terminal side of the angle lies. These values are
depicted in the following figure:
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A
Quadrant 11 Quadrant I
0is90°t 180°0or /2 to 0 is 0°t 90° or 0 10 /2
X is negative X is positive
y is positive y is positive
sin 0 is + sin 0 is +
csc 0 is + csc 0 is +
cos 0 is — cos 0 is +
sec 0 is — sec 0 is +
tan 0 is — tan 0 is +
cot 9 is — cot 6 is +
<4+ >
Quadrant ITI Quadrant IV
0 is 180°t0 270° or 710 37/2 015 270° 10 360° or 3n/2 t0 21
X is negative X is positive
y is negative y is negative
sin 0 is — sin 0 is —
cscOis — csc 0 is —
cos 0 is — cos 0 is +
sec 0 is — sec 0 is +
tan 0 is + tan 0 is —
cot 0 is + cot 0 is —
v

If you remember the signs of x and y (r is always positive), the signs of
the trigonometric functions in each quadrant can be obtained using the
definitions sin @ = y/r, csc @ =rly, cos @ = x/r, sec @ = 1/x, tan @ = y/x,
and cot @ = x/y.

In addition, a mnemonic can be used to remember the signs of the
trigonometric functions for each quadrant:

All All functions positive in Quadrant 1

Students  Sine (and its reciprocal csc) positive in Quadrant IT
Take Tangent (and its reciprocal cot) positive in Quadrant III
Calculus Cosine (and its reciprocal sec) positive in Quadrant IV

* Quadrantal angles: A quadrantal angle is an angle in which the
terminal side coincides with one of the axes of the coordinate system.

These angles have special trigonometric function values, some of which
may be undefined.
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y-axis
90°,|7/2
180°, = 0° X-axis
360°, 2n
270°,|3n/2

» If the terminal side of a standard position angle coincides with the
X-axis and it is therefore a quadrantal angle, then it has a y-coordinate
of zero for all points on the terminal side. Similarly, if the terminal side
of a standard position angle coincides with the Y-axis and it is therefore
a quadrantal angle, then it has an x-coordinate of zero for all points on
the terminal side. Because x and y are in the denominators of some of
the trigonometric functions and fractions with zero denominators are
“undefined”, then some of the trigonometric functions of quadrantal
angles are undefined. (Remember that as a denominator approaches
zero, the value of a fraction approaches infinity until the denominator
equals zero and the fraction becomes undefined.)

Table of the six trigonometric functions of quadrantal angles

0 angle | sin® | cscO ] cos® | secO | tan@ | cot0
terminates| y/r rly x/r /X y/x x/y

0°, 0 X-axis 0 und 1 1 0 und
90°, n/2 | y-axis 1 1 0 und und 0

180°, & x-axis 0 und -1 -1 0 und
270° 3%/2f y-axis -1 -1 0 und und 0

360° 21 | x-axis 0 und 1 1 0 und

» Example: Find values of the quadrantal angles (a.) sin n/2 and
(b.) tan (—x), withr=1.
7/2,90°
(0,1)

(-1,0)
X n,180 X

(@) (b))
(a.) For a quadrantal angle with its terminal side at point (0, 1)andr=1,
sing/2=y/r=1/1=1
(b.) For a quadrantal angle with its terminal side at point (-1,0) andr=1,
tan(-n) =y/x=0/~1=0
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4.6. Reference angles and reference triangles

* Reference angles and reference triangles are drawn to assist in
calculations involving trigonometric functions. A reference angle R

for a standard position angle is the positive acute angle between the
X-axis (never the Y-axis) and the terminal side of the standard position
angle. The values of the six trigonometric functions of the reference
angle R are the same as the trigonometric functions of the standard
position angle, except in some cases where the sign is different. For the
following standard position angles 6 in the four quadrants, the reference
angles R are depicted:

y y y y
0=R 0 0 0
X b'e X X
R R

« Example: What is the reference angle for standard position angle 225°?

R=1225°-180°=45°

» Example: What is the reference angle for standard position angle 315°?

y
0=315°

E X R=360°-315°=45°
izR

» Example: What is the reference angle for standard position angle ~300°?

0=-300 R
] x R=360° - 300° = 60°
\

« If a standard position angle is greater than 360°, then reference angle R
is associated with the coterminal angle of the standard position that is
between 0° and 360°. If the standard position angle is a quadrantal angle
a reference angle is not useful.

» It is possible to find the value of a trigonometric function using
reference angles for nonquadrantal standard position angles.
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This can be done as follows:

1. If the angle 0 is greater than +360° (or 2x), find the coterminal angle
by subtracting 360° (or 2x) until 9 is between 0 and 360°.

2. Make a drawing and find the reference angle R by measuring the
angle between the X-axis (horizontal axis) and the terminal side of 6.

3. Determine the value of the trigonometric function in question for the
reference angle R using X, y, and r.

4. Determine the correct sign for the trigonometric functions for 6 using
the sign of the trigonometric function dictated by the quadrant in
which the terminal side of 0 lies. (See the quadrant chart that follows.)

Quadrant I1 T Quadrant 1
xis—, yis+ Xis+ yis+
sin 0 is + sin 0 is +
cscOis + csc O is +
cos 0 is — cos 0 is +
sec 0 is — secOis +
tan 0 is — tan 0 is +
cot0is — cot 0 is +
< >
Quadrant ITT Quadrant IV
Xis—,yis— xis+,yis—
sin 0 is — sin @ is —
csc O is — csc 0 is —
cos 0 is — cos 0 is +
sec 0 is — secOis +
tan 0 is + tan 0 is —
cot6is+ # cot 0is —

« Reference triangles are formed by extending a line from a point P(x, y)
on the terminal side of the standard position angle to the X-axis. A
reference triangle may be helpful for determining trigonometric
functions of a standard position angle particularly for special triangles,
such as 30:60:90 and 45:45:90 triangles.

y y
o oL
X X X
a W
P(x,¥) xY)

« Special angles and triangles used as reference angles and triangies:
The 30:60:90 and 45:45:90 triangles are examples of special triangles
that can be used as reference triangles. These special triangles can be
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defined in a coordinate system with a standard position angle.
Recall that the 30:60:90 triangles have side ratios:

60
2x 2 1
X 1 12
90° xv3  30° 3 3/2
2

where 30° = /6, 60° = /3, 90° =1

The 45:45:90 triangles have side ratios:
45°

D NN

0° x 45°
where 45° = /4 and 90° = /2

« The trigonometric functions can be written or calculated for triangles
of a standard position angle and can be expressed in degrees or radians.
For a 30:60:90 triangle in standard position, the trigonometric functions
are:

M y
=2 =

30° Jy=1 ly=43
E

cos 30° = cos(1/6) = x/r = 43 /2

sin 30° = sin(n/6) = y/r = 1/2

tan 30° = tan(w/6) = y/x = 1/+/3 = 4/3/3
sec 30° = cos(n/6) = r/x= 2/ V3 =243/3
csc 30° =sin(n/6) =rfy =2/1 =

cot 30° = tan(w/6) = x/y = /3 /1 =43

cos 60° = cos(n/3) =x/r=1/2

sin 60° = sin(w/3) = y/r = /3 /2

tan 60° = tan(w/3) = y/x = V3 / 1 =43
sec 60° = cos(w/3) =r/x=2/1 =

csc 60° = sin(n/3) =r/y = 2/J’ =2+3/3
cot 60° = tan(w/3) =xfy = 1/43 = +/3/3
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For a 45:45:90 triangle in standard position, the trigonometric functions
are:

r=2,
45° | y=1
x=1

cos 45° = cos(wd) = x/r=1/42 = 2 /2

sin 45° = sin(/d) = y/r = 1/42 = J2/2
tan45°=tan(n/4) =y/x=1/1=1

sec 45° = cos(m/4) =rt/x = V2 /1 = 42
csc 45° =sin(m4d) =rly = 2 /1= {2
cot 45° = tan(n/4) = x/y = 1/1 =1

* The following are examples of special reference triangles. The correct
sign for the trigonometric functions can be determined according to the
quadrant in which the terminal side of angle 0 is located.

Quadrant I (both sine and cosine are positive):
b Y
r=2 T J_
30° | y=1 45° | y=1
x=y3

sin 30° = sin n/6 = y/r = 1/2 sin 45° = sin n/4 = y/r = 1/4/2
cos30°=cos /6 =x/r=+3/2  cos45°=cos w4 =x/r=1/y2

x=1

Quadrant II (sine is positive and cosine is negative):

sin2n/3 =y/r=+3 12
cos 2n/3 =x/r=—112

* The following chart summarizes the trigonometric functions for
special angles and quadrantal angles (which are standard position
angles in which the terminal side coincides with an axis). Because x and
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y are in the denominators of some of the trigonometric functions and
fractions with zero denominators are “undefined”, then some of the
trigonometric functions are undefined.

0 quadrantalangle] SIN® | cscO® ) cos® ; sec® | tanO | cotO
terminates yir rly x/r r/x y/x x/y

0°, 0 X-axis 0 und 1 1 0 und
30°, /6 12 2 ar |l val val B
45°, n/4 /2 V2 /2 V2 1 1
60°, n/3 V3 /2 2/ 3 172 2 V3 1/43
90° n/2 | y-axis 1 1 0 und und 0
180° & X-axis 0 und -1 -1 0 und
270° 3n/2| y-axis | -1 -1 0 und und 0
360° 2n | x- axis 0 und 1 1 0 und

» Example: Find sin(—240°) and cos(-240°).
First draw the reference angle and triangle:

The reference angle is: R = 240° — 180° = 60°

For the reference triangle, sine and cosine are:

sin 60° =y/r = \/5/2

cos 60°=x/r=-1/2

Determine the correct sign for these trigonometric functions according
to the quadrant in which the terminal side of @ is located. Because the
terminal side of 0 lies in Quadrant I1, sine is positive and cosine is

negative. Therefore, sin(—240°) =32 and cos(—240°) = -1/2.
Note that we can verify these results using a calculator estimate. Using a

calculator:
sin 60° = 0.8660254, sin(—240°) = 0.8660254,

and /3 /2 = 0.8660254
cos 60° = 0.5000, cos(—240°) = -0.5000, and —1/2 = —0.5000
Note that when we used the reference angle 60° for cosine, it was
important to adjust the sign to match the quadrant.
» Example: Find sin(2x/3).
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The reference triangle is a 30:60:90 triangle in Quadrant I1.

From the reference triangle sine is:

sin2n/3) =y =3 12

Now determine the correct sign for these trigonometric functions by the
quadrant in which the terminal side of 6 lies. Because the terminal side
of 0 lies in Quadrant 11, sine is positive. Therefore,

sin(2n/3) =+/3 12

4.7. Negative angles

» When solving problems using trigonometric functions, negative angles
may be involved. The trigonometric functions can be written for the
negative of an angle and are defined as follows:

cos(-0)=cos 0, sec(-0)=secO

sin(-0) =-sin O, csc(—0) =—csc 6

tan(-6) =—tan 0, cot(—0)=-cot O

These are called negative number identities, or negative angle
identities. These identities can be obtained using the difference
identities discussed in Chapter 7.

cos(A -B)=cos Acos B+sinAsinB

sin(A — B) =sin A cos B - cos Asin B

tan(A — B) = [tan A - tan B] / [1 + tan A tan B]

When angle A =0 and angle B = 0:

cos(0 — 8) = cos 0 cos 8 + sin 0 sin 6 = cos 6

sin(0 — 0) = sin 0 cos 6 — cos 0 sin 6 =—sin 6

tan(0 — 0) =[tan 0 — tan 6] / [1 +tan 0 tan 6] = — tan O

Secant, cosecant, and cotangent negative angle identities can be
obtained using the reciprocal identities described in the next section:
secO0=1/cos 0

csc@=1/sin6

cot6=1/tan 0
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4.8. Reciprocal functions and cofunction relationships

* The reciprocal functions are often used when solving problems
involving trigonometric functions and side ratios of triangles. The six
trigonometric functions provide for three pairs of reciprocal functions.
These reciprocal relationships are called the reciprocal identities.
The reciprocal identities are found by considering that because

sin @ =y/r and csc @ = rfy, then
sin@=1/csc@andcsc@=1/sin@

Similarly, for all of the six trigonometric functions, the reciprocal
identities are:

sin@=1/csc@, csc@B=1/sin@d

cosP=1/sec@D, secO=1/cos@D

tan@=1/cot@, cot@=1/tan@

By rearranging, the reciprocal identities can also be written:
sin@cscO=1, cosDsec@=1, and tanD cot @ =1

» Example: Given cot @ = 1/2, find tangent and @, and compare with
cofunction identities.

Because tan @ = 1/cot@, then tan @ = 2. Angle @=arctan2 = 63.43.
Because tana = cot(90° - o), then cot(26.57) = tan 63.43 = 2.

* Cofunction relationships (or cofunction identities) are often useful
when solving problems involving trigonometric functions. The sine and
cosine functions are complementary functions, meaning that the sine of
some angle a. is equal to the cosine of the complement of o and vice
versa. The complement of angle o is the angle (90° — o) in degrees or
(n/2 — o) in radians. The cofunction identities are:

cos o =sin(90° — o), sec o0 =csc(90° — a)

sin o = cos(90° — @), csc a = sec(90° - a)

tan o = cot(90° — o), cot a =tan(90° — o)

cos o =sin(n/2 — a), sec o = csc(n/2 — o)
sina =cos(n/2 — ), csca=sec(n/2 — o)
tang =cot(n/2 — ), cota=tan(n/2 — o)

* The cofunction identities for 30:60:90 and 45:45:90 angles are:
cos 30°=sin 60°, sec 30°=csc 60°
sin 30° = cos 60°, csc 30° = sec 60°
tan 30°=cot 60°, cot 30° = tan 60°

cos 45°=sin45° sec 45°=csc 45°, tan 45° = cot 45°
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4.9. Circular functions and the unit circle

* Trigonometric functions can be defined using ratios of sides of a
right triangle (as discussed in Chapter 3) and can also be defined in a
coordinate system using angles in standard position as described in
this chapter. In addition, trigonometric functions can be defined as arc
lengths on a circle of radius one, or a unit circle, and are called
circular functions. Circular functions have as their domains sets of real
numbers. Trigonometric functions are referred to as circular functions
because their domains are lengths of arcs on a circle and are defined as
real numbers, which may include angles. Circular functions allow the
use of trigonometric functions beyond angles and triangles into the
study of electricity, sound, music, projectile motion, and other
phenomena that exhibit a periodic nature.

* Remember: The domain set of a function is the set of all possible
values of the independent variable, and the range set is the corres-
ponding set of values of the dependent variable. For each member of the
domain set, there must be only one corresponding member in the range
set. The domain set is the initial set and the range set is the set that
results after a function is applied: domain set — function f{ ) — range
set. For example, if the domain set is x = {2, 3, 4}, and it goes through
function f(x) = x°, the result is the range set f(x) = {4, 9, 16}.

« The six trigonometric functions, sine, cosine, tangent, cotangent,
secant, and cosecant, can be defined such that their domains are real
numbers rather than only angles. These defined functions are called
circular functions and are defined according to the unit circle. A unit
circle is a circle having a radius of one that is centered at the origin of a
coordinate system. A unit circle is given by the equation X +y*=1and
depicted as:

Y
A\
» The unit circle can be described in terms of any real number x where
the size of the angle has x units, which is equal to the arc length. Ona

circle having a radius of one, a point P on the circle has coordinates
defined by the angle of the arc formed from the X-axis:
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1 Y

/ P = (cos X, sin x)

X
_1\/] Point P has coordinates (cos x, sin x), and
the arc distance of the angle has x units of

-1 length and is measured in radians.

The distance around the circle is 2xr, and the distance to any point on
the circle is defined by the length of the arc beginning from the X-axis
and extending to the point on the circle that is given by the angle x mul-
tiplied by the radius r, or xr. Positive angles are measured from the posi-
tive X-axis in a counterclockwise fashion. Angles measured clockwise
are negative.

« The relationship between circular functions and trigonometric func-
tions can be observed in the comparison between the length of the arc
on the unit circle being associated with circular functions and the
standard position angle that subtends an arc in a coordinate system
being associated with trigonometric functions. The terminal side of an
arc at point P on a unit circle corresponds to the terminal side of a
standard position angle in radians in a coordinate system.

N

The angle 0 subtended by an arc of s units has a radian measure of's.
Therefore, each real number on a unit circle corresponds with an arc of s
units and a standard position angle of s radians.

» Consider an arc s on a unit circle that begins on the positive X-axis at
point (x=1, y=0) or (1, 0) and ends at point P(x, y). The coordinates of
point P(x, y) can be written in terms of the real number s.

y
0,1)
P(cos9,sin0) s=0

Ao, x
(-1,0)\ /(1,0)

0,-1)
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We know that for any angle 0 in a coordinate system, cos 6 = x/r and

sin 0 = y/r. Because r =1 on a unit circle, then or a unit circle: cos 0 =x
and sin 6 = y. We also know that arc length equals radius multiplied by
the central angle measure in radians, or s = r9, and for a unit circle s = 0.
Therefore, on a umit circle: cos =cos s=x and sin®=sins=y.
From this we can describe the position or coordinates of point P on a
unit circle as: P(cos s, sin s).

Therefore, on a unit circle, each ordered pair for point P(cos s, sin s) is
determined by the arc length s for that point. The arc length s, as well as
sin s and cos s, are real numbers that define the circular sine function
and circular cosine function.

* The domain of a circular function is the set of all real numbers for
which the function is defined. Any point P on the unit circle is defined
by P(cos s, sin s). Therefore, the domain for sin s and cos s is the set of
all real numbers. The range of cos s and sins is determined by the points
on the unit circle. The X-axis coordinate X = cos s and the Y-axis coor-
dinate y = sin s vary between —1 and +1. Therefore, the range of sin s
and cos s is the set of real numbers including and between -1 and +1.

* The six circular functions are written:
COS § =X

sins=y

tans=sins /cos s =y/x

cots =cos s /sins=x/y
secs=1/coss=1/x
cscs=1/sins=1ly

Note that r = 1 on a unit circle.

Also note that because the equation for a unit circle is X* +y* = 1, and
for a unit circle x = cos s and y = sin s, then the equation for a unit circle
can be written: (cos s)? +(sins)*=1, or cos’s +sin’s = 1.

« On a unit circle each real number corresponds with |s| units, where s is
the length of the arc to point P, which is between the X-axis at point
(1, 0) and point P on the circle where P(x, y) = P(cos s, sin s). When s is
measured in the counterclockwise direction it is positive, and when s is
measured in the clockwise direction it is negative. For negative values
of s where s = |-s:
sin(—s) =-sins = -y
cos(—s) =—COs § =X
tan(—s) = —tan s = —y/x
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P(x,y)
+s

-1 -s X
P(x,-y)
1

* The values of circular functions of real numbers are determined the
same way the values of trigonometric functions for angles measured in
radians are determined. Values can be found using points on a unit cir-
cle that correspond to ratios of a reference triangle, and they can also be
found using a calculator. When using a calculator to determine values of
circular functions, it must be in radian mode as they are real numbers.

* Special values of angles and arc lengths are often mapped on a unit
circle to represent the location of a point on a unit circle and used as a
reference when solving problems. In special cases the arc lengths cor-
respond to integer multiples of n/4 and ©/6. The corresponding coor-
dinates of the points can be determined using special reference angles
and triangles (such as 30:60:90 and 45:45:90 triangles). The following
figure depicts coordinates of points of integer multiples of n/4 and ©/6
on a unit circle up to 2n. (This figure can be expanded to coterminal
arcs.) Notice the symmetry in the figure and that, for example, ©/2
located in the counterclockwise direction corresponds to —37/2 in the
clockwise direction.

90°, 1/2,,(0,1)

120°, 23, - ) 60%, 3, (1. %)
135°,3n/4, (- i;g) 45°, /4, (‘/—,‘—f—
5 \/5 1 0 ‘/—
150°, 5706, (- 2, = 30°, W6, (5 3)
180°, 7, (~L.0). 0°.0, (1,0)
360°, 2m, (1,0)
210°,7x/6, (- ? 330°,11n/6, (ﬁ -3
225°,5m/4, (—£ ——‘C) 315°, Tn/4, (£ _3/__>
V3 V3
2400, 47:/3, (—E,— T) 3000, 57!/3, (5 R T)

270°, 3n/2, (0,—1)
Equation for unit circle is: x> + y> = 1
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« Example: Use the unit circle figure above to determine the exact value
of cos(2n/3) and sin(27/3).

The arc length has a terminal point at ( —%, —‘—g) , therefore

cos(2n/3) = —1/2 and sin(2n/3) = /3 /2.
This result can also be illustrated using a reference triangle:

1,43)
\2
V3in/

0=2n/3 on a unit circle the -\/5 /2
triangle becomes

where cos(2n/3) = x/r = -1/2 and sin(2x/3) = y/r =312
(Remember r on a unit circle is 1.)

« Example: Estimate the circular functions cos(500) and sin(-3) using a
calculator.

First put calculator in radian mode. Then calculate cos(500) and sin(-3)
to 4 significant figures:

cos(500) ~ —0.8839 and sin(-3) ~ -0.1411.

« The unit circle also depicts the periodic nature of circular functions,
which is described in detail in Chapter 5. Because the circumference of
a circle is ¢ = 2xr and for a unit circle ¢ = 2, for any point on the unit
circle, adding or subtracting 2x will result in the same point on the
circle. Therefore, sin(s+2x) = sin s and cos(s + 2rt) = cos s. In addition,
adding or subtracting 2z will result in the same point on the circle.
Therefore, sin(s +n2x) = sin s and cos(s £ n27) = cos s, where n = any
integer (..., -5, -4, -3,-2,-1,0, 1,2, 3, 4, 5, ...). These repetitive
functions are called periodic functions, and for sine and cosine the
period is 27.

4.10. Linear and angular velocity

« Circular motion can be described using trigonometric or circular
functions. Linear velocity on a circle and angular velocity have
numerous applications in physics, astronomiy, and engineering.

» We know that, in general, distance equals rate times time, where
velocity is the rate. In equation form this is written d = vt, where d is
distance, v is rate or velocity, and t is time. If a particle or point is
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moving at a constant speed around a circle, then the distance traveled is
an arc, s. The rate is the speed or velocity of the point around the circle,
and time is the time it takes to get from the beginning of the arc to the
end of the arc. Therefore, for a point moving around a circle at a
constant velocity the following is true: s = vt

Rearranging gives the linear velocity around the circle as: v = sft,
which is the change in distance per unit time of a point moving around a
circle, or of a point on a rotating circle.

The linear forward velocity corresponds to a point moving along a circle
and describes how fast the point is moving. As the point moves along
the circle, the positive angle 0 in standard position also changes. The
rate at which the angle changes is the angular velocity. The angular
velocity, denoted by @, is a measure of the change in angle 0 as point P
moves around the circle. The angular velocity ® is given by: ® = 0/t,
where angle 0 is in radians and is the measure of where P is at time t.

* We know that the arc length s of a circle is given by: s =18,

where r is the radius and 0 is the central angle in radians subtended by
the arc. Therefore, we can relate the linear and angular velocity
formmulas as: v=s/t =10/t

Also, because @ = 0/, then the following relations for linear and
angular velocity can be written:

v=r0/t, v=ro, v=sit, ®=0t, @ =s/tt, ®=V/r

» Example: If a person on a skateboard is traveling 10 miles/hour and
the skateboard wheels are 2 inches in diameter, what is the angular
velocity of each wheel in radians per minute? What is the angular
velocity in revolutions per minute?

First, because the wheels are measured in inches and the end result is in
radians/minute, change the velocity units for 10 miles/hour to velocity
in inches/minute.

mi  5280ft 12in l1hr
v=10—x X X

L3 _ =10,560
1 mi 1t 60min min

The angular velocity is given by ® = v/r, where r is the radius of each
wheel and is 1 inch. Therefore, the angular velocity of each wheel in
radians per minute is:
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_ 10,560.in/min ~ 10,560 radi.ans
lin min
Remember: A radian is the measure of the central angle subtended by an
arc of a circle that is equal to the radius of the circle, and 1 radian =
360°2w, which is equivalent to 1 revolution/2x, or 1 revolution is 2n
radians. To convert radians per minute to revolutions per minute:

o=

- | <

o= 10,560 ™2dians 1 revolution

- = 1681 revolutions/minute
min 27 radians

Therefore, the angular velocity in revolutions per minute is
1681 revolutions/minute.

» Example: If we estimate that the orbit of the Earth around the Sun is
approximately circular (even though it is more elliptical), and we know
that the distance from Earth to Sun is approximately 150,000,000 kilo-
meters or 93,000,000 miles, estimate the speed of the Earth as it travels
around the Sun in miles per hour.

Earth

In one year the Earth makes one revolution around the Sun, which is 27
radians. Therefore, ® = 0/t = 2x radians / 1 year.

24 hours 365 days
1 day 1 year

= 8760 hours

In hours, 1 year is

Therefore, the angular velocity is o = 0/t:
o = 27 radians/year = 2%/8760 hours = 7.173 x 107 radians/hour

and the linear velocity in the orbit or the speed at which Earth travels
around the Sun is: v=ro

= (93,000,000 miles)(7.173 x 107* radians/hour) = 66,700 miles/hour
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4.11. Chapter 4 summary and highlights

» The six trigonometric functions are not only defined using the ratios of
the sides of a right triangle (as described in Chapter 3), but they can also
be defined in a coordinate system using angles in standard position, and
also as arc lengths on a unit circle, called circular functions. The latter
two are described in this chapter. This chapter describes trigonometric
and circular functions and also includes a brief review of general
functions.

* A standard position angle is an angle drawn in a rectangular coor-
dinate system with its vertex at the origin and its initial side coincident
with the positive X-axis. Coterminal angles are standard position angles
that have the same terminal side. The six trigonometric functions can
be defined in a coordinate system using a standard position angle as
ratios of the quantities x, y, and r, with point P(x, y) as the point on the
terminal side of the angle and r as the distance from the origin to the
point.
y P(x.y)
r

o
X

y

The six trigonometric functions are:
cos o =x/r, sino =y/r, tana =y/x,
seca=r1/X, csca=rly, coto =xly

* In a coordinate system, the signs of the trigonometric functions depend
on the signs of x and y in the quadrant in which the terminal side of the
standard position angle lies. The signs for sine, cosine, and tangent in
each quadrant are:

Quad I Quad I

cosais— | cosais+
sin o is + sina is +
tan o is — tan o is +
Quad [ Quad IV

cosais— | cosois+
sin a is ~ sino is —
tan o is + tan o is —

* Reference angles and reference triangles are used to assist in calcula-
tions involving trigonometric functions. A reference angle R for a
standard position angle is the positive acute angle 0 between the X-axis
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and the terminal side of the standard position angle. Reference triangles
are formed by extending a line from a point P(x, y) on the terminal side
of the standard position angle to the X-axis. For example:

y y y| P(xy) P(%
0=R 0 L(r 0
X @_x [ Ol=a , X

Reference angles in quadrants I & 1T Reference triangles in quadrants [ & 1T

When trigonometric function calculations are made using reference
angles and reference triangles, the sign of the function depends on the
quadrant in which the terminal side of the angle or triangle lies.

* When solving problems using trigonometric functions, certain
identities are used. They include negative angle identities

cos(—a) =cos a, sin(—o) =-sino, and tan(~a)=-tana,
reciprocal and quotient identities sec o, = 1/cos a, csc o = 1/sin a,
cot o = 1/tan o, tan o = sin a/cos ¢, and cot o = cos a/sin o, and
the cofunction identities cos a, = sin(90° — ) and sin o = cos(90° — @).

* The six trigonometric functions can be defined as arc lengths on a
circle of radius one, a unit circle, and are called circular functions.
Circular functions have as their domains lengths of arcs on a unit circle
and are defined as real numbers rather than being limited to angles.
Circular functions allow the use of trigonometric functions beyond
angles and triangles into the study of phenomena with a periodic
nature, such as electricity and sound.

« The coordinates of point P on a unit circle can be described as

P(cos s, sin s),
y
1

P(cos s, sin s)
0\s

—t

where s is the arc length, the X-axis coordinate is x = cos s, and the Y-
axis coordinate is y = sin s. The six circular functions are:

coss=Xx, sins=y, tans=y/x,

sec s = 1/x, cscs=1/y, cots=xly

where r =1 on a unit circle.
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CHAPTER 5

Graphs of Trigonometric and Circular
Functions and their Periodic Nature

5.1. Circular motion

5.2. Graphs of sine and cosine

5.3. Transforming graphs of sine and cosine through changes in
amplitude, period, and vertical and horizontal shifting

5.4. Applications of sinusoids

5.5. Graphs of secant and cosecant

5.6. Graphs of tangent and cotangent

5.7. Chapter 5 summary and highlights

5.1. Circular motion

* In circular motion, a point or particle moving in a circular path around
the perimeter of a circle of radius 1 can be mapped using cosine and
sine. The coordinates of the point or particle can be represented by
(x=cost, y =sint), where t represents time. One complete revolution of
a particle around the circle corresponds to 2x radians. For a particle
moving at a constant speed, if it takes one second for the particle to
move around the circle, then it is moving at an angular rate of 1 revolu-
tion per second. The particle therefore moves around the circle with an
angular velocity of 2n radians per second. When angles are measured in
radians, sin x and cos x have period 2x. The position of the particle is
given by the angle ¢, which is measured in radians. The rate of change
of ¢ is the angular velocity of the particle. The angular velocity, o, is

the change in ¢ divided by the change in t, or @ = Ad/At. If the motion is
uniform, then ¢ = ot.

* For each point around a circle the six functions, cos X, sin x, tan X, csc
X, Sec X, and cot X, can be drawn as six graphs of the corresponding
waveforms. A particle moving around a circle can be compared to a
particle moving along the sine curve. Before drawing the graphs for the
trigonometric functions, it is helpful to examine the correlation between
the motion of a particle around a circle and a sine wave graph.
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* Because the coordinates of the particle traveling around a unit circle
(at constant velocity) are given by (cos t, sin t), (or (cos s, sin s) as
described in section 4.9), as a particle moves around the circle, a point
reflected onto the cosine axis (X-axis) that is following the movement of
the particle will oscillate from side to side between+1 and -1, and a
point reflected onto the sine axis (Y-axis) that is following the move-
ment of the particle will oscillate up and down between +1 and —1.

* Consider the movement of a particle that begins at t=¢ =0,

x=cos ¢ = 1, and y =sin ¢ = 0. (See figure below.) As the particle
moves upward and to the left toward the Y-axis, the particle reaches the
top where t = 1t/2 = ¢. At this point cos 7/2 = 0 and sin n/2 = 1. Then the
particle moves in the negative x direction and downward to ¢ =t ==,
where x = cos © = —~1 and y = sin © = 0. The particle then moves down
and to the right to ¢ = t = 3/2, where cos 3n/2 =0 and sin 37/2 =-1.
Finally, the particle moves to the right and upward to $ =2x =t =0,
where cos 21t = 1 and sin 2x = 0.

t="n/2

cost=10

sint=1

oint P
T

t==x t t=0_
t=-1 cost=1
e sint=0
s t=2n

t=3n/2

cost=0

sint=-1

* As a point moves around a circle, at any given position the direction of
motion of the particle is tangent to the circle. For any particle on the cir-
cle the following figure can be drawn. The velocity tangent to the circle
at point P has a cosine component, cos t, and a sine component, sin t,

and points in the direction that the particle is moving. The acceleration
this particle experiences is centripetal acceleration, which points inward
along the radius line.
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-sint
cost
t]
oint P
r
1 sinjt tangent
cost

* In simple harmonic motion, or oscillatory motion, a particle or object
moves back and forth between two fixed positions in a straight line. The
connection between simple harmonic motion and uniform circular
motion can be visualized by projecting the image of a particle moving in
a circular path onto a screen (perpendicular to the plane of the circle).
By projecting the circular path from its side, the projected image looks
like a particle moving back and forth (or up and down) in a straight line.

light

The shadow of the particle translates to simple harmonic motion.

» Another means to visualize the correlation between a particle moving
around a circle in circular motion and its corresponding harmonic
motion is to project the image of the particle as it moves around the
circle onto the Y-axis.
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y, v

H ﬂ)int P
r

v/r ! X
U

As the particle moves around the circle counterclockwise, the projection
oscillates up and down. The position of the particle

begins at the center on the right at (cos 0 = 1, sin 0 = 0),

at the top is (cos n/2 =0, sin /2 = 1),

in the center on the way down is (cos n = -1, sin &t = 0),

at the bottom is (cos 3n/2 = 0, sin 31/2 = 1), and

in the center on the way up is (cos 27 = cos 0 = 1, sin 2x = sin 0 = 0).

* By comparing the motion of this particle moving around the circle
with its projection, it is evident that even when the velocity of the parti-
cle is constant, the velocity of the projection of the particle slows to a
stop at each end (top and bottom). The velocity of the oscillatory motion
can be related to a sine wave pattern. The velocity is the rate of change
of distance, and the slope of a curve at a given point represents the velo-
city at that point. By rotating a right triangle around a circle the relation-
ships between sine, cosine, distance, and velocity can be visualized.
When the distance equals sin t, then the velocity equals cos t, and when
the distance equals cos t, then the velocity equals —sin t.

- sin t = horizional velocity component

tangent = velocity cos t = vertical velocity component

point P

sin} = height
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These relationships will be seen using the graphs of sine and cosine.

* A particle moving around a circle can be translated into a particle
moving along the sine curve. For example, the rate of change of position
(slope) is zero at the top and bottom of the circle and also on the sine
curve where t = /2 and t = 3x/2. The slope (velocity) of the sine curve
at these points is zero because the curve is flat. At these points the
particle in straight line motion on the projected image in the circle is
changing directions and comes to a stop as it turns where v=20.

y, v
N int P

r

Y X

1! 2
-
—-TNm/2 /2 W 2n
=1 32

Graph of sine curve

—

At t =0, the particle is in the center of its projected straight line on the
circle and is moving upward and has a corresponding slope on the sine
curve graph of 1; therefore the velocity at this point is equal to 1. At

t = m, the particle is in the center of its projected image on the circle and
going straight down. At this position the corresponding slope on the sine
curve is —1 and v = —1. The velocity of the particle at the center is at its
greatest. Remember: Velocity is the rate of change of distance, and the
slope of a curve at a given point represents the velocity at that point.

« Another interesting fact is that the slope at each point on the sine
curve graph is given by the corresponding value of the cosine curve
graph at that point.
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M
1 2

—n\ﬂd /2 Wr g 2n

1T 31/2

Graph of sine curve - projection of circular motion onto Y-axis

£ ”
N o,
w2 n/&\@}:&Z 2n 2n

= 312

Graph of cosine curve - projection of circular motion onto X-axis

* Cosine and sine can be described by the equations:
cos X = cos(x + 2nr)

cos X =sin(n/2 + x)

sin X = sin(x + 2nn)

Where n is any integer and x is any real number.

5.2. Graphs of sine and cosine

« The graphs of certain functions possess a repeating pattern where the
values of the function repeat themselves over and over. These functions
are called periodic functions. Sine and cosine are often considered to be
the most important periodic functions. A periodic function can be
written in the form f{x) = f{x + np), where x is a real number in the
domain of f, n is an integer, and p is the period.

* The graphs of sine and cosine shown above are often referred to a
sinusoids and describe numerous physical phenomena such as sound,
music, electricity, motion of a vibrating object, harmonic waves, water
waves, temperature variation, a mass on a spring, and electromagnetic
radiation including light, radio waves, and X-rays.

Graph of y =sin x

« The graph of y = sin x is the set of all ordered pairs of real numbers
that satisfy the equation. The domain, or values for x, include all real
numbers and the range, or values for y, include real numbers including
and between —1 and +1.
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« The graph can be created by choosing values of x and calculating

y = sin X to create (X, y) ordered pairs to plot. This is laborious, and the
graphs of sine and cosine are often created by taking into consideration
how sine and cosine vary on the unit circle. Graphs are also created
using a graphing utility. Consider a unit circle with 30:60:90 triangles.
The length of the vertical sides of the triangle represents the value of
sin 6, and the length of the horizontal sides represent cos 6.

1
AI/Z
V312

For the upper part of the unit circle between 0° and 180°:

Yy
1 1 1
= S —

When 0=0, sin0=0.
When 6 = 7t/6 or 30°, the vertical side of the triangle is 1/2, or sin6=1/2.
When 0 = 7t/3 or 60°, the vertical side of the triangle is \/-5 /2, or 0.866,

and sin 0 =+/3 /2, or 0.866.
When 0 =n/2 or 90°, sin 6 = 1.
Continuing around:

y Yy
1

—

D12 i 0
1 X 1 X

When 0 = 2n/3 or 120°, the vertical side of the triangle is/3 /2, or

0.866, and sin 0 =J§ /2, or 0.866.

When 8 = 5r/6 or 150°, the vertical side of the triangle is 1/2, or
sin0=1/2.

When 6 = & or 180°, the vertical side is sin 6 = 0.

Plotting these values on a graph of angles, or domain values, versus
sin 6 we have:

sin 0

1 ! '
] 1 ]
t : t
] ! \

I,

t“ 30° 60° 90° 120° 150° 180°
° 7w/6 n/3 m/2 2n/3 5n/6 =
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For the lower part of the unit circle between 180° and 360°, we can use
the standard position angle and draw triangles that have their vertical
sides in the negative direction, below the X-axis.

G ¢

y=sin210°=-1/2 y=sin240°=-0.866 y=sin270°=—
y=sin7n/6=-1/2 y=sin4n/3=-+3/2 y=sin3n2=-1

& &

=sin 300°=-0.866 y=sin330°=-1/2
y=sinsn/3=-43/2 y=sinlln/6=-1/2

Plotting these values on a graph of angles, or domain values, versus
sin 6 continuing the graph from 180° to 360°, or « to 2x:

sin 0

i
[}
1
1

4 . T T 0
x" 30° 60° 90° 120° 150° 1882 2!0" 2'40° 2i70° 3%)0" 330° 260°
° wn/6 w/3 w2 2n/3 Sn/6 w 34/2 /6 2w

This graph represents one period, which is 0° to 360°, or 0 to 2x radians.
The period of y = sin x is 2% or 360°. In addition, the maximum distance
of y =sin 6 above and below the horizontal X-axis is 1, which represents
the amplitude, so that for this graph the amplitude is 1. The amplitude is
half or the difference between the maximum and minimum values of the
function, or half for the span of the graph along the vertical axis. There-
fore, for sine the amplitude is (1/2)(+1 — (-1)) = (1/2)(2) = 1.
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* To the left of the Y-axis, the section to the right of the axis is repeated
with the same pattern, period, and amplitude. Therefore, from —360° or
—2m to 0 the graph has the same characteristics as from 0 to +360° or 27.

sin O 1
] : ] ] : ]
] ] ] ] ] ]
I S HE
R E HR
-360° -270° -18QC | -99° ! )° 90° 1 P270° 13
2n  -3n/2 - < /2 n / 2

One cycle or period of the graph of y = sin x repeats itself in both
directions along the X-axis. The period is 27 or 360°. In addition, the
graph of the sine function, y = sin x, is symmetric with respect to the
origin (so that if it is flipped over the Y-axis and then over the X-axis, it
will be the same). This corresponds to the negative identity for sine:
sin(—x) =-sin x. Note that the graph of the cosine function, y = cos X, is
symmetric with respect to the Y-axis, which corresponds to the negative
identity for cosine: cos(—x) = cos x. Using a graphing calculator or
graphing software, the graph of sine is:

Graph of y =sin x

y_
2
™1
-6.28 3.14 14 28 X
-1
T2
2 -T 0 0.9 2=
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Graph of y = cos x

» Like the graph of sine, cosine is a sinusoid. The graph of y = cos x is
the set of all ordered pairs of real numbers that satisfy the equation. The
domain, or values for x, includes all real numbers and the range, or
values for y, includes real numbers including and between —1 and +1.

» The graph of y = cos x can be created by choosing values of x and
calculating y = cos x to create (x, y) ordered pairs to plot. This is
laborious, and the graphs of sine and cosine are often created by taking
into consideration how sine and cosine vary on the unit circle. (Graphs
are also created using a graphing utility.) Using the same unit circle
diagrams with the 30:60:90 triangles that we used for y = sin x (in the
previous paragraphs), we can plot y = cos x. Iny = sin x, the length of
the vertical sides of the triangles represent the value of sin 0, whereas
the horizontal sides of the triangles represent values of y = cos x.

1
Am
V372

For the upper part of the unit circle between 0° and 180°;
M Y, Y
1 1 1
| X ] X I X
When 6=0, cos 6= 1.

When 0 = 1/6 or 30°, the horizontal side of the triangle is cos 0 =+/3 /2,

or 0.866.
When 6 = /3 or 60°, the horizontal side of the triangle is cos @ = 1/2.
When 6 = t/2 or 90°, cos 6 =0.

Continuing around:
Y, ¥ y
1 1 1
12 . 5 0
I X X ! X

When 0 = 21/3 or 120°, the horizontal side is cos 6 = -1/2.

When 0 = 51/6 or 150°, the horizontal side is cos 6 = — J3 /2, or —0.866.
When 6 = &t or 180°, the horizontal side is cos 6 =—1.
For the lower part of the unit circle between 180° and 360°, we use the
standard position angle and draw triangles below the X-axis.
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When 0 = 77/6 or 210°, the horizontal side is cos 6 = — \/5 /2, or —0.866.
When 0 = 47/3 or 240°, the horizontal side is cos 6 = —1/2.
When 0 = 3x/2 or 270°, the horizontal side is cos 6 = 0.

e

When 6 = 5%/3 or 300°, the horizontal side is cos 6 = 1/2.

When 6 = 117/6 or 330°, the horizontal side is cos 0 = \/5 /2, 0r 0.866.
When 0 = 25 or 360°, the horizontal side is cos 0 = 1.

&

Plotting these values on a graph of angles, or domain values, versus
cos 0 the graph from —360° to +360°, or —2x to 27 is:

cos 0
1
1 ]
1 i 1 1 1 \
1 ] ] ] ] ]
I T
-360° 27 | -180° | ° De o8t 180° ! 0° 360°
-2n  -3n/2 —1t/2 /2 i 3n/2 2n
-1

The graph of y = cos x or y = cos 0 is the same as the graph of y = sin x
except that it is shifted horizontally so that whenx =0=0,y = 1.

s For y = cos x, the amplitude, or maximum distance above or below the
horizontal X-axis, is 1 (as was y = sin x). The period of y = cos x is one
complete cycle and is 27t or 360°. Cosine repeats along the horizontal
X-axis. The graph of y = cos x is symmetric with respect to the Y-axis
(if it is flipped over the Y-axis it is the same), so that cos(—x) = cos X,
which is the negative number identity for cosine.
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Using a graphing utility, the graph of cosine is:
Graph of y = cos x

/\ / |
1 1 1
/ 6.2 -31

1
3.14 628\ X

21 -7 0 bis 2n

¢ Superimposing y = sin X and y = cos x illustrates the shift:

y ¥ = cos x (dashed)
i y = sin x (solid)

- -
VLS ’
X

Because sin(x +n/2) = cos X, the graph of y = cos x is the graph of
y = sin x shifted by =n/2 to the left.

5.3. Transforming graphs of sine and cosine through changes in
amplitude, period, and vertical and horizontal shifting

 Graphs of trigonometric functions can be transformed and modified by
multiplying and adding constants in the equations y =sinx and y = cos x.
If there are coefficients in the equations for y = cos x, y = sin x, etc., the
graph of the function will have the same general shape, but it will have a
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larger or smaller amplitude, or it will be elongated or narrower by
changing the period, or it will be moved to the right or left or up or
down.

* For example, if there is a coefficient of 2 in front of cosine or sine,
y=2sinx and y = 2 cos X, the amplitude will change and the graph will
go to +2 and -2 (rather than +1 and —1) on the Y-axis. Similarly, if
there is a coeflicient of 1/2 in front of cosine or sine, the graph will go

to +1/2 and —1/2 (rather than +1 and -1) on the Y-axis. (See examples
of graphs throughout this section illustrating transformations.)

If there is a coefficient of 2 in front of x, resulting in y = cos 2x and

y = sin 2x, the period will change and the graph will complete each
cycle along the X-axis twice as fast. Because there is one cycle between
0 and 27 for y = cos x and y = sin x, there will be two cycles between 0
and 27 for y = cos 2x and y = sin 2x. Similarly, if there is a coefficient
of 1/2 in front of x, giving y = cos x/2 and y = sin x/2, the graph will
complete each cycle along the X-axis half as fast. Because there is one
cycle between 0 and 25 for y = cos x and y = sin x, there will be one-
half of a cycle between 0 and 2x for y = cos x/2 and y = sin x/2.

If a number is added or subtracted, y =2 + cos x and y = 2 + sin x, the
graph will shift vertically and the function will be moved up or down on
the Y-axis, (in this case up 2).

If a number is added to or subtracted from x, y = cos(x + 2) and
y = sin(x + 2), the graph will have a phase shift and the function will be
shifted to the right or left on the X-axis.

Transforming graphs of any function

*» Graphs of general functions can be modified by adding and/or
multiplying by coefficients. Following are examples of how functions
can be transformed,

* Vertical shifting of a function:

M y
NSy Y= +e VaVaRR Aty
VaVARR AR Y /\/‘ y=fx)-c
X X
y=1{x)+c y=f(x)-c

where c is a constant.
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* Horizontal shifting of a function:

y=[% é=f(x—c) y=f(x+c2) y = f(x)
S X l__<__2'_ X

y=1f{x-c¢) y=f(x+¢)

where ¢ is a constant.
Note that the signs of horizontal shifts are tricky. A (x + c) in the
parentheses shifts to the left and a (x — c) shifts to the right.

* Vertical stretching and squeezing of a function:

y = cf®) y |y=f®)
y =1(x) l % y = cf(x)
X X
Stretching Squeezing
where c is a constant where ¢ is a constant
andc>1. and 0 <c<1.

Greater values of ¢ generally result in greater vertical stretching.

« Reflecting across the axes:

y
yl A~ y=f(=x)| y=1x)
y = f(x)
X VA VIR IVAN
l N\ y = %) x
X-axis reflection Y-axis reflection

Transformations of y = sin x and y = cos x

« The graphs of sine and cosine are both sinusoids and can be trans-
formed by stretching or shrinking in the x direction changing the period,
increasing or decreasing the amplitude, shifting up, down, or sideways,
and reflecting across the axes. Transformations are made by multi-
plying, dividing, adding, or subtracting coefficients in the equations

y =sinx and y = cos x. Following is a discussion of amplitude, period,
vertical shifting, and horizontal, or phase shift, transformations of the
graphs of sine and cosine.
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Amplitude of sine and cosine functions

» The amplitude is the maximum deviation from the centerline of the
horizontal component of sine and cosine graphs. In the case of y =a sinx
and y =a cos X, the centerline is the X-axis. Changing the amplitude
changes the y-component of a sine or cosine graph. The amplitude of a
sine or cosine function is changed by multiplying the equations by the
amplitude a:

y=asinx and y=acos x

The graphs will have the same general shape, but the maximum and
minimum points on the Y-axis will be bound by +a. The amplitude is
therefore given by the absolute value of a, or |a|, and the range is

(-, |]a]). Negative a values will flip the graph across the X-axis as
depicted in the first example below. In these equations the period, or
length of a complete cycle along the X-axis, will remain unchanged at
2. In addition, the graph of y = a sin x will cross the X-axis every-
where the graph of y = sin x crosses the X-axis, and similarly for
y=acos x and y = cos X.

* Example: Compare y = (1) cos x and y = (-1) cos x.

On the graph the negative amplitude curve (black line) is reflected across
the X-axis so that y = — cos x is upside down compared to y = cos x.
Graph of y = cos x (gray curve) and y = —cos x (black curve)

y
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» Example: Compare the graphs of y = 2 sin x and y = sin x, and then
compare the graphs of y = 2 cos x and y = cos X. Use a graphing
calculator or graphing utility to graph y =2 sin x and y = sin X on one
graph, and y =2 cos X and y = cos x on a second graph.

In the graph of y = 2 sin x and y = sin x, the period remains at 27, how-
ever the amplitude of y =2 sin x is |2| or 2 rather than {1] for y = sin x.

Graph of y =2 sin x (black curve) compared to y = sin x (gray curve)

y

[ 2
/ }
628 3.14 14 28 X
/
J :
-1
T2

-2r -7 0 T 27

In the graph of y =2 cos x and y = cos x, the period remains at 27.
However, the amplitude of y =2 cos x is |2| or 2 rather than |1| for
y = COS X.
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Graph of y =2 cos x (black curve) compared to y = cos x (gray curve)

y
2
1
I 1 1 ]
I 6.2 -3.1 3.14 6.28\ X
L-1
T2

» Example: Compare y = (1/2) sin x and y = -2 sin x on a graph.
y = (1/2) sin x (gray curve) and y = -2 sin x (black curve)

y
2

1

.28 .14 .14 28 X
.
Ry
T2
=2n -7 0 T 2n
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We can see from the graph that the periods of both functions are 2x;
however the amplitudes are |1/2] or 1/2 and |-2| or 2. The negative sign
before the amplitude in y = -2 sin x reflects the graph across the X-axis,
which turns the graph upside down.

Period of sine and cosine functions:

* The period represents one complete cycle of a function along the
horizontal axis. The periods of y = sin x and y = cos X, and even such
functions as y = 3 sin x and y = 10 cos x, are still 2it or 360°. The
periods are changed when the functions of sine and cosine have a
multiplier b of x such that:

y=sinbx and y = cos bx

where the period is 2n/b and b > 0.

These graphs have the same basic shape as y = sin x and y = cos X, an
amplitude of 1, and a range of [-1, 1].

* The period of y = sin bx and y = cos bx is obtained by considering that
sin bx and cos bx each complete one cycle as bx ranges from 0 to 27, or
bx = 0 to bx = 2x. Therefore x will vary from:

x=0b=0 to x=2r/b

or equivalently, 0 <x <2n/b

Therefore, the period of y = sin bx andy = cos bx is 27/b.

* When the variable x in y = sin x or y = cos x is multiplied by 2, the
functions complete one cycle in half of y = sin x and y = cos x. When
the variable x is multiplied by 1/2, the period is doubled. If the variable
x is multiplied by 1/4, the period is 4 times as long.

« Example: What are the periods of y = sin 2x, y = sin 3x, and

y = sin x/2?

Graph the functions using a graphing utility or calculator. Compare
y = sin 2x and y = sin 3x with y = sin x on one graph, and compare
y = sin x/2 with y = sin x on a second graph.

In the first graph, the period of y = sin 2x is 2n/2 = n and therefore
completes one cycle as x varies from x = 0 to x = x. The period of

y = sin 3x is 2n/3 and therefore completes one cycle as x varies from
x=0tox=2n/3.

In the second graph, the period of y = sin x/2 is 2n/(1/2) = 4z and
therefore completes one cycle as x varies from x =0 to x = 4x.
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Graph of y = sin 3x (black), y = sin 2x (gray), and y = sin x (light)

y

2

-2 - 0 T 2n
Graph of y = sin x/2 (black curve) and y = sin x (gray curve)
y
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Vertical shifting of sine and cosine functions

* A vertical shift occurs when the entire graph is shifted up or down
along the vertical Y-axis. The equations for a vertical shift take the
form:

y=d+sinx

y=d+cosx

where d is the number of units the graph is shifted up or down.
When d > 0, the sinusoid graph shifts up.

When d < 0, the sinusoid graph shifts down.

» Example: Compare the graph y = 3 + cos x with y = cos x.

The +3 iny = 3 + cos x shifts the graph vertically up by three so that the
horizontal centerline is at y = 3 rather than along the X-axis.

Graph of y =3 + cos x (black curve) and y = cos X (gray curve)
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» Example: Compare the graph of y = —3 + 2 cos x with y = cos x.

In the graph of y = -3 + 2 cos x the horizontal centerline is shifted down
from the X-axis by 3 toy = -3, and the amplitude is 2 rather than 1.

Graph of y = -3 + 2 cos x (black curve) and y = cos x (gray curve)
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» Example: Compare the graph of y =3 — 2 sin x with y = sin x.

In the graph of y = 3 — 2 sin X, the horizontal centerline is shifted up 3
to y = 3, and the amplitude is 2. In addition, the negative sign before the
amplitude |2] causes the graph to be a negative sine curve and therefore
upside down.
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Graph of y =3 — 2 sin x (black curve) and y = sin x (gray curve)

y

Horizontal shift, or phase shift, of sine and cosine functions

* The graphs of y = sin x and y = cos x can be shifted horizontally,
which is called a phase shift. The equations for phase shift are:
y=sin(x +¢) and y = cos(x +c)

The graphs of these equations are the same as y = sinx and y = cosx
except that they are shifted to the right or left, depending on the sign
of c.

« In the phase shift equations y = a sin(bx + ¢) and y = a cos(bx + ¢):
a is the amplitude

2n/b is the period

The graphs of sin bx and cos bx each complete one cycle as bx varies
from 0 to 2z, or bx = 0 to bx = 2%, and therefore x varies from

x = 0/b = 0 to x = 2n/b, resulting in 27/b as the period.
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» To determine the phase shift for y = a sin(bx + ¢), consider that the
graph completes one cycle as bx + ¢ varies from:

bx+c=0 to bx+c=2n

Therefore x varies from (solve for x in each equation):

x=-cb to x=-c/b+2nb

where 2n/b is the period and

—c/b is the phase shift

Therefore, the graphs of y = a sin(bx + ¢) and y = a cos(bx + ¢) have a
period of 2n/b and are shifted along the horizontal axis by the absolute
value of the phase shift |-c/b).

If —c/b > 0, the graph shifts to the right.

If —¢/b < 0, the graph shifts to the left.

¢ Example: Compare the graph of y = sin x with y = cos(x — n/2).
The graph of y = sin x has an amplitude of 1, a period of 27, and a phase
shift of 0. The graph of y = cos(x — 7/2) has an amplitude of 1. To find
period and phase shift, remember that (bx + ¢) varies from
bx+c¢c=0 to bx+c=2n
and x varies from
=—c/b to x=-c/b+2nb
Therefore (x — n/2) varies from
x-n2=0 to x-7n/2=2n
or x=7/2 to x=7l2+2n
where 2x is the period and /2 is the phase shift.

Therefore, one period of the graph begins at x = n/2 and ends at
X=7/2 + 2% =5xn/2.

y | one period
nS /‘_{ sin X = cos(x — n/2)
X

- /2 U Sn/2

~T

The graphs of y = sin x and y = cos(x — n/2) equal each other for all x
and y values, and they perfectly overlap.

« Example: Graph y = 2 — 2 cos(2x + &).

The graph has an amplitude of |-2| = 2.

To find phase shift and period remember that (2x + =) varies from
2x+7=0 to 2x+xn=2n
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and x varies from
x=-m/2 to x=-n2+2n2=-n2+n=n/2
where 7 is the period and ~n/2 is the phase shift.

The graph of y =2 — 2 cos(2x + =) is flipped upside down because of
the negative sign in front of the amplitude. In addition, one cycle begins
atx =-n/2 and ends at x = -n/2 + © = /2.

Because of the 2, from which 2 cos(2x + r) is subtracted, the graph is
shifted up vertically so that the horizontal centerline is aty = 2.

Graph of y =2 — 2¢0s(2x + 1)
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Summary of sine and cosine transformations

» Transformations can be made to the generalized equations,
y=d+asin(bx +c)andy =d + a cos(bx + ¢):

a is the amplitude given by the absolute value of a, or |a|.

d is the vertical shift where d is the number of units the graph is shifted
up or down, so that when d > 0, the graph shifts up, and when d <0, the
graph shifts down.

(bx + ¢) is used to determine the phase shift and period as follows:
Because the graph of a sinusoid completes a cycle as x varies from 0 to
2m, solve the following for the variable x.

(bx+c)=0 and (bx+c)=2xn

x=—c/b and x=-c/b+2n/b

where —c/b is the phase shift and 2r/b is the period.

Therefore, the graph of a sinusoid completes one cycle as x varies from
0 to 2z, or as x varies from —c/b to —c/b + 2x/b. If the phase shift is
greater than zero, or —c/b > 0, the phase shift is to the right; and if the
phase shift is less than zero, —c/b <0, the phase shift is to the left.

* Note that functions in the form
y =asin(bx + c¢) and y = a cos(bx + ¢)
are sometimes referred to as simple harmonics.

* In time-dependent sine and cosine functions:

y=d+asin(bt+c)andy =d +a cos(bt +¢)

|a] is the amplitude

d is the vertical shift

~c/b is the phase shift

2r/b is the period or the time for one complete cycle

Jrequency is = 1/period = b/2x and is the number of cycles per unit
time.

 Another general formula for a sine curve is
y = a sin(ot + 8), where:
la] is the amplitude
o is the angular frequency in radians per second
f= w/2n is the frequency in cycles per second
1/f=2n/w is the period
ot+0=0 and ot+0=2x
=-0/w and t=-6/0 + 21/®
-8/ is the phase and 2n/w is period
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5.4. Applications of sinusoids

* Sinusoidal waves are found in the study of such phenomena as
electricity, electromagnetic waves, waves in water, sound waves,
harmonic waves, and standing waves. For example, the electricity we
use is generally alternating current, or AC. In addition, radio and
television signals that travel from a transmitting station to a receiver are
produced by alternating currents in the transmitting antenna.

* Electric generators can be used to create alternating current in a wire,
which has a sinusoidal form when the wire is connected to an oscillo-
scope. An oscilloscope depicts a graph with current as the y-coordinate
and time as the x-coordinate.

current
L\ N
‘ N

» Faraday discovered that the flow of electricity could be created by
moving or turning a wire in a magpetic field. Magnetism is produced by
passing an electric current through a conductor, and conversely, when a
conductor is moved across a magnetic field, a current develops as a
result of an induced voltage. This is the principle of electromagnetic
induction, which is the process of inducing a voltage in a wire and is the
basis for most electric generators.

time
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Generators are used to convert mechanical energy to electrical energy.
In a generator, a conducting wire is moved between magnets through a
magnetic field and a voltage is induced in the wire, which directs current
to an external circuit. In a generator when the magnetic field is held
constant, rotating the armature (which is an iron core with a conducting
coil, or conductor, wrapped around it) in the magnetic field varies the
magnetic flux through the coil. The sign of the current produced in a
generator alternates as the armature revolves, because the direction of
the magnetic flux through the coil reverses twice each revolution. As the
armature is rotated at a constant frequency, the current produced has a
sinusoidal time dependence. This current is alternating current (AC).
The standard household current used in the United States. is alternating
current of 60 cycles/second (hertz) and 120 volts.

5 magne

1 armature

slip rings .
N

k2
brushes

circuit

The armature is an iron core with a conducting coil (conductor) wrapped
around it.

The current is conducted from the rotating shaft to fixed external wires
by the slip rings and brushes. The slip rings mounted on the shaft pro-
vide a sliding contact so the wires do not become tangled and wound up.
The slip ring makes contact with metallic wires called brushes. In
practice, generators have many coils and several magnets.

« In the simplest generator, the conductor is an open coil of wire rotating
between the poles of a permanent magnet. During a single rotation, one
side of'the coil passes through the magnetic field, first in one direction
and then in the other, so that the resulting current is alternating current
(AC), moving first in one direction and then in the other. Each end of
the coil is attached to a separate metal slip ring that rotates with the coil.
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The brushes rest on the slip ring and pass the current to an external
circuit.

N magnet
slip rings |
» A  E—— . .
A conducting coil
. Jj I
brushes p
' S magnet
circuit

» When the conducting coil of wire is rotated, the rotation causes a
continuous change in magnetic flux linking the conductor, which
induces a sine wave voltage in the conductor. The change in voltage
varies from zero when the conductor is horizontal to a maximum when
the conductor is vertical. The induced voltage v is given by:

v = Vmsin ot

where Vm is the maximum height the curve reaches, or amplitude;
sine is the function that gives the curve its wave shape; t is time; and

o is the radian frequency, also called angular frequency or angular
velocity, which describes voltage and how rapidly the curve oscillates (it
is actually the rate of rotation of the generator measured in radians per
second).

The function v is periodic, repeating itself at intervals of 2x radians. The
rate of repetition is the frequency f, where f= /2n in cycles/second or
hertz (Hz), where 1 Hz = 1 cycle/second, and o = 2xf.

The current i in amperes is given by:

i =Im sin(wt + 0)

where 0 is the phase angle between v and i.

Voltage v and current i can be depicted as:

i/ ~N V
\

1

/
9 1 T
—g é_ \\ //

The voltage lags current by the phase angle 6. The sinusoids are out of
phase by the amount 6.
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« Generators require an external energy source to rotate the armature.
External sources of energy used to rotate an armature include hydro-
electric generators in which falling water falls through turbines, and
steam-operated turbines where water is boiled and steam is heated
further so that its expansion forces turbines to rotate. The steam is then
allowed to condense so that the water is recycled. The fuels used to
produce steam include coal and thermonuclear reactors.

turbinel|  \
/ ,
generator
water
steam [ .. .t e ﬁ', turbine
S e v _
et A
al furna ‘ ' Y gonen
co ce ‘ generator
condenser

Electric current examples

» Example: A generator at a power plant at 60 cycles per second will
drive alternating current into homes and businesses at 60 cycles per
second, or 60 Hertz. If the voltage v is given by v = 160 sin at,

and o is the angular frequency in radians/second of the rotating
generator, find the value of  and graph v.

Because each cycle is 2 radians, at 60 cycles/second
o = 2nf = 27(60) = 120% radians/second
and therefore v = 160 sin 120xt

The graph of v =160 sin 120t is depicted as:
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Graph of v =160 sin 120xt
Voltage vs. Time

v
200

-200

Horizontal t-axis extends fromt = 0 to t = 0.10 seconds.
Vertical v-axis extends from 200 to —-200.

« Example: An AC generator delivers current in amperes according to

i =20 sin(120xt — &), where i is the current in amperes and t is time in
seconds. Determine the amplitude, frequency, and phase shift, and graph
the equation for i.

Amplitude |a| = |20| = 20 amperes.

To find phase shift and period solve for t.
120nit—nw=0 and 120rt-m=2n
120nt== and 120rt=mx+2n
120t=1 and 120t=1+2
t=1/120 and t=1/120+1/60

where 1/120 is the phase shift in seconds and 1/60 is the period in
seconds.

Frequency is 1/period or o/2x,

therefore, 1/period = 60 cycles/second, or 60 Hz,

or alternatively, using the equation given,  is 120x, so
f=w/2n = 120n/2x = 60 Hz.
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Graph of i=20sin(120nt — n)
Current vs. Time

i
30

LA
AUV

The horizontal time-axis extends fromt= 0 to t = 0.10 seconds, and
current i along the vertical axis is in amperes. Note there are 60
cycles/second, so there are 6 cycles/0.1 second.

-—

o Electromagnetic waves include the spectrum of electromagnetic
radiation from long wavelengths to short wavelengths, specifically,

long wave radio, amplitude modulated wave (AM), short wave, fre-
quency modulated wave (FM), television, radar, microwaves, infrared,
visible light (red, orange, yellow, green, blue, indigo, violet), ultraviolet,
X-rays, and gamma rays. The visible range of light is a small part of the
electromagnetic spectrum. Electromagnetic waves travel at the speed of
light (approximately 3 x 10"° centimeters per second, 3 x 10® meters per
second, or 186,000 miles per second).

* Electromagnetic radiation travels at the speed of light and occurs in
the form of quanta, or photons. Light and other electromagnetic radia-
tion consist of oscillating electric and magnetic fields that carry both
energy and momentum. Electromagnetic waves are produced by
electric charges that are undergoing oscillation. When electric charges
undergo acceleration, a time-varying electromagnetic field is produced
and electromagnetic waves are propagated outward from the source.
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¢ Electromagnetic waves are often studied using their characteristic
wavelengths and frequencies. A relationship between wavelength and
frequency is: Af=c, where A is wavelength, fis frequency, and c is the
speed of light.

* Example: Radio pulsars are spinning, magnetized neutron stars that
produce pulses of X-rays, gamma rays, and radio waves. Suppose the
gamma rays detected by an Earth-orbiting satellite have a wavelength
A =3 x 1072 m. The equation form for the gamma rays is y = a sin ot.
What is ©?

First determine frequency as:

f=c/A=(3x 10 m/s)/(3 x 1072 m) = 10° Hz

Because f = o/2x, then @ = 2nf= 27 x 10%

» Water waves can be described by a sinusoidal moving wave equations
in the form: y = a sin2n(ft — d/A), where d is the distance from the
source, t is time, f'is frequency, A is wavelength, and a is amplitude.

* Standing waves, often modeled as vibrations on a string, form cosine
and sine functions.

*» Sound waves are pressure waves produced by a vibrating source or
object that causes motion in the material they are transmitted through
(e.g. air, water, solid materials). Tuning forks are used to produce pure
tones that can be described by: y = a sin 2nft. Tuning forks have two
prongs of a specified size that vibrate and produce sound when tapped.
Sound waves are depicted as sine or cosine functions on an oscillo-
scope. Most sound is not a simple pure tone but a complex mix of tones.
Complex sound is a mix of partial tones and has its smallest frequency
tone as it fundamental tone and other tones as overtones. Sound waves
are described by their wavelength and frequency: A = v/f, where A is the
wavelength, fis frequency often measured in Hz, and v is the speed of
sound. A period of a tone is the time for the tone to produce one
complete cycle.

Y| pe-A e

I \— —/  time
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* Simple and damped harmonic motion and resonance also are
described by sinusoids and are often exemplified by a mass and spring
model, where a mass is suspended by a spring and set in motion. If the
amplitude of the up and down motion remains constant (no friction),
then the motion is called simple harmonic motion. If the amplitude
decreases over time (friction loss), the motion is called damped
harmonic motion. If the amplitude increases over time, the motion is
called resonance.

y
simple harmonic motion
N
' \V time
y
damped harmonic motion
N\,
7 time
y
ﬂ resonance
-/ U time

5.5. Graphs of secant and cosecant

» Cosecant and secant are the reciprocal functions of sine and cosine,
where csc x = 1/sin x and sec x = 1/cos Xx. Sine and cosine are periodic
functions and their graphs are continuous, with each value in the domain
having a value in the range. Because cosecant and secant are reciprocal
functions of sine and cosine, they are also periodic. Cosecant and secant
are not continuous, and their graphs are undefined where sine and cosine
have values of zero. Specifically, cosecant, y = csc X, is undefined at
values of x where y = sin x has a value of zero. Vertical asymptotes oc-
cur iny = csc X at x-intercepts of y = sin x. Similarly, secant, y = secx,
is undefined at values of x where y = cos x has a value of zero. Vertical
asymptotes occur in y = sec X at x-intercepts of y = cos x. Graphs of
secant and cosecant have no amplitude because there are no maximum
or minimum values, and there are no x-intercepts. Secant and cosecant
are generally not as useful as sine and cosine.
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¢ Cosecant, y = csc X

y=cscx=1/sinx

Because y = sin x = cos(x + 90°) = cos(x + n/2),

then y = csc x = sec(x + 90°) = sec(x + n/2)

When sin x = 1, the value of c¢sc x is also 1.

When 0 <sinx <1, thencsc x> 1.

When -1 <sinx <0, then csc x <-1.

As [x| approaches 0, |sin x| approaches 0, and |csc x| becomes large.
At x =0, csc x approaches a vertical line asymptote.

Graph of y = ¢sc x (black curve) and y = sin x (gray curve)
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y = csc X is an odd function, and its graph is symmetric with respect to
the origin (it can be rotated around the line y = -x).

The period of y = csc x is 2.

The domain of y = csc x includes all real numbers of x, except
x = ni where n is an integer (where y = sin X crosses zero).
The range of y = csc x includes real numbers for y where

y<-landy>1.
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For the interval 0 to 2n (one period), the graph of y = csc x has these
characteristics:

From 0 to /2, the graph decreases from + infinity to 1.

From 7/2 to &, the graph increases from 1 to + infinity.

From & to 3n/2, the graph increases from — infinity to —1.

From 37/2 to 2w, the graph decreases from —1 to — infinity.

Graph of y = csc x (black curve) and y = sin X (gray curve) in the
interval 0 to 27, (one period)
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* Secant y = sec X

y =sec x = 1/cos x

Because y = cos x = sin(x + 90°) = sin(x + n/2)

y = sec X = csc(x + 90°) = csc(x + n/2)

The period of y = sec X is 27.

The domain of y = sec x includes all real numbers of x, except

X = n/2 + nx = (n/2)(1 + 2n), where n is an integer.

The range of y = sec x includes real numbers for y where
y<-landy>1.

y = sec X is an even function, and its graph is symmetric with respect to
the Y-axis.
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Graph of y = sec x (black curve) and y = cos x (gray curve)
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Graph of y = sec x and y = cos x for the interval 0 to 2x, (one period)
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For the interval 0 to 2z (one period), the graph of y = sec x has these
characteristics:

From O to ©/2, the graph increases from 1 to + infinity.

From =/2 to w, the graph increases from — infinity to —1.

From 7 to 3n/2, the graph decreases from —1 to — infinity.

From 3n/2 to 2x, decreases from + infinity to 1.

* Example: Graphy = 5 + 0.5 cos 6 and reciprocal y = 5 + 0.5 sec 6.
The graph is:

Graph of

y =5+ 0.5 cos 0 (gray curve) and y =5 + 0.5 sec 0 (black curve)

y

5.6. Graphs of tangent and cotangent

« Tangent, y = tan x, and cotangent, y = cot X, are reciprocal functions:
tan X = 1/cot X = sin X/cos X

cot x = 1/tan X = cos X/sin X

Because tan x = sin x/cos X, it is undefined at cos x = 0, and tan x has
x-intercepts when sin x = 0. Therefore, tan x is undefined when
x=7/2+nn = (n/2)(1 +2n), where n is an integer. The graph has
vertical asymptotes at these undefined points, and tan x has x-intercepts
when x = nn. Cotangent is the reciprocal of tangent and therefore has a
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value of zero where tangent is undefined, and it is undefined at values
where tangent is zero. The x-intercepts for y = tanx are vertical asymp-
totes for y = cot x, and the vertical asymptotes for y = tan x are x-inter-
cepts for y = cot x. Because cot x = cos x/sin x, cotangent is undefined
at sin x = 0, or when x = nx, where n is an integer, and the graph has
vertical asymptotes at these undefined points. The graph of y = cot x has
x-intercepts when cos x = 0, or when x = /2 + nr = (r/2)(1 + 2n),
where n is an integer.

* Tangent, y = tan x, is an odd function, and its graph is symmetric with
respect to the origin.

The period of y = tan x is =, or 180°.

The domain of y = tan x includes all real numbers of x, except

x =n/2 +nx = (n/2)(1 + 2n), where n is an integer.

The range of y = tan x includes real numbers from — to + infinity.

The graph has vertical asymptotes at x = ©/2 + nr and x-intercepts at

x = nmt. The graph has no amplitude because no maximum or minimum
values exist.

Graph of y = tan x

3
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Because the negative identity for tangent, tan(—x) = —tan x, the graph of
y = tan x can be reflected through the origin for the range 0 <x <n/2 to
see the graph for the interval —t/2 to + /2.

For the interval 0 to rt (one period), the graph of y = tan x has these
characteristics:

At 0, tan X is zero.

From O to n/2, the graph increases from 1 to infinity.

At /2, the graph increases without limit.

From n/2 to &, the graph increases from — infinity to 0.

Graph of y = tan x from interval 0 to «
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« Cotangent, y = cot X, is an odd function, and its graph is symmetric
with respect to the origin.

The period of y = cot x is =, or 180°.

The domain of y = cot x includes all real numbers of x, except

x = nx where n is an integer.

The range of y = cot x includes real numbers from — to + infinity.

The graph has vertical asymptotes at x = nr and x-intercepts at

x =n/2 + nx = (x/2)(1 + 2n). The graph has no amplitude because no
maximum or minimum values exist.
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Graph of y = cot x
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* Transforming the graphs of y = tan x and y = cot x can be achieved
by adding or multiplying constants in the functions. These constants
result in the graphs being shifted, flipped, stretched, or squeezed. For
example: (1) A negative sign in front of tan x, giving y = —tan x, will
flip the graph upside down; (2) Adding a constant, y = tan(x + c), will
shift the graph right or left; (3) Multiplying by a constant, y = ¢ tan x,
will shrink or stretch vertically; or (4) Adding a constant to the function,
y = ¢ + tan x, will shift the graph up or down.

* Example: Graph y =-2 tan x.

The 2 vertically stretches the graph and the — sign flips the graph upside
down. The graph is depicted as:
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Graph of y =-2 tan x
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5.7. Chapter 5 summary and highlights

» In circular motion, a point or particle moving in a circular path around
the perimeter of a circle of radius one can be mapped using cosine and
sine. A particle moving around a circle can be translated into a particle
moving along the sine curve.

y
1 2

1 /. )
—nw /2 1:\35/2/24 2

-1 31/2

Graph of sine curve - projection of circular motion onto Y-axis

Note that the graph of the cosine curve is a projection of circular motion
onto X-axis.

* Graphs of sine and the other trigonometric functions can be drawn
using a graphing calculator or graphing software, in which the equation
is entered and the calculator or software creates the graph.
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* The graphs of periodic functions possess a repeating pattern in which
the values of a function repeat over and over. Sine and cosine are often
considered to be the most important periodic functions. The graphs of
sine and cosine are referred to a sinusoids and describe numerous
physical phenomena such as sound, electricity, motion of a vibrating
object, harmonic waves, water waves, temperature variation, a mass on
a spring, and electromagnetic waves and radiation, including light, radio
waves, and X-rays.

* Superimposing y = sin x and y = cos X illustrates the shift of n/2 or 90°
for the two functions:

y y = cos X (dashed)
1 y = sin X (solid)

- P

SN

* Graphs of trigonometric functions can be transformed and modified by
multiplying and adding constants in their equations. The graphs of sine
and cosine can be transformed by stretching or shrinking in the x-direc-
tion changing the period, increasing or decreasing the amplitude, shift-
ing up, down or sideways, and reflecting across the axes. Transforma-
tions can be made to the generalized equations

y=d+asin(bx +c) and y =d + a cos(bx + ¢):

a is the amplitude given by the absolute value of a, or |a.

d is the vertical shift.

(bx + ¢) is used to determine the phase shift and period, where —c/b is
the phase shift and 2n/b is the period.

* Cosecant and secant are the reciprocal functions of sine and cosine,
where csc x = 1/sin x and sec x = 1/cos x. Cosecant and secant are also
periodic; however, they are not continuous and their graphs are unde-
fined where sine and cosine have values of zero. Vertical asymptotes
occur in'y = csc X at x-intercepts of y = sinx, and similarly, vertical
asymptotes occur in y = sec X at X-intercepts of y = cos x.

* Tangent and cotangent are reciprocal functions such that tan x =
1/cot x = sin x/cos x and cot x = 1/tan X = cos x/sin x. The graph of tan x
is undefined with vertical asymptotes at cos x =0, or x = n/2 + nm, and
has x-intercepts when sin x = 0. Cot x is the reciprocal of tan x and has a
value of zero where tan x is undefined and is undefined at values where
tan X is zero.
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CHAPTER 6

Inverse Trigonometric Functions

6.1. Review of general inverse functions

6.2. Inverse trigonometric functions

6.3. Inverse sine and inverse cosine

6.4. Inverse tangent

6.5. Inverse cotangent, inverse secant, and inverse cosecant
6.6. Chapter 6 summary and highlights

* Inverses of the six trigonometric functions y = sin X, y = cos X,
y=tanXx,y =secX,y = csc X, and y = cot X exist within defined inter-
vals. It is necessary to find an inverse of a trigonometric function when
the value y of the function, such as y = sin X, is known but the value of
x, which may be an angle or a real number, is not known. To determine
x, the inverse of the function must be calculated. In addition, to find an
inverse of a trigonometric function, the function must be limited to a
defined interval where there is a one-to-one correspondence between the
domain (x) and range (y) values. As we will see in the following
sections, the six trigonometric functions in their natural form are not
true one-to-one functions and therefore must be limited to an interval in
order to define an inverse function.

6.1. Review of general inverse functions

* Remember from Section 4.1: A function is a relation, rule, expression,
or equation that associates each element of a domain set with its
corresponding element in the range set. For a relation to be a function,
there must be only one element or number in the range set for each
element or number in the domain set. The domain set and range set can
be expressed as (%, f(x)), or (%, y), pairs. Consider the following;
F=(2,4),(3,9),(4,16) whereF is a function.
M=(2,5),(2,-5),(4,9) where M is not a function.

M is not a function because the number 2 in the domain set corresponds
to more than one number in the range set.
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* The domain set is the initial set, and the range set is the set that results
after a function is applied. Domain set — function f{ ) — range set.

For example:

domain set x = {2, 3, 4}

through function f(x) = x%, f2) =22 §3) =3% f4) =4°

to range set {x) = {4, 9, 16}.

* Graphs of functions only have one value of y for each x value:
y y

Graph is a function Graph is not a function

The graph on the left is not, however, a one-to-one function. In general,
a function is one-to-one if each domain value corresponds to only one
range value, and each range value corresponds to only one domain
value. For all functions, each domain value corresponds to only one
range value; however, the condition that each range value corresponds
to only one domain value is not true for some functions. If a vertical line
can be drawn that passes through a function more than one time, there is
more than one y value for a given x value and the graph is not a
function, This is called the vertical line test.

« Inverse functions are functions that result in the same value of x after
the operations of the two functions are performed. In inverse functions,
the operations of each function are the reverse of the other function.
Notation for inverse functions is f'(x), (where ' is not an exponent). If
f(x) =y, then " '(y) = x. If fis the inverse of g, then g is the inverse of f.
A function has an inverse if its graph intersects any horizontal line no
more than once. (Graph of function above intersects twice in the range
shown.)

» Two functions fand g are defined to be inverse functions if:

f{g(x)) = x for all x in the domain of g and g(f{x)) = x for all x in the
domain of f. This definition requires that the range of g is contained in
the domain of fand that the range of fis contained in the domain of g.

Therefore, flg(x)) = g(f{x)) =x.

* An inverse of a function has its domain and range equal to the range
and domain, respectively, of the original function. If f{x) =y, then
157



Master Math: Trigonometry

£'{(y) = x. For a function f{x, y) that has only one y value for each x
value, then there exists an inverse function represented by f"\(y, x). For
example, reversing the ordered pairs in function

fx, y) = {(0, 3), (2, 4), (3, 5)} results in the inverse function

f(y, x) = {(3, 0), (4, 2), (5, 3)}. Therefore, the domain of f equals the
range of f ', and the range of f equals the domain of f™.

* The equation y = x — 2 defines a function because there is exactly one
value of'y for each value of x. The values of x that can be used are those
real numbers that will produce a single real number for y. In this equa-
tion we can replace x with any real number and get a real-number value
for y, so the domain of this function is the set of all real numbers. The
range of this function is also the set of all real numbers. Because there is
only one x value for any value of'y, this function is a one-fo-one
Sfunction. Every one-to-one function has an inverse function that will
operate the other way. The inverse function can be found by solving the
original equation for x. For example, if y = x — 2 is the original equa-
tion, then solving for x gives the inverse: x =y + 2.

* In general, to find the inverse function of a one-to-one function
defined by an algebraic equation in which y is a function of x:

First, solve the original equation for x.

Then, it is sometimes customary to replace every x with y and every y
with x (that is, exchange x and y).

For example, for the original functiony =x — 2,

solving for x givesx =y + 2,

then replacing x with y and y with x gives the inverse function:
y=x+2.

To check whether we have found the inverse function we can see if it
results in the same value of x after the operations of the two functions
are performed. If we choose x values of 2 and 4 in original function

y =X — 2, the resulting y values are 0 and 2. If we substitute these
values of 0 and 2 for x in the inverse function y = x + 2, the resulting y
values are 2 and 4, which are the original input values.

« When functions fand f™! are inverse functions, then they will return to
the first value. Consider another example: Ify = fix) =2x - 1 and
x=f(y)=(y+ 1)/2 are inverses, and if x =3, then by substituting for x:
f3)=23)-1=5

By substituting 5 into inverse function: f(5)= (5 + 1)/2=3

which results in the starting point.

158



Inverse Trigonometric Functions

* Not all functions have inverses. If a function has more than one solu-
tion, it does not have an inverse. For a function f{x) =y, only one x can
result, x = £ (y). If there is more than one solution for £"\(y), it will not
be the inverse of f{x) =y.

* Graphs of inverse functions are mirror images or reflections across the
y =x line, or in the graph below, the x = z line. For example, if y = f{x)
= 2x, then x = (1/2)y. The slopes are (y* — y')/(x* - x") = (dy/dx) =2 and
x* - XYy - y') =(dx/dy) = 1/2, where d represents the derivative.

y y=2x X

x =(1/2)y

X y

We can rewrite these equations using x and y as the independent and
dependent variables as y = 2x, y = x/2, and y = x, and graph them:

Graph of y = 2x (black line), y = x/2 (gray line), and y = x (light line)
y

r1r 17 11 17111
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The top more vertical line is y = 2x, the middle line is y = x, and the
bottom more horizontal line is y = x/2. It is clear that y =2x and y = x/2
are reflections across the y = x line.
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* To illustrate again that the graph of a function and its inverse are
reflections of each other in the line y = x, consider the function

y = 2x — 1 and its inverse y = x/2 + 1/2. Note that when the original
equation was solved for X to obtain its inverse equation, then x was
substituted for y and y is substituted for x. The graph of y =2x — 1 and
its inverse y = x/2 + 1/2 is drawn using a graphing calculator type of
software (TI InterActive!):

Graph of y = 2x-1 (more vertical line), y = x/2+1 (more horizontal line),
and y = x (middle line)

xllllllllll./

-10 -5

5 10

Fr 1 T T T T T iINN\N TrTrrryuonr b

-10
y

The top more vertical line is y = 2x — 1, the middle line is y = x, and the
bottom more horizontal line is y = x/2 + 1/2. It is clear that the graph of
function y = 2x — 1 and the graph of its inverse function y = x/2 + 1/2
are reflections of each other in the line y = x.

* In mathematical calculations it is often useful to develop an inverse
function, because an inverse function does the exact opposite of the
original function. Examples of inverse functions include the common
logarithm function y = log x which is the inverse function for the
exponential function x = 10°. Examples of functions and their inverses
include:

2 = log 100, 100 = 10°
5 = log 100,000, 100,000 =10°
1 =1log 10, 10=10"
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0.3010=1og 2, 2 = 1003010

z=x"is the inverse of: x =\/; orx=z
z=¢"isthe inverse of x=1Inz
z=a" is the inverse of: x = log,z

172

For example, if we have the function y = x>, then the inverse function is
X= {/; , or equivalently x = (y)"?
8223, 2=‘\/§=(8)1/3
27=33% 3=327=027)"

. Examples of these functions are:

« If two functions are inverses of each other, either function can be
considered to be the original function and the other function is its
inverse.

6.2. Inverse trigonometric functions

500

400

« If two sides of the above right triangle are 500 and 400, we know that
the relationship between the angle o and the sides is tan o =
opposite/adjacent, or tan o = 500/400. In order to find the angle a, we
need the inverse of tangent, or arctan 500/400 = ¢, or equivalently
arctan 5/4 = o.. (This is discussed in detail in the following sections.) The
value of o can be found using a calculator with inverse trigonometric
function keys, graphs and reference triangles, or by working backward
and interpolating values in a trigonometric table.

Defined intervals

« Like trigonometric functions, inverse trigonometric functions are
periodic and their [unrestricted] inverses are actually relations that are
multivalued, meaning there is more than one value in the range for
certain values in the domain. This can be observed by viewing the
graphs of the six trigonometric functions. For example, consider the
graph of y = sin x:
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Graph of y =sin x

-6.28 3.14 14 28 X

It is clear that different x values have the same y values. If a horizontal
line is drawn at or betweeny = 1 and y = -1, the curve of y = sin x will
cross the line multiple times. (Remember & ~ 3.14159.)

* For an inverse function to exist, a function must be one-to-one so that
no two different domain values yield the same range value. When an
inverse trigonometric function is considered, the original trigonometric
function is defined over a specific inferval in the domain where it is a
single-valued, one-to-one function. For y = sin x the interval or region
where it is a one-to-one functionis /2 <x <w/2 and -1 <y <1.

In this interval each x value corresponds to only one y value.

* Because the trigonometric functions y = sin X, y = cos X, and

y = tan X are not one-to-one functions, before we can define their
inverses, their domains must be restricted so that each y-value
corresponds to one and only one x-value. In order for the inverse to
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be a function, the range of the inverse must be limited to an interval
where there is a one-to-one correspondence between domain and range
values. The intervals of each of the six inverse trigonometric functions
are generally agreed upon by mathematicians.

» The inverse trigonometric functions are each described in detail in the
following sections. When trigonometric functions are defined in an
interval where they are one-to-one functions, the inverse identities for
sine, cosine, and tangent are written using capital letters.

* Notation for inverse sine, written y = arcsinx ory = sin_lx, and in-
verse cosine, written y = arccos X ory = cos™! X, represents inverse sine
of x and inverse cosine of x. The ™" for an inverse function represents the
inverse function and is NOT an exponent. When ™' is an exponent, it
designates the reciprocal, (sin x)™' = 1/sin x, which is a completely
different concept than the inverse function. It is important to distinguish
between sin"'x, which is the arcsin x or inverse of sin x, and (sin x)",
which is 1/sin x the reciprocal. Capital letters in the trigonometric
functions and inverse trigonometric functions are often used to signify
that the interval over which the function is considered is limited to a
one-to-one correspondence between domain and range values. The word
arc in arcsin, arccos, arctan, arcsec, arccsc, and arccot, the equation,
such as y = arcsin X, represents y is an angle whose sine is x.

Determining inverse functions

« To calculate values for any of the inverse trigonometric functions, a
calculator with trigonometric keys is often used. If a calculator is not
available trigonometric tables can be used backwards. In some cases you
may be familiar with the value of a trigonometric function. For example,
if you need to calculate arctan 1, then what you are looking for is an an-
gle whose tangent is equal to 1. If you know that tan(45°) = tan(n/4) = 1,
then arctan(1) = 45°, or n/4 radians. When there are values of inverse
functions that are unfamiliar, such as arctan(4/3) = arctan(1.3333), and
you don’t have a calculator, then it is possible to look in a trigonometric
table for an angle o such that tan o = 1.3333. In this case you may find
values for tan 53° = 1.3270 and tan 54° = 1.3764 but no value 1.3333.
Because arctan(1.3270) = 53° and arctan(1.3764) = 54°, then
arctan(1.3333) must be somewhere between 53° and 54°. To be more
exact an interpolation method can be used. The results for inverse trig-
onometric functions may be expressed in either degrees or radians. In
some cases inverses can be found using graphs and reference triangles.
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Graphs

* In the graph of an inverse trigonometric relation, which is the trigono-
metric “function” not limited to an interval of one-to-one domain and
range values, the roles of x and y are interchanged. For example, the
graph of y = arcsin x is the graph of x = sin y with the roles of x and y
are interchanged. Because x and y are interchanged, the graph of

y = arcsin X is a sine curve that can be drawn on the y axis instead of the
x axis. Similarly, the graphs of the other inverse trigonometric relations
are those of the corresponding trigonometric functions except that the
roles of x and y are interchanged. The graphs of the trigonometric
functions and their inverse functions are limited to the intervals listed in
the table below. Consider the graph of the function y = Sin x and its
inverse y = Arcsin x:

Graph of y = Arcsin x (black), y = Sin x (gray), and y = x (light line)
y

-1 1 X

4

-2

The interval of principal values depicted is:

Sin x /2 <X <w/2 -1<y<1
Sin"x ~1<x<1 -2 <y <72
(note that n/2 ~ 1.5708)

If the arcsine curve was extended beyond its interval, it would continue
along the y-axis as y = sin x continues along the x-axis. The graph of an
inverse trigonometric function can also be obtained by reflecting the
graph of the trigonometric function, over its restricted domain, across
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the line y = x, which is depicted in the graph. The graphs of each of the
six trigonometric functions and their inverses are in the following sec-
tions. Graphs can be easily drawn using a graphing calculator or software.

Table of domain and range values

* The defined intervals of domain and range values of the inverse
trigonometric functions are part of their definitions. These domain and
range values of trigonometric functions and their inverses are:

Function Domain Range

Sin x -2 <x< w2 -1<y<1

Sin 'x -1<x<1 ~n/2 <y < T2

Cos x 0<x<m -1<y<1

Cos'x -1<x<1 0<y<m

Tan x -m/2 <x<7/2 —0<y<owm

Tan 'x —0<x <o —7/2 <y <mw/2

Cot x 0<x<m —0 <y <o

Cot 'x —0 <X <00 O<y<m

Sec x 0<x <m,ynot /2 —o<y<-1,1<y<w
Sec'x ~0<x<-1,1<x<w 0<Ly<m,ynot-n/2

Secant and Arcsecant are also defined as:

Sec x -n<x<0,ynot-n/2 —o<y<-1,1<y<w

Sec'x —0<x<-1,1<x<w -n<y<0,ynot-n/2
Cscx ~2<x<m2,ynot0 —w<y<-1,1<y<wm
Csc 'x —0<x<-1,1<x<0w -w2<y<m/2,ynot0

* Trigonometric functions are defined using degree and radian measure-
ments (with angle domains) and in real number values. Circular func-
tions are defined with real number domains and real number ranges.
Both definitions are closely related, and every real number in the
domain of a circular function can be associated with an angle in degree
or radian measure, and angles can be associated with real numbers. The
confusion occurs because circular functions are also referred to as
trigonometric functions, which results in two sets of trigonometric
functions, one with angle domains in radian or degree measure and the
other with real number domains. This situation also exists with inverse
trigonometric functions. The inverse circular functions have real
number domains and ranges, and inverse trigonometric functions have
angle ranges in degree or radian measure.
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6.3. Inverse sine and inverse cosine

Unrestricted inverse sine and cosine relations in a coordinate system

* The domain for the unrestricted sine relation is the set of all angles,
and the range of the sine relation is the set of all real numbers including
and between —1 and +1. Because sine is multivalued, there is not a one-
to-one correspondence between domain and range values. For example,
the sine of 30° is 1/2 and the sine of 150° is also 1/2, where 30° and 150°
are domain values. This can be illustrated in a coordinate system with
standard position angles:

y

2 2
1 ° 1
30°
31" [3]"2

sin 150°=1/2 and sin 30° = 1/2

*» Because numerous coterminal angles can exist in a coordinate system,
30° plus once around counterclockwise is 390°, 30° plus twice around
counterclockwise is 750°, and so on. Also, 150° plus once around coun-
terclockwise is 510°, 150° plus twice around counterclockwise is 870°,
and so on. Therefore, numerous positive angles whose sine is 1/2 may
exist, such as 30°, 390°, 750°, and 150°, 510°, 870°, and so on. This may
be seen also by looking at the graph of the unrestricted function in the
preceding section.

* Suppose we know the range value of 1/2 and want to find the angle o,
or 1/2 = sin . In this case we are looking for the angle whose sine is
172, or equivalently the inverse sine of 1/2, which is written:

arcsin 1/2=?or sin™ 1/2="?

The standard position angles in a coordinate system are the same, and
coterminal angles can exist.

y y
2 510° 390° 2
1 150° 1

00
_[311/ X \J_/B]m X
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arcsin 1/2=150°=510° and arcsin 1/2 =30° = 390°
arcsin 1/2 includes numerous angles:
arcsin 1/2 = 30°, 390°, 7509, ...,150°, 510°, 870°, ...

It is clear that there are multiple angles for every domain value of the
inverse sine when it is unrestricted, so the unrestricted inverse sine is a
relation rather than a function. The domain for the arcsin relation is the
set of all real numbers including and between —1 and +1, and the range
is the set of all angles.

* Similarly, the domain for the unrestricted cosine relation is the set of
all angles, and the range of cosine is the set of all real numbers includ-
ing and between —1 and +1. Like sine, cosine is not a one-to-one func-
tion. For example, the cosine of 60° is 1/2 and the cosine of 300° is also
1/2. This can be illustrated in a coordinate system with standard position
angles:

y
2
300° [3]]/2
(R0
k 1 X
2 _[3]1/2

cos 60°=1/2 and cos 300°=1/2

* Because numerous coterminal angles can exist in a coordinate system,
60° plus once around counterclockwise is 420°, 60° plus twice around
counterclockwise is 780°, and so on. Therefore, there are numerous
positive angles whose cosine is 1/2, such as 60°, 420°, 780°, ..., and
300°, 660°, 1020°, and so on. Suppose we want to find the angle whose
cosine is 1/2, which is written arccos 1/2 =7 or cos'1/2= 2,

the standard position angles in a coordinate system are the same. It is
also clear that coterminal angles can exist.

Y y

300° 660° 420° 2
3]

x U

_[3]1/2

arccos 1/2 =300° = 660° and arccos 1/2 = 60° = 420°
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arccos 1/2 include numerous angles:

arccos 1/2 = 60°, 420°, 780°, ..., 300°, 660°, 1020°, ...

It is clear that there are multiple angles for every domain value of the
inverse cosine.

Limited inverse sine and cosine functions in a coordinate system

* Generally, when the inverse sine or inverse cosine of a number is
needed, only one value is preferred, and the desired result will be a
Sfunction. To obtain the inverse sine function or inverse cosine function,
only certain angles can be considered so there is a one-to-one corres-
pondence between domain and range values.

« In order for the inverse sine to be a function, there must be only one
angle for every domain value of the inverse sine, and this occurs when
the range of the inverse sine is restricted to the first and fourth quad-
rants of a coordinate system. This corresponds to angles including and
between —90° and +90° (or —n/2 to 1t/2) where positive values of the sine
are associated with a first-quadrant angle, and negative values of the
sine are associated with a fourth-quadrant angle.

y
Quadrant I | Quadrant I
+.4 positive values of sine
Nk
\(:(x': — negative values of sine
+N
Quadrant Il | Quadrant IV

The domain for the Arcsine function is the set of all real numbers
including and between —1 and +1, and the range is the set of all angles
including and between —90° and +90° (or —n/2 to ©/2). This corresponds
to the sine function in the interval:

1 y=Sinx

« In order for inverse cosine to be a function, we consider only angles
including and between 0° and +180° in the first and second quadrants,
where positive values of the cosine correspond with a first-quadrant
angle, and negative values of the cosine correspond with a second-
quadrant angle.
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y
Quadrant II | Quadrant I
negative values Mt a | + -7 positive values of cosine
of cosine H o+
+ X

Quadrant [T | Quadrant IV

The domain for the Arccosine function is the set of all real numbers
including and between —1 and +1, and the range is the set of all angles
including and between 0° and +180° (or 0 to ). On a graph, this
corresponds to the cosine function in the interval:

y
1

X
~7/2 n>2\1t
1

* In the example of a domain value of 1/2 for the inverse sine function,
only a single angle including and between —90° and +90° can exist.
Similarly, for a domain value of —1/2 for the inverse sine function, only
a single angle including and between —90° and +90° can exist.

y y
2
1
00 [3]1/2 X
B1?  x L300
2 -1
Arcsin 1/2 =30° Arcsin —1/2 = -30°

« Similarly, in the example of a domain value of 1/2 for the inverse
cosine function, only a single angle including and between 0° and +180°
can exist. For a domain value of —1/2 for the inverse cosine function,
only the single angle including and between 0° and +180° can exist.

y y
2 2
[3] 12 [3]1/2 0°
00
| 1 X -1 I X

Arccos 1/2 = 60° and Arccos —1/2=120°
169




Master Math: Trigonometry

Inverse sine and cosine in graphical form

« In graphical form it is clear that the sine and cosine functions are not
one-to-one. This can be observed in the graph of sine and cosine:
Graph of y = sin x (black curve) and y = cos x (gray curve)

y
[ 3

AN /A
JaN AN,

3

-2

-3

By restricting the domain of the sine and cosine functions so that only
one x value corresponds to only one y value, one-to-one functions can
be defined.

* In the graph of an inverse trigonometric function, the roles of x and y
are interchanged. Because x and y are interchanged, the graph of

y = arcsin X is a sine curve that can be drawn on the vertical axis instead
of the horizontal axis. The graph of a function and its inverse are
reflections of each other in the line y = x. In fact, the graph of an inverse
trigonometric function can be found by reflecting the graph of the cor-
responding trigonometric function over its restricted domain across the
line y = x. For example, the graph of y = Sin x is a mirror image of
Sin"'y = x reflected across the y=x line. For y = Sinx, the interval or
region where it has a one-to-one functionis —n/2 <x<n/2and-1<y<1.

y
n/2  y= Arcsin x
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Depicted on one graph:
Graph of
y = Arcsin x (black curve), y = sin x (gray curve), and y = x (light line)
y p—
2
1
L 1
-1 1 X
[ -1
T2

The interval of principal values depicted is:

Sinx ~n/2<x<n/2 -1<y<l1
Sin"'x -1<x<1 —n2<y< /2
(note that n/2 ~ 1.5708)

If the Arcsine curve was extended beyond its interval, it would continue
along the Y-axis as y = Sin x continues along the X-axis. Over the
interval (-1, 1), the inverse sine function is increasing. Its x-intercept is
0 and its y-intercept is 0. Its graph is symmetric with respect to the
origin. In general, sin'l(—x) = _sin"! x, and it is an odd function.

* For y = Cos x the interval or region where it is a one-to-one function is
0<x<mand-1<y<]l.

y y
1 y=Cos x T y = Arcos x

—n/2 “‘ n)?.\n .
-1
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Depicted on one graph:
Graph of
y = Arccos x (black curve), y=Cos x (gray curve), and y =x (light line)
y
3
[ 2
RS )
i \ A - 1 ]
-1 1 .2 3 X
L -1 R
-2
-3

The interval of principal values depicted is:

Cos x O0<x<m -1<y<i

Cos 'x -1<x<1 O<y<mn

(note that ©t ~ 3.14159; 7/2 ~ 1.5708)

Over the interval (-1, 1), the inverse cosine function is decreasing. Its
x-intercept is 1 and its y-intercept is n/2. The graph is neither symmetric
with respect to the y-axis nor symmetric with respect to the origin.

* Graphs of inverse trigonometric functions can be obtained by using a
calculator in radian mode and selecting domain values from -1 to 1,
then plotting the resulting domain/range pairs. A graph can most easily
be obtained using a graphing utility in a graphing calculator or computer
software, such as TI InterActive!.

« It is also possible to graph y = Arcsin x by choosing the coordinates of
a few points on the graph of the restricted sine function, reversing their
order, then using the points to sketch the graph of the inverse sine
function. For example, because (-n/2, 1), (0, 0) and (=/2, 1) are on the
graph of the restricted sine function, then (-1, —n/2), (0, 0), and (1, =/2)
are on the graph of the inverse sine function, and these three points can
be used to draw a graph of the inverse function.
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y
/2
- 1

/2
y = Sin x y = Arcsin X

e Similarly, it is also possible to graph y = Arccos x by choosing the
coordinates of a few points on the graph of the restricted cosine
function, reversing their order, then using the points to sketch the graph
of the inverse cosine function. For example, because (0, 1), (n/2, 0), and
(m, —1) are on the restricted cosine graph, then (1, 0), (0, ©/2), and

(-1, m) are on the graph of the inverse sine function, and these three
points can be used to draw a graph of the inverse function.

y y
+1\ n
X
-/2 n/\Z\n
1 -1 1 X

y=Cosx y = Arccos X

» The graphs of the inverse trigonometric functions can also be revealed
by drawing the function on a transparent sheet of paper, interchanging
the X and Y axes, and turning it over and rotating it 90°.

» The value for an inverse sine or cosine function can be determined
using a graph, a reference triangle, a calculator, or trigonometric tables
backwards and interpolating.

s Example: Find y = Arccos(—1/2) and y = Arccos(1/2) using the graph
of Arccosine.

-1-12 [ 1721

y = Arccos X
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At x =-1/2 it is clear from the graph that y = 25/3. Therefore,
Arccos(-1/2) = 2n/3.

Atx = 1/2 it is clear from the graph that y = n/3. Therefore,
Arccos(1/2) = /3.

» Example: Verify Arccos(—1/2) = 2n/3 using a calculator.

Set your calculator to radian mode. Calculate Arccos(—1/2) by entering
—0.5 and pressing the cos™' key. The result is approximately 2.094. Next
calculate 27t/3. The result is also approximately 2.094. (It is important to
make sure your calculator is in the proper mode.)

* Example: Verify Arccos(1/2) = nt/3 using a reference triangle in a
coordinate system.

By definition, y = Arccos(1/2) is equivalent to 1/2=cosy, 0 <y <.
A positive value of x and y in the range of 0 to i will fall in the first
quadrant. Remember: cos y = 1/2 = adjacent / hypotenuse:

2
[3]"2

1

Therefore, this is a 30:60:90 triangle with the third side \/3- . In radians
60° is /3 and so y = n/3. Therefore, Arccos(1/2) = n/3 radians.

» Example: Calculate Arcsin(0.2342).
Set your calculator to radian mode. Calculate Arcsin(0.2342) by
entering 0.2342 and pressing the sin”! key. The result is 0.2364.

* Remember, notation for inverse sine is arcsine abbreviated arcsin and
sin”! denotes the angle whose sine is, and the “Linsin”! is NOT an
exponent. The unrestricted relation arcsine has a lowercase a in arcsin
and a lowercase s in sin"’, and the inverse function uses capital Arcsin
and Sin" . Similarly, for inverse cosine is arccosine, abbreviated arccos
and cos, where the inverse function uses capital Arccos and Cos™’. The
restricted values for inverse trigonometric functions are often referred to
as principal values.

6.4. Inverse tangent

* Tangent is equal to the ratio of sine to cosine, or tan x = sin X / cos X.
If x is an angle ¢ in a triangle or coordinate system, then
tan o = sin o / cos o. When the angle o is equal to any odd-integer
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multiple of 90° (or n/2 where cosine is zero), such as o = £90°, £270°,
+450°, etc., cos a will be equal to zero, which will result in tan o being
undefined (because division by zero is undefined). Therefore, the
domain for tangent is the set of all angles other than +£90°, £270°, +450°,
etc., and the range of tangent is the set of all real numbers.

« Like sine and cosine, tangent is not a one-to-one function. A function
must always specify one unique value of the dependent variable for
every value of the independent variable. Consider, for example,

arctan 1; which could be equal to either /4 or a multiple, nx + n/4 in
radians, where n is an integer. The tangent of /4, or 45°, is 1 and the
tangent of 225° is also 1, where 45° and 225° are domain values. This
can be illustrated in a coordinate system with standard position angles:

[2]]/2 |
225° 1
-1 45° 1

-1 = 2]1/2
1

tan 225°=1and tan 45°=1

* Because numerous coterminal angles can exist in a coordinate system,
angles 45° plus once around counterclockwise is 405°, 45° plus twice
around counterclockwise is 765°, and so on. Also, 225° plus once
around counterclockwise is 585°, 225° plus twice around counter-
clockwise is 945°, and so on. Therefore, angles whose tangent is 1 may
exist, such as 45°, 405°, 765°, ..., 225°, 585°, 945°, ....

* Suppose we know the range value of 1 and want to find the angle a., or

1 = tan . In this case, we are looking for the angle whose tangent is 1,

or equivalently the inverse tangent of 1, which is written: arctan 1 = ?

ortan™! 1 =2 The standard position angles in a coordinate system are the

same for inverse tangent as for tangent, and coterminal angles can exist.
y y

585° 405° _| 1212

/7 (10!
-1 / x \Jl x
[2]1/2
arctan 1 = 225° = 585° and arctan 1 = 45° = 405°
175

-1




Master Math: Trigonometry

arctan 1 includes numerous angles:
arctan 1 = 45°, 405°, 765°, ..., 225°, 585°, 945°,...

It is clear that there are multiple angles for every domain value of the
inverse tangent when it is unrestricted, so the unrestricted inverse
tangent is a relation rather than a function. The domain for the arctan
relation is the set of all real numbers, and the range is the set of all
angles with the exception of angles that have a cosine of zero, such as
+90°, £270°, £450° (because tan o = sin . / cos o).

Limited inverse tangent function in a coordinate system

* Generally, when the inverse tangent of a number is needed, only one
value is preferred and the desired result will be a function. In order for
the inverse tangent to be a function there must be only one value or
angle for every domain value of the inverse tangent, and this occurs
when the range of the inverse tangent is restricted to the first and fourth
quadrants of a coordinate system. This corresponds to angles including
and between —90° and +90°, where positive values of the tangent are
associated with a first-quadrant angle, and negative values of the
tangent are associated with a fourth-quadrant angle.

y
Quadrant II | Quadrant I
+_,-1  positive values of tangent
<o+
‘-(g i — negative values of tangent
+ ™4
Quadrant IIT | Quadrant IV

* The domain for the Arctan function is the set of all real numbers, and
the range is the set of all angles between —90° and +90° (or —t and +n).
In the example of a domain value of 1 for the inverse tangent function,
only a single angle between —90° and +90° can exist. Similarly, for a
domain value of —1 for the inverse tangent function, only a single angle
between —90° and +90° can exist.

b y
90°
45° 1 X
i X -45°
-1
-90°
Arctan 1 =45° Arctan —1 = —45°
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* Restricting the domain of the function y = tan x to the interval

(—n/2, =/2) (or between —90° and +90°) yields a one-to-one function. In
this restricted interval, the value of n/4 (or 45°) would be in the interval
where arctan is a function and would be the principal value of the func-
tion Arctan 1.

« Inverse tangent or arctangent is abbreviated arctan and tan™', where
the inverse function uses capital Arctan and Tan™".

Inverse tangent in graphical form

* The graph of y = tan x illustrates that the tangent function is not a one-
to-one function.

Graph of y = tan x

-6.28 -3.14 14 28 X

By restricting the domain so that only one x value corresponds to only
one y value, a one-to-one function can be defined.

* A function must always specify one unique value of the dependent
variable for every value of the independent variable. Considering

arctan 1, it could be equal to either 7/4 or a multiple, nx + n/4 in
radians, where n is an integer. Restricting the domain of the function

y = tan x to the interval (—n/2, n/2) yields a one-to-one function. In this
case, the value of /4 would be in the interval where arctan is a function
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and would be the principal value of the function Arctan 1. The lines

y = /2 and y = —n/2 are horizontal asymptotes of the graph. (See graphs
of tangent and arctangent below.) The restricted tangent function is used
to define the inverse tangent function.

« In the graph of an inverse trigonometric function, the roles of x and y
are interchanged. By interchanging the roles of x and y, we obtain the
inverse tangent function y = Tan™' X or y = Arctan x. The graph of a
function and its inverse are reflections of each other in the line y = x.
For y = Tan x, the interval or region where it has a one-to-one function
is—m/2 <x <m/2 and —e0 <y < c0.

Y y
/2
X X
- /2 -
=7/2
y =Tanx y = Arctan X

Depicting y = Tan x and its inverse y = Arctan x on one graph:
Graph of y = Arctan x (black), y = Tan x (gray), and y = x (light line)

y

Depicting tangent, y = Tan x, and its inverse, y = Arctan x, on one graph
we can see the interval of principal values as:
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Tanx -2 <x<7/2 —o0 <y <
Tan 'x —00 <X <00 /2 <y<m/2
(note that « ~ 3.14159; /2 ~ 1.5708)

Tan x extends to infinity along the vertical axis in both directions, and
Arctan x extends to infinity along the horizontal axis in both directions.

* Properties of the inverse tangent function include that it has a domain
of negative infinity to positive infinity and a range of —nt/2 to n/2. Over
the domain (0, ), the inverse tangent function is increasing, with its
x-intercept at 0 and its y-intercept at 0. The graph is symmetric with
respect to the origin. As x approaches infinity, y approaches n/2 from
below and the line y = /2 forms a horizontal asymptote. As x approach-
es — infinity, y approaches —n/2 from above, and the line y = —=/2 forms
a horizontal asymptote. Arctangent is an odd function, and

Arctan(—x) = ~ Arctan X.

» Graphs of inverse tangent and other trigonometric functions can be
obtained using a calculator in radian mode, selecting domain values, and
then plotting the resulting domain/range pairs. A graph can most easily
be obtained using a graphing utility in a graphing calculator or computer
software, such as TI InterActive!. It is also possible to graph y = Arctan x
by choosing the coordinates of a few points on the graph of the
restricted tangent function, reversing their order, and then using the
points to sketch the graph of the inverse tangent function. For example,
because (—-n/4, —1), (0, 0), and (n/4, 1) are on the graph of the y=Tanx,
then (-1, —n/4), (0, 0), and (1, =/4) are on the graph of the y= Arctanx,
and these three points can be used to draw a graph of the inverse func-
tion. Note that the vertical asymptotes become horizontal asymptotes.

y=Tanx y = Arctan x

» The value of an inverse tangent function can be determined using a
graph, a reference triangle, a calculator, or trigonometric tables
backwards.
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» Example: Find Arctan(1) using a reference triangle in a coordinate
system.
By definition, y = Arctan(1) is equivalentto 1 = Tany, —n/2 <y < n/2.
A positive value of x and y in the range of —n/2 to n/2 will fall in the
first quadrant. Remember: tangent = opposite/adjacent, and in this
example tany = 1

y

V2

1 X

Therefore, this is a 45:45:90 triangle with the hypotenuse V2, and yis
45° and in radians y is n/4. Therefore, Arctan(1) = n/4 radians.

» Example: Calculate Arctan(1) in degree measure using a calculator.
Set the calculator in degree mode. Calculate Arctan(1) by entering 1 and
pressing the tan™! key. The result is 45°.

 Example: Calculate Arctan(1) in radian measure using a calculator.
Set the calculator in radian mode. Calculate Arctan(1) by entering 1 and
pressing the tan"! key. The result is 0.7854. Note that n/4 = 0.7854.

« Example: Calculate Arctan(—1) in degree measure using a calculator.
Set the calculator in degree mode. Calculate Arctan(—1) by entering —1
and pressing the tan™' key. The result is ~45°. Depicted in a coordinate
system this looks like:

6.5. Inverse cotangent, inverse secant, and inverse cosecant

* Remember that secant, cosescant, and cotangent are reciprocal
identities of cosine, sine, and tangent:
secant = 1 / cosine, cosecant = 1/sine, cotangent =1 /tangent

« In their natural unrestricted forms, cotangent, secant, and cosecant are
not one-to-one functions. In order for cotangent, secant, and cosecant to
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produce inverse functions, they are restricted to defined intervals where
they are one-to-one for x and y values. These intervals correspond to the
arccotangent, arcsecant, and arccosecant functions in their restricted

intervals:

Cot x 0<x<n —0 <y <o

Cot™'x -0 <X <o 0<y<nm

Sec x 0<x<m,ynotn/2 —o<y<-1,1<y<w
Sec'x —0<x<-1,1<x<w 0<y<mr,ynot-n/2

Secant and Arcsecant are also defined as:

Sec x -t <X <0,y not-n/2 ~0<y<-1,1<y<w
Sec™'x -0 <X<-1,1<x<w -nx<y<0,ynot-n/2
Cscx -n2<x<m/2,ynot0) -—w<y<-1,1<y<w
Csc 'x —0<x<-1,1<x<w -a2<y<n/2,ynot0

* The graph of y = cot x is not one-to-one:

Graph of y =cot x

y

-6.28

1
-3.14 3.14

The intervals where cotangent is one-to-one and its inverse function
arccotangent exists are:

0<x<m
-0 <X <o

Cot x
Cot 'x

—oo<y<oo
O0<y<m
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For y = Cot x, the interval or region where it is a one-to-one function is
0<x<mand - <y<o,

y y
i Y
—
s R S
- I \m 111
-
y=Cotx y = Arccot X

* The graph of y = sec x is not one-to-one:

Graph of y =sec x

y
3
2
1
1 1 ] 1
6.28 -3.14 3.14 628 X
-1
-2
-3

The intervals where secant is one-to-one and its inverse function
arcsecant exists are:

Sec x 0<x<m7,ynotn/2 —0<y<-1,1<y<ow
Sec'x —0<x<-1,1<x<w 0<y<m,ynot—n/2

For y = Sec x, the interval or region where it is a one-to-one function is
0 <x <, except /2.
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y y
11
.l. ___’-/_—
X | /-—x
-t -IT 1]
T=n
y = Sec x y = Arcsec x

* The graph of y = ¢s¢ x is not one-to-one:

Graph of y =csc x

I
6.28 314 314 628 X

The intervals where cosecant is one-to-one and its inverse function
arccosecant exists are:

Cscx —n2<x<n/2,ynot0 -w<y<-1,1<y<w
Csc'x —0<x<-1,1<x<0w0 -w/2<y<n/2,ynot0

For y = Csc x, the interval or region where it is a one-to-one function is
—n/2 <x <7/2, except zero.
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y y
A T
I o I !
-t ~xI = \f AR X
-~
y =Csc x y = Arccsc X

* To evaluate the inverse trigonometric functions, a graph or a calculator
can be used. When a calculator is available that has keys for all six
inverse trigonometric functions, using it is the easiest method for finding
inverse values. Calculators usually have keys for sin, cos, tan, sin”},
cos_l, and tan”, but many may not have keys for csc, sec, cot, csc),
sec”), and cot™’. To find sec x, csc X, and cot X using a calculator, the
reciprocal identities can be used. These identities are:

secx=1/cosx, cscx=1/sinx, cotx=1/anx

To evaluate the inverse functions csc™' x, sec’! x, and cot™! X, a
calculator with sin”’, cos™, and tan™! keys can be used with the
following inverse identities:

Cot™' x = Tan '(1/x) for x>0

Cot™'x =5 + Tan"'(1/x) for x <0

Sec™'x = Cos (1) forx>1lor x<-1

Csc'x = Sin"'(1/x) forx>1orx<-1

Derivations of the inverse identities

* Derivation of inverse cotangent identities:
Cot™' x = Tan !(1/x) for x>0
Cot™'x =g + Tan™!(1/x) for x<0

y
n

j'Jrl

y = Arccot x

For the region of the Arccosine graph, y=Cot™" x where x > 0, the
range of y is 0 <y <m/2.
Rearranging y=Cot ' x gives: Coty =x
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The reciprocal identity Cotangent = 1/Tangent in this region is:
Coty=1/Tany=x,0<y<n/2

Rearranging 1/Tany =x: Tany =1/x, 0 <y <m/2

Taking the inverse to solve for y: y=Tan '(1/x), 0 <y <n/2
Therefore, y = Cot''x= Tan'l( 1/x), forx >0

For negative values of x:

Cot 'x =g + Tan"'(1/x) for x <0

which can be visualized on the following graph of Cot ' x and
Tan ' (1/x):

Graph of y = Cot ™' x (black curve) and y = Tan"'(1/x) (gray curve)

where Arccot x is the upper curve including both light and dark regions,
and Arctan(1/x) is the dark curves, which overlap Arccot x for positive
values of x and is shifted down by a value of & for negative values of x.

* Derivation of inverse secant identity.
Sec!x=Cos(1/x) forx>1lor x<-1

y
—f=

y = Arcsec X
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The graph of Arcsecanty = Sec™' x is in the range x > 1 or x<-1.
Rearranging y = Sec!x gives: Secy=x, 0 <y <m, except n/2

The reciprocal identity Secant = 1/Cosine is:

Secy=1/Cosy =%, 0 <y <m, except 7/2

Rearranging 1/Cosy =x: Cosy = 1/x, 0 <y <, except 7/2

Taking the inverse to solve for y:

y= Cos™!(1/x), 0< y <, except /2

Therefore, y = Sec'x = Cos“l(llx), x>lor x<-1

which can be visualized on the graph of y = Sec™' x and y = Cos™'(1/x).
Note that in this graph Arcsec x is represented by the split curve and
Arccos(1/x) is represented by the same curves, and they overlap each
other for all values of x.

Graph of y = Sec'x and y= Cos™\(1/x)

4~
A
2t
A
y

* Derivation of inverse cosecant identity:
Csc'x= Sin"l(llx) forx>1orx<-1

y
. l:*:l\_
N#’l x

y = Arccsc X
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The graph of Arccosecant y = Csc™ x is in the range x> 1 or x <-1.
Rearranging y = Csc ' x gives: Cscy =x, -n/2 <y < /2, except 0
The reciprocal identity Cosecant = 1/Sine is:

Cscy=1/Siny =%, —n/2 <y <n/2, except 0

Rearranging 1/Siny =x: Siny = 1/x, —n/2 <y <n/2, except 0
Taking the inverse to solve for y:

y = Sin"'(1/x), —n/2 <y <7/2, except 0

Therefore, y = Csc™ x = Sin™'(1/x), x>1or x<-1

which can be visualized on the graph of y = Csc™' x and y = Sin™!(1/x):

Graph of y = Cs¢ ' x and y = Sin"(1/x)
y

Arccesc X is represented by this split curve and Arcsin(1/x) is represented
by the same curves, and they overlap each other for all values of x.

« The values of an inverse trigonometric function can be determined
using a graph, a reference triangle, a calculator, or trigonometric tables
backward and interpolating.

« Example: Find Arccot(—1) using a reference triangle in a coordinate
system.

By definition, y = Arccot(—1) is equivalent to -1 =Coty, 0 <y <m. A
negative value in the range of 0 to = will fall in the second quadrant.
Remember that cotangent = adjacent/opposite, and in this example
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Coty=-1/1=-1.

This is a 45:45:90 reference triangle with the hypotenuse V2 . Angley
is measured from the positive X-axis and is 180° — 45° = 135° in degrees
or © — n/4 = 31/4 in radians. Therefore, Arccot(—1) = 3n/4 radians.

 Example: Calculate Arccot(—1) in radian measure using a calculator
that does not have an cot”' key.

Use the Arccot identity:

Cot™' x = Tan '(1/x) for x>0

Cot'x =n + Tan"'(1/x) for x<0

Set the calculator in radian mode. Calculate Arccot(—1) using negative x
identity:

Cot 'x = + Tan"'(1/x) = n + Tan™(1/(-1)) = n + Tan"'(-1)

Enter -1 and press the tan! key, then add . The result is 2.356. Note
that 3n/4 = 2.356.

« Example: Calculate Arccsc(1.150) in radian measure using a calculator
that does not have an csc™' key.

Use the Arcesc identity:

Csc™'x = Sin™'(1/x) forx>1lorx<-1

Set the calculator in radian mode. Calculate Arccsc(1.150) using identity:
Csc™!x = Sin"'(1/x) = Sin"!(1/1.150)

Enter (1/1.150) and press the sin™' key. The result is 1.054.

* Example: Calculate Arcsec(—2.005) in radian measure using a
calculator that does not have an cot ' key.

Use the Arcsec identity:

Sec!x = Cos™!(1/x) forx>1lor x<-1

Set the calculator in radian mode. Calculate Arcsec(—2.005) using
identity:

Sec™! x = Cos™'(1/x) = Cos (1/(~2.005))

Enter (1/(-2.005)) and press the cos™! key. The result is 2.093.
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6.6. Chapter 6 summary and highlights

* Inverse functions are functions that result in the same value of x after
the operations of the two functions are performed. Notation for inverse
functions is f"(x), (where ! is not an exponent). An inverse of a func-
tion has its domain and range equal to the range and domain, respec-
tively, of the original function. If f{x) =y, then f \(y) = x.

* Inverses of the six trigonometric functions y =sin X,y =cos X, y =
tan x, y = sec X, y = csc X, and y = cot x are respectively x = Arcsiny,

x = Arccos y, X = Arctan y, X = Arcsecy, X = Arcesc y, and x =

Arccot y, and they exist within defined intervals. Inverse functions are
also written using 1 as, for example, Sin 'x or Cos™'x. It is necessary to
find an inverse of a trigonometric function when the value of y ina
function such as y = sin x is known, but the value of x, which may be an
angle or a real number, is not known. To determine x, the inverse of the
function must be calculated. In their natural form the six trigonometric
functions are not true one-to-one functions and must be limited to an
interval where there is a one-to-one correspondence between the domain
(x) and range (y) values in order to define an inverse function. The
defined intervals of domain and range values of the inverse trigono-
metric functions are part of their definitions. The domain and range
values of cosine, sine, and tangent functions and their inverses are:

Function Domain Range

Sin x -n2<xX< w2 -1<y<1
Sin"'x ~1<x<1 —n2<y<nl2
Cos x O<x<=m -1<y<1
Cos™'x -1<x<1 0<ys<m

Tan x -2 <x<m/2 -0 <y<aw
Tan'x —0<xX<w® -2 <y<m/2

« The graph of an inverse trigonometric function is a reflection of the
graph of the corresponding trigonometric function over its restricted
domain across the line y = x (dashed). For example,
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» Graphs of inverse trigonometric functions can be obtained by using a
calculator in radian mode and selecting domain values from -1 to 1, and
then plotting the resulting domain/range pairs. A graph can most easily
be obtained using a graphing calculator or graphing software and
entering the equation for the inverse function. It is also possible to
graph, for example, y = Arcsin x, by choosing the coordinates of a few
points on the graph of the restricted sine function y = Sin x, reversing
their order, then using the points to sketch the graph of the inverse sine
function.

« To calculate values for any of the inverse trigonometric functions, such
as the value of X in an equation y = tan x, the value of x = arctan y can
be found using a calculator with inverse trigonometric function keys,
graphs and reference triangles, or by working backward and interpola-
ting values in a trigonometric table. To determine the inverse functions
csc ! x, sec™! X, and cot ' x using a calculator that does not have these
keys, the sin”!, cos™, and tan™' keys can be used instead with the follow-
ing inverse identities:

Cot ' x = Tan '(1/x) for x>0

Cot'x =x + Tan"'(1/x) for x<0

Sec'x=Cosi(1/x) forx>1lor x<-1

Csc™'x = Sin"'(1/x) forx>lorx<-1

« Notation for the inverse sine of x is written y = arcsin x or y = sin™'x,
and for the inverse cosine of X, y = arccos X or y = cos_'x. The ™' repre-
sents the inverse function and is NOT an exponent. Capital letters in the
trigonometric functions and inverse trigonometric functions are often
used to signify that the interval over which the function is considered is
limited to a one-to-one correspondence between domain and range
values.
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CHAPTER 7

Trigonometric Identities

7.1. Summary of identities

7.2.  Quotient identities and reciprocal identities

7.3. Pythagorean identities

7.4. Negative number/angle identities

7.5. Verifying trigonometric identitics

7.6. Sum and difference of angles/numbers identities, also called
addition and subtraction identities

7.7.  Cofunction identities

7.8. Supplementary angle relations

7.9. Double-angle/number identities

7.10. Half-angle identities

7.11. Product-to-sum identities

7.12. Sum/difference-to-product identities
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7.1. Summary of identities

» Identities are used to solve problems involving trigonometric or cir-
cular functions by expressing one trigonometric function in terms of
another. Using trigonometric identities to make substitutions is often
required to solve problems involving trigonometry. Trigonometric iden-
tities are equations that are true for all possible values of angles or real
numbers. The quotient and reciprocal identities, the Pythagorean iden-
tities, the negative angle/number identities, and the sum and difference
of angles/numbers identities are especially important and should be
memorized because they can be used to derive other identities. The
advent of calculators and computers has to some extent reduced the use
of identities. Identities discussed in this chapter include the following:

Quotient Identities and Reciprocal Identities:
tan A=sin A/cos A cotA=cos A/smA
simA=1/cscA cosA=1/secA tanA=1/cotA
cscA=1/sinA secA=1/cosA cotA=1/tanA
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Pythagorean Identities:
sin’(A) + cos’(A) = 1
sin’(A) = 1 — cos’(A)
cos’(A) = 1 —sin’(A)
1 +tan’(A) = sec’(A)
1 + cot’(A) = csc’(A)
Negative Angle (Number) Identities:
sin(-A)=-sin A cos(-A)=cos A tan(-A)=-tan A
csc(-A)=-csc A sec(-A)=sec A cot(-A)=-cotA
Sum and Difference of Angles/Numbers Identities, also called
Addition and Subtraction Identities:
sin(A + B) = sin(A) cos(B) + sin(B) cos(A)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)
tan(A) + tan(B)
1 —tan(A)tan(B)
sin(A — B) = sin(A) cos(B) — sin(B) cos(A)
cos(A — B) = cos(A) cos(B) + sin(A) sin(B)

1+ tan(A)tan(B)

Cofunction Identities:
sin A=cos(m/2—A) cos A=sin(n/2 - A)
tan A =cot(n/2 - A) cot A=tan(n/2 — A)
sec A=csc(n/2 - A) csc A=sec(n/2 - A)
These identities can be written using 90° because
7/2 radians = 90°.
Supplementary Angle Relations:
sin(t — A) =sin A
cos(n— A)=-cos A
tan(x — A)=—tan A
Remember: Supplementary angles sum to 7 radians or 180°.
Double-Angle/Number Identities:
sin(2A) = 2 sin(A) cos(A)
cos(2A) = cos*(A) — sin’(A)

=1-2sin’(A)= 2 cos’(A) - 1
an(2A) = (_zm)

1-tan”(A)

These identities are special cases of the sum/addition identities.
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Half-Angle Identities:

sin(é) — 1—-cos(A)

2 V2

Cos( A ] s /1 +cos(A)
2 2

tan( A ) _ |1-cos(A) _ sin(A) _1-cos(A)
2 1+cos(A) 1+cos(A)  sin(A)

These identities are derived from the double-angle identities.

Product to Sum Identities:

sin(A) cos(B) = [1/2][sin(A + B) + sin(A — B)]
cos(A) sin(B) = [1/2][sin(A + B) - sin(A — B)]
sin(A) sin(B) = [1/2][cos(A — B) — cos(A + B)]
cos(A) cos(B) = [1/2][cos(A + B) + cos(A — B)]

Sum/Difference to Product Identities:

sin X +sin y=25in(x;y)cos(xgy)

sin X —sin y=2sin[x;yjcos(xzyj

cosx+cosy=2cos(xgyjcos(x;yJ

COS X —COSy=-2 sin(x;yjsin(X;yJ

Squared Formulas:
sin®A = (1/2)(1 - cos(2A))
cos’A = (1/2)(1 + cos(2A))

* In the following sections, we will use the fact that in a triangle,

sine = opposite / hypotenuse, cosine = adjacent / hypotenuse, and
tangent = opposite / adjacent. In addition, A, B, x, and y represent real
numbers or angles in degrees or radians.

7.2. Quotient identities and reciprocal identities

= The quotient and reciprocal identities are especially important to
remember and used when solving problems and deriving other
identities.
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The quotient identities and reciprocal identities are:

tan A=sin A/cos A cot A=cos A/sin A

sin A=cos Atan A cot A=cos Acsc A
sinA=1/cscA cosA=1/secA tanA=1/cotA
cscA=1/sinA secA=1/cosA cotA=1/tanA

These identities are easily derived using the definitions for sine, cosine,
tangent, secant, cosecant, and cotangent.

7.3. Pythagorean identities

* The Pythagorean identities are particularly important to remember and
used when solving problems and deriving other identities.

The Pythagorean identities are:
sin’(A) + cos’(A) = 1
sin’(A) = 1 — cos’(A)
cos’(A) =1 — sin’(A)
1 + tan’(A) = sec’(A)
1 + cot’(A) = cscz(A)

* Applications when the Pythagorean identities are often useful include
making substitutions when solving problems that contain trigonometric
functions. For example, suppose you are given the parametric equations
(discussed in Chapter 10) x =2 cos t and y = 4 sin t specified in the
interval 0 <t < 2r, and you need to convert these parametric equations
into rectangular form so that you can plot x and y pairs on a Cartesian
coordinate system. To transform parametric equations into rectangular
form we would normally isolate t and write the equations in terms of x
and y only. Because they contain trigonometric functions it is difficult
to isolate t, however we can isolate cos t and sin t, then substitute the
Pythagorean identity in terms of t: sin’t + cos’t = 1.

Therefore, given x =2 cos t and y =4 sin t, isolate cos t and sin t:
x/2=costand y/4 =sint

Substitute the Pythagorean identity in terms of t, sin’t + cos’t = 1:
(x/2)* + (y/4)* = 1, or equivalently,

X4 +y16 =1

which is the equation for x =2 cos t and y = 4 sin t in rectangular form.
However, in order to graph this equation on a rectangular coordinate
system it must be solved for y.

y/16=1-x%4

¥ =16 — 4x>

y =416 - 4x*]"?
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See Section 10.4 for a graph of the rectangular and parametric
equations, which forms an ellipse, generated by entering both equations
into a graphing utility.

* To derive the Pythagorean identities, the Pythagorean Theorem
x*+y?> =1’ can be used.

X

Begin by dividing the Pythagorean formula by r*:

)P+ (yhyP =1

Because (x/r) = cos A and (y/r) = sin A, then:

(x/r)? = cos’A and (y/r)? = sin’A

Substituting back in to (x/r)> + (y/r)” = 1 results in the first
Pythagorean identity: cos’A + sin’A = 1

Note the equivalent forms obtained by algebra:

sinA = 1 — cos”A and cos’A = 1 — sin’A

To derive the next Pythagorean identity, begin by dividing the
Pythagorean Theorem by x*:

1+ (y/x)* = (t/x)

Substituting (y/x)2 = tan®A and (r/x)’ = sec?A results in the second
Pythagorean identity: 1 + tan’A = sec’A

To derive the next Pythagorean identity, begin by dividing the
Pythagorean Theorem by y*:

(xfy)” + 1= (tly)?

Substituting (x/y)? = cot’A and (r/y)” = csc?A results in the third
Pythagorean identity: cot’A + 1 = csc’A

7.4. Negative number/angle identities

« The negative number/angle identities are important to remember
and used when solving problems and deriving other identities.

The negative angle (number) identities are:

si(—A)=-sin A cos(-A)=cos A tan(-A)=-tan A
csc(-A)=—-csc A sec(-A)=sec A cot(-A)=-cot A

where sine is an odd function, cosine is an even function, and tangent is
an odd function.

» The negative number/angle identities can be verified by observing a
30:60:90 triangles in a coordinate system.
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First consider sin(—A) = — sin A. From the figure it is clear that the
values of the functions are:

sin 30° = 1/2 and sin(-30°) =—-1/2

The sine of —30° has the same magnitude but the opposite sign as the
sine of 30°. Therefore,

sin(-30°) = —sin 30°

For identity cos(—A) = cos A, from the figure it is clear that the values
of the functions are:

cos 30° = +/3 /2 and cos(=30°) = /3 /2

The cosine of —30° has the same magnitude and the same sign as the
cosine of 30°. Therefore,

cos(—30°) = cos 30°

Remember: sin A = opposite/hypotenuse and

cos A = adjacent/hypotenuse.

* These identities can be obtained using the difference identities
discussed in Section 7.6:

cos(A - B)=cos A cos B +sin A sinB

sin(A —B)=sin A cos B —cos A sinB

tan(A — B) = [tan A — tan B]/[1 + tan A tan B}

When angle A = 0 and angle B = 0:

cos(0 — 0) =cos 0 cos 6 + sin 0 sin 0 = cos 6

sin(0 — 6) =sin 0 cos 6 — cos 0 sin 8 = —sin O

tan(0 — 0) =[tan 0 — tan 0] /[1 + tan O tan 6] = —tan ©

* The other negative number/angle identities can be verified using the
quotient and reciprocal trigonometric identities.

Because tan A = sin A / cos A, sin(—A) = —sin A, and cos(—A) = cos A,
then —sin A /cos A =—tan A, or tan(—A) =—tan A

This can also be observed in the graph of tangent.

Because the cosecant, secant, and cotangent are reciprocal functions,
cscA=1/sinA, sescA=1/cosA,and cotA=1/tan A,

their sign relationships correspond to the respective sine, cosine, and
tangent functions:
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sin(-A)=-sinA cos(-A)=cos A tan(-A)=-tan A
csc(-A)=—-csc A sec(-A)=sec A  cot(-A)=- cot A

» The negative angle identities can also be verified using graphs of the
cosine and sine functions.

y
Sine

M N
YR

For a distance +x to the right of 0, the vertical distance (arrow) from the
axis to the curve represents sin x. For an equivalent distance to the left
of 0, the vertical distance (arrow) from the axis to the curve represents
the sin(—x). The vertical distances have the same magnitudes but are
measured in opposite directions. Therefore, it is clear from the figure
that sin x = the opposite of sin(-x), or, sin x = —sin(—x).

Wt

For a distance +x to the right of 0, the vertical distance (arrow) from the
axis to the curve represents cos x. For an equivalent distance to the left
of 0, the vertical distance (arrow) from the axis to the curve represents
the cos(—x). The vertical distances have the same magnitudes and the
same directions. Therefore, it is clear from the figure that

COS X = COS(—X).

7.5. Verifying trigonometric identities

« It may be necessary to verify that a trigonometric relationship is also

an identity, which means that the relationship is true for all possible
values of angles or real numbers. Trigonometric relationships can be
verified as identities using algebra and substitutions. In general, if you
are given an equation that is not a known identity, it is possible to verify
that the two sides are equivalent by using algebraic manipulations and
substitutions, or using a graphing utility, such as a graphing calculator or
graphing software. To verify using graphing, graph the expressions on
each side of the equal sign on one graph and see if they overlap for all
values of x.
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Verifying a trigonometric identity is different from solving an equation.
Solving an equation involves using properties of equality, such as
adding or multiplying the same quantity to each side. These operations
are not appropriate in the process of verifying that both sides of an
equation are equal and therefore the equation is an identity. When
verifying an identity, the idea is to begin with the expression on one side
of the equal sign and manipulate it using algebra and substitutions of
known identities to convert that expression into the same form as
expression on the other side. There are a number of general guidelines
that can be observed when verifying identities, and they include the
following:

1. In general, begin with the more complicated side of the identity and
transform it into the less complicated side. The less complicated side
represents the goal.

2. Use algebraic substitution and simplification operations on each side
of the equation independently. In some cases, transforming both
sides of the equation into the same simpler form may be helpful. Do
not use standard equation-solving algebraic techniques in which the
same operation is performed on both sides of the equation
simultaneously.

3. Become familiar with the basic identities and their equivalent forms,
and use them for substitutions.

4. Use algebraic operations such as factoring, multiplying, and opera-
tions on fractions, such as adding, subtracting, combining, splitting,
reducing, transforming into equivalent forms, and multiplying the
numerator and denominator of a fraction by the conjugate of either.

5. It is sometimes helpful to use substitutions to express all functions in
the equation in terms of sine and cosine.

» Example: Suppose one side of a relation is tan A + cot A and it is nec-
essary to express it in terms of sin A and cos A. Express tan A + cot A
in terms of sin A and cos A, simplify, and use a graphing wutility to verify
that the expression in terms of sin A and cos A is equal to tan A + cot A.
Begin by substituting the quotient identities:
tan A+cot A=sin A/cos A +cos A/sin A
Simplify by adding the two fractions on the right side, using the
common denominator cos A sin A (multiply the numerator and
denominator, simplify, and substitute the Pythagorean identity
1 =sin’A + cosZA):

sinAcos Asin A cos Acos Asin A

cos Acos Asin A  sin Acos Asin A
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sin’A cos’A _sin?A+cos’A _ 1
cosAsin A cosAsinA cos Asin A cos Asin A
Therefore, tan A + cot A= 1/cos A sin A.

Use a graphing utility to graph each side of the equation on one graph to
verify that they are equal. Graph y; = tan x + cot x (which may be
entered as tan x +1/tan x if necessary) and y, = 1 / cos x sin x:

Graph of y; =tan x + cot x and y, = 1/ cos x sin x

10

1
628 -3.14 3.14 6.28

| I L T AL L R I R L

-10

y
The perfect overlap of these two curves verifies that
tan A+cot A=1/cos A sin A.

* Example: Verify identity tan x + cot x = csc X / cos x.

In this case we can convert both sides independently.

Begin with tan x + cot x and use quotient identities:

tan x + cot x = sin x/cos x + cos x/sin X

Combine fractions using a common denominator cos X sin x and
substitute the Pythagorean identity as in the previous example:
sin’x . cos’x _ sin’x +cos’x _ 1

cosxsinx cosxsinx cosx sin x cOS X Sin X

Convert the right side csc x / cos x to match the result from the left side
using the reciprocal identity csc x = 1/sin x:
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CSCX _ OSCX 1 _ 1 1 _ 1
cos X 1 cosXx SINX CcOSX cosxsinx
Therefore, tan X + cot X = ¢sc X / cos X.

« Example: Suppose one side of a relation is tan X cot x and it is
necessary to simplify it to match the other side to verify that the
equation is an identity.

Use reciprocal identity cot x = 1/tan x to simplify tan x cot x:
tan x cot x = (tan x)(1/tan x) = 1

Therefore, tan x cot x = 1.

» Example: Verify (1 + sin x)/(cos x) = (cos x)/(1 ~ sin x).

Begin with the left side (1 + sin x)/(cos x) and work toward the right
side:

1+sinx _ (1+sinx)cosx _ (1+sinx)cosx _ (1+sinx)cosx

COSs X COS X COS X cos’x 1-sin?x
(1+sinx)cosx _ cosx

" (1+sinx)(1-sinx) 1-sinx

Therefore, (1 + sin x)/(cos x) = (cos x)/(1 — sin x).

7.6. Sum and difference of angles/numbers identities, also called
addition and subtraction identities

* The sum and difference identities can be used to derive other
trigonometric identities, such as the cofunction identities, the double-
angle/number identities (which are used to derive the half-angle
identities), the product to sum identities, and the sum to product
identities. Sum and difference identities are also often used for
substitutions when solving problems involving trigonometric and
circular functions. These identities can be used to verify more com-
plicated identities or to find exact values of trigonometric functions.
These identities true for all real numbers and angles in radian or degree
measure. The identities for sine and cosine are worth remembering.

* The sum and difference of angles/numbers identities are:
sin(A + B) =sin(A) cos(B) + sin(B) cos(A)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)
tan(A) + tan(B)]
1 — tan(A)tan(B)

tan(A+B):(
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sin(A — B) = sin(A) cos(B) — sin(B) cos(A)
cos(A — B) = cos(A) cos(B) + sin(A) sin(B)

tan(A) — tan(B)
1 + tan(A)tan(B)

These identities can be derived algebraically using properties from
geometry and other basic trigonometric identities. (See the following

paragraphs.)

tan(A—B)=(

» Example: Suppose we know the coordinates of Point 1 and Point 2 as
(2, 4) and (3, 2) respectively, but need to find the angle £.

| pPitey)=@4)

g P23 =(,2)

We can use the subtraction identity for tangent if we choose the angles
as o and (o + f) (that form two right triangles), where the difference
betweena and (e + f)is for f=(a+ f)—a
Therefore, tan(A — B) in the identity is tan((a + f) — a)
First calculate tangents:
tan(fa+ P =yi/x1=4/2=2
tan(a) = y2/x2 =2/3
Substitute into the identity:
tan B=tan((a+ /) — )
_ ( tan(a + B) - tan(@) ]_ 2-2/3 _4/3 4
1+ tan(a + f) tan(e)

T1+QQ2/3) 7/3 7
Therefore, f= arctan(4/7) = 0.519 rad. = 29.7°

* The addition and subtraction identities for cosine,

cos(A — B) = cos(A) cos(B) + sin(A) sin(B) and

cos(A + B) = cos(A) cos(B) — sin(A) sin(B)

can be derived using the fact that the distance between two points on a
circle is the same whether a triangle between the two points is rotated or
not. The distance between two points (X1, ;) and (X2, y») is given by the
distance formula:

d((x1, YD) Y2) =y(X5 —%,)2 +(¥5 —¥1)°
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First, recall that on a unit circle (a circle with a radius of one) the
coordinate of each point P can be described by x =cos A and y =sin A,
where A is a standard position angle. The coordinates of a point of a
unit circle can therefore be described by (%, y) = (cos A, sin A):

P(cosA, sinA)

On a unit circle two points can be positioned on the points of a triangle
that is located at the origin. When the triangle is rotated about the origin
the distance between the two points remains the same, as can be
observed in the figure:

(X2, y2)

The x and y coordinates represent the original triangle location and the
x' and y' coordinates represent the rotated triangle position.

Angle B spans from (x;, y1) to (X', y1").

Angle A spans from (x;, y;) to (X2', ¥2').

Angle A-B spans from (X', y1') to (X', y2") and an equivalent angle from
(x1, y1) to (X2, ¥2)-

Coordinates of point (x;', y2') equals (cos A, sin A).

Coordinates of point (xy', y;") equals (cos B, sin B).

Coordinates of point (x;, y2) equals (cos(A-B), sin(A-B)).

Coordinates of point (x,, y;) equals (cos 0, sin 0) = (1, 0).

The distance between points (x;', y1') and (%7, y2') is equal to the
distance between points (x;, y;) and (x,, y»). Therefore,
d((x1, YD(X2, y2)) = d((x1', y1)(x2', y27)
= \/(Xz - x1)2 +¥2 -y )2 =\/(X2"X1 ')2 +(2 ")’1')2
Substituting with the coordinates of points listed above:
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= J(cos(A - B) ~1)? + (sin(A - B) - 0)?

= J(cos(A) —cos(B))? + (sin(A) —sin(B))?

Squaring both sides and using algebra:

(cos(A-B) — 1)* + (sin(A-B))’ = (cos A — cos B)? + (sin A — sin B)?
Simplifying the left side:

(cos(A-B) — 1)(cos(A-B) — 1) +sin 2(A—B)

= cos’(A-B) — 2cos(A-B) + 1 + sin’(A-B)

Simplifying the right side:

=(cos A — cos B)(cos A — cos B) + (sin A — sin B)(sin A — sin B)

= cos’A — 2 cos A cos B + cos’B + sin’A — 2 sin A sin B + sin’B

Therefore combining both sides:
cos’(A-B) - 2 cos(A-B) + 1 + sin’(A-B)

= cos’A — 2 cos A cos B + cos’B + sin’A — 2 sin A sin B + sin’B
Substitute the identity cos’x + sin’x = 1 where it applies:
2-2cos(A-B)=2-2cos A cos B—2sin A sin B

Simplifying gives the subtraction identity for cosine:
cos(A-B)=cos A cos B +sin A sin B

This formula applies to any value of the angles depicted above and also
to all real numbers and angles in radian or degree measure.

* To obtain the identity for the sum/addition identity for cosine
substitute —B for B in the difference/subtraction identity for cosine:
cos(A—(—B)) = cos(A+B) = cos A cos(—B) + sin A sin(-B)

Substituting the negative number identities cos(—x) = cos x and
sin(—x) = — sin X, results in the sum/addition identity for cosine:
cos(A+B) =cos A cos B —sin A sin B

* The sum/addition and difference/subtraction identities for sine can be
derived using right triangle cofunction relationships

sin A = cos(n/2 — A) and cos A = sin(r/2 — A)

(which are discussed in the next section).

Right triangles have complimentary angles that can be measured by

90° - ¢ or w2 - ¢.

Using the complimentary angle relations, cos ¢ = sin(n/2 — ¢) and

sin ¢ = cos(w/2 - ¢), and replacing angle ¢ with angle (A + B), we have:
sin(A + B) = cos(n/2 — (A+B)) = cos(/2 — A — B) =cos((n/2 - A) - B)
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Substituting cos((r/2 — A) — B) into the subtraction identity for cosine
cos(A —B)=cos A cos B +sin A sin B, where A in this identity is
represented by angle (n/2 — A) gives:

cos((n/2 — A) - B) = cos(n/2 — A) cos B + sin(n/2 — A) sin B
Substituting the cofunction identity sin A = cos(n/2 — A), this equation
becomes the sumvaddition identity for sine:

sin(A +B)=sin A cos B+cos A sinB

« To obtain the difference identity for sine substitute —B for B in the
addition identity for sine derived above:

sin(A + (-B)) = sin A cos(-B) + cos A sin(-B)

Then substitute the negative number identities cos(—x) = cos x and
sin(—x) = - sin X, which results in the difference/subtraction identity
Jfor sine:

sin(A — B) =sin A cos B — cos A sin B

* To obtain the sum and difference identities for tangent

tan(A + B)= tanA+tanBJ
1—tan A tan B

tan(A - B) = tanA-tanB
1+tan A tan B

use the sum and difference identities for sine and cosine and the identity
tan x = sin x / cos x:
sin(A + B) _ sin Acos B +cos Asin B

tan(A + B) = —
cos(A +B) cosAcosB-sin Asin B

Multiply numerator and denominator by 1/ cos A cos B, simplify, and
substitute tan x = sin x / cos x:
sin AcosB cosAsinB sinA sinB

+
cosAcosB  cosAcosB _ cosA cosB _ tanA+tanB
cosAcosB  sin Asin B sinA sinB |-tan A tanB

cosAcosB cosAcosB cos A cosB

This results in the sum/addition identity for tangent.

tanA+tanB)

tan(A +B)=| —MM—
1—tan A tan B
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» To obtain the difference identity for tangent begin with the sum
identity, substitute —B for B, and use the negative number identity for
tangent tan(—x) = — tan x:

fan(A + (-B))= tan A + tan(-B) =( tan A —tan B J
1—tan A tan(-B) 1+tan Atan B
This results in the difference/subtraction identity for tangent.
tan(A — B)= tan A —tan B }
1+tan Atan B

» Example: Simplify cos(x + n/2).

Substitute x = A and /2 = B into the addition identity for cosine,

cos (A + B), and simplify:

cos(A + B)=cos A cos B —sin A sin B

cos(x + ®/2) = cos x cos n/2 — sin X sin /2

Because cos 7t/2 =0 and sin n/2 = 1:

cos(x + n/2) = (cos X)(0) — (sin x)(1) =—sin x

Therefore, cos(x + n/2) = — sin x.

This can be observed by superimposing the graphs ofy=sinx andy =
cos X. The +n/2 in cos(x + 7/2) causes a phase shift of n/2 to the left in
the y = cos x graph, which result in an upside down graph of y = sin x.

y y = cos(x+nr/2) (solid gray)
4l __y=cos x(dashed)
RaVaY K / yx= sin x (solid black)
1 I \ ’
) 'd
s ALt

7.7. Cofunction identities

* The cofunction identities are:

sin A = cos(n/2 — A) cos A =sin(n/2 — A)

tan A =cot(n/2 — A) cot A =tan(n/2 — A)

sec A =csc{(r/2 —A) c¢sc A=sec(n/2 - A)
These identities can be written using 90° because
/2 radians = 90°.

« Cofunction identities represent complementary angles, which can be
viewed in the following figure:
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b A
B B
" ,

Angle A and angle B are complementary angles and have the property:
A + B =90° or equivalently, A + B =7/2.

» Example: cos 30° = sin 60° and sin 30° = cos 60°.

* The sum of the angles in any planar triangle is 180°. In a right triangle,
the measure of the right angle is 90°, so the other two angles must sum
to 90°. Therefore, if one non-90° angle is A, then the other non-90° angle
is (90° - A).

In the right triangle depicted above,

sin A =a/c and cos B =cos(90° — A) = a/c

cos A =b/c and sin B =sin(90° — A) =b/c

tan A =a/b and cot B = cot(90° - A) =a/b

cot A=Db/a and tan B =tan(90° - A) =b/a

sec A =c/b and csc B =c¢sc(90° - A)=c/b

csc A=c/a and sec B =sec(90°—- A)=c/a

The trigonometric functions of an angle A have the same values as the
trigonometric cofunctions of (n/2 — A), or (90° — A). The values of

(n/2 - A), or (90° — A), denote the other angle. The words cosine,
cotangent, and cosecant are abbreviations for the sine of the comple-
mentary angle (the other angle), the tangent of the complementary angle
(the other angle), and the secant of the complementary angle (the other
angle), respectively.

* The cofunction identities for sine and cosine can be derived using the
difference identity for cosine:
cos(A —B)=cos A cos B +sin A sin B
When A = n/2 this becomes:
cos(n/2 — B) =cos /2 cos B + sin nt/2 sin B
=0cosB+1sinB
=sinB
resulting in the cofunction identity for cosine for any angle in radian
measure or any real number:
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cos(n/2 —B)=sin B

The cofunction identity in terms of degrees uses 90° rather than n/2:
c0s(90°-B)=sin B

* To obtain this identity for the other angle A, substitute

B = (1/2 ~ A) in the identity cos(n/2 — B) = sin B:

cos(n/2 — (7/2 — A)) =sin(n/2 — A)

Simplifying the left side:

cos A =sin(n/2 — A)

resulting in the cofunction identity for sine any angle in radian measure
or any real number:

sin(m/2 - A)=cos A

The cofunction identity in terms of degrees uses 90° rather than n/2:
sin(90° - A) =cos A

* To obtain the cofunction identity for tangent and cotangent, begin with
the quotient identity:

tan(n/2 — A) = [sin(7/2 — A)] / [cos(n/2 - A)]

Substituting the cofunction identities cos(m/2 — A) = sin A and

sin(n/2 — A) = cos A gives:

tan(m/2 — A)= cos A/sin A=cot A

which results in the cofunction identity for tangent:

tan(n/2 — A)=cot A

The cofunction identity in terms of degrees uses 90° rather than n/2:
tan(90° - A) =cot A

* To obtain this identity for the other angle A, substitute
A = (n/2 - B) in the identity tan(n/2 — A) = cot A:
tan(n/2 — (n/2 — B)) = cot(n/2 — B)

tan(B) = cot(n/2 — B)

which is the cofunction identity for cotangent.

cot(n/2 - B)=tan B

« To obtain the cofunction identities for secant and cosecant, begin with
the reciprocal identity:
sec(n/2 — A)=1/[cos(n/2 — A)]
Substituting the cofunction identity cos(w/2 — A) = sin A:
sec(m/2-A)= 1/sinA=csc A
which results in the cofunction identity for secant:
sec(n/2 —A)=csc A
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* To obtain this identity for the other angle A, substitute
A = (/2 — B) in the identity sec(m/2 — A) = csc A:
sec(n/2 — (n/2 — B)) = csc(n/2 — B)

sec(B) = csc(n/2 — B)

which is the cofunction identity for cosecant.

csc(n/2 —B)=sec B

» Combining cofunction and negative angle identities, where n/2 radians
can be substituted with 90°:

sin (/2 -~ A)=cos A, sin(@2+A)=cos A

cos (W2 —A)=sin A, cos (w2 +A)=-sin A

sin (90°— A)=cos A, sin(90°+ A)=cos A

cos (90°—A)=sin A, cos(90°+A)=-sinA

tan (90° — A)=cot A, tan(90°+ A)=-cot A

sec (90° - A)=csc A, sec(90°+A)=-csc A

csc (90°—~ A)=sec A, csc(90°+A)=sec A

cot (90°—A)=tan A, cot(90°+ A)=-tan A

Note that these identities can be obtained from observing their graphs.

7.8. Supplementary angle relations

* The supplementary angle relations are:
sin(m— A)=sin A

cos(m— A)=-—cos A

tan(m — A) =—tan A

Remember: Supplementary angles sum to # radians or 180°,
a / b
/

Angles a and b are supplementary angles and have the property:
a+b=180° or equivalently,a+b=mn

The trigonometric functions of an angle A have the same values as the
trigonometric supplementary relations (m — A), or (180° — A).

* Example: sin(r —2)=sin2 and cos(n — 3) =—cos 3.

* A summary of supplementary angle relationships is:

sin (180°~ A)=sin A, sin (180° + A) = —sin A

cos (180°- A)=—cos A, cos(180°+A)=-cos A
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tan (180°- A)=—-tan A, tan(180°+ A)=tan A
sec (180°— A)=-sec A, sec (180°+ A)=-sec A
csc (180°—A)=csc A, csc (180°+ A)=-csc A
cot (180°— A)=—cot A, cot(180°+A)=cotA

These identities can be obtained by observing their graphs. For example,
for sin(m — A)=sin A and sin(t + A) =-sin A:

y y = sin(nt + X) = —sin x (dashed)
1 . y= sin x = sin(7 — x) (solid)

. X
\__,*W\‘J‘/%’u

7.9. Double-angle/number identities

e The double-angle/number identities are:
sin(2A) = 2 sin(A) cos(A)
cos(2A) = cos’(A) — sinz(A)

=1 -2 sin’(A)

=2 cos’(A) - 1

2 tan(A

« Double-angle/number identities are special cases of the sum/addition
identities. Double-angle/number identities are true for angles as well as
real numbers and can be used to find exact values and when verifying
more complicated identities or solving equations.

« Applications in which the double-angle/number identities are often
useful include making substitutions when solving problems that contain
trigonometric functions. For example, suppose you are given the polar
equation (discussed in Chapter 10), and you need to convert it to rectan-
gular form and plot x and y pairs on a Cartesian coordinate system. First,
you will look up the conversion relationships for converting between
rectangular and polar coordinates and equations (dlscussed in sectlon
10.2) which are x=r cos 0,y =sin 0, tan 6 = y/xandr’ =x* +y°.
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Given the equation r* cos 20 = 2 that we need to convert to rectangular
coordinates, we notice that it contains a double angle. To convert this
equation, begin by substituting the double angle formula for cosine
c0s 20 = cos’ 0 — sin® @ into r° cos 20 =2, and then transform it into a
form in which the conversion relationships can be used:

1’ (cos’0 —sin?0) =2

’ cos’0 — ’sin’0 =2

(r cos 0)? — (r sin E))2 =2

Then substitute x =r cos 0 and y = sin 0 resulting in the rectangular
form of * cos 20 = 2:

X-y =2

See the end of Section 10.2 for a graph. of both forms of the equation.

* Double-number identities can be derived using the sum/addition
identities. The double-angle/number identities represent the case where
A = B in the sum/addition identities:

sin(A + B)=sin A cos B+ cos A sinB

cos(A +B)=cos A cos B-sin A sinB

* To develop the identity for sin 2A, begin with the identity for

sin(A + B):

sin(A + B) =sin A cos B+ cos A sin B

When angle B is equal to angle A this becomes:

sin(A + A) =sin A cos A + cos A sin A

On the left, sin(A + A) = sin 2A, and both terms on the right are the
product of sin A and cos A, or 2 sin A cos A. This results in the double-
angle/number identity for sine:

sin2A =2 sin A cos A

* To develop the identity for cos 2A4 begin with the identity for
cos(A + B):

cos(A+B)=cos AcosB-sinAsinB

When angle B is equal to angle A this becomes:

cos(A + A)=cos A cos A —sin A sin A

which simplifies to the double-angle/number identity for cosine:
cos 2A = (cos A)* — (sin A)* = cos” A —sin’ A

* There are two other useful forms of the double-angle/number identity
Jor cosine that can be obtained by substituting the Pythagorean
identities:

sinA +cos’A =1, cos’A =1 —sin’ A, and sin” A = 1 — cos’ A
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These identities can be substituted into the first form of the double angle
identity for cosine to get two other identities.

Begin with the cosine double-angle identity: cos 2A = cos’ A — sin’A
Use identity cos’ A = 1 —sin® A and replace cos” A with 1 — sin A:

cos 2A = (1 —sin’ A) - sin’ A =1 - 2 sin’ A

which is another form of the double-angle/number identity for cosine:
cos 2A =1-2sin’A

A third form of the double angle/number identity for cosine, cos 2A can
be obtained by using the identity sin’ A = 1 — cos® A and replacing
sin” A with 1 — cos”A:

Begin with the first double-angle identity: cos 2A = cos® A — sin’ A
Replace sin® A with 1 — cos® A:

cos 2A = cos’ A — (1 — cos’ A) =2 cos’A - 1

which is a third form of the double-angle/number identity for cosine:
cos 2A =2 cos’A — 1

* The double-number identity for tangent, tan 24 can be developed
using the double angle/number identities for sine and cosine:
sin2A =2sin A cos A and cos 2A = cos’ A — sin”A

Because tangent equals sine divided by cosine, then tan 2A equals
sin 2A divided by cos 2A:

sin2A _ 2sinAcosA

cos2A  cos’A —sin’A

To write this in terms of tan A, divide every term in the numerator and
denominator by cos® A or equivalently, (cos A)(cos A):
_ [2sin Acos A]/[cosAcosA] _ 2tanA
- [cos®A]/[cos>A]—[sin*A]/[cos’A] 1- tan’A
which results in the double-angle/number identity for tangent:
2tan A

1-tan?A

tan 2A =

tan 2A =

* The double-number identity for tangent can also be derived directly
from the sum identity for tangent:

tanA+tanB]
l-tan Atan B

When A = B this becomes:

tan(A+B)=(

211



Master Math: Trigonometry

A
tan(A+A)=[ tan A+ tan A ) —tan2A =2 1304

l1-tan A tan A _I—tanzA

* Example: You launched a satellite over the ocean and while tracking it
you notice that part of its payload dropped off at 6 miles above the

ocean. How far must you travel from where you made your observation,
at the beach, to recover part of your satellite remains? In other words, for
a known distance above the ground (ocean) of 6 miles, find the distance
across the ocean x (and also find the angles A) as shown in the diagram.

satellite broke apart
4 mi
A 2 mi
A
beach X satellite remains

In the lower triangle tan A = opposite/adjacent = 2/x, and in the entire
triangle tan 2A = opposite/adjacent = 6/x. Therefore,

tan A = 2/x and tan 2A = 6/x.

Substituting into the double-angle identity for tangent

tan2A=———2t&m;AL
1-tan“A
2
— 6/x = 2(2x) _ 4k _ x“)4/x) > ¢

1-2/%)°  1-4x% &) - xD)@Ex?) x*-4
Therefore, the double-angle identity for tangent for these values
becomes:

6 _ &

X x2-4

Solving for x:

(6)(x ~ 4) = (4x)(x)
6x* — 24 = 4x*

6> — 4x* = 24

2x* =24

X =12

x= V12 = /3)2)(2) =243 mi
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or approximately 3.464 miles, which is how far you must travel across
the ocean to recover part of your satellite remains.

To find angles A substitute x = 3.464 into tan A = 2/x from the figure:
tan A =2/3.464 =0.5774
A = arctan(0.5774) = 30° (or 0.5236 rad)

Note that we could have also used tan A = 2/x = 2/(2 NE) )y=1 V3 or
A =arctan(1/4/3 ) = 30°

Therefore, the distance x is approximately 3.464 miles, and the angle
A is 30° with the value of the double angle 2A as 60°.

Note that in the large right triangle, tan 60° =6 / 3.464.

7.10. Half-angle identities

* The half-angle identities are:

sin( AL fl —cos(A)
2 2
cos A L }1 + cos(A)

2 2
tan A)_ [1-cos(A)  sin(A) _1-cos(A)

2 1+cos(A) 1+cos(A) sin(A)
* Half-angle, or half-number, identities are double-angle identities in an
alternative form. Half-angle identities can be derived using double-angle
identities. These identities can be used to find exact values for functions,
such as sin(n/8), using the fact that n/8 is half of 7/4. These identities

can also be used in verifying more complicated identities and for substi-
tutions when solving problems involving trigonometric functions.

« Example: If cos x = 1/3, what is cos x/2 in the interval between 0 and
7/2?

Substitute into the identity:

cos x/2 =+ [(1 + cos x)/2]"2

cos x/2 =+ [(1 + 1/3)/2]"

cos x/2 = + [(4/3)/2]'*

cos x/2 = + [(2/3)"?
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In the interval 0 < x < 7/2, or 0 < x/2 < /4, then x/2 is between 0 and
n/4 in the first quadrant and therefore has a positive cosine. Remember
the quadrants and signs from chapter 4):

Quad II Quad I

cosais— | cosais+
sin o is + sin o is +
tan o is — tan o is +

Quad IIT Quad IV

cosais— | cosais+
sin o is — sin o is —
tanais+ | tanais-—

Therefore, if cos x = 1/3, then cos x/2 = 4/2/3

* The half-angle/number identities sin x/2 and cos x/2 can be developed
using the double-angle identities. In particular, development of the half-
angle identities requires two of the forms of the cos 2A double-
angle/number identity:

cos2A =1-2sin’A

cos 2A =2 cos’ A — 1

* To obtain the half-angle/number identity for sine, begin with the
double-angle identity for cosine in the form:

cos 2A = 1 -2 sin’A

When A = x/2, this becomes:

cos x =1 -2 sin’x/2

Solving for sin(x/2):

2sin’x/2=1 - cos x

sin®x/2 =[1 - cos x] /2

Taking the square root of both sides, results in the half-angle/number
identity for sine:

sinx/2 = i-wfl;(-;gg

In this identity, the choice of the sign is determined by the quadrant of a
coordinate system in which x/2 lies.

* To obtain the half-angle/number identity for cosine, begin with the
double-angle identity for cosine in the form:

cos 2A =2 cos’ A — 1
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When A = x/2, this becomes:

cos x =2 cos’x/2 - 1

Solvmg for cos x/2:

2cos X/2=1+cosXx

cos’x/2 = [1+cosx}/2

Taking the square root of both sides, results in the half-angle/number
identity for cosine:

cosx/2 = i\,l_:i—_cicm_x

In this identity, the choice of the sign is again determined by the
quadrant of a coordinate system in which x/2 lies.

* To obtain a half-angle/number identity for tangent, the quotient
identity and the half-angle formulas for sine and cosine can be used:

l-cosx
/2 = sinx/2 _ \’ \/1 CcOS X
cosx/2 N ’1+cosx 1+cosx

Therefore the half-angle/number identity for tangent is:

tan x/2= + ’l—cosx

1+cosx
where the sign is determined by the quadrant of a coordinate system in
which x/2 lies.

This form of the tangent identity can be expanded to obtain two other
forms. Beginning with:

\h+cosx

Multiply the numerator and denominator by (1 + cos x):

tan

_, [(Q-cosx)(I+cosx) _ (1+ cos x —cos X — cos? X)
YV (1+cosx)(1+ cos x) (1+cos x)?

2 . 2
-3 1-cos” x - sin x2
(1+cosx)* (1+cosx)
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resulting in a second form of the half-angle/number identity for
tangent:

tan x/2 = sin X

1+cosx

To obtain a third form of the tangent half-angle/number identity begin
with:

tan x/2 = + fl—cosx
1+cosx
Multiply the numerator and denominator by (1 — cos X):
. (1-cosx)(1—cosx) _ + (1-cos x)? -4 (1-cos x)?
“V(d+cosx)(l-cosx) v l-cos’x V sin? x

resulting in a third form of the half-angle/number identity for tangent:
1-cosx

tan x/2 = -
sin X

* Example: Find the exact value of sin(n/8).

Use the half-angle/number identity for sine
sinx/2= + 1—"%’& and the fact that n/8 is half of /4.

Therefore if x/2 = n/8, then x = n/4:

o g =L COS 4 =‘/1—J§/2 =\/2-J§ 1655
2 2 42

To check this result we can use a calculator to estimate whether

sin(n/8) = %\/ 2-42:

sin(n/8) ~ 0.38268, and %\/2 —2 ~0.38268.

7.11. Product-to-sum identities

* The product-to-sum identities are:

sin A cos B =[1/2][sin(A + B) + sin(A — B)]

cos A sin B =[1/2][sin(A + B) — sin(A — B)]

sin A sin B =[1/2][cos(A — B) — cos(A + B)]

cos A cos B =[1/2][cos(A + B) + cos(A — B)
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These identities involve the products of sines and cosines. The product-
to-sum identities can be used when solving problems that involve a con-
version of a product into a sum. They also have applications in sound
and music. These identities can be developed using the four sum and
difference identities for the sine and cosine.

* To obtain one of the product-to-sum identities, it is helpful to look at
four sum and difference identities in order to identify which one can be
used to derive the desired product-sum identity:

sin(A + B)=sin A cos B+ cos A sin B

sin(A —B) =sin A cos B —cos A sin B

cos(A +B)=cos A cos B —sin A sin B

cos(A —B)=cos A cos B +sin A sin B

* To develop the identity for sin A cos B notice that in the sum and
difference identities for sine, the sin A cos B term appears in both of
these identities. Adding the sum and difference identities for sine:

sin(A + B) =sin A cos B + cos A sin B
+sin(A —B)=sin A cos B—cos AsinB
sin(A + B) + sin(A — B) =2 sin A cos B

The cos A sin B terms had opposite signs and added to zero. To solve
for term sin A cos B, multiply both sides by 1/2, resulting in the
product-to-sum identity for sin A cos B:

sin A cos B = (1/2)[sin (A + B) + sin (A — B)]

* To develop the identity for cos A sin B notice that in the sum and
difference identities for sine, the cos A sin B term appears in both of
these identities. Subtracting the sum and difference identities for sine:

sin(A + B) =sin A cos B + cos A sin B
—sin(A ~B)=sin A cos B—-cos A sin B
sin(A + B) — sin(A — B)
= (sin A cos B + cos A sin B) — (sin A cos B — cos A sin B)
Simplifying:
sin(A + B) —sin(A —B)=2cos A sin B

The sin A cos B terms cancelled to zero. To solve for term cos A sin B,
multiply both sides by 1/2, resulting in the product-to-sum identity for
cos A sin B:

cos A sin B = (1/2)[sin (A + B) —sin (A — B)]
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* To develop the identity for cos A cos B notice that in the sum and
difference identities for cosine, the cos A cos B term appears in both of
these identities. Add the sum and difference identities for cosine:

cos (A +B)=cos A cos B—-sin A sinB

+cos(A—-B)=cos A cosB +sinAsinB
cos(A+B)+cos(A—B)=2cos AcosB

The sin A sin B terms had opposite signs and added to zero. To solve for
term cos A cos B, multiply both sides by 1/2, resulting in the product-
to-sum identity for cos A cos B:

cos A cos B =(1/2)[cos(A + B) + cos(A — B)]

* To develop the identity for sin A sin B notice that in the sum and
difference identities for cosine, the sin A sin B term appears in both of
these identities. Subtracting the sum and difference identities for cosine:

cos(A + B)=cos A cos B —sin A sin B

—cos(A —B)=cos A cos B +sin A sin B
cos(A +B) - cos(A-B)=-2sinAsinB

The cos A cos B terms cancelled to zero. To solve for term sin A sin B,
multiply both sides by —1/2, resulting in the product-to-sum identity for
sin A sin B:

sin A sin B = (1/2)[cos(A — B) — cos(A + B)]

7.12. Sum/difference-to-product identities

* The sum/difference-to-product identities are:

sinx+siny=25in(x;y)cos(x;yj

sinx—siny=23in(x;y)cos[x+y)

2
cosx+cosy=2cos(Xer cos(x_y
2 2
cosx—cosy=——?.sin(x;y)sin(X;yJ

* Like the product-to-sum identities, the sum/difference-to-product
identities can be used to express sums and differences involving sines
and cosines. These identities can be derived from the sum and difference

218



Trigonometric Identities

identities for cosine and sine or directly from the product-to-sum
identities.

¢ To develop these identities, begin by changing variables:

Letx=A+Bandy=A -B.

Next, add these two equations to solve for A and B:
x=A+B

+ty=A-B

x+ty=2A

Solving for A: A =(x +y)/2

To obtain B subtract the two equations:
x=A+B

—y=A-B

x-y=2B

Solving for B: B = (x — y)/2

The changed variables are:

Xx=A+B,y=A-B,A=(x+y)2,and B=(x-y)/2.

* To obtain the product-sum identities use the changed variables and the
sum and difference identities for sine and cosine:

sin(A + B) =sin A cos B + cos A sin B
sin(A — B) =sin A cos B — cos A sin B
cos(A +B)=cos A cos B-sin AsinB
cos(A —B)=cos A cos B +sin A sinB

Now substitute the changed variables into these identity equations:
sin x = sin((x + y)/2) cos((x — y)/2) + cos((x + y)/2) sin((x — y)/2)
sin y = sin((x + y)/2) cos((x — y)/2) — cos((x + y)/2) sin((x - y)/2)
cos X = cos((x + ¥)/2) cos((x — y)/2) — sin((x + y)/2) sin((x — y)/2)
cos y = cos((x + ¥)/2) cos((x — y)/2) + sin((x + y)/2) sin((x — y)/2)

* To derive the identity for sin x + sin y, add the two changed-variable
sum/difference identities for sin x and sin y:

sin X = sin((X + y)/2) cos((x — y)/2) + cos((x + y)/2) sin((x — y)/2)
+sin y = sin((x + y)/2) cos((x — y)/2) — cos((x + y)/2) sin((x — y)/2)
sin X + sin y = 2 sin((x + y)/2) cos((x — ¥)/2)

which is the sum-to-product identity for sin x + sin y.
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* To derive the identity for sin x —sin y, subtract the two changed-
variable sum/difference identities for sin x and sin y:

sin x = sin((x + y)/2) cos((x — y)/2) + cos((x + y)/2) sin((x — y)/2)
—sin y = sin((x + y)/2) cos((x — y)2) — cos((x + y)/2) sin((x — y)}/2)
sin X — sin y = 2 cos((x + y)/2) sin((x — y)/2)

which is the difference-to-product identity for sin x —sin y.

* To derive the identity for cos x + cos y, add the two changed-variable
sum/difference identities for cos x and cos y:

cos x = cos((x + y)/2) cos((x — y)/2) — sin((x + y)/2) sin((x — y)/2)
+cos v = cos((x + y)/2) cos((x — y)/2) + sin((x + y)/2) sin((x — y)/2)
cos X + cos y =2 cos((x + y)/2) cos((x — y)/2)

which is the sum-to-product identity for cos x + cos y.

* To derive the identity for cos x —cos y, subtract the two changed-
variable sum/difference identities for cos x and cos y:

cos X = cos((x + y)/2) cos((x — y)/2) — sin((x + y)/2) sin((x — y)/2)
—€0s y = cos((x + y)/2) cos((x — y)/2) + sin((x + y)/2) sin((x — y)/2)
cos X — cos y = — 2 sin((x + y)/2) sin((x — y)/2)

which is the difference-to-product identity for cos x —cos y.

¢ The sum/difference-to-product to identities can also be derived directly
from the product-to-sum identities and using the changed variables:
sin A cos B =[1/2][sin(A + B) + sin(A — B)]
cos A sin B =[1/2][sin(A + B) - sin(A — B)]
sin A sin B = [1/2][cos(A — B) — cos(A + B)]
cos A cos B =[1/2][cos(A + B) + cos(A — B)
Rearranging:
2 sin A cos B = [sin(A + B) + sin(A — B)]
2 cos A sin B = [sin(A + B) — sin(A ~ B)]
2 sin A sin B = [cos(A — B) — cos(A + B)]
2 cos A cos B = [cos(A + B) + cos(A — B)
Substitute the changed variables
Xx=A+B,y=A-B,A=(x+y)2,and B = (x - y)/2:
2 sin((x + y)/2) cos((x — y)/2) =sin x +sin y
2 cos((x + y)/2) sin((x —y)/2) =sinx - siny
2 sin((x + y)/2) sin((x — y)/2) = cos y — cos x
2 cos((x + y)/2) cos((x —y)/2) =cos x + cos y
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Rearranging gives the four sum/difference-to-product identities:
sin X + sin y = 2 sin((x + y)/2) cos((x — y)/2)

sin X — sin y = 2 cos((x + y)/2) sin((x — y)/2)

cos y — cos x = 2 sin((x + y)/2) sin{(x — y)/2)

cos X + cos y =2 cos((x + y)/2) cos((x — y)/2)

Note that cos y — cos x = 2 sin((x + y)/2) sin((x — y)/2)
is also written:
€os X — cos ¥y = — 2 sin((x + y)/2) sin((x — y)/2)

* Example: Write the following as a product: cos 6A + cos 4A.

Using the sum to product identity for cos x + cos y:
cos X + cos y = 2 cos((x + y)/2) cos((x — y)/2)
Substitute x = 6A and y = 4A:
cos 6A + cos 4A =2 cos((6A + 4A)/2) cos((6A — 4A)/2)
=2 cos(10A/2) cos(2A/2)
=2cos 5A cos A
To check the result, choose A = 30°. Does cos 6A + cos 4A equal
2 cos SA cos A?
cos 6(30°) + cos 4(30°) =-1.5
2 cos 5(30°) cos(30°) =-1.5

Using this rule would be helpful in a situation where, for example,
6A and 4A are angles where cosine is not easily known, whereas
cos 5A and cos A are known.

7.13. Squared formulas

* The squared formulas are:
sin’A = (1/2)(1 - cos(2A))
cos’A = (1/2)(1 + cos(2A))

* The squared formulas sin’A and cos’A can be developed using the
double-angle/number identities. In particular, development of the
squared formulas uses two of the forms of the cos 2A double-
angle/number identity:
cos2A =1-2sin’A
cos2A =2 cos’A - 1
To obtain the formula for sin*A solve the double-number equation:
cos2A=1-2sin’A
Rearranging:
cos 2A - 1=-2sin’A
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1 - cos 2A =2 sin’A
sin®A = (1/2)(1 — cos 2A)
which is the squared formula sin’A.

To obtain the formula for cos’A solve the double-number equation:
cos 2A =2 cos’A — 1

Rearranging:

cos 2A + 1 =2 cos’A

2 cos’A =1+ cos 2A

cos’A = (1/2)(1 + cos 2A)

which is the squared formula cos’A.

7.14. Chapter 7 summary and highlights

* Identities are used to solve problems involving trigonometric or
circular functions by expressing one trigonometric function in terms

of another. Using trigonometric identities to make substitutions is

often required to solve problems involving trigonometry. Trigonometric
identities are equations that are true for all possible values of angles or
real numbers.

* The quotient and reciprocal identities, the Pythagorean identities, the
negative angle/number identities, and the sum and difference of angles/
numbers identities are particularly important because they can be used
to derive other identities. In particular, the sum and difference of
angles/numbers identities can be used to derive the product-to-sum
identities, the sum/difference-to-product identities, and the double-angle
identities, which are used to derive the half-angle identities.

* The following are important identities to remember.
Quotient Identities and Reciprocal Identities:
tan A =sin A/cos A, c¢csc A =1/sin A, sec A = 1/cos A, and
cot A = 1/tan A = cos A/sin A
Pythagorean Identities:
sin’(A) + cos’(A) =1, sin’(A) = 1 — cos*(A), and cos*(A) =1 —sin’(A)
(These are derived from the Pythagorean formula X+ y2 = r2.)
Negative Angle/Number Identities:
sin(—A) =-sin A and cos(—A)=cos A
Sum and Difference of Angles/Numbers Identities, also called Addition
and Subtraction Identities:
sin(A + B) = sin(A) cos(B) + sin(B) cos(A)
cos(A + B) = cos(A) cos(B) — sin(A) sin(B)
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sin(A — B) =sin(A) cos(B) — sin(B) cos(A)
cos(A — B) = cos(A) cos(B) + sin(A) sin(B)

« Identities that can be derived from the above include:

Cofunction Identities:

sin A = cos(n/2 — A) and cos A = sin(n/2 — A)
Double-Angle/Number Identities:

sin(2A) =2 sin(A) cos(A) and cos(2A) = cos’(A) — sin’(A)

(These identities are special cases of the sum/addition identities.)
Half-Angle Identities:

sinx/2 = 11/1—0’%{ and cosx/2= iwﬂ—lj%

(These are derived from the double-angle identities.)

Product-to-Sum Identities:
sin(A) cos(B) = [1/2][sin(A + B) + sin(A — B)]
cos(A) sin(B) = [1/2][sin(A + B) — sin(A — B)]
sin(A) sin(B) = [1/2][cos(A — B) — cos(A + B)]
cos(A) cos(B) = [1/2][cos(A + B) + cos(A — B)]
Sum/Difference-to-Product Identities:
sin x + sin y = 2 sin((x + y)/2) cos((x — y)/2)
sin X — sin y = 2 cos((x + y)/2) sin((x — y)/2)
cosy — cos X = 2 sin((x + y)/2) sin((x — y)/2)
cos X + cos y =2 cos((x + y)/2) cos((x — y)/2)

* The Supplementary Angle Relations, sin(m — A) = sin A and
cos(m — A) = — cos A are also important.

* It may be necessary to verify that a trigonometric relationship is also
an identity, which means that the relationship is true for all possible
values of angles or real numbers. Trigonometric relationships can be
verified as identities using algebra and substitutions. If you are given an
equation that is not a known identity, it is possible to verify that the two
sides are equivalent for all values by using algebraic manipulations and
substitutions or by using a graphing calculator or graphing software and
graphing the expressions on each side of the equal sign to see if they
overlap for all values of x.
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CHAPTER 8

Trigonometric Functions in
Equations and Inequalities

8.1. Review of solving algebraic equations

8.2. Review of solving algebraic quadratic equations

8.3. Review of solving algebraic inequalities

8.4. Solving algebraic equations and inequalities using graphing

8.5. Introduction to solving trigonometric equations and inequalities

8.6. Solving simple trigonometric equations using standard position
angles, reference triangles, and identities

8.7. Solving trigonometric equations involving powers using
factoring, a unit circle, and identities

8.8. Solving trigonometric equations and inequalities using the
quadratic formula, identities, unit circles, factoring, and graphing

8.9. Estimating solutions to trigonometric equations and inequalities
using graphing

8.10. Summary and highlights

8.1. Review of solving algebraic equations

* This section provides a brief summary of a number of the important
algebraic techniques that are applicable to solving equations and in-
equalities involving trigonometric and circular functions. Please see
Master Math: Algebra for a comprehensive treatment of algebra that
includes detailed explanations and examples of the information in this
section. In an equation there are two expressions on each side of an
equal sign that are equivalent. In order to solve an equation, a value or
values must be determined that make the equation true. The simplest
algebraic equation is a linear equation, which contains no powers of the
variable and has the form ax + b = 0, where a and b are constants and a
does not equal zero. More complicated algebraic equations include non-
linear equations, such as the quadratic equation, in which the variable
is squared, and it has the standard form ax’ + bx + ¢ = 0, where a and b
are constants and a does not equal zero. The variables in a nonlinear
equation may also be raised to powers greater than 2. The solution(s) of
polynomial equations are called roots.
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» The argument of an equation is represented by each input number to
the function and is the first member of each ordered pair of the function.
For example, in the functions

y =log(x + 2), y =sin(x — ), and y = cos X,

the arguments are

(x +2), (x — m), and x, respectively.

If the argument has more than one term, it is generally enclosed in
parentheses.

* To solve an equation for an unknown variable, the variable must be
isolated to one side of the equal sign so that:

unknown variable. = known numbers or values.

In the process of solving an equation, if a number is added, subtracted,
multiplied, or divided to or from one side of the equal sign, the same
operation must be executed on the other side of the equal sign. For
example, to solve 4x = 32, in order to isolate x we must divide both
sides of the equation by 4:

4x/4 =32/4

Therefore, x = 8.

Equations containing fractions

* In equations that contain fractions it is helpful to remove the fractions
by reducing each term, identifying the lowest common denominator,
multiplying each term by the lowest common denominator, and solving
the equation by isolating the unknown. It may be beneficial to factor and
reduce algebraic fractions by factoring the numerator and the denomi-
nator separately, then reducing by comparing the numerator to the
denominator and canceling common factors. For example, to solve the
simple equation 2x/3 — 2x/4 = 4 for x:

First reduce second term:

2x/3 - x/2=4/1

Identify the lowest common denominator as 6.

Multiply each term by 6:

(6)2x/3 — (6)x/2 = (6)4/1

The denominators will cancel with the common denominator resulting
in no fractions in the equation:

4x - 3x=24

Combine like terms:

1x=24, or

x =24

To verify an answer, substitute the result back into the original equation:

225



Master Math: Trigonometry
2(24)/3 - 2(24)/4 = 4

2(8)-2(6)=4
16-12=4
4=4

* When solving an equation, it may be necessary to multiply, divide,
add, or subtract fractions within the equation. The following paragraphs
describe each of these operations.

» To multiply algebraic fractions, factor each numerator and denomi-
nator, reduce each fraction by canceling factors common to the numer-
ator and denominator, multiply the numerators with each other and the
denominators with each other, and reduce the resulting fraction by
canceling factors common to the numerator and denominator. For
example, multiply (6y + 62)/(4x” + 4x) by (4x)/(2y + 22).

6y + 6z « 4x 6(y+z) 4x 3(y+z) 2x
ax? +4x  2y+2z  4x(x+ 1) 2Ay+z) 2x(x +l) (y+2)
_ 3y+n(2x) 3

Cx)x+1)y+2z) (x+1)

* To divide algebraic fractions, change the division format into a multi-
plication format by multiplying the first fraction by the reciprocal of the
second fraction. Using the reciprocal of the second fraction provides a
multiplication format. Therefore, to multiply the first fraction by the
reciprocal of the second fraction, use the same steps as multiplying
fractions listed in the previous paragraph.

* To add or subtract fractions with common denominators, add or sub-
tract the numerators, place the result over the common denominator, and
reduce the resulting fraction by factoring and canceling factors common
to the numerator and denominator. For example, subtract:

2x 4  2x-4 2(x 2) 2
3(x~ 2) 3(x-2) 3(x-— 2) 3(x— 2) 3

*» To add or subtract fractions with different denominators, first form
fractions that are equivalent to the original fractions but have a common
denominator, then add or subtract the numerators. The procedure is as
follows:

1. Find the lowest common denominator contained in each term. The
lowest common denominator will contain each different factor to the
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highest power it occurs in any of the denominators. For example, if
(x + 1) occurs twice in one of the original denominators, it must
occur twice in the common denominator. To find a common
denominator, factor each denominator and then write multiples of
each denominator until a common multiple in found.

2. Multiply each fraction by a different fraction (with its numerator
equal to its denominator) to create new fractions with common
denominators that are equivalent to the original fractions. (By having
the numerator equal to the denominator, the value of each of the
fractions remains unchanged (for example, 1/2 = 2/4)). To determine
what each multiplying fraction needs to be, compare the new
common denominator with the denominators of each of the original
fractions and create new fractions that contain the factors that are in
the common denominator but not in each original denominator.

3. After new equivalent fractions with common denominators have been
created, add or subtract the numerators, place the result over the
common denominator, and reduce the resulting fraction by factoring
and canceling factors common to the numerator and denominator.

For example, add the following fractions:
x+2) N 4(x-2)

2(x~2) x(x+2)

The lowest common denominator is (2)(x)(x — 2)(x + 2).

The fractions become :

__(x+2)x)Ux+2)  (@Nx-2)2)(x-2)

@XE-2)(x+2)  ))N(x-2)(x+2)
_ X+ 2)x)(x+2)+((x-2)2)(x-2)
QE(E-2)0(x+2)

Multiplying and adding like terms resultsin :

x3 +12x2 —28x +32

2x3 -8x

Equations with square roots

* In equations that contain square roofs it is helpful to isolate the
radical term on one side of the equal sign, combine like terms, square
each side of the equation to eliminate the radical sign, and solve the
equation for the unknown variable. Note that if the equation contains a
cubed root or fourth root, remove the radical sign by raising both sides
of the equation to a power of three or four. In addition, remember that

227



Master Math: Trigonometry

the square root, cubed root, or fourth root can be represented as
Jx. , iIx ,O0r x , or equivalently as ®)", )", or ()", respectively.

Example: Solve 2(x — )2 =8.
Isolate radical term:
x-D"=82

x-1"=4

Square both sides and solve for x:
(x — 1)(12D = 42

x-1=16

x=17

8.2. Review of solving algebraic quadratic equations

* Quadratic equations are nonlinear equations with a second-degree
term. If x is the unknown variable in a quadratic equation, its highest
power is 2 and the variable would be expressed as x°. Quadratic equa-
tions have the form ax” + bx + ¢ = 0. In a quadratic equation the coef-
ficient a can never be zero, but coefficient b or ¢ can be zero. When
quadratic equations are written, the coefficients for the second-degree
term, the first-degree term, and the constant term are represented by a,
b, and c, respectively. Examples of quadratic equations include:
ax’+bx+c=0

3°+2x+5=0

X +2=0

* There are several methods that are used to solve quadratic equations
with one unknown variable. Certain methods are more applicable to
particular forms of the equation, and they include:

1. Factoring is useful for solving quadratic equations with two or three
terms.

2. The quadratic formula is useful for solving any quadratic equation,
particularly those with three terms.

3. The square-root method is useful for solving quadratic equations
with two terms if the b coefficient is zero, resulting in the absence of
the first-degree term.

4. The method of completing the square is useful for solving quadratic
equations, particularly those with a non-zero b coefficient. This is an
alternative method to using the quadratic formula.
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Factoring

* The method of factoring is useful for solving many quadratic equa-
tions with one unknown variable that have the form of a binomial or a
trinomial. The factored form of a polynomial is an expression of the
polynomial as a product of monomials or polynomials that, when
multiplied together, equal the polynomial.

* When solving equations or simplifying expressions, check to see if
there is a common monomial factor in each term. When factoring a
polynomial with a common monomial factor, factor out the greatest
common factor. For example, factoring

2x +4x> Y results in:

2% +4ng 2x* 1+2y)

where 2x° and (1 +2y) are factors and 2x* is the greatest common factor.

* When solving equations or simplifying expressions containing
trinomials in the form ax’ + bx + ¢, it is genera]ly beneficial to factor
the trinomial. Factoring a trinomial in the form ax® + bx + ¢ results in
two binomials. Factoring a trinomial is the reverse of multiplying two
binomials. Recall the steps involved in multiplying binomials.

For example, multlply the binomials (x + 2)(x + 3):

x+2)x+3)=x +3x+2x+(2)(3) x> +5x+6

In this case the trinomial is x* + 5x + 6, and the factored form is
(x+2)x+3).

* The factored binomial form and the trinomial form of a simple
expression can be illustrated as:

(x + m)(x + n) which is the factored form

x* + (m+n)x + mn which is the trinomial form

where m and n represent numbers.

Similarly for a more complicated expression, the factored binomial form
and the trinomial form can be illustrated as:

(px+ m)(qx +n), which is the factored form

-pgx + pnx + gmx + mn

pgx” + (pnt+qm)x + mn, which is the trinomial form,

where p, q, m, and n represent numbers.

* The following procedure can be used to factor a trinomial:

1. Write the factored format (  )( ).

2. Find sets of two values that, when multiplied together, equal the first
term of the trinomial.
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3. Find sets of two values that, when multiplied together, equal the last
term of the trinomial.

4. Choose the sets such that the sum of the outer product and the inner
product of the binomial is equal to the second term (the first degree
term) of the trinomial. (Remember to be careful of negative signs.)

5. Multiply the resulting binomials to check that the original trinomial is
obtained.

« Example: Factor the trinomial x* + 5x + 6.

Write the factored format (  )( )

Find sets of two values that, when multiplied together, equal the first
term of the trinomial. The only set is: x and x.

(x )x )

Find sets of two values that, when multiplied together, equal the last
term of the trinomial.

The possible sets are 2 and 3 or 1 and 6

Set1: ( 2)( 3)

Set2: ( 1)( 6)

Choose these scts such that the sum of the outer product and the inner
product of the binomial is equal to the second term of the trinomial.
The second term of the trinomial 1s 5x.

Therefore: Outer product + inner product must equal 5x.

Set 1: 3x +2x = 5x

Set 2: 6x +—Ix = 5x

Because there are no negative signs in the original trinomial, Set 2 is
eliminated. Therefore, the Set 1 binomial, (x + 2)(x + 3), must be the
factored binomial.

Multiply the chosen binomial set to check that it produces the original
trinomial.

E+DE+3)=x"+3x+2x+6=x>+5x+6

Therefore, the factored form of x* + 5x + 6 is (x + 2)(x + 3).

» There are special binomial products that are worth remembering:

1. The difference of two squares x* —y* = (x +y)(x — y), because the
sum of the inner and outer products will always equal zero.

2. The sum of two squares x> + y* cannot be further factored.

3. The binomial squared has the two following forms:
Sum squared (x +y)* =x* + 2xy +y?,
because (x +y)(x +y) =x’+xy +xy +y’ =x"+2xy +y*
Difference squared (x — y)* = x* - 2xy +y?,
because(x—y)(x—y)=}r12—xy—xy+y2=x2——2xy+y2
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* To solve a quadratic equation using the method of factoring:

1. Exlpress the equation in the form of a quadratic equation,
ax"+bx+c=0.

2. Factor the quadratic expression, ax” + bx + c.

3. Set each factor equal to zero and solve each resulting equation for
the unknown variable.

4. Check the solutions by substituting into the original equation.

« Example: Solve x*> - 2x = 3.

First express in the form, ax* + bx + ¢ = 0:

X -2x-3=0

Factor the quadratic expression *-2x— 3) by finding sets of two
values that, when multiplied, equal the first term of the trinomial. Find
sets of two values that when multiplied equal the last term of the
trinomial. Possible binomial sets are:

(x+ Dx-3)

(x-1)x+3)

Choose these sets where the sum of the outer product and the inner
product of the binomial is equal to the second term (the first-degree
term) of the trinomial.

(x + 1)(x — 3) outer product = —3x, inner product = Ix, sum = -2x
(x — 1)(x + 3) outer product = 3x, inner product = —Ix, sum = 2x
The second term of the trinomial is —2x.

Therefore, choose (x + 1)(x — 3).

Check factors by multiplying the resulting binomials:

x+ 1)(x—-3)=x2-3x+lx—3 =x>-2x-3.

Therefore, the factors are (x + 1) and (x — 3).

Set each factor equal to zero.

x+1)=0

(x-3)=0

Solve for the unknown variable in each equation.

x+1=0

x=-1

x-3=0

x=3

Therefore, the solutions for X’ -2x=3,arex=-1and x = 3.
Check these solutions by substituting each one into the original equation
X} - 2x=3.

Substitute x=-1: 1+2=3,0r3=3

Substitute x=3: 9-6=3,0r3=3

(See Section 8.4 where this example is solved using graphing.)
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Quadratic formula

* The quadratic formula can be used to find the solution to any quad-
ratic equation, particularly equations that have the form of a trinomial.
The quadratic formula is worth memorizing. The quadratic formula is:

<= —b++b” —4ac

2a
The expression inside the square root is called the discriminant and can
be used to determine if the equation will have real or imaginary roots.
Remember that the roots of an equation are the solutions, or values of x,
of the equation and correspond to where the graph of the equation
crosses the X-axis (where y = 0).
If b% - dac > 0, the equation has 2 distinct real roots.
If b” — 4ac < 0, the equation has 2 imaginary roots.
If b% - dac = 0, the equation has 1 real root.

Note that the quadratic formula can be derived using the method of
completing the square.

* To solve a quadratic equation using the quadratic formula:

1. Express the equation in the form of a quadratic equation,
ax* +bx+c=0.

2. Identify the values for the coefficients a, b, and c.

3. Substitute the values for a, b, and ¢ into the quadratic formula.

4. Reduce the resulting equation by performing the indicated arithmetic
operations and simplify the radical.

5. Check the solutions by substituting into the original equation.

* Example: Solve 3x% +2=-5x.

Exzpress in the form of a quadratic equation ax” + bx + ¢ = 0:
3X*+5x+2=0

Identify the values for the coefficients a, b, and c:
a=3,b=35, and ¢c=2

Substitute the values for a, b, and ¢ into the quadratic formula.

o TSEYS @0 _ 54T _ -5+

2(3) 6 6
Because of the + sign, both + and — must be accounted for:
x=(-5+1)6 and x=(-5-1)/6
Reduce each equation:
=-2/3 and x=-1
Therefore, the solutions for 3x* + 2 = ~5x are x=-2/3 and x=—1.
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The solutions can be verified by substituting into the original equation:
3(-2/3)* + 2 =-5(=2/3) and 3(-1)*+2=-5(-1).

Square-root method

* The square-root method is useful for solving quadratic equations with
two terms if the b coefficient is zero, resulting in the absence of the first-
degree term. When the b coefﬁcnent is zero, the form of the quadratic
equation changes from ax’ + bx + ¢ =0 to ax’ +c=0.

* To solve a quadratlc equation using the square-root method:

1. Isolate the x* variable on one side of the equal sign (not the whole
term).

2. Take the square root of both sides of the equation.

This transforms x° into x, because Vx> = +X.
3. Simplify.
4. Check the solutions by substituting into the original equation.

* Example: Solve 3% +4=31.

Subtract 4 from both sides of the equation:

3x*=27

Isolate the x” variable onto one side of the equal sign by dividing both
SldeS by 3.

=9

Take the square root of both sides of the equation.

i = 6

X =23

Therefore, the solutions to 3x>+4=31are x=3and x = -3.

The solutions can be verified by substituting them into the original
equation: 3(3)>+4 =31 and 3(-3)*+4=31.

Method of completing the square

 The method of completing the square is an extension of the square-
root method that is useful for solving quadratic equations, particularly
equations with a non-zero b coefficient. It is an alternate method to the
quadratic formula described previously.

« To solve a quadratic equation using the method of completing the
square:
1. Express the equation in the form x* + bx = c. To obtain this form it
may be necessary to divide each term by the coefficient a:
ax’/a + bx/a = c/a.
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2. Complete the square by finding one-half of the coefficient b, or (b/2).
Then square one-half of coefficient b, (b/2)?, and add the result to
each side of the equation.

3. Factor the resulting perfect square trinomial expression into a
binomial-squared, and combine like terms.

4. Solve using the square-root method, by isolating the x* variable on
one side of the equal sign, taking the square root of both sides of the
equation, and simplifying the radicals.

5. Check the solutions by substituting into the original equation.

(Please see Master Math: Algebra for a detailed discussion with
examples.)

8.3. Review of solving algebraic inequalities

* Instead of solving an algebraic equation with an equal sign, it may be
necessary to solve an algebraic inequality. Inequalities are identified by
the symbols >, <, >, and <. Inequalities are represented by the symbols
for greater than >, less than <, greater than or equal to >, and less than or
equal to <, and describe expressions in which the value of the expression
on one side of the symbol is greater than or greater than or equal to the
value of the expression on the other side of the symbol.

* When solving inequalities involving adding, subtracting, multiplying,

and dividing positive and negative numbers, the following rules apply:

1. If a number is added to or subtracted from both sides of the
inequality, the inequality sign remains unchanged.

2. If a positive number is multiplied to or divided into both sides of the
inequality, the inequality sign remains unchanged.

3. If a negative number is multiplied to or divided into both sides of the
inequality, the inequality sign reverses.

* Except for adjusting the inequality sign as described in these rules,
inequalities are solved using the same techniques that are used to solve
equations.

For example, solve 3 — (x/3) <-5.

Subtract 3 from both sides.

—(x/3)<-8

Multiply both sides by —3. (Inequality sign reverses.)

x> (=8)(-3)

x>24
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8.4. Solving algebraic equations and inequalities using graphing

* An equation can be solved graphically using two methods. In one
method the equation is plotted and where the curve crosses the X-axis
corresponds to the roots, or solutions, to the equation. This is called the
x-intercept method. In the second method the expressions on the two
sides of the equal sign are each plotted on the same graph, and the
solutions correspond to the x-coordinates of the points where the two
curves or lines intersect. This is called intersection-of-graphs.

« To solve an equation graphically using the x-intercept method where

the solution(s) are the points where the curve crosses the X-axis:

1. Simplify the equation to the form f(x) = 0 with all the terms on one
side of the equal sign, and if it is a quadratic equation put it in
standard form ax® + bx + ¢ = 0, and replace 0 with y.

2. Graph the equation by hand or using a graphing utility.

3. Determine the solutions, or roots, for x by estimating the points
where the curve crosses the X-axis (at values of y = 0). Any number
that satisfies the equation is an x-intercept of the graph.

« To solve an inequality graphically using the x-intercept method, the
solution set for f(x) < 0 consists of the x-values of the points on the
graph of f(x) that lie below the X-axis. The solution set for f(x) > 0
consists of the x-values of points on the graph of f(x) that lic above the
X-axis. If the inequality involves < or >, the solutions include the
solution of the equation f(x) = 0 as well as the solution set for f(x) < 0 or
f(x)>0.

« To solve an equation using the intersection-of-graphs method where

the solutions correspond to the x-coordinates of the points where the

two curves or lines intersect:

1. Begin with the equation in the form f(x) = g(x).

2. Plot the expressions on each side of the equal sign as y; = f(x) and
y2 = g(x).

3. The solutions correspond to the x-coordinate(s) of the point(s) where
the graphs of the two curves or lines intersect each other.

* To solve an inequality using the intersection-of-graphs method, the

solution set for f(x) < g(x) is the set of real numbers x where the curve
or line representing f(x) is below the curve or line representing g(x). In
other words, the solution set of f(x) < g(x) consists of all x-values (that
correspond to points on the X-axis), where the graph of f(x) lies below
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the graph of g(x). Conversely, the solution set for f(x) > g(x) is the set
of real numbers x where the curve or line representing f(x) is above the
curve or line representing g(x). In other words, the solution set of

f(x) > g(x) consists of all x-values (that correspond to points on the
X-axis), where the graph of f(x) lies above the graph of g(x). If the
inequality involves < or >, the solutions include the solution of the
equation f(x) = g(x) as well as the solution set for f(x) < g(x) or

f(x) > g(x).

* Note that the intersection-of-graphs method can also be applied to
solving two equations. Two equations can be solved graphically by
plotting both equations. The solutions correspond to the point(s) where
the graphs of the two equations intersect each other.

* Also note that if two sides of an identity are graphed the curves will
overlap for all points, and if two sides of an equation are graphed the
curves will overlap at points that represent the solutions of the equation.

» Example: In the discussion on the factoring method in the previous
section, 8.2., the equation x> — 2x = 3 was solved and the solutions, or

roots, were found to be x = —1 and x = 3. Solve this same equation using
the intersection-of-graphs method.

Plot the expressions on each side of the equal signy = x* - 2x and y = 3:
Graph of y = - 2x (curve) and y = 3 (line)

6_
2
1 1 1 1 I3 1 | i 1 1 ]
* 6 3 3 6
3k
sL
y
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The solutions correspond to the x-coordinate(s) of the point(s) where the
graphs of the two curves or lines intersect each other. In this graph the
solutions correspond to x =—1 and x = 3, which are the same solutions
obtained using factoring.

« Example: Solve this same equation, x* — 2x = 3, that was solved using
the factoring method and the intersection of graphs method in the
previous example using the x-intercept method.

Simplify the equation to the form f(x) = 0 and replace 0 with y:

y= Xt —2x-3.

Graph the equation using a graphing utility.

Graph 0fy=x2—2x—3

6L

y
The solutions, or roots, for x correspond to the points where the curve
crosses the X-axis (at values of y = 0). In this graph the solutions
correspond to x = —1 and x = 3, which are the same solutions obtained
using factoring and the intersection-of-graphs method.

8.5. Introduction to solving trigonometric equations and inequalities

« Equations that involve trigonometric and circular functions of an
unknown angle can be identities and therefore are true for all angles or
real numbers, or conditional equations and therefore are true for certain
values of angles or real numbers. For example, sin x = 0 is a conditional
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equation because it is not true all values of x, such as 7/2 (or 90°). This
equation is true for x = 0 and x = 7 (or 180°), or x = nn where n is an
integer.

« Equations involving trigonometric or circular functions can be solved
for the unknown variable using algebraic techniques such as factoring
and substituting into the quadratic equation, substituting identities,
reference triangles, location of a point on a unit circle, and using
graphical techniques such as the x-intercept and intersection-of-graphs
methods. Trigonometric or circular inequalities can be solved using the
same algebraic techniques or by observing where the graph of the
corresponding equation lies above or below the X-axis. When solving
these equations and inequalities, substitutions using trigonometric
identities, such as the double-number and half-number identities are
often helpful. When an equation or inequality cannot be solved
analytically using algebra, it may be solved (or the solutions estimated)
graphically. Algebraic techniques may result in exact solutions or
approximate solutions, however graphing techniques represent
approximate solutions. In addition, many calculators and computer
software packages have solver programs that can be used to solve
equations.

« Because trigonometric and circular functions are periodic and numer-
ous coterminal angles can exist (multiples of 2% or 360° for any angle in
standard position), multiple solutions often occur. Therefore, solutions
to equations involving trigonometric or circular functions are specified
within a defined interval, usually 0 < x <27 or 0 <x < 360°.

* The remainder of this chapter provides examples of solving equations
and inequalities that involve trigonometric functions using various
techniques.

8.6. Solving simple trigonometric equations using standard position
angles, reference triangles, and identities

» There is often more than one method that can be used to solve a given
trigonometric equation. Simple trigonometric equations can, for
example, be solved using standard position angles, reference triangles,
and substitutions of identities.

» Example: Solve sin A = 1/(2)"” for 0 < A < 360°.

(Remember: (x)'” denotes the square root of x.)
To solve this equation, find the angle A whose sine is 1/(2)"~.
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Remember that the sine = opposite/adjacent and that a 45:45:90 triangle
has sides proportional to:

N5

IS

1
In a coordinate system for an angle in standard position within the range
of 0 < A <360°, a 45:45:90 reference triangle depicts two possible stan-
dard position angles for A whensin A =1/ \[2— , which are 45° and 135°,

J2 2
1 350= A 1
45°X]) 45°= A
-1 1

Therefore, the solution to sin A = 1/(2)” 2 for 0 <A <360°in degrees are
the angles 45° and 135°.

To check these results calculate:

1/2)"* ~ 0.7071

sin 45° = 0.7071

sin 135°~ 0.7071

We can also see that A = Arcsin 1/(2)"? = 45°, and because there are
two possible cases within the defined interval that a 45° reference
triangle can be drawn, 45° — 180° = 135°.

« Example: Solve 3 csc A =-3(2)'” for 0 < A < 360°.

(Remember: (x)”2 denotes the square root of x.)

To solve this equation, isolate csc A and find the angle A.

3 csc A =-3(2)"2

Divide both sides by 3 and use square root symbol:

CSC A=~ «/5

Use the reciprocal identity csc x = 1/sin x, or sin x = 1/csc x, which
gives the equation:

sinA=1llscA=1/(-~/2) or sinA=-1//2

Similar to the previous example, sin A = -1/ V2 corresponds to a
45:45:90 triangle, except with a negative sign:
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L 2

I

1n a coordinate system for an angle in standard position within the range
of 0 < A <360°, a 45:45:90 reference triangle depicts two possible

standard position angles for A when sin A = -1/ «/5 , Which are 225°

and 315°.
225"(jF A 315°3 A
-1 (N (D1
N

-1 2 V2 -1

Therefore, the solutionto 3 csc A = —3(2)” 2 for 0 < A <360° in degrees
are the angles 225° and 315°.

To check these results calculate:

-1/(2)"? » -0.7071

sin 225° = -0.7071

sin 315°~-0.7071

We can also see that A = Arcsin —1/(2)”2 = -45°, and because there are
two possible cases within the defined interval that a —45° reference
triangle can be drawn, 180° + 45° = 225° and 360° — 45°=315°.

* By observing the graph of y = sin x, we can also see that sin x is nega-
tive left of the Y-axis for —n <x <0, or right of the Y-axis for 1 <x <2x.

8.7. Solving trigonometric equations involving powers using
factoring, a unit circle, and identities

* More than one method can usually be used to solve a given trigono-
metric equation. Trigonometric equations involving powers can, for
example, be solved using factoring, the location of a point on a unit
circle, and substitution of identities.

» Factoring is often used when solving trigonometric equations
containing powers. The following two examples demonstrate factoring
of trigonometric functions.
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» Example: Factor the trigonometric equation sin®x = 1.

First, rearrange equation sin’x = 1 as sin’x -1 = 0.

Written in factored form this becomes:
(sinx—1)sinx+1)=0

We can check this factored result by multiplying:
0=(sinx—1)sinx+1)=sin’x +sinx —sinx - 1 =sin’x — 1
Therefore, 0 = sin’x — 1

Rearranging gives: sin’x = 1

« Example: Factor the trigonometric equation tan’ x + tan x = 0.

This equation can be written in factored form as:
tanx(tanx +1)=0
This result can be verified by multiplying through tan x.

* The following three examples are solved using factoring, the location
of a point on a unit circle, and substitution of identities.

« Example: Solve the equation cos’A — 1 =0 for 0 < A <2m.

This equation factors to:

(cosA—-1)cosA+1)=0

To solve set each factor equal to zero and solve the simple equations:
cosA-1=0 and cosA+1=0

cosA=1 cos A=-1

Find angle A using the unit circle and the fact that the coordinates on a
unit circle can be represented as (cos X, sin x).

Yy
19 1)

T, (-1; ~1,0) x

30, -1)

When cos A = 1, the angle in radians (or degrees) is 0.

When cos A = -1, the angle in radians is « (or in degrees is 180°).
Therefore, the solutions to this equation cos’A — 1 =0 for

0 <A <2mare: A=0and A == (or 180°).

Check by substituting 0 and 7 back into the original factored equation:
(cos0—1)cos0+1)=0
(cosmt—1)(cosnm+1)=0
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» Example: Solve sin x + cos x =1 for 0 <x < 2m.

This example can be solved using factoring, a unit circle, and an
identity.

Remember the Pythagorean identity sin’x + cos’x = 1. Rearranging
gives sin’x = 1 — cos’x or, equivalently, sinx = + V1 —cos’ x .
Substituting for sin x into the original equation and isolating the radical:

+vl-cos?x +cosx=1
i\/l—coszx =]-cosx

Squaring both sides and using the + radical (see below for — radical):

1 —cos’x = (1 — cos x)°

1 -cos’x = (1 —cos x)(1 — cos x)

1-cos’x=1-2cos x +cos’x

2cosXx—2cos’x=0

Factoring out 2 cos x:

(2cosx)(1-cosx)=0

Set the two expressions equal to zero, solve each equations for cos x and
locate the points on the unit circle:

2cosx=0 and 1-cosx=0
cosx=0 cosx=1
when cos x =0 when cos x =1
X =7/2 and 3%/2 x=0

Remember: On the unit circle the coordinates of a point can be
represented as (cos X, sin x). Observe particular points on the circle, or
on a graph of cosine:

y cosx=1, cosx=0
/. 1) \‘\/ \fy=cosx
Tt’( 3 > ’O)X X

3m 5|\ '1)

cos/2=0,cos3n/2=0,and cos 0 =1

Finally, consider the negative (-) radical of:

++41-cos?x =1-cosx

Squaring both sides and using the — radical:
—(1 - cos’ x)=(1-cos x)2
—-1+cos’x= (1 —cos x)(1 —cos x)
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—1+cos?x=1-2cos x +cos*x

Rearranging:

—1-1+cos’x~cos’x=—2 cos X

-2=-2cosX

—2/(-2) =cos x

cosx=1

On the unit circle we can see that whencos x=1,x=0. Also,cos 0= 1.

Therefore, the solutions to sin x + cos x = 1 for 0 < x <2m are:
x=0,x=7/2, and x = 37/2.

Because of the squaring involved in this solution, it is a good idea to
check these values by substituting into the original equation:
sinx+cosx=1

sin0+cos0=1

0+1=1
sin(m/2) + cos(n/2) =1
1+0=1

sin(3n/2) + cos(3n/2) = 1

—1+0=-1, which is NOT 1

This solution was obtained due to squaring and is called an extraneous
solution.

« Example: Solve sin’ (x/2) = 1/4 for 0 < x < 2.

Because this equation contains a half-angle, consider the half angle
identity for sine:
1-cosx
2
For sin® (x/2) this becomes sin? (x/2) = (1 — cos X)/2.
Substituting sin’ (x/2) = (1 — cos x)/2 into the original equation
sin’ (x/2) = 1/4:
(1 -cosx)/2=1/4

sin(x/2) = £

1-cosx=1/2
2/2-12=cos x
cosx=1/2

When cos x = 1/2, the solutions for x can be observed on the unit circle
depicted below and are: x = /3 and 5n/3. Remember: The coordinates

on a unit circle can be expressed as (cos X, sin x), where x is the angle or
arc length.
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90°, (2, (0,1)
120°, 2003, -1, 82 60°, 3, (3. £)

135°,3m/4, <_£ i,—i) 45°, /4, (I f
150°, 56, (-2 L 30°, /6, (f )

180°, 7, (~L0) 0, 0. (1,0)

360°, 21, (1,0)
210°7m/6, (- -‘/25 330°,11n/6, (ﬁ -3
2250 54, - 22, 3150, 7004, (2 - 2,
240°, 4n/3, (-5 - -‘?) 300°, 57/3, (7,—_‘23

270°. 3n/2, (0,-1)

Equation for unit circle is: x*>+y>=1

Therefore the solutions to sin” (x/2) = 1/4 for 0 < x < 2 are:
x = n/3 and 5n/3.

To check these results substitute x into sin’(x/2) = 1/4 or the equivalent
equation cosx=1/2: cos ©/3 = 1/2 and cos 51/3 = 1/2.

8.8. Solving trigonometric equations and inequalities using the
quadratic formula, identities, unit circles, factoring, and graphing

» Trigonometric equations and inequalities can be solved using a com-
bination of techniques including substituting into the quadratic formula,
substituting identities, the location of a point on a unit circle, the method
of factoring, and graphing methods.

 Example: Solve (cot x + 3)(cot x) = 1 for 0 < x <27 and verify results
using x-intercept graphing solution.

To solve this equation multiply the factors and put it in the standard
form ax’ +bx+c=0:

cot’x+3cotx—1=0

The quadratic formula can be used to solve for cot x:

_ —~bt4/b? —4ac

2a
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Substitute the coefficients a =1, b =3, and ¢ = -1 into the quadratic
equation:

—3+4324(1)-1) _ -3+40+4 _-3:413

cotx = = =
2(1) 2 2
Use a calculator to determine the right side of the equation:
cot x = 0.3027756 for + radical, and
cot x ~ —3.3027756 for — radical.
To find x we need the arccotangent, which may not be available on many
calculators, therefore we can use the reciprocal identity tan x = 1/cot x:
tan x = 1/cot x = 1/(0.3027756) = 3.302776
tan x = 1/cot x = 1/(-3.3027756) = -0.3027756
Take the arctangent using a calculator:
x ~ arctan(3.302776) = 1.276795
x = arctan(—0.3027756) = —0.2940013
Rounding results in x = 1.27 and x = —0.294

The equation (cot x + 3)(cot x) = 1 defines the interval for the solutions
as 0 <x <2m. Therefore the negative value x = —0.294 is not in the
interval of the solutions. However, because of the periodic nature of
cotangent and the fact that its natural period is =, other solutions may
exist at multiples of © plus —0.294, which are in the interval 0 <x <2mx.
n +(-0.294) = 2.85

2n + (-0.294) = 5.99

Because 21t = 6.28, then 5.99 is the maximum in the interval.

The value of x = 1.28 is in the interval and is a solution to the equation.
Again, because of the periodic nature of cotangent and the fact that its
natural period is 7, other solutions should exist at multiples of © plus
1.28 within the interval 0 < x < 2m.

n+1.28=4.42

27t + 1.28 = 7.56, which is outside the interval and not a solution.

Therefore, solutions to equation (cot x + 3)(cot x) = 1 in the interval
0<x<2mare: x=2.85,x=5.99, x=1.28, x=4.42.

This problem is somewhat tricky, so it is a good idea to verify the
results using a graphing technique. Graph (cot x + 3)(cot x) = 1 using a
graphing utility, and the solutions according to the x-intercept method
will be where the graph crosses the X-axis within the interval 0 <x <2m.
Arrange (cot(x) + 3)(cot(x)) = 1 into standard form and enter it into a
graphing utility, as cot’ x + 3 cotx ~ 1 =0:
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Graph of cot’x +3cotx—1=0
y

B \
A |

"
]
o
b

\

\J/ \J

4

Observing the graph we can verify solutions where the curve crosses the
X-axis at approximately x =2.85,x=5.99, x=1.28, and x=4.42 within
the interval 0 < x < 27t. Many graphing utilities will also calculate roots.

* Example: Solve equation cos(2x) = cos x and inequality
co0s 2x > cos x for the interval 0 < x <2m.

Because this equation involves a double number, consider the double-
number identity for cosine. (See section 7.1 for a summary of the
trigonometric identities.) There are a few forms of this identity:
cos(2x) =2 cos’x — 1
cos(2x)=1-2 sin®x
cos(2x) = cos’x — sin’x
Substitute the first identity for cos(2x) =2 cos’x — 1 into the equation,
which maintains the equation in terms of cos x:
cos(2x) = cos X
2cos’x—1=cosx
Put equation in standard form and factor:
2cos’x—cosx—1=0
(Rcosx+ 1) cosx—-1)=0
which is the factored equation.
Check factoring by multiplying:
2cos’x—2cosx+cosx—1=0
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2cos’x—cosx—1=0

Set each side of factored equation equal to zero and solve for x:
(2cosx+1)=0 and (cosx-1)=0

2cosx=-1 cosx=1

cos x =-1/2

When cos x = —1/2, the solutions for x can be observed on the unit
circle and are: x =27/3 and 47/3.

When cos x = 1, the solution for x can be observed on the unit circle and
is: x=0. (Remember x can be an angle or arc.)

90°, /2, (0,1)

o 143 143
120°, 2n/3, (5> 60°, /3, (5,5
135°,3n/4, (- gg) 45°, n/a, (—‘/ZZ,—‘QZ)
150°, 576, - L., 30, w6, (2. )
180°, 7, (-L.Q) 0°%.0, (1,0)

360°, 2, (1,0)

S

210°,77/6, (-73,-1

225°,57/4, (- —‘/zz,- —‘/22)

J3o1
273
315°, 74, (_2‘@,- lf-)

300°, 5n/3, (% - g)

330°,11n/6, (

N

240°, 43, (-5 - ‘_f-)

270°, 32, (0,~1)

Equation for unit circle is: x*+y?>=1

The solutions x = 0, x = 271/3, and 47/3 can be verified by substituting
into the original equation cos(2x) = cos x:

cos((2)(0)) =cos(0), or 1 =1

cos(4n/3) = cos(2n/3), or —1/2=-1/2

cos(8n/3) = cos(4n/3), or-1/2=-1/2

The equation cos(2x) = cos x can also be solved using the intersection-
of-graphs or x-intercept graphing methods. We can verify our solutions
for the equation found above, and also determine the inequality

cos 2x > cos x by graphing.
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Graph the equation cos(2x) — cos x = 0 in the interval 0 <x <2m.

Graph of y = cos(2x) — cos X

3.14 \/28 X
1k

The solutions for the equation cos(2x) — cos x = 0 in the interval

0 < x < 27 can be confirmed where the curve crosses the X-axis at:
x = 2n/3, 4n/3, and x = 0 from the graph, by estimating the values:
X =2n/3 ~2.094395 and x = 4n/3 ~ 4.188790.

These solutions are where the curve crosses the X-axis.

The solution set for the inequality is given by cos 2x > cos x rearranged
as cos 2x — ¢os X > 0 in the interval 0 < x <27, and is the x-values
where the graph of y = cos(2x) — cos X is above the x-axis. This solution
set for the inequality can be observed on the graph as the x-values that
are above the X-axis in the open interval (x = 21/3, x = 4n/3). On the
graph we can see the approximate values x = 27t/3 ~ 2.094395 and

X = 471t/3 ~ 4.188790 where the curve crosses above the X-axis within
the interval 0 < x < 2m, so the solution is 211/3 < x < 4n/3.

Note that the solution set for the opposite inequality cos 2x < cos x
exists where the graph of the curve is below the X-axis.
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8.9. Estimating solutions to trigonometric equations and
inequalities using graphing

« Solutions to trigonometric equations and inequalities can be estimated
by graphing the equations or inequalities according to the intersection-
of-graphs and x-intercept methods. The following two examples
demonstrate these techniques.

» Example: Estimate the solution to 2x = cos x for 0 < x <27 using the
intersection-of-graphs and x-intercept methods.

For the intersection-of-graphs method plot each side of the equation as
y =2x and y = cos X and observe the graph in the interval 0 <x <2m.

Graph of y = 2x (line) and y = cos x (curve)
y
4

2

6.28 w 3.14 628 X

2}

From the graph we can see that there is one intersection point with the
solution for x between x = 0 and x = 1.57 (n/2) in the interval
0<x<2m.

To observe this more carefully, expand the graph in this region.

From the expanded graph (below) the intersection value of x appears
to be between x = 0.4 and x =0.5.
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Expanded graph of y = 2x (line) and y = cos x (curve)
y

2

—

As a comparison, use the x-intercept method. Place the equation in
standard form 2x — cos x = 0, and graph.
Graph of y=2x—cos x

1.57
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From the graph we can see that there is one point where the graph
intersects the X-axis with the solution for x between x = 0 and x = 1.57
(n/2) in the interval 0 <x < 2z. To observe this more carefully, expand
the graph in this region.
Expanded graph of y=2x - cos x

y

2-

-1

As with the intersection-of-graphs method, the x-intercept value appears
to be between x = 0.4 and x = 0.5.

To test and pinpoint this estimate substitute the value between x = 0.4
and x = 0.5, or 0.45 into the original equation 2x = cos X, or
2x-cosx=0

2(0.45) — cos(0.45)="?

0.900 - 0.900=0

Therefore, x = 0.45 is a good estimate for this equation.

» Example: Find the inequality cos(sin x) > sin(cos x) for

0 < x < 2w using the infersection-of-graphs method.

Graph the inequality as two equations y = cos(sin x) and y = sin(cos x)
in the interval 0 <x <2m.
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Graph of y = cos(sin x) (top curve) and y = sin(cos x) (bottom curve)
y

Ak

On this graph y = cos(sin x) is the curve above y = sin(cos x). Because
in the interval 0 < x < 2= the curve of cos(sin x) is above the curve of
sin(cos x) for all x, then the solution for the inequality

cos(sin x) > sin(cos x) exists for all values of x within this interval.

8.10. Chapter 8 summary and highlights

« This chapter includes a brief suinmary of important algebraic
techniques that are applicable to solving equations and inequalities
involving trigonometric and circular functions. Included are explan-
ations of solving (1.) algebraic equations for an unknown variable,

(2.) algebraic equations that contain fractions and combining fractions,
(3.) algebraic equations that contain square roots, (4.) quadratic
equations using the method of factoring, the quadratic formula, and the
square-root method, (5.) algebraic inequalities, and (6.) algebraic
equations and inequalities using graphing.

« Equations and inequalities containing trigonometric or circular
functions can be solved using a number of techniques. There is often
more than one method that can be used to solve a given trigonometric
equation, and in addition, combining several techniques may be
necessary for solving more complex equations and inequalities.
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Trigonometric equations and inequalities can be solved using techniques
such as: factoring, substituting into the quadratic equation, substituting
identities, standard position angles and reference triangles, the location
of a point on a unit circle, and using graphical techniques such as the
x-intercept and intersection-of-graphs methods. When an equation or
inequality cannot be solved analytically using algebra, it may be solved
(or the solutions estimated) graphically.

« Because trigonometric and circular functions are periodic and numer-
ous coterminal angles can exist (multiples of 2r or 360° for any angle in
standard position), a number of solutions can exist. Therefore, solutions
to equations involving trigonometric or circular functions are often
specified within defined intervals, such as 0 < x <2m, or 0 <x < 360°.
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CHAPTER 9

Trigonometric Functions
and Vectors

9.1. Definitions of vectors

9.2. Representing vectors in terms of their components in a coordinate
system

9.3. Representing vectors in terms of their components in a coordinate
system using the unit vectors i, j, and k

9.4. Addition and subtraction of vectors

9.5. Simple vector problems

9.6. Multiplying a vector with a scalar

9.7. Dot or scalar products

9.8. Vector or cross product

9.9. Chapter 9 summary and highlights

9.1. Definitions of vectors

* Vectors are used to solve problems in various disciplines, including
trigonometry, mathematics, physics, and engineering. Applications
include calculations in velocity, force, navigation, area, and volume.
This chapter provides a reference for the elementary principles of
vectors.

* Scalars are quantities that represent magnitude and can be described
by one number, either positive, negative, or zero. Scalars are real num-
bers and can be compared with each other when they have the same
physical dimensions, or units. Examples of scalars include temperature,
work, density, and mass.

* A vector represents a quantity that is described by both a numerical
value for magnitude (or length) and a direction. A vector is depicted as
a line segment with an initial point and a terminal point that has an
arrow pointing in the direction of the terminal point.

EEE—
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The length of a vector represents the magnitude of the vector quantity.
Examples of vectors include displacement, velocity, acceleration,
electric field strength, force, and moment of force.

* A displacement vector represents the movement or displacement
between two points in a coordinate system. The length of a
displacement vector is the distance between the two points and the
direction of a displacement vector is the direction it is pointing.

* A velocity vector describes an object in motion and has a magnitude
representing the speed of the object and a direction representing the
direction of motion. A force vector is a vector that represents the
direction and magnitude of an applied force. If there are two forces
acting on an object, then the sum of the two forces acts as a single force
on the object. (See Section 9.4.)

* Vectors that point in the same direction and have the same length
(or magnitude) are equivalent vectors even if they are not in the same
location. A vector can be relocated and still be considered the same
vector as long as its length and direction remain the same.

* The zero vector 0 has a length (or magnitude) of zero and no direction.
Its initial and terminal points coincide.

* The negative of a vector is a vector with the same length but pointing
in the opposite direction. If A is a vector, —A is its negative or opposite
vector. The sum of vector A and its negative —A is a zero vector.

If vector A = ab and points from a to b and vector

B = ba and points from b to a, then A =-B.
A
agq———>b>
B

» The magnitude (or length) of a vector is indicated with vertical bars
as used to denote absolute value. Remember: The absolute value of a
number n is represented by [n|, where [i|=1 and |-1{= 1.

The following represent magnitudes of vectors: |A], |B|, and | AB J.
Sometimes double bars are used to represent magnitude: [|Af| or |{Bj.

* A unit vector u has a length (or magnitude) of one. If unit vector u is
pointing in the direction of vector A, and A is not a zero vector, then
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u = A /]A|. Therefore, vector A divided by its length (magnitude) {A|
results in a unit vector pointing in the direction of vector A. The
direction of A is u = A /|]A| and its length is |A|. Therefore, length
multiplied by direction gives A as u|A| = A.

« Notation for a vector includes boldface single letters A, a, B, b, etc.,
two boldface letters, AB, etc., or one or two letters with an arrow A ,
B , 4, AB, etc. When two letters are used to represent a vector, the

first of the two letters represents the initial point and the second letter
represents the terminal point.

9.2. Representing vectors in terms of their components in a
coordinate system

* A vector can be described by its horizontal and vertical components,
which are also vectors.

\%
Vvertical

Vhonzontal

Vectors Vvertical and Vhorizontat are each component vectors of vector V.
The horizontal and vertical components of a vector are useful in appli-
cations of vectors such as force, navigation, and surveying.

» It is often useful to resolve a vector into components that run along
horizontal and perpendicular axes of a coordinate system. For example,
in the drawing,

y
F
Fy
30°
Fx o X

the force vector F can be resolved into horizontal and vertical com-
ponent vectors using the principles of trigonometry. In this drawing the
horizontal component is Fx = F cos 30°, and the vertical component is
Fy = F sin 30°. In this drawing, F is the vector sum of the two vectors
Fx and Fy.

256



Trigonometric Functions and Vectors

* In the above figure, suppose the magnitude of F is 50 and we want to
find the horizontal and vertical component vectors Fx and Fy of F.
Remember: The magnitude is the absolute value of a number n and is
represented by |n|, where {1|= 1 and [-1| = 1. To find the magnitude of
Fx calculate

|Fx| =F cos 30° =50 cos 30° ~ 43.

To find the magnitude of Fy calculate

|[Fy| = F sin 30° = 50 sin 30° = 25.

« The magnitude or length of a vector V is also given by the square root
of the sum of the squares of the x- and y-components, such that for:

Applying this to our force problem above, we find that the length of the
x-component 43 and the y-component 25 give the length of vector F:

[F| = V432 + 252 ~ 50 which was given initially.

Remember: The magnitude itself is a real number and a vector is
defined by both magnitude and direction.

* A vector with its initial point at the origin of a coordinate system is
called a position vector. A position vector is a vector in standard
position and is also called a radius vector. A position vector is defined
according to the location or coordinates of its terminal point.

For example, if its terminal point is at B then vector AB is a position
vector of point B.

* A position vector represents the position of a point with respect to the
origin, and a displacement vector represents the change or displacement
between two points in a coordinate system. The length of a displace-
ment vector is the distance between the two points, and the direction of
a displacement vector is the direction it is pointing.

* A vector in a coordinate system can be represented in terms of its
magnitude and a direction angle, which is the angle it makes with the
horizontal axis. The relationships of the horizontal and vertical com-
ponents of a position vector to a direction angle and magnitude are
important characteristics of vectors.
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+ In a coordinate system, a position vector is placed with its initial point
at the origin, and the angle that the vector makes with the X-axis is
called the direction angle 0. The direction angle is measured like a
standard position angle from the X-axis.

From trigonometric principles we know that in this diagram vector R
has a magnitude of |R| = 1, so that the magnitude of the horizontal
component can be written x =r cos 8, and magnitude of the vertical
component can be written y =r sin 6. In addition, X+ y2 =r*and
tan 6 = y/x, where X is not zero.

« In a coordinate system, a position vector with its initial point at the
origin can also be described by the coordinates, or location, of its
terminal end point. In other words, a position vector can be described by
an ordered pair of real numbers in a coordinate system.

In this diagram, the position vector R can be called vector (a, b). There
is a special notation for position vectors described by the coordinates of
their endpoint, which uses brackets rather that parenthesis. Vector (a, b)

can therefore be written (a, b) . In this diagram the real numbers a and b
represent the x-component and y-component, respectively. The real
numbers a and b are called scalar components of vector (a, b) . The

length, or magnitude, of vector R = (a, b) is given by |R| = va? + b* .

» In the above figure, if the magnitude of R is represented by r and the
direction angle is 0, then vector R can also be described by:

R= (r cos 9, rsin 9>
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* Note that a position vector can be described in three-dimensional
space or even higher dimensional spaces using its endpoint coordinates.
For example, in a three-dimensional coordinate system a vector may be
written (a, b, c) , where ¢ would correspond to the Z-axis. Vectors can

be characterized and expressed in more than three dimensions or
components. For example:

A+B=(aj,a,,a;,a,) + (b;,b,,b;,b,)

9.3. Representing vectors in terms of their components in a
coordinate system using the unit vectors i, j, and k

* Vectors can be represented in terms of their comporents in a
coordinate system. The vector components can be defined by their
directions along the X,Y, and Z axes of a coordinate system using unit
vectors denoted by i, j, and k. The i, j, and k unit vectors have
magnitudes of one and directions pointing parallel to the X,Y, and

Z axes, respectively, in a rectangular coordinate system.

The coordinates of i, j, and k can be used to represent these vectors as
i=(1,0,0),j=(0,1,0),and k= (0,0,1).

* Vector A can be written in three dimensions using the i, j, k unit
vectors as: A = ai + a,j + a3k, where a;, a; and a; are scalar quantities
and ayi, a,j and ask are the vector components of A. Therefore,

A=ai+aj+ak=(a,a,,a;)

y

la2

X
al

(k or z dimension not shown)

The magnitude (or length) of A is given by: |A|= af + a% + a%
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« If a position vector described in two dimensions has its starting point
at the origin and its terminal point at point P = (5, 6), then in two-
dimensions vector A is written:

A =5i +6j

It has length |A| = 1/(5)2 +(6)® = V25 +36 = V61
and is depicted as:

(5,6)

Si 5

* The direction of a vector in a coordinate system can be represented by
the angle it makes with the positive X-axis. For example, the direction
of vector A can be written in terms of the angle 0 that it makes with the
positive X-axis. Vector A = a;i + a,j makes an angle 0 = tan_l(azlal)
with the X-axis and can be written as:

A =i]A|cos 0+ j|A| sin 0, where a, = A} cos 0 and a, = |A| sin 0.

y

A |A] sin 0j

X
|[A] cos 6i

* Note that a unit vector u for vector A can be written in terms of i, j,

and kas: u= ﬁT =icosO+jsin0O

(in this case the coefficient a; = 0.)
Also, [uf* = cos’0 + sin?0 = 1.

* Notation for vectors also includes writing them as column vectors and
row vectors.

A= , B=[b; by}, v= , r=1[n nl
ar V2

where a; and a; are components of A, b; and b, are components of B, v,
and v, are components of v, and r; and r, are components of r.
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* A vector A = 5i + 3j — 6k can be written in column vector format:

5
A=5i+3j-6k=| 3
-6

» Unit vectors i, j, k can be represented as column vectors:

1 0 0
i=lo],j=|1],k=|0
0 0 1

* The zero vector having zero length can be written in terms of i, j, k:
0=0i+0j+ 0k

9.4, Addition and subtraction of vectors

* Two vectors can be added or subtracted if they have the same
dimensions by adding or subtracting the corresponding components (or
elements). For example, a two-dimensional vector can be added to
another two-dimensional vector; however, a two-dimensional vector
cannot be added to a three-dimensional vector.

* The sum of two vectors can be depicted by positioning the vector such
that the initial point of the second vector is at the terminal point of the
first vector. The sum of the two vectors is a third vector with its initial
point at the initial point of the first vector and its final point at the final
point of the second vector. In other words, the sum of two vectors a and
b is the combined displacement from applying vector a then applying
vector b.

Consider the figure below depicting the following two examples of
adding vectors a and b:

To add vectors a and b in [llustration 1 that follows, place the initial
point of b at the final point of a. The sum is the vector joining the initial
point of a to the final point of b, or vector ¢. The sum is also the
diagonal of a parallelogram that can be constructed on a and b.
Remember that the starting point of a vector can be moved as long as its
length and direction stay the same. From the parallelogram we can see
thata+b=b+a.
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In Hlustration 2, the initial point of b is already at the final point of a.
The sum is the vector joining the initial point of a to the final point of b,
which results in vector ¢.

new b position

INustration 1 Illustration 2
Both figures represent a + b =c.

Note that c is called the resultant vector. Hllustration 1 represents what is
sometimes called the parallelogram rule because a parallelogram is
completed as the resultant vector ¢ is determined.

* Subtraction of two vectors is equivalent to addition of the first vector
with the negative of the second vector. The negative of a vector is a
vector with the same length but pointing in the opposite direction.

* To subtract two vectors, reverse the direction of the second vector,
then add the first vector with the negative of the second vector by
positioning the vectors so that the initial point of the (negative) second
vector is at the final point of the first vector. The sum of two vectors
will be a third vector with its initial point at the initial point of the first
vector and its final point at the final point of the second (negative)
vector. This figure representsa — b =¢:

slide up a

a

In a second example of vector subtraction, subtract two vectors

a — b =c, where a — b can be represented using the negative of b, then
slide —b up to place initial point of —b at terminal point of a. The sum is
the vector joining the initial point of a to the final point of —b, which
results in ¢. This figure represents a — b =c:

slide up —b
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* The sum of two vectors AB and CD can be written:
AB + CD = AD
* The sum of two vectors A and B can also be written using components
or in column format:

a b, a; +b;
A+B= + =
32 b2 az+b2
IfA= l:z:l and B= [3], then A+ B= [5:;
3 3 6

This is represented graphically as:

%

Vector A is the smallest vector on the left, vector B is the medium
length vector pointing slightly to the right of A, and vector C is the
resultant sum of vectors A and B. Vector B was slid up (dashed arrow)
so that its initial point is at the terminal point of A to create vector C.

* Two vectors can be added or subtracted and expressed using unit
vectors. If vector A = a;i + a,j and vector B = byi + b,j, then:
A+B=aji+aj+byi+byj=(a +b)i+(a;+byj

A -B=aji+aj— (bii + byj) =(a; — byi+ (a; — by)j
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If A = 2i + 3j and B = 3i + 4j, then A + B= 5i +7j.

» Remember, the direction of a vector in a coordinate system is
represented by the angle it makes with the positive X-axis. For example,
the direction of vector A can be written in terms of the angle 6 that it
makes with the positive X-axis. Vector A = a;i + a,j makes an angle

0 = tan™'(ay/a;) with the X-axis and can be written as:
A=il|AlcosO+j|A|sin®

where a; =|A| cos 6 and a, = |A| sin 6.

|A] cos 6i

* Properties of adding vectors include:

Vector addition is commutative A + B=B + A.

Vector addition is associative (A + B)+ C=A + (B + C).
Vector with negative A + (-A)=(-A)+ A =0.

Vector with zero vector A+ 0=0+ A=A,

9.5. Simple vector problems

* The following examples demonstrate the use of trigonometric
functions and principles of vectors to solve problems.

» Example: Consider a ship initially moving east along the ocean at a
velocity v = 15 km/hr relative to the water, which has a current ¢ =2
km/hr in the northeast direction. An angle 6 = 45° exists between the
direction the ship is traveling and the direction of the ocean current.

v+e

2=

v

Use two different methods to calculate the actual speed of the ship
relative to land and the angle that the ship is deviating from vector v. In
one method use seading in describing angle measurements.

Method 1:
The true velocity of the ship with respect to land is equal to the sum of
the two vectors v + c.
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To calculate the actual speed of the ship relative to land, set the velocity
of the ship along the X-axis so that v = (15)i with a zero j component
for v, and the magpnitude of the ocean current j¢| = 2.

y
b{
45°
>— X

v=15i

The angle ¢ makes with the X-axis (v) is 45° and is the hypotenuse of
the right triangle formed by ¢. Therefore, the i component of ¢ is

2 cos 45° and the j component of ¢ is 2 sin 45°.

Therefore:

¢ =(2 cos 45°)i + (2 sin 45°)j ~ 1.4i + 1.4j
The actual velocity S of the ship relative to land is:
S=v+e=15i+14i+14j=16.4i+1.4j

Therefore, the magnitude of the speed of the ship relative to land is:
IS| = \/(1 6.4)% +(1.4)* =16.46 km/hr.

To find the angle 0 that the ship is deviating from v, we can use the fact
that for resultant vector S, tan 0 is its j component 1.4 over its i com-
ponent 16.4. Therefore, the angle the ship is deviating from v due to the
current is:

0 = tan"'(1.4/16.4) = 4.9° = 0.085 radians.

v+e=S8S
M
v
Method 2:

In this method we use the same information that a ship is moving along
the ocean at a velocity v = 15 km/hr relative to the water, which has a
current ¢ = 2 km/hr. The ship is initially pointing east and therefore has
a heading of 90°, and in addition, the 45° angle from v in the northeast
direction gives the current a heading of 45°. We are asked to calculate
the actual speed of the ship relative to land and the angle that the ship is
deviating from its original heading, vector v. Remember that heading is
measured from due north clockwise.
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North

> East
v=15

To find the actual speed |S| of the ship we can use the Law of Cosines
for the oblique triangle formed as we slide the vector ¢ over to the end
of vector v. The Law of Cosines in terms of angle B is:

b*=a’+c’ —2accos B

In an oblique triangle, a, b, and c represent the sides opposite the angles
A,B,and C.

A B
c

In the oblique triangle formed by sliding over the current vector ¢:

north

90°-6
S

\4

Angle 0 represents how much the ship is deviating from v and the actual
heading of the ship is 90° ~ 6. The Law of Cosines equation for this
diagram hasb=|S,a=¢=2,c=v=15and B=B:

IS? =22 + 157 — 2(2)(15) cos B

To find B, use the fact that we were given that vector ¢ makes a 45°
angle from v. Because angle B forms a supplementary angle with the
45° angle that vector ¢ forms with v, angle B is:

B = 180° — 45° = 135°. Therefore,

ISP = 2% + 157 — 2(2)(15) cos 135° =271

Take the square root to obtain the magnitude of the speed of the ship:
[S| = 16.46 km/hr

which is what we determined in Method 1!

Now find the angle the ship is deviating from vector v an also find the
heading of the ship due to the current, which is 90° — 0. To do this we
can use the Law of Sines for oblique triangles:
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(sin A /a)=(sin B/b).

In our triangle b ={S| = 16.46, a=¢ =2, B=135° and A = 6. Therefore,
sin 6/2 = sin 135°/16.46

sin® = (2)(sin 135°16.46)

0 = arcsin [(2)(sin 135°/16.46)] = 4.9°

(Note that in Method 1 angle 8, which is the deviation from v, was
found to be 4.9°.)

Therefore, the heading of the ship is 90° — 6 = 90° — 4.9° = 85°,

» Example: Consider the navigation of an airplane. Basic definitions
include:

The heading of an airplane, which is measured clockwise from north.
The airspeed, which is determined by an indicator in still air.

The groundspeed, which is the speed relative to the ground.

The drift angle, which is the difference between the heading and the
actual course due to the wind and is a wind-corrected angle.

The course, which is the direction the plane moves relative to the
ground and is measured clockwise from north.

Suppose an airplane can fly 250 mi/hr in still air. If a 40 mi/hr wind is
blowing from the west, what drift angle, or wind-corrected angle, will
be required for the course of the airplane to be due north? What will be
the resulting groundspeed?

In other words, given that the airplane can fly 250 mi/hr airspeed, in
order to fly due north, what heading do we need to fly in a 40 mi/hr
wind from the west and what will be the groundspeed? Diagram what
we know:

North
V=250 S
)
A,
360°-0 East
wind = 40

Note that the wind vector W was slid up to form a right triangle. This
diagram depicts that the heading of the airplane will be 360° — 6, where
0 is the drift angle. Vector S is the resultant vector and the actual
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groundspeed will be the magnitude of S, or |S|.

To find 0, use the trigonometric functions for a right triangle:

sin 6 = opposite/hypotenuse = |40| / |]250), or

0 = arcsin(|40} / [250)) = 9.2°

which is the drift angle or wind-corrected angle.

The heading the plane must fly will be

360° — 0 =360° - 9.2°=350.8°

The groundspeed is the magnitude of S, the resultant vector. To find the
magnitude of side S use

VI =IS/" + WP, or |Sf* = V" — WP’

IS| = V2502 — 402 = 247 mi/hr which is the actual groundspeed.

Note that the groundspeed can also be calculated using:
cos 0 = adjacent/hypotenuse = |S| / |V], or
IS} = [V] cos 8 = |250| cos 9.2° = 247 mi/hr

« Example: Incline plane problems generally have an object on a plane
with an angle of inclination 6.

There is a force vector horizontal to the plane Fh and a force vector
normal to the plane Fv, which are components of the weight W of the
object. From the diagram,

cos 6 = |Fv|/ |W|, or Fv=|W]|cos 6

sin @ = [Fn|/ |W|, or Fh=|W]|sin 6

If a 400-pound block is on a slick frictionless incline of 20°, what force
is required to hold the block in place and what is the force of the block
perpendicular to the incline plane?

Fh is the force along the plane, therefore a force equal and opposite to
Fh is required to hold the block in place. To find this force calculate:
Fh = [W| sin 0 = (400 pounds) sin 20° = 137 pounds
The block exerts a force Fv normal to the incline plane and it is:
Fv = W] cos 6 = (400 pounds) cos 20° = 376 pounds
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9.6. Multiplying a vector with a scalar

» Multiplying vector A with scalar c results in a vector having a
magnitude of |cl|A| and a direction of A, where |c| represents the
absolute value of the scalar ¢ and |A| represents the magnitude of vector
A. When ¢ > 0, the vector cA is parallel to A and pointing in the same
direction as A. When ¢ <0, the vector cA is parallel to A but pointing in
the opposite direction as A.

* Any vector A can be multiplied by a scalar or constant ¢ using the i, j,
and Kk unit vectors:
cA =caji + cayj + cazk

« Using bracket notation for a vector defined according to its terminal
point, scalar multiplication of vector A = (a, b) with scalar ¢ can be
written:

CA=c¢ (a, b) = (ca, cb)

For example, if A = (- 4, 3) andc=-2,
then cA = -2A =-2(-4,3) = (8,-6)

* Properties for multiplying scalars with vectors include the following
(where A and B are vectors and ¢ and d are scalars):
c¢(A+B)=cA+cB

A(c+d)=cA+dA

c(dA) = (cd)A

1A=A

9.7. Dot or scalar products

» The dot product is used in applications where angles between vectors
must be determined, and to solve problems in such fields as physics,
engineering, geometry, and mathematics, such as calculating work done.
The dot product of two vectors is a real number, or scalar, not a vector.

« The dot product (also called the scalar product or inner product) of
two vectors is defined as: A @ B = |A||Bjcos 0
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where |A| and |B| represent the magnitudes (or lengths) of vectors A and
B and 0 is the angle between vectors A and B.
Rearranging, we find: cos 6 = (A ¢ B)/(JA||B)).

« The dot product of a vector with itself, A @ A, has 6 = 0, and because
cos 0 =1, then A o A = |A) = length-squared.

* The dot product can be used to find the angle between two vectors.
Remember: If the initial points do not coincide, a vector can be
repositioned as long as the magnitude (length) and direction are
unchanged. The dot product can be used to compute angle @ by first
computing cos 6 and then 0, the angle between A and B.

cos O = é—:—l-z— , Wwhere 0 = arccos A——
|A|B] |A|B]

« Vectors A and B are perpendicular if A ¢ B =0, providing A or B

does not equat zero. This is true because cos 90° = cos(n/2) = 0.

* Vectors A and B are parallel if A « B =|A||B|, providing A or B does
not equal zero. This is true because cos 0 = 1.

* The dot product can be written in terms of unit vectors i, j, and k as
defined in a rectangular coordinate system.

where the coordinates of the unit vectors are i = (1,0,0), j = (0,1,0), and
k=(0,0,1).
The dot product of perpendicular (or orthogonal) vectors i = (1, 0, 0)
and j=(0, 1,0)is i e j =0, because i and j are perpendicular (or
orthogonal) to each other.
The dot product of parallel vectors i=(1,0,0)and i=(1, 0, 0) is
iei=1, because i and i are parallel to each other.
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In summary, the dot products of unit vectors combine as follows:
isi=jej=kek=1
jej=iek=jei=jek=kei=kej=0

e The dot product written in the form of |A||B| cos 6 represents A o B
without coordinates. The dot product can also be written in the form
[a;b; + ayb,] that does involve coordinates.

* The dot product of vector A = a,i + a,j and vector B = b;i + b,j can be
written as:

b
AeB= {al} '[ 1] =aib; + ab,
a, b,

which can be determined by:

A e B =(aji + ayj) ® (b;i + byj)

=aibi(i @ i) + ajby(i @ j) + abi(j ® i) + aby(j )
= aiby(1) +a;by(0) + a;b1(0) + azby(1)

=aib; + by

Therefore:

A o B=(aji +aj) ® (bii + byj) =arb; + ayb,

In three-dimensions the dot product of A and B is:
AeB= albl + a2b2 + asbs

* The dot product of position vectors in a coordinate system can be
written using bracket notation:

AeB= <a1,a2>0<b1,b2> =ga;b; + azb,
For example, if A = (1,2) and B= (-1,2>,then
AeB=(1,2) ¢ (-1,2) =()-D+(2)2)=-1+4=3

* The dot product of two vectors A and B can be written in numerous
forms including:

AeB=(a,,a,)e(b;,b,) = (aii+ aj) e (bsi + byj) =arb, + ab,

b
AoB=IA”Blcose={al]0{ ‘}
as b,

* Properties of the dot product of vectors A, B, C, and scalar ¢ include:
c(AeB)=(cA)eB=Ae(cB)
Ae(B+C)=(AeB)+(Ae ()
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(A+B)eC=(AeC)+(BeC)

AeB=Be A
AeA=|AP
Ae0=0

* One application of the dot product is to find the angle between two
vectors. Consider vectors A and B where A = (2, 3) = (2i + 3j) and

B= (3, 4) = (3i + 4j). They can be depicted as:

s

)4

The angle 0 between vectors A and B can be found using the dot
product in the equation:

AeB _ (2,3)e(3,4) _QQ®)+G)4) _ 18

AR e es . B S

Therefore, 6 = arccos ~3.2°

18
5413

« Another application of the dot product is that the dot product of force
F and distance d equals work done W:

Fed=W

where F is acting on an object to displace it.

The dot product of force F and distance d can be written using the angle
between the vectors, or cos 0:

W=Fed=|F|d|cos©

where F is acting on an object to displace it by distance d.

The work done by F in displacement is the magnitude |F| of the force
multiplied by length |d| of the displacement multiplied with cosine of

the angle 0 between F and d. The work is zero if F and d are
perpendicular to each other.
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|F| sin 6

||

If 0 = 45° then, W = F o d = [F||d| cos 45° = [F||d[/2 / 2
If0 = 90° then, W = F o d = |F||d| cos 90° = [F|jd|(0) = 0

cos O

9.8. Vector or cross product

* The vector product or cross product is used in problems involving
torque, volume, and area. The vector product or cross product of two
vectors is defined as:

A x B=|A||B|sin 6

where |A| and |B| represent the magnitudes (or lengths) of vectors A and
B, and 0 is the angle between vectors A and B. The product exists in
three dimensions with A and B in a plane and A x B normal (or perpen-
dicular) to the plane. The cross product of two vectors produces a third
vector with a length of |A||B] sin 6 and a direction perpendicular to A
and B. The length of A x B depends on sin 8 and is greatest when
6=90°orsin 0 = 1.

* The cross product of two vectors occurs geometrically according to
what is referred to as the right-hand screw rule. This rule denotes that
when taking the cross product A x B and moving from vector A to
vector B through angle 0 results in vector A x B, which is perpendicular
to both A and B. The right-hand rule can be visualized by curling the
fingers of the right hand from A to B, where A x B points in the
direction of the right thumb. Conversely, for the cross product B x A,
moving from vector B to vector A through angle 0 results in a vector
perpendicular to both A and B but pointing in the opposite direction of
A x B. Therefore, by the right-hand rule, A x B and B x A point in
opposite directions but have the same magnitude.

/N
AxB
A
BxA J,
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« The vector or cross product of two vectors written in terms of their
components as vector A = a,i + aj + ask and vector B = b;i + b,j + bsk
can be calculated using the same procedure as when calculating a
determinant. (See Master Math: Calculus Section 5.6. for a summary of
determinants.)

i i k
AxB=(ali+a2j+a3k)x(b1i+b?j+b3k)= a; a, aj
b, by b3

= (azb; — asba)i + (ash; — ajby)j + (a1b2 — abk
= (asb; — asby)i — (a;bs — ashy)j + (a1by — azby)k

The terms with i x i, j x j, and k x k equal zero. The cross product of
the i, j, k unit vectors combine as follows:

ixi=jxj=kxk=0

ixj=kixk=-j

ixi=-k jxk=i

kxi=jkxj=-i

« Considering the nature of how the unit vectors combine,
A x B can be written out as:

(aii + agj + a3k) x (byi + byj +bsk)
=abjixi+abxjtabsixk

+agbyj x i+ agboj x j +ahsj x k

+ a3b1k x i+ asbok x j +asb;k x k

=0+ abk + ajbs(—j) + ab)(—k) + 0 + azbsi

+azbyj +asby(—i) +0

= (aobs — asby)i + (ashy — a1by)j + (arby — azby)k

« Because the unit vectors i, j, and k are perpendicular to each other,
which was found using the determinant above, the angle between i and j
is /2 and by the right-hand rule the cross product of i and j is:

i x j=illj| sin(7/2) = k

The cross product of i with itself is: i x i =i|ji|sin0 =0,

e The maximum value of the cross product of two vectors occurs when
the angle 0 is 7/2 and sin /2 = 1, and therefore the two vectors are
perpendicular to each other. Conversely, the minimum value of the
cross product of two vectors occurs when the angle 0 is 0 or & and

sin 0 = sin & = 0, and therefore the two vectors are parallel.
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» The magnitude of the cross product can represent the area of a paral-
lelogram with sides A and B, where the value resulting from A x B is
both the length of vector A x B and the area of the parallelogram. The
length of the cross product is the area, and the area of the parallelogram
is |A x BJ, which is the magnitude of the area. A parallelogram with
sides A and B has area |a;b, - a,by|. In an XY plane

AxB= (a1b2 -~ agbl)k.

|A x B| = area of parallelogram

* Another important application of the cross product is torgue, which is
a force acting on an object to cause rotation. A force F can be applied to
a lever arm, or a radius vector r, which has its initial point located at the
origin of rotation and causes the object to rotate. The torque is a vector
having a magnitude that measures the force of the rotation and a
direction of the axis of rotation. The cross product F x r =T is the
torque of the force about the origin for a force F acting at a point with
position vector r.

force F

1 D)

force F

b 4

» An application of both the cross product and dot product together is
the volume of a parallelepiped. A parallelepiped with sides given by
vectors A, B, and C is represented by:

|A ¢ B x C| = (ai + 2 + a3k) ® (byi + byj + b3k) x (c1i + j + ¢3K) =

a; ap 42z
b; by bs} =ai(bacs — bacy) + ax(bse; — bics) + as(bicy — bycy)
¢ €2 €3

275



Master Math: Trigonometry

=|B x C| times |A| cos 8, where |B x C| is area of base and |A| cos 0 is
height. Volume = A e B x C|

4~
BxC f .,/

(Notice that taking the magnitude of the vector reduces it to a scalar
quantity.)

* Properties of the cross product involving vectors A, B, C, and scalar ¢
include:

AxB=—-(BxA)

¢(A x B)=(cA) x B= A x (cB)
Ax(B+C)=(AxB)+(AxC)
AeBxC=AxBeC=BeCxA=CeAxB

|A @ BP + A x B = |APBP cos’0 + |A[*B}’ sin’0 = |A]B}

9.9. Chapter 9 summary and highlights

* Scalars are quantities that represent magnitude and can be described
by one number, either positive, negative, or zero. Examples of scalars
include temperature, work, density, and mass. A vector represents a
quantity that is described by both a numerical value for magnitude (or
length) and a direction. A vector is depicted as a line segment with an
initial point and a terminal point that has an arrow pointing in the
direction of the terminal point. The length of a vector represents the
magnitude of the vector quantity. Examples of vectors include displace-
ment, velocity, acceleration, electric field strength, and force. A vector
can be relocated and still be considered the same vector as long as its
length and direction remain the same.

* A vector can be described by its horizontal and vertical components,
which are also vectors. A vector with its initial point at the origin of a
coordinate system is called a position vector. A position vector is
defined according to the location or coordinates of its terminal point.

(ab)

276



Trigonometric Functions and Vectors

Vector R in the preceding figure can be called vector (a, b), where a and
b represent the x-component and y-component, respectively. The length,

or magnitude, of vector R is given by |R| = va® + b . If the magnitude
of R is represented by r and the direction angle is 0, then vector R can
also be described by: R = (r cos 0, rsin 9) , where the direction angle is
the angle it makes with the horizontal axis.

* The vector components can also be defined by their directions along
the X, Y, and Z axes of a coordinate system using the i, j, and Kk unit
vectors. The direction of vector A can be written in terms of the angle 0
that it makes with the positive X-axis. Vector A = a;i + a,j makes an
angle 0= tan_](aglal) with the X-axis and can be written as:

=i|A|cos 0 + j |A| sin 6, where a; = |A| cos O and a, = |A| sin 0.

|IA] cos 0i

» Two vectors can be added or subtracted if they have the same dimen-
sions by adding or subtracting the corresponding components. The sum
of two vectors can be depicted by positioning the vectors such that the
initial point of the second vector is at the terminal point of the first
vector. The sum of the two vectors is a third vector with its initial point
at the initial point of the first vector and its final point at the final point
of the second vector. Multiplying vector A with scalar c results in a
vector having a magnitude of |c[|A} and a direction of A.

* The dot product can be used to find angles between vectors and is a
scalar, not a vector. The dot product of two vectors is defined as:

A ¢ B =|A|B|cos 6, where |A| and |B| represent the magnitudes (or
lengths) of vectors A and B and 0 is the angle between vectors A and B.

|||

* The vector product or cross product of two vectors is defined as:
A x B = |A||B] sin 0, where |A| and |B| represent the magnitudes (or
lengths) of vectors A and B, and 0 is the angle between the vectors. The
product exists in three dimensions with A and B in a plane and A x B
normal (or perpendicular) to the plane.
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CHAPTER 10

Trigonometric Functions in Polar
Coordinates and Equations, and
Parametric Equations

10.1. Polar coordinates defined

10.2. Converting between rectangular and polar coordinate systems and
equations

10.3. Graphing polar equations

10.4. Parametric equations

10.5. Chapter 10 summary and highlights

10.1. Polar coordinates defined

* Using rectangular, or Cartesian, coordinates, it 1s possible to locate a
point on a plane with two numbers. The first number indicates the
distance of the point from the origin along the horizontal X-axis, and the
second number indicates the distance of point from the origin along the
vertical Y-axis. The numbers are written as ordered pairs enclosed in
parentheses as (x, y) or using unit vectors i and j, which designate direc-
tions along the X and Y axes. The unit vectors i and j indicate directions
and have a length of one. For example, the location of a point 3 units to
the right of the origin and 4 units below the origin can be described by
using either one of the notations: (3, —4) or 3i - 4j. The notation (3, —4)
represents an ordered pair (%, y), and the notation 3i - 4] represents
vector notation such that +3 is in the x direction and —4 is in the y
direction.

« Although rectangular coordinates are most often used to map points in
a plane, polar coordinates are also used frequently and are particularly
applicable for graphing numerous relations. Polar coordinates describe
points in a plane or in space, similar to rectangular coordinates. The
difference is that in polar coordinates, there is an r-coordinate that maps
the distance of a point from the origin of the coordinate system, and
there is a O-coordinate that measures the angle the r-ray makes from the
horizontal positive X-axis called the polar axis.
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* The polar coordinate system is based on a point, called the pole, and a
ray, called the polar axis. The polar axis is usually drawn in the direc-
tion of the positive X-axis:

Pole

Polar axis

The polar axis lies on the positive side of the horizontal X-axis begin-
ning at the origin of a rectangular coordinate system, so that the polar
axis coincides with the positive X-axis.

Point P has coordinates (x, y) in the rectangular coordinate system, and
point P designates the ordered pair (r, 0) in polar coordinates. Point P is
located by giving the angle 0 from the positive X-axis to ray OP and the
distance r from the pole to point P.

* The relationship between polar and rectangular coordinates can be
visualized in the ﬁgure below usmg the Pythagorean Theorem for a
right triangle where r* = x? + y°. The r-coordinate is the hypotenuse and
measures the distance from origin to the point of interest. The angle 0
between r and the positive part of the X-axis can be described by

tan 6 = y/x. The relationships between rectangular and polar coordinate
systems in two dimensions are:

r=\[x2 + y2

tan 8 = y/x or 6 = tan™'(y/x)

X=rcos 0
y=rsin 0
y
! rsin 0
[+ D
rcos 0 X
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A point in a plane can be described in a polar coordinate system using a
direction angle 8 and the magnitude r of the corresponding ray or
vector. The ordered pair (r, ©) designates the polar coordinates of the
point. As we will see, there are numerous (r, ©) coordinates, which can
describe any single point in a polar coordinate system. To identify a
point in a plane using a polar coordinate system, choose a point to
represent the origin, which is the pole, then draw a horizontal line to the
right, which forms the polar axis. The 0 degree direction generally
points directly right from the origin. Any point in the plane can be
identified by the two coordinates r and 6, where

r = distance form the origin to the point and

0 = angle between the 0 degree line and the line drawn from the origin
to the point.

(r,0) (r, 0)
r r
0 . 0
polar axis i

* To locate any point P in a plane, the polar coordinates (r, 8) are identi-
fied beginning with the polar axis as the initial side of an angle and
rotating the terminal side until it (or its extension in the negative direc-
tion through the pole) intersects the point. The angle 6 can be measured
in degrees or radians. Angle 0 is positive if the rotation is counter-
clockwise and negative if the rotation is clockwise. The r-coordinate,
which is the directed distance from the pole to the point P, is positive if
measured from the pole along the terminal side of 0 and negative if
measured along the terminal side extended through the pole. (See figure
below.) A point (-r, 6) with a negative r-value represents a point a
distance r away from the origin in the opposite direction as a point (r, 0).

(r. ©)

(—I' ’ 9)

* A given point in a polar coordinate system can have numerous polar
coordinates. For example, the following graphs of polar coordinates
(r, 0) represent the same point:
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{(10, 30°) (~10, -150°)

; ~150°

-10, 210°)
210°

where (r, 8) = (10, 30°) can also be in radians (10, ©/6),
(-10, —150°) can be in radians (—10, —5%/6), and
(-10, 210°) can be in radians (—10, 71/6).

* Positive angles are measured counterclockwise from the positive
X-axis, and negative angles are measured clockwise from the positive
X-axis. If, for example, a point is a distance of 3 units from the origin at
a positive angle of 50 degrees, its location can be described in terms of
an ordered pair of r and 8 as (3, 50°). There are many angles that can be
used to locate this point, which include measuring counterclockwise 50°
from the positive X-axis describing the point as (3, 50°) or measuring
310° in the clockwise (negative) direction describing the point as

(3, —310°). 1t is also possible to rotate through either —130° or +230° and
then back up 3 units in the negative direction of r, which results in the
same point but is described by (=3, ~130°) and (-3, 230°).

3, 50° (-3, ~130°)
50°
-130°

-310° @3, -310° 230¢, (=3, 230°
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It may be helpful to turn through the angle first and then go in the
indicated direction if r is a positive number and back up in the negative
direction of r if r is a negative number.

« There is special polar graph paper that can be used for polar coordi-

nates. For example, a graph of two points, P(2, 45°) and Q(-2, 45°),
would be depicted as:

P(2, 45°)

12

Q(-2, 45°%

10.2. Converting between rectangular and polar coordinate systems
and equations

» It is often useful to transform coordinates or equations from rec-
tangular form into polar form, or from polar form into rectangular form.
The relationships between point (x, y) in a two-dimensional rectangular
coordinate system and point (r, 8) in a two-dimensional polar coordinate
system are:

r2=x2+y2, or r=\/x2 + y2

tan 0 = y/x, or 0 =tan™'(y/x), where x is not 0
X =rcos 0, or cos 6 =x/r
y=rsin0,or sin6=y/r

Y
pP(X, y)
:P(r, 6)
r 'y
0
[4 X —

Note that the signs of x and y determine the quadrant for 6. The angle 6
is usually chosen so that —t <0 <7, or —180° <0 < 180°.
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* To convert rectangular coordinates (%, y) to polar coordinates (r, 6) in a
plane, it is convenient to use:

r =\/x2 + y2 and 0 = arctan(y/x)

To convert polar coordinates (T, 8) to rectangular coordinates (x, y), it is
convenient to use:
x=rcos@andy=rsin 6

 Example: Find x and y if r and 0 are given asr =5 and 6 = n/2.
Calculate x =r cos 8 and y = r sin 6:

x = (5) cos(n/2)=0

y=(5) sin(n/2) =5

Therefore, the point is at (0, 5) in rectangular coordinates.

y
59 (x=0,y=5)and (r=5,0=n/2)
X

» Example: Find r and 0 if x and y are givenas x =2 and y = 3.
Calculate r =x2 + y2 and 0 = tan™'(y/x):
r=v2% +3%2 =[13]1"*~3.6

0 = tan"'(3/2) = 0.98 rad = 56°
Therefore, the point is at (3.6, 56°) in polar coordinates.

« Example: Convert rectangular coordinate (-4, 3), or equivalently,
—4i + 3j, to polar coordinates and express four different ways.

y

3

—4 X

Determine the length of the hypotenuse r of the right triangle and then
measure of the polar angle from the positive X-axis.

The length of ris r =+ - 4° +3% =5

and 0 = tan"'(3/~4) = -37°

Therefore, r is 5 and the small angle is 37°. If we measure counterclock-
wise from the positive X-axis, the polar angle is 143°; and if we measure
clockwise from the positive X-axis, the polar angle is —217°. If we use
negative magnitudes of r, the corresponding polar angles are fourth-
quadrant angles —37 and 323°. (Remember: Half of a circle formed in

the coordinate system is 180°.)
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(5,143° (5, -217°
: 143°
—217°5:

(~5,-37 (-5, 323°)
-37° 323°

» Example: Convert polar coordinate (—10, —245°) to a rectangular
coordinate.

65
165°
-245°
(1, 0) = (10, —245°)
xy)=0“2,-9.1)

In this diagram, we first measure —245° and then step back 10 units from
the direction the arrow is pointing to locate point (—10, —245°). The
angle of the triangle formed to r =—10 is 65°, (180° — 245°). We can
then find the x value and the y value of the reference triangle:

X =r1c0s 0 =10 cos(—65°) ~ 4.2

y =rsin 8 = 10 sin(-65°) ~ -9.1

We can also calculate x and y by using the standard position angle
—245° and the negative r value:

X =rcos 0 =-10 cos(-245°) =~ 4.2

y =r sin 6 = —10 sin(-245°) = -9.1

Therefore, as depicted on the figure, the rectangular coordinates using

either ordered pairs or the unit vectors i and j are:
(4.2,-9.1) or4.2i - 9.1j

s Example: Convert polar coordinate (—5, 120°) to a rectangular
coordinate.
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\43120"
60"
N
» (1, 6) = (-5, 120°)

(%, )= (2.5, ~4.3)

In this diagram, we first measure +120° and then step back 5 units from
the direction the arrow is pointing to locate point (-5, 120°). The angle
of the reference triangle formed by drawing a line to the horizontal axis
is 60°, (120° — 180°). We can then find the x value and the y value of the
triangle:

x=rcos 0 =15 cos(—60°) = 2.5

y =rsin 0 = 5 sin(—60°) = —4.3

We can also calculate x and y by using the standard angle 120° and the
negative r value:

x =rcos 0 =-5 cos(120°) = 2.5

y =rsin 0 =-5 sin(120°) = -4.3

Therefore, the rectangular coordinate is (2.5, —4.3).

« Example: Convert rectangular coordinate (-2, 2) to two polar
coordinates for that point.

y
2

=2 X

Determine the length of the hypotenuse r of the reference right triangle
and then measure the polar angle from the positive X-axis.

The length of risr=+v-22 +22 = V8=22~2383
0 = tan"'(2/-2) = tan"'(-1) = —-45°
For angle 0 to be in the second quadrant —45° corresponds to 135°. A

positive value of r can also have negative angle —225°. There are
numerous possible polar coordinates for a single point.

(2.83,135° (.83, -225%
35°
Pase _225°
.
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Therefore, two pairs of polar coordinates for the rectangular point
(%, y) = (-2, 2) include (r, 0) = (2 V2, 135° and (2 V2, —225°).

Converting equations

* Rectangular and polar equations can be converted from one form to
the other using the same relationships for x, y, r, and 0 that are used to
convert coordinates. For two-dimensions these relations are:

r2=x2+y20rr= x2 +y2

tan O =y/x, or 0= tan‘l(y/x), where x is not 0
x=rcos 0, or cos 0 =x/r
y=rsin®, or sin6 =y/r

» Example: Transform equation X+ y2 = x into polar form and graph
both rectangular and polar forms.

To transform this equation substitute r=x+ y2 and x =r cos 6:
x>+ y2 =X

r’=rcos0

Rearrange:

r—rcos0=0

Factor:

r(r—cos0)=0

r=0and r-cos 8 =0 orr = cos 0, are equations in terms of r and 6.
r = 0 represents the pole.

To plot the equations on one graph rearrange X’ +y>=xtoy =+ vx — x
Then, plot the positive and negative roots of y = + vx — x> and the
polar equation r = cos 0 on the same graph.

Graph of y= +vx —x? andr=cos 0

1/2%\
= F )i
-1/2

This graph is a complete overlap of the rectangular and polar graphs,
with the positive root for y forming a semicircle above the X-axis, the
negative root for y forming a semicircle below the X-axis, and the polar
equation forming a complete circle.
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« Example: Convert polar equation r° cos 26 = 2 to a rectangular form of
the equation, and graph both rectangular and polar forms of the equation
on one graph.

To convert this equation, substitute the double angle formula for cosine
cos 2x = cos’x — sin’x (see summary of identities in section 7.1):

r’ cos 20 =2

r’(cos’0 - sin’0) =2

r’ cos’0 — *sin’0 = 2

(rcos 0)” — (rsin 0)> =2

Then substitute x =r cos 0 and y =r sin 0, resulting in:

- y2 =2

To plot the equations on one graph, rearrange x* - Y =2

y2=x2 ~2,ory= +yx? -2

To plot 1’ cos 20 = 2, rearrange:
*=2/cos 20, or r = *++/2/cos 20

Graph ofy = +vx? -2 and r = ++2/cos 20

y
2~

-
T

2L

The graph forms an overlap of the rectangular and polar curves, with the
positive root for y existing above the X-axis, the negative root for y
existing below the X-axis, and the polar equation existing above and
below the X-axis.
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* Note that using a graphing calculator or graphing software to plot both
rectangular and polar forms of an equation on a single graph will
provide a means to verify conversions.

10.3. Graphing polar equations

« Various functions and their graphs will lend themselves to being
represented in polar coordinates and others will be better represented in
rectangular coordinates.

* Polar equations are expressed in terms of the variables r and 6 and
may be graphed using the same methods used for rectangular equations.
To graph a polar equation, calculate r values for a range of 6 values for
any specified interval or until a pattern develops, and then plot the
resulting ordered pairs of r and 6 values (r, ©) in a coordinate system. An
alternative to calculating r and 0 values and plotting them is entering an
equation into a graphing utility, such as a graphing calculator or
graphing software. It is important to be consistent as far as the angle
mode (degree or radian) that you are using for calculations and graphs.
Also remember that the coordinates for r and 6 correspond to the
standard angle and the magnitude (or length) of r from the origin.

» There are families of polar functions that form important graphs. These
functions are described in the following paragraphs and include:

Circles with equation forms r = a cos 6 and r = a sin 0,
Archimedes’ spiral with equation form r = a0,

Cardioid with equation formsr=a+acos 0 andr=a+ asin 0,
Roses with equation forms r = a sin n0 and r = a cos n0, including
Three-leaved rose with equation forms r = a cos 30 and r = a sin 30,
Four-leaved rose with equation forms r = a cos 20 and r = a sin 20,
Lemniscate with equation forms r* = a* cos 20 and r* = a” sin 20,
Vertical line with equation formr = a / cos 6,

Horizontal line with equation form r = a / sin 0, and

Radial line with equation form 0 = a,

where a is a constant.

* The graphs in this section illustrate that relatively small variations
between the polar equations listed above result in diverse and
characteristic shapes.
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* A circle on a coordinate system can be represented by the equation
r = cos 0 or r = sin 8, where substituting values of 0 around the
coordinate system will produce points on the circle.

y y

r=sin 0
r=cos 6
r r

8 X 0
u X
The following graph depicts r =cos 0, r =sin 8, r =2 cos 0, and

r = 2 sin 0, with the cosine curves lying to the right of the Y-axis and
the sine curves lying above the X-axis.

Graph of r = cos 0 (right side small), r =2 cos O (right side large),
r = sin O (top small), and r = 2 sin O (top large)

2

7T
RN
SRS

1a~4

y

« Example: Make a table for r = 2 cos 8 and graph it in a polar coordinate
system, where 0 is in degrees. Begin making calculations using
multiples of 30°.
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r=2cos@

6 r 0 r
0° 2.00 | 210° -1.73
30° 1.73 | 240° -1.00
60° 1.00 | 270° 0.00
90° 0.00 | 300° 1.00
120° -1.00 | 330° 1.73
150° -1.73 | 360° 2.00
180° -2.00

Remember: Negative r values correspond to the negative end of r.
Graphofr=2cos 0

y

1"'!‘

NS

The graph forms a circle with radius 1.
Each value of r falls on the circle.

¢ The family curves called Archimedes’ spirals have the equation form

r = a0, where a

5T

W

is any constant. For example, r = 0 is depicted as:

\r= 6
D

3n n\

3n/2

Tn/2|

__/27: 4n

* A graph of a polar equation such as r = a6 in a polar coordinate system
is obtained using the same method as in rectangular coordinates: by
making a table of values that satisfy the equation and plotting the
resulting values, or by entering the equation into a graphing utility.
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» Example: Make a table for r = 30, 0 <0 <27 (0 is in radians), and
graph. It is convenient to make calculations using multiples of 30° or /6
radians.

6 r=30 6 r=30
0 0 Tn/6  10.99
/6 1.57 4n/3  12.57
n/3  3.14 3n2 14.14
n2 471 5n/3  15.71
2n/3 6.28 |[11w/6 17.28
5n/6 7.85 2n 18.85
4 9.42

Graph ofr=30,0<0<2n

20

-20
y

Each value of r for a given angle 0 falls on the curve.

» Another important family of polar graphs is the cardioids with the
equation formsr=a+acos@andr=a+asin®.

 Example: Make a table forr =1 + cos 6, 0 <0 < 360°, and graph in a
polar coordinate system. Begin making calculations using multiples of
30°. Remember that values between 0° and 360° represent one period of
the cosine function.
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r=1+cos6

0 T 0 I

0°  2.00 210° 0.13
30° 1.87 240° 0.50
60° 1.50 270° 1.00
90° 1.00 300° 1.50
120° 0.50 330° 1.87
150° 0.13 360° 2.00
180° 0.00

Graph of r=1 + cos 6, 0 <0 < 360°

N
T

2k

y

Each value of r for a given angle 0 falls on the curve.

* A family of curves called roses is represented by the general equa-
tions in the forms of r = a sin n6 and r = a cos n6, having n petals if n is
odd, and 2n petals if n is even. For example, graphs of three-leaved
roses have equation forms r = a cos 30 and r = a sin 30, graphs of four-
leaved roses have equation forms r = a cos 20 and r = a sin 20, graphs of
five-leaved roses have equation forms r = a cos 56 and r = a sin 50, and
graphs of eight-leaved roses have equation forms r = a cos 46 and

r = a sin 40. (Note that for n = 1, the equations for a rose become
equations for circlesr=acos 0 andr=asin 0.)
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* A graph of a rose equation is obtained using the same method as the
other families of curves: by making a table of values that satisfy the
equation and plotting the resulting values, or by using a graphing utility
and entering the equation.

* An example of two three-leaved rose equations, r = cos 36 and

r =3 cos 30, is depicted in the following graph, with r = cos 36
represented by the smaller rose and r = 3 cos 30 represented as the
larger rose.

Graph of r = cos 30 (smaller) and r =3 cos 30 (larger)

(\3
NA

‘\
B _’/g

<3

Each value of r for a given angle 0 falls on the curve.

» An example of two four-leaved rose equations, r = cos 26 and

r = 2 sin 29, is depicted in the following graph, with r = cos 20
represented by the smaller rose and r = 2 sin 20 represented as the
larger rose.
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Graph of r = cos 20 (smaller) and r = 2 sin 20 (larger)
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Each value of r for a given angle 0 falls on the curve.

« Lemniscates have equation forms r* = a* cos 26 and r* = a” sin 26.

* An example of two lemniscate equations,

r=1,/(1/4)cos 20 and r= t+/4sin 26

is depicted in the following graph with
r= +./(1/4)cos 20 represented by the smaller lemniscate and

r= ++/4sin 20 represented as the larger lemniscate.

Both positive and negative roots were entered into the graphing
program.
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Graph of r = £ ,/(1/4) cos 20 (smaller) and r = + /4 sin 20 (larger)
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Each value of r for a given angle 0 falls on the curve.

* The graphs of straight lines in rectangular coordinates are found by
setting the variables x and y equal to constants, where x = a is a vertical
line and y = b is a horizontal line. In polar coordinates, the equations for
horizontal and vertical lines are more complicated. The equations for
straight lines in polar equations include: vertical lines with equation
form r = a/ cos 0, horizontal lines with equation form r =a/ sin 0, and
radial lines with equation form 6 = a.

* Example: The following graph is of r =2 / cos 0, which is the vertical
line at a distance of 2 from the origin, and of r =2 / sin 0, which is the
horizontal line at a distance of 2 from the origin.

Graph of r = 2/cos 0 (vertical line) and of r = 2/sin 0 (horizontal line)

A

y
|
N
N
v
>
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For 45°, r = 2/cos 45° = 2.83 and r = 2/sin 45° = 2.83, which is the r
value where the lines cross.

» The coordinates of a korizontal line at a distance d away from the
origin given by the equation r = d / sin 6 have coordinates depicted by:

r=d/sin® (r, 6)

d r
\ 4

* A radial line given by the equation 0 = a has the graph:

lA>

* As we have observed in the graphs in this section, polar coordinates
are more appropriate for many curved shapes and rectangular are more
appropriate for linear graphs.

« In three dimensions, polar coordinates become cylindrical
coordinates and are given in terms of r, 0, and z, where:

X=rcos0
y=rsin0
z=1z

r=\/x2 + y2

When comparing the rectangular and cylindrical coordinate systems,
the x- and y-components of the rectangular coordinate system are
expressed in terms of polar coordinates, and the z-component is the
same component as in the rectangular system. The r-component is
measured from the Z-axis, the 6-component measures the distance
around the Z-axis, and the z-component measures along the Z-axis.
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z

0 (1,6, 2)

t, 8, 0)

» An example of a shape represented in cylindrical coordinates is a
triangular wedge section. In this figure the section (A0/2x) is a part of a
whole area of the circle nr” that projects along the Z-axis to create a
volume.

a o=n2 7

* Another coordinate system that is related to rectangular coordinates is
the spherical coordinates system. In three dimensions, spherical
coordinates are expressed in terms of p, 0, and ¢, where p can range
from 0 to o, O can range from 0 to 27, and ¢ can range from 0 to «. In
spherical coordinates, the p component is measured from the origin, the
6 component measures the distance around the Z-axis, and the ¢
component measures down from the Z-axis and is referred to as the
polar angle. Note that p is measured from the origin rather than the
Z-axis, as is the case with r in cylindrical coordinates. Also, 0 and ¢ are
similar to longitude and latitude on a globe. Spherical coordinates can
be defined in terms of rectangular coordinates, x, y, and z as:
x=pcosOsind
y=psin0sin¢
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Z=pcos o
p='\’X2 + y2 + 22
z

N (0.0.0)

4

10.4. Parametric equations

* Parametric equations are often the most efficient means to describe
objects in motion, including airplanes, rockets, and baseballs. Projectiles
can be described using parametric equations. For a projectile, the total
time of travel, maximum height, time at which maximum height occurs,
total horizontal distance traveled, and distance for a given t (time) value
can be modeled using parametric equations. Parametric equations can
also be used to model cycloids, which are the paths traced by a point on
the circumference of a circle as it rolls along a line. Parametric equa-
tions may be used to represent the motion of a particle or object moving
along a curve as well as to describe the curve itself.

* A set of points can be defined parametrically using the parametric
equations x = f(t) and y = g(t), where t is called the parameter. 1t is
possible to determine a set of ordered pairs in the plane using the
equations x = f(t) and y = g(t), where parameter t is a real number
defined in an interval. Each value of t corresponds with values of x and
y, which results in (x, y) ordered pairs. It is important to note that more
than one set of parametric equations may result in the same set of (x, y)
ordered pairs or curve. In other words, parametric representation of a
curve is not necessarily unique, and there may be more than one set of
parametric equations for x and y that correspond to the rectangular form
of the parametric equations.
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* The parametric equations x = f(t) and y = g(t) can be calculated for
various t values to produce ordered (x, y) pairs, and a graph can be
plotted using the (x, y) values. Graphing calculators and graphing
software are often able to graph parametric equations. A curve in a
plane can be described parametrically using a set of points in a specified
interval given by (x, y), where x = f(t) and y = g(t) with t as the
parameter. For example, a unit circle can be graphed parametrically
using x = cos t and y = sin t. Both two- and three-dimensional geometric
shapes can be described using parametric equations.

» Example: Consider a curve in a plane defined by the parametric
equations X =2 costand y = 4 sint in the interval 0 <t < 2m. Write
these equations in rectangular form and graph them using both the
parametric and rectangular equations.

To transform parametric equations into rectangular form we would
normally isolate t and write the equations in terms of x and y only.
Because of the trigonometric functions it is difficult to isolate t,
however we can isolate cos t and sin t, then substitute the Pythagorean
identity cos’t + sin’t = 1:

x=2cost y=4sint

x/2=cost y/4=sint

Substitute into cos’t + sin’t = 1:

(X/2)* + (y/4)* =1, or x*/4 + y*/16 = |

which is the equation for x = 2 cos t and y = 4 sin t in rectangular form.
To graph first isolate y:

y/16=1-x/4

y? = 16(1 — x*/4)

y= +4/16(1— x> /4) = 216 — 4x

The following graph depicts curves for the equations x =2 cos t and
y =4 sin t, as well as both the positive and negative roots of

y=++16- 4x? . In the following graph, the rectangular and
parametric equations overlap each other to form the ellipse. Note that
the positive root of the rectangular equation forms the upper section of
the ellipse above the X-axis, and the negative root forms the lower
section of the ellipse below the X-axis. Also note that the ellipse has
x-intercepts and +2 and y-intercepts at +4.
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Graph of parametric equations x=2 cost and y=4 sin t, and
rectangular equation y = + v16 — 4x2
y

4

g

Ny,

N

* A graph of parametric equations can be drawn by selecting values of
the parameter, t, and calculating values of x and y or by entering the
equations into a graphing calculator or graphing software.

« For example, consider the parametric equations x =t and y = . We
can create a graph by first calculating x and y values for selected t

values and then plotting the results.
x=ty=¢t
t X y
-3 -3 9
-2 -2 4
-1 -1 1
0 0 o
1 1 1
2 2 4
3 3 9
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Graphofx=tandy =t
y

Q

(2]
"-4__\_‘\

w

»

»

* A unit circle can be represented implicitly, explicitly, or parametrically
as follows:
implicitly: Xty =1

explicitly: y=vI-x? and y =—1-x?

parametrically: x=cost,y=sint,0<t<2n

The equations x =cos t, y =sint, y=v1-x?, and y=—-/1-x?

can be plotted and will result in the same graph of a unit circle:

Graphof x=cos t,y=sin t, y=\/1—x2 and y=—\/1~—x2

A
Tab

1 K
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* In general, a curve can be represented implicitly, explicitly, or
parametrically in an XY plane as:
1. Implicitly by an equation in x and y, or f(x,y);
2. Explicitly by equations for y in terms of x or x in terms of y,
y = f(x) or x = g(y); or
3. Parametrically by a pair of equations for x and y in terms of a
third variable or parameter t, x = f(t) and y = g(t).

¢ The parameterization of a half-circle from 0 to m is described by
x=cost, y=sint, 0 <t <m, and depicted as:
y

t=n/2

* Parametric equations can be used to describe the motion of a particle
moving on a curve as well as to describe the curve itself. A curve is gen-
erally parameterized from one end to the other without retracing. To
parameterize function y = f(x), substitute the parameter t for x so that

x =t and y = f(t), where parameter t may or may not represent time.

» Motion of a particle in a plane can be described using two parametric
equations, x = {(t) for horizontal motion along the x-coordinate and

y = g(t) for vertical motion along the y-coordinate. The parameter is t
for time, such that at time t the particle is at point (f(t), g(t)).

* For example, the motion of a particle on a circle in a plane can be
described using the parametric equations x = cos t and y = sin t, where t
represents time.
A circle with radius 1 can be expressed generally as x> + y> =1,
which can be written using the parameters x =costand y =sin t as:
cos’t + sin’t = 1
If a particle is moving at a uniform speed, it will travel around the circle
in 2 units of time. As the particle travels around the circle, its motion
can be reflected onto the X and Y axes while it goes from —1 through
zero to +1 in both x and y directions (for a unit circle).
If this particle is moving in a counterclockwise direction uniformly at
different t values, x and y are:
att=0: x=1,y=0
att=m/2: x=0,y=1
att=m: x=-1,y=0
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att=3n/2: x=0,y=-1
att=2n: x=1,y=0

X=cost
t=mn/2 y=sint
2 jt=n/2

F\f—
—/t=2n X 1,3,5{t=0= n=2n

t=3n/2 4|t=3n2
Y-axis reflection moving
3 2 1 through t values
4 5 oft=0 tot= 2n

X-axis reflection
moving through points 1 to 5

‘\ e y=sinx
% %4

* Parametric equations can be used to describe the motion of a projec-
tile. A projectile is defined as an object that experiences the force of
gravity and no frictional forces and can be described using the x
(horizontal) component, the y (vertical) component, and time t. The
important quantities and key equations that are often required for a
projectile calculations are discussed in the following paragraphs and
include:
1. Horizontal distance traveled at a given t value x(t) = (v, cos O)t;
2. Total horizontal distance traveled when total time T occurs
x(T)=(vocos O)T = (v02 sin 20)/g;
3. Vertical distance at a given t value y(t) = (vq sin 9)t — gt’/2;
4. Maximum height given by Ymax = (Vo sin 0)%/2g,
where ypax occurs at one-half of the time the projectile is in the air;
5. Time at which maximum height occurs, which is given by one-half of
the total time T/2, where T is the total time; and
6. Total time T of travel given by T = (2v, sin 0)/g.

These equations can be developed as follows:
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y projectile
y-max

X

| X(T)

The initial position of an object is x(t) = 0 and y(t) = 0, or in some cases
a starting height y = h is specified. The initial velocity v in the x
direction is (vq cos 0) and in the y direction is (v sin 6), where v, is the
speed and 0 is the angle the projectile makes with the horizontal axis.
The force (or acceleration) of gravity g is in the y-direction and is given
by the second derivative as d’y/dt* = —g. Gravity affects the upward
component of velocity so that it decreases by (—gt). If there are no
frictional forces, the horizontal component of velocity remains constant.
Therefore, the x and y components of velocity are:

Vx = dx/dt = v, cos 0 and v, = dy/dt = v, sin 6 — gt.

(Note that derivatives are shown for thoroughness, however knowledge
of calculus is not required. See Master Math: Calculus for definitions
and uses of the derivative.)

The distance along the X-axis x(t) increases with time and the height
along the Y-axis y(t) increases, then decreases. The distance traveled or
path of the projectile is obtained (from calculus) by velocity
components with respect to time resulting in:

x(t) = (vg cos O)t

y(t) = (Vo sin 0)t — gt*/2

The maximum height occurs where the rate of change (or derivative) in
the y direction is zero, or dy/dt = 0. Therefore, the derivative:
dy(ty/dt = (d/dt)[(vo sin O)t — gt*/2] = v, sin 0 — gt

when dy/dt = 0, then v, sin 0 = gt

Solving vq sin 6 = gt for t results in:

t=(vo sin 0)/g

Substituting t into y(t) we obtain yyax:

Y(t) at Yomax = (Vo sin 8)(vo sin 0)/g — g((vo sin 0)/g)*/2

= (vp sin 8)’/g — (vo sin 0)%/2g = (vo sin 8)%/g (1 — 1/2) =

Yimax = (Vo sin 0)’/2g

where ymax Occurs at one-half of the time the projectile is in the air.

The total horizontal distance x(T) the projectile travels occurs when
y =0 and time = T, where T is the total time in the air. Therefore, at
time =T:
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(Vo sin ©)T = gT/2
Solving for T gives total time T as:
T = (2v, sin 0)/g

The total distance x(t) att =T is:
X(T) = (vp cos 0)T = (v cos B)(2 v, sin 0)/g = (vo2 sin 26)/g
Remember: 2 sin x cos X = sin 2x.

Because yma Occurs at one-half of the time the projectile is in the air,
the time when maximum height occurs is T/2.

» Example: If a small rocket is projected upward from the ground with
an initial velocity of 60 feet/second at an angle of 60°, how long will it
be in the air, how high and far will it travel, and where is it at

t=1 second?

The total time is T = (2 vy sin e;/g:
T = ((2)(60 fi/s sin60°) / (32 ft/s”) = 3.25 seconds

The total horizontal distance is x(T) = (v, cos 0)T:
x(T) = (60 ft/s cos 60°) T = (30 ft/s)}(3.255) = 97.50 feet

The maximum vertical distance or height is Yaax = (Vo sin 0)%/2g:
Ymax = (60 t/s sin 60°)/ (2)(32 ft/s?) = 42.19 feet

At t=1 second the location is given by x(t) = (v, cos 0)t and
y(t) = (vp sin O)t — gt2/2. Therefore:

x(t) = (60 ft/s cos 60°)(1s) = 30.00 ft

y(t) = (60 fi/s sin 60°)(1 s) — (32 f/s?)(15)* /2 = 35.96 fi

Y
35.96ft

0 30ft 97.50ft

« Parametric equations can also be used to describe a cycloid. A cycloid
represents the path of a point on the perimeter of a circle as it is rolled
along a line or surface. An example of a cycloid may be a point on the
wheel of a vehicle. If the circle has radius r, and point P begins at the
bottom at x = 0, then if it is rolled along the X-axis, it makes a complete
revolution at x = 2mr.
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cycloid

2r

ro rn r2=m

The parameter 0 represents the angle through which the circle revolves.
The circle rolls a distance of r0 along the X-axis and its centerisaty =r
and x =r0. At 0 =0, the pointis at x=0, y =0, and at 0 = 2, the point
is at x = 27r, y = 0. The segment between the center and the point is
taken into account in measurements by subtracting (r sin 8) from x and
(r cos 0) from y. Therefore:

x=r0 —r sin 6 =r(6 — sin 0)

y=r—rcos 0=r(1—cos6)

Yy
2r

t/]r cop 6

r.sin

ro

These equations for a cycloid can also be written using the parameter t
as;

x=rt—rsint=r(t—-sint)

y=r—rcost=r(l —cost)

in the interval of all real numbers.

» Example: Graph the equations for a cycloid x =rt — r sin t and
y=r—rcostforr=2 inthe interval -2n <t <2m.

When r = 2, the equations become:
x=2t-2sintandy=2-2cost

Note that the maximum y values are at 2r = 4.
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Graphofx=2t-2sintandy=2-2cost
y

!
-6.28 -3.14 3.14 628 X

4L

» We can also write the parametric equations using the position vector,
which has its initial point at the origin of a rectangular coordinate
system. A position vector is defined according to the location of its
terminal point. A position vector can be used to locate the position of a
moving object and can be written: R(t) = x()i + y(t)j + z(t)k

To parameterize a surface in three dimensions, such as a cylinder, first
remember that a circle in two dimensions is described using x =cos t,
y = sin t. If the circle is on an XY plane, then the z-dimension is zero,
and the equations become x =cost,y=sint,and z=0. If zand t are
allowed to vary, then many circles along the Z-axis can exist to form a
cylinder so that x = cos t, y = sin t, and z = z describe many circles
along z. The position vectors are:

R =X)i+ (y)j + (2)k = (cos t)i + (sin t)j + (2)k

4
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* A sphere can be parameterized using spherical coordinates. In three
dimensions, spherical coordinates are expressed in terms of p rho, 6
theta, and ¢ phi, where p can range from 0 to oo, ® can range from 0 to
2m, and ¢ can range from O to 7. In spherical coordinates, the p com-
ponent is measured from the origin, the 6 component measures the
distance around the Z-axis, and the ¢ component measures down from
the Z-axis and is referred to as the polar angle. The coordinates can be
defined in terms of Cartesian (or rectangular) coordinates, X, y, and z:

x=pcosO sind,y=psin0 sin¢, z=pcos ¢, and p=4/x2 +y? + 2>

The parameters of a sphere centered at origin are:
x=cosOsind, y=sin0@sin¢d, and z=cos ¢

The equation can be written in the form:

R(6,) = (cos 0 sin ¢)i + (sin O sin $)j + (cos P)k

For example, if point P is centered at (2, 2, 2) and the sphere has a
radius of 2, then Ro = 2i + 2j + 2k and R(6, ¢) is multiplied by 2 to
expand the radius to 2. The equation becomes:

R(6,0) =2i+2j+ 2k + (2 cos 6 sin ¢)i + (2 sin O sin ¢)j + (2 cos P)k
=(2+2cosOsind)i+ (2 +2sin0Osinp)j + (2 +2cos )k

or

x=2+2cos0sing, y=2+2sinOsin¢, andz=2+2 cos ¢

10.5. Chapter 10 summary and highlights

* Polar coordinates describe points in a plane or in space, similar to
rectangular coordinates. The difference is that in polar coordinates, there
is an r-coordinate that maps the distance of a point from the origin of the
coordinate system, and there is a 6-coordinate that measures the angle
the r-ray makes from the horizontal positive X-axis called the polar
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axis. A point P has coordinates (X, y) in the rectangular coordinate
system, and point P designates the ordered pair (r, 6) in polar coor-
dinates. Point P is located by giving the angle 0 from the positive X-axis
to ray OP and the distance r from the origin to point P. The angle 0 can
be measured in degrees or radians. Angle 0 is positive if the rotation is
counter-clockwise, and negative if the rotation is clockwise. The r-
coordinate, which is the directed distance from the origin to the point P,
is positive if measured from the origin along the terminal side of 0, and
negative if measured along the terminal side extended through the ori-
gin. A point (-, 0) with a negative r-value represents a point a distance
r from the origin but in the opposite direction as point (r, 0). A given
point in a polar coordinate system can be described by numerous polar
coordinates.

0] X=rcos0

* Coordinates or equations can be converted between polar and
rectangular forms. The relationships between point (x, y) in a two-
dimensional rectangular coordinate system and point (r, 6) in a two-
dimensional polar coordinate system are:

P=x*+y or r=\/x2 -l-y2 , tan 6 = y/x, where X is not 0
x=r1c0s0,orcos@=x/r, and y=rsin0,or sin@=y/r

* Polar equations can be graphed by calculating ordered pairs of r and 0
values (r, 0) in a coordinate system, or by entering an equation into a
graphing calculator or graphing software.

* Parametric equations are often the most efficient means to describe
objects in motion including airplanes, projectiles, and cycloids. Para-
metric equations may be used to represent the motion of a particle or
object moving along a curve as well as to describe the curve itself. A set
of points can be defined parametrically using the parametric equations
x = f(t) and y = g(t), where t is called the parameter. Each value of t
corresponds with values of x and y, which results in (x, y) ordered pairs.
The parametric equations x = f(t) and y = g(t) can be calculated for
various t values to produce ordered (%, y) pairs, and a graph can be
plotted using the (x, y) values. Graphing calculators and graphing
software are often able to graph parametric equations.
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CHAPTER 11

Complex Numbers and the
Complex Plane

11.1. Complex numbers defined

11.2. The complex plane in rectangular form

11.3. Addition and subtraction of complex numbers in rectangular form

11.4. Complex numbers in polar form and the complex plane

11.5. Converting between rectangular and polar form

11.6. Multiplication and division of complex numbers in rectangular
and polar forms

11.7. Powers and roots of complex numbers

11.8. Chapter 7 summary and highlights

11.1. Complex numbers defined

* The concept of complex numbers came about because of early mathe-
maticians encountering square roots of negative numbers. Complex
numbers are the solution to roots of negative numbers. Complex num-
bers can be negative when they are squared, such that x> = ~1. There are
no real number solutions to this equation because for any real number x,
x2 > 0. Complex numbers are used in the design of electrical circuits,
ships, airplane wings, and fractals (which are image-shapes that repeat
them-selves infinitely in continually decreasing dimensions).

How complex numbers fit into the number hierarchy

» Complex numbers encompass both real and imaginary numbers, real
numbers encompass both rational and irrational numbers, rational
numbers include integers, which include whole numbers, which include
natural numbers. Remember that a rational number is a number that can
be expressed in the form of a fraction, x/y, providing the denominator is
not zero. The result of dividing two integers (with a nonzero divisor) is
a rational number. Rational numbers can be represented in the form of
decimals that either terminate or end or in the form of a decimal that
repeats one or more digits, such as 1/4 = 0.25 or 1/3 = 0.33333...
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* Irrational numbers are numbers that cannot be expressed in the form
of a fraction. Irrational numbers possess endless non-repeating digits to
the right of the decimal point, such as, 7 = 3.14159..., and the roots

V2 =1.414213562..., /3 =1.732050807..., /5 =2.236067977....
and other roots.

* Real numbers contain rational and irrational numbers and include
natural numbers, whole numbers, integers, fractions, and decimals. All
real numbers except zero are either positive or negative and correspond
to points on the real number line, and all points on the number line
correspond to real numbers. The real number line reaches from negative
infinity (—o0) to positive infinity (+).

<

232 -1-501%22523x4 >

Real numbers include —0.5, -2, 5/2, and © (where © = 3.14159...).

* Every real number corresponds to a point on the real number line.
There is, however, no real number equal to v—1 and no point on a real

number line corresponding to +/— 1 . This means that the equation

x> = ~1 has no real solutions.

* Because there is no number that when squared equals —1, the symbol i
was introduced. The symbol i has the properties

i=A-1
(i)2 = -1, because (+/—1 )(1/_ 1)=-1
J—x= =1 +/x = ifx , where x is a positive number.

Numbers involving i orv/— 1 are called complex numbers.

For example,

(V=4 = (V=1 VA XV=1 Va) = (iVaXiVa) =i* J(4X3) =

The square root of —1 is often encountered when solving quadratic
equations.

= Complex numbers involve i and are generally in the form (x + iy) or
z= (X + Iy), where x and y are real numbers and i is imaginary. Com-
plex numbers are also written using a and b as (a + /b), where a and b
are real numbers and i is imaginary. In the expression (x + iy) the x
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term is referred to as the real part and the iy term is referred to as the
imaginary part. A real number multiplied by i forms an imaginary
number, such that:

(real number) x i = (imaginary number).

A real number added to an imaginary number forms a complex number,
such that:

(real number) + (real number)(¥) = (complex number), or

(real number) + (imaginary number) = (complex number).

e Complex numbers include all real numbers and all imaginary
numbers. Every real number can be written as a complex number:
x + 0i = x, where the imaginary part is zero.

* Two complex numbers a + bi and ¢ + di are equal if a=c and
b = d. Therefore, a + bi =c¢ + dj, if and only ifa=c and b =d.

» The square root of a negative number suchas V-1, v-3, +-5,

or 4/—9 is an imaginary number. This is true because
V-3=(B)V-1)=i43,
V=-5=(J5)J-1)=i5,
V=9=(Jo)yV-1)=iV9 =3;,

where i=+/~1.

* Properties of i include:
@ =-1

@’ =@’ () =Di=~i
B =@r=1Y=1
@ =0 =)i=i

and so on.

» Using i in calculations helps to avoid errors that can occur when com-
bining roots of negative numbers. For example,

(\/:5 X J-a ) does not equal V36 , but rather
(V=9 )YV=4)= (VO YN=1 )4 XV=1) = Bi)2i) = 6= 6.
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11.2. The complex plane in rectangular form

* Complex numbers can correspond to points in a coordinate system,
usually called the complex plane. For example, 3 + 4i corresponds to
x =3 and y = 4, where the X-axis is real and the Y-axis is imaginary.

The coordinate 3 + 4/ on a complex plane corresponds to point (3, 4).
Each complex number can be associated with a point in a rectangular
coordinate system.

y jimaginary axis

................ ‘ 3+4i, (3’ 4)

X real axis

0

Complex Plane

* At the origin the coordinates are (0, 0) and represent the complex
number 0 + 0i = 0. All points on the real X-axis have coordinates in the
form (x, 0) and correspond to real numbers x + 0i = x. All points on the
imaginary Y-axis have coordinates in the form (0, y) and correspond to
imaginary numbers 0 + yi = yi.

A complex number cannot only be represented in a complex plane that
has a real axis and an imaginary axis, but a complex number can also be
represented by a vector. Therefore, each complex number can corres-
pond to a position vector. For example, vector 3i + 4j looks the same as
complex number 3 + 4i:

y jimaginary axis

3i+4j , 3+4i

X real axis

11.3. Addition and subtraction of complex numbers in rectangular
form

* In rectangular form complex numbers are added or subtracted by ad-
ding or subtracting the real terms and imaginary terms separately. The
result is in the form (x + Zy). (This is similar to combining like terms.)
For example:
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(1+2)+(B+4)=1+3+2i+4i=4+6i
G+4D)-CB+2)=(5-3)+@i-20)=2+2i

* Note: To add or subtract complex numbers in polar form (or trigono-
metric, it is simplest to convert the polar form to rectangular form x + iy
and add or subtract the real parts and imaginary parts separately. (See
Sections 11.4 and 11.5 for polar and rectangular forms and converting
between.)

* The sum of two complex numbers can be represented graphically as a
resultant vector of the corresponding vectors represented by the two
complex numbers. For example, represent graphically complex
numbers: (2+i)+ (1 +3)=3+4i

y imaginary axis

3+4i

x real axis

(See Section 9.4 for determining the sum and difference of two vectors.)

» Example: Calculate and represent graphically (4 + 37) — (2 — ).

(4 + 3i) — (2 — i) can be rewritten (4 + 37) + (-2 + i) and added.
@G+3D+(2+D=4-2+3i+i=2+4i

y imaginary axis

11.4. Complex numbers in polar form and the complex plane

* We know from Chapter 10 that the relationship between polar and
rectangular coordinates is:

x=rcos6,y=rsin6, r=\/x2 +y2 , and tan 0 = y/x or 6 = tan”'(y/x).

314



Complex Numbers and the Complex Plane

Complex numbers are expressed in polar, or trigonometric, form by
writing the real and imaginary parts using r cos 6 and r sin 8. Complex
numbers can be expressed in polar coordinate form using two numbers,
the absolute value r and the angle 6 (depicted on the complex plane
below.)

* Polar form of complex numbers can be written using polar coordinates
x =r cos 0 and y = r sin 0. Therefore, complex numbers expressed in
polar form are written:

X+iy=rcos 0 +irsin 0 =r(cos 6 +isin 0)

An abbreviated notation for complex numbers is written:

r(cos© +isinB)=rcis 6

The complex plane using polar coordinates is drawn:

imaginary-axis

real-axis

where x + iy =r cos 0 + i r sin 0 and complex number x + iy
corresponds to the vector with magnitude r and direction 6.

* Note that cos © + i sin 8 = ¢® is Euler’s formula, where e ~2.718.
Therefore, another notation written in complex polar form is:
z=x+iy=re"®

where r cos 0 + i r sin = r(cos 0 + i sin 8) = re®.

« Sine and cosine are periodic functions with period 2r and can be
represented as sin © = sin(0 + n2w) and cos 6 = cos(6 + n2w) where n is
any integer. Using this periodic nature, we can write a more general
polar form of a complex number:

z =X+ iy = r(cos(0 + n2x) + i sin(8 + n2x) = re® 2"

 The number r is called the modulus, or absolute value, of complex
number x + j7y. The absolute value of a complex number is the distance
(or length r) from the origin to the point representing that number.
Therefore, the absolute value of r is

mod(x +iy)=r= \/xz +y? and is a positive number.
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In addition, the angle @ is the polar angle and is called the argument of
x + iy. Angle 0 is also sometimes referred to as the amplitude. (Remem-
ber: In a polar coordinate system, the polar axis lies on the positive side
of the horizontal X-axis beginning at the origin so that the polar axis
coincides with the positive X-axis.) The argument 0 is generally chosen
such that —n <6 <m, or —180° < 0 < 180°. Remember that 0 is not
unique because there are many coterminal angles for 6. Angle 9 is often
chosen as the smallest positive angle for which tan 0 = y/x, unless it is
more convenient to select a coterminal angle of 0 for a particular
situation. In summary, a vector and the associated complex number may
be described in terms of the length r of the vector and any positive angle
6, which the vector makes with the positive real X-axis.

* In this figure we can see that x =r cos 6 and y =r sin 0. In the relation-
shipx+iy=rcos 0 +irsin 0 =r(cos 6 + i sin 0), r(cos 0 + i sin 0) is
the polar or trigonometric form, and x + iy is the rectangular form of the
complex number.

y imaginary axis

§y=rsin6

B .
x real axis

x=rcos 0

Complex Plane

* Note that for complex numbers written using a and b instead of x and
y, the polar form of the complex number is written:

a+bi=r(cos 0 +isinB), wherea=rcos0and b=rsin0.

Also,r=+va” +b? and tan 0 =b/a, or 0 = arctan(b/a).

* To add or subtract complex numbers in polar form, it is simplest to
convert the polar form to rectangular form x + iy and add or subtract the
real parts and imaginary parts separately.

(a+bi)+(c+di)=(a+c)+(bi+di)
(a+b)—(c+d)=(@+b)+(-c—-di)=(a—c)+(bi—di

(See Section 11.5 for converting between rectangular and polar forms.)
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11.5. Converting between rectangular and polar form

* To convert from polar to rectangular form, simply calculate x and y
values forr cos © + i r sin 6, where x =r cos 6 and y =r sin 0.

» Example: Convert 2 cos 270° + i 2 sin 270° in polar form to
rectangular form.

X+ iy =2 cos 270° + i 2 sin 270°
=@O)+i@(-D=0+i(-2)=-2i

* To convert from rectangular to polar form, draw a graph of the

number in a complex plane, then find r and 0 using r =\/x2 + y2

and tan 6 = y/x, providing x not equal to zero. If x = 0, determine 0 by
inspection. Also, be careful to note the quadrant of 6 in the complex
plane when making calculations.

» Example: Represent 2 i+ 2j in polar form, complex rectangular
form, and complex polar form, and graph.

2430+ 2j is vector notation in rectangular form.

The rectangular complex form is x + iy , or 2 V3 +2i
To convert to polar form, calculate r and 0:

r=yx2 +y? =@V3)? +22 =4

tan @ = y/x = 2/2+/3 , or 6 = 30°
Therefore, the (r, 8) polar coordinate is (4, 30°).
The complex polar form is r(cos 8 + i sin 0) = 4(cos 30° + i sin 30°).

The graph of this complex number is depicted as:

y

30°

2«/5 X

where the length of the hypotenuse of the graph of a complex number is
called the absolute value of the complex number; in this case it is 4. Note
that the calculations and graph are consistent with sin 30° = 2/4 = 1/2.
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« Example: Convert complex number —i from rectangular form to polar
form. Then convert back to rectangular form to check result.
First draw graph of x + iy =0 — i:

e=270°/1\
#o_;

Calculate r and 6:

r=yx>+y? = JO2 +(-1)> =41=1

tan O = y/x

In this example, x = 0 so we find 0 by inspection of the graph which
indicates that 6 = 270°,

Therefore, 0 — 7 in polar form is 1(cos 270° + i sin 270°).

Next convert back to rectangular form to check result.
1(cos 270° +i sin 270%) = 1(0 + i(-1)) = —i
which is the original complex number in rectangular form.

« Example: Convert complex number —1 + i from rectangular to polar
form. Then convert back to rectangular form to check result.
First draw graph of x + iy = -1 +i:

\O

-1

Calculate r and 0:

r=x? +y? = J(=1)2 + (1)’ =42

tan O = y/x = 1/(—1), or @ = —45°. However, from the graph we can see
that the angle represents a reference triangle. The angle 0 is therefore
0 = 180° — 45°=135°.

Therefore, —1 + i in polar form is NG (cos 135° + i sin 135°).

Next convert back to rectangular form to check result.
V2 cos 1359+ iv/2 sin 1359 = —1 +i(1) =1 +i
which is the original complex number in rectangular form.
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11.6. Multiplication and division of complex numbers in
rectangular and polar forms

e A primary advantage of converting complex numbers into polar (or
trigonometric) form is that multiplication and division often become
easier. Using polar form allows complex numbers to be mulitiplied and
divided to give the product or quotient more directly in the same form.

Products of complex numbers in rectangular and polar forms

* Complex numbers in rectangular form are multiplied as ordinary
binomials, and (i)’ is replaced by —1. Remember: To multiply
binomials, each term in the first binomial is muitiplied by each term in
the second binomial, and like terms are combined (added).

¢ Example: Multiply (1 + 2/) and (3 + 4i) in rectanguiar form.
(1 +2)3 +4)=(1)B) + (D@D + (2H(3) + Ri)(4i)
=3+4i+6i+8()’=3-8+10i=-5+10i

» Complex numbers in polar form are multiplied using the product
theorem. In polar form two complex numbers are multiplied as follows.
Given that z=x + iy =r cos 0 + i r sin © =r(cos 6 + i sin 0) = re®,
we can multiply two complex numbers

z; =ri(cos 0; + i sin 6;) and z, = ry(cos 6, + i sin 6,),

using the product theorem, which is:

[ri(cos 0, + i sin 0;)][rx(cos O, + i sin 6,)]

=11 1p[cos(0; + 0;) + i sin(6; + 6,)]

The product theorem in abbreviated cis form
(where cis 0 =cos 6 + i sin 0) is:
[r; cis 91][1‘2 cis 92] =In cis(O; + 92)
The product theorem in exponential polar form is:
_ 101 102 _ 1(01+02)
Z\Zp)=1re mne =rne
Note that this is consistent with the product rules for exponents:
xX*x°=x""?,
By using the product theorem to multiply two complex numbers,
ri(cos 0, + i sin 0,) and ry(cos 6, + i sin 6;), we multiply r; and r, and
add 91 and 92.
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» The product theorem can be verified as follows.

Giventhat x +iy=rcos 0 +irsin 0 =r(cos 6 +isin 0) = re’:
Muitiply ri(cos 6; + i sin 0,) and r,(cos 0, + i sin 6,):
[ri(cos 0, + i sin 6,)][rx(cos 6, + i sin 6,)]

=, 1,(cos B; + i sin 6;)(cos 0, + i sin 6;)

=1, 12(cos 0; cos B, + i cos 6 sin 6, + i sin 6, cos 6, + i sin 0, i sin 6,)

=r,1[cos 0; cos 0, —sin O; sin 0, + i (cos 0, sin 6, + sin 0; cos 6,)]
Substituting the sum identities for cosine and sine

sin(x + y) = cos X siny + sin X cos y
cos(x +y)=cosXcosy—sinxsiny

where x = 0; and y = 05, results in:
r1 ry[cos(0, + 0;,) + i sin(0; + 0,)]
which can be written in exponential polar form as: rir, 118
» Example: Multiply (1 + 27) and (3 + 4i) in polar form and compare
with rectangular form.
To solve:
(a) Convert (1 + 2/) and (3 + 4i) into polar form.
(b) Calculate the product using the product theorem for polar form.
(c) Convert the product back into rectangular form and verify that the
result from calculating in polar form is the same result found by
calculating directly in rectangular form.

Solution:

(a) To convert from rectangular to polar form, draw a graph of the
number in a complex plane, then find r and 6 using

r =,/ x* +y? and tan 0 = y/x, providing x is not equal to zero.

y imaginary axis

|x1 X2 x real axis

For (1+2i): n=yx, > +y, > =12 +22 =45
tan 0, =y;/x; = 2/1 =2, or 0, = arctan 2 = 63.43°
Therefore, the polar form x + iy = r(cos 0 + i sin 0) is
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(1 +2i) = /5 (cos 63.43° + i sin 63.43°)

For 3 +4): n=yx,> +y,> = V32 +42 =425 =5
tan 0, = y»/x; = 4/3, or 0, = arctan(4/3) = 53.13°

Therefore, the polar form x + iy = r(cos 0 + isin0) is
(3 +4i)=5(cos 53.13° + isin 53.13°)

(b) To calculate the product using the product theorem for polar form,
use [ri(cos 6; + i sin 0y)][ry(cos 6, + i sin 6,)]
=r111y[c0s(B; + 0y) + i sin(0; + 0,)]:

[V/5 (cos 63.43° + i sin 63.43°)][S(cos 53.13° + i sin 53.13%)]
= 5+/5 [cos (63.43° + 53.13°) + i sin (63.43° + 53.13%)]
=545 [cos 116.56° + i sin 116.56°).

(c) To convert the product back into rectangular form, use
r(cos 0 +isin 8) =x + iy, where x =r cos 0 and y =r sin 0:

545 [cos 116.56° + i sin 116.56°] = x + iy

Using a calculator:

545 [cos 116.56° + i sin 116.56°1 ~ 11.18[-0.447 + i 0.894]
~—4.997+i9.995~-5+ 10i

Verify that the result is the same as calculated directly in rectangular

form, which is:
(1 +20)(3+4))=3+4i+6i+8()*=3-8+10i=-5+10i

The results are the same for calculating the product in polar form and
rectangular form.

» Example: Multiply 4(cos 20° + i sin 20°) and 2(cos 40° + 7 sin 40°) in
polar form and compare with rectangular form.

Using the product theorem for complex numbers
[ri(cos 0, + i sin 0,)][r,(cos B, + i sin 6,)]

=11 1p[cos(0; + 0,) + i sin(0; + 6,)]

multiply the two numbers:

[4(cos 20° + i sin 20°)][2(cos 40° + i sin 40°)]

= (4)(2)[cos(20° + 40°) + i sin(20° + 40°)]

= 8{cos 60° + i sin 60°]

This can be written in abbreviated notation as 8 cis 60°.
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We can check this result by converting each of the original complex
numbers into rectangular form and multiplying.

The first number: 4 cos 20° + 4i sin 20° = 3.759 + i 1.368

The second number: 2 cos 40° + 2i sin 40° = 1.532 +i 1.286
Multiplying these in rectangular form:

(3.759 +i 1.368)(1.532 + i 1.286) = 5.759 + 4.834 i + 2.096 i - 1.759
=4.00+693i

Finally, compare with the result found using polar form by converting it

to rectangular form:
8 cos 60° + 8 i sin 60° converted to rectangular form is: 4.00 + 6.93 i

Therefore, we find the same results multiplying in rectangular and polar
forms.

* Example: Find the product of 2 cos 300° + i 2 sin 300° and
2 cos 210°+ 7 2 sin 210° in exponential polar form.

Write in exponential form: )

2 cos 300° + i 2 sin 300° = 2¢°"

2 cos 210° + i 2 sin 210° = 2¢”"

Multiplying:

261300 2812] ° — (2)(2) el(300+2]0°) = 4.61510o

Using the smallest coterminal angle for 510°

510° - 360° = 150°

510° and 150°

Therefore, the product can be written: P

Quotients of complex numbers in rectangular and polar forms

» Complex numbers are divided in rectangular form by first multi-
plying the numerator and denominator by what is called the complex
conjugate of the denominator. Then the numerator and denominator are
divided and combined as with multiplication. For example, the complex
conjugate of (3 + 2i) is (3 — 2/) and the complex conjugate of (3 — 2i) is
(3 + 2i). The product of a complex number and its conjugate is a real
number. Remember to replace (i)* by —1 during calculations.
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¢ Example: Divide (1 + 2/) by (3 + 4i) in rectangular form.

(1+2i)+ (B +4i)=(1+2)3 - 4i) + (3 +4)(3 - 4i)

=3 —4i+6i—8%) + (9 - 12i + 12i — 16/

=3 +2i-8(-1)) + (9 - 16(-1)) = (11 + 2i) = 25 = 11/25 + 2i/25
~0.44 +70.08

e Complex numbers in polar form can be divided using the quotient

theorem. In polar form, two complex numbers are divided as follows.

Giventhatz=x+iy=rcos 0 + i rsin = r(cos 8 + i sin 0) =re"®,

we can divide two complex numbers

z1 =ry(cos B; + i sin 8;) and z; = ry(cos 0, + i sin 0,)
using the quotient theorem, which is:

[ri{cos 6, + i sin 0;)] / [ry(cos 6, + i sin 6,)]

= (r1/1)[cos(0; ~ 6,) + i sin(0; — 6,)]

The quotient theorem in abbreviated cis form is:
[r; cis 0]/ [ cis 65] = (11 /1) cis(6; — 6,)

The quotient theorem in exponential polar form is:

21/ = (11€° (12 = (11 /1)

Note that this is consistent with the quotient rules for exponents:

XY =x*P,

By using the quotient theorem to divide two complex numbers

ry(cos 6, + 7 sin ©,) and ry(cos 6, + i sin 0,), we can divide r; by r; and
subtract 0; and 6,.

s Example: Divide (1 + 2i) by (3 + 4i) in polar form and compare with
rectangular form. (This is similar to the example for multiplication
earlier in this section.)

To solve:

(a) Convert (1 + 2i) and (3 + 4i) into polar form.

(b) Calculate the quotient using the quotient theorem for polar form.
(c) Convert the quotient back into rectangular form and verify that the
result is the same as calculated in rectangular form.

Solution:

(a) To convert from rectangular to polar form, draw a graph of the
number in a complex plane, then find r and 6 using

r= ,/xz + y2 and tan 0 = y/x, providing x is not equal to zero.
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y imaginary axis

le z X real axis

For (1 +2i): =\/X12 +y12 = \/12 +2? =1/§

tan 0, = y1/x; = 2, or 6, = arctan 2 = 63.43°
Therefore, the polar form x + iy =r(cos 6 + i sin 8) is
(1 +2i) = /5 (cos 63.43° + i sin 63.43°)

For (3 + 4i): r2=\/x22 + y22 = \/32 +4? =425=5
tan 6, = yy/x; =4/3,0r 6, = arctan(4/3) = 53.13¢

Therefore, the polar form x + iy = r(cos 0 + 7 sin 0) is
(3 + 4i) = 5(cos 53.13° + i sin 53.13°)

(b) To calculate the quotient using the quotient theorem for polar form,
use [ri(cos 01 + i sin 6;)] / [ry(cos 6, + i sin 0,)]

= (ry/1)[cos(0; — 0,) + i sin(6, — 0,)]:

[\/g(cos 63.43° + i sin 63.43°)] / [S(cos 53.13° + i sin 53.139)]

= (Jg/S)[cos (63.43° — 53.13°) + i sin (63.43° — 53.13°)]

= (/5 /5)[cos 10.30° + i sin 10.30°]

(c) To convert the product back into rectangular form, use
r(cos 6 + i sin 0) = x + iy, where x =r cos 0 and y =r sin 0:
(\/g /5)[cos 10.30° + i sin 10.30°} =x + iy

Using a calculator:

(/5 /5)[cos 10.30° + i sin 10.30°] ~ 0.45[0.984 + i 0.179]
~0.44 +i0.08

Then verify that the result is the same as calculated above in this section
in rectangular form, which was:

A+2)+@B+4D)=0+20)(B -4)+ 3+ 43 -4)

=(3 - 4i+6i—8°) + (9 — 12i + 12i - 16/

=(3+2i-8(-1))+ (9 -16(-1))= (11 +2i) + 25 = 11/25 + 2i/25
=0.44 +i0.08

The results are the same for calculating the product in polar form and
rectangular form.
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* Example: Find the quotient of 2 cos 210° + i 2 sin 210° divided by
cos 300° + i sin 300° in exponential polar form.

Convert to exponential form:

2 cos 210°+i 2 sin 210° = 2671

cos 300° + i sin 300° = &%

Divide:

2210 41300 /1) £/ 210°-300%) _ 5 1(-90%)

e=270°/l\
j/e-ﬁgoo

Use the smallest positive coterminal angle: 360° — 90° = 270°
Therefore, the quotient is: 2¢*"

11.7. Powers and roots of complex numbers

* De Moivre’s theorem is used to find powers of complex numbers in
polar form. This theorem also provides the foundation for the nth-root
theorem, which is used to find all n reots of a complex number.

Powers of complex numbers—De Moivre’s theorem

* De Moivre’s theorem is used to find the power of a complex number
in polar (or trigonometric) form. Raising a number to a positive power
is in essence repeatedly applying the product rule. By the product rule,
we know that the product of two complex numbers in polar form can be
found by multiplying the absolute values and adding the angles.
Remember that the product theorem is:

[I'l(COS 91 + isin 91)][1'2(003 92+ isin 92)] =In I'2[COS(91 +92) +i sin(91 + 92)]

Raising a number to the power two is the same as taking the product of
two numbers.

[r(cos © +isin 0)]*=[r(cos ® + i sin ©)][r(cos O + i sin )]

= rz(cos 20 +isin 20)

De Moivre’s theorem expands this from the product of two complex
numbers to the product of » complex numbers. For example,

[r(cos @ +isin @] =r’(cos 30 + i sin 30)

[r(cos & +isin 0)]' =r*(cos 40 + i sin 40)

and so on.
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Therefore, the power of a complex number in polar form can be found
using De Moivre’s theorem, which is:

[r(cos © +isin©)]"=r"(cos n® + i sin n®)

where n is a real number or integer.

De Moivre’s theorem written in abbreviated cis form is:

[r(cis 0)]" = r"(cis nB)

De Moivre’s theorem in exponential polar form is:

(rele)n — rneme .

(De Moivre’s theorem can be derived using mathematical techniques.)

« Example: Find (1 + /).

First convert 1 + / into polar form:

r2=x2+y2= 1 + 1 =2, therefore, r = «/5

tan 8 = y/x = 1/1, or 6 = 45°, which lies in the first quadrant.
The polar form is: r(cos 6 + i sin ) = V2 (cos 45° + i sin 45°)
Raised to the power thirteen: NOR (cos 45° + i sin 45°)"
Because \/5 13 =252 this becomes 2‘3'2(cos 45° + i sin 45°)"
Apply De Moivre’s theorem:

[r(cos @ +isin0)]"= r" (cos nd + i sin n®)

2"(cos 45° + i sin 45°)" = 2"3%(cos(45°(13)) + i sin(45°(13)))
=2"%2 (cos 585° + i sin 585°) = 2'*? (cos 225° + i sin 225°)
(where 585° and 225° are coterminal)

=2%212 (cos 225° + i sin 225%) = 64 /2 (cos 225° + i sin 225°)
= 253 (cos 225° + i sin 225°)

Therefore, (1 +i)'* = 64 /2 (cos 225° + i sin 225°)

We can also write this in rectangular form by taking sine and cosine of
225° and multiplying each by 64 /2 :

(1+)P=—-64-i64

« Example: Find (+/3 ~ )'°.

First convert +/3 — i into polar form:

r2=x2+y2=3 + 1 = 4; therefore, r =2

tan6=y/x=—1/«/37, or 6 =-30°

Find smallest positive angle, 360° — 30° = 330°; therefore, 0 = 330°.
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The polar form is: r(cos 6 + i sin 8) = 2(cos 330° + i sin 330°)
Raised to the power ten: 2'%cos 330° + i sin 330°)"°

Apply De Moivre’s theorem:

[r(cos © +isin 0)]"=r"(cos n® + i sin no):

2"%cos 330° + i sin 330°)'° = 2'%(cos(10(330°) + i sin(10(330°)))
= 2"%c0s(3300°) + i sin(3300°) = 2'%(cos 60° + i sin 60°)

(where 3300° and 60° are coterminal)

Therefore (\[5 — )'® = 1024(cos 60° + i sin 60°)

In rectangular form: 1024 cos 60° +i1024 sin 60° =512 + i1024( ﬁ /2).
Therefore, (+/3 — )'° =512 +i 5123 .

Roots of complex numbers—the nth-root theorem

* The nth-root theorem is used to find all » roots of a complex number.
De Moivre’s theorem provides the foundation for the nth-root theorem.
Every complex number, x + yi = r(cos 0 + i sin ), except zero has
exactly n distinct nth roots. Therefore, a complex number has two
square roots, three cube roots, four fourth roots, five fifth roots... n nth
roots.

Ifz=w"(n=1,2,3,...), then for each value of w there corresponds one
value of z. Therefore, it is clear that for a non-zero value of z there cor-

responds n distinct values of w, where each of these values is called an

nth root of z, or, w = 8z =7

Similarly, if w =z, then w= «/E = zm, orifw’= z, then w = %/; =7'".

* For a complex number z = re'®, by De Moivre’s theorem, we know that
(e =r1"e™, or z=[r(cos  + i sin 8)]" =r"(cos n® + i sin no).
For \/—z— , it follows that: 2= «/—z— =12¢%72 = r”z(cos 0/2 + i sin 6/2)

When —n < 0 <=, this is called the principal root.

For n roots this becomes: 2" = r'"e®® = r'"(cos 6/n + i sin 6/n)

with principal root -t <0 <,
and for all other roots:
Z!/0 = (g ®2mn = L VB0 6 65((0+27k)/n) + § sin((0+27K)/n)]
or in degrees:
Z!/" = (Vg3 = L 11 605((0+360°k)/n) + i sin((8+360°k)/n)]
fork=0,1,2,3,..n-1
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Therefore, the nth root theorem in exponential polar form states that
for n as a positive integer:
Z1/n — rl/nez(6+2nk)/n — rl/ne1(9+360"k)/n’ fork = 0, 1’ 2, 3, =1

there exist n distinct nth roots of re®.

The nth root theorem in polar form states that for n as a positive
integer:

M= 1’“[005((9+21[k)/n) + i sin((6+2nk)/n)], k=0,1, 2, 3, ..n-1
or in degrees:

2" = r " cos((6+360°k)/n) + i sin((0+360°k)/n)],
fork=0,1,2,3, ..n~1

The values of n lie on a circle of radius '™, or it , with its center at the
origin, and constitute the vertices of a regular polygon of n sides. The
angles of a given complex number are equal and differ such that,

angles of third roots differ by 360°/3, or 120°,

angles of fourth roots differ by 360°/4, or 90°,

angles of fifth roots differ by 360°/5, or 72°, and

angles of nth roots differ by 360°/n.

* Example: If 2" = 1 (for a unit circle),
2™ = t"[cos((0+2mk)/n) + i sin((0+27k)/n)].

Then, for the third root, i/f =1, or (1)” 3= 1, where r = 1, find the three
cube roots and graph.

Forz=1+i0),r=1and 6 =0.
2™ = 1[cos((0-+2nk)/3) + i sin((0+2nk)/3)] fork =0, 1 and 2.

k =0, cos((0+27n0)/3) + i sin((0+2710)/3) = cos 0 + i sin 0 = 1 + #(0)

k = 1, cos((0+2m1)/3) + i sin((0+271)/3) = —1/2 + i/3/2
~—0.50 + i0.866

k =2, cos((0+2m2)/3) + i sin((0+272)/3) = ~1/2 — i/3/2
~—0.50 — i0.866

Depicted on a unit circle are points (1 + #0)), (-0.50 + i0.866), and
(~0.50 ~ i0.866):
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s
4
/
14
4
/7
7

\

Note: This represents the three cube roots of x> — 1 = 0.

Normally, when we see X = 1, we think of it having one root, 1. This is
only true when we restrict solutions to real numbers. However, by
including complex numbers, there are three roots: one real and two
imaginary.

» Example: Find three third roots and six sixth roots of (1 +i V3 )in
exponential polar form and graph each.

First convert 1 +i+/3 into polar form:
r2=x2+y2= 1 + 3 =4, therefore, r =2
tan 0 = y/x =+/3 /1, or 0 = 60°
Therefore, polar form is:

r(cos 0 + i sin 6) = 2(cos 60° + i sin 60°)

Exponential polar form is: re”® = 2¢"”

To find roots using polar form write:
r”"(cos(9+360°k/n) + i sin(0+360°%/n)), fork =0, 1,2, 3, ...

or using exponential polar form: r'"e®3600" | =0, 1,2,3, ...

Using exponential polar form to find n = 3 cube roots of 2¢'%

21B3H60360%3 £or k =0, 1, and 2. Substituting k values:
k = 0, 21300 3600N3 _ 9173,100%)

k= 1, 21/3el(60°+360°(]))/3 = 2]/38,(1400)
k=2, 21/3 el(60°+360°(2))/3 —- 21/36,0600)

we write:

We can also write these in polar complex and rectangular forms as:
3/2 (cos 20° + i sin 20°) = 1.18 +7 0.43

2 (cos 140° + i sin 140°) =-0.97 +i 0.81

2 (cos 260° + i sin 260°) = —0.22 — i 1.24
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Graph these three points on a circle of radius " =2"~1.26:

The points are spaced equally by 120°.

Use exponential polar form to calculate n = 6 sixth roots of 2
and give results in exponential polar and polar forms.

16160360V6 gor k = 0, 1, 3, 4 and 5. Substitute k values:

k = 0, 216 0 360°ON6 — 16,1109 = 518 (065 10° + i sin 10°)
k= 1, 2V6G 00 36TWNS _ 1600 _ 916 (06700 + ; sin T0°)

k = 2, 21660 360QN6 _ 1610130 _ 216 (0¢ 1300 + ; sin 130°)
k = 3, 216 HOTH360CWS _ H16,10190) — 516 (006 1900 + ; sin 190°)
k = 4, 2166 360N6 _ Hl6250) _ 916 (00 9500 + f sin 250°)
k = 5, 21660 360N6 _ V61310 _ pl6 (00 3100 + 7 sin 310°)

Depicted on a graph are these six points on a circle of radius
=2l 1.12, at the six angle locations:

There is 60° between each point on this circle of radius 2.
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11.8. Chapter 11 summary and highlights

* Complex numbers are the solution to roots of negative numbers. Com-
plex numbers can be negative when they are squared, such that x* = —1.
Complex numbers are used in the design of electrical circuits, ships, and
airplane wings. Complex numbers contain real numbers and imaginary
numbers. Complex numbers involve i and are generally in the form

(x + iy),or z= (x + iy), where x and y are real numbers and i is
imaginary. In the expression (x + iy), the x term is referred to as the real
part and the iy term is referred to as the imaginary part. A real number
multiplied by i forms an imaginary number, such that:

(real number) x i = (imaginary number).

A real number added to an imaginary number forms a complex number:
(real number) + (real number)(i) = (complex number), or

(real number) + (imaginary number) = (complex number).

» Complex numbers correspond to points in a coordinate system called
the complex plane. For example, 3 + 4i correspondstox =3 and y =4,
or point (3, 4), where the X-axis is real and the Y-axis is imaginary.
Each complex number can be associated with a point in a rectangular
coordinate system. A complex number can also be represented by a
vector. For example, vector 3i + 4j corresponds to complex number

3 + 4i. Complex numbers can also be written in polar form.

y, imaginary axis y, imaginary axis
x+yi
"o 3+44, (3, 4), 3iH4j
i r
0 iy=rsin®
x real axis x real axis
| x=rcos0

Complex Plane (rectangular and vector) Complex Plane (polar and rectangular)

The polar form of complex numbers can be written using polar coordi-
nates X =r cos 8 and y =r sin 0. A complex number expressed in polar
form is:x+iy=rcose+irsin9=r(cose+isin0)=re’e

where r =1/x2 + y2 and 0 is the polar angle.

* To convert from polar to rectangular form, calculate x and y values
forr cos © +irsin 0, where x =r cos 0 and y =r sin 8. To convert from
rectangular to polar form, draw a graph of the number in a complex

plane, then find r and 0 using r = w)xz +y? and tan 8 = y/x, providing
x not equal to zero. If x = 0, determine 0 by inspection.
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* To add or subtract complex numbers in rectangular form, add or sub-
tract the real terms and imaginary terms separately. To add or subtract
complex numbers in polar form, conver: to rectangular form and add or
subtract the real parts and imaginary parts separately.

e Complex numbers in rectangular form can be multiplied as ordinary
binomials, where (i)2 is replaced by —1. Complex numbers in polar form
are multiplied using the product theorem, which is:

[ri(cos 0, + i sin 6,)][r2(cos 6, + i sin 0,)]
=11 1o[cos(0; + 0,) + i sin(0; + 0,)] =re®
By using the product theorem, we multiply r; and r, and add 6, and 6,.

0 1©1+62)

1. 62
e =1 e

» Complex numbers can be divided in rectangular form by first multi-
plying the numerator and denominator by the complex conjugate of the
denominator, then the numerator and denominator are divided and
combined as with multiplication. Complex numbers in polar form can
be divided using the quotient theorem, which is:

[ri(cos O; + i sin 6,)] / [rx(cos 6, + i sin 0,)]
= (r1/1,)[cos(0) — 8) + i sin(®; — 0,)] = (e W(rae™) = (ry/r)e®' ™
By using the quotient theorem, we divide r; by r, and subtract 6, and 0,.

* De Moivre’s theorem is used to find powers of complex numbers in
polar form. De Moivre’s theorem is an expansion of the product rule
and is: [r(cos @ +isin 0)]"=r"(cos n® + i sin nB) = (re"*)" = r "™

* The nth-root theorem is used to find all n roots of a complex number.
A complex number has two square roots, three cube roots, four fourth
roots, five fifth roots, or n nth roots.

The nth root theorem in exponential and polar forms are:

(g2 _ IhO360%0m £y —0 1 2 3 el

=1 "[cos((8+2nk)/n) + i sin((B+2nk)n)], k =0, 1,2, 3, ..n-1

= r [cos((0+360°k)/n) + i sin((6+360°%)/n)}, fork=0, 1, 2, 3, ...n-1

The values of n lie on a circle of radius t'", with its center at the origin,

and constitute the vertices of a regular polygon of n sides. The angles of
a given complex number are equal and differ such that:

angles of third roots differ by 360°/3, or 120°,

angles of fourth roots differ by 360°/4, or 90°,

angles of nth roots differ by 360°/n.
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CHAPTER 12

Relationships Between Trigonometric
Functions, Exponential Functions,
Hyperbolic Functions, and Series
Expansions

12.1. Relationships between trigonometric and exponential functions

12.2. Background: summary of sequences, progressions and series,
and expanding a function into a series

12.3. Hyperbolic functions

12.4. Chapter 12 summary and highlights

* Trigonometric functions are related to exponential functions and
hyperbolic functions and can be written as series. Trigonometric
functions can be expressed as exponential functions as well as series
expansions or approximations. Exponential functions can also be
expressed as a series. There is an inherent relationship between complex
trigonometric functions and exponential functions, as we saw in Chapter
11 with Euler’s identity, ¢™ = cos x + i sin x. Other relationships exist
between trigonometric functions and exponential functions and their
expansions.

12.1. Relationships between trigonometric and exponential
functions

* Trigonometric functions and exponential functions are related to each
other. Following are identities defining the relationships between tri-
gonometric functions and exponential functions:
¢”=cos z+ i sin z (Euler’s formula)
=" =e"(cosy +isiny)
e =cosz-isinz
0P = cos(-z) + i sin(—z)
cos z=(1/2)(e”+ e™)
sin z= (12i)(e” - e™)
wherez=x+iy and i=+-1.
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Expansions of trigonometric and exponential functions

« Exponential functions and the trigonometric functions can be expand-
ed into series. The expansions for ¢ and the trigonometric functions are:
E=1+z+22'+ 230+ 241 +... + 2! +...

cosz=1—2/2) + /41— 2561 + 2%/8) —..+(=1)"'Z"%/(2n-2)! +...
sinz=z-2z2/31+ 25! = 21T + 219! —.. =12V /(2n-1)! +...
tanz=z+2/3 +22°15+ 172315+ ..., |z <m/2

cotz=1/z—2/3 - 2145 - 221945 + ..., |z| <=

cscz=1/z+2/6 + 7221360 + 312°/15120 + ..., |z] <m
secz=1+7/2+ 5224 + 612°/720 + ..., |z| <7/2

Remember: !, or factorial, designates that a number is multiplied by
each preceding whole number down to 1. For example,

51=(5)H(3N2)(1) = 120

» Writing functions in an expansion provides a means to calculate or
estimate the function at a particular value. An expansion of sin x or
cos x can be used to approximate values of these functions.

» Example: Use the series of degree 7, or 7th power) for sine to estimate
sin(n/3), and compare the result with that obtained using a calculator.
sinx=x-x/3! +x/5! - x'/7!

sin(n/3) = (n/3) — (=/3)*/3! + (w/3)°/5! — (=/3)"/17!

~ 1.047198 — 0.1913968 + 0.0104945 — 0.0002740 ~ 0.8660217

Using a calculator, sin(n/3) ~ 0.8660254 radians.

(Note there are rounding errors in these calculations.)

» Example: Use the series of degree 7 for sine to estimate sin 0.5, and
compare the result with that obtained using a calculator.

sin x = x — /3! + x°/5! - X'/7!

sin 0.5 = 0.5 - 0.5°/3! +0.5°/5! - 0.5"/7!

~ 0.5 — 0.020833 + 0.000260 — 0.000002 =~ 0.479425

Using a calculator, sin 0.5 ~ 0.479426.

» Example: Use the series of degree 7 to estimate e” for x = 1, and
compare the result with that obtained using a calculator.

e =1+x+x/21 + X3+ x4 +..+ X/l +...

For x = 1, this becomes:

E=1+1+121+131+ /41 + /5! + 1/6' + 1/T' =~ 1+ 1+ 0.5+
0.166667 + 0.041667 + 0.008333 + 0.001389 + 0.000198 +...
~2.718254

Using a calculator, ¢* = ¢' ~2.7182818.

334



Trigonometric, Exponential and Hyperbolic Functions, and Series Expansions

» Writing functions in an expansion provides a means to calculate or
estimate the function at a particular value. The following summarizes
how these expansions are derived.

12.2. Background: summary of sequences, progressions, and series,
and expanding a function into a series

* The following is for background information and is a brief summary of
sequences, arithmetic and geometric progressions, and arithmetic and
geometric series. It is important to understand that functions can be
expressed as a series, and the following information is provided as a
reference.

* A sequence is a set of numbers called terms, which are arranged in a
succession in which there is a relationship or rule between each succes-
sive number. A sequence can be finite, having a last term, or infinite,
having no last term. For example, the following is a finite sequence:
{3,6,9, 12, 15, 18}. In this sequence, each number has a value of 3
more than the preceding number.

* An arithmetic progression is a sequence in which the difference
between successive terms is a fixed number, and each term is obtained
by adding a fixed amount to the term before it. This fixed amount is
called the common difference. Arithmetic progressions can be repre-
sented by first-degree polynomial expressions. For example, the
expression (n+ 1) can represent an arithmetic progression. Similarly, the
sequence {3, 6, 9, 12, 15, 18} is an arithmetic progression and can be
represented by (n + 3). A finite arithmetic progression can be expressed
as:a,a+d,a+2d,a+3d,a+4d,a+5d,.,a+(n-1)d

where a is the first term, d is the fixed difference between each term,
and (a + (n — 1)d) is the last or “nth” term. Each term in this progression
can be written as follows:

Forn=1, a,=a+(1-1)d=a

Forn=2, a,=a+(2-1)d=a+d

Forn=3, a,=a+(3-1)d=a+2d, and so on.

In the arithmetic progression {3, 6,9, 12, 15, 18}, a= 3 and d = 3. There-
fore, forn=1,a,=3, forn=2,a,=6, forn=3,a,=9, and so on.

* A geometric progression is a sequence in which the ratio of succes-
sive terms is a fixed number, and each term is obtained by multiplying a
fixed amount to the term before it. This fixed amount is called the com-
mon ratio. The terms in a geometric progression can be represented as:
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a, ar, arz, ar’ s ar4, ars, e ar“_l, where a is the first term, ar™! is the last
term, and the ratio of successive terms is given by r such that:

ar/a=r, ar’/ar = r, ar/ar’ = T, etc.

An example of a geometric progression is: {2, 4, 8, 16, 32,...},

with a = 2 and r = 2, the geometric progression can be expressed as:

2,22), 2204 22)%, 22)", ..., 2™

* A series is the sum of the terms in a progression or sequence. An
arithmetic series is the sum of the terms in an arithmetic progression. A
geometric series is the sum of the terms in a geometric progression. The
notation used to express a series is sigma notation. The sigma notation

m
that represents an arithmetic series is: Za . » Where a, is the sequence
n=1
function and the nth term, a, is the last term, m is the index of the last
term that is added, and n is the variable that changes between terms.

For example, in the arithmetic progression {3, 6,9, 12,...}, the sum of
3
the first three terms is the arithmetic series: Z a, =3+6+9=18

n=l1
An arithmetic series can be calculated by determining the sum of the
first and last terms in an arithmetic progression using the formula
(m/2)(a; + ay). For example, applying this formula to the arithmetic
progression {3, 6, 9} results in: (3/2)(3 +9) = (3/2)(12) = 18

* A geometric series can also be represented using sigma notation as:

m
Z:ar'“'1 =a+ar+ar +ar +ar +ar +..+ar"
=

where a is the first term and a # 0, r is the ratio between successive
terms, m is the index of the last term added, and n is the variable. For
example, in the geometric progression {2, 4, 8, 16, 32, ...}, the sum of

3

the first three terms is the geometric series: Z ar®™ =2+4+8=14

n=1
A geometric series can be calculated by determining the sum of the
terms in the geometric progression using the formula
[(@)(1 — r™)/(1 — )], where r is the ratio. For example, applying this
formula to the geometric progression {2, 4, 8} results in:
21 -2Y(1-2)=14
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In an infinite geometric series, m approaches infinity. As m approaches
infinity, the formula for the series becomes: limy, ,[a(1 — r™)/(1 - 1)]
For the case where [r| < 1 and m—>oo, then r'™ approaches zero and the
sum of the infinite geometric series becomes a/(1 - r).

* If a series is infinite, then there are an infinite number of terms in the
progression or sequence that define the series. If the progression or
sequence has an infinite number of terms, then the sum cannot be calcu-
lated exactly. However, under certain conditions the sum can be esti-
mated. For example, if an infinite series has a limif so that as the terms
are added the sum approaches a certain number, then the series will
converge and the sum can be estimated. Conversely, if an infinite series
has no limit so that as each additional term is added the sum approaches
infinity, the series cannot be estimated. In general, to estimate an
infinite series, it must be determined whether the series has a limit and
converges and what happens to the sum as the number of terms
approach infinity. To determine whether an infinite series will converge,
there are a variety of fests for convergence that may be used including
the Comparison Test, the Ratio Test, tests for series with positive and
negative terms, the Integral Test, and the Root Test. (See Master Math:
Calculus for a discussion on infinite series and convergence.)

* A series can be differentiated, multiplied, added to, etc., and is
sometimes written in terms of the variable x rather than r:

atax+ax’+ax +ax’ +.+ax"" =a(l - x (1 -x)

Expanding functions into series

* Trigonometric and exponential functions can be estimated using series
expansions. When a function is written in the form of an infinite series,
it is said to be “expanded” in an infinite series. Two common series
representing expansions of functions are the Maclaurin series and the
Taylor series. Expanding functions into these series can be applied to
approximating functions including linear and quadratic approximations,
approximating solutions to differential equations, and estimating numer-
ical values such as constructing tables of exponential, logarithmic, and
trigonometric functions.

» Representing a function in a Taylor series or a Maclaurin series
involves determining the coefficients ay, aj,...a, of the series. The
coefficients can be found by differentiation providing the function has
all its derivatives. Obtaining all the derivatives of a function can be
tedious, so other methods including substitution and integration are
employed.
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The expansion of a function f(x) about x = a = 0 is known as the
Maclaurin series or the Taylor series for f{x) expanded about the point
x = 0 and is given by:

o0 (n)(o)

M

f(x)=ap+ax+ azx2 + a3x3 +ax* +..ax" ..
= [f(0)] + [£ "(0)]x + [£ "(0)/2!]x” + [£ """(0)/3 ']x + [f(")(O)/n']x

« Using the Taylor series allows a function to be expanded about some
point, a, other than zero. For a function f(x):

f(x) = ap + a;(x~a) + ax(x—a)’ + as(x—a)’ +...a,(x—a)" +...

the coefficients a, are computed by repeated differentiation as with the
Maclaurin series. The resulting Taylor series for f(x) is:

fx) = [f(@)] + [f "(a))(x-a) + [ "(@)/2!}(x—a)” + [f ""(a)/3!](x~2)’

(n)
+...+ [[™(a)m!](x-a)"..= Z f (a) (x—a)"
n=0 !
This is the Taylor series, which is expanded aboutpointx =a. Ifa=0,
the Taylor Series becomes the Maclaurin Series.

« The trigonometric functions can be expanded and computed for
selected values. The expansions of sine and cosine are:

sinx =x —x/3! +x/50 - x/7! +.. =D 2n-1)! +...

cos x = 1 —x7/2! +x¥/4! = x%/6! +.. +H=1)""x"*/(20-2)! +...

* To obtain the trigonometric series for f(x) = sin x for x near 0, begin
with the Taylor series expansion at x = 0:
f(x) =a,+ax + ax" + asx° +ax’ +..a,x" ...
= [f(0)] + [£"(0)]x + [£ "'(0)/2!]x* + [ ""(0)/3!]x’ +...[f(0)/n!]x"...
where f '(0) represents the first derivative, £ '"'(0) represents the second
derivative, and so on. We can determine the coefficients of the series by
differentiation for a degree of, for example 7, and substitute into the
above expansion. (Note that the derivative of sine is cosine, and the
derivative of cosine is — sine.) Taking successive derivatives results in:
f(x) =sinx — f{(0) =0, f'&x)=cosx—>f'0)=1,
fr'&x)=-sinx >f"0)=0, £"(x)=—cosx—>£"™(0)=-1,
f9(x) =sinx —» f9(0) =0, f9(x)=cos x > f90) =1,
fO%x)=—sinx > f90)=0, Px)=-cosx > f0)=-
Then we can substitute each of these derivative into the expansion resul-
ting in f(x) = sin x about the point x = a = 0 which is:
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sinx =0 + x + (0)x*/2! — X*/3! + (0)x*/41 + X*/5! + (0)x%/6! — X"/7! +...
sin x = x - xX’/3! + x°/5! = X'/7! +...

We can check how good our approximation is by graphing f(x) = sin x
and sinx = x — x’/3! + x°/5! — x'/7! and comparing the curves. In the
following graph the thin black curve represents sin x and the thicker
gray curve represents X — x°/3! + x’/5! — x'/71.

Graph of y = sin x (thin) and sin x = x — x’/3! + x*/5! — x'/7! (thick)

y

4
T

1 \

The series approximation overlaps well for values of x near zero.

The trigonometric series for f(x) = cos x for x near 0 can be found in the
same manner as for f(x) = sin x.

* An approximation of the exponential function e* can also be

computed using the Taylor or Maclaurin expansions:

The Maclaurin expansion of ¢* for x near 0 is:

& =1+x+x721+ X3+ x4 +..+ x"/n! +...

For x =1 and n = 7, this becomes:

=1+1+12'+1/31+1/41 +1/5! + 1/6! + 1/7!

~1+1+0.5+0.166667 + 0.041667 + 0.008333 + 0.001389
+0.000198 +... ~ 2.718254

Using a calculator to compare the result, when x = 1: " = e' ~2.71828

Increasing the number of terms in the series will improve the accuracy.
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« The series for €%, sin x, and cos x all have x"/n! terms where the
factorials lead to convergence for all x. In addition, term-by-term
differentiation of series € yields ¢*, and term-by-term differentiation of
series sin X yields series cos Xx.

« In Chapter 7 we learned that re'®=r cos 0 + ir sin = x + iy. When
r =1, this becomes: ¢'%= cos 0 + i sin 0, which is known as Euler’s
formula. We can expand ¢'? into a series as:

e =1+i0 + (#0)7/2! + (10)’/3! + (i0)"/4! + ...

It is possible to verify Euler’s formula by showing that ¢is equal to
(cos O + i sin 0) using series expansions:

cos O + i sin 0 = [1 — 0%/2! + 0%/41 — 0°/61...] + i[6 — 0°/31 + 8°/51 —...]
=1+ 0 - 672! — i0°/31 + 6Y/4! + 0°/51 — 0%6!...

Substitute i for -1, i for —i, i# for 1, # for i, etc:

=1+ i0 + (i0)%/2! + (i0)*/3! + (i0)*/4! + (10)°/5! ... = €'’

=[1-0%2! +0%41 - 0%6!..] + i[0 — 0°/3!1 + 0%/5! —...]

=¢'%=cos 0 + i sin O

which is Euler’s formula, where the real part is x = cos 0 and the
imaginary part is y = sin 0.

12.3. Hyperbolic functions

* Hyperbolic functions are real, do not involve i =+/— 1 , and are

derived from the exponential functions ¢” and e, for z = x + iy. The
hyperbolic functions include hyperbolic cosine (cosh), hyperbolic sine
(sinh), hyperbolic tangent (tanh), hyperbolic cotangent (coth),
hyperbolic cosecant (csch), and hyperbolic secant (sech).

« Definitions for the hyperbolic functions in terms of exponential
functions include:

The hyperbolic cosine: cosh z = (1/2)(e* + ™)
The hyperbolic sine: sinh z = (1/2)(e* - e™)
The hyperbolic tangent: tanh z = (sinh z/ cosh z) = (¢ — e ) / (e* + &%)
The hyperbolic cosecant: csch z=1/ sinh z=2/(e* — e %)
The hyperbolic secant: sech z= 1/ cosh z=2/(e" + &™)
The hyperbolic cotangent: coth z= cosh z/ sinh z

=1/tanhz= (" +e (e - e
The graph of the hyperbolic cosine (cosh) and hyperbolic sine (sinh)
together is depicted below. Note that as z gets large, cosh z and sinh z
approach (1/2)e”.
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Graph of cosh z = (1/2)(¢° + ¢~ (thin) and sinh z = (1/2)(¢*— ™) (thick)

VREY

* The hyperbolic functions can be expressed in series form as:
coshz=1+2/2! + 241+ 2%6) + 28! + ...

sinhz=z+ 2231+ 22/5! + 2 /T + 2/9! —...

tanh z=z—2'/3 +22°/15 -~ 172315 + ..., |z| <7/2
cothz=1/z+2/3 - 22145+ 221945 + ..., x| <m
cschz=1/z—2/6 + 7221360 — 312°/15120 + ... , |zl <=
sechz=1-27/2+52'124 - 612°/720 + ..., |z) < /2

* Hyperbolic functions are similar to trigonometric functions. For
example, the exponential forms are similar:

cosh z = (e*+ ¢%)/2 compares with cos z= (e” + e )2

sinh z = (¢*— e™*)/2 compares with sin z= (e — ¢ *)/2i

Like cosine, cosh is an even function: cosh(-z) = cosh zand cosh 0 = 1
Like sine, sinh is an odd function: sinh(-z) = —sinh z and sinh 0 =0
Properties that apply to cosh and sinh are similar to properties for cosine
and sine, and they include the following:

cosh’z—sinh’z=1

e =cosh z + sinh z, e “=coshz—sinhz
sinh’z = (1/2)(cosh 2z - 1), cosh’z = (1/2)(cosh 2z + 1)
tanh’(z) + sech®(z) = 1, coth’(z) — csch’(z) = 1
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» Complex trigonometric functions and hyperbolic functions are related.
Hyperbolic formulas can be derived from trigonometric identities by
replacing z with iz. Relationships between trigonometric and hyperbolic
functions include:

sinh z = —i sin iz, cosh z = cos iz, tanh z = —j tan iz

cschz=icsciz, sechz=seciz, cothz=1icotiz

sinhiz=sinz, coshiz=cosz

Formulas involving hyperbolic functions

* For each formula involving the trigonometric functions, there is a
similar (not necessary identical) formula for the hyperbolic functions.
Following are a number of the identities and formulas for hyperbolic
functions:
Addition and subtraction formulas:
sinh(z; + z;) = sinh z; cosh z, + cosh z; sinh z,
cosh(z; £ z;) = cosh z; cosh z; * sinh z, sinh z,
tanh(z; + z;) = (tanh z; + tanh z,) / (1 + tanh z; tanh z,)
coth(z; + z;) = (1 + coth z; coth z,) / ( coth z; + coth z,)
Addition and subtraction of two hyperbolic functions:
sinh z; + sinh z, = 2 sinh{(z; + 2,)/2] cosh[(z; — 2,)/2]
sinh z; — sinh z; = 2 sinh[(z; — 2,)/2] cosh[(z; + 2,)/2]
cosh z; + cosh z; = 2 cosh[(z; + 2,)/2] cosh[(z; — 2,)/2]
cosh z; — cosh z, = 2 sinh[(z, + 2,)/2] sinh[(z; — 2,)/2]
tanh z; + tanh z, = [sinh(z; + z,)] / [cosh z; cosh z,]
coth z; + coth z, = [sinh(z; + z;)] / [sinh z; sinh z;]
Product formulas.
sinh z; cosh z, = (1/2)(sinh(z; + z;) + sinh(z; — z,))
cosh z; cosh z, = (1/2)(cosh(z; + z;) + cosh(z; — 7))
sinh z, sinh z, = (1/2)(cosh(z; + z;) — cosh(z; — z,))
Negative-angle formulas:
cosh(—z) = cosh z, sinh(-z) = - sinh z, tanh(-z) = - tanh z
Double-angle formulas:
sinh 2z = 2 sinh z cosh z=[2 tanh z] / [1 — tan’Z]
cosh 2z = cosh’z + sinh®z=1 + 2 sinh’ z= 2 cosh’z - 1
tanh 2z =2 tanh z/ (1 + tanh’ )
Half-angle formulas:
sinh(z/2) = + [(cosh z — 1)/2]"?
cosh(z/2) = + [(cosh z + 1)/2]"?
tanh(z/2) = + [(cosh z — 1)/(cosh z + 1)]'”

= (sinh z)/(cosh z + 1) = (cosh z — 1)/(sinh z)
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Hyperbolic functions and parameterization

* As we have seen, a unit circle can be parameterized by (cos t, sin t),
with t in interval [0, 2x]. Similarly, the hyperbolic functions

(cosh t, sinh t), with t in the interval from plus to minus infinity, can be
used to parameterize the standard hyperbola x* — y> =1, x >1. In the
figure a standard hyperbola is depicted with a point (cosh t, sinh t),
which has values of the parameter ¢ along the curve. Consider the
hyperbola for t = —1.5, the point is depicted on the curve at
cosh(-1.5)=2.35=x and sinh(-1.5)=-2.13=y:

12.4. Chapter 12 summary and highlights

* Trigonometric functions are related to exponential functions and
hyperbolic functions and can be written as series. Relationships between
trigonometric functions and exponential functions include:

cos z= (1/2)(e”+ e™), sin z= (1/2i)(*— ™), and

e = cos z + i sin z, which is Euler’s formula, where z = x + iy.

The expansions for €, cos X, and sin x are:

E=1+z+ZR1+ 231+ 24 +..+ 2l +... .
cosz=1-2/2! +Z*41 - 26! + /8! - +(-1)" ' 2" H(2n-2)! +...
sinz=z-231+2/5! = 21T + 219! —. . +(=1)"' 2" 2n-1)! +...
Writing functions in a series expansion provides a means to calculate or
estimate the function at a particular value.

* Hyperbolic functions are real, do not involve i = \/j and are derived
from the exponential functions ¢” and e~>, for z = x + iy. Definitions for
the hyperbolic functions include:
The hyperbolic cosine: cosh z = (1/2)(e*+ ¢™*)
The hyperbolic sine: sinh z = (1/2)(e* - ¢™)
The hyperbolic tangent: tanh z = (sinh z/ cosh z) = (¢* — e %) / (¢ + &)
The hyperbolic functions can also be expressed in series form.
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CHAPTER 13

Spherical Trigonometry

13.1. Definitions and properties

13.2. Measuring spherical triangles

13.3. The Law of Sines and the Law of Cosines for spherical triangles
for calculating sides and angles

13.4. Celestial sphere

13.5. Chapter 13 summary and highlights

13.1. Definitions and properties

* Trigonometry and spherical trigonometry were primarily developed for
and used in astronomy, geography, and navigation. Spherical trigono-
metry was developed to describe and understand applications involving
triangles on spheres and spherical surfaces. The first trigonometric tables
were created more than two thousand years ago for computations in
astronomy. Trigonometry is currently used in numerous fields, including
engineering, chemistry, surveying, navigation, physics, mathematics,
astronomy, and architecture. An example in architecture is the triangular
spherical shells of the famous Sidney Opera House in Sidney, Australia.

* Spherical triangles are triangles drawn on a spherical surface. Spher-
ical triangles do not have straight-line sides; rather they have sides that
are arcs of great circles (which are the largest circles that can be drawn
around a sphere’s surface). Great-circle arcs (described below) form the
sides of a spherical triangle, and where two arcs intersect, a spherical
angle is formed. A spherical angle can be thought of as either an angle
between the tangents of the two arcs at the point of intersection or as the
angle between the planes of the two great circles where they intersect at
the center of the sphere. Spherical angles are defined at the location
where arcs of great circles meet. In other words, the arc lengths are a
measure of the angle they subtend at the center of the sphere, and the
spherical angles between the arcs are a measure of the angle at which
the planes that form the arcs intersect. Spherical trigonometry involves
relationships between the arc lengths (sides) and the spherical angles
between the arcs.
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The large spherical triangle has angles A, B, and C, and has sides a, b,
and c. If a spherical triangle is large in dimensions as compared to the
size of the sphere, the spherical nature of the triangle must be con-
sidered. If a spherical triangle is small as compared to the size of the
sphere, the triangle can be described using plane trigonometry. For this
reason, when maps of cities are drawn it is not necessary to use
spherical triangles. However, if a map is drawn of a large area of the
Earth, then the fact that the Earth is a sphere must be considered.

* Sum of the angles in a triangle: When a planar triangle is drawn on a
flat sheet of paper, the sum of its three angles will always be 180 degrees.
In plane geometry, the curvature is considered to be zero. In hyperbolic
geometry, represented in two dimensions by a saddle-shaped surface,
the angles of a triangle add up to less than 180 degrees. In hyperbolic
geometry, there is a negative curvature. When a triangle is drawn on the
surface of a sphere, the angles add up to more that 180 degrees, which is
a characteristic of spherical geometry. The curvature in spherical geo-
metry is therefore positive. Because the sum of the angles in a spherical
triangle will always be greater than 180°, the arcs of great circles (sides)
that make up the spherical triangle will each measure less than 180°. In
addition, because the sides of a spherical triangle are arcs rather than
straight lines, they are measured in radians or degrees.

QA A

Planar triangle =~ Hyperbolic triangle =~ Spherical triangle

« The need for spherical trigonometry becomes obvious when distance
and angle measurements are made on a large area of the Earth. For
example, suppose we know the distances and angle measurements of
three cities that are far away from each other and form a large right
triangle. If we attempt to use the Pythagorean Theorem to confirm the
side and angle measurements, we will find a small disagreement
between the measurements and the calculations of the sides and angles.
In fact, the sum of the angles in this triangle will be greater than the 180
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degrees that is always measured in planar triangles. This discrepancy
occurs because the large triangle that was measured on the surface of the
Earth is a spherical triangle. The discrepancy between the measurements
and calculations (using planar equations) becomes greater, the further
apart the locations which are being measured are situated from each
other. This occurs because the spherical triangle becomes larger relative
to the size of the Earth's surface. Therefore, we can see that triangles on
a sphere have different properties than triangles on a plane.

Great circles, small circles, latitude, and longitude

« If a straight slice is made, or a plane is passed, through a sphere, a
circle is formed on the surface of the sphere. If the diameter of the circle
formed on the surface is less than the diameter of the sphere, the circle is
called a small circle. Except for the equator, latitude lines on Earth
form small circles. If a slice is made through the center of a sphere and
the sphere is split into two equal hemispheres, the diameter of the circle
formed on the surface will be the same as the diameter of the sphere.
This is called a great circle and is the largest circle that can be drawn on
the surface of a sphere. A great circle can be thought of as the circle
formed on the surface if a plane is inserted through the center of a
sphere. The equator on Earth is a great circle and is halfway between
the North and South Poles. (The Earth is not a perfect sphere, but is
often modeled as a sphere for practical purposes.)

small great
circle circle

L& 1]
formed formed \\_/

Longitude lines that form a circle around the Earth, crossing the poles,
are great circles. The term circle of longitude is often used to refer to a
great circle consisting of all points encircling a sphere along the given
longitudes. Half of such a great circle, consisting of points with the
same longitude from the North Pole to the South Pole, is called a meri-
dian. The term circle of latitude, or parallel of latitude, is used for a
circle consisting of all points with the same Jatitude. Parallels of latitude
are everywhere equally distant as are concentric circles on a plane.

No ole

South Pole
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* A particular point on Earth can be located using its Jongitude and
latitude. Latitude and longitude are usually expressed in degrees,
although they can be measured in radians if it is more convenient. The
equator is at 0°, and the poles are at plus and minus 90°. The starting
point for longitude measurements is generally considered as the prime
meridian, which passes through the Greenwich Observatory at London,
England, and has zero longitude. Latitude and longitude are depicted on
most globes.

« It is interesting to note that if you begin at the North Pole and travel
due south, then travel due east or due west, then travel due north, you
will end up back at the North Pole.

North Pole

S

13.2. Measuring spherical triangles

Az

» When measuring distances or plotting a course on a sphere, it turns out
that the shortest distance or path between two points is the path that is
part of a great circle on which the two points are located. In other words,
on a spherical surface, a great circle path, often called a geodesic, is
always the shortest path between two points.
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* A spherical triangle can be labeled with its sides represented using
small letters a, b, and ¢, and the angles represented using capital letters
such that angle A is opposite side a, angle B is opposite side b, and
angle C is opposite side c.

A
c b

C

» Measuring spherical triangles can be confusing because both the sides
and angles have angular measures. Therefore, it is helpful to measure
the angles of spherical triangles in degrees and measure the sides in
radians.

* The length of a side of a spherical triangle can be compared to the
radian measure for arc length, in which arc length = (radius)(central
angle measure in radians).

T arc length = ar

[0
r

In the ABC spherical triangle drawn above, a, b, and c represent the
sides and are usually measured in radians. The lengths of the sides are
ar, br, and cr. In the spherical triangle, a, b, and c also represent the
angles subtended at the center of the sphere by the great circle arcs, such
that:

a = (length of arc a) / (radius of sphere)

To obtain the length of the arc for a side, we can multiply the radian
measure of a side by r. A side can be expressed in units such as
kilometers, if r is the radius of the sphere and is measured in kilometers.

* The angles between two curves: Each curve (side) is a part of a great
circle, which is formed by a plane intersecting the sphere and passing
through its center. The angle between two curves (sides) is therefore the
angle between the two planes. Angles may be measured or obtained
using relations such as the Law of Sines and the Law of Cosines for
spherical triangles.
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13.3. The Law of Sines and the Law of Cosines for spherical
triangles for calculating sides and angles

* There are various formulas relating the sides and angles of a spherical
triangle. Two that are of particular importance are the sine rule or Law
of Sines for spherical triangles and the cosine rule or Law of Cosines
for spherical triangles. The laws of sines and cosines for spherical
triangles compared with the laws of sines and cosines for planar
triangles are as follows:

A
c b
B a
C

Spherical Triangles Planar Triangles
Law of Sines
sina _sinb _sinc a b ¢
sinA sinB sinC sinA sinB sinC
Law of Cosines
cos a=cos b cos ¢ +sin b sin ¢ cos A a’=b%>+c*-2bccos A
cosb=cosccosa+sincsinacosB b’=c?+a’~2cacosB
cosc=cosacosb+sinasinbcosC c?=a’+b’~2abcos C

In a planar triangle, a, b, and ¢ have units of length, and in the spherical
triangle, a, b, and ¢ are measured in radians or degrees and are the angles
subtended at the center of the sphere by the great circle arcs, such that:
a = (length of arc a) / (radius of sphere)

To solve spherical triangles, we can use the laws of sines and cosines to
determine required measurements of angles A, B, and C and sides a, b,
and c, and then multiply a, b, and ¢ by the radius of the sphere to obtain
side lengths.

« The formulas for a spherical triangle can be reduced to those for a
plane triangle when a, b, and ¢ (in radians) are all considerably less than
1. To test this, suppose we have a spherical triangle with sides a and b
equal to 0.1 radian and angle C equal to 30°. We can find side c using
both the Law of Cosines for spherical triangles and the Law of Cosines
for planar triangles. Then we can compare the results. Remember to
make trigonometric calculations using the degree or radian mode in
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your calculator that is appropriate for each step.

Using the Law of Cosines for spherical triangles:

cos ¢ =cosacos b+sinasinbcosC

cos ¢ =¢0s 0.1 cos 0.1 +sin 0.1 sin 0.1 cos 30°

cos ¢ = (0.99500)(0.99500) + (0.09983)(0.09983)(0.86602) = 0.99866
¢ = arcos 0.99866 = 0.05177

Using the Law of Cosines for planar triangles:
¢?=a%+ b’ —2ab cos C

¢ =0.1%+0.1% = 2(0.1)(0.1) cos 30°
¢*=0.01+0.01 - 0.01732 = 0.00268
c¢=0.05177

Therefore, in this small triangle, we can use either the planar or
spherical Law of Cosines.

Solving spherical triangles

* The Law of Cosines and Law of Sines for spherical triangles can be
used to solve most spherical triangles. Using either of these formulas
can result in an ambiguous answer for side and angle calculations. For
example, if the Law of Sines results in sin x = 1/2, then x may be 30° or
150°, because both sin 30° = 1/2 and sin 150° = 1/2. Similarly, if the
Law of Cosines results in cos x = 1/2, then x may be 60° or 300° (—60°)
because both cos 60° = 1/2 and cos 300° = 1/2. Therefore, when calcu-
lating values using either formula, verify that the answer makes sense.

* To solve for all angles and all sides of a spherical triangle, the measures
of at least three of the parts must be known to find the other three values.
In addition, unlike planar triangles, it is not possible to ascertain the
measure of a third angle in a spherical triangle by subtracting the sum of
the two known angles from 180°.

* To solve problems that involve spherical triangles, often the distance
between two points and/or a direction described by an angle is desired.
It is important to remember that the shortest distance between two
points on the surface of a sphere is the great circle path between the two
points. On the Earth, the equator and circles of longitude are natural
great circles. In addition, any circular path around the Earth that cuts it
into two equal hemispheres is a great circle. If you want to measure the
shortest distance between two points that lie on the equator, which is a
great circle, then the shortest path would be along the equator. If you
want to measure the distance between two points that lie on the same
longitude, where circles of longitude are great circles, then the shortest

350



Spherical Trigonometry

path would be directly north or south from the first point to the second
point. If the two points are on the same latitude but not the equator, then
moving along the latitude line would not be the shortest path, because
circles of latitude are not great circles (with the exception of the
equator).

» Example: Suppose you are an astronaut and you will be landing on a
planet that is identical to the Earth, except for the locations, sizes, and
shapes of the continents and islands. Latitude and longitude are desig-
nated as they are on the Earth. You are planning to land on a beach you
name as Point 1, which is at latitude 20° and longitude 0°, and explore
the area for some period of time. Then you plan to travel in your space
ship/motorboat across the ocean to Point 2, which is at latitude 30° and
longitude 50°, to continue exploration before returning to your mother
ship. What is the shortest travel distance possible between Point 1 and
Point 2, which will be the great circle path, and at what angle from
Point 1 should you travel to arrive exactly at Point 2?

Begin by plotting your course on the spherical triangle, which has its
vertices as Point 1, Point 2, and this planet’s North Pole:

A= North Pole

We want to find the length of side a, which is the great circle path
between Point 1 and Point 2, and angle B so that we can travel in a
north-east direction to Point 2.

What we know:

Point 1 is at B and Point 2 is at C.

Side a is the great circle path between Point 1 (B) and Point 2 (C).
Point 1 (B) is located at latitude 20° and longitude 0°.

Point 2 (C) is located at latitude 30° and longitude 50°.

Side c and side b form the other two sides of the spherical triangle.
Length of side ¢ = 90° — latitude of B = 90° — lat 20°.

Length of side b = 90° — latitude of C = 90° — lat 30°.

(90° is the latitude at North Pole.)

Angle A measures the difference in longitude between Point 1 (B) and
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Point 2 (C), such that:

A = longitude C — longitude B = longitude 50° — longitude 0°.

We can use this information to find side b, side c, and angle A. Then, we
can use the Law of Cosines for spherical triangles to calculate side a,
which is the shortest distance between Point 1 and Point 2. Finally, we
can use the Law of Sines for spherical triangles to determine the angle
of travel, B.

¢ =90°— lat 20° = 70° = (n/180°)70° = 1.2217 radians

b =90° — lat 30° = 60° = (1/180°)60° = 1.0472 radians

A = longitude C — longitude B = long 50° — long 0° = 50°

We can now use the Law of Cosines for spherical triangles to find the
length of side a: cos a = cos b cos ¢ + sin b sin ¢ cos A.

Remember to have your calculator in the proper radian or degree mode
for each calculation.

cos a = cos 1.0472 cos 1.2217 + sin 1.0472 sin 1.2217 cos 50°

cos a = (0.5000)(0.3420) + (0.8660)(0.9397)(0.6428) = 0.6941

a = arccos 0.6941 = 0.8036 radians

Therefore, the shortest (great circle) distance between Point 1 and
Point 2 is:

distance = (a)(radius of Earth) = (0.8036)(6371 kilometers) = 5120 km
Calculated in miles this distance is:

distance = (a)(radius of Earth) = (0.8036)(3959 miles) = 3182 mi

(Note that there are approximately 1.609 kilometers/mile. Also, values
for the average radius of the Earth, which is an oblate spheroid, can vary
depending on the source.)

Next, we can determine at what angle we must travel to get from Point 1
to Point 2. We know that Point 2 is at a latitude closer to the North Pole,
so we will be angling up toward the pole. We also know that angle A is
50°. We can use the Law of Sines for spherical triangles to find angle B:
sina/sin A =sinb/sin B

sinB=sin A sinb/sina

sin B = sin 50° sin 1.0472 / sin 0.8036

=(0.7660)(0.8660) / 0.7199 = 0.9215

B = arcsin 0.9215 = 1.1719 rad x 180°/x = 67.15°

Therefore, when you plot your course from Point 1 to Point 2, you will
travel at an angle of 61.15° northeast for 5120 kilometers or 3182 miles.

* To solve problems involving spheres, it is a good idea to draw a

triangle that reasonably represents the spherical triangle from which you

plan to obtain values. This will reduce any errors that arise from angle
352



Spherical Trigonometry

calculations which may be ambiguous. Rechecking results by
interchanging the use of the laws of sines and cosines for spherical
triangles is also worthwhile when ambiguous angle measurements are
calculated.

13.4. Celestial sphere

* An application of spherical trigonometry is astronomy and the
so-called celestial sphere. The celestial sphere is what we see when we
look into the sky at night and observe the stars, planets, galaxies, etc.,
which appear to be located on the inside of a sphere. The North Celestial
Pole is located above the Earth’s North Pole and is the place in the sky
to which the axis of Earth points in the north direction. The South
Celestial Pole is located above the Earth’s South Pole and is the place
in the sky to which the axis of Earth points in the south direction. The
Celestial Equator is above the Earth’s equator.

« Locations can be identified and measurements made on the celestial
sphere in the same manner as measures are made on the surface of the
Earth. However, instead of using latitude and longitude, celestial
measurements are made using declination and right ascension.

Declination (Dec) is the celestial equivalent of latitude. The declination
is the position of a star measured in the north-south direction on the sky.
Like latitude, declination describes the angular distance between a star
and the Celestial Equator. Stars on the equator have a declination of 0°,
and the North Star has a declination of 90°. As Earth turns, the declina-
tion does not change. Declination is measured in degrees, minutes, and
seconds of an arc. Each degree can be divided into 60 minutes of an arc.
Calculations are sometimes expressed in decimal degrees.

Right ascension (RA) is the celestial equivalent to longitude. The right
ascension is the position of a star measured in the east-west direction on
the sky. Like longitude, right ascension describes the distance along the
Celestial Equator between a star and the right ascension startin§ point.
Right ascension increasing from west to east begins with RA 0" 00™ 00°,
which is a semicircle centered on the center of Earth from the North
Celestial Pole to the South Celestial Pole. For example, a star at RA 3
00™ 00° is three hours east of a star at RA 0" 00™ 00° regardless of each
stars’ declination. An hour of RA is equal to an arc of 15° on the
Celestial Equator, given that 24 hours x 15° = 360°, which is one
complete circle around the Earth. A minute of RA is a measure of an
angle on the sky that is 1/60th of an hour of RA. A second of RA is
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1/60th of a minute of RA. Calculations are sometimes expressed in
decimal degrees.

» To locate a star with, for example, right ascension 36° and declination
25°, we can move a telescope 36° from the declination starting point
along the Celestial Equator, and then aim it 25° north from there.

« In the celestial sphere, a spherical triangle can be observed between the
North Star, a star of interest, and the zenith, which is directly over the
observer.

A=North Star
c b
Star1=-B a
C=zenith
In this spherical triangle:

Side a represents the angular distance between the Star 1 and the zenith;
Side b represents the angular distance between the North Star and the
zenith; and

Side c represents the angular distance between the North Star and the
Star 1, such that: ¢ = 90° — (declination of the star).

Because the North Star and the zenith are stationary, and the star
changes position with respect to the zenith as the Earth turns, side ¢ will
be constant. However, side a and angle A will change as the Earth
rotates. Angle A is called the hour angle of the star. Angle A depends
on the right ascension of the star as well as the time, such that: Hour
angle = local sidereal time — right ascension. Local sidereal time
measures how much the celestial sphere has turned. The sidereal time is
the time with respect to stars, and a sidereal day is 23 hours and 56
minutes and 4 seconds with respect to the stars. The difference between
this day and a 24 hour day, is 3 minutes and 56 seconds, which is
approximately 1/365 of a day. During a day the Earth moves through
1/365 of its orbit around the Sun.

» The Law of Cosines and Law of Sines for spherical triangles can be
used to determine values for spherical triangles on the celestial sphere.

13.5. Chapter 13 summary and highlights

* Spherical trigonometry was developed to describe and understand
applications involving triangles on spheres and spherical surfaces called
spherical triangles. Spherical triangles do not have straight-line sides,
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rather they have sides that are arcs of great circles (which are the largest
circles that can be drawn around a sphere’s surface). Great-circle arcs
form the sides of a spherical triangle, and where two arcs intersect, a
spherical angle is formed. A spherical angle can be thought of as either
an angle between the tangents of the two arcs at the point of intersection
or as the angle between the planes of the two great circles where they
intersect at the center of the sphere. Spherical trigonometry involves
relationships between the arc lengths (sides) and the spherical angles
between the arcs. Because the sides of a spherical triangle are arcs rather
than straight lines, they are measured in radians or degrees. In addition,
unlike a planar triangle, in which the sum of the angles will always be
180°, in a spherical triangle, the angles add up to more than 180°. When
measuring distances or plotting a course on a sphere, it turns out that the
shortest distance or path between two points is the path that is part of a
great circle on which the two points are located.

« The length of a side of a spherical triangle can be compared to the
radian measure for arc length, in which arc length = (radius)(central
angle measure in radians). In a spherical triangle with angles A, B, and
C and sides a, b, and c, the lengths of the sides are ar, br, and cr, where r
is the radius of the sphere. In the spherical triangle, a, b, and c are also
the angles subtended at the center of the sphere by the great circle arcs
(sides) such that: a = (length of arc a) / (radius of sphere). To obtain the
length of the arc for a side, multiply the radian measure of the side by r.
Because both the sides and angles have angular measures, measure the
angles of spherical triangles in degrees and measure the sides in radians.

» The Law of Cosines for spherical triangles and Law of Sines for
spherical triangles can be used to solve most spherical triangles, and
are:
Law of Sines for spherical triangles

sina _sinb _sinc

sinA sinB sinC

Law of Cosines for spherical triangles
cosa=cosbcosc+sinbsinccos A
cosb=cosccosa+sincsinacosB
cosc=cosacosb+sinasinbcosC
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Law of Sines, Law of Cosines, oblique
triangles 55-67
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with powers, graphing 237-252

trigonometric function expansions 334,
338-339

trigonometric function values, chart 102

trigonometric functions and quadrant
signs 95-96

trigonometric functions/circular functions
78

trigonometric functions defined by right
triangle 45

trigonometric functions defined in a
coordinate system 78-113

trigonometric functions defined in
coordinate system, standard position
angle 94

trigonometric functions of quadrantal
angles 97

trigonometric identities 191-223

trigonometric identities summary 191-
193

trigonometric identities, verifying 197-
200

U
unit circle and circular functions 105-109

A\

vector cross product, area, volume 273-
276

vector dot product, parallel, perpendi-
cular, i, j, k unit vectors 269-273

vector examples 264-268

vector, addition and subtraction 261-264

vector, displacement, velocity,
equivalent, zero, unit, magnitude,
notation 254-256

vector, multiply with scalar 269

vector, represent using components in
coordinate system 256-261

vector, representing using i, j, k unit
vectors 259-261

vectors and trigonometric finctions 254-
277

vertical shift 133-135, 138

volume 40

w
whole numbers 3

X

x-intercept method to solve algebraic
equations and inequalities 235-237

x-intercept method to solve trigonometric
equations and inequalities 249

VA
zero S
zero vector 261



	Cover Image������������������
	Title Page�����������������
	Copyright����������������
	Acknowledgments����������������������
	Table of Contents������������������������
	Introduction�������������������
	Preface��������������
	Chapter 01�����������������
	Chapter 02�����������������
	Chapter 03�����������������
	Chapter 04�����������������
	Chapter 05�����������������
	Chapter 06�����������������
	Chapter 07�����������������
	Chapter 08�����������������
	Chapter 09�����������������
	Chapter 10�����������������
	Chapter 11�����������������
	Chapter 12�����������������
	Chapter 13�����������������
	Index������������



