

OpenStreetMap

Be your own Cartographer

Jonathan Bennett

 BIRMINGHAM - MUMBAI

OpenStreetMap

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2010

Production Reference: 1170910

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847197-50-4

www.packtpub.com

Cover Image by John M. Quick (john.m.quick@gmail.com)

Credits

Author
Jonathan Bennett

Reviewers
Steve Coast

Richard Fairhurst

Acquisition Editor
Sarah Cullington

Development Editor
Chaitanya Apte

Technical Editor
Roger D'souza

Copy Editor
Neha Shetty

Indexer
Tejal Daruwale

Editorial Team Leader
Mithun Sehgal

Project Team Leader
Priya Mukherji

Project Coordinator
Prasad Rai

Proofreader
Clyde Jenkins

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

About the Author

Jonathan Bennett is a British journalist, writer, and developer. He has been
involved in the OpenStreetMap project since 2006, and is a member of the
OpenStreetMap Foundation. He has written for print and online technical
publications including PC Magazine, ZDNet, CNET, and has appeared on television
and radio as a technology commentator. He has an extensive collection of out-of-date
printed maps.

To Katie, Matthew, Joseph and Rosie. Thank you for putting up with
the little excursion every journey with me involves.

I would like to thank Steve Coast, Richard Fairhurst, Andy
"Gravitystorm" Allan, Grant "Firefishy" Slater, Tom Hughes, and
Matt "Zerebubuth" Amos for help while writing this book, and
anyone who's ever added something to OpenStreetMap, from a
single postbox to entire road networks.

About the Reviewers

Steve Coast has worked in a variety of heavy lifting computing applications, from
computational geometry to artificial life, and mapping applications. Steve lives in
Denver, Colorado, and enjoys hangliding, Mongolian throat singing, and soccer.

As founder of OpenStreetMap, the free wiki world map, Steve undertakes a wide
variety of roles within the project, from creating the API to his many public speaking
appearances around the world. Steve is also chairman of the OpenStreetMap
Foundation, a not-for-profit that supports and guides the project.

I'd like to thank the thousands of OpenStreetMap contributors
around the world for making the best map possible.

Richard Fairhurst is a journalist, cartographer, and programmer who has been
involved with OpenStreetMap since the very first days of the project. He is best
known for the Potlatch online map editor, but his favorite OSM activity is strapping
a GPS to the handlebars of his trusty hybrid bike and going out to map a National
Cycle Network route.

His day job is editing Waterways World magazine. In his spare time, as well as
mapping, he is a volunteer Sustrans cycle ranger and plays the church organ.
He lives in a small Oxfordshire town, which is reputed to have the highest
concentration of OSM users anywhere in the world.

Table of Contents
Preface	 1
Chapter 1: Making a Free, Editable Map of the World	 7

What is OpenStreetMap?	 8
Why use OpenStreetMap?	 10
Why contribute to OpenStreetMap?	 11
History	 12
Does it work?	 14
Structure of the project	 15
The OpenStreetMap Foundation	 16
Achievements	 17
Summary	 18

Chapter 2: Getting started at openstreetmap.org	 19
A quick tour of the front page	 20
Creating your account	 21
How to use the slippy map	 24
Interacting with the data	 25
Project documentation: the wiki	 26
Communicating with other mappers 	 27

Mailing lists	 27
Chatting on IRC	 28
Forums	 29

planet.openstreetmap.org	 29
Reporting problems with OpenStreetMap software	 29
OpenStreetMap on social networks	 30
Don't be afraid to ask	 30
Summary	 30

Table of Contents

[ii]

Chapter 3: Gathering Data using GPS	 31
What is GPS?	 32
What's a GPS trace?	 34
What equipment do I need?	 36
Making your first trace	 38

Configuring your GPS receiver	 38
Checking the quality of your traces	 39

Making your traces more accurate	 40
Surveying techniques	 41

Making your survey comprehensive	 42
Photo mapping	 43
Audio mapping	 45

Getting your traces into the right format	 45
Adding your traces to OpenStreetMap	 48
Collecting information without a GPS	 50
Have you finished?	 51
Summary	 52

Chapter 4: How OpenStreetMap Records Geographical Features	 53
Data primitives	 54

Nodes	 55
Ways	 57
Relations	 59
Changesets	 60

Tagging	 61
"Any tags you like"	 63
"Don't tag for the renderer"	 64
Verifiability	 64

A few core tags	 65
Other useful keys	 68
Creating a new tag	 68

Summary	 69
Chapter 5: OpenStreetMap's Editing Applications	 71

Potlatch	 73
Launching Potlatch	 73
Understanding Potlatch's user interface	 75
Editing data using Potlatch	 78
Using presets in Potlatch	 79
Using GPS traces in Potlatch	 80
Practicing with Potlatch	 80
Learning more about Potlatch	 80
Potlatch 2	 81

Table of Contents

[iii]

Java OpenStreetMap Editor (JOSM)	 81
Understanding JOSM's user interface	 82
Loading images into JOSM	 87
Editing data in JOSM	 88
Using presets in JOSM	 90
Adding your account information to JOSM	 91
Extending JOSM with plugins	 92
Learning more about JOSM	 92

Merkaartor	 93
Loading images in Merkaartor	 95
Editing data in Merkaartor	 96
Uploading edits to OpenStreetMap	 98
Learning more about Merkaartor	 98

Summary	 98
Chapter 6: Mapping and Editing Techniques	 99

Drawing and tagging features	 100
Drawing area features	 104
Drawing ways with loops	 105
Mapping residential streets and complex streets	 106
Barriers and gates	 108
Points of interest	 110
Mapping overlapping features	 112
Other civic amenities	 114
Finding undocumented tags	 115
Estimating area features	 117
Finished	 120

Summary	 120
Chapter 7: Checking OpenStreetMap Data for Problems	 121

Inspecting data with openstreetmap.org's data overlay and browser	 122
Inspecting a single feature	 124
Checking a feature's editing history	 125
Inspecting changesets	 126

Finding unsurveyed areas with the NoName layer	 127
OSM Mapper	 128

Creating an area to analyze	 128
Filtering and sorting data	 128
Creating a view	 130

OSM Inspector	 131
Summary	 134

Table of Contents

[iv]

Chapter 8: Producing Customised Maps	 135
The openstreetmap.org exporter	 135

Choosing an image format	 136
Generating image files	 137
Embedding maps in a web page	 138

Rendering maps on Windows using Kosmos	 140
Installing Kosmos	 141
Creating a project	 142
Adding OpenStreetMap data	 143
Adding GPS tracks	 145
Adding existing OpenStreetMap maps	 145
Customizing the rendering rules	 145
Exporting a bitmap	 151
Kosmos Console	 152
Rendering map tiles using Kosmos	 153
Taking Kosmos further	 155

Osmarender	 155
Getting ready to run Osmarender	 155

XSL processing with XMLStarlet	 156
Installing Osmarender	 157
Editing SVG with Inkscape	 158

Producing a map	 158
Customizing the rendering rules	 160

Writing simple rules	 162
Using CSS classes for style	 167
Nested rules	 168
Creating default rules using <else>	 169
More complex rules	 170

Summary	 171
Chapter 9: Getting Raw OpenStreetMap Data	 173

Planet files	 174
The main Planet site	 174
Checking a planet file's integrity	 175
Diff files	 176
Mirror sites	 176
Planet extracts	 177

OpenStreetMap's REST API	 177
Retrieving an individual feature	 179
Getting a feature's editing history	 181
Retrieving all features in an area	 182

Table of Contents

[�]

The extended API (XAPI)	 183
Standard API calls	 184
Query by primitive	 184
Map query	 184
Filtering data by area	 185
Filtering by tag	 185
Filtering by associated elements	 187
Filter by user activity	 189

Summary	 189
Chapter 10: Manipulating OpenStreetMap Data using Osmosis	 191

What is Osmosis?	 191
Setting up Osmosis	 192

How Osmosis processes data	 193
Cutting out a bounding box	 194

Getting data from outside the bounding box	 195
Cutting out data with a bounding polygon	 196

Using polygon files	 196
Creating your own polygon files	 197

Using tag filters to produce tailored datasets	 199
Simplifying filters	 201

Splitting and merging data streams	 202
Creating multiple pipelines with the tee task	 203

Automatically updating local data from diffs	 205
Preparing your system	 205
Running the initial update	 207
Keeping the data up-to-date automatically	 208

Reading the OpenStreetMap API from Osmosis	 209
Using Osmosis with a database	 210

Installing PostGIS and creating the database	 211
Using Osmosis on the same machine as PostgreSQL	 212
Creating the database	 212

Adding data to the database	 214
Reading data from the database	 214
Applying changes to the database	 215
Using an auth file to store database credentials	 216

Other Osmosis tasks	 217
Summary	 217

Table of Contents

[vi]

Chapter 11: OpenStreetMap's Future	 219
Changing the OpenStreetMap license	 219

Adopting the Open Database License	 220
MapCSS—a common stylesheet language for OpenStreetMap	 221
Specialized editing applications	 224
Summary	 225

Index	 227

Preface
This book will allow you to take control of your own maps and use them smoothly.
This book introduces the reader to the OpenStreetMap project and shows you how to
participate in the project, and make use of the data it provides. No prior knowledge
of the project is assumed, and technical details are kept to a minimum�.

What this book covers
Chapter 1, Making a Free, Editable Map of the World explains how and why the
project was started, how freely redistributable geographic data is different from
maps that are merely free of charge to use, and some of the things the project has
already achieved.

Chapter 2, Getting Started at openstreetmap.org covers the main features of
openstreetmap.org and how to create and personalize an account on it. It explains
how to use the documentation in the OpenStreetMap wiki, and how to communicate
with the OpenStreetMap community.

Chapter 3, Gathering Data using GPS looks at the tools and techniques used by the
OpenStreetMap community to gather data using GPS and upload it to the website.
It also explains some basic surveying techniques.

Chapter 4, How OpenStreetMap Records Geographical Features covers the types
of data you can record, such as nodes, ways, and relations. It also looks at the
tagging system and how the community uses and manages it.

Chapter 5, OpenStreetMap's Editing Applications looks at the basic operation
of OpenStreetMap's three most popular editors, including Potlatch, JOSM,
and Merkaartor.

Preface

[�]

Chapter 6, Mapping and Editing Techniques explains how to draw features based
on GPS traces, how to tag them, and how to find tags that mappers have used,
but not documented.

Chapter 7, Checking OpenStreetMap Data for Problems explains how to find the cause
of any problems you're having with OpenStreetMap data using the data inspection
tools on openstreetmap.org, the NoName layer, ITOWorld OSM Mapper, and
Geofabrik's OSM Inspector.

Chapter 8, Producing Customised Maps explains how to create maps using the
standard renderings on openstreetmap.org, using a standalone rendering
application for Windows and Kosmos, and in Scalable Vector Graphics (SVG)
format using Osmarender.

Chapter 9, Getting Raw OpenStreetMap Data discusses ways of accessing the data in the
OpenStreetMap database, such as Planet files, the main OpenStreetMap API, and the
Extended API (XAPI).

Chapter 10, Manipulating OpenStreetMap Data using Osmosis looks at a tool that is used
heavily within OpenStreetMap to manipulate data from planet files or extracts, or
databases containing OpenStreetMap data, called Osmosis.

Chapter 11, OpenStreetMap's Future explains some of the changes being developed by
the coders and mappers working on OSM, and how they'll affect users of the data.

Who this book is for
This book would be the perfect aid for geographic-information professionals
interested in using this data in their work, and web designers and developers who
want to include mapping in their sites, and want a distinctive style. This book is
for you if you have a need to use maps and geographic data for work or leisure,
and want accurate, up-to-date maps showing the information you're interested in,
without details you don't need. If you want to use maps for navigation, and want
more or less detail than traditional printed maps give, this book would be perfect
for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[�]

Code words in text are shown as follows: "The role attribute is a simple string
whose values and significance is defined by the type of the relation itself."

A block of code is set as follows:

<osm version="0.6" generator="OpenStreetMap server">
 <node id="483034256" lat="55.9458449" lon="-3.2035477" version="1"
 changeset="2369219" user="spytfyre" uid="166957" visible="true"
 timestamp="2009-09-04T13:35:42Z">
 <tag k="name" v="The Blue Blazer"/>
 <tag k="amenity" v="pub"/>
 </node>
</osm>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<osm version="0.6" generator="OpenStreetMap server">
 <node id="107775" lat="51.5072647" lon="-0.1278328" version="29"
 changeset="2628959" user="EdinburghGael" uid="170586"
 visible="true" timestamp="2009-09-25T23:04:28Z">
 <tag k="place" v="city"/>
 <tag k="name:zh" v="伦敦"/>
 <tag k="name:sv" v="London"/>
 <tag k="name:sk" v="Londýn"/>
 ...
 <tag k="is_in" v="England, United Kingdom, UK, Great Britain,
 Europe"/>
 <tag k="capital" v="yes"/>
 <tag k="name:fr" v="Londres"/>
 <tag k="name:cy" v="Llundain"/>
 </node>
</osm>

Any command-line input or output is written as follows:

Kosmos.Console.exe bitmapgen compton.kpr compton.png -mb 51.20868 -
0.63794 51.22011 -0.61772 -z 16

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "You can
do this by right-clicking on your My Computer icon and selecting Properties."

There are some images that are referred in the chapters but are not actually present
in it. Such images can be found along with the code files on the Packt website. The
images are referred as follows: "The road's name is Down Lane, which can be seen in
the image 121120009090.jpg."

Preface

[�]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or e-mail
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Preface

[�]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Making a Free, Editable Map
of the World

Maps have always been a source of power. Armies have used them to give
themselves a military advantage, traders have used them to find the shortest route
between places of supply and markets, and fictional pirates have used them to find
buried treasure. Those possessing a map have an advantage over those that don't.

It's no wonder then that maps and the information used to create them have been
fiercely protected by companies and governments that own them. Many government
and commercial mapping agencies charge high fees to use their data, impose strict
restrictions on what you can do with the information, and may even make you pay
to use maps you've drawn yourself. The OpenStreetMap project aims to change this
by giving everyone their own map, for free, and to use for whatever they like.

In this book, you will learn:

What the OpenStreetMap project is
Why it's different from other sources of free maps
Why you should contribute to the project
How to add and edit geographic data
How to turn that data into maps you can use for anything you like

This chapter explains how and why the project was started, how freely
redistributable geographic data is different from maps that are merely free
of charge to use, and some of the things the project has already achieved.

•

•

•

•

•

Making a Free, Editable Map of the World

[�]

What is OpenStreetMap?
OpenStreetMap (http://www.openstreetmap.org/) is a project to build a free
geographic database of the world. Its aim is to eventually have a record of every
single geographic feature on the planet. While this started with mapping streets,
it has already gone far beyond that to include footpaths, buildings, waterways,
pipelines, woodland, beaches, postboxes, and even individual trees. Along with
physical geography, the project also includes administrative boundaries, details
of land use, bus routes, and other abstract ideas that aren't apparent from the
landscape itself.

The database is built by contributors, usually called mappers within OpenStreetMap,
who gather information by driving, cycling, or walking along streets and paths, and
around areas recording their every move using Global Positioning System (GPS)
receivers. This information is then used to create a set of points and lines that can
be turned into maps or used for navigation. The next image shows the raw GPS
recordings of courier vans working in Central London, where you can see how the
many streets in the city are laid out.

Most mappers are volunteers working on the project in their spare time, although
both commercial organizations and government bodies have started to contribute
to the project.

The process of using groups of people to work on a task in this way, called
crowdsourcing, is a recent phenomenon based around using the Internet to
distribute tasks and gather the results. It's used by voluntary projects and
commercial organizations alike, and has been particularly effective since
broadband Internet connections became widely available in the western world.

Other data is gathered from out-of-copyright maps, public domain databases
(ones with no copyright protection), or in some cases donations of proprietary
databases by the companies that own them. In most cases, this needs further work
to update and tidy the data, but it allows mappers to cover areas they can't get to,
or for features that are difficult to survey on foot.

The database uses a wiki-like system where any mapper can add or edit any feature
in any area, and a full editing history is kept for every object. This means any
mistakes or deliberate vandalism can be rolled back, keeping the data accurate.
OpenStreetMap doesn't use an existing geographic information system (GIS)
to store its data, but instead uses its own software and data model to make the
crowdsourcing process as easy as possible, and to allow the maximum level of
flexibility in what gets mapped and how.

Chapter 1

[�]

While the primary aim of the project is to collect geographic data, members of the
project have also produced a wide range of software (much of it open source) that
creates, edits, manipulates, or uses the data in some way. We'll use a selection of
this software in the examples in this book.

OpenStreetMap's data is free to use by anyone, for any purpose. It is released under
a license that allows you to copy, change, and redistribute the data. There are many
maps available on the web, all of which are free to use, and some can be embedded
in your own web pages or used in mash-ups, but they also have restrictions on what
you can do with those services and the data they provide.

In contrast to OpenStreetMap, none of these free services allow you to modify or
redistribute their data. If the data is wrong, you can submit a bug report and hope
that they fix it, but update cycles are typically slow, and can take months, if not
years, to make the corrections. If the service is withdrawn, you're left with nothing.
If you want to use the data offline or in an alternative format, you can't. Some even
go so far as to claim ownership of any information you display on top of their maps.
To borrow a phrase from open source software, these services are "free as in beer, not
free as in speech".

Making a Free, Editable Map of the World

[10]

OpenStreetMap is often compared to Wikipedia, and there are many similarities
between the projects. They both create freely licensed content. They both use the
Internet to allow contributors from all over the world to participate, and they both
rely on collaborative editing to improve the information they contain incrementally.
They both rely on a large and diverse community to ensure the project runs
smoothly, and to prevent errors, whether accidental or intentional, from lowering
the quality of their information.

Unlike Wikipedia, OpenStreetMap is building a database of information rather than
a series of articles. The biggest difference between the projects is that to contribute to
OpenStreetMap, you will, at some point, have to leave your computer behind and go
out and gather some data.

Despite the name, OpenStreetMap isn't just about maps, and certainly not just
about one or two maps; routing, geocoding (finding coordinates for a given object),
and spatial analysis are other applications for the data. Even the maps on the
OpenStreetMap website are just examples, and you can make your own maps
in whatever style you choose.

Why use OpenStreetMap?
Unlike most sources of geographic data, there are virtually no restrictions on what
you can do with OpenStreetMap data. You can use it for any purpose, including
commercial activities, without having to pay license fees. You can edit the
information in any way you like and publish the results. You can give the data to
someone else without needing permission, and they can, in turn, pass it on. Your
only obligation is to "share alike"; that is, to allow anyone you give OpenStreetMap
data to redistribute it themselves. The particular license used is currently the
Creative Commons Attribution Share-Alike 2.0 license, usually abbreviated as
CC-BY-SA, although a process to change the license to the Open Database
Licence 1.0 (ODBL) is currently being considered.

OpenStreetMap contains details of much more than just roads. All mappers are
free to add any geographic object they find, so people have added phone boxes,
bus stops, parks, public toilets, places of worship, and much more. Footpaths and
cycleways are better represented in OpenStreetMap than many other databases,
and there are already a number of cycling map and routing projects based on
OpenStreetMap data.

Chapter 1

[11]

OpenStreetMap is updated more often than any other geographic database. In
fact, it's continually updated, and the latest data is always available to download.
While proprietary databases may be updated frequently, those changes often aren't
released to customers very quickly, leaving users with an out-of-date database for
some time, possibly months. In contrast, the full OpenStreetMap database, known
as the Planet file, is released every week, with updates ("diffs") released on a daily,
hourly, and minute-by-minute schedule.

You can correct errors in OpenStreetMap data yourself, and share those corrections
with everyone. In the UK, the problem of heavy goods vehicles using satellite
navigation and being routed along narrow country lanes appears in the news
regularly, and one man even found himself driving to the edge of a cliff by following
his SatNav. Anyone encountering mistakes in the information like this can change
the map themselves directly, and the changes show up in the database immediately.

Most of the other mapping providers only have maps in a limited number of styles,
and obtaining custom maps can be an expensive and lengthy process. In contrast,
with OpenStreetMap, the only limits to the number of mapping styles you can have
is your own technical and cartographic ability. Several map rendering packages and
Geographic Information Systems support OpenStreetMap data, and all the software
you need to create maps is available free of charge..

Why contribute to OpenStreetMap?
You don't have to map anything yourself to make use of OpenStreetMap data, so
why should you do any mapping yourself?

It's fun! Mappers tell stories of finding footpaths less than a mile from their house
or workplace that they didn't know existed. Surveying has taken mappers to places
they'd otherwise never have visited, and made them appreciate their local area in a
different way.

The area you need may not have been mapped in OpenStreetMap yet. While urban
areas in Western Europe have extensive coverage, more rural areas in those countries
or places elsewhere in the world may still not have been mapped. The project mostly
relies on volunteers, and less densely populated areas get mapped at a slower rate.
Surveying the area yourself, at whatever level of detail you require, is easy to do. If
you have a commercial project that requires mapping, you could pay a professional
surveyor to do the work, which may be more cost-effective in the longer term than
paying license fees for a proprietary database.

Making a Free, Editable Map of the World

[12]

You may be interested in features that no one else has mapped yet. An area may
have its roads extensively mapped, but not have any post boxes, car parking, or retail
outlets mapped. If you add those features, you may find other mappers start adding
them in other areas, and that the features you add to the database are kept up-to-date
by the community. You could get back more from the project than you put in
this way.

By contributing to the project, you're also contributing to the common good. The
license used by OpenStreetMap means that any data in the database forms a
commons, in perpetuity, and without restrictions. It puts accurate, customizable
mapping within the reach of small, non-commercial groups, such as clubs and
societies, charities and other voluntary organizations.

History
The OpenStreetMap project began in August 2004 when British programmer
Steve Coast wanted to experiment with an USB GPS receiver he'd bought and his
Linux-powered notebook. He used a piece of software called GPSDrive, which took
maps from Microsoft MapPoint, breaking the license conditions. Not wanting to
violate copyright on those maps, he looked around for an alternative. Coast found
that there were no sources of mapping data available that he could incorporate
into open source software without breaking the licensing conditions or paying
huge amounts.

Coast realized that he could draw his own map, and so could others, and the project
was born. After presenting his ideas at open source events in London, he found that
others had similar ideas, but most hadn't got their projects off the ground. Once they
were persuaded to join in, OpenStreetMap was up and running.

The idea of amateur cartographers making maps with consumer-grade equipment
was greeted with some skepticism at first. Some said that standard GPS receivers
were too inaccurate to make maps with, as a 10-meter error would mean roads
would be in the wrong place. Others claimed that a complex infrastructure was
needed for such a large-scale project. Other objectors said a predefined ontology
was needed, or that the database would simply be too big.

The data model was initially very crude, consisting of simple lines drawn over
Landsat information from NASA. Over a period of time, the data evolved into
a more useful model, but the basic principle of imposing as few restrictions as
possible on mappers was followed. The server software was initially written in
Java, then rewritten in Ruby, and finally in Ruby on Rails, which is still the current
server platform.

Chapter 1

[13]

In March 2006, the first desktop editing application for OpenStreetMap, JOSM, was
released. This was written in Java and allowed offline mapping for the first time.
Soon after, the first full-color map was created using a renderer written specifically
for OpenStreetMap, called Osmarender, showing Weybridge in Surrey, and added
to Wikipedia.

In the month of May of that year, the first mapping event was held on the Isle of
Wight (pictured in the previous image). This was the first time many of the mappers
had met in person, and marked a turning point for the project. One single area was
mapped in detail by many people, showing that the crowdsourcing approach to
geography worked. Mapping parties like this event have become regular features of
the OpenStreetMap community, and are held all over the world wherever mappers
spot an area that needs better coverage.

The OpenStreetMap Foundation was formed in August 2006 to own the infrastructure
needed to run the project and accept donations. Prior to this, the servers, domain
names, and other infrastructure had been owned by Steve Coast, and establishing
the foundation gave the project an existence beyond one person's involvement.

Making a Free, Editable Map of the World

[14]

May 2007 saw the server software move to the Ruby on Rails platform, and the
release of the online Flash-based editor, Potlatch. Later that month, the first annual
OpenStreetMap conference, The State of the Map, was held in Manchester. By
August, there were five million ways in the database, and 10,000 registered users
on the OpenStreetMap website.

In September 2007, Automotive Navigation Data (AND), a Dutch mapping company,
donated its dataset for the Netherlands to the project. This was the first time a
commercial organization had provided data to the project, and the first time the
whole of any country was covered for some types of data.

During the same month, the process of importing the US government public domain
geodata set, known as TIGER (Topologically Integrated Geographic Encoding and
Referencing) was started, completing in January 2008. Work began immediately
to clean this data up and to make it conform with OpenStreetMap data standards.

By February 2008, there were 25,000 registered users of the OpenStreetMap website,
and an appeal was launched to raise £10,000 for new servers. In the end, over £15,000
was raised in less than a week.

State of the Map 2008 was held in Limerick, Ireland in July. By the end of that year,
over 300 million points had been plotted in the database. On March 17, 2009, the
100,000th user registered on the site, less than five years after the project started;
the number of users had quadrupled in just over a year.

At the time of writing, over half a million points were being added to the
OpenStreetMap database each day, and the rate of growth was still increasing.

Does it work?
The process of crowdsourcing geographic data is accurate. A 2008 study by Muki
Haklay at University College London examined the OpenStreetMap data for the UK
in general, and London in particular, and compared it to similar data from Ordnance
Survey. Haklay found that where data existed in OpenStreetMap, 80% of it coincided
with Ordnance Survey data for the same features. The average distance from an
OpenStreetMap feature to an Ordnance Survey equivalent was six metres, less
than the general accuracy of GPS positioning, and this didn't take into account
the possibility of the Ordnance Survey data being inaccurate.

There were also large areas where there was no data in OpenStreetMap. The
conclusion is that if there is a problem with OpenStreetMap data, it is one of
completeness rather than positional accuracy. Everything that's there is in the
right place, but not everything is mapped yet.

Chapter 1

[15]

Another vote of confidence in the quality of OpenStreetMap's data comes from one
UK local authority, Surrey Heath Borough Council, whose staff have mapped the
area covered by the council, and is using OpenStreetMap maps on its website and
internally. You will also find maps based on OpenStreetMap data on whitehouse.gov,
the website of the President of the United States.

Structure of the project
There is very little formal structure to the OpenStreetMap project, and what structure
there is reflects the voluntary nature of contributions to the project. There are no
super-users who can change the data in ways that "normal" users can't, and there
are no fixed ontologies for the data. The data and the project are both intended to
give mappers as much flexibility as possible, so they can map features as accurately
as they can. While there are system administrators who look after the project's
infrastructure, they don't get any more say about what gets put in the database
than any other contributor.

The OpenStreetMap Foundation—the non-profit body set up to support the
project—doesn't regulate where mappers work, what features they map, or how
they describe them. The foundation does have a few working groups that look after
various aspects of the project, but they are concerned with long-term development
rather than day-to-day operation. The foundation will only intervene when the
whole project is being put at risk by the actions of individual mappers.

This relative anarchy is both a strength and weakness of the project. On the positive
side, it allows mappers to get on with recording information without needing
permission, approval, or moderation. It allows the data to evolve over time to correct
mistakes and to take account of changes without the overhead of a top-down design.
It allows novel uses of the data without having to check license conditions. However,
it also means that problems are addressed according to how interesting they are
to individual mappers, rather than how important they may be to the project as
a whole, as the volunteers aren't under any obligation to follow a plan.

The project's main website is www.openstreetmap.org, which is aimed at collecting
and maintaining the data. Various other websites and resources are used to
coordinate the project, including mailing lists, a wiki, a code repository, and an
issue tracker. Other tools are also provided by individual mappers or companies,
and these have their own websites.

Making a Free, Editable Map of the World

[16]

The most important thing to remember is that the project has no paid employees.
Even mappers whose job involves working with OpenStreetMap are paid by their
companies, who have their own interests, and aren't there to solve other people's
problems necessarily. While the OpenStreetMap community will be happy to help
you solve any problems you have, you will be expected to make an effort yourself.

The OpenStreetMap Foundation
The OpenStreetMap Foundation (OSMF) is a non-profit company based in the UK
that supports the project. The foundation exists to own the project's infrastructure,
accept donations, organize the annual conference, and provide arbitration in the
event of disputes. It was established in 2006 as a Company Limited by Guarantee—a
type of company in the UK that is suited to non-profit-making organizations. This
type of company doesn't have shareholders; rather its members or guarantors are
expected to pay a small amount (currently £5) in the event of the company becoming
insolvent. The foundation's Memorandum of Association forbids it from paying
dividends or otherwise distributing any profits.

Anyone may join the OSMF, although it's not necessary to use OpenStreetMap or
contribute towards it. Neither does the OSMF dictate what can or can't be mapped,
or how mappers work. Although it owns the project's infrastructure, the foundation
doesn't own the data stored on them unless mappers have explicitly chosen to
reassign the copyright on their contributions to the foundation.

The OSMF is governed by a board of directors, elected by the membership, which
oversees the general running of the foundation. There are also a number of working
groups made up of members of the foundation in addition to board members,
which provide recommendations about particular aspects of the project, such as
licensing, promotion of the project, the annual conference, and a data working group,
responsible for ensuring the accuracy of the data as a whole. The data working
group will intervene if unresolvable content disputes occur, or for cases of persistent
vandalism, but, in general, most issues are solved by the OpenStreetMap community.

The foundation also administers the GPStogo,scheme, which provides GPS
receivers to mappers in developing countries. The scheme is aimed at improving
OpenStreetMap's data in countries where the equipment needed is too expensive
to buy by lending receivers to mappers who have already made some contribution
to the project.

Chapter 1

[17]

Achievements
In five years, OpenStreetMap has gone from a small project run by a few enthusiasts
in London to being a global resource with thousands of users and the start of an
industry based around the data it collects. It's no longer just a hobby for a few, but
a serious project attracting the attention of companies and governments.

Many specialist maps have been created, including OpenCycleMap
(http://www.opencyclemap.org/) showing cycle networks and routes, a Piste map
for skiers and snowboarders, a hiking site combining maps with photos for guidance,
and a nautical chart.

Making a Free, Editable Map of the World

[18]

When the Beijing 2008 Olympic Games started, the photo-sharing website Flickr
(http://www.flickr.com/) began using OpenStreetMap mapping of the city
for its users to plot the location of their photos, and has continued to do so.

OpenStreetMap has also made an impact in humanitarian aid. The project has
produced mapping of the Gaza Strip in the middle-east (seen in the previous
screenshot) through tracing aerial images and information from aid workers in the
region. The dangers faced by people working in the region and the rate at which the
landscape changes has made up-to-date mapping difficult to obtain. It's hoped that
OpenStreetMap's way of producing maps will change this.

Summary
The OpenStreetMap project, its data, and its community can provide maps and
mapping data from a simple static image to a custom-rendered dynamic map of the
world, to anyone, for any purpose, without restrictions. The data is accurate, detailed
in places, and continually improving. The only limit to what you can do with the
data is your own ability, and in this book we'll show you how to create, edit, and
view the data, and how to turn it into a map showing the information you want,
in the style you want.

Getting started at
openstreetmap.org

OpenStreetMap is a diverse project with hundreds of thousands of people
contributing data and making use of it in different ways. As a result, many of the
resources that mappers have created and use are scattered around the Internet, but
the project data and much of the documentation is hosted at openstreetmap.org, on
servers operated by the OpenStreetMap Foundation.

As a crowdsourced project, OpenStreetMap is heavily reliant on having an active
community participate in the project, and there are probably as many tools and
websites aimed at allowing mappers to communicate and collaborate as there are for
mapping and using the data. Mappers have created many different ways of sharing
information, based on personal preference and the kind of information involved.

In this chapter, we'll cover:

The main features of openstreetmap.org—the main website for the project
Creating and personalizing an account on openstreetmap.org
Using the map viewer and the tools associated with it
Using the documentation in the OpenStreetMap wiki
Communicating with the OpenStreetMap community using mailing lists,
forums, IRC, and other channels

Not all the tools and features on the site are obvious from the front page, so we'll
go on a tour of the site, and cover some other tools hosted by the project. By the
end of the chapter, you should have a good idea about where to find answers
to the questions you have about OpenStreetMap.

•

•

•

•

•

Getting started at openstreetmap.org

[20]

A quick tour of the front page
The project's main "shop front" is www.openstreetmap.org. It's the first impression
most people get of what OpenStreetMap does, and is designed to be easy to use,
rather than show as much information as possible. In the following diagram, you
can see the layout of the front page. We'll be referring to many of the features on
the front page throughout the book, so let's have a look at what's there:

Most of the page is taken up by the map viewer, which is nicknamed the slippy map
by mappers. This has its own controls, which we'll cover later in the chapter. Along
the top of the map are the navigation tabs, showing most of the data management
tools on openstreetmap.org. To the right of these are the user account links.

Down the left-hand side of the page is the sidebar, containing links to the wiki, news
blog, merchandise page, and map key. The wiki is covered later in this and other
chapters. The news blog is www.opengeodata.org, and it's an aggregation of many
OSM-related blogs.

The Shop page is a page on the wiki listing various pieces of OpenStreetMap-related
merchandise from several sources. Most merchandise generates income for the
OpenStreetMap Foundation or a local group.

Chapter 2

[21]

Clicking on the map key will show the key on the left-hand side of the map. As you'd
expect, the key shows what the symbols and shading on the map mean. The key is
dynamic, and will change with zoom level and which base layer you're looking at.
Not all base layers are supported by the dynamic map key at present.

Below this is the search box. The site search uses two separate engines:

Nominatim: This is an OpenStreetMap search engine or geocoder. This uses
the OpenStreetMap database to find features by name, including settlements,
streets, and points of interest. Nominatim is usually fast and accurate, but
can only find places that have been mapped in OpenStreetMap.
Geonames: This is an external location service that has greater coverage
than OpenStreetMap at present, but can sometimes be inaccurate. Geonames
contains settlement names and postcodes, but few other features.

Clicking on a result from either search engine will center the map on that result and
mark it with an arrow.

Creating your account
To register, go to http://www.openstreetmap.org/, and choose sign up in the top
right-hand corner. This will take you to the following registration form:

At present, you only really need an account on openstreetmap.org if you're planning
to contribute mapping data to the project. Outside the main site and API, only the
forums and issue tracker use the same username and password as openstreetmap.org.
You don't need to register to download data, export maps, or subscribe to the mailing
lists. Conversely, even if you're not planning to do any mapping, there are still
good reasons to register at the site, such as the ability to contact and be contacted
by other mappers.

•

•

Getting started at openstreetmap.org

[22]

OpenStreetMap doesn't allow truly anonymous editing of data. The OSM
community decided to disallow this in 2007, so that any contributors could be
contacted if necessary. If you're worried about privacy, you can register using a
pseudonym, and this will be the only identifying information used for your account.
Registering with openstreetmap.org requires a valid e-mail address, but this is never
disclosed to any other user under any circumstance, unless you choose to do so.

It is possible to change your display name after registration, and this changes it for
all current OpenStreetMap data. However, it won't change in any archived data,
such as old planet files.

Once you've completed the registration form, you'll receive an e-mail asking you to
confirm the registration. Your account won't be active until you click on the link in this
e-mail. Once you've activated your account, you can change your settings, as follows:

You can add a short description of yourself if you like, and add a photo of yourself or
some other avatar. You can also set your home location by clicking on it in the small
slippy map on your settings page. This allows other mappers nearby to see who else
is contributing in their area, and allows you to see them. You don't have to use your
house or office as your home location; any place that gives a good idea of where

Chapter 2

[23]

you'll be mapping is enough. Adding a location may lead to you being invited to
OpenStreetMap-related events in your area, such as mapping parties or social events.
If you do add a location, you get a home link in your user navigation on the home
page that will take the map view back to that place. You'll also see a map on your
user page showing other nearby mappers limited to the nearest 10 users within 50km.

If you know other mappers personally, you can indicate this by adding them as
your friend on openstreetmap.org. This is just a convenience to you, and your friends
aren't publicly shown on your user page, although anyone you add as a friend will
receive an e-mail telling them you've done it.

Once you've completed the account settings, you can view your user page (shown
in the following screenshot). You can do this at any time by clicking on your display
name in the top right-hand corner. This shows the information about yourself that
you've just entered, links to your diary and to add a new diary entry, a list of your
edits to OpenStreetMap, your GPS traces, and to your settings. These will be useful
once you've done some mapping, and when you need to refer to others' activities on
the site.

Every user on openstreetmap.org has a diary that they can use to keep the
community informed of what they've been up to. Each diary entry can have a
location attached, so you can see where people have been mapping. There's an
RSS feed for each diary, and a combined feed for all diary entries. You can find
any mapper's diary using the link on their user page, and you can comment on
other mappers' diary entries, and they'll get an e-mail notification when you do.

Getting started at openstreetmap.org

[24]

How to use the slippy map
The slippy map is the name used to mean the interactive sliding map viewer used on
the front page of openstreetmap.org. It uses an open source JavaScript library called
OpenLayers, and sets of map tiles that are assembled to form a continuous, movable
image. Tiles for different zoom levels show different amounts of detail, depending
on the rendering rules used. Apart from being the usual way of showing the map,
it's also a tool for mappers to examine the data behind the map.

You can move the map around using the controls in the top left-hand corner of the
map, and zoom in and out using the slider. You can also drag the map around with
your mouse or pointing device, or zoom in and out using a mouse wheel, if you
have one. You can zoom in on a particular area by holding down the Shift key and
dragging a rectangle over the area you want to see. Double-clicking on the map
will re-center the view and zoom in one level.

On the right-hand side of the map, you'll see a plus sign against a blue background;
this is the layer chooser. Click this to expand the box, and you'll see the list of
available base layers and overlays. A base layer is the underlying map shown, while
an overlay adds detail to whichever base layer you've chosen, and may include an
interactive element. You can use any overlay with any base layer, but you'll only be
able to interact with the top overlay.

The first two base layers are named after the programs used to render them—Mapnik
and Osmarender. We'll cover how both of these programs work later in the book.
These layers are designed to show the amount of detail that OpenStreetMap's data
contains, but may not include everything in the database, either for the sake of clarity,
or because a class of feature may not be in widespread use yet. In general, you should
expect to find common features, such as roads, paths, buildings, waterways, points of
interest, and landuse shading on these maps. These layers are continually updated,
so changes to the database usually appear within a few minutes, depending on how
many mappers are making changes and how many people are viewing the map at
the time.

Chapter 2

[25]

The Cycle map is an example of a specialist rendering of the data, and shows
cycle networks overlaid on a map with contour lines. It was one of the first
alternative renderings of OpenStreetMap data, and has its own site at
http://www.opencyclemap.org/. The Cycle map layer is updated less
often than the first two layers, generally once a week.

The final layer, called NoNames, is a maintenance tool for mappers, highlighting
any streets in the database without a name, where one would normally be expected.
The NoNames layer was created to help mappers see where streets had been added
to the database by tracing aerial imagery, which doesn't provide the names of the
streets. This is only a guide, and not every road highlighted in this layer will actually
have a name. It's updated once a week, so any names you add to the data won't show
up straight away.

There are two overlays on the slippy map; the maplint overlay and the data overlay.
Maplint shows parts of the map that use undocumented tags or has suspected errors,
while the data overlay allows you to see the actual data behind a feature on the map,
including any tags attached, when it was last edited and by whom. We'll cover how
to use both of these overlays in Chapter 5.

At the bottom right-hand corner of the map, there are two hyperlinks, labeled
Permalink and Shortlink. Both of these give you a link to your current map view,
so you can bookmark it or share it with others. The permalink includes the full
co-ordinates of the location, while the shortlink uses a code, and is more compact
but less readable. To copy either the permalink or the shortlink, right-click on the
link and choose Copy Link Location or your browser's equivalent.

Interacting with the data
Along the top of the slippy map are the navigation tabs for interacting with the data,
or getting more information. We'll cover what most of these do in more detail in later
chapters, but following a quick summary:

The View tab will take you back to the map viewer, and doubles as a
permalink for the current view. Clicking on this tab will reload the current
view and make an entry in your browser's history. If you want to use your
browser's back and forward buttons to switch between locations, you'll
need to do this for each place you want to move between.
The Edit tab switches to Potlatch—the online editor for OpenStreetMap.
We'll cover this in Chapter 5.

•

•

Getting started at openstreetmap.org

[26]

The History tab shows a list of recent edits in the area you're looking at.
This and other tools that show what edits have taken place are discussed
in Chapter 5.

The Edit and History tabs will appear in gray if you're
looking at too large an area for those tools to cope with.

The Export tab takes you to the map exporter, where you can get images or
data for the current area. We'll cover how to use the exporter in Chapter 6.
The GPS traces tab takes you to the list of raw GPS tracks that have been
uploaded to OpenStreetMap. This is where you'll add your own traces
once you've collected them. Creating, uploading, and using GPS traces
are explained in Chapter 3.
The User Diaries tab takes you to a feed of diary entries for all
OpenStreetMap contributors. At present, all diary entries are listed,
rather than being filtered by location or language. This may change
as more capabilities are added to the site.

Project documentation: the wiki
OpenStreetMap's data is stored in a custom-built system, but all the documentation
for the project is stored in a separate wiki, using MediaWiki—the software used to
run Wikipedia. It's hosted at http://wiki.openstreetmap.org/. In general, any
information that isn't part of the map data itself is kept here.

The wiki hasn't been integrated into the login system for openstreetmap.org, so
if you want to edit the wiki, you'll need to create a separate account. This isn't
necessary if you only want to read the wiki.

You can use the wiki to record any information that you think might be useful
to other mappers. This includes definitions of what particular tags mean in
OpenStreetMap, details of how well-mapped cities, towns and villages are,
instructions for installing and using various software packages, and reviews
of GPS receivers.

The wiki should usually be your first resort when looking for the solution
to a problem. The easiest way to find information is by using the search box.
There's also a customized Google search of the wiki, mailing lists, and forum
at http://bit.ly/osmsearch.

•

•

•

•

Chapter 2

[27]

The most important and heavily used page on the wiki is Map Features
(http://wiki.openstreetmap.org/wiki/Map_Features), for which you'll find a
link in the left-hand side navigation. This contains a list of commonly used tags and
descriptions of how they should be used. More unusual tags are also documented in
the wiki, but you may need to use the search box to find these.

There are no restrictions on what anyone can write in the wiki, and few mappers
keep it up-to-date, so some information you find in there may be out-of-date, or may
not reflect standard practice by the majority of mappers. If you find a page in the
wiki that looks inaccurate, you're welcome to correct it yourself, or ask in another
communication channel about its contents. The wiki documents what mappers do,
rather than dictating it, so you can choose to ignore its advice if it would prevent
you from mapping some area or features properly.

Communicating with other mappers
As OpenStreetMap is a community-run project, you will need to communicate
and collaborate with other mappers to get the most out of participating in the
project. There are a number of ways you can do this, depending on your personal
preferences and the type of information you're looking for (or want to offer).

Mailing lists
The main method of communication between mappers is the mailing lists. There
are a large number of mailing lists reflecting the diversity of the OpenStreetMap
community and the activities they're interested in. The mailing lists are hosted
at http://lists.openstreetmap.org/. You need to be subscribed to any
OpenStreetMap mailing list to post a message, and you can subscribe to any
list via the web interface, or by sending an e-mail to <listname>-subscribe@
openstreetmap.org. There are five main lists that interest most mappers:

Announce (http://lists.openstreetmap.org/listinfo/announce):
Announce is a very low-volume, moderated mailing list where announcements
of significant changes to OpenStreetMap are announced. You should subscribe
to this list if you aren't planning to use any of the other mailing lists.
Talk (http://lists.openstreetmap.org/listinfo/talk): Talk is
for general discussion of OpenStreetMap, and is a very high-volume list.
It's where most issues affecting OSM are discussed, and the discussions
can be lengthy and heated sometimes. If you want to make a significant
announcement, or get the attention of a large part of the OpenStreetMap
community, use this list.

•

•

Getting started at openstreetmap.org

[28]

Newbies (http://lists.openstreetmap.org/listinfo/newbies):
Newbies is a mailing list for newcomers to OpenStreetMap, where you can
ask simple questions. It's a lower-volume list than talk, so you won't get
overwhelmed with mail by subscribing.
Dev (http://lists.openstreetmap.org/listinfo/dev): Dev is where
programmers writing the software that OSM runs on, and those writing
the software that uses OpenStreetMap data hang out. You can use this list
to discuss bugs you've found in the website or any software, but not for
questions on mapping and tagging. Some OpenStreetMap software
packages have their own development mailing list.
Legal-talk (http://lists.openstreetmap.org/listinfo/legal-talk):
Legal-talk is where licensing and copyright issues affecting the project are
discussed. If you have data from an existing source you'd like to import to
OpenStreetMap, this is where you should ask if the data is compatible with
OpenStreetMap's license.

There are also local mailing lists for many countries, and for specific regions of
some countries. You should consider joining your local list, as many country-specific
tagging schemes exist, and these lists have a lower level of traffic than the main
talk list.

Some specialist subject mailing lists also exist, covering particular aspects of using
OpenStreetMap data, such as routing, accessibility, and geocoding. If you would
like another specialist mailing list (and are prepared to operate it), you can request
its creation by e-mailing the mailing lists administrator. See the mailing lists page on
the wiki (http://wiki.openstreetmap.org/wiki/Mailing_lists) to find out who
currently does this job.

Chatting on IRC
The best place to get live help from other mappers is on Internet Relay Chat (IRC).
While there's no "official" OpenStreetMap IRC server run by the project, the most
popular channel is at irc://irc.oftc.net/osm, and there are many country-specific
IRC channels also hosted on irc.oftc.net.

If you don't have an IRC client installed, you can still use the main
channel via the web interface at http://irc.openstreetmap.org/.

•

•

•

Chapter 2

[29]

See the Contact page on the wiki (http://wiki.openstreetmap.org/wiki/Contact)
for a list of channels. Just like the mailing lists, the main IRC channel can get very
busy and the discussion heated, but any sensible question will normally get a sensible
answer. The main channel is busiest and most useful during European working hours.

Forums
There is a web forum for OpenStreetMap at http://forum.openstreetmap.org/,
where you can get in touch with other mappers. The forum isn't as heavily used
as the mailing lists or IRC channels, so here you may have to wait longer to get an
answer to your questions.

planet.openstreetmap.org
If you need OpenStreetMap data in bulk, you will need to download a
dump of the database, known as a planet file. All planet files are hosted on
http://planet.openstreetmap.org/, including the weekly full dump, the
daily, hourly, and minute-by-minute change, or diff files.

There's no user interface to this site, only the raw directory listings. The latest weekly
planet file is always at http://planet.openstreetmap.org/planet-latest.osm.
bz2, and in each subdirectory containing diff files, there is a text file, timestamp.txt,
which contains the timestamp of the most recent diff.

If you don't need data for the entire planet, you can trim down the planet file to a
particular geographical area, and some sites provide pre-built extracts, covering
particular countries or continents. We'll cover this in Chapter 8.

Reporting problems with OpenStreetMap
software
OpenStreetMap's developers use an issue tracking system called Trac, hosted at
http://trac.openstreetmap.org/, to manage bugs in the core OpenStreetMap
software, such as the API and websites. You can report the bugs you find here,
but only for software. Any problems with the map data itself should be reported
elsewhere, and we'll cover some ways of doing that in Chapter 5. Trac uses the
same username and password as the website.

Getting started at openstreetmap.org

[30]

OpenStreetMap on social networks
Unsurprisingly, many mappers and users of OpenStreetMap also use various social
networking sites, and have created a presence for OSM there. Social networking sites
are particularly useful when organizing OpenStreetMap-related events.

Facebook group: http://bit.ly/osmfbgroup
Facebook fan page for OpenStreetMap: http://bit.ly/osmfanpage
LinkedIn group: http://bit.ly/osmlinkedin
OpenStreetMap group on Upcoming: http://bit.ly/osmupcoming

Don't be afraid to ask
OpenStreetMap is built on community. If you have a problem, are unsure about how
or whether you should map something, or need help using the maps in some way,
use one of the methods we've covered in this chapter to ask someone. Experienced
mappers would rather help you than have inadvertent mistakes in the data, or
worse, have you give up mapping altogether.

Summary
OpenStreetMap is a collaborative project, and uses many different resources to
allow mappers to communicate with each other. We've looked at most of these
in this chapter, including:

The main openstreetmap.org website
The OpenStreetMap wiki
Mailing lists
IRC channels
The web forum
The issue tracker

Whenever you encounter a problem with creating, editing, or using OpenStreetMap
data, you should always ask other mappers for guidance, as there may already be an
answer, or the problem may be affecting more mappers. Choose which channel suits
your personal preferences.

•

•

•

•

•

•

•

•

•

•

Gathering Data using GPS
In this chapter, we'll look at the tools and techniques used by the OpenStreetMap
community to gather data using GPS, and upload it to the website, including:

What the Global Positioning System is, and how it works
How to set up your GPS receiver for surveying
How to get the best signal, and more accurate positioning
How to tell a good GPS trace from a bad one
Ways of ensuring your survey is comprehensive
Other ways of recording information while surveying

We'll also look at a couple of ways of gathering information without needing a
GPS receiver.

OpenStreetMap is made possible by two technological advances: Relatively
affordable, accurate GPS receivers, and broadband Internet access. Without either of
these, the job of building an accurate map from scratch using crowdsourcing would
be so difficult that it almost certainly wouldn't work.

Much of OpenStreetMap's data is based on traces gathered by volunteer mappers,
either while they're going about their daily lives, or on special mapping journeys.
This is the best way to collect the source data for a freely redistributable map, as
each contributor is able to give their permission for their data to be used in this way.

The traces gathered by mappers are used to show where features are, but they're not
usually turned directly into a map. Instead, they're used as a backdrop in an editing
program, and the map data is drawn by hand on top of the traces. This means
you don't have to worry about getting a perfect trace every time you go mapping,
or about sticking exactly to paths or roads. Errors are canceled out over time by
multiple traces of the same features.

•

•

•

•

•

•

Gathering Data using GPS

[32]

OpenStreetMap uses other sources of data than mappers' GPS traces, but they each
have their own problems: Out-of-copyright maps are out-of-date, and may be less
accurate than modern surveying methods. Aerial imagery needs processing before
you can trace it, and it doesn't tell you details such as street names. Eventually,
someone has to visit locations in person to verify what exists in a particular place,
what it's called, and other details that you can't discern from an aerial photograph.

If you already own a GPS and are comfortable using it to record traces, you can
skip the first section of this chapter and go straight to Techniques. If you want very
detailed information about surveying using GPS, you can read the American Society
of Civil Engineers book on the subject, part of which is available on Google Books at
http://bit.ly/gpssurveying. Some of the details are out-of-date, but the general
principles still hold.

If you are already familiar with the general surveying techniques,
and are comfortable producing information in GPX format, you
can skip most of this chapter and head straight for the section
Adding your traces to OpenStreetMap.

What is GPS?
GPS stands for Global Positioning System, and in most cases this refers to a
system run by the US Department of Defense, properly called NAVSTAR. The
generic term for such a system is a Global Navigation Satellite System (GNSS), of
which NAVSTAR is currently the only fully operational system. Other equivalent
systems are in development by the European Union (Galileo), Russian Federation
(GLONASS), and the People's Republic of China (Compass). OpenStreetMap isn't
tied to any one GNSS system, and will be able to make use of the others as they
become available. The principles of operation of all these systems are essentially
the same, so we'll describe how NAVSTAR works at present.

NAVSTAR consists of three elements: the space segment, the control segment, and
the user segment.

The space segment is the constellation of satellites orbiting the Earth. The
design of NAVSTAR is for 24 satellites, of which 21 are active and three are
on standby. However, there are currently 31 satellites in use, as replacements
have been launched without taking old satellites out of commission. Each
satellite has a highly accurate atomic clock on board, and all clocks in all
satellites are kept synchronized. Each satellite transmits a signal containing
the time and its own position in the sky.

•

Chapter 3

[33]

The control segment is a number of ground stations, including a master
control station in Colorado Springs. These stations monitor the signal from
the satellites and transmit any necessary corrections back to them. The
corrections are necessary because the satellites themselves can stray from
their predicted paths.
The user segment is your GPS receiver. This receives signals from multiple
satellites, and uses the information they contain to calculate your position.
Your receiver doesn't transmit any information, and the satellites don't
know where you are. The receiver has its own clock, which needs to be
synchronized with those in the space segment to perform its calculations.
This isn't the case when you first turn it on, and is one of the reasons why
it can take time to get a fix.

Your GPS receiver calculates your position by receiving messages from a number
of satellites, and comparing the time included in each message to its own clock. This
allows it to calculate your approximate distance from each satellite, and from that,
your position on the Earth. If it uses three satellites, it can calculate your position in
two dimensions, giving you your latitude (lat) and longitude (long). With signals
from four satellites, it can give you a 3D fix, adding altitude to lat and long. The more
satellites your receiver can "see", the more accurate the calculated position will be.
Some receivers are able to use signals from up to 12 satellites at once, assuming the
view of the satellites isn't blocked by buildings, trees, or people. You're obviously
very unlikely to get a GPS fix indoors.

Many GPS receivers can calculate the amount of error in your position due to the
configuration of satellites you're using. Called the Dilution of Precision (DOP), the
number produced gives you an idea of how good a fix you have given the satellites
you can get a signal from, and where they are in the sky. The higher the DOP, the
less accurate your calculated position is. The precision of a GPS fix improves with
the distance between the satellites you're using. If they're close together, such as
mostly directly overhead, the DOP will be high. Use signals from satellites spread
evenly across the sky, and your position will be more accurate. Which satellites your
receiver uses isn't something you can control, but more modern GPS chipsets will
automatically try to use the best configuration of satellites available, rather than
just those with the strongest signals. DOP only takes into account errors caused
by satellite geometry, not other sources of error, so a low DOP isn't a guarantee
of absolute accuracy.

•

•

Gathering Data using GPS

[34]

The system includes the capability to introduce intentional errors into the signal,
so that only limited accuracy positioning is available to non-military users. This
capability, called Selective Availability (SA) was in use until 1990, when President
Clinton ordered it to be disabled. Future NAVSTAR satellites will not have SA
capabilities, so the disablement is effectively permanent. The error introduced by
SA reduced the horizontal accuracy of a civilian receiver, typically to 10m, but
the error could be as high as 100m. Had SA still been in place, it's unlikely that
OpenStreetMap would have been as successful.

NAVSTAR uses a coordinate system known as WGS84, which defines a spheroid
representing the Earth, and a fixed line of longitude or datum from which other
longitudes are measured. This datum is very close to, but not exactly the same as
the Prime Meridian at Greenwich in South East London. The equator of the spheroid
is used as the datum for latitude. Other coordinate systems exist, and you should
note that no printed maps use WGS84, but instead use a slightly different system
that makes maps of a given area easier to use. Examples of other coordinate systems
include the OSGB36 system used by British national grid references. When you
create a map from raw geographic data, the latitudes and longitudes are converted to
the x and y coordinates of a flat plane using an algorithm called a projection. You've
probably heard of the Mercator projection, but there are many others, each of which
is suitable for different areas and purposes.

What's a GPS trace?
A GPS trace or tracklog is simply a record of position over time. It shows where
you traveled while you were recording the trace. This information is gathered using
a GPS receiver that calculates your position and stores it every so many seconds,
depending on how you have configured your receiver.

If you record a trace while you're walking along a path, what you get is a trace
that shows you where that path is in the world. Plot these points on a graph, and
you have the start of a map. Walk along any adjoining paths and plot these on
the same graph, and you have something you can use to navigate. If many people
generate overlapping traces, eventually you have a fully mapped area. This is the
general principle of crowdsourcing geographic data. You can see the result of many
combined traces in the following image. This is the junction of the M4 and M25
motorways, to the west of London. The motorways themselves and the slip roads
joining them are clearly visible.

Chapter 3

[35]

Traces are used in OpenStreetMap to show where geographical features are, but
usually only as a source for drawing over, not directly. They're also regarded as
evidence that a mapper has actually visited the area in question, and not just copied
the details from another copyrighted map. Most raw GPS traces aren't suitable to be
made directly into maps, because they contain too many points for a given feature,
will drift relative to a feature's true position, and you'll also take an occasional detour.

Although consumer-grade GPS receivers are less accurate than those used by
professional surveyors, if enough traces of the same road or path are gathered,
the average of these traces will be very close to the feature's true position.
OpenStreetMap allows mappers to make corrections to the data over time
as more accurate information becomes available.

In addition to your movements, most GPS receivers allow you to record specific
named points, often called waypoints. These are useful for recording the location
of point features, such as post boxes, bus stops, and other amenities. We'll cover
ways of using waypoints later in the chapter.

Gathering Data using GPS

[36]

What equipment do I need?
To collect traces suitable for use in OpenStreetMap, you'll need some kind of
GPS receiver that's capable of recording a log of locations over time, known as a
track log, trace, or breadcrumb trail. This could be a hand-held GPS receiver, a
bicycle-mounted unit, a combination of a GPS receiver and a smartphone, or in some
cases a vehicle satellite navigation system. There are also some dedicated GPS logger
units, which don't provide any navigation function, but merely record a track log for
later processing. You'll also need some way of getting the recorded traces off your
receiver and onto your PC. This could be a USB or serial cable, a removable memory
card, or possibly a Bluetooth connection. There are reviews of GPS units by mappers
in the OpenStreetMap wiki.

There are also GPS receivers designed specifically for surveying, which have very
sensitive antennas and link directly into geographic information systems (GIS).
These tend to be very expensive and less portable than consumer-grade receivers.
However, they're capable of producing positioning information accurate to a few
centimeters rather than meters.

You also need a computer connected to the Internet. A broadband connection is
best, as once you start submitting data to OpenStreetMap, you will probably end
up downloading lots of map tiles. It is possible to gather traces and create mapping
data while disconnected from the Internet, but you will need to upload your data
and see the results at some point. OpenStreetMap data itself is usually represented in
Extensible Markup Language (XML) format, and can be compressed into small files.
The computer itself can be almost any kind, as long as it has a web browser, and can
run one of the editors, which Windows, Mac OS X, and Linux all can.

You'll probably need some other kit while mapping to record additional information
about the features you're mapping. Along with recording the position of each feature
you map, you'll need to note things such as street names, route numbers, types of
shops, and any other information you think is relevant. While this information won't
be included in the traces you upload on openstreetmap.org, you'll need it later on
when you're editing the map. Remember that you can't look up any details you
miss on another map without breaking copyright, so it's important to gather all the
information you need to describe a feature yourself.

A paper notebook and pencil is the most obvious way of recording the extra
information. They are inexpensive and simple to use, and have no batteries
to run out. However, it's difficult to use on a bike, and impossible if you're
driving, so using this approach can slow down mapping.

•

Chapter 3

[37]

A voice recorder is more expensive, but easier to use while still moving.
Record a waypoint on your GPS receiver, and then describe what that
waypoint represents in a voice recording. If you have a digital voice recorder,
you can download the notes onto your PC to make them easier to use,
and JOSM—the Java desktop editing application—has a support for audio
mapping built-in.
A digital camera is useful for capturing street names and other details,
such as the layout of junctions. Some recent cameras have their own built-in
GPS, and others can support an external receiver, and will add the latitude,
longitude, and possibly altitude, often known as geotags, to your pictures
automatically. For those that don't, you can still use the timestamp on the
photo to match it to a location in your GPS traces. We'll cover this
later in the chapter.

Some mappers have experimented with video recordings while mapping, but
the results haven't been encouraging so far. Some of the problems with video
mapping are:

It's difficult to read street signs on zoomed-out video images, and zooming in
on signs is impractical.
If you're recording while driving or riding a bike, the camera can only point
in one direction at once, while the details you want to record may be in a
different direction.
It's difficult to index recordings when using consumer video cameras, so
you need to play the recording back in real time to extract the information,
a slow process.

Automatic processing of video recordings taken with multiple cameras would make
the process easier, but this is currently beyond what volunteer mappers are able
to afford.

Smartphones can combine several of these functions, and some include their
own GPS receiver. For those that don't, or where the internal GPS isn't very good,
you can use an external Bluetooth GPS module. Several applications have been
developed that make the process of gathering traces and other information on a
smartphone easier. Look on the Smartphones page on the OpenStreetMap wiki
at http://wiki.openstreetmap.org/wiki/Smartphones.

•

•

•

•

•

Gathering Data using GPS

[38]

Making your first trace
Before you set off on a long surveying trip, you should familiarize yourself with
the methods involved in gathering data for OpenStreetMap. This includes the
basic operation of your GPS receiver, and the accompanying note-taking.

Configuring your GPS receiver
The first thing to make sure is that your GPS is using the WGS84 coordinate system.
Many receivers also include a local coordinate system in their settings to make them
easier to use with printed maps. So check in your settings which system you're
getting your location in. OpenStreetMap only uses WGS84, so if you record your
traces in the wrong system, you could end up placing features tens or even hundreds
of meters away from their true location.

Next, you should set the recording frequency as high as it will go. You need your
GPS to record as much detail as possible, so setting it to record your location as often
as possible will make your traces better. Some receivers can record a point once
per second; if yours doesn't, it's not a problem, but use the highest setting (shortest
interval) possible. Some receivers also have a "smart" mode that only records points
where you've changed direction significantly, which is fine for navigation, but not for
turning into a map. If your GPS has this, you'll need to disable it. One further setting
on some GPSs is to only record a point every so many metres, irrespective of how
much time has elapsed. Turning this on can be useful if you're on foot and taking
it easy, but otherwise keep it turned off.

Another setting to check, particularly if you're using a vehicle satellite navigation
system, is "snap to streets" or a similar name. When your receiver has this setting
on, your position will always be shown as being on a street or a path in its
database, even if your true position is some way off. This causes two problems for
OpenStreetMap: if you travel down a road that isn't in your receiver's database, its
position won't be recorded, and the data you do collect is effectively derived from
the database, which not only breaks copyright, but also reproduces any errors in
that database.

Next, you need to know how to start and stop recording. Some receivers can record
constantly while they're turned on, but many will need you to start and stop the
process. Smartphone-based recorder software will definitely require starting and
stopping. If you're using a smartphone with an external Bluetooth GPS module,
you may also need to pair the devices and configure the receiver in your software.

Chapter 3

[39]

Once you're happy with your settings, you can have a trial run. Make a journey
you have to make anyway, or take a short trip to the shops and back (or some other
reasonably close landmark if you don't live near shops). It's important that you're
familiar with your test area, as you'll use your local knowledge to see how accurate
your results are.

Checking the quality of your traces
When you return, get the trace you've recorded off your receiver, and take a look at it
on your PC using an OpenStreetMap editor (see Chapter 5) or by uploading the trace.
Now, look at the quality of the trace. Some things to look out for are, as follows:

Are lines you'd expect to be straight actually straight, or do they have
curves or deviations in them? A good trace reflects the shape of the area
you surveyed, even if the positioning isn't 100% accurate.
If you went a particular way twice during your trip, how well do the two
parts of the trace correspond? Ideally, they should be parallel and within
a few meters from each other.
When you change direction, does the trace reflect that change straight away,
or does your recorded path continue in the same direction and gradually
turn to your new heading?
If you've recorded any waypoints, how close are they to the trace? They
should ideally be directly on top of the trace, but certainly no more than
a few meters away.

•

•

•

•

Gathering Data using GPS

[40]

The previous image shows a low-quality GPS trace. If you look at the raw trace on
the left, you can see a few straight lines and differences in traces of the same area.
The right-hand side shows the trace with the actual map data for the area, showing
how they differ.

In this image, we see a high-quality GPS trace. This trace was taken by walking along
each side of the road where possible. Note that the traces are straight and parallel,
reflecting the road layout. The quality of the traces makes correctly turning them into
data much easier.

If you notice these problems in your test trace, you may need to alter where you keep
your GPS while you're mapping. Sometimes, inaccuracy is a result of the make-up
of the area you're trying to map, and nothing will change that, short of using a more
sensitive GPS. For the situations where that's not the case, the following are some
tips on improving accuracy.

Making your traces more accurate
You can dramatically improve the accuracy of your traces by putting your GPS
where it can get a good signal. Remember that it needs to have a good signal all the
time, so even if you seem to get a good signal while you're looking at your receiver,
it could drop in strength when you put it away.

If you're walking, the best position is in the top pocket of a rucksack, or
attached to the shoulder strap. Having your GPS in a pocket on your lower
body will seriously reduce the accuracy of your traces, as your body will
block at least half of the sky.

•

Chapter 3

[41]

If you're cycling, a handlebar mount for your GPS will give it a good
view of the sky, while still making it easy to add waypoints. A rucksack
is another option.
In a vehicle, it's more difficult to place your GPS where it will be able to
see most of the sky. External roof-mounted GPS antennas are available, but
they're not cheap and involve drilling a hole in the roof of your car. The
best location is as far forward on your dashboard as possible, but be aware
some modern car windscreens contain metal, and may block GPS signals.
In this case, you may be able to use the rear parcel shelf, or a side window
providing you can secure your GPS.
Don't start moving until you have a good fix. Although most GPS receivers
can get a fix while you're moving, it will take longer and may be less
accurate. More recent receivers have a "warm start" feature where they
can get a fix much faster by caching positioning data from satellites.

You also need to avoid bias in your traces. This can occur when you tend to use one
side of a road more than the other, either because of the route you normally take, or
because there is only a pavement on one side of the road. The result of this is that the
traces you collect will be off-center of the road's true position by a few meters. This
won't matter at first, and will be less of a problem in less densely-featured areas, but
in high-density residential areas, this could end up distorting the map slightly.

Surveying techniques
You can gather traces while going about your normal business, or you can make trips
specifically to do surveying for OpenStreetMap. The amount of detail you'll be able
to capture on a normal journey will be far lower than during a survey, but there are
still some techniques you can use to record as much detail about your surroundings
as possible.

The first technique to consider is your mode of transport while mapping. For some
types of features, there is only one choice: For a motorway you need to use a vehicle,
and for narrow footpaths you'll need to walk.

For everything in between, you need to use some judgment. Many existing mappers
have found that for suburban and residential areas, a bicycle is the most efficient
way of mapping. It's faster than walking, and cheaper than a car. A bike is also easier
to turn around when you reach a dead end, and you can dismount and walk along
paths where cycling isn't allowed.

•

•

•

Gathering Data using GPS

[42]

Making your survey comprehensive
To make sure you map an area completely, you need to be methodical about how
you travel around the area. One simple rule that works well in suburban and
residential areas is to "always turn left". This is a standard technique used by robots
to find the layout of a maze (and thus escape from it), and it works just as well
for mapping.

What "always turn left" means is that if you come across a left-hand turn you haven't
previously been down, then take it. Unless the streets you're mapping have a grid
pattern, you'll eventually come to a dead end. When you do, turn around and
head back down the street, and start turning left again. This method isn't perfect,
particularly when there are loops in the road network, so take notes of places where
you pass turnings on the opposite side of the road and make sure you visit them
later in your survey.

If you're mapping on a bike or in a car in a country where traffic drives on the right,
then "always turn right" works better, but the choice is yours. For streets in a grid
layout, a simple back-and-forth sweep of the grid should be fine.

When mapping trunk roads or motorways with grade-separated junctions,
remember to map the on-and off-ramps whenever you can. While the roads
themselves get mapped quite thoroughly by people on long-distance journeys,
individual junctions can get missed out even if the roads they join to are mapped. If
you make a regular journey along a road like this, why not try to map one junction
per day, which shouldn't take much of your time, but will still increase the map
coverage quite quickly.

What level of detail you map streets at is up to you, but some typical features you
could gather include bridges, changes of speed limit, route reference numbers, and
street names.

Chapter 3

[43]

Along with the streets, there will be point features and areas to map. Point features
include street furniture, such as postboxes, bus stops, and public telephones; while
areas can be things, such as car parks, playgrounds, and pedestrianized areas. You
can record the relative locations of features that you find in a notebook, like in the
previous diagram. Your diagram doesn't need to be neat and precise, as your GPS
receiver is recording the location of each feature you find. All your notes have to do
is record the information, such as names, that don't automatically get stored in your
GPS traces.

You can mark the location of point features using your GPS's waypoint feature.
Simply stop right by the object you want to mark and press the waypoint button,
or choose the option from the menu. You can either use the automatic name given
to the waypoint and add extra notes to your notebook, or use a voice recorder.
Alternatively, rename the point with a more descriptive name.

For areas, you have a choice of techniques. You can either walk around the perimeter
of the area, and the trace will show a loop giving the feature's location. Alternatively,
you can just mark the corners of the area as you pass them using waypoints, and
note which waypoints are linked to make the area. The latter method is useful when
the area is large and you'll be passing by its corners anyway as part of your survey.
As with all other OpenStreetMap data, your first pass at mapping an area doesn't
have to be perfect, so don't be afraid of drawing an approximation based on three
corners of an area.

Photo mapping
You can use a digital camera to take pictures of road signs, street names, or junction
layouts to speed up your mapping and help increase the accuracy of your mapping.

The first step to take is to synchronize the clock on your digital camera with the time
on your GPS receiver. This is because we'll be using the timestamp information on
each photo to match it up with its location, based on your GPS trace. Not all digital
cameras allow you to set the time to the nearest second, but as long as the difference
between the clocks isn't too great, this won't cause a problem. One way of coping
with a difference between the clocks is to take a picture of your GPS receiver with
the time showing. You can use this to work out the offset between your camera and
the GPS clock.

Gathering Data using GPS

[44]

Once you've done this, you can use your camera to record lots of details you'd
otherwise have to note by hand, and because you can place photos by their
datestamp, you don't even need to record waypoints on your GPS.

Take pictures of more things than you think you need, and in more detail than you
think. For instance, street name signs may also contain a part or all of the street's
postal code, or the district it's in; take your picture from too far away, and you won't
be able to read it. The previous photo captures two pieces of information: the name
of the road, and the speed limit to the left of the sign. We can also see another road
to the left, which gives us another clue which way the camera was facing when the
picture was taken.

Some built-up areas may be very difficult to get an accurate GPS fix, so taking photos
can give you an idea of where any straight sections are, and where the road bends,
which may not be obvious from a poor GPS trace.

You can photograph road junctions to record their layout. It can be difficult and time
consuming to record a trace of every possible path through a junction, so a series of
pictures can help you map the junction accurately in less time.

Chapter 3

[45]

Once you have your pictures and the accompanying GPS trace, you can load them
into an OpenStreetMap editing application and use the information to draw the
map. We'll cover how to do this in Chapter 5.

OpenStreetMap doesn't have any image hosting facilities itself, so if you want to
make your pictures available for other mappers to use, you'll need to use a separate
photo-hosting site, such as Flickr. There is a sister project called OpenStreetPhoto,
but this is still under development and at present only provides detailed mapping
for the Benelux countries.

Audio mapping
Like photo mapping, audio mapping can speed up the surveying process, but it has
an additional advantage of being useful if you're just making a regular journey. The
principle is that you describe features into a voice recorder. It's possible to do audio
mapping with a tape-based voice recorder, but for best results, a digital recorder that
timestamps the files it creates, is used. A smartphone may have a similar function
built-in, or you may be able to add some software to it that will allow you to take
voice notes. If you do use a tape recorder, remember to record a waypoint in your
GPS, then start your voice note with the waypoint name.

As with photo mapping, you'll need to synchronize the clock on your recorder with
that on your GPS. Some difference is OK, but if you're mapping high-speed roads,
you need to keep it to a minimum; at 60mph or 100kph, you're travelling 22 meters
every second. At that rate, a 20 second difference between the clocks would put
your mapping out by over 500 meters.

Once you've done that, just use your voice recorder to describe your surroundings.
You could record street names by saying, "Turning left into High Street" just before a
turn, or use the past tense just after the turn. If a street name has an unusual spelling,
or could be spelled in several different ways, it's a good idea to spell out the name in
your voice note. It's a good idea to note route names or numbers occasionally as well,
even if you've already noted them, as it removes some uncertainty.

Getting your traces into the right format
Once you've completed your mapping, you need to get the information off your
receiver and into the right format. The simplest ways of getting traces off your
GPS are using a direct cable connection or a removable memory card. Some recent
receivers can act as USB mass storage devices, allowing you to get your traces onto
your PC with a simple file copy. For older units, you may have to use the software
that came with your GPS.

Gathering Data using GPS

[46]

OpenStreetMap only accepts traces in GPS Exchange format (GPX)—an XML
vocabulary for traces and waypoints. You can find out more about the GPX
vocabulary at http://www.topografix.com/gpx.asp. OpenStreetMap also only
accepts GPX files with timestamps on each trackpoint in the trace. This is to prevent
mappers from uploading traces that have been converted from an existing map
database, which will usually be subject to copyright and will therefore, not be
suitable for use in OpenStreetMap. This doesn't present a problem most of the
time, as practically all receivers store the time in traces made in real time.

If your receiver doesn't produce GPX files itself, you'll need to translate from its own
format into GPX. Fortunately, there's an application that can convert most formats
into GPX, called GPSBabel. If you can get GPX files from your receiver, you can
skip this section.

GPSBabel is a free software package, and you can download it from
http://www.gpsbabel.org/ for Windows, Mac OS X, and Linux. While GPSBabel
itself is a command-line application, graphical interfaces are available for Windows,
Mac, and Linux. The Windows version is shown in the following screenshot, which
shows the command line it creates for the options you select in the interface.

We'll work through an example of converting a file in NMEA format to GPX using
GPSBabel on Windows, but the procedure is the same for any file format. GPSBabel
can also communicate directly with many models of GPS, and this can speed up the
conversion process over downloading and converting separately.

Chapter 3

[47]

GPSBabel is a powerful package with many options, and you won't need most of
them. We're interested in converting tracks and waypoints into the GPX format. For
an NMEA file, you'd use the following command line:

gpsbabel -w -t -i nmea -f <input filename> -o gpx -F <output filename>

If you're using the Windows command line, you'll need to use gpsbabel.exe as the
program name.

The first two options tell GPSBabel to process waypoints and tracks; the default is
to only process waypoints, which is of no use to OpenStreetMap. The third option
is the input file format to use. You specify this with the -i flag, a format identifier,
and the filename. The list of every identifier GPSBabel understands is available in
the online documentation or by using the program's help option:

gpsbabel –h

You set the output format using the -o option in a similar manner, and in our case,
this is always -gpx. The input filename is specified in the -f option, and the output
file in the -F option. The input can also be a device if you want to retrieve traces
directly from your GPS. Check the GPSBabel documentation for the precise syntax
needed for your device.

As already mentioned, OpenStreetMap only accepts traces with valid timestamps. If
you want to conceal the time you made a journey, you can do so through a filter that
will change the start time of your trace. As timestamp information is useful to other
mappers and for future projects, if you're going to change your timestamps, you're
asked to do so to an obviously fake time so that your trace can be filtered out from
automatic processing.

Use the following option to adjust timestamps:

gpsbabel -w -t -i nmea -f <input filename> -x track,start=19700101000000
-o gpx -F "<output filename>

This will set the start of your trace to January 1, 1970, well before OpenStreetMap
was started, so it will be obvious that these are faked timestamps.

If you want to disguise the precise location your traces start or stop at, you can use a
filter to discard any points within a given radius of a point. The following command
line will filter out points within 500 meters of 10 Downing Street—the British Prime
Minister's residence:

gpsbabel-w -t -i nmea -f <input filename> -x radius,exclude,distance=0.5K
,lat=51.5034052,lon=-0.1274766 -o gpx -F <output filename>

Gathering Data using GPS

[48]

You can use more complex filters to clean up your traces by taking actions such
as discarding any points with a high DOP. You don't need to do this, as the
crowdsourcing process eliminates such errors over time, but it can help when
first mapping an area.

Adding your traces to OpenStreetMap
Once you have your traces in GPX format, you can upload them to openstreetmap.
org. Whether you need to upload your traces depends on which editing method
you prefer; we'll cover editing in Chapter 5. If you want to use the online editor,
Potlatch, you need to upload your traces. If you use a desktop editor such as JOSM
or Merkaator, you don't need to upload your traces to use them, but it's still useful
to OpenStreetMap as a project if you do.

It's hoped that in the future, the traces can be put to other uses, including
automatically generating average speeds for roads, detecting one-way streets and the
layout of junctions. This automatic processing isn't yet in place, but the more the data
it has to work with (once it's working), the better.

Some editors and applications support direct upload of traces, but the simplest way
of adding your traces to OpenStreetMap is via the website. The upload form is at the
top of the list of your traces. To find this, make sure you're logged into the site, and
browse to the front page. Click on GPS Traces among the tabs at the top of the map,
then click on See just your traces, or upload a trace.

You should now see the upload form, shown in the previous screenshot. The top
field is the file to be imported. Either enter the path to your GPX file directly, or use
the Browse button to find it on your hard drive. You can only upload one trace at a
time using the web interface at present.

Chapter 3

[49]

You need to add a short description for each file you upload. You can also add tags
to each trace, so you can find particular sets of traces at a later date. There are no
folders or other ways of organizing your traces, so adding tags at upload is a good
idea. Note that these aren't the same tags as those added to OpenStreetMap data,
which we'll cover in Chapters 4 and 5. Enter a list of comma-separated tags in the
form field. You can use as many tags as you find useful.

You can set the privacy level for a trace using the Visibility drop-down. All points
in traces uploaded to OpenStreetMap are visible in some way, but you can choose
whether other mappers can see the trace as a whole, and whether they can see who
uploaded the trace. Some mappers feel that because many of their traces start or
end at their home or workplace, other users shouldn't be able to see whose traces
are whose, but there have been no reported incidents of a mapper's privacy being
invaded through a trace they've uploaded. You can use GPSBabel to remove all points
within a given radius of your start and end points, which will have a similar effect.

You have four privacy options:

Private: hides all details of your traces from other users, and only shares the
individual points in each trace. Other users can't see which points come from
which trace, or who uploaded them. The trace isn't shown in the public list
of traces.
Public: is a historical option and isn't useful for newly uploaded traces. It
shows the trace in the public list of traces, but still anonymizes the points
when an area is downloaded. This was previously the only option other
than Private.
Trackable: allows other users to see the timestamps for each point, but not
who uploaded them. The traces don't appear in the public list of traces.
Identifiable: allows other users to see the entire trace, including who
uploaded it. The trace is shown in the public list of traces, and the
original file is available for download for everyone.

Which option you choose is entirely up to you, but your traces will be of more use
to the OpenStreetMap project if you use one of the last two options.

After you've completed the upload form, you can press the Upload button to
submit the trace. It will then go into a queue to be processed. Processing can be
almost instant, or can take several minutes, depending on how many mappers are
uploading traces. Once processing is complete, you'll get an e-mail to your registered
address telling you whether the import was successful or not. Common reasons
for imports to fail include a lack of timestamps, or GPX files that contain only
waypoints, not tracks.

•

•

•

•

Gathering Data using GPS

[50]

Refresh your traces list, and you should now see your newly imported trace,
complete with a thumbnail image, and the description and tags you entered.

Clicking on a trace's filename or the more link will take you to a details page for that
trace, where you can also edit the description, tags, and visibility of that trace. You
can't edit a trace itself in OpenStreetMap, although JOSM does have support for GPX
file editing. You won't normally need to make changes to GPS traces, but if you do,
you'll need to edit a local copy of the file, delete the version on the site, and upload
the new one.

The map link in a trace entry will take you to a map view centered around the trace's
starting point. The edit link will take you to Potlatch—the online editor—with that
trace loaded, so you can add the features it represents to the map. We'll cover this
in Chapter 5.

Clicking on the uploader's name will take you to his/her user page. Click on any
of the tags to see any traces you've tagged with that word. You'll also see a list of
your tags in the sidebar on the left of the screen. Note that when you're looking at
an individual trace page, the tag links in the page and in the sidebar will take you
to a list of all traces on openstreetmap.org with that tag, not just yours.

Collecting information without a GPS
It's still possible to gather data for OpenStreetMap without a GPS receiver. Roads
near your area may have been mapped by someone passing through the area,
so will be missing any detailed information and points of interest. There are also
areas where mappers have traced aerial images or out-of-copyright maps without
surveying the area in person, so these areas will need details to be filled in.

You can identify areas that have been traced purely from aerial images using the
NoName layer in the slippy map. This highlights any residential roads without a
name, so any large blocks where all streets are highlighted are likely to have come
from aerial images.

Chapter 3

[51]

To go mapping without a GPS, you'll need a hard copy of the existing map of an
area. You can print directly from the slippy map, but you'll get better results by
using the Export facility to produce a PDF map of the area you're going to survey.
We'll cover how to do this in Chapter 6. You can then print this out with far greater
control over layout. Note that you can't export an image of the NoName layer itself,
but if you have a Garmin GPS receiver, you can download an add-on map version
of NoName from Cloudmade (http://downloads.cloudmade.com/).

Once you have your printed map, grab a pencil and head out. Mark the map with
the locations of any points of interest, or any missing streets and paths. Don't worry
about precise positioning, as it's more important to have data in an approximate
location than have no data at all. You or another mapper can refine the positioning
later. Use the techniques described earlier in the chapter to ensure you cover the
whole of the area you've chosen.

There's a site aimed at making the process of mapping from an existing map more
streamlined. Walking Papers (http://walking-papers.org/) is a site aimed at
increasing participation in OpenStreetMap beyond dedicated mappers in possession
of a GPS receiver. The site allows you to choose an area of the map and print it
out, so that you can make notes on it. Walking Papers uses a different style of
cartography than the slippy map, so there's more room around features to write
and draw.

You then scan the printed map and upload it to the site. A 2D bar code on the map
allows Walking Papers to match your annotated map to the area it was taken from,
and use it as a background in your editor. You can then add data to the map by
drawing over your scan and adding points of interest where you've marked them.
Even if you don't have a scanner, you can use Walking Papers' more spacious maps
as your template to draw on.

Have you finished?
Once you've surveyed an area, it's time to turn the information you've gathered
into a map, and that's what the next two chapters cover. However, don't be fooled
into thinking that this means the end of surveying.

The most obvious reason for needing to re-survey an area is that there have been
changes on the ground, such as road layout changes, buildings being demolished and
built, or the opening and closure of shops or other amenities. One of OpenStreetMap's
great strengths is the ability to update it and have the new data available to everyone
immediately. You'll know of construction work taking place in your local area, so you
can be ready to map the new features as soon as they're finished.

Gathering Data using GPS

[52]

You may also stumble across new roads or road layouts while making an unrelated
journey; another good reason to keep your GPS receiver recording, even if you're not
planning to do any surveying.

Apart from changes in the real world, your skill as a surveyor will grow the more
you do it, so revisiting an area will allow you to capture more detail with greater
accuracy than you may have done the first time you visited. Remember, you can
record any permanent geographical feature in OpenStreetMap, and ultimately it's
hoped to include anything that can be mapped.

Summary
Surveying for OpenStreetMap isn't as difficult as you might first think, and it
certainly doesn't need expensive, complex equipment. We've seen that you can
do surveys with one or more of:

An inexpensive consumer-grade GPS receiver, or even no GPS at all
A notebook and a pencil
A digital camera
A voice recorder

We've also learned some basic surveying techniques, including:

Covering an area methodically
Recording as much detail as possible, even if it's not immediately obvious
how it will be used
Using a combination of recording devices to speed up and improve the
accuracy of mapping
Surveying an area multiple times to capture changes to features,
or to increase the overall accuracy of the data.

•

•

•

•

•

•

•

•

How OpenStreetMap Records
Geographical Features

OpenStreetMap uses its own data model, which is different from any other data
model used by Geographic Information Systems (GIS). It uses only three primitive
types, combined with a free-form tagging scheme that allows you to describe
accurately, virtually any geographic feature. It also describes the topology of the
features—how they are connected, and how you move from one to another. This last
feature is essential for some applications, particularly routing, but isn't a feature of
many traditional GIS'.

In this chapter, we'll look at how OpenStreetMap's systems record the features you
draw on the map. In particular, we'll look at:

OpenStreetMap's design goals
The data structures used
The tagging system
The guidelines used by the OpenStreetMap community to make the data as
consistent and accurate as possible.

The simplicity of the data model often surprises people coming to OpenStreetMap
from a traditional GIS background, who are used to many different layers of data,
and having each feature described independently of others. Some look for a fixed
ontology, or for more complex data structures, and when they don't find them, they
are a little lost.

•

•

•

•

How OpenStreetMap Records Geographical Features

[54]

Although OpenStreetMap's data model and software developed over time in small
jumps, and without any particular project planning, there are some principles which
you can treat as the design goals for OpenStreetMap's systems:

The data model and API are as simple as possible—"the simplest thing
that will work". The data model is designed to be easy to create and edit
data, rather than to be simple to render or use in other applications. You're
expected to do a certain amount of post-processing on any data you take
from OpenStreetMap to make it fit your application's needs, and many
tools to help with this processing have already been created by the
OpenStreetMap community.
The system has wiki-like editing, where multiple users can make edits to
the same area at the same time, and a full history of edits is kept. Adapting
an existing GIS to fit these requirements would have been difficult, and
probably more work than creating the OpenStreetMap server stack.
The system needs to record topology—how features are connected to each
other—as well as their positions, which many existing GIS don't record.
Many potential uses of OpenStreetMap data aren't possible without
recording the topology.
The system should allow maximum freedom to mappers to record the
features they find, with the minimum of overhead and bureaucracy.

You should note that very little data checking is done by the OpenStreetMap server.
As long as the data submitted is consistent, it won't be refused. There are many
third-party data-checking tools for OpenStreetMap, and we'll cover these in the next
chapter, but the server itself only ensures that the basic data meets certain formatting
standards, and after that allows anything.

Let's look at what the data model consists of before we get into the nitty-gritty of
editing. We're still looking at things in an abstract way, but it helps to understand
the model, as every editor has a slightly different way of working.

Data primitives
There are three basic primitives in the data model: nodes, ways, and relations.
The geographical features these represent can be described by tagging them with
key-value pairs. In mathematical terms, the OpenStreetMap data model is a mixed
graph; it consists of corners or vertices, and edges. Different parts of the graph may
be connected, or may be isolated, depending on what features in the real world
they're modeling.

•

•

•

•

Chapter 4

[55]

The default format for representing the data model is XML, and that's the only
format in which you can currently retrieve data from the OpenStreetMap server.
The data model can be represented in other formats, and indeed Potlatch—the
Flash-based online editor in use at openstreetmap.org—uses Flash's Action Message
Format to communicate with the server. We'll cover how you can retrieve individual
objects from the OpenStreetMap API in Chapter 8, but you don't need to know how
the API works just to edit the map.

There are several attributes common to every primitive type. Each has a numerical
ID, but these are only unique within each type, so there could be a node, way, and
relation all with the same ID number. .

Every version of every object in OpenStreetMap is preserved in the database, and
so any object you get from the API contains a version number, along with the ID
of the changeset—a set of changes made at the same time—in which that version
was created. The display name and user ID of the last editor to touch the object is
also returned. The reason both of these items are returned is that mappers are free
to change their display name at any time, but their user ID is always the same, so
it allows you to trace the creator of a particular version of an object even if they've
changed their name.

Note that the OpenStreetMap API will always return the
current display name, rather than the name in use at the
time of the edit, so this provision only applies when dealing
with older copies of the data.

The visible attribute specifies whether the version of the object you have is current
data. If this is set to false, that version of the object is old, and has been superseded
by a more recent version or deleted. The API always returns the most recent version
by default, but it is possible to get the full edit history of any object if you need it.
There's also a timestamp for each object, showing when it was last updated, but you
should always use the version number as your indication of whether or not an object
has changed.

Nodes
Nodes are points in space. They are the only primitives to have position information,
and all other primitives rely on nodes for their location. A node can be used on its
own to map a point of interest, as a junction between two ways, or just as a change
in direction of a way.

How OpenStreetMap Records Geographical Features

[56]

The XML for a node looks like the following:

<osm version="0.6" generator="OpenStreetMap server">
 <node id="483034256" lat="55.9458449" lon="-3.2035477" version="1"
 changeset="2369219" user="spytfyre" uid="166957" visible="true"
 timestamp="2009-09-04T13:35:42Z">
 <tag k="name" v="The Blue Blazer"/>
 <tag k="amenity" v="pub"/>
 </node>
</osm>

The XML for a feature is created by an editing application or the OpenStreetMap
API, so you will never need to create this information by hand, but it does allow you
to see the structure of the information. This particular node is a pub in Edinburgh,
and it is rendered on a map in the following image:

Each node has its latitude and longitude stored in decimal format at up to
7 decimal places:

lat="55.9458449" lon="-3.2035477"

This gives a latitudinal resolution of 1cm, and a longitudinal resolution of around
1cm at the equator, or around 0.6cm at Greenwich. This level of accuracy is far
greater than you can measure using consumer-grade GPS equipment, and on par
with that achievable with professional surveying equipment. In short, it's accurate
enough for any purpose you're likely to put OpenStreetMap data to.

Chapter 4

[57]

The OpenStreetMap API doesn't check for duplicate nodes, so it's possible to have
two nodes in exactly the same place. This has happened in the past where data has
been imported to OpenStreetMap incorrectly, and there are tools that will check for
duplicate nodes.

The only child elements of a node are the tags applied to that node. We'll cover how
tagging works later in the chapter, but the XML for any tag is a single element tag
with k and v attributes for the key and value respectively.

Ways
Ways are ordered list of nodes. They can describe linear features, such as roads,
paths, and waterways. They can also be closed to form areas. Where they're used to
describe linear features, the way should normally be placed down the center line of
the physical feature, and at the perimeter for an area.

A way exists semi-independently of the nodes it contains, in that a node itself doesn't
change by being a part of a way or not, and the data for a way doesn't change when
its nodes are changed, including being repositioned. This means that if all the nodes
that make up a way are moved, but the nodes in the way or the way's tagging are left
the same, no new version of the way will be created, and no change will show up in
the way's history.

A way must have at least two nodes, and can, at present, have a maximum of 2000
nodes. The upper limit is a practical measure to stop very long ways affecting the
performance of openstreetmap.org's servers, rather than an inherent limit in the data
model. A node can belong to more than one way, and there is no limit to how many
it can belong to.

The ordering of nodes in a way is preserved, so they are always returned in an
order in the original upload. Ways are considered to have direction (although this
isn't always significant), depending on what the way is being used to describe. The
direction is from the first to the last node, and most editors can show this direction
using arrows.

If the first and last node of a way are the same, the way forms a closed area, which
can be tagged to indicate what the area represents. If a more complex shape than a
simple polygon is needed to describe a feature, such as a building with a courtyard
in the middle, or a forest with a clearing, this is done using several ways and a
relation to link them. While there's no technical restriction that prevents a way
from being used as an area from self-intersecting, this will almost certainly create
problems with renderers' and should be avoided.

How OpenStreetMap Records Geographical Features

[58]

Ways can cross without being joined, and you should only assume ways are
physically connected if they share a node, or more than one node. Conversely, you
should only join two ways with a node if they actually physically connect. The
best example of this is a bridge carrying one road over another. It isn't possible to
stop halfway along the bridge and turn onto the road below, so the data you use to
represent the bridge and the road below should reflect this. We'll discuss how this
is done in an editor, in the next chapter.

The OpenStreetMap server doesn't check the geometry of a way at all. It can be
anything from a straight line to a scribble, as long as the nodes used are all visible.
A node can even be used more than once in a way, as this is required for areas and
ways that loop round onto themselves, but there's no check at the API whether nodes
are reused sensibly. Rather, it's expected that editing applications ensure that they
don't produce nonsensical ways in the first place.

The XML format for a way looks as follows:

<osm version="0.6" generator="OpenStreetMap server">
 <way id="43157302" visible="true" timestamp="2009-10-26T10:45:09Z"
 version="1" changeset="2954960" user="Ed Avis" uid="31257">
 <nd ref="540653724"/>
 <nd ref="25507043"/>
 <nd ref="107762"/>
 <nd ref="25507038"/>
 <nd ref="107759"/>
 <tag k="highway" v="primary"/>
 <tag k="lcn_ref" v="6a"/>
 <tag k="name" v="Parliament Street"/>
 </way>
</osm>

This way is the southern end of Parliament Street in London, shown here on
the map:

Chapter 4

[59]

Each way has the common attributes for all primitives, but none specific to ways.
The child elements of the way are the tags and the list of nodes. A different XML
element, nd, is used to reference nodes, rather than to declare them to make parsing an
OpenStreetMap XML file easier. The ref attribute specifies the ID number of the node.

Note that the description of a way doesn't include any details of which other ways
it connects to. Instead, this is inferred from which of a way's nodes are shared with
other ways. If two ways share a node, it's assumed that you can move from one to
the other, subject to any restrictions described in the tags of either way, or a relation
describing the restriction. It's normally easy to tell which ways are joined in one of
the editors, but there are tools to detect possible errors.

Relations
Relations are lists of primitives, including other relations. Relations exist to allow
mappers to model features that can't be described using a single node or way,
or where two of the same type of feature overlap. Examples include complex,
branching streets, long distance routes, or the turn restrictions at junctions.

The XML for a relation looks as follows:

<osm version="0.6" generator="OpenStreetMap server">
 <relation id="113421" visible="true" timestamp=
 "2009-11-03T10:08:27Z" version="2" changeset="3023369"
 user="Jonathan Bennett" uid="5352">
 <member type="node" ref="270186" role="via"/>
 <member type="way" ref="4418767" role="from"/>
 <member type="way" ref="4641665" role="to"/>
 <tag k="restriction" v="no_right_turn"/>
 <tag k="type" v="restriction"/>
 </relation>
</osm>

This particular relation represents a turn restriction, and doesn't render on either
of OpenStreetMap's two main map styles. Instead, it's used by a routing algorithm
to avoid making an illegal turn. There are many other types of relations, and this is
perhaps the least mature part of OpenStreetMap's data model and mapping.

The relation element has the common attributes for all primitives, and no others.
Child elements are the list of tags and the list of relation members. Each member
element has attributes, giving its type and ID number, along with a role. The role
attribute is a simple string whose values and significance are defined by the type
of the relation itself. The role can be left blank for relation types that don't require
one. In our example, the type is given as a restriction, and the members show the
route that's illegal to take using the node representing the junction with the turn
restriction, and the ways representing the roads that's illegal to access.

How OpenStreetMap Records Geographical Features

[60]

The members of a relation are returned in the same order they were created in,
but the order isn't necessarily significant, and may not even be the desired order
depending on the application that created the relation in the first place. If you have
an application that uses relations in an order-sensitive way, you should check the
documentation for that relation type to see whether a convention for member order
has been established.

As with the other primitives, the OpenStreetMap API doesn't check whether a
relation conforms to any particular format or standards, so you should do your
own validation before using any relations.

Changesets
There is a further data structure used in the OpenStreetMap API—the Changeset.
Changesets aren't part of the data model proper, but are simply groups of changes
made to data primitives. Changesets were introduced to make it easier to identify
related changes to the map, and to tidy up the attribution of data. Before their
introduction, the only way of identifying edits that changed related parts of the
map was to search for groups of edits by one editor within a short time of each
other, which was time-consuming and prone to error. As OpenStreetMap grows
in popularity, vandalism is expected to be more of a problem, and changesets are
one of the tools used to keep the data accurate.

Changesets are opened by editor applications before uploading any edits, then
closed once they're done. Every edit to OpenStreetMap data must be assigned to
a changeset. One mapper can have any number of changesets open at any time,
although idle changesets are closed automatically by the server after one hour. We'll
cover the precise details of using changesets in Chapter 8, and most OpenStreetMap
editing software automatically creates and closes changesets for you.

The XML for a changeset looks as follows:

<osm version="0.6" generator="OpenStreetMap server">
 <changeset id="1787116" user="Jonathan Bennett" uid="5352"
 created_at="2009-07-10T09:52:28Z" closed_at=
 "2009-07-10T09:52:31Z" open="false" min_lon="-4.4224237"
 min_lat="56.1382502" max_lon="-3.9613266" max_lat="56.6330162">
 <tag k="created_by" v="JOSM"/>
 <tag k="comment" v="Additions and edits to NCR7"/>
 </changeset>
</osm>

Chapter 4

[61]

The first thing you'll note is that the changeset XML doesn't contain any details of
the changes themselves. This information is stored in the OpenStreetMap database,
and you can download a separate XML file containing the changes, but they're kept
separate from the changeset description.

The changeset description XML tag contains, like other primitives, an ID, again only
unique to changesets, the display name of the mapper, and his/her user ID. The
XML also contains timestamps for when the changeset was opened and closed, and
the four corners of the bounding box for the changeset. The bounding box describes
the smallest box containing all the edits in the changeset, and can be very large if the
edits are far apart.

A changeset can be tagged in the same way as other primitives, but with an
important exception: Once a changeset is closed, it can't be edited. Changesets
are a record of mapping activity, rather than of geodata, so they aren't editable,
particularly as attribution of OpenStreetMap's data relies on the tags attached
to a changeset.

Tagging
The physical aspects of OpenStreetMap's data are contained within the data model
and primitives, but it's the tagging of each primitive that tells you what all the
features are, and where the real power of the model lies. The data primitives have
tags added to them that tell you what real-world features they represent, and from
that you can render a map, produce a routing mesh, or build some other application.

A tag is a simple key-value pair. Any primitive can have an arbitrary number of
tags attached to it. The keys and values are simple strings, and can contain any valid
Unicode characters upto a 255 character limit. The OpenStreetMap server currently
uses the UTF-8 encoding scheme.

That is the entire technical specification for tagging in OpenStreetMap. The API
itself doesn't enforce any more rules on tags than the ones just mentioned. Instead,
what gets put in tags is decided by the OpenStreetMap community, through custom,
discussion, and consensus. There are already a huge number of keys and values in
use, some on millions of objects, and some that have only been used a few times.

Tagging is semantic, in that you describe the properties of a feature you're mapping,
rather than describing how you'd like it to appear on the map. The appearance of any
feature on a map based on OpenStreetMap data is entirely under the control of the
person who configures the renderer for that map. There's no way to force a particular
feature to look a particular way in any renderer.

How OpenStreetMap Records Geographical Features

[62]

One analogy is with the languages web pages are written in, HTML and Cascading
Style Sheets (CSS). Ideally, the HTML for a web page contains no layout information
at all, but simply describes the structure of the document. A style sheet is then used
to turn that document into a visual or aural representation based on the rules in the
style sheet. Similarly, OpenStreetMap's data only describes the structure of a map,
and leaves the presentation to a style sheet in the map renderer.

You should also remember that not all applications of OpenStreetMap data involve
rendering a map. Routing, geolocation, and statistics applications may not use a map
at all, or may ignore any tags that have no bearing on their algorithms.

The OpenStreetMap wiki is used to document what a particular key-value pair
means. The entry is normally written by the first person to use the tag, but some tags
may not be documented, or may have their page in the wiki written by someone else.

The normal way of writing down a tag is in the form

key=value

for a fully qualified tag, or

key=*

for a key with no particular value. You'll see this notation used on the wiki, mailing
lists, and other documents used in OpenStreetMap. Most editors use separate text
boxes for the key and value for a tag, so you won't normally need to write out a tag
in full.

Keys and symbolic values are normally written in lowercase, without any
whitespace, with underscores to aid readability where necessary. The
OpenStreetMap API isn't in itself case sensitive, but it doesn't translate the case of
any tags you add. Most tools for processing and rendering OpenStreetMap data
are case sensitive, so literal values such as street names should be written with the
correct capitalization and spacing. British English is normally used for keys and
symbolic values, even for features in non-English speaking countries. Although this
is mostly because the project was started in the UK, it's proved useful in allowing the
same tags to be used in different countries.

Only one value per key is supported, so if you need to record multiple values for a
particular key, the normal practice is to use a prefix or suffix to the tag, separated by
a colon. The most common use of this is for place names in multiple languages. For
example, the node for London gives its name in many different languages, as follows:

<osm version="0.6" generator="OpenStreetMap server">
 <node id="107775" lat="51.5072647" lon="-0.1278328" version="29"
 changeset="2628959" user="EdinburghGael" uid="170586"
 visible="true" timestamp="2009-09-25T23:04:28Z">

Chapter 4

[63]

 <tag k="place" v="city"/>
 <tag k="name:zh" v="伦敦"/>
 <tag k="name:sv" v="London"/>
 <tag k="name:sk" v="Londýn"/>
 <tag k="name:ru" v="Лондон"/>
 <tag k="name:fi" v="Lontoo"/>
 <tag k="name:es" v="Londres"/>
 <tag k="name:gv" v="Lunnin"/>
 <tag k="name:zh_pyt" v="Lúndūn"/>
 ...
 <tag k="is_in" v="England, United Kingdom, UK, Great Britain,
 Europe"/>
 <tag k="capital" v="yes"/>
 <tag k="name:fr" v="Londres"/>
 <tag k="name:cy" v="Llundain"/>
 </node>
</osm>

In the preceding example, you can see that the name is specified by tagging with
name:<lang>=<value>, where lang is the two-letter ISO language code. Other
examples of this include the addr: prefix for tags giving addressing information for
streets and buildings, and piste: for mapping skiing pistes and their properties.

While there are few absolute rules that have to be followed in OpenStreetMap,
there are some guidelines the community has come up with to guide mappers
when editing the data.

"Any tags you like"
One important principle within OpenStreetMap is that there are no restrictions on
what key-value pairs can be used at all, whether technical or policy. You are free
to use whatever combination you think best describes the feature you're mapping.
This principle is summed up in the phrase "Any tags you like".

Taken literally, this could sound like an invitation to chaos. Instead, what it actually
means is that you don't need prior approval to use a new tag, should you need to.
You're still expected to use the existing keys and values, where they accurately
describe the feature you're trying to map. However, you may come across a type
of feature that hasn't been mapped before, and need to come up with a new tag.
This isn't just possible, it's encouraged.

If you do create a new tag, you are expected to add documentation for your new tag
to OpenStreetMap wiki, describing what you have used it to represent, otherwise
other mappers won't know what the tag means, even if you think your tag is
self-explanatory. Documentation is also translated into other languages, so the
mappers doing the translations need an original text to work from.

How OpenStreetMap Records Geographical Features

[64]

"Don't tag for the renderer"
You'll come across this phrase regularly on the OpenStreetMap mailing lists, and it's
another important point to remember. What it means is: Don't use an incorrect tag
to produce a particular effect in a map renderer.

For example, you might be tempted to tag a building as woodland so that it
appears on the map in green, because the building itself is painted green. This
creates many problems:

A different render of the map may use a different color for woodland, or may
ignore woodland altogether, so your building won't appear as you intended,
and may not appear at all.
If a geocoding application looks for a feature tagged as a building with
a particular name, it won't check your feature, because it's not listed as
a building, but as an area of woodland. The converse may also happen,
where someone searches for woodland, finds your building, and gets
incorrect information.

If you want a map where certain features appear in particular colors or styles, you
can render your own map, and we'll show you how to do this in Chapters 6 and 10.

Verifiability
The information recorded in OpenStreetMap should be verifiable. This means that
another mapper should be able to resurvey the information you've added, and come
to the same conclusion as you have, based on what they are able to observe. This
applies both to the primitives you use, and the tags you attach to them. Your GPS
traces are the method of verifying the position of the features you've mapped, but
the tags you use should also be verifiable.

You should only tag features based on what can be seen "on the ground". If
verifying the features you're adding needs access to an additional source of
information, it shouldn't go in OpenStreetMap. For instance, if you're going
to add a named hiking trail to OpenStreetMap, this should be based on the
signposts you find along the trail, not a guidebook.
You should only add tags that are objective in nature. If another mapper
could have a different opinion about a particular tag, it isn't a good tag.
Things to avoid include relative descriptions of features ("large", "steep")
where objective measurements can be used, such as "15m" or "5% gradient", or
subjective judgments, such as the difficulty of cycling along a particular road.

•

•

•

•

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Chapter 4

[65]

Verifiability doesn't mean that the observations have to be possible using the naked
eye, but any measurements that need specialist equipment to make are unlikely to
become commonly used in the OpenStreetMap community, and you won't see other,
similar features appearing outside the area you're mapping.

Above all, documenting what you mean when you use a particular tag, and checking
what others have documented will help improve the verifiability of your mapping.

A few core tags
There are too many tags in use in OpenStreetMap to document them all here. There
is a core set of tags that get used most often to represent commonplace features,
and they'll cover the majority of the mapping you need to do, unless you have
very specialist needs.

The main list of common tags is kept at http://wiki.openstreetmap.org/wiki/
Map_Features, and the three main OpenStreetMap editing applications have
built-in presets that reflect standard practice within the community. Although
there's no technical distinction, there are generally two types of tags, namely, ones
which define which class of feature a primitive is, and ones that define additional
properties. We'll cover the class tags here, and introduce some of the property tags
while we're editing in the next chapter.

Not every tag that's been documented is listed in Map Features, and not every
tag that's been used is documented. If you want to find other tags, you can use the
wiki's built-in search, the custom Google search at http://bit.ly/osmsearch
which searches the wiki, mailing lists and forum, or another third-party tool.

There are a few third-party tools that collect statistics on tag usage, including
Tagwatch (http://tagwatch.stoecker.eu/) and OSMDoc (http://osmdoc.com/).
These tools are useful for seeing which tags are popular, but they don't contain any
documentation for the tags, so you'll still need to refer to the wiki. However, they do
work by analyzing the contents of the OpenStreetMap database, so they're based on
what people are actually using.

The most mapped features in OpenStreetMap are roads, and in some areas of the
map, they're currently the only features. All roads, footpaths, and other land-based
routes use the highway=* key. The use of the word "highway" can be confusing in
countries where this is used for a particular class of road (particularly the US), but its
use in OpenStreetMap is based on British use, where it means any public road, even
unsurfaced ones only suitable for farm vehicles.

How OpenStreetMap Records Geographical Features

[66]

The main values for highway=* are:

highway=motorway for long-distance, high-speed roads with
access restrictions.
highway=trunk for other long-distance roads with less strict
access restrictions.
highway=primary for major general purpose roads.
highway=secondary for minor general purpose roads.
highway=tertiary for other through routes, possibly signposted routes.
highway=unclassified for through routes not covered by any of the
previous tags.
highway=residential for roads in residential areas (whether urban
or rural), where there is generally no through traffic.
highway=service for alleys, driveways, and other roads that only provide
access to a single location.
highway=footway for any footpath, whether surfaced or unsurfaced, rural
or urban. There are more specific versions of this tag for particular types of
path, but you should start by using highway=footway.

Amenities are the next most-used category of features. These could be anything from
litter bins to shops. Amenities are usually mapped using single nodes, but where
the amenity is a building, and the outline of the building is in OpenStreetMap, that
should be tagged with amenity=*.

Some common values for amenity=* are:

amenity=parking for public car parks. Further tags specify whether there's a
charge, how many spaces are there, and whether it's outdoors or indoors.
amenity=place_of_worship for a religious building of any religion or
denomination. Extra tags give the religion.
amenity=fuel for a vehicle filling station. The particular fuels on sale can be
specified in extra tags. Note that other fuels, such as solid fuels for heating,
aren't mapped using this tag.
amenity=post_box for a post box. The operator, collection times, and any
reference number can also be tagged using ref=*.
amenity=cafe for a cafe, possibly serving food.
amenity=pub for a public bar serving alcoholic drinks.
amenity=hospital for any hospital, with availability of emergency
treatment specified in a separate tag, emergency=*.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[67]

There are many more values for amenity=* in use, so it's best to consult the wiki
page for the key to find out how to tag any other amenities you're mapping.

Settlements are mapped using the place=* tag, the main values for which are:

place=country for a country, although it's believed that all countries in the
world are already mapped
place=county

place=city for very large settlements, although what exactly is a city varies
from country to country
place=town

place=village

place=hamlet

place=suburb

Most places are currently mapped using a single node, but in the future, areas may
be used where appropriate. You should always add a name=* tag with a place=* tag.

The waterway=* key covers all linear water features, such as rivers, as follows:

waterway=river

waterway=stream

waterway=canal

waterway=ditch

Ways tagged with waterway=* should point in the direction of flow where
appropriate. There are also tags for features found along waterways such as
lock gates, weirs, and waterfalls.

Don't worry if there seems too much information to remember here. In the
next chapter, we'll look at editing OpenStreetMap using three different editing
applications, all of which have tagging presets, which means you don't have
to memorize the precise tags needed for every feature.

•

•

•

•

•

•

•

•

•

•

•

How OpenStreetMap Records Geographical Features

[68]

Other useful keys
As there are so many keys and values in use in OpenStreetMap, it would be
impossible to describe them all here. The following are a few other keys you will
encounter in areas that have already been mapped. You can read more about them
in their respective wiki pages.

landuse=* and natural=* specify what use man has put an area to, and
what naturally exists there, respectively. These two tags are always used on
closed ways, and ideally the areas should be contiguous, but not overlap.
leisure=* for leisure facilities, such as sports centers, sporting venues,
or pitches.
railway=* covers most features related to railways, including the tracks
themselves, stations, and level crossings. Miniature and funicular railways
are also included.

Creating a new tag
If you've found a feature you need to map, and you've looked on the wiki, searched
the archives, asked in the mailing lists and on the IRC channel, but still haven't found
a suitable key and value for your feature, it's time to create your own. To do this,
either reuse the appropriate key and use a new value, or if necessary, use a new key.

To create a new tag, you simply use it. Choosing the text to use in your tag is less
important than writing documentation for it. While the tag text will record the
information you're trying to add to OpenStreetMap, it won't mean much to everyone
else using the map, so it's vital you document your new tag. You do this by creating
a new page in the wiki. See the guidance at http://wiki.openstreetmap.org/
wiki/Tagging for the currently preferred way of doing this. If you'd like to get other
mappers' feedback on your new tag, you can send an e-mail to the tagging mailing
list, requesting comments.

When using a new tag, remember:

Tagging is semantic, so choose a tag that describes what the feature is, not
how it should appear on the map.
Use English, unless you have a good reason not to.
Try to be precise without being too verbose.
It's not necessary to describe a feature completely in a single tag. You
can describe an Italian restaurant using amenity=restaurant and
cuisine=italian, rather than amenity=italian_restaurant.

•

•

•

•

•

•

•

Chapter 4

[69]

Tags should be fail-safe. If an application doesn't understand your tag, it
should be able to ignore it without any side effects. Add properties to a
feature, rather than trying to subtract them or creating an exception.
Document what you do in the wiki. Include photos, hyperlinks, and other
materials to show what you mean by the tag you've created. This way,
your tag has more chance of being used by the community and becoming
an accepted convention.
Be prepared to change your tag if, after discussion, a better tag is suggested.

If you're in any doubt, contact the OpenStreetMap community for help with creating
and documenting a new tag.

Summary
We should now have covered enough of the structures and theory in OpenStreetMap
for you to be confident in drawing and tagging features.

We've covered the types of data you can record, as follows:

Nodes, representing point features
Ways, representing linear or area features
Relations, representing more complex features

We've also looked at the tagging system and how the community uses and
manages it:

Tags describe a feature in a verifiable, objective way
Use editor presets and existing tags to describe features where possible
Look in the OpenStreetMap wiki to find tags for unusual features
You don't need prior approval to use a new tag if you need it

In the next chapter, we'll put these to practical use, along with examples of how
to map using the most common editing applications.

•

•

•

•

•

•

•

•

•

•

OpenStreetMap's Editing
Applications

After you've gathered GPS traces, taken photos, written or spoken notes, and
otherwise recorded surveyed information, it's time to turn it into data in the
OpenStreetMap database. The normal way of doing this is using one of the
editing applications available, each of which has its own strengths:

Potlatch—the web-based editor
JOSM—a Java-based desktop editor
Merkaartor—a desktop editing application

Although most mappers find which editor suits them best and tend to stick to it,
they're not all suitable for use under all circumstances, so it's best to be familiar with
more than one. Here's a quick run-down of the differences between the editors:

Potlatch JOSM Merkaartor
Requirements Web browser with

Flash (or compatible)
plugin

Any operating
system with Java SE
1.5 or higher

Windows, Linux, or
Mac OS X with Qt

Works while offline? No Yes Yes
Needs installing? No No Yes
Supports photo mapping? Partially Yes Yes
Supports audio mapping? No Yes No

There are also differences in each editor's workflow and user interface, and we'll look
at these as we go along. We'll look at getting started with each individual editor, then
cover the general editing techniques that apply generally.

•

•

•

OpenStreetMap’s Editing Applications

[72]

To help you learn how to use each of these editors, and learn more general
editing techniques, we're going to work through a real-life example. We're going
to map the village of Compton in Surrey, England. You can download an example
GPS trace and images for the village from the code bundle available on the Packt
website. After you've downloaded the ZIP file, unpack it into a new directory.
The GPS trace and pictures represent a survey of the village done on bicycle,
and on foot where cycling isn't allowed or practical. Both the trace and the images
were gathered using a Nokia 5500 smartphone, running Mobile Trail Explorer
(http://code.google.com/p/mobile-trail-explorer/)—an open source
trace recording application for Java ME. The trace has also been uploaded to
OpenStreetMap, where you can see it at http://bit.ly/osmtrace, which
redirects you to http://www.openstreetmap.org/user/Jonathan%20Bennett/
traces/564418.

If you look at the animated preview of the trace in the code bundle, you can get
an idea of how it was gathered. The aim of this survey is to cover all public roads,
most other rights of way, and to gather any significant points of interest around
the village. Private land, house names and addressing, land boundaries, and other
details will be ignored.

There's a combination of named waypoints in the GPS trace and timestamped photos
to record information, such as street names and the location of points of interest.
The photos themselves aren't geocoded, meaning they don't have the co-ordinates
they were taken at attached to the image; instead, we're going to use JOSM and
Merkaartor's built-in photo mapping features to locate them. If the GPS receiver or
software you're using doesn't support named waypoints, you could write the same
information in a notebook against the number of the waypoint.

Although all the editors we're looking at allow you to convert a GPS trace directly
to OpenStreetMap data, there are many reasons why you shouldn't normally do this:

The GPS trace will contain inaccuracies. You can see from our sample trace
that even a good trace can sometimes be inaccurate.
Traces of areas with dead-end roads will involve some back-tracking,
producing two sections of trace for one road.
If your trace overlaps areas of existing mapping, it will produce some
duplicate data.
Traces will contain points at regular intervals along straight sections of road
where they're not necessary. Having unnecessary nodes slows down data
transfer and rendering.

•

•

•

•

Chapter 5

[73]

You'll probably find that converting and then tidying a raw trace will take as
much time as drawing over the trace by hand, so most of the time you'll be
faster tracing manually. The only exception to this is where you are mapping a
long-distance route in a previously unmapped area, but few of these remain in
industrialized western countries.

Potlatch
Potlatch, named after a native American custom of giving gifts, is a Flash-based
online editor for OpenStreetMap. Its biggest advantage over other editors is that
it doesn't need to be installed for you to use it. You can use any computer with a
browser and a Flash plugin to edit OpenStreetMap using Potlatch, and it's safe
to use on public computers, provided you log out of the site afterward.

Potlatch has fewer features than the desktop editors we'll cover, but it's still able to
create and edit the same data as any other editor. It has a system of presets, which
makes tagging the data you create faster and prevents typing errors, but still allows
you to enter free-form keys and values for tags. Potlatch does include support for
photo mapping, but the workflow currently involves uploading your pictures
to a separate website, so we won't cover this feature.

Launching Potlatch
You must be logged in to openstreetmap.org to use Potlatch. Once you have logged
in, there are two ways to start the editor.

The most obvious way is through the Edit tab at the top of the main map page,
which starts Potlatch and loads data for the current map view. This will only work
at zoom level 13 or above, and if you're zoomed too far out, the tab will be grayed
out to let you know. If you're going to start Potlatch this way, it's a good idea to
zoom in as far as possible to the area you want to edit, as this will speed up the
process of loading the data.

OpenStreetMap’s Editing Applications

[74]

The other way of starting Potlatch, and the one we're going to use, is from the
trace list. Check if you're logged in, and go to our example trace (http://bit.ly/
osmtrace). Next to any trace, there are two links after the starting coordinates—map
and edit:

Click on edit and you'll be taken to the area covered by the trace, and the trace
itself, along with its named waypoints, will be loaded into Potlatch. You can load
the public GPS traces for any area you edit, but this won't load any waypoints from
those traces.

Once you've opened Potlatch, you'll be asked whether you want to edit in a normal
way, with a save button, or work "live", where your edits are written to the database
as you do them. This latter way of working can be faster for simple edits, but makes
it much easier to introduce errors to the data accidentally, so it should be used with
caution. Live mode is most useful when two or more people are editing the same
area simultaneously, such as after a mapping party, as everyone's edits will show up
immediately, and there's less chance of conflict between two edits. The next version
of Potlatch isn't expected to have live editing mode.

If you start Potlatch from a GPS trace, you'll also see a checkbox labeled Convert
GPS track to ways, which you should leave unticked. Click Edit with save, and
you should see something like the following image:

Chapter 5

[75]

It may take some time for all the data to load, depending on the load on the
OpenStreetMap servers. Potlatch will warn you with a message in the top right-hand
corner of the edit pane when it's loading data. Once it has, you can start mapping.

Understanding Potlatch's user interface
Let's take a look at what we can see. Most of the Potlatch window is taken up by the
map pane. In the preceding screenshot, we can see many different classes of features,
shown using different colors, icons, and drawing styles:

The green lines marked with arrows are dual carriageway (the British term
for a divided highway) trunk roads, where the arrows show that the traffic
is one-way. In this case, these are the A3 and A31 roads. Each carriageway is
mapped using a separate way. Trunk roads may also be single carriageway,
in which case only one way is used.
A red line with a black outline is a primary road, seen at the top right in our
screenshot, where the A31 turns from trunk to primary status.

•

•

OpenStreetMap’s Editing Applications

[76]

An orange-yellow line is a secondary road, and in the UK this means
a B-road, while a pale yellow line is a tertiary road.
Blue lines are water features, such as streams and rivers.
Red lines without an outline are footpaths, and green lines without an outline
are bridleways.
Some points of interest may have an associated icon, such as parking spaces,
pubs, or places of worship in our example. Others are shown using a
green dot.
Any way with a highlight is a member of a relation. The color of the highlight
reflects the type of relation.

Potlatch is modeless, which means you don't have to switch tools or modes to
perform different tasks. Instead, it changes action depending on what the cursor
is over, and what objects, if any, are selected. You perform other actions using the
buttons, dragging icons into place, or by entering the tags directly. A few commands
are only available as keyboard shortcuts, and these are listed in Potlatch's online
help. There's also a cheat sheet available in Scalable Vector Graphics (SVG) format
at http://bit.ly/plcheatsheet.

Below the map area are Potlatch's controls. The largest section of the controls is
normally taken up by the point of interest (POI) palette. In this palette is a set of
icons which you can drag onto the map to add those features. This is the simplest
way of adding points of interest, as it adds the data and tags in one operation.

When you select an existing feature, the palette is replaced by the tag editor. Select
the main road running through Compton, and you should see something like the
following screenshot:

You can see the tags attached to this way, which show it's a secondary road named
The Street, with a 30mph speed limit, and the road number B3000. The dark gray
box above the tags with the text bus 46 shows that this way is a member of a relation,
in this case a bus route relation. The blank box at the right of the relation is for the
role, which isn't needed for a bus route. Click on the relation box, and Potlatch's
relation editor will appear in the center of the window. The top box in the tag editor
is the presets, which we'll explain shortly.

•

•

•

•

•

Chapter 5

[77]

Over on the right-hand side are three buttons. From top to bottom, these are:

Repeat tags: This button adds the tags from the last selected object of the
same type as the currently selected object.
Add to relation: This adds the selected object to a new or existing relation.
Add tag: This adds a blank row for a new tag in the tag editor.

Once you've added a new row for a tag using this last button, you can add the tag by
typing the key and value directly into the boxes. As you type, Potlatch will pop up a
list of matching keys and values, which you can select using the arrow keys and the
return key. If the tag you want isn't in Potlatch's list, you can continue typing.

In the bottom left corner of the editor are some buttons:

The scissors button (top left) will split a way into two at the currently
selected node. In the previous screenshot, this is grayed out because
nothing is selected.
The next button showing an arrow will reverse the direction of the selected
way. The arrow on the button points from the first to the last node of the
way, so you can see the direction even on ways without direction arrows.
Only the ways with tags explicitly stating the direction using oneway=yes
have arrows, but all ways have a direction, and in some cases, such as
waterways, the direction is implicitly significant.
The top right button will align all the nodes in the selected way in a straight
line. This tidy function has a safety feature where very curved ways won't be
straightened unless you hold down the Shift key.
The bottom left button is undo. You can also press Z to undo edits. Potlatch
has a multi-level undo buffer, so you can undo multiple edits.
The next button will show GPS traces for the area shown in the edit pane.
Note that this button isn't a toggle, so pressing it again won't remove the
traces already on screen.

•

•

•

•

•

•

•

•

OpenStreetMap’s Editing Applications

[78]

The button with a checkbox brings up the options for Potlatch. We don't need
to change any of these for now.
The camera button loads geotagged images from the source specified in
the options.

At the bottom of the Potlatch window is the button bar, where you can access the
online help and advanced settings, and see your current editing mode. If you're
in save mode, a save button will also appear. The online help has a guide to using
Potlatch, as well as a list of keyboard commands, but you can't have the guide on
screen and edit at the same time.

Editing data using Potlatch
To move the map around, you click on an empty space—where there are no features
drawn on the map—hold the mouse button down, and drag the map, and to zoom,
you use the controls in the top left-hand corner. If you zoom or move the map so that
a new area is displayed, Potlatch will automatically download the data for that area,
and there may be a delay while the new area is drawn. Again, it's best to wait for the
data to finish loading before entering new features. You always get the latest data
from OpenStreetMap when editing in Potlatch.

To select a feature, move the cursor over it, and the cursor should change to a hand
pointer. Click on the feature, and the icon palette will be replaced by the tag editor,
showing the tags for the selected feature. The feature itself will also be highlighted,
and in the case of a way, its nodes will be highlighted as well. Any node that's shared
with other ways will have a black border around it. You can only select one feature
at a time in Potlatch, so if you need to change tags on large numbers of objects at the
same time, you should use one of the desktop editor applications.

Click anywhere in the empty space, and a node is placed, and Potlatch starts
drawing. If you click on the same node again, you stop drawing, but the node is
still selected, allowing you to add tags to it. If you want to add points of interest, it's
often quicker to use the icons at the bottom of the edit pane. You can drag these into
place, and Potlatch adds a new node with the correct tags for that type of feature
to the map.

To draw a new way, click to place the starting node, then draw the way node by
node, clicking again on the last node to stop drawing. You can start a new way from
an existing node by holding down Shift and clicking on the node. You then start
drawing as normal. To end a way on an existing node, simply draw the way and
click on the node last, then click on it again to stop drawing.

•

•

Chapter 5

[79]

You can stop drawing at any time by pressing Return. If you select a node at the
end of a way, Potlatch will automatically start drawing, so if you just want to edit
the tags on that node, press Return to stop drawing and leave the node selected. If
you want to remove just the last node you placed, press Delete or Backspace. You can
also press Escape to stop drawing and delete any unfinished way you've started to
draw. This can be useful if you've tried to move the map, but accidentally started
drawing instead.

To delete a single node in Potlatch, select it, and press Delete or Backspace. To delete
an entire way, select it, and press Shift and Delete.

Using presets in Potlatch
Potlatch has an extensive set of presets (currently around 170) for many common
map features that add the correct tag or tags for those features, and suggest some
more you may want to add. You choose a preset from the drop-down menu just
above the tag editor:

The presets are organized in groups, and you switch to or from a group by
clicking on the icon to the left of the preset menu. The icon will change to show
which group of presets is active, such as a car for road presets, a walking man for
pedestrian-related presets, a boat for waterways, and so on. The list of presets also
changes depending on whether a node or way is selected.

To apply a preset to a feature, select it, then choose the preset you want from the
drop-down menu. The tags represented by that preset will be added, along with
the keys of some other tags it would be useful to add. In the previous example,
we've chosen the preset for a church, and Potlatch has filled in the tags for
amenity=place_of_worship and religion=christian automatically, and
is suggesting we add values for name=* and denomination=*. If you have the
information suggested, fill in the values for those tags. You can add other tags
besides the ones suggested by Potlatch if appropriate.

OpenStreetMap’s Editing Applications

[80]

Using GPS traces in Potlatch
We've already seen how to load an individual trace into Potlatch, and it's also
possible to see all public traces for an area. Click the GPS traces button to load them.
If you hold down Shift while clicking the button, Potlatch will only load traces you've
uploaded yourself. Traces appear as pale lines in the background.

If you load a specific trace into Potlatch, it also imports any named waypoints in the
file. If you look at our example, you should see some red dots on the map. These are
the waypoints from our GPS trace. Click on one, and you should see the tag editor
appear, looking something like the following screenshot:

You can see the name of the waypoint, a special tag used to make it show up in
Potlatch, and above these the red bar with Click to unlock. This means that this
particular object has been locked, in this case because it's from our GPS trace, rather
than from the OpenStreetMap data. Potlatch won't upload any object marked as
locked to the server unless you specifically unlock it first. If we had chosen to convert
the example trace to ways, these would also appear as locked objects. You can unlock
waypoints and tag them correctly to create points of interest, but most of the time it's
easier to use Potlatch's drag-and-drop POI icons to map these features.

Practicing with Potlatch
If you want to practice using Potlatch, but don't want to make any real mapping
or risk-creating errors in the existing data, you can use the OpenStreetMap test
server, which runs all the same software as the main server, but doesn't contain any
data and doesn't render maps. The test server is currently at http://api06.dev.
openstreetmap.org/, but this will change if a new version of the server software is
released. Check with the API test page at http://apis.dev.openstreetmap.org/
to see which is the latest version.

Learning more about Potlatch
Potlatch has built-in help which lists the keyboard shortcuts and offers some
mapping tips. You can access this at any time using the help button at the
bottom-left of the editor, but you can't keep it open while editing.

Chapter 5

[81]

There's more extensive documentation on the OpenStreetMap wiki, at
http://wiki.openstreetmap.org/wiki/Potlatch, including video tutorials,
frequently asked questions, and the procedure for doing photo mapping in Potlatch.

Potlatch 2
There is a new version of Potlatch in development, called Potlatch 2, which has been
rewritten from the ground up, and has a much richer editing environment. However,
development is still at an early stage, and even when it's complete, Potlatch 2 will
have greater system requirements, so it's unlikely to replace the original version of
Potlatch completely and immediately. Some of the new features in Potlatch 2 include:

Customizable tagging presets
Customizable rendering of features in the map
A wider range of background image types and sources

While there will be a wider range of features in Potlatch 2, the basic methods
of editing won't change that much, so someone who's used to using the original
version should be able to use the new version without problems.

Java OpenStreetMap Editor (JOSM)
The Java OpenStreetMap Editor, almost universally referred to by its initials, is a
desktop editing application written in Java. As such, it runs on Windows, Mac OS,
and Linux. The project has its own website at http://josm.openstreetmap.de/
where you can download the latest version of the software. You'll also need
to download Java if your computer doesn't already have it installed, from
http://java.sun.com/ or via a package manager on some Linux distributions.

JOSM has many features built-in, such as audio and photo mapping support, that
help you turn your survey information into map data. It also supports plugins that
add extra functions, such as directly gathering traces from a GPS in real time, and
extra drawing tools or connections to third-party websites.

There are generally two versions of JOSM available: the tested version
(http://josm.openstreetmap.de/josm-tested.jar) and the latest version
(http://josm.openstreetmap.de/josm-latest.jar). The tested version is
more stable, and is what you should use unless you have a particular need for
some leading-edge features. The latest version is more up-to-date, but will
probably contain bugs and may even crash while you're working, losing
any work you've done.

•

•

•

OpenStreetMap’s Editing Applications

[82]

Both are distributed as executable JAR files, which you can normally run just by
double-clicking the file if Java is correctly installed. The JAR doesn't need installing,
or to be in a particular location on your hard drive. If you have a working version
of Java installed, but double-clicking the JAR file doesn't work, start JOSM with the
following command line:

java -jar josm-latest.jar

Using JOSM on public computers
JOSM is packaged as a single file, which can be used without any extra
installation, provided Java is working. This means you can use JOSM on
a public computer quite easily, even where you don't have installation
privileges. However, JOSM writes its preferences, including your
username and password, to the local disk, so be wary of using it on public
computers. If you do, remember to blank your credentials in JOSM's
preferences before you leave the machine.

Understanding JOSM's user interface
Once you've successfully launched JOSM, you should see the main window appear.
At startup, this will show the Message of the Day, downloaded from the JOSM
website. The interface is a little bare until you have some data loaded, so let's do that.

Click the Open files icon (a blue folder with a file in it), or press Ctrl+O, to bring
up the open dialog. Locate where you've unpacked the sample trace, and choose it.
Once you have a GPS trace loaded, JOSM's interface gets a lot more complicated.
You should see something like the following screenshot. In the center of the window
is the map area, which is currently only showing our GPS trace. You should also be
able to see the named waypoints in the trace, marked with crosses and labeled with
their names.

Down the left-hand side of the window, a new toolbar has appeared, which contains
the drawing tools and the show/hide buttons for the information panels. Across the
bottom of the window is the status bar, which gives coordinates and measurements
for features, as well as a hint of the current tool's function. The layout of the top
toolbar is customizable, but not that of the drawing tools. JOSM's keyboard
shortcuts are also customizable.

Chapter 5

[83]

Down the right-hand side of the window are the information panels. These show
information about the data in JOSM, including a list of selected objects, how the
selected object(s) are tagged, who the last mapper to edit a feature was, and the
different layers in your view. Each of the panels can be hidden, minimized, or
floated from the main window, as follows:

To hide a panel, click on the cross in the top right-hand corner
To minimize a panel, click on the down arrow in the top left-hand corner
To float a panel, click on the pushpin icon
You can show any hidden panel by clicking its button in the left-hand toolbar

•

•

•

•

OpenStreetMap’s Editing Applications

[84]

JOSM uses layers to separate different types and groups of data. Note that these
aren't the thematic layers found in traditional GIS systems, where different types of
features in the same set of data are separated into layers. Instead, the layers in JOSM
represent either a set of OpenStreetMap data, a GPS trace or traces, or a layer added
by a plugin to help mapping. You can hide or delete individual layers, reorder them,
and merge layers of the same type by using the buttons below the list of layers.

You can already see two layers after loading our sample trace: the trace itself
in one layer, and the named waypoints in another, called a Marker layer. Layers
have actions associated with them, and right-clicking on a layer will bring up a
context-sensitive menu for that layer.

Let's add another layer by downloading the existing data for the area covered by
our example trace. Click on the Download button or choose the Download from
OSM option from the file menu. The download dialog box will appear:

Chapter 5

[85]

You can see the download dialog has its own slippy map, and the area covered by
our trace is already highlighted. You can choose a different area to download by
dragging a rectangle across the map, and you can move the map around by
dragging with the right mouse button.

There are other ways to specify the area you want to download, including
bookmarked areas, by entering the latitudes and longitudes of the bounding
box directly (or by extracting them from an openstreetmap.org URL).

There's a limit on how large an area you can download in one request from the
OpenStreetMap API of 0.25 square degrees, or roughly a 50km x 50km area in
Europe. The limit prevents any one request from taking all of the server's resources.
JOSM will warn you if you're trying to exceed this limit. If you need to map an area
larger than this, you can perform multiple requests, and there are plugins for JOSM
that will help do this.

If you need OpenStreetMap data in large quantities to use in an
application, you're encouraged to use one of the many sources
of bulk data, which we'll discuss in Chapter 8.

You can choose which types of data you want to download, either data, GPS traces,
or both. You also have the option of downloading new data into a separate layer from
any existing mapping data you may have. Let's tick the box for Raw GPS Data, and
click OK. JOSM will now download the data and existing GPS traces for Compton.

Notice that so far you haven't configured JOSM with your
openstreetmap.org username and password, yet it has still been
able to get data from the server. Reading data doesn't require
authentication, or even an account on openstreetmap.org.

OpenStreetMap’s Editing Applications

[86]

During busy periods, it may take some time to contact the server and download the
data. JOSM downloads GPS points in batches of 5000, again a number dictated by the
server configuration. Once your download has finished, you should see a map that
looks something like the following image:

This is the completed map for Compton, and we'll reproduce most of this mapping
from scratch. As the area is still being mapped, you may see more features in the
data you download.

Chapter 5

[87]

JOSM has two views:

The standard view paints features in different colors and shows names of
features and shades in areas. You can customize the colors JOSM uses to
show features in your preferences.
The wireframe view simply shows nodes and ways without any decoration.
In the former view, it is easier to see which features are which while you're
editing, but it is slower to redraw than the wireframe view.

You can switch between the two using the View menu, or using Ctrl+W.

You can move around the map by dragging with the right mouse button, or by
pressing Control and the arrow keys on your keyboard. You can zoom in and out
using the slider at the top-left of the map, or using your mouse wheel if you have
one. There's also a zoom tool, which you select by clicking on the magnifying glass
button in the left toolbar, or by pressing Z. Drag a rectangle over the map to zoom to
that area. JOSM will make the shape of the rectangle match the current map view.

As we want to practice mapping, we need to get rid of the existing data. Go to
the layers panel, which should be at the top-right of the window. Now click on
Downloaded GPX data and click the wastebin button to delete the whole layer.
Do the same for Data Layer 1. You may get prompted to save or upload your
changes if you've altered any of the data you downloaded; click Discard and
Delete if you have.

Loading images into JOSM
Now we're going to import the images in our example. In the Layers panel, click
on compton.gpx to select it, then right-click to bring up the actions menu for this
trace. You'll see lots of options for customizing the layer. We're interested in Import
images, so click on that and an open files dialog should appear. Find the images
you extracted earlier, select them all, and click on Open. You should see thumbnails
of each of the images appear at various locations around the trace, and a new layer
called Geotagged Images.

What JOSM has done is to compare the timestamp on each photo with the
timestamps in the GPS trace. It has then placed the photo on the map at the
closest point to the time the photo was taken. Click on any thumbnail and JOSM's
built-in photo viewer pops up. You can resize the viewer to fit the shape and size of
any photo, and some of our example pictures might need you to do that. Click the
magnifying glass button to show the full size of the photo. You can also navigate
between the photos you've loaded using the left and right arrow buttons, and have
the map view center on the current photo's location.

•

•

OpenStreetMap’s Editing Applications

[88]

Editing data in JOSM
To draw an object in JOSM, click on the Draw Nodes button in the drawing toolbar,
or press A. Now click on the map pane, and a node should appear. Click again
somewhere else, and another node will appear, joined by the first segment of a way.
Carry on like this, and you can draw a whole way of as many segments as you need.
Double-click to end the way, or place a single node by double-clicking.

Let's try this by going to the topmost point of the trace, which should show a named
waypoint called Postbox1 and two images. The images may appear directly on top
of each other. Zoom in until the scale below the zoom slider is at around 20 m. You
should see something like the following screenshot:

You'll see there are two lines in the trace. This is because the survey started and
ended at this point, so one line represents the return journey. Having two lines
means you can see the effects of the errors in your recorded position. You should
also see a series of circles spread out along each line. These show the dilution of
precision (DOP) of the points in the trace, giving a general indication of the possible
error in position. Not all GPS receivers record the DOP, so these circles may not

Chapter 5

[89]

show up on your own traces. We're going to turn them off. Choose Preferences from
the Edit menu, and the preferences dialog should appear. The Display Settings page
should already be selected, with the GPS Points tab visible. On this page, you should
find the option Draw a circle for HDOP value, which you should untick. Click OK
to close the preferences dialog.

By default, JOSM uses separate select and draw modes, with an additional area tool.
You can enter select mode by clicking on the top button in the left-hand toolbar, or
by pressing S. In select mode, you can move around individual nodes or entire ways,
or drag a rectangle around an area to select everything in that area.

The Selection list panel shows every object you've selected. If the feature has a name,
that will be shown. If not, an icon for its type and a general description will be given.
The properties panel will show the tags applied to the selected feature or features. In
JOSM, you can change the tags on multiple features at the same time.

To draw features, enter draw mode by clicking on the second button in the left-hand
toolbar, or by pressing A. Click on an empty bit of map to start drawing, and click
again on the last node you drew to stop drawing. You can also stop drawing by
clicking on an existing node (including one in the way you're drawing). When you
stop drawing, JOSM stays in draw mode, but any further clicking on the map will
create a new object. You can stop drawing by pressing Escape, leaving any drawing
you've already done intact.

To start a new way at an existing node, select it, then enter draw mode. However,
if the node you choose is at the end of an existing way, JOSM will extend this way
rather than create a new one. To force JOSM to create a new way, select the node,
then hold down Alt while drawing the first new node. To add a new node to an
existing way, make sure you have nothing selected by pressing U on your keyboard.
Now, enter draw mode, hover over the way you want to add a node to, and JOSM
will highlight it. Click on the way, and a new node will appear, and then you can
continue drawing normally.

JOSM has a feature aimed at speeding up mapping, called Virtual Nodes. These are
enabled by default, and appear when you're in select mode as + symbols halfway
along each way segment. If you click on a virtual node, it becomes a real node and
you can drag it into position, and the new node is added to the way. This can make
mapping a long, winding stretch of road much faster.

You can delete any feature by selecting it and pressing Delete, or by using the
deletion tool to click on the feature you want to delete. If you delete a way, JOSM
will also delete any nodes used by that way, provided they're not used by any
other way or relation.

OpenStreetMap’s Editing Applications

[90]

Using presets in JOSM
To add tags to a feature, you can either click the Add button in the properties
panel, or use the Presets menu in the main menu bar. If you use the add button,
a dialog appears, where you can type in the key and value by hand, or select them
from drop-down lists based on the current data. If you type keys or values into the
text boxes, JOSM will fill in the first matching value from the drop-down list. Press
Return if this matches the text you want.

JOSM's presets are more sophisticated than Potlatch's, and for most presets will
prompt you for extra information using a customized form. None of the extra
information is compulsory, so if you don't have it or aren't sure what the form
is asking for, it doesn't matter. Many preset forms will also include a link to the
documentation on the OpenStreetMap wiki for the current tag.

JOSM also shows any presets that apply to the currently selected object at the top
of the properties pane, even if you didn't use a preset to set the tags on the feature
in the first place. You can click on any preset description here to show the form
associated with it. In the following screenshot, you can see the presets associated
with the tags amenity=place_of_worship and tourism=attraction, as applied
to the Watts Cemetery Chapel. The preset form for a Place of Worship is also shown.

Chapter 5

[91]

Adding your account information to JOSM
Before you can upload data to OpenStreetMap using JOSM, you need to enter
your account details. There are two ways for JOSM to authenticate itself to the
OpenStreetMap server:

Username and password authentication. This uses the same username and
password that you use to log into openstreetmap.org and is simple to set up,
but transmits your details across the Internet in plain text, which could be a
security risk in some situations.
OAuth is more secure, but needs you to grant JOSM access to your account at
openstreetmap.org before you can edit.

For either method of authentication, you need to open JOSM's preferences by
choosing Preferences from the Edit menu, or pressing F12. When the preferences
dialog appears, choose the Connection Settings panel—the second tab in the list:

Let's use OAuth to authenticate with the server, and we're also going to use a
method that doesn't involve sending our password over the Internet in plain text.
We need to grant access to JOSM to do this by carrying out the following steps:

1.	 Make sure you're logged into openstreetmap.org in your browser.
2.	 In the Authentication tab, click on Use OAuth.
3.	 Click Authorise now. The OAuth dialog box should now appear.
4.	 In the top drop-down list labeled Please select an authorization procedure,

choose Semi-automatic.

•

•

OpenStreetMap’s Editing Applications

[92]

5.	 The layout of the box will change; click Retrieve Request Token. JOSM
will now open openstreetmap.org in your browser, showing a page titled
Authorize access to your account, as seen in the following image:

6.	 Leave all the permissions listed on this page ticked, and click Save changes.
7.	 Now switch back to JOSM and click Retrieve Access Token.
8.	 Once JOSM has the token, click Test Access Token to make sure it's working.
9.	 Assuming all is well, click Accept Access Token.

JOSM can now upload data to OpenStreetMap using your account. You can revoke
this access at any time from your account page on openstreetmap.org, but it's
unlikely you'll ever need to do so.

Extending JOSM with plugins
You can add extra functions to JOSM by using one of the many plugins available.
These add features, such as making it easier to draw complex shapes, and tagging
checkers and connections to other OpenStreetMap tools. You can add plugins
through the Plugins panel in the Preferences dialog. Each plugin has a short
description and a link to further information on the OpenStreetMap wiki.

Learning more about JOSM
JOSM has a built-in help viewer, but this just pulls pages from the JOSM wiki at
http://josm.openstreetmap.de/wiki, so you can't use this if you're offline.
You can view this documentation in your normal web browser if you like.

Chapter 5

[93]

Apart from the documentation at JOSM's own wiki, there's information in the main
OpenStreetMap wiki at http://wiki.openstreetmap.org/wiki/JOSM. You're more
likely to find contributions from JOSM users in the latter location.

Merkaartor
Merkaartor is another desktop editing application, this one written in C++ and
available for Windows, several versions of Linux, and a pre-release version for Mac
OS X. It's a native application, which means you need to install it before you can use
it, but it can be used for offline mapping.

Merkaartor is much closer in appearance and use to a traditional GIS system than
the other OpenStreetMap editors. It has a high-quality rendering, multiple layers,
sophisticated management of map changes, and drawing tools. However, it's not
extensible in the same way as JOSM, and some features such as audio mapping
aren't included. Along with editing data, you can use Merkaartor to render maps,
including customizing the style.

You can download the latest version of Merkaartor from http://merkaartor.
be/, where you'll also find installation instructions for your platform. The other
documentation for Merkaartor is kept in the OpenStreetMap wiki at http://wiki.
openstreetmap.org/wiki/Merkaartor, and there are links to the relevant pages
on the Merkaartor website.

After following the instructions for downloading and installing Merkaartor for your
platform, you can launch the application, through the Start menu on Windows, or
the Applications menu in Ubuntu Linux. For other Linux distributions, you may
have to use the command line. The user interface is straightforward, and has some
similarities with JOSM. There's a toolbar across the top of the Window, information
panels, called Docks in Merkaartor, down the right-hand side, and a status bar at
the bottom.

Let's get some data into the user interface, so choose Open from the File menu, or
press Ctrl+O, to bring up the open files dialog. Select our example trace and click
Open. You'll see the trace appear in the map area against a shaded background. As
with JOSM, this indicates the extent of the downloaded data which, as we haven't
downloaded any yet, means the whole map. Let's do that now. Click the Download
button on the toolbar, and the download dialog will appear.

Merkaartor's download dialog contains many of JOSM's features, but in a single
view. There are bookmarked locations, the ability to enter an openstreetmap.org
URL, and a slippy map view to choose the area to download.

OpenStreetMap’s Editing Applications

[94]

To bookmark your current view in Merkaartor, select the
View menu, then the Bookmarks sub-menu, and click on
Add. Type in a new name for the bookmark, or overwrite an
existing one by choosing its name.

By default, the current map view is selected, so click OK to download it. After you
have done so, you should see something like the following screenshot:

Chapter 5

[95]

The map area shows the current data in a style similar to the main Mapnik rendering
on openstreetmap.org, although there may be slight differences. Merkaartor can
show data using a number of styles, and you can edit the styles or create your
own. Points of interest are shown using specific icons where possible, or using an
information icon for other point features. You move the map around by dragging it
with the right mouse button or using the arrow keys, and zoom using the +/- keys
or the mouse wheel.

Across the top of the window is the toolbar where some standard buttons and
Merkaartor's drawing tools are found. Unlike the other two editors, Merkaartor
uses different tools to draw point features, roads and other linear features, and
area features. The Node tool only draws single, unconnected nodes. The Road tool,
despite its name, is used to draw any linear feature mapped with a way. The area
feature draws a closed way to represent an area feature. You stop drawing in any
tool by pressing Escape.

Down the sides of the map area, you'll see the Docks, as they're known in
Merkaartor. These panels provide information and allow you to edit the map. Each
of the docks can be moved to any location at either side of the window, stacked on
top of each other, or floated from the main window.

Merkaartor manages the data you download, create, and upload very carefully using
separate layers. The data you download is always kept in its own layer and never
modified. Instead, your edits are kept in the Dirty layer until you upload them, then
they're moved into the uploaded layer. You can ignore all this while you're editing,
but if you need to see just your changes, this system allows you to do it.

We want to do our mapping from scratch, so we need to discard the downloaded
data. In the Layers panel, you should see a layer for our download, with a name
matching the time and date it was downloaded. Right-click on this and choose Close.

Loading images in Merkaartor
Merkaartor includes support for photo mapping. To use this, we first have to show
the Geo Images dock, by choosing it from the Docks submenu of the Window menu.
Now bring up the Open dialog.

You need to load images in Merkaartor before making any
changes to the map. If you try to bring up the Open files
dialog while you have unsaved or uploaded changes, you'll
get a message asking if you want to discard your changes.

OpenStreetMap’s Editing Applications

[96]

Now, select all of our example images, and click Open. You'll be prompted to select
the layer with which you want to associate the images. You should choose the layer
titled compton.gpx – Track 1, and you'll get another prompt warning you that the
layer is read-only, and asking if you want to make it writeable. Click Yes. Yet another
dialog will appear, asking you to specify the time offset between the GPS trace and
the photos. For our photos this is zero, so just click on OK. You may also get another
prompt warning you that a large time difference between the timestamp on a photo
and the GPS trace exists. This warns you that the positioning of a photo may not
be accurate, but in our case it's not a problem, so just click Yes to All. Merkaartor
should now import all the photos.

Merkaartor shows the location of each photo by drawing a rectangle around the
trackpoint matching its timestamp. Click on this rectangle to show the photo in the
Geo Images dock. If you have space on your desktop, floating the Geo Images dock
and enlarging it will allow you to see more detail in each photo.

Editing data in Merkaartor
As we've seen, Merkaartor differs from the other two editors we've looked at, in
that it uses different tools to draw different types of features. It also has separate
select and move tools, which can prevent you from accidentally moving features.
However, you can disable this behavior if you like and have a single tool for both
functions. Choose Preferences from the Tools menu, select the Visual tab when
the Preferences dialog appears, and untick Separate Move mode.

To select a feature in Merkaartor, hover over it and a blue highlight should appear.
For nodes, this will be two circles around it, for a way, the center line of the way,
and for an area, its outline. Click on the feature, and it will get a thick outline. If you
select a node, all the ways it's a part of will also be highlighted using a dotted line.

Chapter 5

[97]

Merkaartor shows the tags applied to a feature in its Properties dock, as well as the
object ID, latitude and longitude for nodes, and any presets that apply, as shown in
the following screenshot:

In the preceding screenshot, we have the properties for The Harrow Inn—one of
Compton's pubs. Merkaartor allows you to edit the coordinates of any point directly,
although this isn't normally necessary.

Merkaartor's preset system is built into the properties dock. It's less sophisticated
than the presets in the other two editors, and has far fewer options available. The
major types of features such as roads, settlements, and amenities are present, but
little else. Fortunately, the text boxes for entering tags manually have a drop-down
list based on the current dataset, so you can still use common tags without always
having to type them out in full.

Relations are shown in Merkaartor using a dotted rectangle around all of the
relation's members. These can extend outside the area you've downloaded, but you
can also get Merkaartor to download all relation members by ticking the Resolve all
relations box in the download dialog. To select a relation, click on its outline, and its
members and tags will appear in the properties dock.

OpenStreetMap’s Editing Applications

[98]

Uploading edits to OpenStreetMap
To upload your edits, you need to add your account details to Merkaartor's
preferences, by carrying out the following steps:

1.	 Open the Preferences dialog in the Tools menu.
2.	 Switch to the Data tab.
3.	 Enter your username and password into the fields in the form, leaving the

Website field set to www.openstreetmap.org.
4.	 Click OK.

You're now able to upload the edits you've made.

Learning more about Merkaartor
Merkaartor's documentation is held in the OpenStreetMap wiki, and there's a
dedicated Merkaartor mailing list at merkaartor@openstreetmap.org.

Summary
You should now be familiar with the basic operation of OpenStreetMap's three most
popular editors:

Potlatch
JOSM
Merkaartor

and hopefully have an idea which will suit you best.

You should know how to:

 Download and run each one
 Load in a GPS trace and load images where appropriate
 Operate the basic drawing tools in each one

Next, we'll look at some specific mapping techniques that apply to all editors.

•

•

•

•

•

•

Mapping and Editing
Techniques

Although there are differences between the various OpenStreetMap editing
applications, the techniques used to represent physical features using the data
structures we covered in Chapter 4 apply to all of them. In this chapter, we're going
to look at how drawing nodes, ways, and relations, then tagging them, turns them
from simple data structures into representations of geographic features. We're going
to cover:

Drawing ways using GPS traces for guidance
Adding points of interest
Modifying existing features
Drawing complex features
Using editor presets to make tagging common features easier
Manually tagging less common features
Finding undocumented tags already in use in OpenStreetMap

By the time we've finished, you should be comfortable using any editor for
OpenStreetMap to add data to the map, tagging it in accordance with current
community practices, and uploading it to the server. We'll work through our
example trace and the accompanying photos in the same way a mapper would
after a survey.

•

•

•

•

•

•

•

Mapping and Editing Techniques

[100]

Drawing and tagging features
We're going to draw the roads and paths in our example first, then add the point
features after that. Between the GPS trace, the named waypoints, and the photos,
we have enough information to start mapping. Normally, you should download any
existing data from OpenStreetMap and add your mapping to that, but we're going
to assume that this area has no previous mapping at all.

We're going to start by drawing the roads on the map. You can use any of the editors
to practice, but please remember not to upload your data to the server, or you will
duplicate existing data. Choose whichever editor you like the look of, or even repeat
this exercise with each editor to get a feel for them.

Whichever editor you're using, make sure you have our example trace loaded,
and for JOSM and Merkaartor, load the images. You can still use the images as
a reference if you're using Potlatch, but if you were doing this in a real survey,
you'd have to take a note of which photos were taken where.

We'll start where the survey itself starts and ends, at the northernmost point of the
trace, by a named waypoint called Postbox1. The trace leads southwards from here,
and reflects the shape of the road. You can see two lines in the trace; this is because
we returned to the starting point after surveying the rest of the village. This isn't a
requirement of any survey, but it helps to get more than one trace of each road over
time to increase the accuracy of the map.

Click between the two lines at their northern end, and then keep adding new points,
following the lines. How often you place a node is a matter of judgment. You need
to reflect the general shape of the GPS trace without using too many nodes. Nodes
should be at least 5 meters apart unless you're mapping a very tight corner, or
there are other features on the road that need mapping. I've used 18 nodes for this
section. Once you get to the end of this road, where the trace turns sharply south,
place a node at the corner, then stop drawing by clicking the node again in Potlatch
and JOSM, and by pressing Escape in Merkaartor. In Potlatch, the result should look
something like the following:

Chapter 6

[101]

Now we have an untagged way, which shows us physical location and nothing else.
At this stage, we could turn this way into a road, a footpath, a river, or any other
linear feature. We're actually going to make it an unclassified road. What constitutes
an unclassified road varies from country to country, but in the UK this is generally
any through road without a higher classification, which is the case for this road. The
road's name is Down Lane, which can be seen in the image 121120009090.jpg. All
three editors have unclassified roads in their presets, so let's use that:

In Potlatch, make sure you have the car icon shown in the presets, then
choose unclassified road from the drop-down list. Enter the name in the
blank name tag Potlatch has added.
In JOSM, go to the Presets menu and choose Highways | Streets |
Unclassified. Enter the street name in the dialog box for the preset.
In Merkaartor, choose Unclassified road from the Highway type drop-down
in the Properties pane, and enter the name in the Name field.

•

•

•

Mapping and Editing Techniques

[102]

You should see the rendering of the road change as you add the tag. Even in JOSM's
wireframe mode, untagged ways are drawn in a different color than tagged ones.

That's it; you've created a road. If you uploaded this data to OpenStreetMap
(although you shouldn't because you'd be duplicating existing data), your new way
would be assigned an ID, added to the database, and rendered on the two main
rendering on openstreetmap.org after a short delay. It would also appear in any
of the downloads of the area's data from the OpenStreetMap API.

How often should I upload edits?
How often you should upload your work is a matter of judgment, but
there are some things to bear in mind. You should upload often enough
that you don't risk losing your work, but not so often that it's impossible
to trace groups of related edits. If you're working on an unreliable
machine or connection, upload more often. If you're editing the same area
as other users, your edits could conflict with theirs, and uploading often
will help prevent this.

The next feature to draw is the main road that runs through the village. In JOSM and
Merkaartor, you can look at the photo that's just to the south of the turn. This shows
the name of the road as The Street.

We need to draw the road starting at the last node we drew of the last road, but we
also need to make sure that we have a separate feature for it. To draw a new line
from an existing node, do the following:

In Potlatch, select the way we drew previously, then shift-click on the last
node to create a new way. Now draw as normal.
In JOSM, select the last node, then hold down Alt and place the first node
of the new way. Now release Alt and carry on drawing.
In Merkaartor, choose the Road tool, then hover over the end node of the
previous way. A circle should appear around the node. Click on the node
and draw as normal.

The trace has two lines for this road along two thirds of its length, and then they
diverge. Follow the northernmost of the lines, which ends near a waypoint named
Postbox3. You can save yourself some time by placing nodes where there are
side-roads, so you can start drawing from them later.

•

•

•

Chapter 6

[103]

Once you've drawn the way, we need to tag it. Let's use the presets again, but this
time choose Secondary road. Add the name The Street. In Potlatch and JOSM, we
now have an extra tag suggested in addition to the name—ref=*. Secondary roads
are expected to have a reference associated with them, and in the case of this road, it
is B3000. You'll find this reference on signs along the route, and again precise use of
the ref=* tag on roads varies from country to country. In Merkaartor, you'll have to
enter the ref=* tag by hand.

Now let's draw the side roads. The first of these heads westwards from The Street,
around 200 meters south of the junction with Down Lane. The image by the junction
shows its name as Eastbury Lane. It also has houses along its length, so we'll tag it as
a residential road. This is in the presets for all our editors, so draw the road, tag it as
residential, and name it.

However, there's a detail we've missed. Towards the end of the trace, you can see a
named waypoint called track. At this point, the road turns into an unsurfaced track
and continues for a short distance before coming to an end. We need to tag this
section of the road differently, but fortunately that's not a problem. We just need to
split the way into two at that point, and change the tags on the end section. To split
the way, make sure you have a node in your way where the waypoint is, and use the
editor's split action, as follows:

In Potlatch, click on the way to select it. If you don't already have a node
at the point we want to split at, shift-click to add one. Click on the node at
the split point, which should then be highlighted, and click on the scissors
button to split the way.
In JOSM, select the node at the split point and choose Split Way from the
Tools menu.
In Merkaartor, select the node at the split point, then choose Split from the
Road menu.

Now, re-tag the new way at the end as a track. Its rendering should change as a
result. In Merkaartor, the result should look something like the following:

•

•

•

Mapping and Editing Techniques

[104]

Let's move on to our next side road, this time on the east of the main road, starting
near a named waypoint called Shop1. This is just a lane leading down to the car park
of the village church (we'll map the church after we've finished the roads). Lanes like
this are usually tagged as highway=service, denoting a road used just to access a
particular property. Despite the traces for this side road wavering slightly, the lane
is perfectly straight, so draw it using a single section of way. Occasionally, you'll
encounter parts of a GPS trace, where your own memory or some record you've
made is a better guide of how to map a feature. Tag the way as a service road,
either using presets or manually.

Drawing area features
Now let's draw the car park at the end of the lane. You can see a rough shape drawn
by the trace, but the parking itself is rectangular. Even if the shape of the parking
area was slightly irregular, it's best to map it as a regular polygon at first, particularly
if it's a small area like this one. Again, this can be refined later on by yourself or
another mapper. To draw an area for the parking:

In Potlatch, select the node at the end of our service road, shift-click on it
to start a new way, and draw the rectangle by hand, ending on the same
node you started with. Potlatch stops drawing when you close an area in
this way. You'll have to adjust the shape of the area by hand.
In JOSM, select the node at the end of the service road. Then select the way
tool, and draw a single line at a right-angle to it, holding down Alt to start
a new way. Now select the area tool, which has a set square icon. Click
and drag the line you've just drawn with this tool, and JOSM will draw
a rectangle for you.
In Merkaartor, choose Rectangle from the Create menu, and draw a shape
of roughly the right size, in roughly the right place. You're forced to draw
the rectangle aligned with the grid, but once you've finished drawing, you
can select the rectangle, then use Merkaartor's rotate tool to rotate and size it
until it fits our car park. Move the rectangle so its bottom node overlaps the
end node of the service road. Select them both and choose Merge from the
Node menu.

Let's tag the area manually, using the tag amenity=parking. This just involves
typing the key and value into the text fields in the editor.

•

•

•

Chapter 6

[105]

Drawing ways with loops
Our next road to map is around 300 meters further along the main road on
the northern side. You should be able to see a loop at the end, and a photo of its
name sign at its junction with The Street. The road is a residential street that loops
around onto itself to form a small square. Although we could draw this arrangement
as a square and a separate section of road, it's better if you use a single way to
represent a road where possible. The simplest way of doing this is to start at the
junction of the main road, draw the first section of road, then half of the bottom
section of the square, the other three sides then finish back on the node halfway
along the bottom side. You should end up with something like the shape shown
in the following image.

This shows the street using JOSM's wireframe mode, with its segment order number
feature enabled. You don't normally need this feature enabled (and no other editor
has an equivalent feature), but it's sometimes useful in deciphering the structure of
complex ways. You can enable it in the OSM Data tab of the Display preferences.

Tag the way as highway=residential and name=Fowlers Croft, taking the name
from the photo.

Mapping and Editing Techniques

[106]

Mapping residential streets and complex
streets
Next, we're going to map a small but relatively complex set of residential streets.
These start at the next junction eastwards from Fowlers Croft. The image at this
junction (12112009101.jpg) tells us that this particular street is named Spiceall, and
also that there's a telephone box near the junction. We'll map the telephone box later.
Spiceall extends all the way along the trace from the junction to the waypoint named
Path1. Draw a way to represent this. There's also a side street two-thirds of the way
along the first section of the street. However, there are no name signs at the entrance
of this road. A quick inspection of the house numbers tells us that this side street
is part of Spiceall, so we now have a new situation to deal with. We could map the
two parts of the street separately, adding a name=* tag to each. This would produce
a reasonable looking map, but would also result in there being two features in the
OpenStreetMap database called Spiceall, whereas there's only one street with that
name; it just happens to be non-linear. To show how the two parts of the street are
connected, we're going to use a relation.

Draw a way for the side street, which ends where another part of the trace almost
joins from the north. You should be able to do this with just a single segment. Now
we need to create a relation and add the two ways to it, as follows:

In Potlatch, select one of the ways, and click on the relation button (a chain
icon) at the bottom right of the editor. At the prompt, choose Create a new
relation and click OK. The relation editor should appear.
In JOSM, make sure you have the relations panel showing, clicking its button
in the left-hand toolbar if necessary. Now select both ways, and click the
Create relation button at the bottom of the relations panel. JOSM's relation
editor should appear.
In Merkaartor, select both ways, then open the Create menu and choose
Relation. The Properties panel will change to show the new relation.

Now that the relation is created, we should tag it. The first tag we need to add is a
type=* tag to identify what this relation represents. In this case, it's a collected street,
which is identified using a type=collection tag. Add the highway=residential
and name=Spiceall tags to the relation, which you'll have to do manually, as there's
no preset support for relations.

•

•

•

Chapter 6

[107]

Renderer support for relations
There's a varying level of support for relations in the two main
renderers used on openstreetmap.org, and not all relation types
will show up. At the time of writing, the preceding example would
fail to render, as the renderers hadn't been patched to support the
collection type. In these circumstances, the individual ways are
tagged with highway=residential to make them render, but
this is a short-term hack.

Leading off Spiceall is another complex street. From the image at its northernmost
end (121120009103.jpg), we can see its name is Almsgate. It extends from Spiceall
directly south to the junction with another road, yet to be mapped, and has its own
side-street. Map and tag Almsgate in the same way as Spiceall. By the time you've
finished, you should have a set of streets shaped like the following, as seen in JOSM:

There are still some sections of trace in this area we haven't mapped yet that
represent footpaths. These connect the end of Spiceall's spur with Almsgate and the
other branch of the street. The former of these is just a straight line between the end
of the spur and Almsgate, which we'll map using existing nodes, as follows:

In Potlatch, select the end node of Spiceall by clicking on the way, then
shift-click on the end node, and Potlatch should start drawing a new way.
Now move across to Almsgate and hover over that way. Potlatch will show
its nodes. Click on the one close to the end of the trace, then click again
to stop drawing.

•

Mapping and Editing Techniques

[108]

In JOSM, select the end node of Spiceall, then press A to start drawing, then
hold down Alt while clicking on a node in Almsgate. Click on the node again
to stop drawing.
In Merkaartor, choose the Road tool, then click on the end node of Spiceall.
Now click on a node in Almsgate, and press Escape to stop drawing.

You now have a new way which you should tag as highway=footway, which is in the
presets in all three editors. There's another path to map leading north from the end of
the Spiceall spur. The trace for this path looks quite messy, and in real life it makes a
few 90-degree turns between the two roads. Draw the best fit you can, remembering
that you can always do another survey at a later time to increase the accuracy of the
map. Adding the path using a representative shape still lets people know there's a
path there they can use. Use the same technique as with the previous path.

You could draw these footpaths without reusing the existing nodes,
and the rendered map would look very similar. However, routing
applications wouldn't know that the footpaths were connected to
the roads, and wouldn't be able to calculate a route using our new
footpaths. It's important that you connect any paths and roads using
shared nodes where you can travel between them, otherwise, routing
algorithms won't work.

Our next road leads off The Street and heads northeastwards past our residential road
and comes to an end some distance from the village. The photo (121120009108.jpg)
tells us it's named Polsted Lane. There are a few houses on this road, but much of its
length is bordered by woods or fields. We could classify it either as a residential road
or an unclassified road, but we'll choose highway=unclassified.

Barriers and gates
Once you've drawn the road, join the ends of Spiceall and Almsgate to the road using
footpaths. Although we don't have a trace between the end of the Almsgate spur
and Polsted Lane, we have a photo (12112009104.jpg) showing the short section of
path. It also shows a barrier on the path. All barriers in OpenStreetMap use the tag
barrier=*, but not all barrier types are included in the editor presets. Even if there
is a preset, it can be unclear which preset refers to which kind of barrier.

For any feature you can't find a preset for or are unsure which to use, you can look
the feature up in the OpenStreetMap wiki. The fastest way of finding information on
a tag is to search for the key. In most cases, this will lead directly to the right page,
and in our case it does. Enter barrier into the search box in the left-hand sidebar, and
you'll be sent to the page for barrier=*. A table on this page lists most of the types
of barriers that have been mapped and documented by other mappers.

•

•

Chapter 6

[109]

We can see from the photos on the page that this kind of barrier is tagged as
barrier=cycle_barrier, which is in the presets for Potlatch and JOSM, or you
can just tag it manually. Place a node halfway along the path and tag it to represent
the barrier.

We need to complete the roads in the village. There's one between The Street
and Polsted Lane, which the photo at its southern end (12112009110.jpg) shows,
called Withies Lane. Again, the ends need to share nodes with the two roads we've
already mapped, so reuse nodes if they're in the right place, or add new ones to the
existing ways.

Next, there's another road leading south from The Street, just to the west of the end
of Withies Lane. The name is given in photo 121120009115.jpg as The Avenue.
This road actually extends past where our survey ends, which will be a regular
occurrence in real surveys, as you'll have limited time and will have to limit the area
you survey. It's perfectly OK to leave a road unfinished in this way, as either you
or another mapper can complete it at a later stage. If you want to let other mappers
in the area know that this road needs finishing, you can add the information in
a note=* tag.

Mapping and Editing Techniques

[110]

The last section we have to map is a footpath leading from The Avenue back to
The Street. This starts at the waypoint named Footpath, and cuts across to meet
The Street between Spiceall and Fowlers Croft. Although the path is fairly straight,
there are a few bumps in it, and it's a matter of judgment how closely you follow
these bumps in your mapping. Even with a good trace like this, with a low dilution
of precision, you can't be sure it's a perfect representation of the path's course.
Using a rough approximation to the path won't get people lost, provided you're
never more than a few meters out of the true position. Draw the path and tag it as
highway=footway.

Points of interest
Now that we've added all the roads, we'll add the rest of the features we surveyed.
Again, we'll use the editors' built-in presets, but we'll also need to use some other
resources to get the right tags for some of the features.

We'll map the features in the order they were encountered during the survey, so
we'll go back to the start of our trace. Our survey starts outside the Watts Gallery
Estate, which we can see from our photo of the sign at its entrance (12112009087.
jpg) has an art gallery and a cafe. For now, it's enough to record these features
using a single node each, roughly in the right place. This will be accurate enough
for people to find the gallery using OpenStreetMap. The extent of the estate and
its precise positioning can be drawn later from a separate survey, thanks to the
wiki-like nature of the OpenStreetMap API.

The estate is to the north-east of our starting point, so place a single node around
30m away for the gallery, and another next to it for the cafe. We could add the tags
for both features to a single node, but this would make rendering images for both
features difficult. Tag one node as the gallery by selecting it, then using a preset:

In Potlatch, click the preset group icon until you get the camera, for tourism
presets. Choose attraction from the drop-down menu.
In JOSM, choose Travel | Tourism | Attraction from the Presets menu.
In Merkaartor, tag by hand as tourism=attraction, as it doesn't have
tourist attractions as a preset.

Tag the other node as amenity=cafe, which appears in the presets for all editors, or
by hand if you like.

•

•

•

Chapter 6

[111]

Just outside the gallery is a postbox. Its location is marked with a named waypoint,
so place a node in that location and a tag as amenity=postbox. The preset in JOSM
suggests you add an extra operator=* tag, while the preset in Potlatch suggests you
add a ref=* tag. Merkaartor doesn't suggest any extra tags, so what's correct? They
both are, as it turns out. The wiki page for the amenity=postbox tag suggests that
both these tags as useful information, and further suggests recording the collection
times in OpenStreetMap.

If you look at the photo of the information on the postbox itself (121120009086.jpg),
it tells you the collection times and a reference number—GU3 78. While the reference
number may not mean much to a person using the postbox itself, it's a unique
identifier for that box, and may prove useful for some applications at some point,
so we'll add it to the database. The ref=* tag is used for this, so tag the postbox
as ref=GU3 78.

Record as much information as possible
Information like this, which may not seem immediately useful, can be
added to OpenStreetMap without causing any harm. If it has a practical
application, then it's already present and you won't have to re-survey an
area just to gather the extra tags. OpenStreetMap data has been used to
create specialist maps that make use of information in unpredicted ways,
so any verifiable details of a feature should be recorded.
If it turns out that it's not useful information, the only effect is that it will
take up some extra disk space.

Our next point of interest is just down the road, located using a photo,
12112009089.jpg. There's no waypoint to show its location, but thanks to being
able to place photos using their timestamp, we still know where the feature is.
The Watts Cemetery Chapel is just to the east of the road. We haven't surveyed
the whole cemetery grounds, so just add a node to the east of the road and use the
presets to tag it as a place of worship, setting religion to christian. Also tag it as
tourism=attraction, as people visit the chapel because of its association with
the artist, Mary Watts.

Moving onto The Street, there's a waypoint named Shop1, but no other information
accompanying it. What happened here is that a photo meant to show us what the
shop was named and what it sold hasn't worked, for whatever reason. Problems like
this can occur during surveys, and unless you double-check everything, which often
isn't practical, you'll miss a few details. If you have no other information and can't
remember what the feature was, all you can do in these circumstances is try to find
a generic tag for the feature you're trying to map, or resurvey at some later date.

Mapping and Editing Techniques

[112]

There's another post box just by this waypoint, shown in the photo 121120009094.
jpg, which you can map in the same way as the first one that we encountered. There
are another two postboxes in the village, both marked with both waypoints and
photos. You can skip ahead and map these now, or work through the features in
order. It's up to you in which order you map features.

Across the road, there are a couple of photos to mark more features. The
first, in photo 121120009095.jpg, is a memorial. The tag for a memorial is
historic=memorial, but this is in the presets in JOSM, but not Potlatch or
Merkaartor. Place a node and tag it with historic=memorial.

Mapping overlapping features
Alongside the photo of the memorial is another one (12112009096.jpg) of the sign
at the entrance to our next feature—the village church. The name, seen in the photo,
is St Nicholas Church. The trace leads south-west from the photo and then completes
a couple of loops. The inner loop represents the footpaths around the church, and
the outer loop the perimeter of the church yard. The church itself is at the center of
the site. You should map the footpaths using two ways, which connect at each end,
tagged as highway=footway. One of the ways should extend all the way to the
main road, past the memorial, so pedestrian routing applications can get people
to the church.

We can also add the church itself as a node at the center of the loops. All three editors
support places of worship in their presets.

In Potlatch, select the bank of presets represented by a lighthouse icon, then
choose church from the drop-down list.
In JOSM, choose Presets | Man Made | Buildings | Place of Worship.
Choose Christian from the Religion drop-down.
In Merkaartor, choose Place of Worship from the preset drop-down, then
choose Christian from the Religion drop-down.

For JOSM and Merkaartor you can set the denomination (in this case Anglican)
using the presets, but in Potlatch you'll need to fill in the field by hand. Add the
name exactly as seen in the photo.

Next, we need to map the church yard. This is done using an area, in a similar
manner to the nearby car park we mapped earlier. However, the situation is slightly
more complicated, because we have to map the church yard around the existing
church and footpaths.

•

•

•

Chapter 6

[113]

Draw a closed way around the outer loop of the trace, but be careful not to let it join
any of our existing ways. In particular, avoid joining the way to the footpath you've
already drawn.

Normally, areas are mapped independently of any features within them. The
exception to this is where a highway of some type passes through a barrier around
the perimeter of an area. While there is a wall around the churchyard, we're not
going to map this, as we're not covering buildings and other structures in our
simple survey.

Once the way is complete, tag it as amenity=grave_yard. There's a preset for
this in JOSM under Geography | Land Use, despite not using the landuse=* key.
The other editors don't have a preset for this. There is also another separate tag
landuse=cemetery, which is used for burial places that aren't associated with a
particular place of worship. Again, you could read the documentation in the wiki
for these tags to find out which is most appropriate for the area you're mapping.

Once you've finished drawing the church and yard, you should have something like
the following in JOSM's wireframe view:

Mapping and Editing Techniques

[114]

You can see the mapping hasn't followed the trace precisely. This is because the
trace doesn't accurately reflect the shape of the churchyard and paths, partly through
errors in the recorded positions, and partly because it wasn't possible to completely
follow the perimeter of the area. It's fine to generalize mapping like this as long
as you don't introduce glaring errors.

Other civic amenities
Further south along the road is a named waypoint Shop2, this time accompanied by
a photo, 121120009098.jpg. The photo shows the shop's name as Country Rustics,
and its telephone number is visible. The shop itself appears to sell antiques. Add a
node and tag it with the name, a shop=antiques tag and a telephone=* tag for the
number. Although the telephone number may change at some point, OpenStreetMap
can be updated if it does.

Our next point of interest is across the road, shown in photo 121120009097.jpg
as the McAlmont Reserve—a small nature reserve and public hall. We're going to
ignore the orchard part of the reserve in our survey, but mark the location of the
public building—Pucks Oak Barn—on the map. A search for "public building" in
the OpenStreetMap wiki leads to the tag amenity=public_building. Add a node
at the end of the short spur of trace by the photo, opposite the shop, and tag it
amenity=public_building, and a name=* tag.

A waypoint named Harrow with an accompanying photo (121120009099.jpg)
marks the location of one of the village's pubs—The Harrow. Map this as a node
to the south of the main road, and use the presets to tag it, as follows:

In Potlatch, click the preset icon until you get the camera, then choose pub
from the drop-down list.
In JOSM, choose Travel | Food + Drinks | Pub from the Presets menu.
In Merkaartor, choose Pub from the Amenity drop-down list in the
Properties panel.

Add the name, and it's just possible to see the pub's telephone number in the picture,
so tag that as well. There's another pub—the Withies Inn—located by the waypoint
named Withies.

•

•

•

Chapter 6

[115]

Just along the road from The Harrow is a waypoint named Village hall. Searching
the wiki for "village hall" produces the tag amenity=townhall, which despite the
name is intended for public halls in any size of settlement.

In the photo showing us the name for Spiceall, we could also see a phone box, so add
this as a node at the corner of Spiceall and The Street, on the western side of Spiceall.
Tag it as a phone box, as follows:

In Potlatch, select the Postbox icon in the presets, then choose phone box
from the drop-down list.
In JOSM, choose Man Made | Amenities | Telephone from the
Presets menu.
In Merkaartor, choose Public Telephone from the Amenity drop-down.

Finding undocumented tags
Next, we come to Compton Village Club on Spiceall. This is a private members' club
where general public entry isn't permitted, so it's not a pub like the previous points
of interest we've mapped. None of our editors have a suitable preset, so we have
to look elsewhere to find out how to tag this feature.

The next place to look for information is the OpenStreetMap wiki. As facilities such
as pubs and clubs are normally tagged using the amenity=* key, we look at the wiki
page for that, namely, http://wiki.openstreetmap.org/wiki/Key:amenity. At
the time this book was written, there are entries on this page for pubs and nightclubs,
but this isn't a nightclub in the normal use of the word. A more general search of the
wiki for "social club" or "members club" doesn't produce any helpful results, so it
looks like no one has documented a tag for a social club.

This doesn't mean no one has used such a tag, just that no wiki page has been
written, so we need to use other tools to find out what other mappers have done.

In this case, we're going to use a third-party web-based tool called OSMdoc
(http://osmdoc.com/) that analyzes the tags in the OpenStreetMap database and
produces statistics showing what tags are used, how often, and on which primitives.

•

•

•

Mapping and Editing Techniques

[116]

Open the home page in your browser and you'll see a table of information,
as follows:

The table on the home page lists the keys used in OpenStreetMap, along with the
number of different values used for each key, and the number of times each one is
used on nodes, relations, ways, and changesets. You can sort the table by clicking
on any of the column headings. You can see the list of values used for any key by
clicking on that key in the table.

You can filter the list of keys by typing text into the search box, which updates the
table automatically. We need to find any possible tags to use for the club, so let's do
that now. Type amenity into the search box, and the amenity key will appear along
with several variations and misspellings. Click on amenity and wait for the table
of values for this key to appear. This is similar to the table of keys, but with fewer
columns. Again, you can sort the table by clicking on the headings.

Chapter 6

[117]

We can filter the list of values in the same way as the keys, so enter club in the
search box, and you'll get a list of values that match that string, as seen in the
following screenshot:

There are a few candidates we could use, but the most applicable appears to be
amenity=social_club, so place a node for the club at this tag. Add the club's
name in the name=* tag as well.

Contribute to the community by documenting tags
Normally, the first person to use a tag should write some brief
documentation for it, but as with so many computer-related activities, this
can be forgotten. If you find an undocumented tag like this one, you can
help the OpenStreetMap community by creating a short page in the wiki,
describing the tag.

Estimating area features
Just across the road from the club, in the corner formed by Spiceall and its spur, the
trace forms a rough area shape. The photo in the middle of the area (12112009107.
jpg) shows that this is a playground. The shape of the playground is rather irregular,
and our trace doesn't give a good idea of the true shape.

Mapping and Editing Techniques

[118]

When dealing with small area features like this, it's best to draw the shape of the
feature in a notebook, but this isn't always possible. In some areas, high-resolution
aerial imagery is available from Yahoo, which has said that tracing images is within
its terms and conditions, and in some places from other sources. If it is, you can use
this to map the shape of a feature.

Unfortunately, that's not the case for Compton, so draw a basic trapezoid shape for
the playground. Tag it as a playground using the editor presets, as follows:

In Potlatch, choose the football icon, then select playground from the
drop-down list.
In JOSM, choose Travel | Leisure | Playground from the Presets menu.
Merkaartor doesn't have a preset for a playground, so tag it manually as
leisure=playground.

The playground is surrounded by a fence, which we can map using a
barrier=fence tag. Add this to the way in addition to the existing tag. A gate is
located roughly half way along the eastern side of the playground, which we can
map by adding a node to the way and tagging it with barrier=gate.

From the photo of the playground, we can see that it's provided by Compton Parish
Council, and this information can be recorded using an operator=* tag. Again, this
information may not seem very useful at first, but record any factual information
like this that you come across.

One last area feature to map is the allotments in Compton. During the survey, it
wasn't possible to gain access to the site itself. It's private land and the gates are
locked, so we don't have a true representation of the size and shape of the site.

What we did record, however, is where the boundary of the site met the surrounding
roads, and this is what the two waypoints named Allotments1 and Allotments2
represent. From this, we can make a rough approximation of the site by drawing
straight lines from these points. You should end up with something like the following:

•

•

•

Chapter 6

[119]

Tag the area as allotments using presets in Potlatch and JOSM, as follows:

In Potlatch, choose the landuse icon, represented by three rectangles, then
choose allotments from the drop-down list.
In JOSM, choose Geography | Landuse | Allotments from the
Presets menu.
In Merkaartor, tag the area manually as landuse=allotments.

If you didn't map the remaining postboxes and pubs before, complete them now.

•

•

•

Mapping and Editing Techniques

[120]

Finished
Congratulations! You've completed your first bit of mapping. Normally at this
stage you would upload the mapping you've done to the OpenStreetMap server,
describing the mapping you've done in the changeset comment field. After
uploading the data, the two main renderings on openstreetmap.org should be
updated with the changes after a short delay, which may be as short as a few
minutes, but could be several hours if the load on OpenStreetMap's servers is high.

You can compare the mapping you've done with the real data for Compton to get
an idea of how your work compares to that of other mappers. If you do download
the live data for the area, you'll see more features than we've mapped here, including
land-use areas, bus stops, some private residences, and the continuation of the roads
that run through the village.

Summary
We've learned a lot in this chapter:

How to draw features based on GPS traces
How to tag them and how to find which tags to use:

Tagging presets in the editors
Documented tags in the wiki

How to find tags that mappers have used, but not documented

Although we've used the most popular editing applications, others do exist, but the
mapping techniques we've seen will apply to all OpenStreetMap editors to a large
extent. They're the techniques and tools you'll use in whichever editor you use—even
the ones that haven't been developed yet—and the methods won't change even if the
precise tags used for any type of feature change.

•

•

°

°

•

Checking OpenStreetMap
Data for Problems

You've surveyed, you've mapped and tagged, and you're nearly ready to use the
data you and other mappers have collected. Just before you do, it's worth doing
some checks to see if you or anyone else has made any mistakes. There are many
online tools you can use to inspect the data and identify possible problems,
provided by the project itself and some third parties.

In this chapter, we'll look at some of the following tools you can use to check
OpenStreetMap data in a particular area, and what problems they can and
can't tell you about:

The data inspection tools on openstreetmap.org
The NoName map
ITOWorld OSM Mapper
Geofabrik's OSM Inspector

Some of these tools identify specific problems, while others allow you to see when
changes to the data were made and by whom. In either case, all these tools can do is
offer guidance, not black-and-white answers, and you always need to use judgment
when checking data.

It's important to remember that there are few fixed ideas of what is "wrong" data in
OpenStreetMap. It should certainly be an accurate representation of the real world,
but that's not something an automatic data-checking tool can detect. There may be
typographical errors in tags that prevent them from being recognized, but there are
also undocumented tags that may accurately describe a feature, yet be unknown
to anyone except the mapper who used them. The latter is fine, but the former
is a problem.

•

•

•

•

Checking OpenStreetMap Data for Problems

[122]

It's tempting to use the two map renderings on openstreetmap.org as a debugging
tool, but this can be misleading. Not every possible feature is rendered, and many
problems with the data, such as duplicate nodes or unjoined ways, won't be obvious
from a rendered map. If a feature you've mapped doesn't render when a similarly
tagged one does, there's an issue, but a feature appearing in the map doesn't mean
it's free of problems, and a feature that doesn't appear isn't necessarily wrong.

Ultimately, you will have to use your own judgment to find out whether or not an
issue reported by one of these tools is really an error in the data. You can always
contact other members of the OpenStreetMap community using the tools we
discussed in Chapter 2 if you're unsure what to do.

This is only a selection of the more widely used quality assurance tools used
by mappers. For a more complete list, refer to http://wiki.openstreetmap.org/
wiki/Quality_Assurance.

Inspecting data with openstreetmap.org's
data overlay and browser
The openstreetmap.org website has a range of tools you can use to inspect the data
in the database, both current and past. Some of the tools aren't obvious from the
front page of the site, but are easily found if you know where they are.

The tools, which consist of the data map overlay and the data browser pages,
allow you to see the details of any object in the OpenStreetMap database, including
coordinates, tags, and editing history, without the need to launch an editor or read
raw XML. As these tools work directly with the data in the OpenStreetMap database,
they always show the most up-to-date information available. However, they simply
provide raw information, and don't provide any guidance on whether the geometry
or tagging of any feature could be problematic.

The easiest way of inspecting data is to start with the data map overlay. Go to
the map view and find Compton (or any other area you want to inspect). Open the
layer chooser by clicking on the + sign at the top-right. Click the checkbox labeled
Data, and a box will appear to the left of the map view. After a short delay, the
data overlay will appear, and a list of objects will appear in the box.

Chapter 7

[123]

JavaScript speed and the OpenStreetMap data overlay
The data overlay and the accompanying list of objects make heavy use
of JavaScript in your browser, and depending on how many objects
are currently in your map view, can use a lot of processing power and
memory. Some older browsers may struggle to even show the data
overlay. Mappers have reported that Firefox 3.5, Apple Safari, and
Google Chrome all work well with the data overlay, even with large
numbers of objects.

Once the data for the area you're inspecting has loaded, you'll see something like
the following image:

In the preceding image, on the left you can see the Object list, which gives a text
description of every feature in the current map view, giving its primitive type and
either its ID number or a name, if the feature has one. On the right is the map with
the data overlay, which highlights every feature in the current area, whether they're
rendered on the map or not. This last point is worth repeating: Not every type of
feature gets rendered on the two map renderings used on openstreetmap.org, and
those that do can take some time to appear if the load on the rendering engines is
high. Any feature in the database will always appear in the data overlay.

Checking OpenStreetMap Data for Problems

[124]

Inspecting a single feature
To inspect an individual feature, either click on its entry in the object list, or on
its highlight in the map view. Both the object list and the overlay will change to
reflect this. Occasionally, an area feature may get drawn on top of other features,
preventing you from selecting the ones underneath, but you'll still be able to select
them from the list.

Let's select The Street and inspect its data. Either click on its name in the object list, or
on the way in the map view, and the object list should change to show the tags applied
to the feature, and you should see something like the following in the object list:

This gives a list of the tags attached to the feature. If you click on Show History, a list
of the edits made to the current feature is added to the list. To get more information,
click on the Details link next to the feature's name, and you'll be taken to the data
browser page for that object, as follows:

Chapter 7

[125]

Here you see far more details about the feature we're inspecting. Apart from the
object ID and its name, you can find the time when the object was last edited and by
whom, and in which changeset. There are clickable links to any related objects
and a map showing the feature's location.

At the bottom of the page are links to the raw XML of the feature, the history
page of the feature, and a link to launch Potlatch—the online editor—for the
area surrounding the feature.

Checking a feature's editing history
The OpenStreetMap database keeps every version of every feature created, so you
can inspect previous versions and see when and how a feature has changed. To look
at a feature's history, click on the link at the bottom of its data browser page. For the
Watts Gallery in Compton, you should see something like the following:

Checking OpenStreetMap Data for Problems

[126]

You can see each version of the object listed in full, including which mapper
created that version in which changeset, and what the tags for that version were.
There's currently no way of showing any previous version or the changes between
versions on the map, but third-party tools such as OSM Mapper provide some of
these features.

Inspecting changesets
Along with looking at individual features, you can see how the map gets changed by
looking at changesets. Since version 0.6 of the OpenStreetMap API went live in April
2009, every change to the map has to be part of a changeset. A changeset is a list of
related edits made to OpenStreetMap data, with its own set of tags. What goes into
a changeset is entirely up to the mapper creating it.

You can view the list of recent changesets by clicking on the History tab at the
top of the map view. This will show a list of the 20 most recent changesets whose
bounding box intersects your current map view. Note that this doesn't guarantee
that any changesets listed include any edits in your current view, and any changesets
covering a large area will be marked with (big) in the list.

Chapter 7

[127]

Finding unsurveyed areas with the
NoName layer
The NoName layer is a complete rendering of OpenStreetMap designed to highlight
the urban areas that may need attention. To view the NoName layer, open the layer
chooser in the map view on openstreetmap.org and choose NoName from the list.
In NoName, any way tagged as a road but without a corresponding name=* tag is
highlighted in red, as seen in the following image. The NoName layer was created
to show areas where streets had been traced from aerial imagery, but no follow-up
survey had been done to collect the street names.

Checking OpenStreetMap Data for Problems

[128]

Large numbers of adjacent streets highlighted in the NoName layer probably means
that the area needs surveying on the ground, to collect the street names and other
points of interest. However, a road or street not having a name in OpenStreetMap
isn't necessarily an error: The street may not actually have a name, or at least not one
that can be identified by surveying it. You shouldn't tag a road with a blank name
or some other incorrect value just to make it disappear from the NoName layer.

The NoName layer is provided by CloudMade, which also provides the layer as a
downloadable map for Garmin devices at http://downloads.cloudmade.com/.

OSM Mapper
OSM Mapper (http://www.itoworld.com/product/osm/) is a web-based tool
provided by a British transport intelligence firm, ITO, and provides similar facilities
to those on the openstreetmap.org website, but allows you to sort and filter the
data for a given area. At present, OSM Mapper only processes ways, not nodes or
relations, but is still useful for finding sets of data with particular tags, and edited
by particular mappers.

You need to register at the ITO website to use OSM Mapper, including supplying
an e-mail address, and responding to a confirmation e-mail. You won't receive
any further e-mail from ITO after registering. The data in OSM Mapper is usually
updated once per day, so any edits you make won't show up here immediately.

Creating an area to analyze
To look at the data using OSM Mapper, you need to define one or more areas
that interest you. The size of an area is limited to prevent overloading the system,
although the limit of around 40 miles across is still quite large. OSM Mapper is
most useful on much smaller areas than this, such as a single town. When you first
register, you'll be shown an example area of Ipswich in the UK. To create your own
area, click on the outline arrow to the right of the area chooser in the top right-hand
corner of the page, and choose Create a new area. Use the slippy map that appears
to choose an area, give it a name, and click Save.

Filtering and sorting data
Once you've defined an area, you can start to analyze its data. OSM Mapper shows
all ways as outlines, which it color-codes according to the filters you create. To add a
filter, choose from the options listed to the right of the map viewer: Tags, Sessions,
or Users. These filter the current view according to the tags applied to the ways, by
editing "session" or depending on which mapper last edited them respectively.

Chapter 7

[129]

A session in OSM Mapper refers to a group of edits by a single mapper over a short
period of time. OSM Mapper predates the use of changesets in OpenStreetMap, and
there may or may not be a correlation between an OpenStreetMap changeset and an
OSM Mapper session.

Click on Tags, and a table showing all keys that appear on ways in your current area
will appear, complete with usage counts for each one. You can click on the headers
in this table to sort the values by that column. If you now click on highway in the list
of keys, you should see something like the following image:

Any ways that don't have a highway=* tag have been faded out, and the remaining
ways have been color-coded according to the value of highway=* used. The list has
also changed to show those values and their usage counts. Clicking on a value will
filter the view further to just the ways with that tag, and the list will change to show
each one, listed by name if it has one, or ID if not. Click on an individual way and it
will be highlighted, and its details will be shown in the list, including links that lead
back to the data inspection tools on openstreetmap.org.

Checking OpenStreetMap Data for Problems

[130]

Creating a view
OSM Mapper allows you to create more complex combinations of filters than we've
seen so far, and store them as Views so you can reuse them. Click on the + sign next
to the View drop-down to the right of the map, and a box will appear. This lists the
color table in use and any filters that apply to your current map view.

Let's create a view. Go back to the list of ways tagged as highway=*. To add a filter, use
the arrow to the right of the current filter list. Click on this and you will get two filter
options, to filter by the current tag being present or not present, so choose Add: Tag
Present: highway to add this filter. You'll be taken back to the options, but you should
now have a filter of Tag present: highway listed. Now click on Users, then Jonathan
Bennett, and click on the filter drop-down and choose Add: User=Jonathan Bennett.
You'll again be taken back to the filter options. If you click through to the list of tags
again, you should now see something like the following screenshot:

You can see the filters currently applied to the data, along with the table of usage
numbers. These numbers represent the results of the filters, rather than the whole
area. You can save the view by clicking the clear down-arrow to the right of the
View name and choosing Save the current view.

Chapter 7

[131]

You could add further filters to the view, such as a filter for roads with no name=*
tag present, which would show you any street you may need to resurvey for a
name, for example. Note that you can only filter to include a particular session,
not exclude one.

OSM Inspector
OSM Inspector (http://tools.geofabrik.de/osmi/) is a web-based tool
provided by German consultancy GeoFabrik, and it checks for several classes
of potential problems with OpenStreetMap data. The interface looks as shown
in the following screenshot:

OSM Inspector doesn't require any registration or configuration; simply visit the site
and use the slippy map to find the area in which you're interested. It's updated once
every two days, so again your edits won't show up straight away. The date of the
current data in use is shown below the slippy map. Across the top of the page are the
view controls: a View drop-down list that chooses which class of problem to look at,
the Base layer drop-down that allows you to choose which map rendering to use,
and a transparency slider for the slippy map.

Checking OpenStreetMap Data for Problems

[132]

OSM Inspector has four Views that work for the whole world:

Geometry tells you about problems such as self-intersecting ways, duplicate
nodes in ways, and very long ways
Tagging tells you about possible typographical errors in tags or other
problematic keys and values
Places identifies settlements and highlights, unnamed places, and problems
with population tags
Highways shows problems such as unnamed roads or ones without
a reference number

The remaining four views are as follows:

Addresses looks for problems in addressing information that has been added
to buildings and streets
Boundaries shows administrative boundaries such as state and
county borders
Water shows any type of waterway, and problems such as unnamed rivers
Five public transport-related views show details of railways, bus routes,
ferries, and other public transport infrastructure

There are also several country-specific views that have been used by mappers
importing data in those countries; you won't need to use these.

Choose any one of these views, and a list of tests appears in the left-hand column.
Each test has a checkbox, allowing you to turn it on and off in the slippy map, and a
key for how it's represented on the map. Tests are also arranged in groups, and you
can turn whole groups on and off using its checkbox. Hovering your mouse pointer
over a test name will pop up a description of what that test checks for, and which
zoom levels it shows up at.

•

•

•

•

•

•

•

•

Chapter 7

[133]

Clicking on any highlighted feature in the slippy map will show its details in the
right-hand column, as follows:

Rather than showing the tags applied to the selected object, this panel shows
information relating to the problem OSM Inspector has identified with the feature.
In the preceding screenshot, you can see that Compton is tagged as a village
(place=village), but has no corresponding population=* tag. There are
four icons near the top of the pane:

The magnifying glass zooms the map to the selected feature
The icon with a P launches Potlatch centered on the selected feature
The icon with a J will center the current view in JOSM on the selected
feature, provided JOSM is already running and has the Remote Control
plugin installed
The map and magnifying glass icon opens the openstreetmap.org data
browser for the selected object

Below the Selection pane is the Data pane, which will show a list of all objects
matching one of the tests in the current view. Click on the magnifying glass icon
next to a feature in this list in to zoom to it.

OSM Inspector is very well documented in its own online help and in the
OpenStreetMap wiki. Click on the Help link at the top of the page to access
the online help.

•

•

•

•

Checking OpenStreetMap Data for Problems

[134]

Summary
Mistakes in data are inevitable, but that doesn't mean you can't correct them.
It should be possible to find the cause of any problems you're having with
OpenStreetMap data using one or more of the tools we've looked at:

The data inspection tools on openstreetmap.org
The NoName layer
ITOWorld OSM Mapper
Geofabrik's OSM Inspector

However, these tools can only provide guidance, and you should always use
common sense when interpreting their results. Remember to ask the OpenStreetMap
community if you're in any doubt about a possible error in the data.

•

•

•

•

Producing Customised Maps
Once the data of the area in which you're interested is complete enough for
your purposes, you can produce maps to your own specifications. In this chapter,
we'll cover how to produce one-off images of any area, including maps with
custom styling.

In this chapter, you'll learn how to create maps:

Using the standard renderings on openstreetmap.org
Using a standalone rendering application for Windows, Kosmos
In Scalable Vector Graphics (SVG) format using Osmarender

These maps will be static images that you can print out, send via e-mail, and include
in a website or a printed publication.

The openstreetmap.org exporter
The openstreetmap.org website has a built-in map export function that you
can use to produce images in various formats, at any scale using either of the
example renderings on the site. The exporter doesn't allow you to change the
style of the map.

•

•

•

Producing Customised Maps

[136]

To use the exporter, click on the Export tab at the top of the slippy map. A sidebar
will appear to the left of the slippy map showing the exporter controls:

The default area to export is the whole of the map view. You can change this area by
changing the map view itself, which should be reflected in the coordinates shown at
the top of the sidebar. Alternatively, you can click Manually select a different area
and drag a rectangle over the area you'd like a map of. Finally, you can enter the
coordinates of the area you want to map directly into the form, and a rectangle
will be drawn on the map to show the area you've specified.

If you need to save the location of an area you're exporting, you can use the
Permalink in the map, but this won't save any adjusted coordinates, nor any
options you've selected in the Export pane.

Choosing an image format
The exporter generates maps in four formats:

OpenStreetMap XML Data
Mapnik image
Osmarender image
Embeddable HTML

•
•
•
•

Chapter 8

[137]

You use the first option to produce data to use with a separate rendering application,
such as Kosmos or Osmarender, covered later in this chapter. The data returned will
include entire features, including parts that lie outside the area you've specified, but
we'll see how to trim this down later in the chapter.

The second and third options produce image files using the same rendering
technologies as the main slippy map, and the fourth allows you to link to the
exporter directly from a web page, which keeps the image up-to-date without
further action.

Generating image files
The Mapnik and Osmarender image formats create a single image file of the area
you've chosen, using a variety of file formats. Both support:

Portable Network Graphics (PNG)
JPEG

In addition, you can export Mapnik maps in these following formats:

Scalable Vector Graphics (SVG)
Portable Document Format (PDF)
Postscript

Note that the SVG images produced by the exporter are bitmaps, not vector graphics
of the map. We'll use Osmarender to generate true vector maps later in the chapter.

Let's export a Mapnik image in PNG format, so select those two options. You should
see something like the following screenshot at the bottom of the exporter pane:

•

•

•

•

•

Producing Customised Maps

[138]

The last option to complete is the scale we want our map to have. For a Mapnik
image, this is specified as a ratio, in common with most printed maps. The higher
the number, the larger the scale, and the smaller the image. The ratio has to be lower
than the maximum given, so the number you type into the box must be larger than
the one shown to the right. If you enter too large a ratio, the Export button will
be disabled.

Below the scale box, you're given the size in pixels of the image the exporter will
produce. The size is dependent on both the area you've selected and the scale you've
chosen. Adjust the scale until you get the image size you want, remembering you can
edit the image after export in an image editing program to trim it to an exact size.

The Osmarender export works in a slightly different way. Instead of choosing a
scale, you pick the zoom level to use from the slippy map. You're not given the exact
image size that will be produced in advance, but for each increase in zoom level, the
image's width and height in pixels will double, increasing the image area by a factor
of four.

Once you have the area you want, at the size you want, click Export, and your map
will be generated. This could be almost instant, or have a short delay depending
on the load on the servers, and under some circumstances, the service may be
temporarily suspended by OpenStreetMap's system administrators to keep the
load on the servers down.

Embedding maps in a web page
The final exporter option is to provide an HTML link that you can use to embed
a slippy map in any web page that will be updated as mappers add data to
OpenStreetMap. This is a good option if you want a map of an area that currently
lacks data, but for well-mapped areas, it's a less reliable service than creating and
hosting your own map.

Exporter service levels
The exporter service on openstreetmap.org, which provides the
embedded maps, is provided on a "best effort" basis, and there is no
guarantee that the service will be available at any time, and could be
unavailable for an extended period or even permanently. If this is the
case, your embedded map will not appear on your site. If this isn't
acceptable to you, use one of the other options for creating a map.

Chapter 8

[139]

Once you've chosen the area of which you need a map, you can choose to add a marker
to the embedded map at a particular location. To do this, click on Add a marker to the
map, and click where you'd like to add the marker. You can zoom in and out of the
map without affecting the position of the marker, so you can place it precisely, then
zoom out to get a larger scale map. In the following image, we've placed a marker on
Compton Village Hall, which isn't shown in the Mapnik rendering:

Once you've chosen your map area and any marker location, copy the generated
HTML into the web page where you want your map. Consider the following
HTML code:

<html>
 <head><title>OSM Export test - Compton</title></head>
 <body>
 <h1>OpenStreetMap map of Compton, Surrey</h1>
 <iframe width="425" height="350" frameborder="0" scrolling="no"
 marginheight="0" marginwidth="0"
src="http://www.openstreetmap.org/export/embed.html?bbox=-
0.64138,51.20954,-0.61958,51.22107&layer=mapnik&marker=51.21303,-
0.63091" style="border: 1px solid black">
 </iframe>

 <small>
<a href="http://www.openstreetmap.org/?lat=51.215305&lon=-0.63048&zoom
=15&layers=B000FTFTT&mlat=51.21303&mlon=-0.63091">View Larger Map
 </small>
 </body>
</html>

Producing Customised Maps

[140]

This HTML code will give you a page similar to the following screenshot:

This is a fully working slippy map like the one on the openstreetmap.org home
page, except you don't get the layer chooser or permalinks. You can edit the HTML
to suit your site's design better, provided you don't change the src attribute of the
iframe element.

Rendering maps on Windows using
Kosmos
Kosmos is a .NET application that renders maps from OpenStreetMap data based
on sets of rendering rules normally stored in the OpenStreetMap wiki. Kosmos was
written by Igor Brejc, and is available in graphical and command line versions. It
can render single images or small sets of tiles, and can even provide a small web
server for those tiles.

Chapter 8

[141]

Kosmos is designed for rendering a small number of features. It reads
OpenStreetMap data directly from XML files, and doesn't have an internal database.
If you want to generate a map of an area larger than a small town, Kosmos probably
isn't the tool to use. Kosmos can produce less complex maps of larger areas, but this
is best accomplished using data that only contains the features you want to show.
We'll show you how to do this using the extended API (XAPI) later in the book.

Kosmos doesn't include any data editing facilities, so if you want to change any
data from OpenStreetMap before rendering it, you'll need to edit it using JOSM
or Merkaartor before loading it into Kosmos.

Kosmos also uses an unusual way of storing rendering rules for its maps: It normally
retrieves them from the OpenStreetMap wiki, and uses some of the templates
installed on the wiki to make writing rendering rules faster and easier. Once you've
written the rendering rules you want, you can then store the generated rules file
anywhere, including locally, but the easiest way of authoring the rules is online.

Development on the current version of Kosmos has finished, and a new program
called Maperitive is being developed with a different interface and syntax for
rendering rules. This means the few issues Kosmos has are unlikely to be fixed,
but the program still works and you can render maps with it.

We're going to use Kosmos to create a map showing where Compton Village Club is,
suitable for use in a brochure or on a website.

Installing Kosmos
To install Kosmos, you need a platform that supports .NET 3.5 SP1 or higher,
although the latest version of .NET is recommended. This means Windows XP or
later is supported, although there are efforts to make Kosmos run on the Mono
platform on Linux.

You can download the latest version of the .NET framework from
http://msdn.microsoft.com/netframework/default.aspx.

You can download the latest version of Kosmos from http://downloads.
igorbrejc.net/osm/kosmos/Kosmos-latest.zip, and install it by unzipping the
archive into a folder. You'll need to create shortcuts on your desktop or Start menu if
you want either of these.

Producing Customised Maps

[142]

Creating a project
Once you have Kosmos installed, launch it by opening the folder into which you
unpacked the archive, opening the Gui subfolder and double-clicking on Kosmos.
Gui.exe. You should see the welcome screen shown in the following screenshot:

Kosmos has a simple user interface that reflects its role as purely a rendering
application. All work in Kosmos is done as part of a project, so let's create a new
project by clicking on Start with an empty Kosmos project on the welcome page.
Kosmos should now show its default workspace, with a map taking up most of the
workspace, the Project Explorer top-left, the Properties pane bottom-left, and the
Activity Logger and Error List stacked across the bottom of the map space. All the
panes in the interface are re-sizable or can be hidden. Click on the pushpin icon
to hide a pane.

Chapter 8

[143]

For an empty project, the Project Explorer will look as shown in the
following screenshot:

You can see the types of files you can add to a Kosmos project, including:

OpenStreetMap data
GPX traces
Contours
Existing web maps

By using different types of data and images, you can illustrate many kinds
of geographical information without necessarily having to add the data
to OpenStreetMap.

Adding OpenStreetMap data
To load OpenStreetMap data into Kosmos, you have two options:

From a local XML file
Via the Extended API (XAPI)

The latter of these options uses a third-party XAPI server, rather than the main API
at openstreetmap.org, and can be unreliable as well as being unavailable offline.
However, it does mean having to use a separate tool to obtain the data.

We're going to add data from a local XML file. You can create this yourself using
the OpenStreetMap exporter, or use compton.osm from the download file for this
chapter. Right-click on OSM Files in the Project Explorer and choose Add File(s)
from the pop-up menu. Choose the file, and click Open.

After the data has loaded, the map will be rendered using Kosmos' default rendering
rules. If you don't see anything after the data has loaded, right-click on the data file
in the Project Explorer, and choose Show on Map. This zooms the current view
to the bounding box of that file, and you can do this with any data or GPX file.

•

•

•

•

•

•

Producing Customised Maps

[144]

Now that we have some data loaded, the Properties pane shows some information:

Most of the properties for a data file are read-only, but there are some properties that
affect the map rendering. You can change the visibility of any file used in your map
project, so you can produce variations on the same map without needing separate
projects for each one.

Kosmos can also show any nodes or ways that don't match any of the rendering
rules in the current ruleset by setting Show Unused Nodes and Show Unused Ways
to True. This is a useful debugging tool, as it allows you to see whether something
you're expecting to see on the map is actually in your current data. To see the details
of any feature in the map, including ones highlighted as unused, right-click on the
feature and choose Show Object Info from the pop-up menu. A pop-up will appear
showing the ID and tags for the feature.

Chapter 8

[145]

Adding GPS tracks
Although Kosmos isn't an editing application, you can still use GPS traces in GPX
format as part of your map. This is a quick way of showing a route on a map,
provided you have the data in the right format.

To add a GPS trace, right-click on the GPX Files folder in the Project Explorer and
choose Add File(s) from the pop-up menu. Kosmos can also use GPSbabel to get traces
directly from your GPS receiver if you have it installed, but this isn't installed here.

You can't change the rendering of GPS tracks in Kosmos, so any GPX files you add
to your project will be drawn as thin red lines with squares for trackpoints at higher
zoom levels, and named waypoints in blue. You can show or hide tracks, trackpoints,
or waypoints separately.

Adding existing OpenStreetMap maps
Along with the map you're rendering from the data you have, you can use the map
tiles that have already been rendered as a background. This can simplify generating
a map, as you only have to render any feature you want to highlight, rather than
the entire map.

To add a map from the openstreetmap.org website, right-click on Web Maps in the
Project Explorer, and choose Add Web Map from the pop-up menu. Choose one of
the renderings to use. The Draw in background option makes the map tiles appear
behind all other features, and for most purposes, you should tick this box. You can
choose the transparency level of the background, and whether to download the tiles
from the server or use a local cache; for most purposes, downloading the tiles is the
best option.

You can adjust any of the options for a web map after creation by selecting it in the
project explorer and editing the properties.

Customizing the rendering rules
So far, we've just seen the map rendered using the default rendering rules. Now
we can customize these rules, so the map looks the way we want it to look. To do
this, we need to write our own set of rendering rules, and this is normally done by
creating a page in the OpenStreetMap wiki.

To make authoring rules for Kosmos easier, a number of the standard templates on
the wiki are used. It also means that the rules are formatted nicely, and so easier to
read when you view the wiki page. Each rendering rule is a single line in a table.

Producing Customised Maps

[146]

To get started, it's easiest to copy an existing page of rendering rules for Kosmos and
strip out the content you don't want. You'll need an account on the OpenStreetMap
wiki, so if you didn't create one earlier, go to http://wiki.openstreetmap.org/
and register.

Go to http://wiki.openstreetmap.org/wiki/User:Jonobennett/Compton_
Rendering_Rules or http://bit.ly/kompton, and click on View Source or
Edit, depending on whether you're logged into the wiki. Now, copy the contents
of the edit box for the page into a new wiki page below your own User page. To
do this, click on your wiki username at the top, and once the page has loaded, add
/Compton_Rendering_Rules to the end of the URL, hit return, and then click on
edit this page. Now paste the rules into this page, and click on the Save page
button at the bottom of the page.

To make Kosmos use this page, click on the project in the Project Explorer. The
Properties box should then show a single item—Rendering Rules Source. Paste the
URL of your rules page into the box. Now press Control + R to reload the rendering
rules, and the appearance of the map should change:

Chapter 8

[147]

Rendering rules not reloading
There is an issue in Kosmos that means rendering rules don't always
reload when you request it, meaning any edits you make to the rules won't
show up in the map. You can work around this by restarting Kosmos, or
by copying the rules to a new page and changing the rules source.

The page has two sections: the options and the rendering rules. The options specify
the minimum version of Kosmos that will understand these rules, which is set to 2.1
in our page, but isn't important as we're using a later version than this. Two other
options, LandBackgroundColor and SeaColor, set the colors used for areas not
otherwise by a rendering rule. You can copy this options section to any page of
rules you create, and edit the colors if necessary.

A Kosmos rendering rule is a single line in a table with the following structure:

| <title> || <targets> || <tag selector> || <template> (<parameters>)
|| <rendering options> || <comment>

The vertical bars are part of the wiki formatting, separating the cells in the table. If
any rule you create skips a column, you still need to enter the bars with whitespace
between them to make the table display properly in the wiki. Each rule is separated
with a table row separator:

|-

The items in each rule are:

The title is a unique name for the rule. If a title begins with a period, it's
classed as a "child" rule. Child rules modify the parent (non-child) rule
directly above them in the table.
Targets use a standard template to identify to which OpenStreetMap primitive
type this rule applies. The exact format is one or more of the following:

{{IconWay}}

{{IconNode}}

{{IconArea}}

{{IconRelation}}

You can use more than one target per rule, but this isn't done very often.
The tag selector uses another template to choose only features
with certain tags. The tag template uses either {{tag|<key>}} or
{{tag|<key>|<value>}}. You can use multiple templates to match
the features with every tag you list.

•

•

°

°

°

°

•

Producing Customised Maps

[148]

The template and rendering instructions define how the features selected by
the rule are shown on the map. We'll cover these in more detail shortly.
The rendering options change the behavior of the renderer for that feature.
Only one option, EliminateSeams, is available. This smoothes out the edges
of adjacent features of the same type, and only applies to polyline features.

The template tells Kosmos what shape to use to render matching features. The
available templates are:

Polygon for closed areas
Polyline for linear features
Text for labels
Symbol for icons drawn on a linear feature, such as route numbers
Icon to draw an icon for a point feature

For each template, there are a number of parameters you add to specify how
a feature is drawn. They're all documented on the OpenStreetMap wiki at
http://wiki.openstreetmap.org/wiki/Kosmos_Rendering_Help, so we'll just
cover what we need for our map here. The general syntax is that the parameters
are listed after the template in brackets.

The first feature we're going to render is the built-up area of Compton itself.
These areas are normally mapped in OpenStreetMap as a closed way tagged
with landuse=residential, so we need a rule that selects this:

| Residential	 || {{IconArea}}	 || {{tag|landuse|residential}}

Let's render this as a pink-shaded area. This is a closed area, so we use the polygon
template. To give this a color, we use the Color option, which takes an HTML color
as an argument, either a color name or an RGB value in hex. We'll use:

color=#FF9999

That's the only option we're going to use, so our rule looks as follows:

| Residential || {{IconArea}} || {{tag|landuse|residential}} ||
Polygon (Color=#FFBBBB) || ||

If we wanted a border around the area, we could use the BorderColor,
BorderWidth, and BorderDashStyle parameters.

•

•

•

•

•

•

•

Chapter 8

[149]

Next, we need to add the roads to the village. The trunk A3 road passes just to the
north of the village and is included in our data, so let's render this as a green line
with a black border. To select trunk roads, we need the following to select ways
tagged as highway=trunk:

| HighwayTrunk || {{IconWay}} || {{tag|highway|trunk}}

To render this, we use the polyline template. Again, this takes a color parameter,
but we also want to add a border, so we use the BorderColor parameter:

bordercolor=black

We also need to specify the width at which we want to draw the roads, using the
width parameter. The value for this parameter takes a complex value based on the
width we want the feature to have at varying zoom levels. For each zoom level you
specify, you give a size for the feature, separated by a colon. You can give values for
multiple zoom levels separated by a semicolon. Kosmos will interpolate the value
between the specified zoom levels:

Width=6:1;17:14

Finally, we use the EliminateSeams option to ensure that any roads drawn by our
rule have smooth edges. Our final rule looks as follows:

| HighwayTrunk || {{IconWay}} || {{tag|highway|trunk}} || Polyline
(MinZoom=6, Color=#008000, BorderColor=black, Width=6:1;17:14) ||
EliminateSeams ||

We'll repeat this rule to render the link roads to A3, substituting
{{tag|highway|trunk_link}} as the selector.

Other roads in the area are rendered using similar rules, except that we also want
to add the names of these roads to the map in addition to the rules to draw the roads.
For The Street, which is a secondary road in UK terms, we need a rule that selects
these roads:

| HighwaySecondaryText || {{IconWay}} || {{tag|highway|secondary}}

To render the street name, we use the text template. This can produce text for any
type of feature that has a suitable tag. We're also going to use an option that can be
applied to any template—MinZoom. This option, along with its counterpart MaxZoom,
limits when a feature is visible. This helps make maps more readable by hiding
details, such as street names at lower zoom levels, or settlement names at higher
zoom levels. We're producing a single static map at a fixed zoom level, so these
parameters are less important, but if you were using Kosmos to produce a set of
tiles for use in a slippy map or on a mobile device, you'd need to use them carefully.

Producing Customised Maps

[150]

You select which tag to use with the TagToUse parameter and the key of the tag,
so we'll use the following:

TagToUse=name

We could also use ref=* to show the route code for a road. We also need to
format the text using the FontName, FontStyle, and FontSize parameters,
so our formatting instruction becomes:

Text (MinZoom=15, Color=black, TagToUse=name, FontName=Arial,
FontStyle=regular, FontSize=15:6;17:9)

FontSize takes values in the same format as Width, again with the size interpolated
between explicit values. Specifying a Width or FontSize for a feature at a lower
zoom level than any MinZoom parameter will result in an error.

We'll repeat similar rules for unclassified and residential roads, varying the color
of the roads and making them slightly narrower.

| HighwayUnclassified || {{IconWay}} || {{tag|highway|unclassi
fied}} || Polyline (MinZoom=6, Color=white, BorderColor=black,
Width=6:1;17:14) || EliminateSeams ||
| HighwayResidential || {{IconWay}} || {{tag|highway|residential}} ||
Polyline (MinZoom=6, Color=white, BorderColor=black, Width=6:1;17:14)
|| EliminateSeams ||

The last detail to include on our map is the club itself. We need to show its location
and name, so we'll use an icon template and a text template. We'll use the same
selection for both rules, which will select a node tagged with amenity=social_club:

| SocialClub || {{IconNode}} || {{tag|amenity|social_club}}

We'll use a simple star to mark the location of the club, stored in the OpenStreetMap
wiki at http://wiki.openstreetmap.org/images/2/2c/Star-icon.png. To
display this, we use the icon template, which takes an IconUrl parameter, as well
as Width and MinZoom parameters:

Icon (MinZoom=6, Ico
 nUrl=http://wiki.openstreetmap.org/images/2/2c/Star-icon.png,
 Width=6:8;17:16)

We'll also add the name using a Text template. We need to move the text upward
so that it sits above the icon for the club, so we use the TextLineOffset parameter
that shifts the text vertically, upward for positive values, and downward for negative
values. The value itself is expressed as a percentage of the current text size:

Text (MinZoom=6, Color=black, TagToUse=name, FontName=Arial,
 FontStyle=Bold, FontSize=6:2;15:6;17:12, TextLineOffset=80%)

Chapter 8

[151]

This is enough to show how to find the club, so we won't render any more details.
You can see all the features we haven't rendered by selecting compton.osm in the
Project Explorer and setting Show Unused Ways in the Properties pane to True.

However, the map looks odd, because the unclassified and residential streets are
rendered on top of the secondary road through the village:

This is easily solved by changing the order of the rendering rules in the page,
so the rules for secondary roads come last. If you had a more complicated set
of rules, or wanted to keep your rules in order for readability, you could add
Options=TopLayer
to the rendering parameters to make that rule render after others in the same
group. For a full description of how Kosmos layers different types of features,
refer to http://wiki.openstreetmap.org/wiki/Kosmos_Layering.

Exporting a bitmap
Once you're happy with the rendering rules you have, you can produce a static
image of the map. Kosmos can produce images in Windows Bitmap (.bmp), JPEG
(.jpg), Portable Network Graphics (.png), and TIFF (.tif) formats.

To produce a bitmap, first get the view you want to use as your bitmap in the
map viewer. If you can't get the precise size and shape of the image you want
with the zoom level you want, you can crop the image afterwards in a graphics
editing package.

Producing Customised Maps

[152]

Next, choose Export to Bitmap from the File menu, or press Ctrl + E, and the Export
dialog box will appear:

Here you have a chance to alter the zoom factor used for your image. Changing
this will alter the size of the image, but not the area included, which remains the
same. This allows you to produce larger images of areas at high zoom levels. To
choose which format your export is in, you need to add the appropriate three-letter
extension to your filename.

It is also possible to print directly from Kosmos, but unfortunately the print
function has a bug where you can't set print area reliably, so you'll get better
results by exporting a bitmap and printing in another application.

Kosmos Console
Kosmos also has a command-line version that can generate images from existing
Kosmos project files. This has the advantage that you can use it in batch scripts
or other automated operations. Along with generating bitmaps like those we've
produced in the GUI version of Kosmos, the Console version can also generate
sets of tiles for use in a slippy map or a mobile device.

To use Kosmos Console, you must have created a project file using the GUI version
beforehand. This will specify the data and rendering rules used to produce the maps.

Kosmos Console takes a command line in following form:

Kosmos.Console.exe <command> <options>

To produce a single bitmap, use the bitmapgen command. This has the
following form:

Kosmos.Console.exe bitmapgen <project file> <image file> <options>

Chapter 8

[153]

The options for this command are the area and zoom of the map to generate. You can
specify the area as a bounding box using latitudes and longitudes, the center of the
image, the size of the image in pixels, or the zoom factor of the map. Kosmos Console
needs two of these parameters to produce a bitmap. For instance, the following
command will generate the map we've just designed:

Kosmos.Console.exe bitmapgen compton.kpr compton.png -mb 51.20868 -
0.63794 51.22011 -0.61772 -z 16

Here we specify the minimum latitude, minimum longitude, maximum latitude, and
maximum longitude in degrees, along with the zoom factor we want. This produces
an image 942 x 850 pixels in size.

Rendering map tiles using Kosmos
You can also generate a set of map tiles using the tilegen command. These tiles
can then be used with any number of mobile applications, or a slippy map like the
one on openstreetmap.org. As with a single image, Kosmos isn't a good tool to use
for generating map tiles covering a very large area, but for relatively small areas
(a town or district), you can get good results a lot easier than setting up a full tile
rendering system.

To generate a set of tiles for Compton, use the following command:

Kosmos.Console.exe tilegen compton.kpr 51.20868 -0.63794 51.22011 -
0.61772 15 18 -ts Tiles

This uses our project file, along with a bounding box, minimum and maximum zoom
levels, and a target directory. When you run this command, a set of directories is
created below the target using a system recognized by OpenLayers—the software
used to provide the Slippy Map on openstreetmap.org, but which is also used by
other map viewing applications. Note that because the tiles are of a fixed size, you
won't get the bounding box you specify precisely, but rather the set of tiles needed
to render your bounding box completely. If you don't have a complete set of data
for this area, which is the case for our data file, you will be able to see this in the
generated tiles.

Once your tiles have been created, Kosmos Console can provide a simple web server
with OpenLayers to allow you to inspect your tiles. To start the web server, start
Kosmos with the tileserv command:

Kosmos.Console.exe tileserv Tiles http://localhost/Kosmos/

Producing Customised Maps

[154]

The first parameter for this command is the directory where your tiles can be found,
and the second, the URL that you want to use for your map. Once this is running,
point your browser at http://localhost/Kosmos/, where you'll see a full-page
slippy map showing lots of "broken" tiles. This is because the map view defaults
to the whole world, and we haven't generated the tiles for this. Click the + sign
at the top-right to open the layer chooser and switch to the tiles@home (direct)
layer, which should allow you to see what you're doing. You can either zoom
into Compton yourself and switch back to the Kosmos layer once you're there, or
http://bit.ly/localcomptonmap should take you straight there. You should see
two tiles covering the whole village:

You can move around our mini-map in the same way as the main map on
openstreetmap.org. If we used a data file covering a larger area, we could render
more tiles, and at lower zoom levels. You can also set up your own slippy map
using OpenLayers, and set the default view to where you've rendered tiles, but
this requires JavaScript programming skills.

Chapter 8

[155]

Taking Kosmos further
Although development on Kosmos has ended, and the bugs we've mentioned are
unlikely to get fixed, it's still a useful tool for rendering maps of smaller areas.
We've also only produced a relatively simple example here, but Kosmos is capable
of rendering more detail than we used. If you want to see what other mappers have
created using Kosmos, many of them have created rules in the OpenStreeMap wiki,
listed in a category at http://wiki.openstreetmap.org/wiki/Category:Kosmos_
rules or http://bit.ly/kosmosrules.

Osmarender
Osmarender is a custom-written rendering tool for OpenStreetMap data that produces
Scalable Vector Graphics (SVG) output suitable for printing, using in a web page, or
editing and converting to another format. It's the technology used to generate one of
the example renderings on openstreetmap.org, but it's also well-suited to producing
individual maps from a file containing OpenStreetMap data. The advantage of using
SVG for a map is that you can choose the size of the image you want to use without
losing image quality.

Osmarender isn't a traditional program, but an Extensible Stylesheet Language
Transform (XSLT) document that an XSL processor uses to turn an XML document
containing OpenStreetMap data into an SVG file according to a set of
user-defined rules.

This means that Osmarender can be difficult to use at first, as it's driven from a
command line interface, and you need to edit XML files to customize the rendering.
You don't need a full understanding of the details of XML or XSLT to use Osmarender,
but if you're not comfortable editing XML files, then this isn't the tool to use.

You'll also need a working knowledge of Cascading Style Sheets (CSS) to customize
Osmarender maps, as this is what's used to add formatting and presentational
information to the map. We'll show you some examples of how this works here,
but there are more sample stylesheets available for Osmarender.

Getting ready to run Osmarender
There are a few prerequisites for running Osmarender:

an XSL processor program
the Osmarender files
An SVG editing package or renderer

•

•

•

Producing Customised Maps

[156]

XSL processing with XMLStarlet
There are many XSL processors available for different platforms. In our example
we're going to use XMLStarlet—an open source command-line XML utility that
runs on Unix-like operating systems and Windows. You can use any program that
performs a similar function.

On Linux, you will probably be able to install XMLStarlet using your package
manager. If you can't find a package, or are on Mac OS X, the source, and for
Windows, a binary distribution, are available from http://sourceforge.net/
projects/xmlstar/files/.

To install the Windows version of XMLStarlet, unpack the ZIP file into a folder on
your hard drive, such as C:\Program Files\xmlstarlet, and add the folder to your
path. You can do this by right-clicking on your My Computer icon and selecting
Properties. In the Advanced tab of the System Properties dialog (seen in the
following screenshot), click on the Environment Variables button.

Chapter 8

[157]

The Environment Variables dialog should appear. In the lower box titled System
variables, find the Path variable and click on the Edit button. Add a semicolon and
the path of the folder you installed to the value (;C:\Program Files\xmlstarlet in
our case). Click OK on each open dialog until they're all closed.

You should now have XMLStarlet installed. To check if this has worked,
open a command-line window, and try the following command on Unix-like
operating systems:

xmlstarlet --version

Try the following command on Windows:

xml --version

Note the difference in syntax between Unix/Linux and Windows. Our examples will
use the former of these commands. If XMLStarlet is properly installed, you should
see the version number returned, which was 1.0.1 at the time of writing.

Installing Osmarender
As Osmarender isn't a normal application that you install, there's no simple
download of Osmarender available, and you may have to download several files.

If you're familiar with the version control system Subversion,
you can check out the whole of Osmarender from http://svn.
openstreetmap.org/applications/rendering/osmarender/,
including the style sheets used to create the Osmarender layer on
openstreetmap.org. If you do this, the main Osmarender XSLT file is in
the xslt subdirectory. For our examples, you'll need to copy the file
osm-map-features-z17.xml from the stylesheets subdirectory
into xslt. You can then use xslt as your working directory.

To get a minimal working Osmarender installation, download the following files
to the same folder:

http://svn.openstreetmap.org/applications/rendering/osmarender/
xslt/osmarender.xsl

http://svn.openstreetmap.org/applications/rendering/osmarender/
stylesheets/osm-map-features-z17.xml

The first of the two preceding files is the Osmarender transforms file that does all
the work, and the second is the rules file used to generate one zoom level of the
Osmarender layer on openstreetmap.org. You can explore the other files that are used
in conjunction with Osmarender, but for our examples, those two are all you need.

•

•

Producing Customised Maps

[158]

Editing SVG with Inkscape
Finally, it's useful to have a vector graphics editing package that understands SVG,
so that you can make final alterations to your map before publication, and produce
bitmap versions if necessary. If you don't already have such a package, you can
download Inkscape (http://www.inkscape.org/) for free. Inkscape is an open
source, cross-platform vector editing application that uses SVG as its native format.
It runs on Windows, Mac OS X, and many Unix-like operating systems.

If you're running Linux, you'll probably be able to install Inkscape using your
distribution's package management utility. If you're running Windows or Mac
OS X, you'll need to download the installer from the Inkscape website and run that.

Producing a map
Now that we have all the software we need, we can produce a map. We need a set of
data for the map we want to produce, so let's use Compton as our example again.

Copy the file Compton.osm to the same folder to which you downloaded the
Osmarender files. The standard rules files for Osmarender take their data from
a file named data.osm, so rename your data file to this.

To generate the map, open a command-line window, change to our working folder,
and use the following command:

xmlstarlet tr osmarender.xsl osm-map-features-z17.xml > compton.svg

This command tells XMLStarlet to use the transforms in osmarender.xsl,
apply them to osm-map-features-z17.xml, and store the results in a file
named compton.svg.

Osmarender will print out the rules it's processing as it goes along. If you have only
downloaded the Osmarender file and a standard stylesheet to make this work, you'll
see warnings about external entities not loading. This means that some symbol
files created for the standard rendering won't get used, but the map should still
be generated without the missing symbols.

Once the processing is finished, you should have a file containing an SVG map of
Compton. You should be able to view this using any web browser except Internet
Explorer. However, it will appear very small by default, so you may have to zoom in
to see the details. What you will notice is that the map is clipped to the bounding box
of our download, unlike in Kosmos. Despite there being data on our file outside this
area, Osmarender can read the bounding box in the data file, and never displays any
features outside this area.

Chapter 8

[159]

It's easier to see the map if you open it in an editing application. The following is the
map in Inkscape:

Your version may be missing the symbols for some of the points of interest, but the
names should still appear as captions.

We have a map, but that's not the end of the story. This map is a fully editable
document, so we can still alter it without losing any quality. For instance, in the
previous image, the caption for the village itself sits over The Street, due to the
placement of the node representing the village. We can now move that text in our
editor so that it doesn't overlap any other features. We can change the color, size,
or font of any feature or caption as we see fit.

Producing Customised Maps

[160]

We can also add anything we like to the map, so if we want to mark a single location
on the map, we can do it at this editing stage, rather than having to write a custom
rendering rule just for that feature. We can also delete any feature we don't want to
show on our map without affecting the data. Essentially, the only limit to our ability
to change this map is what we're able to do with our editing application.

Finally, we can produce a bitmap version of our map once all our alterations are
complete, to any size we like and in any format our editing application supports.
To do this in Inkscape, go to the File menu, and choose Export.

Customizing the rendering rules
We've got some fantastic results so far—a scalable, editable map of
Compton—without having to edit any XML files by hand. However, if we want
to use the full power of Osmarender, we need to create our own rendering rules.

As we've already seen, a map is produced using an XML rules file. This contains all
the instructions about how any features should be displayed on the finished map.

In its simplest form, a rendering rule for Osmarender is a single rule element with
a rendering instruction:

<rule e="way" k="highway" v="primary">
 <line style="stroke-width: 1px; stroke: black" />
</rule>

This rule selects any way tagged as highway=primary and renders it as a
1-pixel-wide black line. Let's have a look at how that's done:

In the rule definition, the e attribute can be either node, way, or relation to
render those elements respectively. You can also match multiple primitive
types by separating them with the bar character |, so a match for both nodes
and ways would use e="node|way". Many points of interest can be mapped
using either primitive, so for rules designed to match these features, it's best
to match both.
The k and v attributes specify the key and value of the tag that this rule
should match. You can use the * wildcard in the v attribute to match
any value.
The line element tells Osmarender to draw the selected features as lines.
The style attribute of the line element contains CSS formatting instructions
that will be included in the SVG file.

•

•

•

•

Chapter 8

[161]

In addition to line, Osmarender supports the following rendering instructions:

area draws any selected ways as a filled area, even if the way isn't explicitly
closed. You can style the outline and fill of an area.
circle draws a circle at the location of a node or at the center of a closed
way. This is often used to note the location of a feature without having a
special symbol for it.
symbol draws a graphic symbol at the location of a node or at the center
of a closed way. The symbol has to be an SVG file.
caption draws text at the location of a node or at the center of a closed way.
pathText is used to draw text along the path of a way, such as a road or
waterway, rather than as a block caption.
wayMarker draws symbols at a node, perpendicular to a way passing
through that node. This is used to display features such as gates across roads.

Let's start a simple rules file that will produce similar results to the map we
produced using Kosmos earlier in the chapter. The basic template for a rules
file looks as follows:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="osmarender.xsl"?>

<rules xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:svg="http://www.w3.org/2000/svg"
 data="data.osm"
 svgBaseProfile="full"
 scale="1"
 minimumMapWidth="0.5"
 minimumMapHeight="0.5"
 symbolScale="0.5"
 symbolsDir=".">

 <rule e="...">
 ...
 </rule>
 <defs>
 <style xmlns="http://www.w3.org/2000/svg"
 type="text/css">
 .map-background
 {
 fill: white;
 stroke: none;
 }
 </style>
 </defs>

</rules>

•

•

•

•

•

•

Producing Customised Maps

[162]

The first two lines are XML instructions and are crucial to the correct working
of Osmarender, so don't leave them out.

The rules element contains all the instructions to Osmarender. It also has some
options set in its attributes, and we've used a minimal set in our previous template.
There are more options for Osmarender, such as the ability to add a border, grid, and
scale to the map. We'll ignore these for now, but you can read the documentation for
the options at http://wiki.openstreetmap.org/wiki/Osmarender/Options.

Osmarender draws the features in our map in the same order as the rules in the
file, so put the rules for the features you want to appear behind others first, and the
features you want on top last in the rules file.

The defs element in the rules is used to add further style information to the map,
and the contents of this element are copied verbatim into the final SVG file for our
map. In this case, the only style we're setting is for the background of the map, which
we're setting to white. You can set the background to any color you like, but you
may get odd results if you don't set one at all, depending on which SVG application
you use.

Writing simple rules
Let's have a look at the rules that would produce similar results in Osmarender as
we got from Kosmos earlier in the chapter. Open the file osmarender-template.xml
in a text editor, and save it as compton.xml in the same folder as you've placed the
Osmarender files.

To render the residential area of Compton, we need to select the way tagged as
landuse=residential and render it as an area:

<rule e="way" k="landuse" v="residential">
 <area style="stroke: none; fill: #FFBBBB" />
</rule>

Here, you can see the styling we've given to the element. The stroke instruction of
none tells the renderer not to draw any outline on the area. The fill instruction tells
the renderer to use the same shade of pink that we used earlier.

We can already render our map based on just this rule. Save the file and open
a command line window. To process our rules with Osmarender, issue the
following command:

xmlstarlet tr osmarender.xsl compton.xml >compton.svg

Chapter 8

[163]

If we now open compton.svg in a web browser, we should see something like the
following image:

It's a good idea to run Osmarender and check the output after adding any rules
to your file to make sure it's producing the effects you want.

Next, we render the unclassified and residential roads in the village. Unlike Kosmos,
Osmarender won't draw any casings on roads for us, so to get the same effect, we
have to draw a black line with a slightly narrower white one on top:

<rule e="way" k="highway" v="unclassified">
 <line style="stroke-width: 5px; stroke: black; fill: none" />
 <line style="stroke-width: 4px; stroke: white; fill: none" />
</rule>
<rule e="way" k="highway" v="residential">
 <line style="stroke-width: 4px; stroke: black; fill: none" />
 <line style="stroke-width: 3px; stroke: white; fill: none" />
</rule>

We've used two line instructions in each rule to draw a white road with black
casing. We've also set the fill to none as a safety measure. Remember that
Osmarender will fill any way if told to do so, not just closed ways, so explicitly
making the fill of each way none will prevent this from happening. Remember that
when drawing lines over the top of each other like this, features are drawn on top of
each other in the order they appear in the rules file. If our two line instructions were
the other way around, we'd just get a black line.

Producing Customised Maps

[164]

Next, let's render the trunk road and its link roads using the same style. This means
we can use a single rule that matches both road types, which keeps our rules simpler:

<rule e="way" k="highway" v="trunk|trunk_link">
 <line style="stroke-width: 7px; stroke: black; fill: none" />
 <line style="stroke-width: 6px; stroke: #008000; fill: none" />
</rule>

Again, we've drawn our own casing. Finally, we draw the secondary roads:

<rule e="way" k="highway" v="secondary">
 <line style="stroke-width: 6px; stroke: black; fill: none" />
 <line style="stroke-width: 5px; stroke: #FDBF6F; fill:none" />
</rule>

We haven't yet drawn any road names, so let's add those:

<rule e="way" k="highway" v="secondary|unclassified|residential">
 <pathText k="name" startOffset="50%" dy="2.5px" style="font-family:
 Arial; font-weight: bold; font-size: 5px; text-anchor: middle"
 avoid-duplicates="true" />
</rule>

Here we've matched three road types in a single rule: secondary, unclassified,
and residential. Note that we haven't used a wildcard as we don't' want to match
the trunk road on our map. We've used a pathText instruction to draw the text
along the line of the ways we've selected. This takes several parameters as attributes:

The k attribute specifies the key of the tag whose value is to be used for the
text. In this case it's the name tag.
startOffset specifies how far along our way the text anchor should be
placed. This is normally the start of the way, but we've said we want our text
to be anchored halfway along each way. The alignment of the text against the
anchor is specified in the style for the text.
The dy attribute moves the text vertically from the line of the way. Normally,
text is drawn with our way as its baseline, but we want the text roughly
centered in the road.
The style attribute again contains CSS formatting instructions for the text.
Included in this is the text-anchor, which we've set to middle so that our
text centers itself on the anchor point. Combined with the previous offset
instruction, this places the text halfway along the road.
The avoid-duplicated attribute tells Osmarender to avoid drawing a name
twice wherever possible. In OpenStreetMap, a single road can comprise
several ways, where each has the same name tag and each would get the
name drawn on it

•

•

•

•

•

Chapter 8

[165]

Finally, we need to mark the location of Compton Village Club. We'll use a star icon
and text as before. However, we can't use the same image as before, as that was a
PNG file and Osmarender can only use SVG graphics. We'll also add the name of
the club in a caption:

<rule e="node" k="amenity" v="social_club">
 <symbol ref="star" position="center" />
 <caption k="name" dy="-1" style="font-family: Arial; font-weight:
 bold; font-size: 6px; text-anchor: middle;" />
</rule>

Here, we've selected the node representing the club and added two rendering
instructions for it. The first draws the star:

The ref attribute specifies the symbol file to use. This has to be an SVG file,
and the .svg extension is automatically added to the filename. Osmarender
looks for symbol files in the folder specified in its options using the
symbolsDir attribute of the rules element, which we've set to the current
directory. If your map uses symbols, you'll also need to add a symbolScale
attribute to rules set this option, which we've set to 0.5. If you omit either
of these options, your symbols won't get included in your map.
The position attribute specifies where relative to the node representing the
feature the symbol should be placed. We've set this to center.

We've finished our rendering rules, so let's run Osmarender again and look at
the results:

•

•

Producing Customised Maps

[166]

Although the features are all the right width and the text the right height, all the
features are squashed together and the map doesn't look good. To space everything
out, we use the scale option, which we originally set to 1. Altering the scale option
changes the distance between features but not the effects of any rendering instructions,
so the line widths and text sizes stay the same no matter what scale is set to.

Increase scale to 3 and rerun Osmarender. Refresh your view of the map file, and
you should see something like the following screenshot:

Chapter 8

[167]

Everything is much more spaced out; the map itself is larger and easier to read.
It's still not perfect, and some changes to the formatting would bring a further
improvement in the appearance of the map. Even if we can't get Osmarender itself
to produce the exactly results we're looking for, we can still edit the map by hand
to put the finishing touches to it.

Using CSS classes for style
As we've already seen, you can include style information in a rules file that
Osmarender will put in the finished SVG document. We can also use this to make
our rules files simpler by putting all the formatting information for our map in
classes and referencing those in our rendering rules. This has a couple of advantages:

If there are features with different tags that we want to render in the same
way, we don't have to write out all the formatting instructions each time
All the formatting instructions are kept in a single part of the rules file,
making it easier for a designer to edit the CSS without needing to understand
the structure of a rules file

To make a rendering rule use a class, you add the formatting instructions to the
style element in the defs section of your rules file. Choose a name for your class:

<defs>
 <style>
 .trunk-road
 {
 stroke-width: 7px;
 stroke: #008000;
 fill: none;
 }
 .trunk-road-casing
 {
 stroke-width: 13px;
 stroke: black;
 fill: none;
 }
 </style>
</defs>

•

•

Producing Customised Maps

[168]

Now, instead of adding a style attribute to the line for trunk roads, add a class
attribute instead, with a value of our class name:

<rule e="way" k="highway" v="trunk|trunk_link">
 <line class="trunk-road-casing" />
 <line class="trunk-road" />
</rule>

Note that we can put the classes in the style section of the rules file in a different
order to the rules that use them and still get the same results.

Nested rules
Osmarender allows you to nest rules to select features by more than one key.
The best example of this is places of worship, where a different symbol is used
depending on the religion, and perhaps even denomination, of the place of worship.

To select just a Christian place of worship so we can use a cross symbol to display it,
we use two nested rules as shown in the following code:

<rule e="node|way" k="amenity" v="place_of_worship">
 <rule e="node|way" k="religion" v="christian">
 <symbol ref="church" />
 </rule>
</rule>

Here, in the preceding code, the outer rule selects any place of worship, whether
mapped as a node or a closed way. The inner rule refines this by selecting only
those features that are also tagged as Christian places of worship, and the rendering
instruction inside this rule will only apply to those features. Note that you still have
to include an e attribute for the inner rule, even though our outer rule has already
selected the primitive types we're interested in. Without this attribute, our inner
rule wouldn't select any features.

If we liked, we could nest rules for other religions inside the outer rule alongside our
existing rule, as follows:

<rule e="node|way" k="amenity" v="place_of_worship">
 <rule e="node|way" k="religion" v="christian">
 <symbol ref="church" />
 </rule>
 <rule e="node|way" k="religion" v="jewish">
 <symbol ref="synagogue" />
 </rule>
 <rule e="node|way" k="religion" v="muslim">
 <symbol ref="mosque" />
 </rule>
</rule>

Chapter 8

[169]

You can nest rules further than this if you need to, and this is used to a great effect in
the rules for the Osmarender layer on openstreetmap.org.

Creating default rules using <else>
We've seen that we can nest rules to match more than one tag for a feature, but we
can also create rules for features that don't match a particular tag using an else rule.
What this allows you to do is use a different rendering for one special type of feature,
and use a more general rendering for any other similar features.

For instance, if we wanted to use a special symbol to show the cafés that have WiFi
available, but still show other cafés on our map, we could use the following rules:

<rule e="node|way" k="amenity" v="cafe">
 <rule e="node|way" k="wifi" v="yes">
 <symbol ref="cafe-with-wifi" />
 </rule>
 <else>
 <symbol ref="cafe" />
 </else>
</rule>

An else instruction only applies to features that do not match the rule immediately
proceeding it, but do match any enclosing rule. This means you can't have a list
of nested rules with a catch-all else rule at the end. So, in a set of rules like
the following:

<rule e="node|way" k="amenity" v="place_of_worship">
 <rule e="node|way" k="religion" v="christian">
 <symbol ref="church" />
 </rule>
 <rule e="node|way" k="religion" v="jewish">
 <symbol ref="synagogue" />
 </rule>
 <rule e="node|way" k="religion" v="muslim">
 <symbol ref="mosque" />
 </rule>
 <else>
 <symbol ref="generic-pow" />
 </else>
</rule>

Producing Customised Maps

[170]

The else rule would apply to any features tagged as amenity=place_of_worship,
but not tagged with religion=muslim, which isn't the effect you'd want to achieve.
It would match all the Christian and Jewish places of worship as well. To render any
place of worship we didn't have a specific symbol for using a generic symbol, we'd
need to use rules like the following:

<rule e="node|way" k="amenity" v="place_of_worship">
 <rule e="node|way" k="religion" v="christian|jewish|muslim">
 <rule e="node|way" k="religion" v="christian">
 <symbol ref="church" />
 </rule>
 <rule e="node|way" k="religion" v="jewish">
 <symbol ref="synagogue" />
 </rule>
 <rule e="node|way" k="religion" v="muslim">
 <symbol ref="mosque" />
 </rule>
 </rule>
 <else>
 <symbol ref="generic-pow" />
 </else>
</rule>

Here, we've matched every value of religion=* for which we have a symbol in
one rule and nested religion-specific rules inside that, and provided an else rule
to match everything else.

More complex rules
We've just created a very simple map with Osmarender, but far more complex sets
of rendering rules are possible. Some of the features used in the Osmarender layer
on openstreetmap.org include:

Pattern fills for areas
Line cap styles
Dashed and dotted lines
Transparency

These are all features of CSS, and to get the most out of them you'll need a good
knowledge of CSS. Although there is more documentation for Osmarender on the
OpenStreetMap wiki, the best way of learning what's possible is to read more about
CSS itself and how it applies to SVG, and by looking at the stylesheets used for the
Osmarender layer on openstreetmap.org, all of which can be found at http://svn.
openstreetmap.org/applications/rendering/osmarender/stylesheets/.

•

•

•

•

Chapter 8

[171]

Summary
There are several ways of producing a single customized map from OpenStreetMap
data, depending on which platform you want to use, the amount of customization
you need, and your skill level:

If you are happy with the standard map renderings, and don't need to
add much extra information, just use the exporter at openstreetmap.org.
This doesn't involve setting up any extra software, can be used from any
computer, and requires little technical skill.
Kosmos is a useful tool for Windows users. It allows you to render maps
without extensive technical skills, and the rules are relatively easy to read on
the wiki. You can use it to produce bitmap images of the size you want, in
the style you want. However, it does have some bugs, only runs reliably on
Windows, and isn't being developed any further.
Osmarender is the most powerful and flexible renderer we've looked at here,
but also the most difficult to operate and customize. It uses open technologies
and tools and can produce very finely crafted results in the right hands, but
needs a thorough knowledge of Cascading Style Sheets and Scalable Vector
Graphics to get the very best out of it.

In the next chapter, we'll look at how you can use OpenStreetMap data in
applications that don't understand the native OpenStreetMap XML format,
which includes some viewing and rendering applications.

•

•

•

Getting Raw OpenStreetMap
Data

We've looked at some small-scale uses of OpenStreetMap data covering a single
village. This is fine up to a point, but you need larger amounts of data than this for
any reasonably serious application. There are many ways of getting at the raw data
in the OpenStreetMap database, depending on how much you want, how often
you want it, and how much processing you're prepared to do yourself. The main
methods are:

Planet files
The main OpenStreetMap API
The Extended API (XAPI)

Each of these provides data in a different way, each with advantages and
disadvantages. We'll discuss these in this chapter, and you should get an
idea of which method will suit your application best.

As all of these methods provide data using Extensible Markup Language (XML),
it will help you understand some of the examples given if you have a basic
understanding of XML, but it is possible to retrieve, process, and use OpenStreetMap
data without ever seeing a single line of XML, provided you use the right tools. This
chapter only discusses ways of getting the data, and in the next chapter we'll look
at some ways of post-processing this data into a form that's more suitable for using
with applications.

•

•

•

Getting Raw OpenStreetMap Data

[174]

Although you can use a normal web browser to get data from these sources,
sometimes more data is returned than many browsers can cope with, and you'll
probably want to do more with the data than just look at it. To retrieve data and
store it in a file, you can use a command-line HTTP utility, of which wget is one of
the most widely used. This program is included in most Linux distributions, and
is available in virtually all Unix-like operating systems and Microsoft Windows.
Installing wget on Linux is best done through the local package manager, and a
Windows executable version is available at http://gnuwin32.sourceforge.net/
packages/wget.htm. On Mac OS X, you can install wget from source, or via a
third-party package manager such as MacPorts (http://www.macports.org/).

Planet files
A Planet file is a dump of the entire OpenStreetMap database to an XML file,
containing the latest version of each feature in the world at the time it was produced.
If you need OpenStreetMap data in significant quantities, downloading a Planet file
is the best way of getting it, and for very large quantities of data, it is the only way
of doing so.

We'll go through how you can obtain a planet file or other files based on it here. We'll
cover the tools you can use to process a planet file in the next chapter.

The main Planet site
All Planet files are initially stored at http://planet.openstreetmap.org/. At
present, one full planet file is produced every week, usually on Thursday morning
GMT. Between full Planet files, a series of files containing the edits made to the
database are produced, called diffs, short for differences, after the files used to change
the source code of software. OpenStreetMap diffs use a customized file format, and
you have to use tools specifically written for OpenStreetMap to process them.

As you can imagine, Planet files are massive. As of March 2010, the size for a
compressed Planet file was 8.1 GB. Uncompressed, this would be around 160 GB,
but fortunately most tools that process planet files can do so without decompressing
the file. This means downloading a planet file using a standard web browser is
impossible, so you'll need to use a utility such as wget to retrieve a planet file.

Chapter 9

[175]

There's no fancy interface on the planet website, just a list of files and folders,
so you need to know your way around. The planet files themselves are stored
in the root folder, with a filename of the form planet-yymmdd.osm.bz2, where
yymmdd is the date the file was produced. The latest planet file is also available as
planet-latest.osm.bz2, so you can always get the latest full planet file using the
URL, http://planet.openstreetmap.org/planet-latest.osm.bz2. Hence, to
retrieve this using wget, you'd use the following command:

wget http://planet.openstreetmap.org/planet-latest.osm.bz2

Checking a planet file's integrity
For each planet file produced, an MD5 checksum is generated, which you can use
to check the integrity of your download. This is highly recommended, as processing
a planet file usually takes a long time, and won't necessarily fail straight away if
your file is corrupted. The checksum file always has the same filename as the
corresponding data file with .md5 appended, so the checksum file for the latest
planet file is at http://planet.openstreetmap.org/planet-latest.osm.bz2.
md5. You can check the file for corruption by downloading the planet file and its
checksum to the same folder, and running a checksum utility. On Linux, this is
normally md5sum, and Microsoft provides a similar utility for Windows which
you can download from http://bit.ly/md5sumwin.

To check the integrity of the file on Linux, use the following command:

md5sum -c planet-latest.osm.bz2.md5

This will check the file and give you an indication whether the file is OK.

On Windows, assuming you're using Microsoft's utility, use the following command:

fciv planet-latest.osm.bz2

This gives you the checksum for the file:

//

// File Checksum Integrity Verifier version 2.05.

//

68585722288ab8a4ad1ebe8a06c5f699 planet-latest.osm.bz2

Compare this against the one stored in the checksum file.

If you do find that your planet file download is corrupted, check on the
OpenStreetMap wiki, the developer mailing list, or in the IRC channel
to ensure the file on the server isn't corrupt before retrying.

Getting Raw OpenStreetMap Data

[176]

Diff files
Besides the full planet files, other data is available for download from the planet
website. This includes the diff files, dumps of changeset descriptions, and some
experimental data file formats.

The most important of these are the diffs, which allow you to keep your local copy of
the OpenStreetMap database up-to-date. As it's only practical to produce a planet file
once a week, the changes made to the data in between are released as diff files, which
contain the edits made in any one day, hour, or minute. By applying these changes
to a planet file, you can keep it in sync with the true state of the database.

The diff files are in osmChange format (.osc) and are usually compressed using
gzip to reduce their size, so a file will have a .osc.gz extension. The osmChange
format is very similar to the standard OpenStreetMap XML format, but includes
whether a feature is being added, changed, or deleted.

The hourly and minutely diffs contain every edit made during the period they cover,
even if they cancel each other out. The daily diffs only contain the net results of the
edits made during the period they cover at present, although this may change in the
future. This doesn't really matter for users of the data, as either method will produce
an up-to-date database.

The process of downloading and applying diffs can be completely automated using
Osmosis—a tool for manipulating OpenStreetMap data in many formats. We'll cover
how to do this in the next chapter.

There are some other files stored on the planet site, such as the experimental full
history dumps. While you're welcome to download any of these files, they're mainly
there to support development of new tools, and shouldn't be used in production
applications yet.

Mirror sites
The central planet site can get overloaded, and as it's based in the UK, can be on
the wrong side of a slow internet link for some people around the world. A series
of mirror sites has been set up around the world to make access to the planet file
quicker and more reliable. The full list of mirror sites is kept on the OpenStreetMap
wiki at http://wiki.openstreetmap.org/wiki/Planet.osm#Mirrors, which
includes both full mirrors of the planet site, and some that only carry the planet
files but not other types.

Chapter 9

[177]

Planet extracts
Not everyone wants or needs data for the entire planet, or for every type of feature.
While it's possible to process the planet file using tools such as Osmosis to produce
subsets of the data, it's much simpler to download a prepared extract of the
planet. There are a number of sources for these, mostly from companies providing
OpenStreetMap-related services, but some local OpenStreetMap organizations
provide extracts for their own countries.

One source of extracts is German consultancy Geofabrik, which provides continent
and country extracts of OpenStreetMap data at http://download.geofabrik.de/
osm/. The data is provided in both native OpenStreetMap XML format and as ESRI
Shapefiles. Not every country has its own file, and for some less-mapped regions,
the only way of getting the data is through the continent extract.

CloudMade also provides extracts of OpenStreetMap data in native XML and
other formats. These are available at http://downloads.cloudmade.com/ and
are again organized by continent. In addition to native format data, CloudMade
provides ESRI Shapefiles, map files for Garmin GPS receivers, point of interest files
for TomTom navigation devices, data files for Navit, as well as other subsets of the
OpenStreetMap data.

Some local groups within OpenStreetMap produce their own extracts. At present, the
Netherlands and Australia groups produce extracts covering the Benelux countries
and Australia, respectively. For a comprehensive list of extract providers, refer to
http://wiki.openstreetmap.org/wiki/Planet.osm#Extracts.

If you need an extract that's not already provided by one of these sources, you may be
able to pay one of the commercial companies that provide OpenStreetMap services to
produce an extract according to your exact requirements. Refer to http://bit.ly/
osmservices for a list of companies offering such services.

Note that the license used by OpenStreetMap means that even if you have to pay
to have a custom extract made, once you have the data, you're free to do whatever
you like with it. Bear in mind that for areas that are being actively mapped, a single
extract will go out of date very quickly.

OpenStreetMap's REST API
The main OpenStreetMap Application Programming Interface (API) is a web service
that provides direct access to the OpenStreetMap database, and for virtually all
purposes is the only way of accessing the database directly. All the editors we
considered in Chapter 5 use this API to download and upload data.

Getting Raw OpenStreetMap Data

[178]

The version of any feature you get from the main API is always the most up-to-date
and is authoritative; that is to say, if there's a conflict between any OpenStreetMap
data you have from another source and the API, you should always use the API data.
The main API is also currently the only way of programmatically examining any
feature's editing history and a particular user's actions, although development work
is taking place to make this data more accessible.

Usage policy on the main API
The main OpenStreetMap API is provided to create and maintain the
database, rather than to support any applications that use the data. The
servers the API runs on are provided by the OpenStreetMap Foundation,
supported only by donations. If you aren't planning to edit the database
in any way, then you should avoid using the main API to get data that's
available through other methods. Repeated use of the API to retrieve
large amounts of data will result in you being blocked from using the
OpenStreetMap servers, possibly without warning.

The API itself uses the Representational State Transfer (REST) style of web services.
In a REST web service, each piece of data is given its own Uniform Resource
Identifier (URI), better known as a web address, and all interaction with that data is
through its URI. This contrasts with other styles of web services, such as the Simple
Object Access Protocol (SOAP), where a single URI represents a function you want
the service to perform. The main effect is that in REST web services you can normally
rely on being able to link to a single piece of information. You can read more about
REST programming at http://www.ibm.com/developerworks/webservices/
library/ws-restful/.

It is possible to run your own copy of the OpenStreetMap API on a local server, and
all the operations will be exactly the same bar the server name used. If you do run
your own server, it won't contain the authoritative version of any feature, but you
will get a much faster access to the data.

We're mostly going to cover the operations for reading data from the API in this
chapter, although there are other operations that create, update, and delete data as
well. In contrast to read operations, anything that alters the database in any way
needs authenticating to a current openstreetmap.org account using a username
and password, or via a web-based authentication system called OAuth.

The API also has a conflict detection system that prevents two mappers from editing
the same feature at the same time, and this means it's not trivial to write data to the
API by hand.

Chapter 9

[179]

If you're thinking of writing an application that adds or changes data, you can
read about the operations in the main API documentation at http://wiki.
openstreetmap.org/wiki/API_v0.6 for the current version. You should also
contact the developer mailing list with your ideas to ensure you're not duplicating
work already done, or planning to do something in a way that will overload the
API servers.

Retrieving an individual feature
You can retrieve the data for any OpenStreetMap feature by accessing its URI using
an HTTP request. The URI takes the form:

http://api.openstreetmap.org/api/<apiversion>/<type>/<id>

Here, apiversion is currently 0.6, type is one of node, way, or relation, and id is
the numerical ID of the element you want to retrieve. For instance, to get the node
representing the village of Compton from the previous chapters using wget, you
would use the following command:

wget -O compton-node.osm http://api.openstreetmap.org/api/0.6/
node/30361710

The -O option in the command line tells wget to save the returned document in a file
named compton-node.osm, otherwise it would be saved in a file named 30361710.
This should produce an output like the following:

--2010-07-29 12:29:48-- http://api.openstreetmap.org/api/0.6/
node/30361710

Resolving api.openstreetmap.org... 128.40.168.98, 128.40.168.105

Connecting to api.openstreetmap.org|128.40.168.98|:80... connected.

HTTP request sent, awaiting response... 200 OK

Length: 335 [text/xml]

Saving to: `compton-node.osm'

100%[======================================>] 335 --.-K/s in 0s

2010-07-29 12:29:59 (25.2 MB/s) - `compton-node.osm' saved [335/335]

Similarly, to get the way representing The Street, the main road through Compton,
you would use:

wget -O thestreet.osm http://api.openstreetmap.org/api/0.6/way/39429583

Getting Raw OpenStreetMap Data

[180]

Finally, to get the relation we created earlier to group the separate parts of
Spiceall, use:

wget -O spiceall.osm http://api.openstreetmap.org/api/0.6/relation/332067

For each of these calls, you get an XML file containing the details for the feature in
question, but only that feature. For The Street, we get a file like the following:

<?xml version="1.0" encoding="UTF-8"?>
<osm version="0.6" generator="OpenStreetMap server">
 <way id="39429583" visible="true" timestamp="2009-11-20T10:44:55Z"
 version="4" changeset="3167314" user="Jonathan Bennett"
 uid="5352">
 <nd ref="27043724"/>
 <nd ref="81551586"/>
 .
 .
 .
 <nd ref="27075656"/>
 <tag k="highway" v="secondary"/>
 <tag k="maxspeed" v="30mph"/>
 <tag k="name" v="The Street"/>
 <tag k="ref" v="B3000"/>
 </way>
</osm>

This contains all the tags for The Street and a list of the nodes used, but no details of
the nodes themselves. While each node could be retrieved using its own URL, this
would be laborious and would create a disproportionate load on the servers. Instead,
to make getting all the necessary data for a feature, there's a shortcut that lets you get
all data associated with a feature. If you add /full to the end of a URI for a way or
relation, all related nodes, and in the case of relations, ways will be returned. So, the
following command returns every piece of data you need to draw Spiceall on a map:

wget -O spiceall-full.osm http://api.openstreetmap.org/api/0.6/
relation/332067/full

For nodes, there's no full option, as no other elements are needed for a feature
described by a node. However, it is possible to get all the ways that use a particular
node using a different call, by adding /ways to the end of a node URI, as follows:

wget -O spiceall-junction.osm http://www.openstreetmap.org/api/0.6/
node/27455427/ways

Chapter 9

[181]

This returns the details of ways that use that node, in this case, the node at the
junction of Spiceall and The Street. This isn't a full set of data, just the ways, so if
you want to draw a map, you'll still need to fetch the full set of nodes for each way.

Similarly, there's a call that fetches all the relations that a feature is a member of,
which uses a similar syntax:

wget -O spiceall-relations.osm http://api.openstreetmap.org/api/0.6/
way/4480421/relations

This will get the relations for one section of Spiceall, so in this case it will return our
relation for the whole of Spiceall. As with the ways call, this only returns the relation
itself, not any members.

Getting a feature's editing history
The OpenStreetMap database contains every version of every feature ever created,
even those that have since been deleted. Normally, only the current version of
any feature is returned by the API when you ask for it, and for drawing maps or
any other normal use of the data, this is what you should use. However, if you're
interested in when a particular tag was added to a feature or who added it,
analyzing the history is the only accurate way to do it.

Remember that a feature's editing history doesn't necessarily reflect
the way the feature has changed in the real world. OpenStreetMap's
crowdsourced approach to data means that any change is just as likely to
be a mapper making the data more accurate as representing a change on
the ground.

You can get the editing history for any individual feature by appending /history
to its URI. Hence, for the editing history of The Street in Compton, you would use
the following command:

wget -O TheStreet-history.osm http://api.openstreetmap.org/api/0.6/
way/39429583/history

This returns an OpenStreetMap XML file containing every version of this feature,
each marked with a version number. The file will normally have the versions listed
in ascending order, but you shouldn't assume this to be the case.

Each version of every feature has a visible attribute that in most cases will have a
value of true. However, if the feature was deleted, the last version will have a value
of false. Occasionally, a deleted feature may be restored.

Getting Raw OpenStreetMap Data

[182]

You can also retrieve a specific version of a feature by appending its version number
to the end of the URI, as shown in the following command:

wget -O TheStreet-v2.osm http://api.openstreetmap.org/pi/0.6/
way/39429583/2

This will get the data for the second version of the data for The Street. Note that
again this only gets the data for the way, not its nodes.

There's also currently no simple way of getting the correct version of the nodes
used by the version of the way you retrieve. You can get a list of every feature
edited at the same time as your way, but that won't necessarily give you that
information. Developers are working on possible solutions to this, but it may
need to be implemented outside the main API for performance reasons.

Retrieving all features in an area
Getting the data for a single feature isn't normally that useful, so there's an API call
that returns every feature for a given bounding box. This is known as the map call,
and takes the following form:

http://api.openstreetmap.org/api/0.6/map?bbox=<left>,<bottom>,<right>
,<top>

Here left, bottom, right, and top are the edges of the bounding box given
in decimal WGS84 degrees. Hence, to get every feature for the whole village
of Compton, you'd use the following command:

wget -O compton.osm
http://api.openstreetmap.org/api/0.6/map?bbox=-0.64,51.21,-0.615,51.22

This call returns:

All nodes within the bounding box
All ways which have at least one node within the bounding box
All remaining nodes for any of the ways included
Any relations that have members within the bounding box, but not any
members of that relation that wouldn't otherwise be included

This means certain features aren't returned that you might expect. These include
the following:

Any ways that cross the bounding box, but do not have a node within it
The remaining members of any relation included in the bounding box

•

•

•

•

•

•

Chapter 9

[183]

On the main OpenStreetMap servers, the maximum bounding box you can request
using the map call is limited to an area of 0.25 square degrees, or a maximum of
50,000 nodes. If your request exceeds either of these limits, you'll get no results.
If you need to retrieve data for a larger area than this, you will need to use the
extended API, or XAPI.

What the map call also doesn't allow you to do is cross the antimeridian—that is,
180 degrees longitude—in a single query. In the unlikely event that you need a set of
data from both sides of the antimeridian, you'll need to perform two separate queries
and combine the two results.

The extended API (XAPI)
In addition to the normal OpenStreetmap API, there is an extended API (XAPI)
that gives you the ability to query OpenStreetMap data for particular sets of data.
For instance, you can request data that has specific tags, covers a specific area, or is
used in a particular combination of primitive elements. It's the most versatile way
of getting customized sets of data from OpenStreetMap, and if you don't have the
resources to set up a local copy of the OpenStreetMap database, XAPI is your next
best way of getting the data you need.

XAPI doesn't run on the main OpenStreetMap servers, but instead on separate
machines, so that the main servers aren't overloaded. There are several instances
of XAPI running at present, each with different update frequencies, availability,
and capacity.

A complete list of current XAPI servers is kept on the OpenStreetmap wiki at
http://wiki.openstreetmap.org/wiki/XAPI, including details of how often
they're updated from the main database. The aim is to have XAPI serve data no more
than 10 minutes old. However, as with some other OpenStreetmap-related services,
XAPI is provided on a best-effort basis only, and you shouldn't assume that any or
all of the XAPI servers will always be available or up-to-date.

XAPI queries are slow
Most non-trivial calls to XAPI will take several minutes to produce a
result. This is caused by the technical requirements of XAPI itself and the
hardware available to run it on. This means using a browser to perform
XAPI queries is in most cases impractical, and you will need to use a
command line utility, such as wget, if you're performing the queries by
hand. If you are retrieving data from XAPI within an application you've
written yourself, you need to ensure that any time-out for HTTP requests
is set to a long enough period for the queries to complete.

Getting Raw OpenStreetMap Data

[184]

Standard API calls
XAPI supports most of the basic API calls just covered. You can get the current
version of any individual feature from XAPI in exactly the same way as the main
API. Using the instance of XAPI hosted alongside the main servers, means we can
get the data for The Street in Compton from the URI http://xapi.openstreetmap.
org/api/0.6/way/39429583.

What you can't use are any of the options for a feature, such as the history or version
calls; that information is only available through the main API. You automatically
get the nodes for any ways and members for any relations your query returns,
so the /full option is unnecessary.

Query by primitive
In addition to the standard API calls that retrieve specific features by numerical ID,
XAPI can return every instance of each primitive type, normally used in conjunction
with other filters. URIs for queries take a similar form to standard API calls, but omit
the numerical ID from the path. In addition to node, way, and relation, you can also
query XAPI for all matching features, irrespective of primitive using the * wildcard:

http://xapi.openstreetmap.org/api/0.6/*[...]

This will return any items in the database matching the filters you specify, including
any other features they depend on, so for ways you get the required nodes, and for
relations you get all members. This means you can normally use the results of an
XAPI query directly in an application without needing to download any more data.

Map query
XAPI allows you to retrieve all data in a bounding box using the same call as
the main API, but allows a far larger bounding box of up to 100 square degrees.
Consider the following command:

wget http://xapi.openstreetmap.org/api/0.6/map?bbox=-25.09,62.94,-
12.55,67.42

This will fetch all the data for Iceland, including any outlying islands. Retrieving this
amount of data wouldn't be possible using the main API, and even using XAPI, it's
not a quick operation. Running this command took just over an hour to retrieve the
88MB of data for Iceland when we tested it.

The map query doesn't support any further filtering of the data before it's returned.
It's also possible to use a bounding box in addition to other filters in XAPI, but this
has a slightly different syntax.

Chapter 9

[185]

Filtering data by area
The previous map call is useful, but other than a larger area, it doesn't offer anything
the main API doesn't. XAPI's power is in being able to combine a bounding box with
other filters to get more specific sets of data.

The syntax of a bounding box filter is the same as that of a map query, except that
the filter is surrounded by square braces. For example, to get the same data at the
previous map query, you'd use the following command:

wget-O iceland.osm http://xapi.openstreetmap.org/api/0.6/*[bbox=-
25.09,62.94,-12.55,67.42]

This should return exactly the same set of data as the preceding map call, but also
serve as a starting point for us to get more specific sets of data from XAPI. For
instance, we can combine the same bounding box filter with a primitive query
to retrieve just the ways in that area:

wget -O iceland-ways.osm http://xapi.openstreetmap.org/api/0.6/way[bbox=-
25.09,62.94,-12.55,67.42]

As previously noted, this will also return all the nodes needed to draw the ways.
Any nodes used to map points of interest, any other unconnected nodes, and any
relations will be omitted.

Filtering by tag
XAPI allows you to filter the data according to which tags features have. This
is probably the most powerful part of XAPI, and the right combination of filters
can get you exactly the right set of data for your map or application.

You can specify that any data returned must have a tag with a specific key, or a
specific key and value. The syntax of a tag filter is key=value, surrounded by square
braces, and value can take a wildcard value. XAPI used to support wildcards in the
key of a tag, but support for this has been discontinued for performance reasons.

We can take our previous Iceland example further by querying for ways with specific
tags. Any coastline should be made up of ways tagged with natural=coastline.
We can get the data for Iceland's coastline by combining a tag filter with our
bounding box filter, as follows:

wget -O iceland-coastline.osm http://xapi.openstreetmap.org/api/0.6/
way[bbox=-25.09,62.94,-12.55,67.42][natural=coastline]

D
ow

nl
oa

d
fr

om
 W

ow
! e

B
oo

k
<

w
w

w
.w

ow
eb

oo
k.

co
m

>

Getting Raw OpenStreetMap Data

[186]

After a short delay we get back the 14MB data of the coastline. This is a small enough
amount of data for one of the desktop editors to handle, and following is what
the coastline looks like in Merkaartor:

We could also get any road, footpath, and other route in Iceland by using
a wildcard query, specifying any features tagged as highway=* within our
bounding box.

wget -O iceland-roads.osm http://xapi.openstreetmap.org/api/0.6/
way[bbox=-25.09,62.94,-12.55,67.42][highway=*]

Tag filters can also match multiple values, separated with the bar character |. If we
wanted just an overview of the major roads in Iceland, we could use a query like
the following:

wget -O iceland-major-roads.osm http://xapi.openstreetmap.org/api/0.6/
way[bbox=-25.09,62.94,-12.55,67.42][highway=motorway\|trunk\|primary]

Chapter 9

[187]

Note that when using wget under a Unix-like operating system, the bar characters
need escaping using a backslash to prevent the shell from interpreting them as a
Unix pipe command.

You can also match multiple keys using the bar character (|), although this
is unlikely to produce the results you're looking for, except in a few specific
circumstances. These tend to be where different groups of mappers have used
different keys to map the same type of feature, although this doesn't happen very
often, and is usually corrected when it does. Imagine that cinemas had been tagged
using both amenity=cinema and leisure=cinema, and you needed all cinemas;
you could use the filter [amenity|leisure=cinema] to find them.

Although you can match multiple values for a single key in a tag filter, you're only
allowed one tag filter per query, which limits how specific a query can get. If you
wanted to run a query to find every Synagogue in an area, ideally you'd use two tag
filters to match both amenity=place_of_worship and religion=jewish, but this
isn't possible. While you could just match the religion=jewish tag, this will also
include any Jewish burial places that have been mapped, which may not be what
you want. If you're getting data to render into a map, one workaround would be to
use this filter anyway, then make sure your rendering rules ignore any features that
don't have both tags.

Filtering by associated elements
A combination of element, bounding box, and tag filters should be able to give you
most sets of data you're likely to want to render to a map or use in an application,
but XAPI still has another type of filter that is particularly useful when trying to
troubleshoot a particular set of data, the relationship the data has to other elements.
The XAPI documentation calls these "child element" filters, but the description isn't
entirely accurate.

The list of filters is as follows:

/api/0.6/way[nd] selects ways that have at least one node
/api/0.6/way[tag] selects ways that have at least one tag
/api/0.6/way[not(nd)] only selects ways that do not have any nodes
/api/0.6/way[not(tag)] only selects ways that do not have any tags
/api/0.6/node[way] selects nodes that belong to at least one way
/api/0.6/node[not(way)] selects nodes that do not belong to any way
/api/0.6/node[not(tag)] selects nodes that do not have any tags

•

•

•

•

•

•

•

Getting Raw OpenStreetMap Data

[188]

/api/0.6/relation[node] selects relations that have at least one
node member
/api/0.6/relation[way] selects relations that have at least one
way member
/api/0.6/relation[relation] selects relations that have at least one
relation member
/api/0.6/relation[not(node)] selects relations that do not have any
node members
/api/0.6/relation[not(way)] selects relations that do not have any
way members
/api/0.6/relation[not(relation)] selects relations that do not have any
relation members

Note the slight change in syntax between the /way[nd] and /relation[node] calls.
Note also that if you're using a command-line client, such as wget, with these filters,
you'll need to escape the parentheses with a backslash.

The most obvious use of these filters is to find incorrect data. Ways should always
consist of two or more nodes, so the following call should never return anything:

http://xapi.openstreetmap.org/api/0.6/way[not(nd)]

If you run this query in conjunction with a bounding box, it will tell you of any data
in that area that could cause rendering problems.

Some tags for nodes only make sense if the node is part of a way, such as
highway=mini_roundabout, so any node that isn't part of a way should
never have that tag. The following query will return any that do:

http://xapi.openstreetmap.org/api/0.6/node[not(way)][highway=mini_
roundabout]

Another example would be a turn restriction modeled using a relation. A turn
restriction is tagged using type=restriction, so the following query will find
any such relations without the node required:

http://xapi.openstreetmap.org/api/0.6/relation[not(node)][type=restri
ction]

Hopefully, this query returns no results, as there should be no such relations in
the database.

•

•

•

•

•

•

Chapter 9

[189]

Filter by user activity
One final way of filtering data in XAPI is by when and by whom it was last edited.
Again, this is mostly of interest when you're troubleshooting data or managing
vandalism in the OpenStreetMap database, rather than creating applications that
use the data.

The user filters are [@user=<username>] or [@uid=<user id>] to find features
that were last edited by a particular user, or [@changeset=<id>] to find features
that were last edited in a particular changeset.

For instance, consider the following query:

wget -O jonathan-bennett.osm http://xapi.openstreetmap.org/api/0.6/*[@
uid=5352]

This will return every feature in the OpenStreetMap database that was last edited
by the author. This should be a range of features scattered around the UK.

Similarly, you can get any features last changed in changeset number 3265548,
which makes a few changes in Compton using the following query:

wget -O changeset-3265548.osm http://xapi.openstreetmap.org/api/0.6/*[@
changeset=3265548]

Note that while this will return a full set of data for the features in this changeset,
including the nodes for any ways, they will be the latest version of those nodes,
rather than the version that was current at the time of the changeset.

If you encounter edits to the OpenStreetMap that are clearly vandalism, you
can use a combination of these queries to find other edits that the same mapper
has made.

Summary
Given the number of options available, you should always be able to get
OpenStreetMap data that's at most a week old. This contrasts with proprietary
geodata providers where the data could be months, possibly years out-of-date,
expensive, and with restrictive license conditions attached. Getting customized
subsets of data would probably be an additional expense. With OpenStreetMap,
it's easy and free.

Getting Raw OpenStreetMap Data

[190]

Choose the method of getting data that suits your needs best:

If you need country-sized sets of data, use the planet file or a pre-compiled
extract file.
If you only need specific sets of features or smaller areas, rather than a whole
country, use XAPI.
To get the most up-to-date version of a feature you know has changed
recently, use the main API.

With OpenStreetMap, you get freedom to do things the way they suits you. You can
download the whole dataset ready for processing, retrieve subsets of data for specific
purposes, and even get individual features directly from the database. Even if you
find an error in the data, you're still able to edit it yourself to correct the problem
and share the fix with everyone else using the data.

In the next chapter, we'll look at one of the main tools used by OpenStreetMap itself
and others using the data to transform it into more usable formats.

•

•

•

Manipulating OpenStreetMap
Data using Osmosis

If you're going to use large amounts of OpenStreetMap data in a project, whether
that's a large area or very detailed mapping of a smaller area, you'll probably need
to change the data in some way before you can use it. Often this involves only
using a subset of the data available, whether that's based on area, or the types
of features included.

In this chapter, we'll look at a tool that is used heavily within OpenStreetMap
to manipulate data from planet files or extracts, or databases containing
OpenStreetMap data, called Osmosis.

What is Osmosis?
Osmosis is a command-line Java application that's often called the "Swiss Army
Knife" of OpenStreetMap. It can perform a number of tasks to manipulate
OpenStreetMap data in some way, and thanks to its plugin-based architecture, can
be extended to perform new tasks. For many large-scale uses of OpenStreetMap data,
Osmosis is the first tool you'll use before trying to render a map or use the data in
some other way. For some tasks, it's the only way of getting the job done.

Some examples of what Osmosis can do include:

Extracting data inside a bounding box or polygon
Filtering the data based on primitive type and tags
Splitting one large OpenStreetMap file into several smaller ones
Importing data into an OpenStreetMap server
Generating a list of changes between two OpenStreetMap files
Applying diff files to a planet file or database to keep it up-to-date

•

•

•

•

•

•

Manipulating OpenStreetMap Data using Osmosis

[192]

We'll cover a simple example of each of these tasks.

Osmosis itself is open source software, released into the public domain. This means
that not only can you use it without restriction, you can also incorporate the code
into your own products without having to make the resulting software open source
as well.

Setting up Osmosis
You can run Osmosis on any platform that has Java 1.6. To check which version of
Java (if any) you have installed, use the following command:

java -version

If you don't have version 1.6 installed, you can download it for Windows and Linux
from http://www.java.com/, and many Linux distributions also allow you to
install Java via their package managers. On Mac OS X, you need to use the built-in
software update to get the latest available version of Java. However, Java 1.6 is not
available for PowerPC or early Intel-based Macs.

Our examples use version 0.35 of Osmosis, which you can download in either ZIP or
GZIP format:

http://dev.openstreetmap.org/~bretth/osmosis-build/osmosis-bin-
0.35.zip

http://dev.openstreetmap.org/~bretth/osmosis-build/osmosis-bin-
0.35.tgz

These are binary-only builds of Osmosis and don't contain the source code. If you're
interested in developing code for Osmosis or reusing its code in another application,
you can download builds containing the source code, or check out the latest version
of the source code from the repository. Refer to http://wiki.openstreetmap.org/
wiki/Osmosis#Downloading for more details.

Once you've downloaded Osmosis, unpack the file into a suitable folder. Osmosis is
a command-line utility, so you'll need a shell or command window open. Change to
the directory you unpacked Osmosis into, then change into the bin subdirectory.

To check whether Osmosis is working, type the following command:

osmosis

You should see the following output:

02-May-2010 11:42:38 org.openstreetmap.osmosis.core.Osmosis run

INFO: Osmosis Version 0.35

•

•

Chapter 10

[193]

02-May-2010 11:42:38 org.openstreetmap.osmosis.core.Osmosis run

INFO: Preparing pipeline.

02-May-2010 11:42:38 org.openstreetmap.osmosis.core.Osmosis run

INFO: Launching pipeline execution.

02-May-2010 11:42:38 org.openstreetmap.osmosis.core.Osmosis run

INFO: Pipeline executing, waiting for completion.

02-May-2010 11:42:38 org.openstreetmap.osmosis.core.Osmosis run

INFO: Pipeline complete.

02-May-2010 11:42:38 org.openstreetmap.osmosis.core.Osmosis run

INFO: Total execution time: 360 milliseconds.

On OS X and some Linux and Unix systems, you may need to use ./osmosis on the
command line.

How Osmosis processes data
Osmosis takes a list of command-line arguments that tell it what tasks to perform.
Each task in turn will usually have its own arguments, and a complete command line
for Osmosis can get very long. As a result of this, each task has both a long and short
form, with the latter being easier to type, but harder to read if you can't remember
each command. We'll use the long form in all our examples, so that it's obvious what
we're doing. Once you're more familiar with Osmosis, you can find all the short
versions of each task documented at http://wiki.openstreetmap.org/wiki/
Osmosis/Detailed_Usage.

Command-line arguments are case-sensitive
All the options and parameters used by Osmosis on the command line are
case-sensitive, even on Windows, so make sure that you include capital
letters where indicated.

Always use the scripts located in the bin subfolder to start Osmosis. Trying to use
the Java files directly won't produce the results you're looking for in most cases.

Osmosis uses a pipeline to process data. The pipeline has a number of stages,
consisting of one or more input tasks, one or more optional processing tasks, and
one or more output tasks. For some complex jobs, Osmosis may have more than one
pipeline running simultaneously. In addition to carrying OpenStreetMap data,
a pipeline can carry changes to the data.

Manipulating OpenStreetMap Data using Osmosis

[194]

To import data from a file into a database, for example, only an input task to read the
XML and one output task to write to the database are used. To cut out a bounding
box from a file needs an input task, the bounding box task, and an output task.
Osmosis works by feeding the results of one task into another.

In most cases, the tasks have an inherent logical order, but for more complex
combinations of tasks, we might want to change the way the tasks are linked
together. Osmosis allows you to do that, and we'll cover how to change the
pipeline order later in the chapter.

Processing planet files in Osmosis
The planet files produced each week are compressed using an advanced
version of the bzip2 utility, called pbzip2, which can process more
than one data stream at a time, reducing the amount of time needed
to produce each planet file. This means that Osmosis' built-in bzip
decompression routines can't handle the files. We'll show you how to
work around this issue, but remember, you can't process planet files
using Osmosis on its own.

Bear in mind that any task in Osmosis that deals with any significant amount of data,
and particularly entire planet files, will take minutes or hours to complete, even
on very powerful computers. Osmosis also gives you very little feedback while it's
running to show you what's happening, so don't panic if after issuing an Osmosis
command, it looks like it's frozen. Be patient, and you should get your results, or
an error message on screen if it can't be completed.

Cutting out a bounding box
One of the simplest tasks is to cut out a bounding box from a planet (or other) file to
get data for a specific region. Let's use Iceland as our example, as we did with XAPI
in the previous chapter. To extract the data of Iceland from a planet file, use the
following command:

bzcat planet-100428.osm.bz2 | osmosis --read-xml file=/dev/stdin --
bounding-box left="-25.09" right="-12.55" top="67.42" bottom="62.94" --
write-xml file="iceland.osm.bz2"

Chapter 10

[195]

The command uses three tasks to process the data. They are as follows:

Osmosis reads the data in from a planet file from April 28, 2010 using the
--read-xml task.

It then extracts a bounding box using the --bounding-box task. As with
other OpenStreetMap tools, the coordinates for the bounding box are
supplied in WGS84 degrees.
Finally, it writes the results to a file named iceland.osm.bz2, using the
--write-xml task, compressing the output.

Normally, Osmosis works directly with bzip2-compressed files, and is able to detect
automatically the format of any data files based on the file's extension. You can
specify the compression used in any file if it has a non-standard extension, using the
compressionMethod parameter, which can take none, gzip, or bzip2 as values.

In the case of the planet file, you need to use the separate bzcat utility, as the planet
files use an advanced form of compression that Osmosis's built-in decompression
code can't handle. This utility is available on most Linux distributions, and you
can download a Windows version from http://gnuwin32.sourceforge.net/
packages/bzip2.htm. You can manually compress and decompress any files you
deal with, and in the case of the planet file itself, you'll need a lot of disk space to
work with the uncompressed data.

Getting data from outside the bounding box
By default, the bounding box task will only return nodes inside the specified
bounding box. If there are ways partially outside the bounding box, any nodes
that those ways use from outside the bounding box won't be included. This can
cause problems with some software that uses OpenStreetMap data. To get all
nodes used by ways that intersect the bounding box, use the bounding box task's
completeWays option, as follows:

bzcat planet-100428.osm.bz2 | osmosis --read-xml file=/dev/stdin --
bounding-box left="-25.09" right="-12.55" top="67.42" bottom="62.94"
completeWays="yes" --write-xml file="iceland-complete.osm.bz2"

This will return a complete set of data that shouldn't cause any problems in any
software, but will contain data from outside the specified bounding box.

There's also a completeRelations option that will return all members of any
relation that has a member inside the bounding box, but you need to use this with
more caution. If any large relations cross your bounding box, such as long-distance
routes, you could end up with data far outside your original bounding box.

•

•

•

Manipulating OpenStreetMap Data using Osmosis

[196]

Cutting out data with a bounding polygon
Iceland is convenient to cut out using a simple bounding box, as it's surrounded by
sea and has enough space around it that the box doesn't touch any other land. For
most countries, you'll need to cut out a more complex shape from a planet file, and
that's where the bounding polygon task comes in.

The bounding polygon task works in a similar way as the bounding box task, but
instead uses a set of arbitrary polygons to define the area for which you want data.
This is particularly useful where you're trying to cut out a country that shares
land borders with others, or where a coastal boundary doesn't form a straight line.
The bounding polygon task is also much slower than a bounding box, as a more
complicated algorithm is needed to decide whether a point lies inside the polygon.
This may not be a problem, but it's worth bearing in mind.

Using polygon files
The bounding polygon task needs a file describing the polygon you want to use in a
special format. The file format is described at http://wiki.openstreetmap.org/
wiki/Osmosis/Polygon_Filter_File_Format, but essentially consists of a list of
coordinates of each corner of the polygon. It's also possible to define areas to subtract
from the polygon, so that you can exclude enclaves from a country, for example.

Fortunately, we don't have to build the polygon files from scratch, as files for
most countries around the world are already available from various sources. We're
going to download a polygon file of the UK from Cloudmade. Download http://
downloads.cloudmade.com/europe/united_kingdom/united_kingdom.poly to
the bin subfolder of your Osmosis installation.

Now, to extract data for the UK from a planet file, we use the following command:

bzcat planet-100428.osm.bz2 | osmosis --read-xml file=/dev/stdin --
bounding-polygon file="united_kingdom.poly" --write-xml file="united_
kingdom.osm.bz2"

This will give us data for the whole of the United Kingdom, including
Northern Ireland.

We'll use this file in the rest of our examples for this chapter, so you can either
try extracting your own, or downloading a prepared extract from Cloudmade
at http://downloads.cloudmade.com/europe/united_kingdom/united_
kingdom.osm.bz2.

As with the bounding box task, the bounding polygon task can take completeWays
and completeRelations options.

Chapter 10

[197]

Creating your own polygon files
If you need to create your own polygon file to extract an area not already covered,
you can code one by hand in the format documented at the previous link, or an
easier way is to draw the polygons you want using JOSM, and convert them to the
required format. To do this, you'll need a computer with Perl installed. We're going
to create a polygon for the Isle of Wight in the UK. This was one of the first places
to be mapped comprehensively in OpenStreetMap, and it can't be cut out using a
simple bounding box without including some of the mainland.

First, download the script that converts OSM data to polygon files from http://svn.
openstreetmap.org/applications/utils/osm-extract/polygons/osm2poly.pl.

Run JOSM as normal, and download the data for the area around which you want
to create a polygon to use as a guide. If you want to extract a very large area, this
could mean downloading the data in several chunks. The Isle of Wight will need
two separate downloads.

Once you have the data of the area you're interested in, choose New from the File
menu in JOSM. This will create a new data layer, and the existing data should now
be grayed out. Draw a closed way around the area you want to cut out, making sure
you end on the node on which you started. JOSM should stop drawing when you do.
You can draw more than one way, as long as all the ways you draw are closed.

For the Isle of Wight, you should end up with something like the following image:

Manipulating OpenStreetMap Data using Osmosis

[198]

Once you have your area as one or more polygons, right-click on the top data layer in
JOSM's Layers panel and choose Save from the pop-up menu. Choose a descriptive
name for the file; in this case, isle-of-wight.osm will do.

Next, we need to convert the OpenStreetMap file to a polygon file using the utility
we downloaded. With the .osm file in the same directory as the script, use the
following command to convert the file:

perl osm2poly.pl isle-of-wight.osm >isle-of-wight.poly

The script prints its results directly, so you need to direct it to the filename of your
choice. The script doesn't print anything on screen while it's running, and once
it has completed the conversion, you should have a file with contents similar
to the following:

polygon
1
 -1.298978E+00 5.077497E+01
 -1.095930E+00 5.073521E+01
 -1.082186E+00 5.072270E+01
 -1.041225E+00 5.068537E+01
 -1.166828E+00 5.059231E+01
 -1.302833E+00 5.056872E+01
 -1.499613E+00 5.065986E+01
 -1.579896E+00 5.065564E+01
 -1.598057E+00 5.066019E+01
 -1.533299E+00 5.070682E+01
 -1.480437E+00 5.073020E+01
 -1.298978E+00 5.077497E+01
END
END

Here, you can see the coordinates of each point in our bounding polygon expressed
in decimal degrees.

You can also use data from OpenStreetMap to define a polygon, particularly political
or administrative boundaries. We could use the Isle of Wight's coastline to define
our polygon, although this is far more complex than the polygon we just created and
would require us to create a single way from the several used to map the coastline.

Chapter 10

[199]

Using tag filters to produce tailored
datasets
You can extract particular types of features from OpenStreetMap data to give you a
dataset that only includes the features you're interested in, and not others. You can
filter the data based purely on a combination of primitive type and tags, and you
can combine multiple filters to produce a set of data to fit your exact requirements.

The tag filter task works on a single primitive type per task, and can include or
exclude those primitives from the pipeline based on the tags used. It leaves other
types of primitive untouched.

To extract all nodes from our United Kingdom extract tagged with shop=*, we'd use
the following command:

osmosis --read-xml file="united_kingdom.osm.bz2" --tag-filter accept-
nodes shop=* --tag-filter reject-ways --tag-filter reject-relations --
write-xml file="uk-shops.osm"

Already, you can see multiple tasks in use in Osmosis. We're using three separate tag
filter tasks:

The first filters the nodes in the pipeline to include only those with
a shop=* tag
The second filters out all ways
The last filters out all relations

This is also a good example of Osmosis's pipeline in action. The data is read from our
extract into the pipeline, then passes through each of our filter tasks, and finally is
written out to an XML file. We don't have to tell Osmosis how to direct data between
the separate tasks, as they form a single pipeline. We could execute the filter tasks in
any order and get the same results, but this isn't true for every combination of filters.

•

•

•

Manipulating OpenStreetMap Data using Osmosis

[200]

Note that because we didn't add a .bz2 extension to the output file, Osmosis won't
compress the data. We can open this file in JOSM, as follows to see where all the
shops mapped in the UK are:

You can use the same type of filter more than once in a pipeline using multiple tasks,
so to get all roads in the UK where you are allowed to cycle, you would use a series
of filters like the following:

osmosis --read-xml file="united_kingdom.osm.bz2"
--tag-filter accept-ways highway=*
--tag-filter reject-ways bicycle=no
--tag-filter reject-ways highway=motorway,motorway_link,footway
--used-node
--tag-filter reject-relations
--write-xml file="uk-cycle-roads.osm.bz2"

Chapter 10

[201]

Here we have a complex series of filters, and following what they do:

The first filter (--tag-filter accept-ways highway=*) only allows
through ways tagged with highway=* to remove anything that's not
a road or path.
The second filter (--tag-filter reject-ways bicycle=no) filters out
ways tagged with bicycle=no to remove any roads where bicycles are
explicitly not allowed.
The third filter (--tag-filter reject-ways highway=motorway,motorw
ay_link,footway) filters out roads tagged as motorways, motorway access
roads, or footpaths. Here we see a rule matching multiple values for a tag by
including a comma-separated list of values.
The fourth filter (--used-node) isn't a tag filter, but only allows
through nodes that are used by any ways that have made it through
any preceding filters.
The last filter removes all relations from the pipeline.

The result is a set of data representing any road or path in the UK on which it's
legal to cycle. You could then feed this information into a routing engine, or use
it to render a map specifically for cyclists.

Simplifying filters
There are also a set of combined tag and primitive type filters that have a shorter
syntax, but are less flexible, and only work on nodes and ways, not relations. They
also remove any other type of primitive from the pipeline, unlike the longer tag
filter task. The filters available are:

node-key

node-key-value

way-key

way-key-value

Each of these filters only allows through primitives of the matching type, with the
specified key(s) or key-value pair(s). To extract every node tagged as shop=bicycle
in our UK extract, we use the following command:

osmosis --read-xml file="united_kingdom.osm.bz2" --node-key-value
keyValueList="shop.bicycle" --write-xml file="uk-bike-shops.osm"

•

•

•

•

•

•

•

•

•

Manipulating OpenStreetMap Data using Osmosis

[202]

The preceding command uses a filter that matches only nodes with tags matching the
list in the keyValueList parameter. In our case, we've set keyValueList to a single
pair of shop=bicycle, but note that a period is used to separate the key and value,
rather than the equals sign.

This is equivalent to a set of tag filters, as shown in the following command:

osmosis --read-xml file="united_kingdom.osm.bz2" -tag-filter accept-nodes
keyValueList="shop.bicycle" --tag-filter reject-ways --tag-filter reject-
relations --write-xml file="uk-bike-shops.osm"

To specify more than one tag, we separate the key-value pairs with commas, so we
can match both bicycle shops and bicycle parking with a single filter, as follows:

osmosis --read-xml file="united_kingdom.osm.bz2" --node-key-value
keyValueList="shop.bicycle,amenity.bicycle_parking" --write-xml file="uk-
bike-facilities.osm"

This gives us a set of places in the UK that might be of interest to cyclists while
they're out and about on their bikes. We could extend this to include convenience
stores, cafés, or other places by adding their tags to the list.

The right combination of tag filters can produce any imaginable subset of
OpenStreetMap's data, even if it can't be done in a single operation. Next, we'll look
at how you can produce parts of your desired dataset separately, then combine them
into a single file.

Splitting and merging data streams
In our previous examples, we've produced two sets of data of interest to cyclists in
the UK, namely, the roads on which they're allowed to cycle, and a list of places at
which they might need to stop along the way. However, they're in two separate files,
and the filters we've used to produce the sets of data are mutually exclusive.

Fortunately, we can merge the two sets into one quite simply, using Osmosis's
merge task:

osmosis --read-xml file="uk-cycle-roads.osm.bz2" --read-xml file="uk-
bike-facilities.osm" --merge --write-xml file="uk-cycle-map.osm.bz2"

Here, we can see the two OpenStreetMap files being read in, each creating its own
pipeline. These pipelines are then merged, and the results are written to another
OpenStreetMap XML file. We can now use the result to render a map, or use it in
another cycling-focused application.

Chapter 10

[203]

This looks simple, but we've cheated slightly by using the data we've already
generated using Osmosis. For the merge to work, the data in the source
OpenStreetMap files has to be sorted, first by primitive type, then by ID. This should
be the case with the data produced by Osmosis, but if you're unsure, or you're using
data that's been generated by a different application, you can get Osmosis to sort the
data prior to any merge operation.

To sort the data in a file, use the following sort task:

osmosis --read-xml file="unsorted.osm" --sort --write-xml file="sorted.
osm"

This will produce a file in the correct order for Osmosis to merge with another set
of data. While sort can take a type parameter, the only currently supported value
is a sort by type, then ID.

The merge task only has two input pipelines, so if you need to merge more
than two sets of data, you'll need to use multiple merge tasks, as shown in the
following command:

osmosis --read-xml file="file1.osm" --read-xml file="file2.osm" --read-
xml file="file3.osm" --merge --merge --write-xml file="combined.osm"

Creating multiple pipelines with the tee task
The merge task has a counterpart—the tee task. This produces multiple pipelines
from the same input, so you can apply mutually exclusive sets of filters to a single
source of data without having to run Osmosis several times.

Imagine we had our UK extract, and wanted to produce further extracts for each
of the constituent countries of the UK, namely, England, Scotland, Wales, and
Northern Ireland. We could run Osmosis with a bounding polygon task for each
of these areas, but it's more efficient to do it in one operation. We can do it using
the following command:

osmosis --read-xml file="united_kingdom.osm.bz2" \

	 --tee outputCount="4" \

	 --bounding-polygon file="england.poly" completeWays="yes" \

	 --write-xml file="england.osm.bz2" \

	 --bounding-polygon file="scotland.poly" completeWays="yes" \

	 --write-xml file="scotland.osm.bz2" \

	 --bounding-polygon file="wales.poly" completeWays="yes" \

	 --write-xml file="wales.osm.bz2" \

	 --bounding-polygon file="northern_ireland.poly" completeWays="yes" \

	 --write-xml file="northern_ireland.osm.bz2"

Manipulating OpenStreetMap Data using Osmosis

[204]

In the preceding command, the outputCount parameter tells the tee task how many
pipelines to produce. Unlike the merge task, a tee can produce many pipelines in a
single operation. We then process each pipeline in its entirety before moving onto
the next, so we have a bounding polygon task, then a write XML task together for
each country. As England has land borders with Scotland and Wales, and Northern
Ireland has a land border with the Republic of Ireland, we use the completeWays
option to ensure that we include whole roads or paths that cross those borders.

The next logical step in producing our cycle map data would be to use a tee to
split our UK extract, process the two pipelines to produce the highways and
facilities separately, and recombine them in a merge task to produce our final file.
Unfortunately, we can't do this, as, going by the way Osmosis works, trying to merge
the pipelines of a tee will probably result in a deadlock at some point, as one portion
of the pipeline waits for input that will never come.

To work around this issue, we can produce the two files in one operation, and merge
them in another run of Osmosis. For the first operation, use the following command:

osmosis --read-xml file="united_kingdom.osm.bz2" \

	 --tee \

	 --tag-filter accept-ways highway=* \
	 --tag-filter reject-ways bicycle=no \
	 --tag-filter reject-ways highway=motorway,motorway_link,footway \
	 --used-node \
	 --tag-filter reject-relations \
	 --write-xml file="uk-cycle-roads.osm.bz2" \

	 --node-key-value keyValueList="shop.bicycle,amenity.bicycle_parking"
\

	 --write-xml file="uk-bike-facilities.osm"

This is pretty long-winded, but does what we want. We can shorten the command
line by using the shorter form of each command, which would look as follows:

osmosis --rx united_kingdom.osm.bz2

	 --t

	 --tf accept-ways highway=*

	 --tf reject-ways bicycle=no

	 --tf reject-ways highway=motorway,motorway_link,footway

	 --un

	 --tf reject-relations

	 --wx uk-cycle-roads.osm.bz2

	 --nkv keyValueList="shop.bicycle,amenity.bicycle_parking"

	 --wx uk-bike-facilities.osm

Chapter 10

[205]

You can see the short form of each task command, and that for file operations, we
can use just the filename as a parameter. This makes the whole command line much
shorter, but less readable if you don't know the options very well.

Once we have our two files, we merge them to produce our final UK cycling
map dataset, as follows:

osmosis --read-xml file="uk-cycle-roads.osm.bz2" --read-xml file="uk-
bike-facilities.osm" --merge --write-xml file="uk-cycle-map.osm.bz2"

We can then use uk-cycle-map.osm.bz2 as input to a renderer or some
other application.

Automatically updating local data
from diffs
Planet files take a long time to download and process, so if you can avoid doing it
every week, you'll save yourself a lot of time and bandwidth. Fortunately, Osmosis
can help you by automating much of the work involved using its replication tasks.

Given a suitably configured system, Osmosis will download and apply all the
changes to the data since a planet file was created, creating a copy that's almost as
up-to-date as the main OpenStreetMap database. Run the same commands regularly,
and, in theory, you will never need to download another planet file.

In this section, we'll see how to:

Prepare your system for replication
Run the initial update
Schedule further updates to your data

Preparing your system
Before you can update a planet file, you need to have done some preparation work.
Osmosis stores information about the current state of your data in a few text files.
We need a working directory in which to store the files, so let's create it. Open the
command line window and change to a folder, using the following command:

mkdir replication

Now we need to create the files Osmosis needs for replication, using the --read-
replication-interval-init task:

osmosis --read-replication-interval-init workingDirectory="replication"

•

•

•

Manipulating OpenStreetMap Data using Osmosis

[206]

This creates two files in the replication directory, named configuration.txt and
download.lock.

You don't need to alter these files to download data from OpenStreetMap, but if you
have a set of diff files stored in a different place, or want to use a mirror site, you
need to edit configuration.txt to reflect this. If you have more than one copy of
the data, you'll need a separate working directory for each one, as you need to track
the state of each copy separately.

We also need to tell Osmosis from what point to start downloading changes. This
isn't simple with the replication diffs currently used, but you only need to do it once:

1.	 Download the latest planet file from http://planet.openstreetmap.org/
if you don't already have it.

2.	 Note the timestamp of the planet file. The filename is of the form
planet-yymmdd.osm.bz2, and in our examples we'll use a planet
file from April 10, 2010.

3.	 Open http://planet.openstreetmap.org/minute-replicate/ in a
web browser.

4.	 You'll see a list of subfolders with a date next to each one, as shown in the
following screenshot. Find the folder with a date similar to your planet,
or with a date that is closest to your planet, but after it. In our case, this
would be 300.

Chapter 10

[207]

5.	 In that folder, find a file named nnn.state.txt with a timestamp just earlier
than your planet file. Don't worry about choosing a file from earlier than
your planet file, as any changes prior to your planet won't have any net effect
on the data. We'll use 248.state.txt in our example, as follows as this was
the last diff produced on the day before our planet file:

6.	 Download this file and place it in your working folder. Rename the file
as state.txt.

Your working folder should now have files named configuration.txt, download.
lock, and state.txt in it. If it does, we're now ready to run the first update against
our planet file.

Running the initial update
Once we have Osmosis configured, we can tell it to start downloading the diff
files. We do this using the read replication interval task. We also then want to do
something with the changes, which is usually to apply them to an existing set of
data somewhere. In our case, that's an existing planet file. This will need three
separate tasks:

A read replication interval task to download and collate diff files from the
OpenStreetMap servers
A simplify change task to merge multiple changes to a single object into
one operation
An apply changes task to patch our planet file using the resulting changes

We could perform each of these tasks in a separate Osmosis operation using an
intermediate XML file containing the changes, but we'll use Osmosis's pipelining
to do everything in one command, as follows:

bzcat planet-100428.osm.bz2 | osmosis --read-xml file="/dev/stdin"
outPipe.0="planet" --read-replication-interval workingDirectory="repli
cation" --simplify-change --apply-change inPipe.0="planet" --write-xml
file="/dev/stdout" | bzip2 >updated-planet.osm.bz2

•

•

•

Manipulating OpenStreetMap Data using Osmosis

[208]

This operation will take a very long time to complete, as is usual with operations on
an entire planet file. You need to note how long this process takes, as it will tell you
how often you'll be able to run a planet update. We're using the native bzip utilities
rather than Osmosis's own compression routines to speed up the process, and if you
have a machine with more than one processor core, this will significantly reduce
the amount of time needed to patch the planet. If you have a large amount of disk
space needed to store an uncompressed planet file—of the order of several hundred
gigabytes—you can save even more time, as it's the file compression that takes most
of the time.

Once the process is complete, you will have a file, updated-planet.osm.bz2,
which will reflect the state of the main OpenStreetMap database at a time not much
before your update operation started. In addition to updating the data, Osmosis
will also record the current state of your data in state.txt, so that next time you
run an update, it only downloads and applies the diffs produced since you last ran
an update.

Keeping the data up-to-date automatically
Once you've applied the initial updates, you can keep your copy of the data
up-to-date using a command similar to the one we used for the initial updates.
You can even schedule the updates using your operating system's scheduler,
so that your data is constantly kept up-to-date.

The command we use to keep our data updated is virtually identical to our
initial update, but we use our updated planet as the input and a temporary
file as the output:

bzcat planet-updated.osm.bz2 | osmosis --read-xml file="/dev/stdin"
outPipe.0="planet" --read-replication-interval workingDirectory="repli
cation" --simplify-change --apply-change inPipe.0="planet" --write-xml
file="/dev/stdout" | bzip2 >planet-temp.osm.bz2

Once the update completes successfully, you can delete your old planet file and
rename your temporary file.

On Unix and Linux, use the following commands:

rm planet-updated.osm.bz2

mv planet-temp.osm.bz2 planet-updated.osm.bz2

Use the following commands on Windows:

del planet-updated.osm.bz2

rename planet-temp.osm.bz2 planet-updated.osm.bz2

Chapter 10

[209]

On Linux and other Unix-like operating systems, you can schedule the update
using cron, and on Windows using the Windows Scheduler service. Remember
that as updating an entire planet can take a very long time, you may only be able
to perform the update once a day.

Reading the OpenStreetMap API from
Osmosis
So far we've only dealt with data in OpenStreetMap XML files, but Osmosis can
handle other sources of data, including databases and the OpenStreetMap API itself.
Note that this is not the same as reading and writing to a database in API format,
which we'll cover later.

Osmosis only supports the map call of the API to download data. We can get the
data of Compton—the village we mapped in earlier chapters—and save it to a file
using the read API task, as follows:

osmosis --read-api left="-0.64" bottom="51.21" right="-0.615" top="51.22"
--write-xml file="compton.osm"

We supply the bounding box we want to download as four parameters to the read
API task.

However, remember that the main API only allows you to download a limited area,
so if you need a large area, this method won't work. Fortunately, you can also get
Osmosis to retrieve data from XAPI by supplying its URL as another parameter. If
we wanted to retrieve data of Iceland from XAPI within Osmosis, we could do it
using the following command:

osmosis --read-api left="-25.09" right="-12.55" top="67.42"
bottom="62.94" url="http://xapi.openstreetmap.org/api/0.6" --write-xml
file="iceland.osm.bz2"

Here, we add the URL of XAPI including the version, but without the trailing slash,
as a parameter to the read API task.

Obviously, you don't need to write the data directly to a file. You can process it
using tag filters, further bounding boxes or polygons, and use any other Osmosis
tasks available.

Manipulating OpenStreetMap Data using Osmosis

[210]

Osmosis also supports uploading changes to the OpenStreetMap API, but there are
few circumstances where you'd need to do this; reversing damage to the data (either
accidental or intentional) is usually the only time you'd work this way. Any changes
you need to make to OpenStreetMap's data should normally be done using one of
the editors available.

Using Osmosis with a database
So far, we've only used Osmosis to process OpenStreetMap data in local XML files.
It can also read and write data to a database, which is more complex to set up, but
faster for many operations. Setting up a database for the data can be complicated,
but you only need to do it once.

Osmosis supports three types of databases:

PostGIS with a simple schema
The OpenStreetMap API schema on PostgreSQL
A legacy API schema on MySQL

We'll cover the first of these in this chapter. The second format is used when handling
data on the OpenStreetMap servers, and isn't intended for use with any other system.
The last format is no longer actively supported, as it isn't used on OpenStreetMap's
servers any more, and you shouldn't use this format for new databases.

PostGIS (http://postgis.refractions.net/) is a version of the open source
PostgreSQL database with geospatial extensions that allows you to retrieve
geographic data, such as OpenStreetMap, efficiently. You can use PostGIS with many
geographic information systems (GIS) and other tools that support the OpenGIS
Simple Features Specification for SQL.

You will get the best performance from your system if you run Osmosis on a
separate machine from the database, but this isn't essential. What you will need is
a very large amounts of disk space available, of the order of hundreds of gigabytes.
Many of the most effective ways of using a database with OpenStreetMap data
involve storing the entire planet, which needs over 100GB of storage. If you're
planning on using a database of OpenStreetMap data in a production system, it
will also be worth using high performance storage systems, such as drive arrays.
The main OpenStreetMap database is striped across ten drives, but you probably
won't need that many.

•

•

•

Chapter 10

[211]

Installing PostGIS and creating the database
While PostgreSQL itself runs on many different platforms, PostGIS needs to be
installed separately, and binary packages aren't available from the creators of
PostGIS. If you don't want to compile the software yourself, the easiest option is
to use a Linux distribution with pre-built PostgreSQL and PostGIS packages,
such as Ubuntu Linux. That's what we'll use in our examples.

If you don't already have Ubuntu Linux running, it's simple to install it by
downloading a disc image from http://www.ubuntu.com/, and either installing
it on a separate machine, or by using a virtual machine host, such as VirtualBox or
VMWare. Ubuntu's installation system is easy enough to follow, so we won't cover
installing the operating system here. We're using Ubuntu 10.04 Server edition,
PostgreSQL 8.4, and PostGIS 1.4 for these examples.

To install PostGIS, and create a database with the spatial extensions enabled, we
need to carry out the following steps:

1.	 Install PostgreSQL.
2.	 Install PostGIS.
3.	 Create our new database.
4.	 Add the PostGIS geospatial extensions to the database.
5.	 Create the tables for our OpenStreetMap data.

If you're running a desktop version of Linux, open a command shell, or log in if
you're using a server version without a graphical front end.

On Ubuntu Linux, we can combine the first two operations into a single command
line using its package management tools, as follows:

sudo apt-get install postgresql-8.4-postgis postgresql-contrib-8.4
postgis

This installs all the software we need at this stage. You will also need to install
Osmosis itself at some point, unless you're planning to access the database from
a separate machine.

Manipulating OpenStreetMap Data using Osmosis

[212]

Using Osmosis on the same machine as
PostgreSQL
If you're planning to use Osmosis on the same machine as the database, you'll
need to add some extra configuration to PostgreSQL, to allow us to access the
local database.

We need to edit the file pg_hba.conf that contains the access control information for
PostgreSQL. This is located in the directory /etc/postgresql/<version>/main.

Open this file in an editor, and find a line that reads:

local all	 all		 ident sameuser

Add the following line before the preceding line in the file:

local osmosis osmosisuser trust

Save the file, then restart the database server to apply the new configuration:

sudo /etc/init.d/postgreql-<version> restart

Creating the database
Next, we create a database for our data and a user profile for Osmosis to use. First,
we change to the PostgreSQL administrator account:

sudo su - postgres

You will be prompted for your password. Now, create the database for our data:

createdb osmosis

The createdb utility will create the database. Next, we need to add PL/pgSQL—a
procedural extension to SQL—to our database:

createlang plpgsql osmosis

We now create a user for Osmosis to access the database, as follows:

createuser osmosisuser

You will be asked for what privileges the user should have. You can answer no to all
the questions by pressing n.

Chapter 10

[213]

The next step is to add the PostGIS extensions to the database. A script is supplied
to do this, but is stored in different locations for different versions of PostgreSQL.
For PostgreSQL 8.3, use the following command:

psql -d osmosis -f /usr/share/postgresql-8.3-postgis/lwpostgis.sql

Use the following command on PostgreSQL 8.4:

psql -d osmosis -f /usr/share/postgresql/8.4/contrib/postgis.sql

Next, we need to change some permissions on our database so that Osmosis can
access all the tables we've created so far. Start the command-line PostgreSQL client
using the following command:

psql -d osmosis

So far we've used the database superuser account, postgres, to perform all our
operations. We need to change the owner of the database and the tables created
so far, and make sure our user account has full access to the database.

Enter the following commands into the database client, remembering to include the
semicolon at the end of each line:

grant all privileges on database osmosis to osmosisuser;

alter table geometry_columns owner to osmosisuser;

alter table spatial_ref_sys owner to osmosisuser;

Finally, we should add a password to the osmosisuser account, as follows:

alter role osmosisuser password 'openstreetmap';	

That's most of our work done. Exit the PostgreSQL client using the \q command, and
log out of the postgres account.

Now, we create the tables that Osmosis will use to store our data. We do this as
osmosisuser so that we don't have any problems with permissions:

psql -d osmosis -U osmosisuser -W -f osmosis/script/pgsql_simple_schema_
0.6.sql

You will be prompted for the password for osmosisuser, which we set to
openstreetmap previously. All being well, you should see the script's output
scroll past, and you're then ready to start importing data.

If you ever want to start again from scratch, just re-run the schema creation script,
which will delete your existing tables and create new ones.

Manipulating OpenStreetMap Data using Osmosis

[214]

Adding data to the database
To import an entire planet file into a database, you simply read it in using a read
XML task, and write it back again using a --write-pgsql task. Assuming you're
running Osmosis on the same machine:

bzcat planet-100428.osm.bz2 | osmosis --read-xml file=/dev/stdin --write-
pgsql database="osmosis" user="osmosisuser" password="openstreetmap"
host="localhost"

All the data in your source is included in the database. You can use tag filters or
bounding box/polygon tasks between the input and output if you're only interested
in certain features or areas. However, if you want to keep your data in sync with
the OpenStreetMap database, it's best for you to keep a full copy of the planet
and update that, as updating an extract using the diffs is a far more complicated
procedure and can produce unpredictable results.

Reading data from the database
You can read data back out of the database into a pipeline with the --read-pgsql
task, so to extract the UK from our database, we'd use a command similar to the one
we used with the raw planet file earlier in the chapter:

osmosis --read-pgsql database="osmosis" user="osmosisuser"
password="openstreetmap" --dataset-dump --bounding-polygon file="united_
kingdom.poly" --write-xml file="united_kingdom.osm.bz2"

We need to include a --dataset-dump task to convert the output of the --read-
pgsql task, which is a dataset, to an entity stream that is needed by the rest of the
tasks in the pipeline.

However, now that we've got our data in a database, we can use this to our
advantage by extracting the bounding box directly from the database, using
the --dataset-bounding-box task. This uses a database query to retrieve only
the bounding box in which we're interested, saving a large amount of processing
in Osmosis itself. It also produces an entity stream, so there's no need for a further
conversion step:

osmosis --read-pgsql database="osmosis" user="osmosisuser"
password="openstreetmap" --dataset-bounding-box left="-11" bottom="49"
right="2" top="61" --write-xml file="britain_ireland.osm.bz2"

Chapter 10

[215]

The bounding box used here includes the whole of Britain and Ireland, with some
margin to spare, but the waters around the territory mean we're not including too
much extraneous data. However, this only uses a bounding box, so to cut out the UK
precisely, we still need to cut out a bounding polygon in Osmosis as well. The overall
operation should still be much quicker than cutting the bounding polygon from an
XML planet file.

osmosis --read-pgsql database="osmosis" user="osmosisuser"
password="openstreetmap" --dataset-bounding-box left="-11" bottom="49"
right="2" top="61" --bounding-polygon file="united_kingdom.poly" --write-
xml file="united_kingdom.osm.bz2"

Similarly, you write your subset back to a separate database if you're planning on
accessing the data from an application that can read the PostGIS database directly.
Assuming you've set up a database using the same steps as our main database, but
instead naming it ukextract, you could use the following command:

osmosis --read-pgsql database="osmosis" user="osmosisuser"
password="openstreetmap" --dataset-bounding-box left="-11" bottom="49"
right="2" top="61" --bounding-polygon file="united_kingdom.poly" --write-
pgsql database="ukextract" user="osmosisuser" password="openstreetmap"
host="localhost"

Applying changes to the database
Just as we patched a planet file earlier in the chapter using diffs files, Osmosis can
apply those same changes directly to our database to keep it up-to-date. This should
be a much faster operation, as it's not necessary to read in the whole of the data in
the database in order to patch it.

To get started, we need an initialized replication folder for Osmosis. Follow the
instructions earlier in the chapter to create a set of replication files, and download
a starting state file.

Import a downloaded planet file into your database using the commands shown
previously. Then, to perform an update, instead of applying the changes in the
collected diffs to an entity stream, you simply write them directly to the database
using the --write-pgsql-change task:

osmosis --read-replication-interval workingDirectory="replicat
ion" --simplify-change --write-pgsql-change database="osmosis"
user="osmosisuser" password="openstreetmap" host="localhost"

Manipulating OpenStreetMap Data using Osmosis

[216]

Again, this will download all the necessary diff files, combine them into a single set
of changes, and apply them to our database. We can re-run this command at any
time to keep our database up-to-date.

What you can't reliably do is apply the changes to a subset of the planet file. The
diffs on the planet site that Osmosis uses in its replication tasks represent all changes
to OpenStreetMap's data for the entire planet and every type of feature. Although
you could import a subset of a planet file initially, applying the diffs to your database
would quickly introduce unwanted features into the data.

If you need a subset of OpenStreetMap's data that you need to keep up-to-date, one
way of achieving it is to keep a full planet database, which you update as shown
previously, then regularly re-extract your subset of data into a second database.

Using an auth file to store database
credentials
If you're going to be using a database with Osmosis, you can save yourself a lot of
typing by storing the username and password you use to access the database in a
separate file, called an auth file.

The auth file is a plain text file with names and values of the parameters we normally
pass to Osmosis on the command line. Create a file called dbauth and add the
following to it, changing any details to match those you've used:

host=localhost
database=osmosis
user=osmosisuser
password=openstreetmap
dbType=postgresql

You can leave out any of the previous values, and specify them on the command
line instead, or you can override the values in an auth file on the command line.
This allows you to use a single auth file for multiple databases on the same host.
Just remember which one you're meant to use!

Now, to access the database from Osmosis, you simply specify the location of the
auth file as a parameter to the --read-pgsql task:

osmosis --read-pgsql authFile="dbauth" --bounding-polygon …

You should be able to copy an auth file from one machine to another if you need to.

Chapter 10

[217]

Other Osmosis tasks
We haven't covered every task that Osmosis can perform. Others, including tasks to
generate reports about data, and to deal with legacy file and database formats, are
also supported. You generally won't need to use any of these tasks while using the
data, but they can be useful when trying to find obscure errors in the data itself. For
a full listing of the tasks Osmosis supports, visit http://wiki.openstreetmap.org/
wiki/Osmosis/Detailed_Usage.

Even if Osmosis can't yet do what you need it to do, you can extend it if you
know enough Java. There's more information on writing your own plugins at
http://wiki.openstreetmap.org/wiki/Osmosis/Writing_Plugins.

Summary
Given enough time, storage, and processing power, Osmosis allows you to extract,
adapt, and store OpenStreetMap data in more or less any way you can imagine. If
you are working with OpenStreetMap data in country-sized quantities or larger,
it should be one of the first tools you use to get the information you want from the
raw data.

You should now know how to perform the following tasks with Osmosis:

Read data from a planet file or a pre-built extract.
Read data directly from the OpenStreetMap API or XAPI
Write processed data to a file or database
Cut out an area of data using a bounding box or a bounding polygon
Extract a subset of features from a dataset using tag filters
Keep your source of data up-to-date using replication

If you use large amounts of OpenStreetMap data in an application or to create a map,
eventually you will encounter problems that can only realistically be solved using
Osmosis. For this reason, it's worth getting to know how Osmosis works, what it's
capable of, and how to get it to do what you need. You'll save yourself a lot of
time later.

•

•

•

•

•

•

OpenStreetMap's Future
OpenStreetMap has achieved a great deal in a very short time, but there's still more
to do. We'll explain some of the changes being developed by the coders and mappers
working on OSM, and how they'll affect users of the data.

Obviously, the most important task for the project is to increase the quantity
and accuracy of the data, but there are changes to the tools used that can make
that process easier. There are currently no plans to make large changes to the
OpenStreetMap data model or API, and changes to the main editing applications
continue at a steady rate.

Changing the OpenStreetMap license
The most significant change to OpenStreetMap in its immediate future isn't technical,
but legal. The license used for OpenStreetMap's data is likely to change in the near
future, and may have already changed by the time you read this.

At the time of writing, OpenStreetMap uses the Creative Commons Attribution-
Share Alike 2.0 license (CC-BY-SA) for its data and map tiles. The intention of using
this license is to allow use of the data for any purpose, by anyone, without further
approval or permission, while requiring those using the data to make it available
to those they distribute it to under the same or similar licensing conditions.

The terms of the license also prevent the data from being combined with an existing
proprietary dataset without the resulting dataset being available to the contributors
to OpenStreetMap. Some within the OpenStreetMap community feel this is
necessary, because while OpenStreetMap's data is accurate and up to date,
it's not complete.

OpenStreetMap’s Future

[220]

Without such a provision in the license for the data, a proprietary geographic
database provider could use the parts of OpenStreetMap's data that were more
recent than its own, but not let OpenStreetMap have access to its own data and
complete the areas no mappers had yet surveyed. The company would be taking
advantage of the efforts made by mappers without making any contribution of
its own, which supporters of share-alike licensing felt went against the ethos of
the project.

However, one issue with using CC-BY-SA for the map data is that it is unclear
how far the share-alike component of the license extends. If someone includes an
OpenStreetMap map in a brochure, does it mean the whole brochure also has to be
CC-BY-SA? While many people believe this isn't the case, nor do they want it to be,
the legal position wasn't entirely clear.

At the time OpenStreetMap was set up, CC-BY-SA was a common license for creative
works that their creators wanted to share with others and allow their reuse. While
any maps created by rendering data from OpenStreetMap are clearly creative works,
as the design details of any map rendering were needed to be chosen, the situation
for the data itself is less obvious.

What became clear as the project became more successful is that not all jurisdictions
give copyright protection to factual information (which OpenStreetMap's data can
be considered to be) or recognize the collation of a database as a creative effort. This
meant that in some countries it might be legal to ignore the terms of CC-BY-SA and
incorporate OpenStreetMap's data into a proprietary database.

The board of the OpenStreetMap Foundation felt that a new license was needed to
achieve the same effects as the original CC-BY-SA license, that is, to allow free reuse
of the data but prevent its wholesale incorporation in proprietary databases.

Adopting the Open Database License
After a search, the OSMF found that no such license existed, but work on one,
called the Open Database License (ODbL), had been started but later abandoned.
The OSMF sponsored some work towards the completion of the license, and a
project called Open Data Commons, part of the Open Knowledge Foundation, was
asked to be a host organization for the new license. The resulting Open Database
License (http://www.opendatacommons.org/licenses/odbl/1.0/) has been
created for datasets such as OpenStreetMap, and OpenStreetMap is one of the first
projects to consider using it. While the license hasn't been written specifically for
OpenStreetMap, it was one of the projects considered during its creation. It uses
a combination of copyright and contractual law to enforce the aims of the license,
and so doesn't appear to suffer the same problems as using CC-BY-SA for data.

Chapter 11

[221]

The Open Database License also introduces the concept of a produced work, that
is, something created using the data in the database. In OpenStreetMap's case, this
is any maps rendered from the data. The new license makes clear the difference
between the data and produced works, and makes it clear that only the data
behind any produced work needs to be shared, not the produced work itself.

The Foundation's members were polled in late 2009 on whether they supported a
change of license to ODbL, and of those members that voted, a large majority were
in favor. At the time of writing, preparation work was underway on the process of
asking contributors to re-license their data, and to change the sign-up terms of the
new license. While it's still possible that many existing contributors could refuse
to re-license their data under the new license, this isn't expected to happen.

MapCSS—a common stylesheet
language for OpenStreetMap
We've seen in this book that there are many tools available to render maps from
OpenStreetMap data, but they all have different ways of creating rendering rules
that differ to lesser or greater extents. While this allows you to get the most from
each rendering application, it also means that creating the same style for different
applications means writing new sets of rules for each one.

MapCSS is an effort to produce a unified stylesheet language for OpenStreetMap-
based maps that any rendering or editing application can use. It uses the same
syntax as the World Wide Web Consortium recommendation Cascading Style
Sheets (CSS)—the language used for web stylesheets.

Designers creating rendering rules for OpenStreetMap would no longer need to
write separate sets of rules for each rendering application they wanted to use, but
instead would write MapCSS stylesheets, which are then either used natively by
the application or translated into the renderer's native format.

MapCSS is at a very early stage of development, but the intention is to follow
existing standards as much as possible, while still allowing designers to create
the maps they want.

OpenStreetMap’s Future

[222]

MapCSS uses CSS selectors to choose which features to render, and then defines the
rendering rules for those features using CSS syntax, as follows:

way[highway=trunk]
{
 z-index: 8;
 color: green;
 width: 5;
 casing-color: black;
 casing-width: 7;
}

Here the selector chooses any way tagged with highway=trunk, colors it green, sets
a width of 5, and adds a black casing. Most of this is standard CSS as used to add
style to SVG documents, but the casing-color and casing-width instructions are
specific to MapCSS.

As MapCSS will support standard CSS conventions, you can give the same style
to two types of features easily, as follows:

way[highway=trunk], way[highway=trunk_link]
{
 ...
}

Here the multiple selectors are separated by a comma, and you can include as many
selectors in this way as you like.

Similarly, MapCSS supports the use of complex selectors, so that to render a way
that's part of a long-distance route, you'd use a rule like the following:

relation[type=route] way
{
 ...
}

Selectors don't have to specify the full tag for a feature, so it should be possible
to create a basic set of rules for all ways tagged with highway=* using the
following selector:

way[highway]
{
 ...
}

Then add further rules for particular types of road using a more specific selector.

Chapter 11

[223]

The formatting properties available in MapCSS will vary between renderers, just as it
has for web browsers supporting CSS for HTML. A core set of properties, similar to
those used when formatting Scalable Vector Graphics using CSS, has been proposed,
but not all of the properties used for SVG are appropriate for all renderers, especially
where icons and patterns are being used on maps.

MapCSS will also support adding labels and "shields", or block captions to features,
although the syntax of doing so is still under development. It's also possible that
interactive map renderings, with :hover and :active pseudo-classes providing
a way of adding properties to maps when they're viewed online, assume the map
viewer is interactive and not using pre-rendered images.

The first application to use MapCSS is Halcyon—the Flash-based rendering engine
used in version 2 of Potlatch, the online editor. It can be seen in the following
screenshot. At the time of writing, this was a working prototype, but still didn't
support all the planned features of MapCSS.

OpenStreetMap’s Future

[224]

Translation programs that turn MapCSS into the native formats used by
Osmarender, Merkaartor, Mapnik, and other renderers may well be the next
applications to appear. You can read more about the plans for MapCSS on the
OpenStreetMap wiki at http://wiki.openstreetmap.org/wiki/MapCSS or
http://bit.ly/mapcss.

Specialized editing applications
OpenstreetMap's data format is deliberately simple and flexible to allow
mappers as much freedom as possible in the way they record the geographic
features they encounter. The disadvantage of this approach is that it's more
difficult for non-technical users to add information to the data, as for many
features you need to know how to draw and tag the primitives to represent
the feature you're mapping.

One solution being proposed is to have specialized editors for different types of
features, so that motorists can map road-related features, walkers can map footpaths,
and cyclists can map cycle paths, each using a tailored interface. The theory is that
by not including features in which a particular type of mapper isn't interested, the
editing application's user interface can be simplified, increasing usability.

One such editor has already been produced by Cloudmade: the Mapzen POI
Collector (http://mapzen.cloudmade.com/mapzen-poi-collector) for the Apple
iPhone. This small editing application allows users to add points of interest such as
shops, cafés, amenities, and other useful places using the iPhone's built-in GPS and
OpenStreetMap maps.

Chapter 11

[225]

You simply enter the details of the point of interest of your current location, choosing
from its built-in categories to find the type of feature you're mapping. There's no
facility to add roads or other linear features, but that makes the interface for Mapzen
POI collector easy to use even without any prior mapping experience.

The existing desktop editing applications, JOSM and Merkaartor, include
customizable presets and rendering rules, so they could be turned into a specialized
editor, provided the effort is made to create the necessary files. Potlatch 2 will
feature customizable rendering and presets, so it will also be able to provide a
similar facility.

One final idea being discussed in the OpenStreetMap community is allowing
mappers to edit the properties of a feature, but not its geometry, through a web
interface on openstreetmap.org. This would allow people with no mapping
experience to fix problems, such as incorrect street names or route references. No
work has been done on implementing this feature to date, but it remains a topic
of discussion.

Summary
You should now know how to use OpenStreetMap's data for whatever purpose you
want. In particular, remember the following points:

You will never have to pay for OpenStreetMap data. While you can pay for
services providing OpenStreetMap data, the raw data will always be free.
You can, and should, correct any errors or omissions you find in the data.
You can redistribute OpenStreetMap data to anyone, for any purpose.
OpenStreetMap is a community-run project, and you can get more information
and help by using the community's various communication channels.
There are several OpenStreetMap editing applications available, depending
on your platform, skill level, and connectivity.
You can create maps from OpenStreetMap data using a number of rendering
applications, depending on the level of customization you want and the
platform you're running on.
You can download bulk data in the form of a planet file, or selective datasets
from the extended API (XAPI).
You can produce tailored subsets of OpenStreetMap data using Osmosis
to your exact specifications.
You can use OpenStreetMap data in a traditional Geographic Information
System (GIS).

•

•

•

•

•

•

•

•

•

OpenStreetMap’s Future

[226]

OpenStreetMap passed the point of being a viable project long ago, and has
reached a reasonable level of technical stability. While the data itself will change at
an increasing rate as OpenStreetMap becomes more popular, the greatest level of
software development around OpenStreetMap data is expected to be outside the
core infrastructure, as people come up with more and varied ways of using the data.

As already noted, there are no great changes expected in OpenStreetMap's data
model, and the work taking place on the editing applications should mean that you'll
need to know less about the internals of the OpenStreetMap database to contribute
to it in future. There should also be better tools to manage errors in the data, whether
accidental or deliberate.

If you have any ideas that you think will improve OpenStreetMap, whether that's the
data, the tools surrounding it, or some other aspect of the project, contributions are
always welcome. Remember to look in the wiki and mailing list archives for ideas
similar to your own, to check the ideas haven't already been discounted, or to find
possible collaborators. You'll also need to be willing to put in work on implementing
your ideas, as the voluntary, distributed nature of the project means other mappers
and developers are unlikely to want to do it for you.

Whatever changes do happen to OpenStreetMap, it won't change the open nature
of the project. You will always have access to the data, and you will always be able
to use and redistribute it for any purpose. Most of the software we've covered in
this book is and will remain open source, so the tools to use the data will always be
available. Whatever investment you make in OpenStreetMap, you won't be left with
nothing, and that's OpenStreetMap's real future.

Index
Symbols
--bounding-box task 195
--dataset-dump task 214
--read-pgsql task 216
--read-xml task 195
--write-pgsql-change task 215
--write-xml task 195
[@changeset=<id>] user filter 189
[@uid=<user id>] user filter 189
[@user=<username>] user filter 189

A
announce 27
API calls 184
area

creating, to analyse 128
features, retrieving 182, 183
using, for data filter 185

area features
drawing 104
estimating 117, 119

audio mapping 45, 81
auth file

database credentials, storing 216
Automotive Navigation Data (AND) 14

B
barriers 108-110
base layers, slippy map

about 24
Cycle map 25
Mapnik 24
NoNames 25, 50
Osmarender 24

bitmap
exporting 151

bitmapgen command 152
bounding box

cutting 195
bounding box task 194
bounding polygon task

about 196
polygon files, creating 197, 198
polygon files, using 196

bzip2 utility 194

C
CC-BY-SA 219, 220
changesets

about 55, 60
inspecting 126
tagging 61
XML format 60

cheat sheet 76
CloudMade

about 177
URL 128

Cloudmade
URL 51

completeRelations option 195
completeWays option 195, 204
complex streets

mapping 106-108
compressionMethod parameter 195
control segment, NAVSTAR 33
createdb utility 212
Creative Commons Attribution-Share Alike

2.0 license. See CC-BY-SA
crowdsourcing 8, 14

[228]

CSS classes
using, for style 167

Cycle map layer 25

D
data

adding, to database 214
editing, in JOSM 88, 89
editing, in Merkaartor 96, 97
editing, Potlatch used 78
filtering 128, 129
filtering, by area 185
filtering, by associated elements 187, 188
filtering, by tag 185, 186
filtering, by user activity 189
local data, uploading from diffs 205, 206
reading, from database 214, 215
sorting 128, 129

database
changes, applying 215
creating 211-213
data, reading 214, 215
Osmosis, using 210

database credentials
storing, auth file used 216

data inspection tools, OpenStreetMap 122,
123

data model, OpenStreetMap 53, 54
data model, primitives

nodes 54-57
relations 54-60
ways 54-59

data overlay 25
data processing, Osmosis 193, 194
data streams

merging 202, 203
splitting 202, 203

datum 34
defs element 162
dev 28
diff files

about 174, 176
downloading 207
local data, uploading 205, 206
osmChange format 176

Dilution of Precision. See DOP

Docks toolbar 93
DOP 33, 88
drawing features 100-104

E
else rule 169, 170
exporter service 138
extended API. See XAPI
Extensible Markup Language. See XML
Extensible Stylesheet Language Transform

(XSLT) 155

F
filters

about 201
list 187, 188
node-key 201
node-key-value 201
way-key 201
way-key-value 201

Flickr
URL 18

forums 29

G
gates 108
Geofabrik 131, 177
geographic information system. See GIS
geonames 21
geotagged images 87
GIS 8, 53
Global Navigation Satellite System (GNSS)

32
Global Positioning System. See GPS
GLONASS 32
GPS 8, 32
GPSBabel

about 46
URL 46

GPSDrive 12
GPS Exchange format. See GPX
GPS receiver

about 33
configuring 38

GPStogo scheme 16

[229]

GPS traces
about 34
benefits 35
direct conversion avoiding, reasons 72
roads, mapping 100
using, in Potlatch 80

GPS tracks
adding 145

GPX 46

H
Halcyon 223
Harrow Map

presets, using 114

I
iframe element 140
image files

generating 137, 138
image format

selecting 136, 137
images

files, generating 137, 138
format, selecting 136, 137
loading, into JOSM 87
loading, into Merkaartor 95, 96

Inkscape
maps 159
SVG, editing 158
URL 158

installation, Kosmos 141
installation, Osmarender 157
Internet Relay Chat. See IRC
IRC

using 28
ITO 128

J
JOSM

about 13, 37, 71, 81, 225
account information, adding 91, 92
authenticating, to OpenStreetMap server 91
data, editing 88, 89
extending, with plugins 92
features 71, 81

images, loading into 87
latest version 81
parking area, drawing 104
presets, used 90
requisites 71
roads, mapping 102
standard view 87
tested version 81
URL 81
user interface 82-87
using, on public computers 82
versus Merkaartor 71
versus Potlatch 71
wireframe view 87

K
keys 68
Kosmos

about 140
bitmap, exporting 151
Console version 152
GPS tracks, adding 145
installing 141
maps, rendering on Windows 140, 141
map tiles, rendering 153, 154
OpenStreetMap data, loading into 143, 144
OpenStreetMap maps, adding 145
project, creating 142, 143
rendering rules, customizing 145-150

Kosmos Console
using 152

L
Landsat information 12
latest version, JOSM 81
legal talk 28
license, OpenStreetMap

changing 219, 220
loops

ways, drawing 105

M
MacPorts

URL 174

[230]

mailing lists
about 27
announce 27
dev 28
legal talk 28
newbies 28
talk 27
URL 27

map call 182
MapCSS 221, 222
Maperitive 141
map export function 135, 136
Map Features page 27
maplint overlay 25
Mapnik image 138
Mapnik layer 24
mappers 8, 11
map query 184
maps

about 7
embedding, in web page 138-140
producing 158, 160
rendering, on Windows 140, 141

map tiles
rendering, Kosmos used 153, 154

Mapzen POI Collector
URL 224

Marker layer 84
MD5 checksum 175
MediaWiki 26
Merkaartor

about 71, 93, 225
data, editing 96, 97
edits, uploading to OpenStreetMap 98
features 71, 93
parking area, drawing 104
photo mapping 95, 96
relations 97
requisites 71
roads, mapping 102
user interface 93, 95
versus JOSM 71
versus Potlatch 71

mirror sites 176
Mobile Trail Explorer

URL 72

N
navigation tabs, slippy maps

Edit tab 25
Export tab 26
GPS traces tab 26
History tab 26
User Diaries tab 26
View tab 25

NAVSTAR
about 32
control segment 33
space segment 32
user segment 33
WGS84 coordinate system 34

newbies 28
node-key-value filter 201
node-key filter 201
nodes

about 54, 55
example 56
XML format 56

nominatim 21
NoName layer

about 25, 50
unsurveyed areas, finding 127, 128

O
OAuth

about 91, 178
authenticating, with server 91

offline mapping 93
OpenCycleMap

URL 17
Open Database Licence 1.0 (ODBL) 10
Open Database License (ODbL)

adopting 220, 221
Open Data Commons 220
OpenLayers 24
OpenStreetMap

about 8, 19
achievements 17, 18
aim 8, 9
changesets, inspecting 126
community 22
contribution, need for 11

[231]

data 9
data, inspecting 122, 123
data, loading into Kosmos 143, 144
data inspection tools 122, 123
data model 53-55
data structure 60, 61
design goals 54
documentation 26
drawing, features 100-104
exporter service 138
feature's editing history, checking 125, 126
forums 29
front page 20
GPS 32
GPS receiver 33
GPS trace 32, 34
history 12, 13, 14
icons 133
IRC, used for chatting 28
JOSM 71, 81
keys 68
license, changing 219, 220
mailing lists 27
MapCSS 221, 222
map export function 135, 136
mappers 8, 11
Merkaartor 71, 93-95
need for 10, 11
Open Database License (ODbL), adopting

220, 221
Osmosis 191
Planet files 174
point features, adding 110-112
Potlatch 71, 73
quality assurance tools, URL 122
single feature, inspecting 124, 125
slippy map 24
social networking 30
specialized editors 224, 225
structure 15
tag, creating 68
tagging 61-63
tagging, features 100-104
tags 65
traces 31
traces, adding 48-50
URL 8

user account, creating 21
user account, settings 22, 23
versus Wikipedia 10

OpenStreetMap, data structure
changesets 60, 61

OpenStreetMap API
reading, from Osmosis 209

OpenStreetMap Application Programming
Interface (API)

about 177
feature's editing history, retrieving 181
features, retrieving in area 182, 183
individual feature, retrieving 179, 180
usage policy 178

OpenStreetMap data
loading, into Kosmos 143, 144

OpenStreetMap Foundation (OSMF) 13, 16
OpenStreetMap software

problems, reporting with 29
OpenStreetPhoto 45
OSGB36 system 34
Osmarender

about 138, 155
features 170
installing 157
maps, producing 158, 160
nested rules 168
prerequisites 155
rendering rules, customizing 160-162

Osmarender layer 24
osmChange format 176
OSMDoc

URL 65
OSMdoc 115
OSM Inspector

about 131
URL 131
views 132

OSM Inspector, views
addresses 132
boundaries 132
geometry 132
highways 132
places 132
public transport 132
tagging 132
water 132

[232]

OSM Mapper
about 128
area, creating to analyse 128
data, filtering 128, 129
data, sorting 128, 129
URL 128
view, creating 130

Osmosis
--bounding-box task 195
--read-xml task 195
--write-xml task 195
about 176, 191
bounding box 195
bounding box task 194
bounding polygon task 196
data, processing 193, 194
examples 191
OpenStreetMap API, reading from 209
planet files, processing 194
requisites 192
setting up 192
tasks 217
using, on same machine as PostgreSQL 212
using, with database 210

overlapping features
mapping 112, 113

overlays, slippy map
data 25
maplint 25

P
parking area

drawing, in JOSM 104
drawing, in Merkaartor 104
drawing, in Potlatch 104

pbzip2 194
photo mapping 43, 44, 81, 95, 96
pipeline

about 193
creating, with tee task 203, 204

Planet file
about 11, 29, 174
extracts 177
integrity, verifying 175
Planet site 174
processing, in Osmosis 194

URL 74
Planet site 174
plugins

JOSM, extending 92
point of interest (POI) palette 76
polygon files

creating 197, 198
using 196

PostGIS
about 210
installing 211
URL 210

Potlatch
about 71, 73
advantage 73
best practices 80
data, editing 78
features 71, 73
GPS traces, used 80
launching 73-75
parking area, drawing 104
presets, used 79
requisites 71
roads, mapping 101
user interface 75-78
versus JOSM 71
versus Merkaartor 71

Potlatch 2
about 81
features 81

presets
using, in JOSM 90
using, in Potlatch 79

project
creating 142, 143

Q
quality assurance tools, OpenStreetMap

URL 122

R
ref attribute 59
relations

about 54, 59
XML format 59

[233]

rendering rules, Kosmos
customizing 145-150

rendering rules, Osmarender
complex rules 170
CSS classes, for styles 167
customizing 160-162
else rule 169, 170
nested rules 168
simple rules 162-167

Representational State Transfer. See REST
residential streets

mapping 106-108
REST 178
role attribute 59
RSS feed 23
rules element 162

S
Scalable Vector Graphics (SVG)

about 76, 155
editing, Inkspace used 158

search engines, OpenStreetMap
geonames 21
nominatim 21

Selective Availability (SA) 34
Simple Object Access Protocol (SOAP) 178
single feature, OpenStreetMap

inspecting 124, 125
slippy map

about 20, 24
navigation tabs 25

smartphones 37
sort task 203
space segment, NAVSTAR 32
standard view, JOSM 87
style

CSS classes, using 167
surveying techniques, OpenStreetMap

about 41
survey, making comprehensive 42, 43

T
tag

about 61
creating 68

using, for data filter 185, 186
tag filters

tailored datasets, creating 199-201
tagging

about 61
guidelines 68
limitations 64
principles 63, 64
properties 61
URL 68
verifiability 64

tagging features 100-104
Tagwatch

URL 65
tailored datasets

tag filters, using 199-201
talk 27
tasks 193
tee task

multiple pipelines, creating 203, 204
tested version, JOSM 81
The State of the Map conference 14
TIGER 14
tilegen command 153
tileserv command 153
Topologically Integrated Geographic En-

coding and Referencing. See TIGER
Trac

about 29
URL 29

traces
about 31
accuracy, improving 40, 41
adding, to OpenStreetMap 48-50
equipments, requisites 36, 37
getting, into right format 45-47
quality, verifying 39, 40

traces, privacy options
identifiable 49
private 49
public 49
trackable 49

track 103
tracklog. See GPS trace
type parameter 203

[234]

U
Ubuntu

URL 211
undocumented tags

finding 115, 116
unsurveyed areas

finding, NoName layer used 127, 128
user account

creating 21
settings 22, 23

user activity
using, for data filter 189

user interface, JOSM 82-87
user interface, Merkaartor 93, 95
user interface, Potlatch 75-78
user segment, NAVSTAR 33
UTF-8 encoding scheme 61

V
video mapping

limitations 37
view

creating 130
views, JOSM

standard 87
wireframe 87

virtual nodes 89
visible attribute 55, 181

W
Walking Papers

URL 51
way-key-value filter 201
way-key filter 201

ways
about 54, 57
drawing, with loops 105
example 58
XML format 58

web page
maps, embedding 138-140

wget utility 174
WGS84 coordinate system 34, 38
wiki-like editing 54
Wikipedia

versus OpenStreetMap 10
Windows

maps rendering, Kosmos used 140, 141
wireframe view, JOSM 87

X
XAPI

about 183
data, filtering by area 185
data, filtering by associated elements 187,

188
data, filtering by tag 185, 186
data, filtering by user activity 189
map query 184
queries 183
query by primitive 184
standard API calls 184
URL 183

XAPI queries 183
XML 173
XML format 55
XMLStarlet

XSL processing 156, 157
XSL processing

XMLStarlet, used 156, 157

Thank you for buying
OpenStreetMap

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Drupal E-commerce with
Ubercart 2.x
ISBN: 978-1-847199-20-1 Paperback: 364 pages

Build, administer, and customize an online store
using Drupal with Ubercart

1.	 Create a powerful e-shop using the award-
winning CMS Drupal and the robust e-
commerce module Ubercart

2.	 Create and manage the product catalog and
insert products in manual or batch mode

3.	 Apply SEO (search engine optimization)
to your e-shop and adopt turn-key internet
marketing techniques

Joomla! E-Commerce with
VirtueMart
ISBN: 978-1-847196-74-3 Paperback: 476 pages

Build feature-rich online stores with Joomla! 1.0/1.5
and VirtueMart 1.1.x

1.	 Build your own e-commerce web site from
scratch by adding features step-by-step to an
example e-commerce web site

2.	 Configure the shop, build product catalogues,
configure user registration settings for
VirtueMart to take orders from around the
world

3.	 Manage customers, orders, and a variety of
currencies to provide the best customer service

4.	 Handle shipping in all situations and deal with
sales tax rules

Please check www.PacktPub.com for information on our titles

Magento: Beginner’s Guide
ISBN: 978-1-847195-94-4 Paperback: 300 pages

Create a dynamic, fully featured, online store with the
most powerful open source e-commerce software

1.	 Step-by-step guide to building your own online
store

2.	 Focuses on the key features of Magento that
you must know to get your store up and
running

3.	 Customize the store’s appearance to make it
uniquely yours

4.	 Clearly illustrated with screenshots and a
working example

Selling Online with Drupal
e-Commerce
ISBN: 978-1-847194-06-0 Paperback: 264 pages

Walk through the creation of an online store with
Drupal’s e-Commerce module

1.	 Set up a basic Drupal system and plan your
shop

2.	 Set up your shop, and take payments

3.	 Optimize your site for selling and better
reporting

4.	 Manage and market your site

Please check www.PacktPub.com for information on our titles

PHP Web 2.0 Mashup Projects
ISBN: 978-1-847190-88-8 Paperback: 304 pages

Create practical mashups in PHP grabbing and
mixing data from Google Maps, Flickr, Amazon,
YouTube, MSN Search, Yahoo!, Last.fm, and

1.	 Expand your website and applications using
mashups

2.	 Gain a thorough understanding of mashup
fundamentals

3.	 Clear, detailed walk-through of the key PHP
mashup building technologies

4.	 Five fully implemented example mashups with
full code

jQuery UI 1.7
ISBN: 978-1-847199-72-0 Paperback: 392 pages

Build highly interactive web applications with ready-
to-use widgets from the jQuery User Interface library

1.	 Organize your interfaces with reusable widgets:
accordions, date pickers, dialogs, sliders, tabs,
and more

2.	 Enhance the interactivity of your pages by
making elements drag-and-droppable, sortable,
selectable, and resizable

3.	 Packed with examples and clear explanations
of how to easily design elegant and powerful
front-end interfaces for your web applications

4.	 Revised and targeted at jQuery UI 1.7

Please check www.PacktPub.com for information on our titles

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming
and coding conventions

2.	 Apply object-oriented principles, design
patterns, and advanced syntax tricks

3.	 Manage your code with distributed version
control

4.	 Profile and optimize your code

Matplotlib for Python Developers
ISBN: 978-1-847197-90-0 Paperback: 308 pages

Build remarkable publication-quality plots the easy
way

1.	 Create high quality 2D plots by using
Matplotlib productively

2.	 Incremental introduction to Matplotlib, from
the ground up to advanced levels

3.	 Embed Matplotlib in GTK+, Qt, and wxWidgets
applications as well as web sites to utilize them
in Python applications

4.	 Deploy Matplotlib in web applications and
expose it on the Web using popular web
frameworks such as Pylons and Django

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Making a Free, Editable Map of the World
	What is OpenStreetMap?
	Why use OpenStreetMap?
	Why contribute to OpenStreetMap?
	History
	Does it work?
	Structure of the project
	The OpenStreetMap Foundation
	Achievements
	Summary

	Chapter 2: Getting started at openstreetmap.org
	A quick tour of the front page
	Creating your account
	How to use the slippy map
	Interacting with the data
	Project documentation: the wiki
	Communicating with other mappers
	Mailing lists
	Chatting on IRC
	Forums

	planet.openstreetmap.org
	Reporting problems with OpenStreetMap software
	OpenStreetMap on social networks
	Don't be afraid to ask
	Summary

	Chapter 3: Gathering Data using GPS
	What is GPS?
	What's a GPS trace?
	What equipment do I need?
	Making your first trace
	Configuring your GPS receiver
	Checking the quality of your traces

	Making your traces more accurate
	Surveying techniques
	Making your survey comprehensive
	Photo mapping
	Audio mapping

	Getting your traces into the right format
	Adding your traces to OpenStreetMap
	Collecting information without a GPS
	Have you finished?
	Summary

	Chapter 4: How OpenStreetMap Records Geographical Features
	Data primitives
	Nodes
	Ways
	Relations
	Changesets

	Tagging
	"Any tags you like"
	"Don't tag for the renderer"
	Verifiability
	A few core tags
	Other useful keys
	Creating a new tag

	Summary

	Chapter 5: OpenStreetMap's Editing Applications
	Potlatch
	Launching Potlatch
	Understanding Potlatch's user interface
	Editing data using Potlatch
	Using presets in Potlatch
	Using GPS traces in Potlatch
	Practicing with Potlatch
	Learning more about Potlatch
	Potlatch 2

	Java OpenStreetMap Editor (JOSM)
	Understanding JOSM's user interface
	Loading images into JOSM
	Editing data in JOSM
	Using presets in JOSM
	Adding your account information to JOSM
	Extending JOSM with plugins
	Learning more about JOSM

	Merkaartor
	Loading images in Merkaartor
	Editing data in Merkaartor
	Uploading edits to OpenStreetMap
	Learning more about Merkaartor

	Summary

	Chapter 6: Mapping and Editing Techniques
	Drawing and tagging features
	Drawing area features
	Drawing ways with loops
	Mapping residential streets and complex streets
	Barriers and gates
	Points of interest
	Mapping overlapping features
	Other civic amenities
	Finding undocumented tags
	Estimating area features
	Finished

	Summary

	Chapter 7: Checking OpenStreetMap Data for Problems
	Inspecting data with openstreetmap.org's data overlay and browser
	Inspecting a single feature
	Checking a feature's editing history
	Inspecting changesets

	Finding unsurveyed areas with the NoName layer
	OSM Mapper
	Creating an area to analyse
	Filtering and sorting data
	Creating a view

	OSM Inspector
	Summary

	Chapter 8: Producing Customised Maps
	The openstreetmap.org exporter
	Choosing an image format
	Generating image files
	Embedding maps in a web page

	Rendering maps on Windows using Kosmos
	Installing Kosmos
	Creating a project
	Adding OpenStreetMap data
	Adding GPS tracks
	Adding existing OpenStreetMap maps
	Customizing the rendering rules
	Exporting a bitmap
	Kosmos Console
	Rendering map tiles using Kosmos
	Taking Kosmos further

	Osmarender
	Getting ready to run Osmarender
	XSL processing with XMLStarlet
	Installing Osmarender
	Editing SVG with Inkscape

	Producing a map
	Customizing the rendering rules
	Writing simple rules
	Using CSS classes for style
	Nested rules
	Creating default rules using <else>
	More complex rules

	Summary

	Chapter 9: Getting Raw OpenStreetMap Data
	Planet files
	The main Planet site
	Checking a planet file's integrity
	Diff files
	Mirror sites
	Planet extracts

	OpenStreetMap's REST API
	Retrieving an individual feature
	Getting a feature's editing history
	Retrieving all features in an area

	The extended API (XAPI)
	Standard API calls
	Query by primitive
	Map query
	Filtering data by area
	Filtering by tag
	Filtering by associated elements
	Filter by user activity

	Summary

	Chapter 10: Manipulating OpenStreetMap Data using Osmosis
	What is Osmosis?
	Setting up Osmosis

	How Osmosis processes data
	Cutting out a bounding box
	Getting data from outside the bounding box

	Cutting out data with a bounding polygon
	Using polygon files
	Creating your own polygon files

	Using tag filters to produce tailored datasets
	Simplifying filters

	Splitting and merging data streams
	Creating multiple pipelines with the tee task

	Automatically updating local data from diffs
	Preparing your system
	Running the initial update
	Keeping the data up-to-date automatically

	Reading the OpenStreetMap API from Osmosis
	Using Osmosis with a database
	Installing PostGIS and creating the database
	Using Osmosis on the same machine as PostgreSQL
	Creating the database

	Adding data to the database
	Reading data from the database
	Applying changes to the database
	Using an auth file to store database credentials

	Other Osmosis tasks
	Summary

	Chapter 11: OpenStreetMap's Future
	Changing the OpenStreetMap license
	Adopting the Open Database License

	MapCSS—a common stylesheet language for OpenStreetMap
	Specialized editing applications
	Summary

	Index

