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Preface to the Fourth Edition

As in the previous works, this new edition preserves the
content, size, and convenience of this portable reference
source for students and workers who use mathematics,
while introducing much new material. New in this fourth
edition is an expanded chapter on series that now includes
many fascinating properties of the natural numbers that
follow from number theory, a field that has attracted
much new interest since the recent proof of Fermat’s last
theorem. While the proofs of many of these theorems
are deep, and in some cases still lacking, all the number
theory topics included here are easy to describe and form
a bridge between arithmetic and higher mathematics. The
fourth edition also includes new applications such as the
geostationary satellite orbit, drug kinetics (as an applica-
tion of differential equations), and an expanded statistics
section that now discusses the normal approximation of
the binomial distribution as well as a treatment of non-
linear regression. The widespread use of computers now
makes the latter topic amenable to all students, and thus
all users of the Pocket Book of Integrals can benefit from
the concise summary of this topic. The chapter on financial
mathematics, introduced in the third edition, has proved
successful and is retained without change in this edition,
whereas the Table of Integrals has been reformatted for
easier usage. This change in format also allowed the inclu-
sion of all the new topics without the necessity of increas-
ing the physical size of the book, thereby keeping its wide
appeal as a true, handy pocket book that students and pro-
fessionals will find useful in their mathematical pursuits.

R.J.T.
Philadelphia



Preface to the Third Edition

This new edition has been enlarged to contain all the mate-
rial in the second edition, an expanded chapter on statistics
that now includes sample size estimations for means and
proportions, and a totally new chapter on financial math-
ematics. In adding this new chapter we have also included a
number of tables that aid in performing the calculations on
annuities, true interest, amortization schedules, compound
interest, systematic withdrawals from interest accounts, etc.
The treatment and style of this material reflect the rest of the
book, i.e., clear explanations of concepts, relevant formulas,
and worked examples. The new financial material includes
analyses not readily found in other sources, such as the effect
of lump sum payments on amortization schedules and a novel
“in-out formula” that calculates current regular deposits to
savings in order to allow the start of systematic withdrawals
of a specified amount at a later date. While many engineers,
mathematicians, and scientists have found much use for this
handy pocket book, this new edition extends its usage to
them and to the many business persons and individuals who
make financial calculations.

R.J.T.
Philadelphia



Preface to the Second Edition

This second edition has been enlarged by the addition of sev-
eral new topics while preserving its convenient pocket size.
New in this edition are the following topics: z-transforms,
orthogonal polynomials, Bessel functions, probability and
Bayes’ rule, a summary of the most common probability
distributions (binomial, Poisson, normal, t, Chi square, and
F), the error function, and several topics in multivariable
calculus that include surface area and volume, the ideal gas
laws, and a table of centroids of common plane shapes. A list
of physical constants has also been added to this edition.

I am grateful for many valuable suggestions from users of
the first edition, especially Lt. Col. W. E. Skeith and his
colleagues at the U.S. Air Force Academy.

R.J.T.
Philadelphia, 1992



Preface to the First Edition

The material of this book has been compiled so that it may
serve the needs of students and teachers as well as profes-
sional workers who use mathematics. The contents and size
make it especially convenient and portable. The widespread
availability and low price of scientific calculators have
greatly reduced the need for many numerical tables (e.g.,
logarithms, trigonometric functions, powers, etc.) that make
most handbooks bulky. However, most calculators do not
give integrals, derivatives, series, and other mathematical
formulas and figures that are often needed. Accordingly, this
book contains that information in addition to a comprehen-
sive table of integrals. A section on statistics and the accom-
panying tables, also not readily provided by calculators, have
also been included.

The size of the book is comparable to that of many calcula-
tors, and it is really very much a companion to the calcula-
tor and the computer as a source of information for writing
one’s own programs. To facilitate such use, the author and
the publisher have worked together to make the format
attractive and clear. Yet, an important requirement in a book
of this kind is accuracy. Toward that end we have checked
each item against at least two independent sources.

Students and professionals alike will find this book a valu-
able supplement to standard textbooks, a source for review,
and a handy reference for many years.

Ronald J. Tallarida
Philadelphia
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Important Numbers in Science (Physical Constants)

Avogadro constant (N,)
Boltzmann constant (k)
Electron charge (e)

Electron, charge/mass
(e/m,)

Electron rest mass (1m,)
Faraday constant (F)
Gas constant (R)

Gas (ideal) normal volume
v,
Gravitational constant (G)

Hydrogen atom
(rest mass) (my;)

Neutron (rest mass) (m,,)
Planck constant (/)
Proton (rest mass) (m,)
Speed of light (c)

6.02 x 10? kmole™!
1.38 x 1023 J-°K-!
1.602 x 10 C
1.760 x 10" C-kg™!

9.11 x 103 kg (0.511 MeV)
9.65 x 10* C-mole!

8.31 x 103 J-°K-! kmole™!
22.4 m3*kmole™!

6.67 x 10! N-m?>-kg2
1.673 x 10?7 kg (938.8 MeV)

1.675 x 10?7 kg (939.6 MeV)
6.63 x 1034 J-s
1.673 x 1077 kg (938.3 MeV)
3.00 x 108 m-s™!
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1

Elementary Algebra
and Geometry

1. Fundamental Properties (Real Numbers)

atb=b+a

(@+b)+c=a+b+c)

a+0=0+a

a+(-a)=(-a)+a=0

a(bc)=(ab)c

[1) _ (1] a=1, a%0
a a

(@)=Na)=a

ab=ba

alb+c)=ab+ac

Commutative Law for
Addition

Associative Law for
Addition

Identity Law for
Addition

Inverse Law for
Addition

Associative Law for
Multiplication

Inverse Law for
Multiplication

Identity Law for
Multiplication

Commutative Law for
Multiplication

Distributive Law

Division by zero is not defined.

1



2.

Exponents

For integers m and n,

a'a" = an+m
ala"=a""

(an )m =q™

((lb)m =a"p"

(alb)y"=a"1b"

. Fractional Exponents

a’l = (al/q )?

where a"?is the positive gth root of a if a > 0 and the
negative gth root of a if a is negative and ¢ is odd.
Accordingly, the five rules of exponents given above
(for integers) are also valid if m and n are fractions,
provided a and b are positive.

. Irrational Exponents

If an exponent is irrational, e.g., \/5 ,the quantity, such as

a2 is the limit of the sequence a'*, a"*', a"*", .. ..

Operations with Zero

0"=0; a’=1

. Logarithms

If x, y, and b are positive and b#1,
2



log, (xy) =log,x +log,y
log, (x/y)=log, x—log,y
log,x” = plog, x
log, (1/x)=-log,x
log,b=1

log,1 =0 Note: b"®" = x.
* Change of Base (a = 1)

log, x=log  xlog,a

6. Factorials
The factorial of a positive integer 7 is the product of
all the positive integers less than or equal to the inte-
ger n and is denoted n! Thus,

n!l=123-...-n.

Factorial O is defined 0! = 1.

e Stirling’s Approximation

lim(n/e)" N2nn = n!

(See als0 9.2.)
7. Binomial Theorem

For positive integer n,
3



nn-1)

(x+y)n :xn +nxnfly+ 2' xanyZ
-D(n-2
+n(n ) (n )x”'3y3+...
3!
+ nxy" 4yt

8. Factors and Expansion

(a+b)* =a*+2ab +b*
(a—b)* =a* —2ab+b*
(a+b) =a* +3a’b+3ab* +b°
(a—b)* =a* -3a’b+3ab* - b*
(@’ -b*)=(a-b)(a+b)
@ -b>)=(a-b) (@ +ab+b*)
@ +b)=(a+b) (a* —ab+b*)
9. Progression

An arithmetic progression is a sequence in which the
difference between any term and the preceding term
is a constant (d):

a,a+d,a+2d,....a+(n—1)d.

If the last term is denoted [[=a+(n—1)d], then the
sum is

n
s=—(a+]).
2( )

4



A geometric progression is a sequence in which the
ratio of any term to the preceding terms is a constant
r. Thus, for n terms,

n—1

2
a,ar,ar-,...,ar

The sum is

10. Complex Numbers

A complex number is an ordered pair of real num-
bers (a, b).

Equality: (a,b) = (c,d) ifandonlyifa=candb=d
Addition: (a,b)+(c,d)=(a+c,b+d)
Multiplication: (a,b)(c,d) = (ac—bd,ad + bc)

The first element of (a, b) is called the real part; the
second, the imaginary part. An alternate notation for
(a, b) is a + bi, where i* = (-1,0), and i (0, 1) or O + 1i
is written for this complex number as a convenience.
With this understanding, i behaves as a number,
ie., (2-3i)(4+i)=8—12i+2i-3i*=11-10i. The
conjugate of a + bi is a—bi, and the product of a
complex number and its conjugate is a” +b>. Thus,
quotients are computed by multiplying numerator
and denominator by the conjugate of the denomina-
tor, as illustrated below:

2430 (4-2i)(2+3i) _14+8i T+4i
4420 (4-2)@4+2) 20 10
5




11. Polar Form

The complex number x + iy may be represented by a
plane vector with components x and y:

Xx+iy =r(cosO+i sin0)

(see Figure 1.1). Then, given two complex numbers
z,=1,(cosO, +isinB ) and z, =7, (cosO, +isinb,),
the product and quotient are:

Product: z z, =rr,[cos(®, +0,)+isin(0, +6,)]
Quotient: z /z, = (r,/r,)[cos®, -0,)

+i sin(0, —0,)]
Powers: 7" =[r(cosO+i sin0)]"

=r"[cosnO+i sinnb]

P (xy)

FIGURE 1.1 Polar form of complex number.
6



Roots:  z"" =[r(cosO+ isin®)]

12.

13.

1/m

1m[ 0+ k.360 ..e+k%0]
=r cos + isin s
n n

k=0,1,2,...,n-1

Permutations

A permutation is an ordered arrangement (sequence)
of all or part of a set of objects. The number of per-
mutations of n objects taken r at a time is

p(n, )=n(n-1)(n-2)...(n—r+1)

n!

Y

A permutation of positive integers is even or odd if
the total number of inversions is an even integer or
an odd integer, respectively. Inversions are counted
relative to each integer j in the permutation by count-
ing the number of integers that follow j and are less
than j. These are summed to give the total number
of inversions. For example, the permutation 4132 has
four inversions: three relative to 4 and one relative
to 3. This permutation is therefore even.

Combinations

A combination is a selection of one or more objects
from among a set of objects regardless of order. The
number of combinations of n different objects taken
rat a time is

P(n, r) n!
r! rt(n—r)!
7

Cn,r)=




14. Algebraic Equations
e Quadratic

If ax®> +bx+c=0, and a #0, then roots are

_ —b+\b*—4ac

2a

X
e Cubic

Tosolve x* +bx” +cx+d =0, let x=y—b/3. Then
the reduced cubic is obtained:

Y +py+q=0
where p = ¢ — (1/3)b? and g = d — (1/3)bc + (2/27)b>.

Solutions of the original cubic are then in terms of
the reduced cubic roots y,,y,.ys:

x,=y,—-1/3)b x,=y,—-(1/3)b
x,=y,—(1/3)b
The three roots of the reduced cubic are
¥ =(4)" +(B)"
y, =W +w(B)"

y3 — WZ(A)1/3 +W(B)1/3

1 1
A=——q+,[1/21)p* +—¢,
X ( )p 19

8

where



15.

16.

1 1
B=—— —,/1/27 P +—¢,
X ( )p 24

=—1+i\/§’W2=—1—i\/§.

2 2

w

When (1/27)p® +(1/4) p* is negative, A is complex;
in this case, A should be expressed in trigonometric
form: A = r (cos® + i sinB), where 6 is a first or second
quadrant angle, as ¢ is negative or positive. The three
roots of the reduced cubic are

y, =2(r)"cos (8/3)

y, =2(r" cos(g +120°)

y=2(r)" cos(g +240°]

Geometry
Figures 1.2 to 1.12 are a collection of common geo-

metric figures. Area (A), volume (V), and other mea-
surable features are indicated.

Pythagorean Theorem

For any right triangle with perpendicular sides a and
b, the hypotenuse c is related by the formula

ct=a’+ b*
This famous result is central to many geometric rela-

tions, e.g., see Section 4.2.
9



FIGURE 1.2 Rectangle. A = bh.

b

FIGURE 1.3 Parallelogram. A = bh.

FIGURE 1.4 Triangle. A= % bh.

10



b

FIGURE 1.5 Trapezoid. A= % (@+b)h.

w1

FIGURE 1.6 Circle. A=7x R?; circumference =
2nR; arc length S = RO (0 in radians).

N

FIGURE 1.7 Sector of circle. A =%R29;

sector

A = le (6—sin®b).

segment — 2

11



FIGURE 1.8 Regular polygon of =n sides.

A:ﬁbzcmg; R=E cse X,
4 n 2 n

U

— R —»]

FIGURE 1.9 Right circular cylinder. V=nRh;
lateral surface area = 21 Rh.
12



FIGURE 1.10 Cylinder (or prism) with parallel
bases. V = Ah.

FIGURE 1.11 Right circular cone. V:%nth;

lateral surface area = Rl = TRV R> + h*.
13



FIGURE 1.12 Sphere. V = in R?; surface area =
4m R2. 3

14



Determinants, Matrices,
2 and Linear Systems
of Equations

1. Determinants

Definition. The square array (matrix) A, with n rows
and n columns, has associated with it the determinant

11 12 In
a a a
22 2n
det A= )
nl n2 arm

a number equal to

Z ( )alx 2j 3k

where i, j, k, ..., [ is a permutation of the n integers
1, 2, 3, ..., n in some order. The sign is plus if the
permutation is even and is minus if the permutation
is odd (see 1.12). The 2 x 2 determinant

has the value a, a, —a,,a, since the permutation
(1,2)is even and (2, 1) is odd. For 3 x 3 determinants,

permutations are as follows:
15



1, 2, 3 even

1, 3, 2 odd
2, 1, 3 odd
2, 3, 1 even

3, 1, 2 even

3, 2, 1 odd
Thus,

+a“ . 6122

a4 . 4y
a, a4 ay

4, - Oy
Ay Gy Gp|=

+£l12 . 6123
Ay Gy Gy

+a13 . aZI

|=%s - A4p

A determinant of order n is seen to be the sum of n!

signed products.

. Evaluation by Cofactors

Eachelementa; has a determinant of order (n— 1) called
a minor (M) obtained by suppressing all elements in
row i and column j. For example, the minor of element

a,, in the 3 x 3 determinant above is

a33

a32

33

31

a32

a; |




The cofactor of element a;;, denoted A, is defined as
M, where the sign is determined from i and j:

A, = =1 M.

The value of the n x n determinant equals the sum of
products of elements of any row (or column) and their
respective cofactors. Thus, for the 3 x 3 determinant,

det A=a A, +ta,A,+a,A, (first row)
or

=a, A, +a, A, + a, A, (first column)

etc.

3. Properties of Determinants
a. If the corresponding columns and rows of A are
interchanged, det A is unchanged.

b. If any two rows (or columns) are interchanged, the
sign of det A changes.

c. Ifany two rows (or columns) are identical, det A = 0.

d. If A is triangular (all elements above the main

diagonal equal to zero), A =a,,-a,,: ... a,,;:
a 0 0 ... 0
ay Ady o -0
nl an2 anB T ann



e. If to each element of a row or column there is
added C times the corresponding element in
another row (or column), the value of the determi-
nant is unchanged.

4. Matrices

Definition. A matrix is a rectangular array of numbers
and is represented by a symbol A or [a,]:

11 12 1n
Ay Gy Gy,

A= = [a,,j]
ml amZ o amn

The numbers a; are termed elements of the matrix;
subscripts i and j identify the element, as the number
is row i and column j. The order of the matrix is m x n
(“m by n”). When m = n, the matrix is square and is
said to be of order n. For a square matrix of order n the
elements a,,, a,,, ..., a,, constitute the main diagonal.

nn

5. Operations

Addition: Matrices A and B of the same order may
be added by adding corresponding elements,
ie,A+B=[(a;+b)]

Scalar multiplication: If A = [a;] and c is a constant
(scalar), then cA = [ca], that is, every element of
A is multiplied by c. In particular, (-1)A = -A =
[~a;] and A + (=A) = 0, a matrix with all elements
equal to zero.

18



Multiplication of matrices: Matrices A and B
may be multiplied only when they are conform-
able, which means that the number of columns
of A equals the number of rows of B. Thus,
if Ais m x k and B is k x n, then the product
C = AB exists as an m X n matrix with elements c;
equal to the sum of products of elements in row i of
A and corresponding elements of column j of B:

k
¢ = 2 ailblj
=1

For example, if

a, 4y ay bn 12 bln
a4y 4y Ay b21 bzz bln
L bkl bk2 bAn

¢y G Cn

C Cx Con

mi Cmz 7 G

then element c,, is the sum of products a,b,, +
by + ..+ ayby.

6. Properties
A+B=B+A

A+B+C)=A+B)+C
19



(¢, +c,)A=cA+c,A
c(A+B)=cA+cB
¢, (c,A)=(c ¢, A
(AB) (C)= A(BC)
(A+B) (C) =AC + BC

AB # BA (in general)

7. Transpose

If A is an n X m matrix, the matrix of order m X n
obtained by interchanging the rows and columns of A is
called the transpose and is denoted A”. The following
are properties of A, B, and their respective transposes:

A=A
(A+B)"=A"+B"
(A" =cA”
(AB)T =BTAT

A symmetric matrix is a square matrix A with the

property A = A”.

8. Identity Matrix

A square matrix in which each element of the main
diagonal is the same constant a and all other elements

zero is called a scalar matrix.
20



a 0 0 0
0 a 0 0
0 0 a 0

0

[0 0 0 - df

When a scalar matrix multiplies a conformable second
matrix A, the product is ¢A, that is, the same as multi-
plying A by a scalar a. A scalar matrix with diagonal
elements 1 is called the identity, or unit matrix, and
is denoted 1. Thus, for any nth-order matrix A, the
identity matrix of order n has the property

Al =IA =A

9. Adjoint

10.

If A is an n-order square matrix and A; the cofactor of
element ay, the transpose of [A;] is called the adjoint
of A:

adj A=[A,]"

Inverse Matrix

Given a square matrix A of order n, if there exists a
matrix B such that AB = BA = I, then B is called the
inverse of A. The inverse is denoted A~!. A neces-
sary and sufficient condition that the square matrix A
have an inverse is det A # 0. Such a matrix is called
nonsingular; its inverse is unique and is given by

21



A = adj A
det A

Thus, to form the inverse of the nonsingular matrix,
A, form the adjoint of A and divide each element of

the adjoint by det A. For example,

1 0 2

3 -1 1 |has matrix of cofactors

4 56
-11 -14 19
10 -2 5],
2 5 -1
-11 10 2

adjoint={—-14 -2 5 |and determinant 27.

19 -5 -1
Therefore,
(-1l 10 2]
27 27 27
ao|T4 2 s
27 27 27|
|
| 27 27 27|

22



11. Systems of Linear Equations

Given the system

a,x, + a,x, +-+ ax = b
a,x, + ay,x, +-+ a,x = b,
ax + ax, +-+ ax = b
X1 w22 nn’n f

a unique solution exists if det A # 0, where A is the
n X n matrix of coefficients [a].

 Solution by Determinants (Cramer’s Rule)

bl a, 4y,
bz ay
X, = +det A
b a a
n n2 nn
a]l b] alS aln
a, b, -

X, = +det A
a, bn a,; -
detA,

X, = s
det A

where A, is the matrix obtained from A by replacing
the kth column of A by the column of b’s.
23



12. Matrix Solution

The linear system may be written in matrix form
AX = B where A is the matrix of coefficients [a;] and
X and B are

xl bl

x2 b2
X = B=

x"l bﬂ

If a unique solution exists, det A # 0; hence, A~
exists and

X=A"B.

24



3 Trigonometry

1. Triangles

In any triangle (in a plane) with sides a, b, and ¢ and
corresponding opposite angles A, B, C,

a b ¢
sinA sinB sinC’

(Law of Sines)

a* =b*+c* —2cb cos A. (Law of Cosines)

a+b tan;(A+B)
a-b tanl(A-B)

(Law of Tangents)

sinlA= w, whereszl (a+b+c).
2 bc 2

coslA = s(s—a).
2 bc

anlaz [B=D6=0
2 s(s—a)

Area = % bc sin A

=s(s—a)s—b)s—0).

If the vertices have coordinates (x;,y,), (X,,,), (x3,¥3),
the area is the absolute value of the expression

25



2. Trigonometric Functions of an Angle

With reference to Figure 3.1, P(x, y) is a point in either
one of the four quadrants and A is an angle whose
initial side is coincident with the positive x-axis and
whose terminal side contains the point P(x, y). The
distance from the origin P(x, y) is denoted by r and

(m D pey)

(1 )

FIGURE 3.1 The trigonometric point. Angle A
is taken to be positive when the rotation is counter-
clockwise and negative when the rotation is clock-
wise. The plane is divided into quadrants as shown.
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sin

CosS

tan

ctn

secC

CSC

is positive. The trigonometric functions of the angle

A are defined as

sinA = sine A

cos A = cosine A

tan A = tangent A

ctn A = cotangentA =x/y

sec A = secant A

csc A = cosecant A

=ylr

=x/r

=yl/x

=rl/x

=rly

Angles are measured in degrees or radians: 180° =7
radians; 1 radian = 180°%m degrees.

The trigonometric functions of 0°, 30°,45° and integer
multiples of these are directly computed:

0° 30° 45° 60° 90°

SIS

S
N}
8

w2, g wlE elE -

=
&

27

120°

V3

2

-2

135°

150°

180°



3. Trigonometric Identities

SinA = !
csc A
COSA = !
sec A
an A = 1 =sinA
ctn A cosA
1
CSCA =—
sin A
1
cos A
ctnA = ! =C(_)SA
tanA sinA

sinf?A+cos’A=1
1+ tan’A =sec’A

1+ctn®A = csc’A

sin(A+ B) =sinA cos B+ cos Asin B

cos(Ax B) = cos Acos BFsin A sin B

+
tan(A+ gy= ‘nAt@nB
l¥ tan A tan B

sin2A=2sinA cos A
sin3A=3sin A—4sin’A

28



sin nA =2sin(n—1)A cos A—sin(n—2)A
cos2A=2cos’ A—1=1-2sin’A
cos3A =4 cos’A—3cos A

cosnA =2cos(n—1)AcosA—cos(n—2)A
. . 1 1

sinA+sin B =2 sin E(A+B) cos E(A—B)
. . 1 1

sinA—sinB = 2cosE(A+B) smE(A— B)

1 1
cosA+cosB= ZCOSE(A+B) cos 3 (A-B)

cos A—cos B =—-2sin % (A+B) sin%(A—B)

_ sin(A+B)
sin A cos B

sin(A£B)
sin Asin B

ctnAtctnB =+

sin A sinBzécos(A—B)—% cos (A+B)
1 1
cos A cosB:E cos (A—B)+5 cos (A+B)

1 1
sin A cosBzgsin(A+B)+E sin (A— B)

29



A 1+cosA
cos — =%, /[———
2 2

A 1-cosA  sinA

2" sinA l+cosA

I+

1—cosA
1+cosA
.2 1
sin Azg(l—cos 2A)
N 1
cos A=5(1+cos 2A)
-3 1 . .
sinA = Z(3s1n A—sin3A)
3 1
cos Azz(cos3A+3 cos A)
T S
smLx:Et(e —e “)=1isinhx
. 1 x —-X
cos;sz(e +e¢ ) =coshx

. det—-e") .
Lx=(7x)=ztanhx

e +e

X+iy

e =¢"(cosy+isiny)

(cosx £isinx)" = cosnx £i sinnx)

30



4. Inverse Trigonometric Functions
The inverse trigonometric functions are multiple val-

ued, and this should be taken into account in the use
of the following formulas:

sin”'x = cos '\ 1-x?

40X aNI=x
= tan =ctn
\/1 —x’ x
41 1
=seC ———=cs¢c —
1-x* X
=—sin"' (=x)
3 2
cos x =sin" V1—x
L V1=x? X
= tan = cin
X 1-x°
gl -1
=sec” — =csc
X 1-x*
=7—cos” (—x)
4 o1
tan" x =ctn_ —
x
. o1
=sin =cos

J— Vi
=sec” m —CSC \/7

=—tan” (=x)
31



4 Analytic Geometry

1. Rectangular Coordinates

The points in a plane may be placed in one-to-one
correspondence with pairs of real numbers. A
common method is to use perpendicular lines that are
horizontal and vertical and intersect at a point called
the origin. These two lines constitute the coordinate
axes; the horizontal line is the x-axis and the vertical
line is the y-axis. The positive direction of the x-axis
is to the right, whereas the positive direction of the
y-axis is up. If P is a point in the plane, one may draw
lines through it that are perpendicular to the x- and
y-axes (such as the broken lines of Figure 4.1). The

NMip-——- * P(xy,y7)

1T v

FIGURE 4.1 Rectangular coordinates.
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lines intersect the x-axis at a point with coordinate x;,
and the y-axis at a point with coordinate y,. We call
x, the x-coordinate, or abscissa, and y, is termed the
y-coordinate, or ordinate, of the point P. Thus, point
P is associated with the pair of real numbers (x,,y,)
and is denoted P(x,,y,). The coordinate axes divide
the plane into quadrants I, II, III, and I'V.

. Distance between Two Points: Slope

The distance d between the two points P,(x,,y,) and
Py(xy,y,) 18

d=x, - %) +(, -y,

In the special case when P, and P, are both on one of
the coordinate axes, for instance, the x-axis,

clzJ()cz—)cl)2 =lx,—x1,

or on the y-axis,

d=\(y,=y) =ly,=yl.

The midpoint of the line segment P, P, is

x1+x2 yl+y2
2 7 2 )

The slope of the line segment P, P,, provided it is not
vertical, is denoted by m and is given by

Y=
m==2—L
X=X

33



FIGURE 4.2 The angle of inclination is the small-
est angle measured counterclockwise from the posi-
tive x-axis to the line that contains P, P,.

The slope is related to the angle of inclination o
(Figure 4.2) by

m=tan o

Two lines (or line segments) with slopes m, and m,
are perpendicular if

m =-1/m,

and are parallel if

. Equations of Straight Lines
A vertical line has an equation of the form

x=c
34



where (c, 0) is its intersection with the x-axis. A line
of slope m through point (x,,y,) is given by

y—y, =m(x—x)

Thus, a horizontal line (slope = 0) through point
(x1,y,) is given by

Y=Y

A nonvertical line through the two points P,(x;,y,)
and P,(x,,y,) is given by either

y—y1=(y2_y‘](x—xl)

X, =X

or
Yo ™)
Y=, =(2'J (@ =x,).
X~
A line with x-intercept a and y-intercept b is given by

+==1(@#0,b#0).

Q| =

Y

b

The general equation of a line is
Ax+By+C=0

The normal form of the straight line equation is

xcosO+ysinO=p
35



FIGURE 4.3 Construction for normal form of
straight line equation.

where p is the distance along the normal from the
origin and O is the angle that the normal makes with

the x-axis (Figure 4.3).

The general equation of the line Ax + By + C = 0 may

be written in normal form by dividing by +VA® +B*,
where the plus sign is used when C is negative and the
minus sign is used when C is positive:

AvtBy+C _
A eB

so that

c059—$ sin© - B
+VJA* + B? VA +B?
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and

ICl

NVO

. Distance from a Point to a Line

The perpendicular distance from a point P(x,,y,) to
the line Ax + By + C =0 is given by d:

d= Ax]+ByI+C
A 4B

. Circle

The general equation of a circle of radius r and center
at P(x,y) is

(x—x)+(y-y)=r’.
. Parabola

A parabola is the set of all points (x, y) in the plane that
are equidistant from a given line called the directrix
and a given point called the focus. The parabola is
symmetric about a line that contains the focus and is
perpendicular to the directrix. The line of symmetry
intersects the parabola at its vertex (Figure 4.4). The
eccentricity e = 1.

The distance between the focus and the vertex, or
vertex and directrix, is denoted by p (> 0) and leads
to one of the following equations of a parabola with
vertex at the origin (Figures 4.5 and 4.6):
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X

FIGURE 4.4 Parabola with vertex at (h, k). F iden-
tifies the focus.

y= X (opens upward)
4p
x2
y=—" (opens downward )
4p
y2
xX=="— (opens to right)
4p
yZ
x=—" (opens to left)
4p

For each of the four orientations shown in Figures 4.5
and 4.6, the corresponding parabola with vertex (h, k)
is obtained by replacing x by x — & and y by y — k.
Thus, the parabola in Figure 4.7 has the equation

38



FIGURE 4.5 Parabolas with y-axis as the axis of

2
. X
symmetry and vertex at the origin. Upper, y= 4—;
2 p

lower, Y=—x—.
4p

7. Ellipse

An ellipse is the set of all points in the plane such
that the sum of their distances from two fixed points,
39



0

|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
‘;,,
|
|
|
|

x=-p

FIGURE 4.6 Parabolas with x-axis as the
axis of symmetry and vertex at the origin. Left,
2 2

X =y—; right, x =-2
4p 4

FIGURE 4.7 Parabola with vertex at (k, k) and
axis parallel to the x-axis.
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FIGURE 4.8 Ellipse; since point P is equidistant
from foci F, and F,, the segments F,P and F,P = a;

hence, a=+b*+c.

called foci, is a given constant 2a. The distance
between the foci is denoted 2c; the length of the
major axis is 2a, whereas the length of the minor axis
is 2b (Figure 4.8), and

a=~b*+c’.

The eccentricity of an ellipse, e, is <1. An ellipse with
center at point (h, k) and major axis parallel to the
x-axis (Figure 4.9) is given by the equation

Ay 2
by O bzk) L
a
An ellipse with center at (h, k) and major axis parallel
to the y-axis is given by the equation (Figure 4.10)

_ 2 _ 2
O=k? | G
a b
41
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/
K

FIGURE 4.9 Ellipse with major axis parallel to
the x-axis. F, and F, are the foci, each a distance ¢

from center (4, k).

N

X

FIGURE 4.10 Ellipse wit

h major axis parallel to the

y-axis. Each focus is a distance ¢ from center (&, k).
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8. Hyperbola (e > 1)

A hyperbola is the set of all points in the plane such
that the difference of its distances from two fixed
points (foci) is a given positive constant denoted 2a.
The distance between the two foci is 2¢, and that
between the two vertices is 2a. The quantity b is
defined by the equation

b=Ac*-a?

and is illustrated in Figure 4.11, which shows the
construction of a hyperbola given by the equation

XY,
2 2 T
a b
J
___a__
|
b C |
F1 Vl V2 Fz x
0

~c—=

FIGURE 4.11 Hyperbola. V|, V, = vertices; F|, F,
= foci. A circle at center 0 with radius ¢ contains the
vertices and illustrates the relations among a, b, and c.
Asymptotes have slopes b/a and —b/a for the orienta-
tion shown.

43



<

A

<
1l
~

/X
Ve

FIGURE 4.12 Hyperbola with center at (A, k):
(x=h" -k’

2 2
a b

=1; slope of asymptotes, + b/ a.

When the focal axis is parallel to the y-axis, the equa-
tion of the hyperbola with center (h, k) (Figures 4.12
and 4.13) is

O-k? _ —hy _

p E 1.

If the focal axis is parallel to the x-axis and center
(h, k), then

@=h? k)’ _

a’ b* !

. Change of Axes

A change in the position of the coordinate axes will
generally change the coordinates of the points in the
44



o

FIGURE 4.13 Hyperbola with center at (h, k):

y=k)? _(x=hy
Sl B

=1; slopes of asymptotes, + a/b.

plane. The equation of a particular curve will also
generally change.

Translation

When the new axes remain parallel to the original, the
transformation is called a translation (Figure 4.14).
The new axes, denoted x” and y’, have origin 0" at
(h, k) with reference to the x- and y-axes.

A point P with coordinates (x, y) with respect to the
original has coordinates (x, y") with respect to the
new axes. These are related by

x=x"+h

x=y +k
45



y y

op

FIGURE 4.14 Translation of axes.

For example, the ellipse of Figure 4.10 has the
following simpler equation with respect to axes x’
and y” with the center at (h, k):

* Rotation

When the new axes are drawn through the same ori-
gin, remaining mutually perpendicular, but tilted with
respect to the original, the transformation is one of
rotation. For angle of rotation ¢ (Figure 4.15), the coor-
dinates (x, y) and (x’, y") of a point P are related by

x=x"cosd— y’sin®

y=x"sin ¢ +y’cos ¢
46



10.

11.

FIGURE 4.15 Rotation of axes.

General Equation of Degree 2
Ax* +Bxy+Cy’ + Dx+Ey+F =0

Every equation of the above form defines a conic sec-
tion or one of the limiting forms of a conic. By rotat-
ing the axes through a particular angle ¢, the xy term
vanishes, yielding

AX*+CY*+ D'x"+EY +F =0

with respect to the axes x” and y”. The required angle
¢ (see Figure 4.15) is calculated from

B
tan2¢p=——, (¢ <90°).
0= (9<907)
Polar Coordinates (Figure 4.16)

The fixed point O is the origin or pole, and a line

OA drawn through it is the polar axis. A point P in

the plane is determined from its distance r, measured

from O, and the angle 6 between OP and OA. Dis-

tances measured on the terminal line of © from the
47



FIGURE 4.16 Polar coordinates.

pole are positive, whereas those measured in the
opposite direction are negative.

Rectangular coordinates (x, y) and polar coordinates
(r, ©) are related according to

x=r cos 0, y=rsin®
rr=x*+y%, tan O=y/x.

Several well-known polar curves are shown in
Figures 4.17 to 4.21.

The polar equation of a conic section with focus at the
pole and distance 2p from directrix to focus is either

FIGURE 4.17 Polar curve 7 =e®.
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FIGURE 4.18 Polar curve r =a cos26.
FIGURE 4.19 Polar curve r=2a cos9 + b.
O?
FIGURE 4.20 Polar curve r = asin36.
N

FIGURE 4.21 Polar curve r=a (1—cos®).
49




2
r= e (directrix to left of pole)
1—ecos©

or

2ep

y=—r directrix to right of pole
1+ecos O ¢ g pole)

The corresponding equations for the directrix below
or above the pole are as above, except that sin 6
appears instead of cos 6.

12. Curves and Equations

o
oF-———-

FIGURE4.22 y=
x+b.
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FIGURE 4.23 y=1log x.

y

(0,1)

FIGURE4.24 y =¢".
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(0,a)

0

FIGURE 4.25 y =ae".

FIGURE 4.26 y=xlogx.

04

U IR ———
[\ A,

FIGURE 4.27 y =xe™".
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L X
x* x** 100

FIGURE4.28 y =e¢* — ¢, 0 < a < b (drawn
for a = 0.02, b = 0.1, and showing maximum and
inflection).

NN N
_BHW _n\/ll HW 3

FIGURE 4.29 y=sinux.

AWAWA

RVANVAVS

FIGURE 4.30 y=cos x.
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FIGURE 4.31 y=tanux.

FIGURE 4.32 y =arcsin x.
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[SIE]

FIGURE 4.33 y = arccos x.

FIGURE 4.34 y = arctan x.
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13.

FIGURE4.35 y=¢"/a(1+e"), x>0 (logistic
equation).

Exponential Function (Half-Life)

The function given by y = ¢* is the well-known expo-
nential function (e = base of natural logarithms; see
Figures 4.24 and 4.25). In many applications, e.g.,
radioactive decay, pharmacokinetics, growth models,
etc., one encounters this function with time (¢) as the
independent variable, i.e., y = Ae¥, for constants
A and k. For positive k, the function increases and
doubles in time In(2)/k. When k is negative, the
function decreases and is often characterized by
the half-life, which is the time to decrease to A/2.
Half-life is therefore —In(2)/k.
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5 Series, Number
Facts, and Theory

1. Bernoulli and Euler Numbers

A set of numbers, B,B,,..., B, | (Bernoulli num-

bers) and B,,B,, ..., B, (Euler numbers), appears in
the series expansions of many functions. A partial
listing follows; these are computed from the follow-
ing equations:

2n 2n—-1)
B,, _TBZIL*Z
N 2n(2n—l)(2n—2)(2n—3)B _
4’ 2n—-4
+(=D"=0,
and
22n (22n _1)
o B, ,=Q@2n-1B8,, ,
2n-1)2n-2)2n-3) e
- 3 B, 4+ (=D"".
B, =1/6 B,=1
B, =1/30 B,=5
Bs=1/42 B,=61
B,=1/30 B =1385
B, =5/66 B,,=50521
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B,, = 691/2730 By, = 2702765
B, =176 B,, = 199360981

2. Series of Functions

In the following, the interval of convergence is indi-
cated; otherwise, it is all x. Logarithms are to the
base e. Bernoulli and Euler numbers (B,,_, and B,,)
appear in certain expressions.

nn-1) ,,,
X

(a+x)" =a"+na" 'x+ 2 a
=D 0=
3!
n! o
t————a" X+ [ < d’]
(n-pY!

2.2 3.3
@byt =114 2 P P e < @)
a a a a

(Ixx)"'=1% n)c+Mx2

ST T
Lo Inx+n(n+l)x2
2!
FROEDOED ey

3!
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: 1 1 1-
(1£x)? =1i5x—ﬁ x* ii?)x3

13-5
— X
2:4-6-8

S+ P <]

Axx)"'=1Fx+xF+x*' T+ ¥ <]

1) =1 F2x43x° F4x +5x* ¥ X0+ ¥ < 1]

2 3 4
x X X
ef=l+x+ = +=—+"—+
20 31 4
4 6 8
" X’ x
e =l-x
20 31 4

2 3
(x log a) +(x log a) ‘.

a'=1+xloga+
2! 3!

10gx=(x—l)—%(x—l)z+§(x—1)3—---[0<x<2]
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1, 1 1
log(1+x)=x—5x‘+§x3—Zx4 o X2 <]

- X

log by =2 x+lx3+lx5+lx7 +ooe | ¥ <]
1 375 7

3 5
og [ X o | LA L) LY L) e <y

-1 x 3\x 5 x

) 3 xS x7
sinx=x——+——-—

31 51 7!

2 x4 xﬁ
cosx=l-—+——-——

21 41 6!

X 2x0 1747
tan x=x+—+"—-—

3150 315
s 22n (22n _ l)anilenfl x2 . i
(2n)! 4
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1 x x* 2x°

cnx=——-———- —
x 3 45 945
B,  (2x)™
B RN PEPL
2n)!x
x*  5x" 61x°
secx=1+—+—+
21 41 6!
B2n'x2" x2<£2
@2m! 4
x 7x 31X°
cscx=—+—
x 3 3.51 3.7
222n+1_1 "
St B 6 <

sin”™ x=x+x—3+(1'3)x5 + (1-3-5)x" +oo % <]
6 (245 (2467

tan'lxzx—lx3+éx5—%x7+~-- [x* <1]

sec”x:ﬁ—l—i
x 6x°
1-3 1-3-5

> 1]

TQh5 2467k
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3 5 7
p X
sinhx=x+—+—+—+

31 517!
2 4 6 xs
coshx=1+—+—+"—+"—+...
2! 41 6! 8!
X x3
— (02 _ 2p M H4 4p A
tanh x = (2 1)2B12! 2 1)2334!

5 2
2B <
+(2°-1)2° B, - {x < ]

tnh 1[1+2ZB"‘2 ZE 2B }
ctnhx =— — = —
X

21 41 6!

[x* <]

sech x=1-

Bzx2+B“x4—B°x6+...
2 4 el

1
cschx=——(2-1)2 Bli
X 2!

3
+(2° -1 233%_... [ <]



4 1 1 1-3
csch™ x=—— +—
x 2:3x7 2-4.5%°

135
2:4:6:7x

+. [P >1]

5 7
X X

x > 1
J eldt=x—=x"+ +
0 3 5-21 7-3!

3. Error Function

The following function, known as the error function,
erf x, arises frequently in applications:

2 x 2
erf x=—= J e dt
\/— 0

V4
The integral cannot be represented in terms of a finite
number of elementary functions; therefore, values of
erf x have been compiled in tables. The following is
the series for erf x:

2 x* x° x’
effx=—=|x——+ - -
Jr 3 520 7.3
There is a close relation between this function and
the area under the standard normal curve (Table A.1).
For evaluation, it is convenient to use z instead of x;

then erf z may be evaluated from the area F(z) given
in Table A.1 by use of the relation

erf 2= 2F (v22)
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Example
erf (0.5) =2F [(1.414)(0.5)]=2F (0.707)

By interpolation from Table A.1, F (0.707) =
0.260; thus, erf (0.5) = 0.520.

4. Fermat’s Little Theorem

This theorem provides a condition that a prime num-
ber must satisfy.

Theorem. If p is a prime, then for any integer a,
(a® — a) is divisible by p.

Examples
28 — 2 = 254 is not divisible by 8; thus, 8 cannot
be prime.
37 -3 =2184 is divisible by 7, because 7 is prime.

5. Fermat’s Last Theorem

If n is an integer greater than 2, then a” + b" = ¢"
has no solutions in nonzero integers a, b, and c. For
example, there are no integers a, b, and ¢ such that
a’ + b3 = ¢3. This author has generated “near misses,”
ie., a® + b® = ¢3 £ 1, as shown below, and shown
further that if (@ + b) is odd, c is even, whereas if
(a + b) is even, then c is odd.

6. Beatty’s Theorem

If a and b are positive and irrational with the prop-

erty that l-4-%: 1 , then for positive integers n, the
a
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“Near Misses” in the Cubic Form of
Fermat’s Last Theorem?

Near misses for integers a and b between 2 and 1,000 ... and beyond

a b c a+ b’ e
6 8 9 728 729
9 10 12 1729 1728
64 94 103 1092728 1092727
71 138 144 2985983 2985984
73 144 150 3375001 3375000
135 138 172 5088447 5088448
135 235 249 15438250 15438249
242 720 729 387420488 387420489
244 729 738 401947273 401947272
334 438 495 121287376 121287375
372 426 505 128787624 128787625
426 486 577 192100032 192100033
566 823 904 738763263 738763264
791 812 1010 1030300999 1030301000
2304 577 2316 12422690497 12422690496

11161 11468 14258 2898516861513 2898516861512

@ Table derived from a computer program written by this author.

integer parts of na and nb constitute a partition of the
set of positive integers, i.e., the two sequences

LaJ,LZuJ,[.’)aJ,...
| 2] 26 ].[32]....
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where | x | is the greatest integer function, containing
all positive integers but having no common terms.

An interesting example occurs if a=\/§ , which
yields the two sequences

{Si} 1,2,4,5,7,8,9,11,12, ...
{S,} 3,6,10,13,17,20,23,27,30...
which partition the integers and also have the prop-
erty that the difference between successive terms

(S, —S;} is the sequence

2,4,6,8,10,12, 14, ...

7. An Interesting Prime
73939133 is a prime number as is each number
obtained by deleting the right-most digit; each of the

following is a prime number:

7393913, 739391, 73939, 7393, 739, 73, 7

8. Goldbach Conjecture

Every even number greater than or equal to 4 can be
expressed as the sum of two prime numbers.

Examples
6=3+3
12=5+7
18=5+13

20=3+17=7+13
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9.

10.

Twin Primes

Twin primes are pairs of primes that differ by 2, e.g.,
{3, 5}, {5, 7}, {11, 13}, {17, 19}, {29, 31}, ..., {137,
139}, etc. It is believed, but not proved, that there are
infinitely many twin primes.

Collatz Conjecture

Consider a sequence that begins with any positive
integer and applies the following rule for successive
terms: if it is odd, multiply by 3 and add 1; if it is
even, divide it by 2. All such sequences terminate
with 4, 2, 1. (This conjecture is still unproven.)

Example

Start with 23 to give 23, 70, 35, 106, 53, 160,
80, 40, 20, 10, 5, 16, 8,4, 2, 1.

67



6 Differential Calculus

1. Notation

For the following equations, the symbols f(x), g(x),
etc., represent functions of x. The value of a function
f(x) at x = a is denoted f(a). For the function y = f(x)
the derivative of y with respect to x is denoted by one
of the following:

dy
—, f'(x), Dy, y'.
o f(x), Dy, y

Higher derivatives are as follows:

d’y d(dy)_d ,, ,

dx? dx (dx _dxf ()= 7"

d’y d(d’y)_d ,,
=—|—|=— = , etc.

- dx( S ire=rw

and values of these at x = a are denoted f”(a), f” (a),
etc. (see Table of Derivatives).
2. Slope of a Curve

The tangent line at a point P(x, y) of the curve y = f(x)
has a slope f’(x) provided that f’(x) exists at P. The
slope at P is defined to be that of the tangent line at P.
The tangent line at P(x,,y,) is given by

y=y=f(x)&-x).
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The normal line to the curve at P(x;,y,) has slope
—1/f(x,) and thus obeys the equation

y=y =1 )l (x—x))

(The slope of a vertical line is not defined.)

. Angle of Intersection of Two Curves

Two curves y = f,(x) and y = f,(x), that intersect at a

point P(X, Y) where derivatives f(X), f;(X) exist,
have an angle (o) of intersection given by

_ A&~
L+ £1(X)- f/ (X)
If tan a0 > 0, then o is the acute angle; if tan o < 0,
then o is the obtuse angle.

. Radius of Curvature

The radius of curvature R of the curve y = f(x) at point
P(x,y) is

ot Lf/ry”
f7(x)

In polar coordinates (0, r) the corresponding formula is

The curvature K is 1/R.
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5. Relative Maxima and Minima

The function f has a relative maximum at x = a if
fla) = fla + ¢) for all values of ¢ (positive or negative)
that are sufficiently near zero. The function f has a
relative minimum at x = b if f(b) < f(b + ¢) for all
values of ¢ that are sufficiently close to zero. If the
function fis defined on the closed interval x; < x < x,,
and has a relative maximum or minimum at x = q,
where x, < a < x,, and if the derivative f'(x) exists at
x = a, then f’(a@) = 0. It is noteworthy that a relative
maximum or minimum may occur at a point where
the derivative does not exist. Further, the derivative
may vanish at a point that is neither a maximum nor
a minimum for the function. Values of x for which
f'(x) =0 are called critical values. To determine
whether a critical value of x, say, x,, is a relative max-
imum or minimum for the function at x., one may use
the second derivative test:

1. If f”(x,) is positive, f(x,) is a minimum.
2. If f”(x,) is negative, f(x,) is a maximum.

3. Iff"(x,) is zero, no conclusion may be made.

The sign of the derivatives as x advances through x,
may also be used as a test. If f’(x) changes from posi-
tive to zero to negative, then a maximum occurs at
x,, whereas a change in f’(x) from negative to zero
to positive indicates a minimum. If f’(x) does not
change sign as x advances through x,, then the point
is neither a maximum nor a minimum.

6. Points of Inflection of a Curve

The sign of the second derivative of f indicates
whether the graph of y = f(x) is concave upward or
concave downward:
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FIGURE 6.1 Point of inflection.

f”(x)>0: concave upward
f”(x)< 0: concave downward

A point of the curve at which the direction of concav-
ity changes is called a point of inflection (Figure 6.1).
Such a point may occur where f”(x) = 0 or where
f”(x) becomes infinite. More precisely, if the function
y=f(x) and its first derivative y’ = f’(x) are continu-
ous in the interval a < x < b, and if y” = f”(x) exists in
a < x < b, then the graph of y = f(x) fora < x < b is con-
cave upward if f”(x) is positive and concave downward
if f”(x) is negative.

. Taylor’s Formula

If fis a function that is continuous on an interval that
contains a and x, and if its first (n + 1) derivatives are
continuous on this interval, then
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f"( )

f@=f@+f @&-a)+——=(x-a)

f/// (a)
3!

@
n‘

+ x—a)’ +...

+

(x—a)"+R,

where R is called the remainder. There are various
common forms of the remainder.

* Lagrange’s Form

()C a)n+l

n+l)
® -

; B between a and x.

e Cauchy’s Form

R= f(n+1)(B) . (x_ B);’(x - a)

;B between a and x.

e Integral Form

* x_tn n+
R=[ G2 n!) £ @ d

8. Indeterminant Forms

If f(x) and g(x) are continuous in an interval that
includes x = a, and if f/(a) = 0 and g(a) = 0, the limit
lim _, (f(x)/g(x)) takes the form “0/0”, called an
indeterminant form. L’Hopital’s rule is
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im L gy L)
x—a g(x) x—>a g'(x)

Similarly, it may be shown that if f{x) — e and
g(x) > o0 as x — a, then

1im& = lim f’(x).
X —a g(x) X —a g,(x)

(The above holds for x — .)

Examples
. sinx . COSX
lim —— = lim =1
=0 x x —a 1
2
. . x .2
lim =lim —=Ilim—=0
x e oF x e ¥ x e o*

9. Numerical Methods

a. Newton’s method for approximating roots of the
equation f{x) = 0: A first estimate x, of the root
is made; then provided that f’(x;) # 0, a better
approximation is x,:

&)
=X — .
2 1 f/(xl)

The process may be repeated to yield a third
approximation, x;, to the root:

fx,)
3 _xz_ ’
fx,)
provided f’(x,) exists. The process may be

repeated. (In certain rare cases the process will
not converge.)
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Yo Yn

|Ax]
FIGURE 6.2 Trapezoidal rule for area.

b. Trapezoidal rule for areas (Figure 6.2): For the
function y = f(x) defined on the interval (a, b) and
positive there, take n equal subintervals of width
Ax = (b — a)/n. The area bounded by the curve
between x = a and x = b (or definite integral of f(x))
is approximately the sum of trapezoidal areas, or

| 1
A~(2y0+y1 +y,te Tty +2y”)(Ax)

Estimation of the error (E) is possible if the second
derivative can be obtained:

b

E= '2“ £7(©) (Ax),

1

where ¢ is some number between a and b.
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10. Functions of Two Variables

For the function of two variables, denoted z = f(x,y),
if y is held constant, say, at y = y,, then the resulting
function is a function of x only. Similarly, x may
be held constant at x,, to give the resulting function
of y.

e The Gas Laws

A familiar example is afforded by the ideal gas law
that relates the pressure p, the volume V, and the
absolute temperature T of an ideal gas:

pV =nRT

where n is the number of moles and R is the gas con-
stant per mole, 8.31 (J-°K-"mole"). By rearrangement,
any one of the three variables may be expressed as a
function of the other two. Further, either one of these
two may be held constant. If 7 is held constant, then
we get the form known as Boyle’s law:

p=kv™! (Boyle’s law)

where we have denoted nRT by the constant k and, of
course, V > 0. If the pressure remains constant, we
have Charles’ law:

V =bT (Charles’ law)

where the constant b denotes nR/p. Similarly, volume
may be kept constant:

p=aT

where now the constant, denoted a, is nR/V.
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11. Partial Derivatives

The physical example afforded by the ideal gas law
permits clear interpretations of processes in which one
of the variables is held constant. More generally, we
may consider a function z = f(x, y) defined over some
region of the x-y-plane in which we hold one of the
two coordinates, say, y, constant. If the resulting func-
tion of x is differentiable at a point (x, y), we denote
this derivative by one of the following notations:

fo»0f18x,08z/8x
called the partial derivative with respect to x. Simi-
larly, if x is held constant and the resulting function

of y is differentiable, we get the partial derivative
with respect to y, denoted by one of the following:

£y Of 18y, 8z/dy
Example

Given z=x"y’ —ysin x +4y, then

8z/8x=4(xy)’ -y cosx;

8z/8y=3x"y* —sinx+4.
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7 Integral Calculus

1. Indefinite Integral

If F(x) is differentiable for all values of x in the inter-
val (a, b) and satisfies the equation dy/dx = f(x),
then F(x) is an integral of f(x) with respect to x. The
notation is F(x)= J f&)dx or, in differential form,
dF (x) = f(x)dx.

For any function F(x) thatis an integral of f(x) it follows
that F(x) + C is also an integral. We thus write

| rodax=F+c.
(See Table of Integrals.)

2. Definite Integral

Let f(x) be defined on the interval [a, b], which is par-
titioned by points XXy XX, , between a = x;
and b=x,. The jth 1nterval has length Ax =x,—Xx,_,
which may vary with j. The sum Z S (v )Ax
where v; is arbitrarily chosen in the jth submterval
depends on the numbers x,...,x, and the choice of
the v as well as f; but if such sums approach a com-
mon value as all Ax approach zero, then this value is
the definite integral of f over the interval (a, b) and
is denoted J;’ f(x)dx. The fundamental theorem of
integral calculus states that
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[ fede=Fo)-Fa,

where F is any continuous indefinite integral of fin
the interval (a, b).

3. Properties
[T U0+ f@+t £l de= [ fiw) dr+
b b
[T h@ace+ [ f@ax
_[ Cef@dr =c j " f(x)dx,ifcis a constant.
b a
[T r@av=-[" rwax.

[P r@ac=[" reodx+]" reoax.

4. Common Applications of the Definite Integral
* Area (Rectangular Coordinates)

Given the function y = f(x) such that y > 0 for all x
between a and b, the area bounded by the curve
y =f(x), the x-axis, and the vertical lines x = a and
x=bis

A:f:f@nu

 Length of Arc (Rectangular Coordinates)

Given the smooth curve f(x, y) = 0 from point (x,,y,)
to point (x,,y,), the length between these points is
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L= j J1+ (dy ] dx)2dx,
L=] ) 1+ (dx / dy)*dy.

* Mean Value of a Function
The mean value of a function f(x) continuous on [a, b]
is
1 b
o [ feoax.
e Area (Polar Coordinates)
Given the curve r = f(8), continuous and nonnegative

for 8, £0<0,, the area enclosed by this curve and
the radial lines =0, and 6=0, is given by

A P
A=[ SLfOFde.
» Length of Arc (Polar Coordinates)
Given the curve r = f(0) with continuous derivative

f’(6) on 8, <6<6,, the length of arc from 6=6,
to 6=0, is

L=["Jr®F + (r"©orde.

Volume of Revolution

Given a function y = f(x) continuous and nonnegative
on the interval (a, b), when the region bounded by
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f(x) between a and b is revolved about the x-axis, the
volume of revolution is

ver [ [f@rdx.

* Surface Area of Revolution (revolution
about the x-axis, between a and b)

If the portion of the curve y = f(x) between x = a and
x = b is revolved about the x-axis, the area A of the
surface generated is given by the following:

A= 2mfe) (14 1F @F) " d

e Work

If a variable force f(x) is applied to an object in the
direction of motion along the x-axis between x =a and
x = b, the work done is

w=[" feax.

5. Cylindrical and Spherical Coordinates
a. Cylindrical coordinates (Figure 7.1):

x=rcos0
y=rsin 0

Element of volume, dV = rdrd 0dz.

b. Spherical coordinates (Figure 7.2):
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FIGURE 7.1 Cylindrical coordinates.

» P

X

FIGURE 7.2 Spherical coordinates.
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x=psin ¢ cos O
y=psin ¢ sin 0
Z=p cosd

Element of volume, dV = p*sin ¢ dp d¢ d6.

6. Double Integration

The evaluation of a double integral of f(x, y) over a
plane region R,

J], fay da

is practically accomplished by iterated (repeated)
integration. For example, suppose that a vertical
straight line meets the boundary of R in at most two
points so that there is an upper boundary, y = y,(x),
and a lower boundary, y = y,(x). Also, it is assumed
that these functions are continuous from a to b (see
Figure 7.3). Then

JJ, seman=]" (20 rwmay Jax

If R has a left-hand boundary, x = x,(y), and a right-
hand boundary, x = x,(y), which are continuous from
¢ to d (the extreme values of y in R), then

JI, reman=] ([ rear)ay

Such integrations are sometimes more convenient in
polar coordinates: x = r cos 0, y = r sin 0; dA = rdr d.
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Ya(x)

o ——

FIGURE 7.3 Region R bounded by y,(x) and y,(x).

. Surface Area and Volume by Double Integration

For the surface given z = f(x, y), which projects onto
the closed region R of the x-y-plane, one may calcu-
late the volume V bounded above by the surface and
below by R, and the surface area S by the following:

v=[] zaa=[ [ feydcdy

S=[] 11+@/xy +@2/y?] drdy
[In polar coordinates, (r, 0), we replace dA by rdr d6.]
. Centroid
The centroid of a region R of the x-y-plane is a point

(x”,y") where
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Iy Y

and A is the area of the region.

Example
For the circular sector of angle 2o and radius
R, the area A is o.R*; the integral needed for
x’, expressed in polar coordinates, is

xdA=["[" (rcos®)rdrdo
[Jxaa=]" [,
=[R3 sin 6:|m =g R’sin o
3 73

and thus,

Centroids of some common regions are shown in
Figure 7.4.
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Centroids of some common regions

are shown below:

Centroids
Area X 14
Y (rectangle)
bh b/2 h/2
I
X
b
y (isos. triangle)*
1 bh/2 b2 w3
h
x
b
¥  (semicircle)
nR?/2 R 4R/31
Q‘ x
R
y (quarter circle)
j nTR%/4 4R/31 4R/31
X
R
¥ (circular sector)
R’A 2R sin A/3A 0

&
\

*y” =h/3 for any triangle of altitude h.

FIGURE 7.4
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8 Vector Analysis

1. Vectors
Given the set of mutually perpendicular unit vectors
i, j, and k (Figure 8.1), any vector in the space may

be represented as F = ai + bj + ck, where a, b, and ¢
are components.

e Magnitude of F
1
IF|=(a*+b*+c*)?

e Product by Scalar p
pF=pai+ pbj+ pck.

k

FIGURE 8.1 The unit vectors i, j, and k.
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* Sum of Fyand F,
F +F, =(a, +a)i+® +b,)j+(c, +c,)k
e Scalar Product
F oF,=qaa,+bb,+c c,

(Thus, iei=jej=kek=1 and iej=jek=kei
=0,

Also
F oF, =F, oF,

(F,+F,)eF,=F, oF, +F, oF,

e Vector Product

(Thus, ixi=jxj=kxk=0,ixj=k, j xk=i,
andk xi=j.)
Also,
F xXF,=-F,xF
(F,+F,)xF,=F,x F, +F, x F,
F x(F,+F,)=F xF,+F xF,
F, x(F,+F,)=(F o F,)F, - (F, o F,)F,

F, s (F,xF,) = (F, x F,)oF,
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2. Vector Differentiation
If V is a vector function of a scalar variable ¢, then
V=a@®i+b®j+ct)k
and

dV da . db . dc
—=—1i+—j+—k
dr dt dt dt

For several vector functions V,, V,,....V,

d dv, dv, dv
—(V,+V,+-+V )= + -,
dt " dt dt dt
d dv dav.
—(V,eV)=—"L0eV +V e 2,
dt( e V) a ' ar
dav. dVv.
i(levz): L XV, +V, x—2
dt dt dt

For a scalar-valued function g(x, y, z),

dg. 8g . Og
i dg=Vg=—"i+—=>j+—=k.
(gradient) grad g=Vg le Syj oz

For a vector-valued function V(a, b, c¢), where a, b,

and c are each a function of x, y, and z, respectively,

(divergence) diVV=V.V=8l+8l +§
dx dy oz
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(curl) cul V=V xV= % 6% %

a b c

Also,

2 2 2
&g 88 8%
dx* 8y* 87

div grad g =V?g =
and

curlgradg = 0; divcurl V=0;

curl curl V = grad div V — (i V’a + jV*b+k Vc).

. Divergence Theorem (Gauss)

Given a vector function F with continuous partial
derivatives in a region R bounded by a closed sur-
face S,

[[], divFav =] neFas,

where n is the (sectionally continuous) unit normal
to S.

. Stokes’ Theorem

Given a vector function with continuous gradient
over a surface S that consists of portions that are
piecewise smooth and bounded by regular closed
curves such as C,
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”S n-curleszcﬁcF-dr

5. Planar Motion in Polar Coordinates

Motion in a plane may be expressed with regard to
polar coordinates (r, ). Denoting the position vector by
r and its magnitude by r, we have r = rR(8), where R is
the unit vector. Also, dR/dO = P, a unit vector perpen-
dicular to R. The velocity and acceleration are then

ﬂR+ QP
dt dt

I (do) 4’0 drdo
=|l—-r| — R+|r—+2——
ar’ dt “at T dr ar
Note that the component of acceleration in the P direc-
tion (transverse component) may also be written

1d(.d0
rodt dt
so that in purely radial motion it is zero and

r’ 49 _ C (constant)
dt

which means that the position vector sweeps out area
at a constant rate (see “Area (Polar Coordinates),”
Section 7.4).

6. Geostationary Satellite Orbit

A satellite in circular orbit with velocity v around the
2

. . v
equator at height 4 has a central acceleration, Rin’
+
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where R is the radius of the earth. From Newton’s

where

second law this acceleration equals PG
M is the mass of the earth and G is the gravita-
tional constant, thereby giving orbital velocity

MG (MG)"?
R+h (R+hy"?’

Inserting constants M = 598 x 10** kg, R = 6.37 x
106 m, G = 6.67 x 10~ N-m?/kg?, and earth’s angular
velocity @ = 7.27 x 10-%/s, one finds & = 35,790 km.
Thus, a satellite orbiting around the equator at this
height above the earth’s surface appears stationary.

1/2
] and angular velocity ® =
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9 Special Functions

1. Hyperbolic Functions

. e’
sinhx =

cschx = —
2 sinh x
X —-X
+e
coshx = sechx =
2 cosh x
et —e™"
tanhx = ——— ctnhx =
e +e tanh x

sinh(—x) = —sinh x
cosh(—x) = coshx
tanh(—x) = —tanh x

sinh x
tanh x =

cosh x

cosh? x—sinh’ x =1

sinh? x = %(cos 2x— 1)

2
csch? x —sech’x =

csch’x sech’x

ctnh(—x) =—ctnhx

sech (—x) =sechx

csch(—x) =—cschx

cosh x

ctnhx = —
sinh x

cosh? x = l(cosh2x + 1)
2

ctnh? x —csch’x =1

tanh? x +sech’x =1



sinh (x + y) = sinh x cosh y+cosh x sinhy
cosh(x+y) = coshx coshy+sinh x sinhy
sinh (x — y) =sinh x coshy — cosh x sinhy

cosh(x—y) = coshx coshy—sinh x sinhy

tanh x + tanh
tanh (x + y) AT TAmy
1 +tanh x tanh y

h x — tanh
tanh (x — y) = tanh x — tanh y

1 —tanhx tanhy

2. Gamma Function (Generalized Factorial Function)

The gamma function, denoted I'(x), is defined by
re=["e'rdr, x>0

* Properties
T'(x+1)=xI'(x), x>0
ra=1
I'n+1)=nl"(n)=n! n=1,2,3,.)

I'x)Td-x)=m/sinTtx
r(1]=vx

2
22*‘r(x)r(x+;) =JnT 2x)
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3.

Laplace Transforms

The Laplace transform of the function f{f), denoted
by F(s) or L{f(t)}, is defined

F(s)= j: F@)edr

provided that the integration may be validly per-
formed. A sufficient condition for the existence of
F(s) is that f(r) be of exponential order as t— oo
and that it is sectionally continuous over every finite
interval in the range ¢ >0. The Laplace transform of
g(? is denoted by L{g(r)} or G(s).

Operations

0] Fo)= [ fedr

af (t)+bg(t) aF(s)+bG(s)

1 sF(s)— f(0)

7@ s*F(s)=sf(0)— f'(0)

VANG! s"F(s)=s"" f(0)
—s"2f(0)
T ()

7@ —F(s)

1" (@) D)"F™(s)
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e” (1) F(s—a)

[ ra=B)-2@)ap F(5)-G(s)
fi-a) e F(s)

&
fl— aF (as)

a

: 1
[ e®ap ~G(s)
flt=c)d(t—c) e “F(s), c>0
where

0(t—c)=0 if0<t<c

=1 ift>c

f(=ft+o) jome*” f(vydt

—s®

(periodic) 1-e

 Table of Laplace Transforms

f@® F(s)
1 1/s
t 1/s*
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sinat

cosat

sinh at
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at bt a_b
_ — (a#b
e e Goae-p 4P
at bt 7S(a_b) azb
ae” —be G-a)s—b) ( )
2
tsinat %
(s +a”)
2 2
tcosat %
(s +a”)
b
e“ sinbt 5 3
(s—a)y +b
e” cosbt %
(s—a)y +b
sinat a
Arctan—
t K
sinh at llog sta
P 2 “\s—a

. Z-Transform

For the real-valued sequence {f(k)} and complex vari-

able z, the z-transform, F(z)=Z{f(k)}, is defined by

@Y =F@) =Y, f) 2"

k=0

For example, the sequence f(k)=1,k=0,1,2,...,
has the z-transform
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k

F(Z):l"rz_l +Z_2+Z_3"‘+Z_ +..

e z-Transform and the Laplace Transform

For function U(?), the output of the ideal sampler U * (¢)
is a set of values UKT), k=0,1, 2,..., thatis,

U*(t):i U@)d@—kT)

k=0

The Laplace transform of the output is

PU* (1)) = j:e*“U *(1)dr

[Te S U~ KT)dt

N e "U(KT)
k=0

Defining z=¢"" gives
g g

PU*(1)} = iU(kT)z*k

k=0

which is the z-transform of the sampled signal U(kT).

* Properties

Linearity: Z{af,(k)+ bf,(k)}
=aZ{f,(k)}+bZ{f,(k)}

=al|(2)+bF,(z)
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Right-shifting property: Z{f(k—n)}=2z"F(z)
Left-shifting property: Z{f(k+n)}=2z"F(z)

n—1
=Y f

i
Time scaling: Z{a"* f(k)}=F(z/a)
Multiplication by k: Z{kf (k)} = —zdF (z) / dz
Initial value: f(0)=lim(1-z")F(2) = F(e)
Final value: lim f(k)=lim (1 7Y (2)
Convolution: Z{f,(k)* f,(k)}=F (2)F,(z)

e z-Transforms of Sampled Functions

fk) Z{f(kT)}=F(z)
1 at k; else O 7F
z
1 1
kT Iz .
(z-1
T’z(z+1)
kT)? L
D (z=1y
sin kT Zsinof

72 —2zcos®T +1
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z(z—coswT)

cosmT ST eEE—

z-—2zcoswl +1

—a 4
o N "
—aT

kTe ™" _dge”

(z— e—aT )2

2 —al —aT
(KT) e T e z(z+e™™)
(Z _ e—aT )3
ze”" sin@wT

—akT
e sinwkT — —
722 —2z¢ " cosT + e

a

2(z—e " cosoT)

72 =2z¢™ T coswT +e

—akT
e " coswkT 24T

i azsinoT
a’ sinokT 3 3
z-—2azcos®T +a
z(z—acosT)
a® cos kT

7% —2azcosoT +a’
. Fourier Series

The periodic function f{(r), with period 2w, may be
represented by the trigonometric series

a, + z (a,cos nt+ b sin nt)
1

where the coefficients are determined from
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1 ¢n
a, :EJ-N f@)dt
=—1j“ F(t)cos ntdr
TY ™
:lj“ f(@)sin ntd n=1,23,..)
n -

Such a trigonometric series is called the Fourier
series corresponding to f{(r), and the coefficients are
termed Fourier coefficients of f(r). If the function is
piecewise continuous in the interval —w <t <m, and
has left- and right-hand derivatives at each point in
that interval, then the series is convergent with sum
() except at points ¢, at which f{¥) is discontinuous.
At such points of discontinuity, the sum of the series
is the arithmetic mean of the right- and left-hand
limits of f(¥) at #,. The integrals in the formulas for the
Fourier coefficients can have limits of integration that
span a length of 2m, for example, O to 2w (because of
the periodicity of the integrands).

. Functions with Period Other Than 21

If () has period P, the Fourier series is
- 2nn 2nn
t)~a,+ acos——t+b sin—-t |,
£ 2[ 5 1+h, P)
where
1 P2
a, = Fj—m f@)dt
2
= 2 J:P/Z f@® cosﬂ tdt

I s f@® sm— tdt.
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f(t)

ip L 0 1 1
P - P P P

FIGURE 9.1 Square wave:
Za( 2ne 1 6nr 1 10mt
c S——+— cos 5 +

. a
f@) =S+ | cos T2

f(t)

Y 1
2P
FIGURE 9.2 Sawtooth wave:
2a( . 2xt 1 . 4mt 1 . 61t
f({t)~—]sin ———sin —+—sin ——---
T P 2 P
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FIGURE 9.3 Half-wave rectifier:

f@®~ A +é sinwt
T 2

—2A( ! s20t + ! cos4u)t+~--].

— CO
AN NE)) ©)Ne))

Again, the interval of integration in these formulas
may be replaced by an interval of length P, for
example, 0 to P.

. Bessel Functions

Bessel functions, also called cylindrical functions,
arise in many physical problems as solutions of the
differential equation

2.7

Xy +xy+ @ =n*)y=0
which is known as Bessel’s equation. Certain solu-

tions of the above, known as Bessel functions of the
first kind of order n, are given by

~ oo (_1)k i n+2k
’n(’”‘é, k!l“(n+k+1)(2)
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~ = (—l)k ﬁ —n+2k
J—n(’”‘é KT (—n+k+1) (2)

In the above it is noteworthy that the gamma function
must be defined for the negative argument g: I'(q) =
T'(q+1)/g, provided that g is not a negative integer.
When ¢ is a negative integer, 1/1'(q) is defined to
be zero. The functions J_,(x) and J,(x) are solutions
of Bessel’s equation for all real n. It is seen, for
n=12,3,... that

J,0)=(=D"J, &)

and therefore, these are not independent; hence, a
linear combination of these is not a general solution.
When, however, n is not a positive integer, negative
integer, nor zero, the linear combination with arbi-
trary constants ¢, and ¢,

y=c¢ J x)+c,J  x)

is the general solution of the Bessel differential
equation.

The zero-order function is especially important as
it arises in the solution of the heat equation (for a
“long” cylinder):

x2 x4 X6
PO e e T

while the following relations show a connection to
the trigonometric functions:
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2 172
‘]L (x) = [m} sin x

) 1/2
J )= |::| cosx

TX
The following recursion formula gives J,,,(x) for any
order in terms of lower-order functions:
2n

L=, 0, @)

. Legendre Polynomials

If Laplace’s equation, V2V =0, is expressed in spherical
coordinates, it is

2 2
r’sin O 5 ‘7/+2rsin 0 8—V+sin 96—V+COSGS—V
or? or 56° 66
2
+ .1 oV -0
sin @ &¢>

and any of its solutions, V(r,0,¢), are known as
spherical harmonics. The solution as a product

V(r.8,0)=R(r)O (0)
which is independent of @, leads to
sin’0 ®” +sinOcosB O’ +[n (n+1)] sin’0]10© = 0

Rearrangement and substitution of x = cos 0 leads to

2
d 9—2x@+n(n+l)®=0
dx’ dx
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known as Legendre’s equation. Important special
cases are those in which 7 is zero or a positive integer,
and for such cases, Legendre’s equation is satisfied
by polynomials called Legendre polynomials, P, (x).
A short list of Legendre polynomials, expressed in
terms of x and cos 0, is given below. These are given
by the following general formula:

Loocy@n-2)
P(x)= i
D=2 S s a2t

where L=n/2 if nis even and L = (n — 1)/2 if n is odd.
Some are given below:

P(x)=1

P(x)=x

L.,
P () =7 Gx*~1)
P(x)—l(5x3—3x)
]
P (x)= é (35x* =30x% +3)

P.(x) = é (63x° —70x° +15x)

P, (cos0) =1

P, (cos6) = cosO

P, (cos0) =i(3 cos 20+1)

P,(cos 0) = é (5¢c0s36+3cos 0)
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P, (cosB) = é (35co0s 40+20c0s20+9)

Additional Legendre polynomials may be determined
from the recursion formula

(n+DHP  ()—(2n+1)xP, (x)
+nP_ (x)=0 (m=1,2,..)
or the Rodrigues formula
1 4
2'n! dx"

P (x)= @ =D"

. Laguerre Polynomials

Laguerre polynomials, denoted L, (x), are solutions of
the differential equation

"'+ (1=x)y +ny=0

and are given by

_y &V y -
Lw=Y ~—~C,,x @=012.)
j=0 J*
Thus,
Lyx)=1

Lx)=1-x

1
Lz(x)=1—2x+§x2

3 1
L(x)=1-3x+=x>——x°
5 (X) 2 6
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10.

11.

Additional Laguerre polynomials may be obtained
from the recursion formula

(mn+DL,, x)-Q2n+l1-x)L, (x)

+nl, _ (x)=0

Hermite Polynomials

The Hermite polynomials, denoted H,(x), are given
by

2
-X

d"e

Hy=1, H(x) =(-1)"¢" n=12,.)

and are solutions of the differential equation
Y'=2xy'+2ny=0 n=0,1,2,...)
The first few Hermite polynomials are
H =1 H (x)=2x
H,(x)=4x"-2 H,(x)=8x"-12x
H,(x)= 16x* —48x% +12

Additional Hermite polynomials may be obtained
from the relation

H  (x)=2xH (x)-H (x),

where prime denotes differentiation with respect to x.
Orthogonality

A set of functions {f, (x)}(n=1,2,...) is orthogonal
in an interval (a, b) with respect to a given weight
function w(x) if
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J ! wx) f, @) f, @)dx=0 when m #n

The following polynomials are orthogonal on the
given interval for the given w(x):

Legendre polynomials: P (x) wx)=1
a=-1,b=1

Laguerre polynomials: L (x) w(x)=exp (—x)
a=0,b=co

Hermite polynomials: H (x) w(x)=exp (- x%)
a=—oo, hb=oco

TheBesselfunctionsofordern, J (A, x), J, (A, x),...,
are orthogonal with respect to w(x) = x over the
interval (0, ¢) provided that the A, are the positive
roots of J, (Ac)=0:

j 0 x0T, (A x) dx=0 (%K)

where n is fixed and n >0.
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1() Differential Equations

1. First-Order, First-Degree Equations

M(x,y) dx+ N (x,y)dy=0

a. If the equation can be put in the form A(x)dx +

B(y)dy =0, itis separable and the solution follows
by integration: |A()dx+[B(y)dy=C; thus,
x(1+y”)dx+ydy=0 is separable since it is
equivalent to xdx+ydy/(1+y*)=0, and inte-
gration yields x*/2+1 log (1+y*) +C=0.

. If M(x, y) and N(x, y) are homogeneous and of the
same degree in x and y, then substitution of vx
for y (thus, dy=v dx+xdv) will yield a separa-
ble equation in the variables x and y. [A function
such as M(x, y) is homogeneous of degree n in
xand y if M (cx, cy) =c¢"M(x,y).] For example,
(y—2x)dx+(2y+ x)dy has M and N each homog-
enous and of degree 1 so that substitution of
y = vx yields the separable equation

2 2v+1
Sdvr T av=0.
X vi+v—1

. If M(x,y)dx+ N(x,y)dy is the differential of
some function F(x, y), then the given equation
is said to be exact. A necessary and sufficient
condition for exactness is oM /dy=0JN /dx.
When the equation is exact, F' is found from the
relations 0F /dx =M and JF /dy= N, and the
solution is F (x, y) = C (constant). For example,
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(> +y)dy+(2xy—3x*)dx is exact since
OM /dy =2x and ON /dx =2x. F is found from
OF /9x =2xy—3x* and OF /dy=x"+y. From
the first of these, F=x"y—x’+¢(y); from the
second, F=x"y+y>/2+W¥(x). It follows that
F=xy—x’+y" /2, and F = C is the solution.

d. Linear, order 1 in y: Such an equation has the
form dy+ P(x)ydx=Q(x)dx. Multiplication by
exp [P(x)dx] yields

d[y exp(dex):l =Q(x)exp (,[de)dx.

For example, dy+(2/x)ydx=x"dx is linear
iny Px)=2/x, so |Pdx=5Inx=1Inx?, and
exp ([P dx)=x. Multiplication by x> yields
d(x*y) = x*dx, and integration gives the solution
y=x"/5+C.

 Application of Linear-Order 1 Differential Equations:
Drug Kinetics

A substance (e.g., a drug) placed in one compartment
is eliminated from that compartment at a rate propor-
tional to the quantity it contains, and this elimination
moves it to a second compartment (such as blood) that
originally does not contain the substance. The sec-
ond compartment also eliminates the substance to an
external sink and does so at a rate proportional to the
quantity it contains. If D denotes the initial amount
in the first compartment, and the elimination rate
constants from each compartment are denoted &, and
k,, respectively, then the quantities in compartment 1
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(denoted X) and compartment 2 (denoted Y) at any

time 7 are described by

% =-kX X0)=D (compartment 1)

‘% =kX—kY Y(0)=0 (compartment 2)

from which

X=De "
so that

dy ki . . .
d—+ kY = k,De k , a linear order 1 equation with
;2

solution

kD Y/ o
(2 )

This illustrates a model that is commonly used to
describe the movement of a drug from some entry

site into and out of the blood.

. Second-Order Linear Equations
(with Constant Coefficients)

(byD*+ b, D +b,)) y= f(x), D=%.
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a. Right-hand side = 0 (homogeneous case)
(b,D* +b,D+b,)y=0.

The auxiliary equation associated with the above
is
2 -
b,m”+b m+b,=0.

If the roots of the auxiliary equation are real and
distinct, say, m, and m,, then the solution is

_ mx nyx
y=C e +Cepe

where the C’s are arbitrary constants.

If the roots of the auxiliary equation are real and
repeated, say, m, = m, = p, then the solution is

_ px px
y=C, " +C,xe™.

If the roots of the auxiliary equation are complex
a + ib and a — ib, then the solution is

y=C, " cos bx + C,e* sin bx.
b. Right-hand side # 0 (nonhomogeneous case)
(b, D>+ bD+b,)) y=f(x)

The general solution is y = C,y,(x) + Cy,(x) +¥,(x),

where y, and y, are solutions of the corresponding

homogeneous equation and y, is a solution of the

given nonhomogeneous differential equation. y,

has the form Y, x)=A )y, x)+Bx)y,(x), and

A and B are found from simultaneous solution of
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A’y, + B’y,=0and AY’, + BY’, = f(x)/b,. A solution
exists if the determinant

y] yz

Yoy
does not equal zero. The simultaneous equations

yield A” and B’ from which A and B follow by inte-
gration. For example,

(D2+D—2)y=ef3“.

The auxiliary equation has the distinct roots 1 and
—2; hence, y, = e* and y, = e, so that y, = Ae* +
Be?*. The simultaneous equations are

A/ex _ ZB/efzx — ef3x
A" +Be™ =0

and give A" = (1/3)e* and B’ = (-1/3)e™*. Thus,
A = (-1/12)e~* and B = (1/3)e™*, so that

y,=(= 1/12)e™* +(1/3)e™

e,

1L
4

ny=Cet+Ce + e
3. Runge Kutta Method (of Order 4)

The solution of differential equations may be approxi-

mated by numerical methods as described here for the

differential equation dy/dx =f(x,y), withy = y, at x = x,,.

Step size h is chosen and the solution is approximated
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over the interval [x,, x,], where x, = nh. The approxi-
mation follows from the recursion formula

Yoe1 = Ya + (1/6) (K, + 2K, + 2K + K,)
where
K, = hftx,, y,)
K, = hf(x, + h/2, y, + K,/2)
Ky =hf(x, + W2, y, + K,/2)

K, =hfx, + h,y,+ K5)
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1 1 Statistics

1. Arithmetic Mean

where X; is a measurement in the population and N is
the total number of X; in the population. For a sample
of size n, the sample mean, denoted X, is

- XX
X= .
n

2. Median

The median is the middle measurement when an
odd number (1) of measurement are arranged in
order; if n is even, it is the midpoint between the
two middle measurements.

3. Mode

It is the most frequently occurring measurement in
a set.

4. Geometric Mean

geometric mean =4/ X, X,...X

116



5. Harmonic Mean

n’

The harmonic mean H of n numbers X, X,,....X
is

n
H_Z(l/xl')

6. Variance

The mean of the sum of squares of deviations from
the means (W) is the population variance, denoted 6*:

o’ =YX, -w’ /N
The sample variance, s2, for sample size n is
=2 X -X)"/(n-1).
A simpler computational form is

(X))

7. Standard Deviation

The positive square root of the population variance is
the standard deviation. For a population,

2 (ZX’ )2 1/2
D T
N
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for a sample,

. Coefficient of Variation

V=s/X

. Probability

For the sample space U, with subsets A of U (called
events), we consider the probability measure of an
event A to be a real-valued function p defined over all
subsets of U such that

0<p@<1

p (U)=land p(®)=0

If A, and A, are subsets of U
PAUA)=pA)+PA)-p @A NA,)

Two events A, and A, are called mutually exclu-
sive if and only if A NA,=¢ (null set). These
events are said to be independent if and only if
pANA)=pA)p@A,).

Conditional Probability and Bayes’ Rule

The probability of an event A, given that an event B
has occurred, is called the conditional probability
and is denoted p(A/B). Further,
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pANB)

A/ B)=
PAID="5)

Bayes’ rule permits a calculation of an a posteriori
probability from given a priori probabilities and is
stated below:

pP@A, /B)=

If A,A,,..,A are n mutually exclusive
events and p(A )+p(A )+--+p@,)=1, and
B is any event such that p(B) is not O then the
conditional probability p(A,/B) for any one
of the events A,, given that B has occurred, is

p@A)pBIA)
pAPBIA)+p A)pBIA ) ++p@A)pBIA)

Example

Among five different laboratory tests for
detecting a certain disease, one is effective
with probability 0.75, whereas each of the
others is effective with probability 0.40. A
medical student, unfamiliar with the advan-
tage of the best test, selects one of them and is
successful in detecting the disease in a patient.
What is the probability that the most effective
test was used?

Let B denote (the event) of detecting the
disease, A, the selection of the best test, and A,
the selection of one of the other four tests; thus,

pA)=1/5p@A,)=4/5pB/A)=0.75
and p(B/ A,) = 0.40. Therefore,

1075
P I B)= 3 ; ~0319
20075 + 2 (0.40
5( ) 5( )
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Note, the a priori probability is 0.20; the out-
come raises this probability to 0.319.

e Expected Value

For the random variable X that assumes # finite values
X15X5, .. .,X,, With corresponding probabilities P(x;) such

that ZP(xi) =1, the expected value (also called the
1

mean) is given by E(x)= Z)ciP(xi). For a continuous

b
random variable with a<x<b, E(x)= L xP(x).
10. Binomial Distribution

In an experiment consisting of n independent trials in
which an event has probability p in a single trial, the
probability py of obtaining X successes is given by

_ X (n-X)
P —C(n.x)p q

X

where

n!
g=(-p)andC,,, = XT—3)1 n—X0

The probability of between a and b successes (both a
and b included) is P +P  +---+P,, soifa=0and
b = n, this sum is

n

X (n-X) _ n n—1
2 C(n.X)p q =4q +C(n.l)q p

X=0

n-2_12 no__ no__
+C(M)q p +-+p'=(g+p) =1
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11.

12.

Mean of Binomially Distributed Variable

The mean number of successes in n independent tri-

als is m = np with standard deviation 6=+/npq.

Normal Distribution

In the binomial distribution, as n increases the histo-
gram of heights is approximated by the bell-shaped
curve (normal curve),

Y = 1 ef(km)zlz&
oV2n

where m = the mean of the binomial distribution =
np,and ¢ = \/E is the standard deviation. For any
normally distributed random variable X with mean
m and standard deviation o, the probability function
(density) is given by the above.

The standard normal probability curve is given by

and has mean = 0 and standard deviation = 1. The
total area under the standard normal curve is 1. Any
normal variable X can be put into standard form by
defining Z=(X—-m)/c; thus, the probability of X
between a given X, and X, is the area under the stan-
dard normal curve between the corresponding Z, and
Z, (Table A.1).
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* Normal Approximation to the Binomial Distribution

The standard normal curve is often used instead of
the binomial distribution in experiments with discrete
outcomes. For example, to determine the probability
of obtaining 60 to 70 heads in a toss of 100 coins, we
take X = 59.5 to X = 70.5 and compute correspond-
ing values of Z from mean np = 100 £=50. and the

standard deviation =4/ (100) (1/2)(1/2) =5. Thus,

Z =(59.5-50)/5=19 and Z = (70.5 — 50)/5 = 4.1.
From Table A.1, the area between Z =0 and Z = 4.1
is 0.5000, and between Z = 0 and Z = 1.9 is 0.4713;
hence, the desired probability is 0.0287. The binomial
distribution requires a more lengthy computation:

1/2)° (1/2)* + C

(100, 61)

(172)% (172)%

C(IO(), 60)

Hot C g 10 (112)7 (172)°
Note that the normal curve is symmetric, whereas
the histogram of the binomial distribution is sym-
metric only if p = g = 1/2. Accordingly, when p
(hence g) differs appreciably from 1/2, the difference
between probabilities computed by each increases. It
is usually recommended that the normal approxima-
tion not be used if p (or g) is so small that np (or nq)
is less than 5.

13. Poisson Distribution

is an approximation to the binomial probability for r
successes in n trials when m = np is small (<5) and
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14.

15.

the normal curve is not recommended to approxi-
mate binomial probabilities (Table A.2). The vari-
ance o in the Poisson distribution is np, the same
value as the mean.

Example
A school’s expulsion rate is 5 students per
1,000. If class size is 400, what is the prob-
ability that 3 or more will be expelled? Since
p =0.005and n =400, m =np =2 and r = 3.
From Table A.2 we obtain for m =2 and r (= x)
= 3 the probability p = 0.323.

Empirical Distributions

A distribution that is skewed to the right (positive
skewness) has a median to the right of the mode and
a mean to the right of the median. One that is nega-
tively skewed has a median to the left of the mode
and a mean to the left of the median. An approximate
relationship among the three parameters is given by

Median =2/ 3(mean) + 1/3 (mode)

Skewness may be measured by either of the follow-
ing formulas:

Skewness = (mean — mode)/s

Skewness = 3 (mean — median)/s
Estimation
Conclusions about a population parameter such as

mean [ may be expressed in an interval estimation
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16.

containing the sample estimate in such a way that
the interval includes the unknown p with probability
(1 -a). A value Z, is obtained from the table for
the normal distribution. For example, Z, = 1.96 for
o= 0.05. Sample values X,,X,,...,.X permitcompu-
tation of the variance s2, which is an estimate of o2.
A confidence interval for [ is

X-2,5/\Nn,X+2,5/\n)

For a = 0.05 this interval is

(X =1.965//n,X +1.965 //n)

The ratio s/ \/; is the standard error of the mean
(see Section 17).

Hypotheses Testing

Two groups may have different sample means and it
is desired to know if the apparent difference arises
from random or significant deviation in the items of
the samples. The null hypothesis (H,) is that both
samples belong to the same population, i.e., the dif-
ferences are random. The alternate hypothesis (H,)
is that these are two different populations. Test pro-
cedures are designed so one may accept or reject
the null hypothesis. The decision to accept is made
with probability o of error. The value of o is usually
0.05, 0.01, or 0.001. If the null hypothesis is rejected,
though correct, the error is called an error of the first
kind. The error of acceptance of the null hypothesis,
when false, is an error of the second kind.
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17. t-Distribution

In many situations, i and ¢ are unknown and must be
estimated from X and s in a sample of small size ,
so use of the normal distribution is not recommended.
In such situations the Student’s 7-distribution is used
and is given by the probability density function

y=A(+12 ] f)7 R

where f stands for degrees of freedom and A is a
constant

=T(1241/2)/T(fI12f

so that the total area (probability) under the curve of
y vs. tis 1. In a normally distributed population with
mean [, if all possible samples of size n and mean

X are taken, the quantity (X — u)\/; /s satisfies the
t-distribution with

f=n-1

or

t

X-p
~.

- s/x/i
Thus, confidence limits for L are
(X—t-s/\/;,f+t-s/\/;)

where 7 is obtained from Table A.3 for (n — 1) degrees
of freedom and confidence level (1 — o).
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18. Hypothesis Testing with t- and Normal Distributions

When two normal, independent populations with
means L, and |, and standard deviations G and G, are
considered, and all possible pairs of samples are taken,
the distribution of the difference between sample
means X —Y is also normally distributed. This distri-
bution has mean [, — W, and standard deviation

2 2
GX Y
= 4
nl

:‘Q

2

where n, is the sample size of X; variates and n, is
the sample size of Y; variates. The quantity Z com-
puted as

satisfies a standard normal probability curve (Sec-
tion 12).

Accordingly, to test whether two sample means differ
significantly, i.e., whether they are drawn from the
same or different populations, the null hypothesis
(Hp) is Py — 1y =0, and



is computed. For sufficiently large samples (n, > 30
and n, > 30), sample standard deviations s, and s,
are used as estimates of Gy and G,, respectively. The
difference is significant if the value of Z indicates a
small probability, say, <0.05 (or IZl > 1.96; Table A.1).

For small samples where the standard deviation of
the population is unknown and estimated from the
sample, the z-distribution is used instead of the stan-
dard normal curve.

t:()?—Y)—(ux—u,)
SZ YZ
L

noon,

s

where s is the “pooled estimate of the standard devia-
tion” computed from

, (=1 sf( +(n, —1)33

n+n,—2

The computed ¢ is compared to the tabular value
(Table A.3) for degrees of freedom f=n+ n, — 2 at
the appropriate confidence level (such as o = 0.05 or
0.01). When the computed ¢ exceeds in magnitude the
value from the table, the null hypothesis is rejected
and the difference is said to be significant. In cases
that involve pairing of the variates, such as heart rate
before and after exercise, the difference D = X - Y is
analyzed. The mean (sample) difference D is com-
puted and the null hypothesis is tested from
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Example: Mean exam scores for two groups of students
on a standard exam were 75 and 68, with other per-
tinent values:

X=175 Y =68

s =4 s, =3

n =20 n, =18
Thus,

2 2
RO OO .
36

and

- 27 127
7+7
20 18
From Table A.3, t,,, for 36 degrees of freedom, is

between 2.756 and 2.576; hence, these means are
significantly different at the 0.01 level.

__D
sD/\/;’

where s, is the standard deviation of the set of

differences:
=2 172
s, =[2 (D-D) /(n—l)]

In this case, f=n - 1.
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19. Chi-Square Distribution

In an experiment with two outcomes (e.g., heads or
tails), the observed frequencies can be compared
to the expected frequencies by applying the normal
distribution. For more than two outcomes, say, 7, the
observed frequencies 0,,0,,...,0, and the expected
frequencies, e,e,,....e,, are compared with the

chi-square statistic (}?):

L (0,-e)
IR ’ee’)-

i=1 i

The X? is well approximated by a theoretical distribu-
tion expressed in Table A.4. The probability that X? is
between two numbers X12 and x; is the area under
the curve between ¥ and . for degrees of free-
dom f. The probability density function is

1

=yt W0 <)

y

In a contingency table of j rows and k columns,
f=(G -1 (k-1). In such a matrix arrangement the
observed and expected frequencies are determined
for each of the j X k = n cells or positions and entered
in the above equation.

When f = 1, the adjusted x> formula (Yates’ correc-
tion) is recommended:

L (0, —el-1/2)
deizz P :

i=1 ;
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Example—Contingency Table: Men and women were
sampled for preference of three different brands of
breakfast cereal. The number of each gender that
liked the brand is shown in the contingency table.
The expected number for each cell is given in paren-
theses and is calculated as row total X column total/
grand total. Degrees of freedom=2-1)x(3-1)=2
and X? is calculated as:

_ 2 _ 2
2 _ (50-59.7) +...+(60 75.7)

=114
59.7 75.7
Brands
A B C Totals
Men 50(59.7) 40(45.9) 80 (64.3) 170
Women  80(70.3) 60(54.1) 60(75.7) 200
Totals 130 100 140 370

Since the tabular value at the 5% level for f= 2 is 5.99,
the result is significant for a relationship between
gender and brand preference.

X2 is frequently used to determine whether a popula-
tion satisfies a normal distribution. A large sample
of the population is taken and divided into C classes,
in each of which the observed frequency is noted
and the expected frequency calculated. The latter
is calculated from the assumption of a normal dis-
tribution. The class intervals should contain an
expected frequency of 5 or more. Thus, for the inter-
val (X,,X,, ), calculations of Z =(X,—X)/s and
Z., =X, - X)/s are made and the probability is
determined from the area under the standard normal
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curve. This probability, (P, X N, gives the expected
frequency for the class interval. Degrees of freedom
= C - 3 in this application of the X test.

20. Least Squares Regression

A set of n values (X,,Y,) that display a linear trend is
described by the linear equation fl =o+BX,. Vari-
ables o and P are constants (population parameters)
and are the intercept and slope, respectively. The rule
for determining the line is minimizing the sum of the
squared deviations,

n

¥,-¥)

i=1

and with this criterion the parameters o and 3 are
best estimated from a and b, calculated as

sy (EXIED)
RS
.
and
a=Y -bX,

where X and Y are mean values, assuming that for
any value of X the distribution of Y values is normal
with variances that are equal for all X, and the latter
(X) are obtained with negligible error. The null hypoth-
esis, Hy:p = 0, is tested with analysis of variance:
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Source SS DF MS

Total (Y, - ¥) XY, -V a-1
Regression (}:',, -Y) 2(1?1 —¥)? 1

. . S
Residual (Y, - Y, (Y -Y)? — wmid _ g2
¥, =Y) ¥, -Y) n (n-2) Y-X

Computing forms for SS terms are

=X, -Y) =Xy~ (XY) /n

lol.al

,_[ExY - (ZX)(ZY)/n]
X -(XX) /n

F=MS,, I MS_, is calculated and compared with
the critical Value of F for the desired confidence level
for degrees of freedom 1 and n — 2 (Table A.5). The
coefficient of determination, denoted 2, is

P = NS

Example: Given points: (0, 1), (2, 3), 4, 9), (5, 16). Analysis
proceeds with the following calculations:

SS DF MS
Total 136.7 3 F= 120 =154
7.85
(significant)?
Regression 121 1 121

Residual 157 2 7185=S;, r*=0885
5, =0.73

@ See F-distribution, Section 21.
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ris the correlation coefficient. The standard error of

estimate is /sﬁ_x and is used to calculate confidence
intervals for o. and B. For the confidence limits of

and o,
N 1
PES S - Ry
v2
a i[SYAX l + ﬁ
\ n L=

where ¢ has n — 2 degrees of freedom and is obtained
from Table A.3 for the required probability.

The null hypothesis, H,:3 = 0, can also be tested with
the #-statistic:

where s, is the standard error of b:

SY-X

[Z(X,. —X)z] 12

Sb:

Standard Error of Y

An estimate of the mean value of Y for a given value

of X, say, X, is given by the regression equation

Y, =a+bX,.
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21.

The standard error of this predicted value is given by

|, -X7 |
S?O :SY-X |:n+ Z()Of _X)Z:I

and is a minimum when X, =X and increases as
X, moves away from X in either direction.

Nonlinear Regression Analysis

Given a data set (x;, ¥), i =1, ..., N, it is desired to fit
these to a nonlinear equation.

The basis of nonlinear curve fitting is as follows. A
function Y of x contains, say, two parameters denoted
here by o and B, that is, Y = f(x, o, B). We seek here
a representation in which o and P are estimated by
a and b. These estimates are initially a, and b,. A
Taylor series representation is made about these ini-
tial estimates @, and b,

Y = f(a,,b,,x)+(9f / do)(o.—a,)+(f 1 OB)B—b,)

Y - f(a,,b,,x) = (of / do)(o.—a,)+ (f / IP)B—b,)

For this choice of a, for o and b, for B, each value
x; gives the left-hand side of the above equation,
Y, - fla,, by, z,), denoted here by Y. The partial deriv-
ative df /da uses the a, and b, values and also has a
value for each x; value, denoted here by X|,. Similarly,
the partial derivative df /df has a value at this x;,
which we denote by X,,. Thus, we get a set of values
of a dependent variable Y =cX | + dX, that is linearly
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related to the independent variables X, and X,. A
multiple linear regression (described below) yields
the two regression coefficients ¢ and d.

There are N data points (x;, y,). Using estimates (a,, b,)
of parameters, the data are transformed into three differ-
ent sets, denoted by Y, X|, and X, defined as follows:

YAi =y, = flay,by,x)
X,= @ /9a)

Xy = (af / aB)

where the partial derivatives are evaluated with a,, b,
at each x; value.

Thus, the original data set gives rise to three data
columns of length NV:

The values of f, X,, and X, in the table are entered
into a linear multiple regression procedure to yield

Y =cX,+dX,

The coefficients ¢ and d are determined (with stan-
dard errors) from equations given below; these allow
improved estimates of parameters a and b by taking a
new set of estimates a, = ¢ + ayand b, = d + b,
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The new set of estimates, a, and b,, are then used to
calculate ¥, X,, and X,, and the process is repeated
to yield new parameters, a, and b, (with standard
errors). A stopping criterion is applied, e.g., if the dif-
ference between two iterates is less than some speci-
fied value. This last set is retained and the last set’s
standard errors are retained as the standard errors of
the final estimate.

* Multiple Regression (Equations)

In the discussion on nonlinear curve fitting above, we
saw the need for iterative use of the two-parameter
linear regression given by Y =cX, +dX,.

At every step of the iterative process a set of X, X,
and corresponding Y values is calculated, and at that
step we wish to calculate the coefficients ¢ and d. The
procedure for doing this is a special case of the gen-
eral multiple regression algorithm based on Y = b, +
b, X, + b, X, + ... + by X, which estimates all the
coefficients. In our application (two-parameter non-
linear analysis) there is no b, term and N = 2. The
data array is that shown above. Our model equation
is given by

Y =X, +dX,

Using a least squares procedure we calculate the fol-
lowing by first getting the determinant D:

D= lez ZX1X2
ZXIXZ ZXZZ

The coefficients ¢ and d are calculated:
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> X, Zxle
e T

XXX,
Txx, Yrx|

The following Gaussian coefficients are needed in
the error estimates and these are given by

_2X22 c _lez N :_ZXIXZ
D

C,, = = C
11 D 22 D 12

The squared differences between the observed
and estimated Y values are summed to give
SS .= E(Yam —Y )’ From SS,,, we get the variance

est res

SS

T N-2
which is used to obtain the needed variances and
standard errors from the following:

N

V(ic)= c“s2 V(d)= czzs2

SE(c)=+/V(c) SE(d)=+V(d)

Itis seen that the procedure for nonlinear curve fitting

requires extensive computation that is almost always

done on a computer. The iteration stops when the

changes in coefficients ¢ and d become sufficiently
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small. At that point in the process the standard errors
are those given above at this last turn of the cycle.

22. The F-Distribution (Analysis of Variance)

Given a normally distributed population from which
two independent samples are drawn, these provide
estimates, s’ and s, of the variance, 6°. Quotient
F= sl2 / s22 has this probability density function for f;
and f, degrees of freedom of s, and s,:

A=z 52
2 h Iz F?
y= SR i 0sf<e)

In testing among k groups (with sample size n) and
sample means ZI,KZ,...,K,(, the F-distribution tests
the null hypothesis, W, =p, =...=u,, for the means
of populations from which the sample is drawn. Indi-
vidual values from the jth sample (j = 1 to k) are
denoted Al.j (i=1ton). The “between means” sums

of squares (S.S.T.) is computed
SST=n@ -A’+n@A,-A’ +--+n A, - Ay,

where A is the means of all group means, as well as
the “within samples” sum of squares (S.S.E.), where

SSE=Y A, -A)V+Y (A,-A) +-+3 A4, -A)
i=1 i=1

i=1
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23.

Then

» _SST
! k—1
and
, SSE
s, =
k(-1

are calculated and the ratio F is obtained:

2
Sl
F:72’

5,

with numerator degrees of freedom k — 1 and denomi-
nator degrees of freedom k(n — 1). If the calculated F'
exceeds the tabular value of F at the desired probabil-
ity (say, 0.05), we reject the null hypothesis that the
samples came from populations with equal means
(see Table A.5 and gamma function, Section 9.2).

Summary of Probability Distributions
Continuous Distributions
Normal

y= ! exp [—(x—m)*/26%]

N

Mean =m

Variance — g2
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Standard Normal

1 2
y= exp (—z°/2)
\N21
Mean =0

Variance = 1

F-Distribution

Ffl;2
y=A TEToR)
h+hHF) 2
(A1,

2 Aon
where A = £
INEES Q
2 2
Mean = fz

f,=2
202+ f, -2
Variance = S, i+ =2)

10,-2' -4

Chi-Square

1 -2
= exp| = |(6?) 2
RN p( J
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Mean =f

Variance = 2f

Students t

T'(f/2+1/2)

y=A(+1 /f)f(f“)/2 where A= ———
NSRE(F12)

Mean =0

Variance = ﬁ (for f >2)

e Discrete Distributions
Binomial Distribution

y= C(,,J) px (1_ P)'H
Mean = np

Variance = np (1 — p)

Poisson Distribution

Mean =m

Variance = m
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24. Sample Size Determinations
e Single Proportion

The sample size required to detect a difference
between a test proportion, p,, and a standard propor-
tion value, p,, is calculated from

2
. zm\/po(l—po)—zB \/pl(l—p])
by =Py

where z,, is the two-tailed z-value from the standard
normal curve for the desired level of significance
and z is the lower one-tailed z-value selected for
the power required (probability of rejecting the null
hypothesis when it should be rejected). For o < 0.05,
Zq 18 1.96, while z is one of the following: —1.28 (90%
power), —0.84 (80% power), or —0.525 (70% power).

Example

It is well established that 30% of the residents
of a certain community experience allergy
symptoms each year. It is desired to show that
newly developed preventive inoculations can
reduce this proportion to 10%. We have p, =
0.30 and p, = 0.10, and thus, at the 5% level of
significance and power 80%, n is given by

n={196J030.7) +O.84\/(O.1)(0.9)}2 / (0.10-0.30)"
=33.07

meaning that 34 patients should be tested.
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* Two Proportions

When control and treatment groups are sampled, and
the respective proportions expected are p, and p,, the
needed sample size of each group to show a differ-
ence between these is calculated from

2
zu\/Zpl.(l—p()—ZB\/p,(l—p,)+pc(1—p()
n:
p.—p,

Example

Suppose shock is known to occur in 15% of
the patients who get a certain infection and
we wish to show that a new preventive treat-
ment can reduce this proportion to 5%; thus,
p.=0.15 and p, = 0.05. Using z, = 1.96 and
z5 =-0.84 (for 80% power), the sample size
needed in each group is calculated from

1‘96\/2(0.15)(0.85)+O‘84\/(0.05)(0.95)+(0.15)(0‘85) ’
n=
0.15-0.05)"
=179.9

Thus, 180 patients are needed in each group.

» Sample Mean

When the mean of a sample (l,) is to be compared to a
standard value (L), the number to be sampled in order
to show a significant difference is calculated from
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2
(z&—zﬁ)o

=M,

n=

where G is an estimate of the population standard
deviation.

Example

A certain kind of light bulb is known to have
a mean lifetime of 1,000 hours, with standard
deviation = 100 hours. A new manufacturing
process is installed by the manufacturer and it
is desired to know whether the mean lifetime
changes by, say, 25 hours; thus, p, —p, =25.
The sample size required for testing the new
bulbs, based on the 0.05 level of significance
and 90% power, is calculated from

n={1.96+ 1.28)(100)/25}2 =167.96

so that 168 bulbs should be tested.

Two Means

When two groups are sampled with the aim of detect-
ing a difference in their means, L, — L, the sample
size of each group is calculated from

2
(z,-2)0

[ 5

n=2
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Example

Examination scores of students from two dif-
ferent school districts are being compared
in certain standardized examinations (scale,
200-800, where the standard deviation is
100). A difference in mean scores of 20 would
be regarded as important. Using the 5% level
of significance and 80% power, the number of
student scores from each school district that
should be included is

n=2{(1.96+0.84)(100)/20}* = 392
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12 Financial Mathematics

1. Simple Interest

An item or service costs an amount C and is to be
paid off over time in equal installment payments. The
difference between the cost C and the total amount
paid in installments is the interest /. The interest rate
ris the amount of interest divided by the cost and the
time of the loan T (usually expressed in years):

r=1/CT

Example
An item purchased and costing $4,000 is to be
paid off in 18 equal monthly payments of $249.
The total amount paid is 18 x $249 = $4,482,
so that I = $482. The time of the loan is 1.5
years; hence, the rate is » = 482/(4000 x 1.5) =
0.0803 or 8.03%.

Note: While the above computation is correct,
the computed rate, 8.03%, is misleading. This
would be the true rate only if the $4,482 were
repaid in one payment at the end of 18 months.
But since you are reducing the unpaid balance
with each payment, you are paying a rate higher
than 8.03%. True interest rates are figured on
the unpaid balance. The monthly payment
based on the true rate is discussed below.
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2. True Interest Formula (Loan Payments)

The interest rate is usually expressed per year; thus,
the monthly rate r is 1/12th of the annual interest
rate. The monthly payment P is computed from the
amount borrowed, A, and the number of monthly
payments, n, according to the formula

p=ar— (o)
A+r) 1

Example
A mortgage of $80,000 (A) is to be paid over
20 years (240 months) at a rate of 9% per year.
The monthly payment is computed from the
above formula with n = 240 months and r =
0.09/12 = 0.0075 per month.

It is necessary to calculate (1 + 0.0075)%40
for use in the formula. This is accomplished
with the calculator key [y*]; that is, enter
1.0075, press the [y¥] key, then 240 = to give
6.00915. The above formula yields

P =80000x%0.0075%6.00915/(6.00915-1)
=$719.78

Example
An automobile costing $20,000 is to be
financed at the annual rate of 8% and paid in
equal monthly payments over 60 months. Thus,
n =60, A =20000, and r = 0.08/12 = 0.006667.

First compute (1 + 0.006667)% (by entering

1.006667 then pressing the key [y*], followed by
60) = 1.48987. Thus, the monthly payment is
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P =20000x.006667 x1.48987 / (1.48987 —1)
=$405.53

Table A.6 gives the monthly payment for
each $1,000 of the loan at several different
interest rates.

Example
Use Table A.6 to get the monthly payment for
the previous example.

Note that the table entry for 8% and 5 years is
$20.28 per thousand. Since the loan is $20,000,
you must multiply $20.28 by 20, which gives
$405.60. (This differs by a few cents from the
above due to rounding in the tables.)

3. Loan Payment Schedules

Once the monthly loan payment is determined, it usu-
ally remains constant throughout the duration of the
loan. The amount that goes to interest and principal
changes with each payment as illustrated below.

Example
Show the payment schedule for a loan of
$10,000 at the annual interest rate of 12%,
which is to be paid in equal monthly payments
over 5 months.

The monthly payment P is computed using
the monthly interest rate » = 0.12/12 = 0.01 and
the formula in Section 2:
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5
P = 10000 x (0.01)x(1.01)
(1.01° -1
The value (1.01)’ is calculated by entering
1.01 then pressing [y*] followed by 5 to give
1.0510101, so that the above becomes

P =10000x XU XLOSIOI0L_ 56, 4
1.0510101—-1
Thus, monthly payments are $2,060.40.
The first month’s interest is 1% of $10,000, or
$100. Since the monthly payment is constant,
the following table shows the application of
the monthly payment to both principal and
interest as well as the balance.

Payment Schedule

Payment  To Interest ~ To Principal ~ Balance
1 100 1960.40 8039.60
2 80.40 1980.00 6059.60
3 60.60 1999.80 4059.80
4 40.60 2019.80 2040
5 20.40 2040.00 —

4. Loan Balance Calculation

The balance after some number of payments, illus-
trated in Section 3 above, may be calculated directly
from a formula that is given below. In this calculation
it is assumed that the monthly payments in amount
P are made every month. The amount of these pay-
ments was determined from the original amount of
the loan, denoted A, the number of months of the loan
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(e.g., 120 months for a 10-year loan), and the monthly
interest rate r as given in Section 3. We now wish to
determine what the balance is after a specific number
of payments, denoted by k, have been made. The bal-
ance is given by

Bal, =(1+r)k(A—P]+P (r>0)
r)or

Example

A 15-year loan of $100,000 at 7% annual
interest rate was made and requires a monthly
payment of $899. This monthly payment was
determined from the formula in Section 3. It
is desired to know what the balance is after
5 years (60 payments).

The calculation requires the use of r at the
monthly rate; thus, r = 0.07/12 = 0.0058333,
and substitution yields

Bal,, = (1+0.0058333)% 1100000 — +
0.0058333] ' 0.0058333

899 } 899

=(1.41762)[100000 —154115.17]+154115.17
=$77,400.43

5. Accelerated Loan Payment

The monthly payment P on a loan depends on the
amount borrowed, A, the monthly interest rate, r, and
the number of payments, n (the length of the loan). If
the monthly payment is increased to a new amount,
P/ then the number of monthly payments will be
reduced to some lesser number, n’, which is calcu-
lated as follows:
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First, calculate ferm 1 from the formula

P’
P’ — Ar

term 1=

and term 2:

term2=(+r)

From term 1 and term 2 the number of months n’ is
calculated as

= log(term 1)
log(term 2)

Example

A mortgage of $50,000 for 30 years (360
months) at an annual rate of 8% requires
monthly payments of $7.34 per thousand,;
thus, 50 thousand requires a monthly payment
of 50 x $7.34 = $367 (see Table A.6). If the
borrower decides to pay more than the required
monthly payment, say $450, how long would it
take to pay off the loan?

The monthly interest rate is 0.08/12 and is
used in the calculations of term 1 and term 2:

term 1= 450 =3.8571
450 —(50000)(0.08/12)
term2=(1+0.08/12) =1.00667
Thus,
= log(3.8571)  0.5863 — 203.1 months

" 1og(1.00667)  0.002887
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The loan time is reduced to 203.1 months
(16.9 years).

6. Lump Sum Payment

A way to reduce the length of a loan is to make a lump
payment that immediately reduces the amount owed
to some lower amount, which we denote by Bal. The
original monthly payment remains at the amount P,
which was previously determined from the original
terms of the loan, but now the number of future pay-
ments M will be fewer because of the reduction in
the amount owed. This number M is calculated from
quantities X and Y, defined as follows:

o £
P —(Bal)(r)

Y=1+r (r>0)

and

_ log(X)
~ log(Y)

Example
In a previous example (Section 4) we con-
sidered a situation at the end of 5 years of a
loan of $100,000 for 15 years at the annual
interest rate of 7% (0.0058333/month). The
balance after 5 years was $77,400.43 and the
monthly payment is $899.00 and scheduled to
remain at that amount for the remaining 120
months. Suppose a lump payment of $20,000
is made, thereby reducing the amount owed to
$57,400.43, denoted here by Bal. The monthly
payments remain at $899. The number of
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future payments M is calculated from the
above formulas:

yo 899
899 — (57400.43)(0.0058333)

=1.59350

Y =(1+0.0058333) =1.0058333

The quantity M is then calculated:

_ log(1.59350)

= =80.1 months
log(1.0058333)

7. Compound Interest

An amount of money (A) deposited in an interest-
bearing account will earn interest that is added to the
deposited amount at specified time intervals. Rates
are usually quoted on an annual basis, as a percent.
The interest is added at some fixed time interval or
interest period such as a year, a month, or a day. The
annual rate is divided by this interval for the purpose
of calculation; e.g., if the annual rate is 9% and the
interest period is 1 month, then the periodic rate r is
0.09/12 = 0.0075; if the period is 3 months (quarter of
a year), then r = 0.09/4 = 0.0225. After n time inter-
vals (compounding periods) the money grows to an
amount S given by

S=A1+r)"
where
A = original amount
n = number of interest periods

r =rate per period
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Example
$500 is deposited with an annual interest rate
of 10% compounded quarterly. What is the
amount after 2 years?

A =3$500

r=0.10/4 =0.025 (the periodic rate =
12-month rate/4)

n=2/(1/4)=8 (no. of interest periods)
and

S=500 x (1.025)8

S=500 x 1.2184 = $609.20

If this annual rate were compounded
monthly, then r = 0.10/12 = 0.008333 and n =
2/(1/12) = 24, so that S becomes

S =500 (1.008333)*
=500x%1.22038 = $610.19

e Effective Rate of Interest

When annual interest of, say, 8% is compounded at
an interval such as four times per year (quarterly),
the effective yield is calculated by using the annual
rate divided by 4, thus 2% or 0.02, and the number of
compounding periods, in this case 4. Thus,

(1.02)* = 1.0824
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and the effective annual rate is 0.0824, or 8.24%. In
contrast, 8% is the nominal rate. Table A.7 shows the
growth of $1 for different effective annual interest
rates and numbers of years.

. Time to Double (Your Money)

The time (in years) to double an amount deposited
depends on the annual interest rate (r) and is calcu-
lated from the following formula:

log2 _ 03010
log(1+r)  log(1+7)

Time(yrs) =

Example
For interest rate 6% (r = 0.06), the time in
years is

0.3010 _ .3010
log(1.06) 0.2531

=11.89 yrs

Table A.8 gives the doubling time for vari-
ous annual interest rates.

. Present Value of a Single Future Payment

If one is to receive a specified amount (A) of money at
some future time, say, n years from now, this benefit has
a present value (V) that is based on the current interest
rate (r) and calculated according to the formula

V= A
(I+r)
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Example
You are to receive $1,000 ten years from now
and the current annual interest rate is 8% (r =
0.08) and constant. The present value of this
benefit is

V =1000/(1.08)" = 1000/(2.1589) = $463.20

10. Regular Saving to Accumulate a Specified Amount
» Payments at the Beginning of the Year

We wish to determine an amount P that should be
saved each year in order to accumulate S dollars in
n years, given that the annual interest rate is . The
payment P, calculated from the formula below, is
made on a certain date and on that same date each
year, so that after n years (and n payments) the desired
amount S is available.

rS

P=—2 (>0
A+r)" =A+7r) (r>0)

To make this schedule more clear, say that the pay-
ment is at the beginning of the year, then at the begin-
ning of the next year, and so on for 10 payments, the
last being made at the beginning of the 10th year. At
the end of this 10th year (and no further payments)
we have the amount S. The payment amounts P are
computed from the above formula.

Example
It is desired to accumulate $20,000 for college
expenses needed 10 years hence in a savings
account that pays the constant rate of 6%
annually.

$§=20000, r=0.06, and n = 10.
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The quantity (1.06)'! = 1.8983. Thus,

_0.06x20000

= e 1431.47
1.8983—-1.06

so that $1,431.47 must be saved each year.

e Payments at the End of the Year

Payments of amount P are deposited in an interest-
bearing account at the end of each year for n years so
that n such payments are made. The annual interest is
r. It is desired to have S dollars immediately after the
last payment. The annual payment P to attain this is
given by the formula

P=—" s
d+r)" -1
Example

It is desired to accumulate $100,000 by making
annual deposits in amount P at the end of each
year for 40 years (say, from age 25 to 65 in
a retirement plan) on the assumption that the
interest rate is 10% per year and remains con-
stant over the entire period. P is then

P 0.10 x 100000

=$225.94
(1.10)* -1

Example
It is desired to accumulate $100,000 in 10 years
by making semiannual payments in an account
paying 4% annually, but compounded semi-
annually, i.e., at the end of each 6-month period,
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for 20 periods. In this case we use the interest
rate 0.04/5 = 0.02 for the compounding period,
and insert n = 20 into the above formula.

_0.02x100000

=4,116
1.02)* -1

so that deposits of $4,116 are required every
6 months. (Result rounded to nearest dollar.)

11. Monthly Payments to Achieve a Specified Amount

It is convenient to have tables of monthly payments
for several different annual interest rates and com-
pounding periods, and these are given in Tables A.9

and A.10.

12. Periodic Withdrawals from an Interest-Bearing
Account
Balance Calculation

An account with an initial amount A is earning inter-
est at the rate r. If a fixed amount P is withdrawn
at regular intervals, then the balance B after n with-

drawals is given by

B=A(l+r)’ —P[(l”)" _1] (r>0)
r

In a common application the withdrawals are made
monthly so that the annual interest rate r used in the
formula is the annual rate divided by 12 (with monthly
compounding). In this application the withdrawal
is made at the end of the month. (Note: Balance

decreases only if P > Ar)
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Example

An account earning interest at 10% per year
and compounded monthly contains $25,000,
and monthly withdrawals of $300 are made
at the end of each month. How much remains

after 6 withdrawals? After 12 withdrawals?
Since the rate is 10% and withdrawals
are monthly, we use the rate r = 0.10/12 =
0.008333, with A = 25,000 and P = 300. First,

forn==6:

B = 25000 x (1.008333)" — 300 x {(1008333)6_1]

0.008333

Note: (1.008333)¢ = 1.05105. Thus,

B=25000x1.05105-300x LO5105-1
0.008333

=$24,438 (rounded)

After 12 withdrawals,

12 _
B=25000 x(1.008333)” — 300 x| 1:008333) " ~1
0.008333

B =$23,848 (rounded)

Figure 12.1 shows the result of depositing
$10,000 at 8% annually (0.6667% monthly)
and withdrawing a specified amount each
month, while Figure 12.2 gives the results for
$20,000 and annual interest 12%.
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FIGURE 12.1 Balance of $10,000 for specified
monthly withdrawal. Interest rate is 8% per year.

e Amount on Deposit

The amount of money A, earning annual interest 7,
that must be on deposit in order to withdraw amount
P at the end of each year for n years is given by

A=l

[_ 1
rl A4y

:| (r>0)

Example
For an annual interest rate of 6%, withdrawals
of $1,000 at the end of each of 20 years require
an amount A on deposit that is calculated as
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FIGURE 12.2 Balance of $20,000 with speci-
fied withdrawals in an account that earns 12% per
year. (Note: Withdrawals up to $200/month do not
decrease the balance.)

$1000 1- L =$11,469.92

0.06 [ 1.06”

Note: If the withdrawals are monthly, then the
interest rate is 7/12 (assumed monthly com-
pounding) and # is the number of months.

Periodic Withdrawals That Maintain the Principal

The amount of monthly withdrawals that will neither
increase nor decrease the principal, called the critical
amount, is given by
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P=rA
where A is the principal and r is the interest rate.

Example
Suppose an amount A = $25,000 is deposited
and r = 0.0083333 (monthly); then

P =0.008333x 25000
=$208.32

so that $208.32 may be withdrawn monthly
while maintaining the original $25,000.

Figure 12.2 shows the change in principal ($20,000)
following a number of withdrawals for several differ-
ent monthly amounts in an account earning 12% per
year and compounded monthly (r = 0.01). It is note-
worthy that withdrawing less than $200 per month
(critical amount) does not decrease, but actually

increases the principal.

14. Time to Deplete an Interest-Bearing Account
with Periodic Withdrawals

If withdrawals at regular time intervals are in amounts
greater than the critical amount (see Section 13), the
balance decreases. The number of withdrawals to

depletion may be calculated as follows:

—P/r
log
A—-Plr

log(1+r)
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where

P = monthly amount

A = amount of the principal
r = interest rate

n = number of withdrawals to depletion

Example
An account with principal $10,000 is earning
interest at the annual rate of 10% and monthly
withdrawals of $200 are made.

To determine the number of withdrawals
to depletion we use the monthly interest rate,
r=0.1/12 = 0.008333, with P = 200 and A =
$10,000. The bracketed quantity is

[(=200/0.008333) /(10000 — 200 / 0.008333)]
=1.7142

and its logarithm is 0.23406. The quantity in
parentheses is 1.008333 and its logarithm is
0.003604; hence,

023406

n=———=064.94
0.003604

Effectively this means 65 payments (months).

15. Amounts to Withdraw for a Specified Number of
Withdrawals I: Payments at the End of Each Year

Suppose an amount A has accumulated in a savings

account or pension plan and continues to earn annual

interest at the rate . How much can one withdraw
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each year, at the end of each year, for n years? We
denote the annual withdrawal amount by P and it is
computed from the formula below:

P:Air1 r>0)

1-
a+r"

Example
The amount in savings is $100,000 and regular
payments are desired for 20 years over which
it assumed that the annual rate of interest is
6% and payable once a year. Using r = 0.06,
n =20, and A = 100,000 in the above gives

P 100000 % 0.06
B 1

[

(1+0.06)*

Note that (1.06)* = 3.20713 and its reciprocal
is 0.31180.

Thus, P = 6000/(1 — 0.31180) = $8,718.40.

Payments of $8,718.40 per year at the end
of each year for 20 years are possible from
this $100,000. Of course, if 10 times this, or
$1,000,000, were on hand, then 10 times this,
or $87,184 would be paid for 20 years.

Example
If the same amounts above earn 8% annually
instead of 6%, the calculation is
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100000 % 0.08
I
(1+0.08)*

P

Note that (1.08)*° = 4.66096 and its reciprocal
is 0.214548. Thus,

P =8000/(1-0.214548)=$10,185.22

Payments of $10,185.22 are possible for
20 years from the $100,000 fund; from a
$1,000,000 fund the annual payments are
10 times this, or $101,852.20.

16. Amounts to Withdraw for a Specified Number of
Withdrawals I1: Payments at the Beginning of
Each Year

An amount A has accumulated in a savings account
or pension plan and continues to earn annual interest
at the annual rate r and is payable yearly. How much
can you withdraw each year, at the beginning of each
of n years? We denote the annual withdrawal amount
by P, and it is computed from the formula below:

p=_—_ A (r>0)

1 -
(+n (1+r)""

Example
There is $100,000 in an account that earns 8%
annually. It is desired to determine how much can
be withdrawn (P), at the beginning of each year,
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for 25 years. In this application, r = 0.08, n =25
years, and A = 100,000. Thus, P is given by

p— 100000x0.08
__
(1.08)*

Note that 1.08%* = 6.34118 and the reciprocal
of this is 0.15770, so that P is given by

_ 8000
1.08—0.15770

which is $8,673.97.

Example
Suppose that there is $100,000 in an account
earning 8% annually and you desire to with-
draw it at the beginning of each year for only
10 years. The amount per year P is now com-
puted as

_100000x0.08
1

©(1.08)

P

We calculate that 1.08° = 1.9990 and its
reciprocal is 0.50025, so that P is given by

8000

=———=13,799.05
1.08-0.50025

Since the original amount is $100,000, this
annual withdrawal amount is 13.799% of the
original. It is convenient to have a table of the
percent that may be withdrawn for a specified
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number of years at various interest rates, and
this is given in Table A.11. Note that the amount
just calculated can be obtained from the table
by going down to 10 years in the 8% column.

Example

Find the percent of a portfolio that may be
withdrawn at the beginning of each year for
15 years if the annual average rate of interest
is 12%.

From Table A.11, in the 12% column, the
entry at 15 years is 13.109%. Thus, a portfolio of
$100,000 allows annual withdrawals of $13,109.

17. Present Value of Regular Payments

Suppose you are to receive yearly payments of a cer-
tain amount over a number of years. This occurs, for
example, when one wins a state lottery. The current
value of this stream of payments depends on the
number of years (n), the interest rate (r) that money
earns (assumed constant), and the amount (P) of the
yearly payment. The current value (V) is computed
from the formula

V=P[1— ! :|(r>0)
rl a4y

Example
The current interest rate is 7% and annual pay-
ments of $100 are to be paid for 25 years. The
current value of these payments is
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y-100, 1
0.07| (1.07)*

Note: (1.07)% = 5.42743; using this in the above
formula we compute

V =$1165.36

18. Annuities
* Deposits at the End of the Year

The same amount, denoted by P, is deposited in an
interest-bearing account at the end of each year. The
annual interest rate is 7. At the end of n years these

deposits grow to an amount S given by

szPr“”y'q (r>0)

r

If the deposits are made every month, the above
formula holds for the accumulated amount after n
months. In this case, the interest rate, r, is the annual

rate divided by 12 and compounded monthly.

Example
The sum of $500 is deposited at the end of
every year in an account that earns 6% annu-
ally. What is the total at the end of 12 years?

P =500, r=0.06, and n=12
Thus,

(1+0.06)"* —1
0.06

S =500 x
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We must calculate (1.06)'2, which equals
2.012196. Thus, the above becomes

S§=500x%1.012196/0.06 = 500 % 16.8699
=$8434.97.

Example

Monthly payments of $500 are made into a
retirement plan that has an average annual
interest rate of 12% with monthly compound-
ing. How much does this grow to in 25 years?

Because payments are made monthly, the
rate r and the value of n must be based on
monthly payments. Thus, the rate r is (0.12/12
=0.01), and n = 25 x 12 = 300 months. Thus,
the value of S is

(1+0.01)® -1
0.01

S =500x

Note: (1.01)%° = 19.7885; thus,
S =500x18.7885/.01=$939,425

Table A.12 shows the result of depositing
$1,000 at the end of each year in an account
that earns annual interest at several different
rates (payable yearly).

e Deposits at the Beginning of the Year

Amount P is deposited each time and the annual inter-
est rate is r; after n years the accumulated amount is
S given by

s=L1asry—a+n)
r
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Example
$1,000 is deposited at the beginning of each
year in a savings account that yields 8% annu-
ally and paid annually. At the end of 15 years
the amount is S given by

1000
§=——x[(1.08)" —1.08
0.08 [(1.08) ]

§=(12500)x[3.426—1.080]=12500 x 2.346 = 29325

Thus, the amount grows to $29,325. Table
A.13 illustrates the accumulation of funds
when $1,000 is deposited at the beginning of
each year in an account that earns a specified
annual rate. Note: If interest is paid more often
than once a year, then the effective annual
interest should be used in the application of
these annuity formulas.

19. The In-Out Formula

We wish to determine the amount of money (A) to be
saved each month for a specified number of months
(M) in order that withdrawals of $1,000 monthly for
another specified time (N) may begin. It is assumed
that the interest rate (r) remains constant through-
out the saving and collecting periods and that com-
pounding occurs monthly. Thus, the interest rate, 7, is
the annual interest rate divided by 12, and N and M
are in months. The monthly amount, A, which must
be saved is given by the formula

A+n"-1 1
aA+n"  A+n" -1
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Example
The amount to be saved monthly for 15 years
(M =15 x 12 = 180 months) is to be determined
in order that one can receive $1,000 per month
for the next 10 years (N = 10 x 12 = 120 months).
The annual interest rate is 6%; thus, r = 0.06/12
= 0.005 per month. From the above formula,

120 _
A=1000 (1.005) - 1 1180
(1.005) (1.005)"" -1

A =(1000)[(0.450367)-(0.6877139)]

A=309.72

Thus, $309.72 must be saved each month
for 15 years in order to receive $1,000 per
month for the next 10 years.

Table A.15, for annual interest 6%, gives
the results of this calculation by reading down
to 15 years and across to 10 years, as well as
a number of different combinations of savings
years and collection years. Tables A.14 to A.17
apply to annual interest rates of 4, 6, 8, and
10%. The use of these tables is illustrated in
the next example.

Example
For an annual interest rate of 4%, how much
should be saved monthly for 25 years in order to
collect $1,000 monthly for the next 20 years?

From Table A.14, reading down to 25 years

and across to 20 years, the table shows $320.97.
Thus, $320.97 must be saved for each $1,000
monthly collected for 20 years. If, say, $3,000
per month is to be collected, we multiply
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$320.97 by 3 to give $962.91 as the amount to
be saved each month for 25 years.

20. Stocks and Stock Quotations

The stocks of various corporations require familiar-
ity with the terms used and the underlying calcula-
tions. Besides the high, low, and closing price, and
the change from the previous trading day, the stock
quotations, as listed in newspapers, contain addi-
tional terms that are calculated.

Yield: The dividend or other cash distribution that
is paid on the security and usually expressed as a
percentage of the closing price. The dollar amount
of the distribution divided by the closing price,
when multiplied by 100, gives the yield. Thus, a
dividend of $3.50 for a stock selling for $40.75
has a yield of

100x(3.50/40.75) =8.6% (rounded)

Price-earnings ratio (P/E): The closing price
divided by the earnings per share (for the most
recent four quarters); for example, if annual earn-
ings = $2.25 for the above stock, priced at $40.75,
then P/E = 40.75/2.25 = 18.1.

Volume: The volume traded, usually on a daily basis, is
quoted in units of 100. For example, a volume figure
of 190 means 190 x 100 = 19,000 shares traded.

A listing might look as follows:

Stock  Div Yield Vol Hi Lo Close  Change

XYz  3.50 8.6 190 42'a 405 40%s +/

which means that this stock attained daily highs
and lows of 42!/4+ and 40Ys, respectively, and
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closed at '/2 above the previous day’s closing price
of 40'/s.

21. Bonds

Bonds are issued by many corporations (and govern-
ments), usually with a par value or face value of
$1,000, and mature at a specified time that is part of
the quotation information found in newspapers. The
corporation (or government) thus promises to pay the
face value of $1,000 at maturity and also pays interest
to the bond holder. The quotation also includes this
annual interest expressed in percent. Although the
face value of the bond may be $1,000, the price that
purchases it is based on units of $100; for example,
the quoted purchase price, such as $95, means that
the bond costs 10 times this, or $950, whereas a pur-
chase listing of $110 would mean that it costs $1,100.
Thus, XYZ corporation bonds that pay interest at
8.5% and mature in 1998 would be listed as

XYZ 8Ys 98

If the purchase price is $110, then the cost (without
commission) is 10 x $110 = $1,100 but pays interest
of 8.5% of the face value of $1,000, or $85. This is
the amount paid annually regardless of the purchase
price. Thus, the effective yield is computed from this
earned interest and the purchase price:

100 x (85/1100) = 7.7%

The listing, as published in newspapers, might look
as follows:

Bond Current Yield Close  Net Change

XYZ 8298 7.7 110 +Y%
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The last column, “Net Change,” means that the clos-
ing price on the previous trading day was 109%2. The
quotation might also include the sales volume (usu-
ally in units of $1,000) as well as the high and low
prices of the bond during the trading day.

Bond Value

The value of a bond is determined from the number
of years to maturity and the amount of the annual
coupon payments paid each year until the bond
matures. The face value (par value) of most bonds is
$1,000.00. The current value uses the current interest
rate, e.g., 7%, to compute the current value of $1,000
at 7% for the number of years to maturity, such as 30.
This is given by 1000/(1 + 0.07)* = $131.37. This is
the first part of the computation. The next part uses
the amount of the coupon payment, e.g., $70 per year
for 30 years. This is calculated from the product of
$70 and the factor [1 — 1/(1.07)3°1/0.07. This factor is
12.4090 and when multiplied by $70 gives $868.63.
This is the second part of the calculation. When these
parts are added, $131.37 + $863.63, the sum is $1,000.
Accordingly, this bond is presently worth $1,000, i.e.,
a bond with face value of $1,000 that pays $70 per
year for 30 years should have a current selling price
of $1,000 (assuming safety) based on the current
interest rate of 7%.

The two parts of the calculation are based on the for-
mulas below, in which 7 is the annual interest rate and
N is the number of years:

Z = (face value)/(1+r)"
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The second part uses these values and the annual

payment C:
T= ¢ 1- !
r d+r)"

Example

The previously illustrated 30-year bond pays
$70 per year, but the current interest rate is now
only 6%. For this calculation we need (1.06)%,
which is 5.7435. Thus, Z = $1,000/5.7435 and
T =(70/0.06) x (1 — 1/5.7435) = $963.54. Add-
ing the two parts, $174.11 + $963.54, gives
$1,137.65. Note: The bond value has increased
as a result of this interest drop.

22. Tax-Free Yield

Certain securities such as municipal bonds may be
purchased tax-free. The relationship between the tax-
free yield (F) and the tax-equivalent yield (T') depends
on one’s tax rate (R) according to the formula

F=T(1-R)

Example
If one is in the 28% tax bracket, i.e., R = 0.28,
then the tax-free equivalent of a corporate
bond paying 6.5% is

F=0.065x (1 -0.28) =0.0468, or 4.68%

(The tax rate is taken to be the total of the
federal and effective state rates.)
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23. Stock Options (Puts and Calls)

Various stock exchanges permit the purchase of stock
options such as “puts” and “calls.” Each of these has
an exercise price and an expiration date. The call
option is the right to buy shares at the exercise price
at any time on or before the expiration date. The put
option is the right to sell shares at the exercise price.
Thus, if the stock of XYZ corporation is currently
trading at 52%% ($52.50) and the exercise price is
$50 with an expiration date 3 weeks hence, the call
provides a guarantee of $2.50 if sold now (less com-
missions). Thus, the call has a value of at least that
amount and would sell for even more since the stock
price might increase even further. The price of the
call might thus be $3.25. In contrast, the put, if exer-
cised now, would lose $2.50, a negative value. But
because the exercise date is still weeks away, the put
still has worth since the stock price could fall below
$50 (the exercise price), giving the option some value,
such as 3/s (37'/2 cents). As the time of expiration gets
nearer, this value would dwindle to zero. The listing
of these options (in early March 1997) would appear
as follows:

XYZ C 5212
Date Strike  Call  Put

March 97 50 31/a 38

(Cis a code for the exchange.)

If the expiration is a month later, April 1997, the
call and put prices would be greater, say 4 and 1'/s,
respectively, because of the time to expiration (the
third Friday of the month).
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24.

25.

Market Averages

The simple average of a set of n numbers, also called
the arithmetic mean, is computed by summing the
numbers and dividing by n. The closing prices of
groups of stocks, such as the stocks of 30 large compa-
nies that comprise the well-known Dow Jones Indus-
trials, provide an average. Because corporations often
split shares, thereby changing their price per share,
and because some of the corporations on the list of 30
may change over time, the simple formula for getting
these averages is modified. For example, in the sum-
mer of 1997 the total of the 30 prices was divided by
0.26908277 to get the average (or average change). For
example, if each gained 1 point, the sum 30 divided
by 0.26908277 is $111.49, a gain in the average. Thus,
even over several years, with stock splits (and even
some different corporations), a change in the average
is a useful indicator of performance.

Other popular averages such as Standard & Poor’s
and the New York Stock Exchange are comprised of
different groups of stocks in segments such as trans-
portation, utilities, etc., as well as broad, composite
averages. Each group has its own divisor.

Mutual and Quotations

Mutual funds are usually listed in newspapers with
values of the net asset value (NAV) of a share, the
buy price of a share, and the change in net asset value
from the previous day’s closing price. The net asset
value is computed as the total of securities and cash
in the fund divided by the number of shares. When
the buy price is greater than the NAV, the difference
is known as the load or cost (commission) of buying
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the fund. The percent as commission is computed as
100 x load/NAV.

Example
The XYZ fund is listed as follows:

Fund NAV Buy  Change

XYZ 1840 1952 -0.03

The load is 100 x (19.52 — 18.40)/(18.40) = 6.087%.

The listing also indicates that on the pre-
vious trading day the NAV was $18.43. If the
fund is sold without a load, the symbol “NL”
(no load) appears in the buy column. Total
return may be computed from the difference
between your cost (buy price) and the NAV
when you sell and will also include dividend
and distributions that the fund may pay.

Example

The fund above, which was purchased at $19.52
per share, attains a net asset value of $22 eight
months later. It also declares a dividend (D) of
25 cents and a capital gain distribution (CG) of
40 cents during that time. These are added to
the difference between the net asset value and
the buy price, and this quantity is divided by
the buy price to give the proportional return
(PR); percent return is 100 x PR:

_ D+CG +(NAV — Buy)
Buy

PR

_0.25+0.40+(22-19.52)  3.13
B 19.52 71952
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Thus, the percent return is 16.03%. Because
this was attained in only 8 months, it is equiva-
lent to a 12-month return obtained by multiply-
ing by %, or 1.5. Thus, the annual percent
return is 1.5 x 16.03%, or 24.04%.

26. Dollar Cost Averaging

The share price of a stock or mutual fund varies so
that regular investment of a fixed amount of money
will buy more shares when the price is low and fewer
shares when the price is high. The table below illus-
trates the results of investing $100 each month for
9 months in a stock whose price is initially $15.00
and which fluctuates over the 9-month period but
returns to $15.00 per share. The same $100 divided
by the share price gives the number of shares pur-
chased each month. The total number of shares accu-
mulated is 62.742 and has a price of $15 at the end of
9 months so that the total is worth $941.13. This is
a gain of $41.13, even though the share price is the
same at the beginning and end of the time period.

Month Price/Share No. of Shares

1 15.00 6.6667
2 14.50 6.8966
3 14.00 7.1429
4 14.00 7.1429
5 13.50 7.4074
6 14.00 7.1429
7 14.50 6.8966
8 14.75 6.7797
9 15.00 6.6667
Total shares 62.7424

Value = $15.00 x 62.7424 = $941.14
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27. Moving Average

Stocks, bonds, mutual funds, and other instruments
whose prices change are sometimes plotted along with
their moving average over some specified time interval.
For example, suppose the closing prices of a mututal
fund for a sequence of days were as shown below:

14.00, 14.25, 14.35, 15.02, 14.76, 14.81, 14.92, 14.99,
15.32, 1545, 15.32, 15.05, ..., 17.45

Illustrated here is the 10-day moving average. The
average of the first 10 prices is the sum (14.00 + 14.25
+ ... + 15.45) divided by 10, which is 14.79. The next
average is obtained from day 2 to day 11, that is,
drop 14.00, which is day 1’s price, and average by
summing to day 11 (14.25 + 14.35 + ... + 15.32) and
dividing by 10, which gives 14.92. These numbers,
computed on days 10, 11, etc., are the 10-day moving
average values. They are plotted, along with the daily
prices, in the graph in Figure 12.3.

10-Day Moving Average
19

18
17

Price

16
15 <— Average

14

13 e
10 20 30 40 50 60

Day

o

FIGURE 12.3 The moving average.
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While the daily prices fluctuate considerably, the
moving average has much lower fluctuation, as seen
by the smoother curve. The usefulness of a moving
average is that it indicates the main trend in prices.
Whereas this example uses the 10-day moving
average, other time intervals may be used, such as
30-day, 200-day, etc. Some mutual funds use a
39-week moving average.
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Table of Derivatives

In the following table, a and n are constants, e is the
base of the natural logarithms, and # and v denote
functions of x.

d
1. —(@)=0
dx( )
d
2. —@x) =1
dx(x)
3. i(au): a@
dx dx
4 —(u+v)=d—u+@
dx dx dx
5 —(uv)zuﬂ+v@
dx dx d
du dv
d Vi tax
6 —/v)=
dx( ) V2
d du
7 & ooy =, n-1 4%
=y
g, Lo
dx dx
d

du
9. —a" =(log a)a" —
dx (log, ) dx

d du

10. —log u=(1/u)—
o 8= g

d du
11. —lo = (log e)(1/u)—
Iy 08 U (log, e)(1/u) I
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

X

. u
—sin u = cos u—
d. d.

Ldu

dv
+u’ (log, u)—
u(geu)dx

X

d . du
—Cos u=—sin u—

X

dx

, du
—tan u = sec” u—

dx dx

d , du

—ctn u= — csc u—

dx dx

d du

—sec u = secu tan u—

dx dx

d du

—CSc u=—csu ctn u—

dx dx

isirr‘ :#dx ,(-in<sin u< im
dx |2 dx’

icos’1 u= ! Y 0< cos™ u<m)

dx 1—y? dx

d 1 du

—tan u= —

dx 1+ u® dx

o gL du

dx 1+u® dx

fsec 7( n<sec! u<—1im

uw/u -1 dx

0<sec'u< 1)
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24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

— csclu =

X

X

X

dx /x

ictnh u= —csch’ u@

dx dx
isech u= —sech u tanh u%
dx dx

X

ismh'1 u=
dx

icosh" u=
dx

i tanh ™'

dx

—ctnh u=
d

—sech™ u=
dx

isinh u = cosh u@
d d

iI;@th u= sechzu%

-1 du

uyJu® — 1 dx

X

icosh u = sinh uﬂ
d dx

|
W +1 dx

1 du
u—1dx

-1 @

un1—u® dx
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J(—m< esclus—1m

icsch u=— csch u ctnh ud—u
d d

X

0O< csc'u<

1
2

)



d -1 d
36. —csch! u=——-"
dx urfu? +1 4%

Additional Relations with Derivatives

d t
], f@dx= 1w

d a
=] rwd==50

If x = f(y), then
dy _ 1
dx  dx
dy

If y =f(u) and u = g(x), then

b _dy du

(chain rule)
dx du dx

If x = f(r) and y = g(¢), then

dy _g'®
dx  f'@)’

and

d’y f0g"O-g Of" (1)

dx’ MG}

(Note: exponent in denominator is 3.)
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Table of Integrals:
Indefinite and Definite Integrals



Table of Indefinite Integrals

Table of Indefinite Integrals

10.

11.

12.

Basic Forms (all logarithms are to base e)

de:x+C

n+l

W X
jx dx_n+1

+C, (n#1)

Jﬁzlogx+C
X

J.e”dxze” +C
X _ a
Jatdx= oga +C

Jsinxdx =—cosx+C
jcosxdxz sinx+C
J.tanxdx =—log cosx+C
Jseczxdx =tanx+C
csc’xdx =—ctnx+C

Jsec xtanx dx =secx+c

1
sin’xdx = fx—5s1n/\cosx+C

188



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

1 1
Jcosz xdx=—=x+—=sinxcosx+C
2 2
Jlogxdxleogx—x+C

Ja‘logady=a*+C.(a>0)

dx 1
_[ =—arc tan£+C

a+x* a a
dx 1 xX—a s o
=—1log—+C,(x*>a
'[xz—a2 2a gx+a ( )
1
—log +C (x*<ad®)
2a

J%:log (x+\/x2 +a2)+C
x“+a

dx
Jizlog(x+\/x2 -a’ )+C
Vx?-a®

=arcsin — +C

e
j a’ —xzdx:I/Z{xxlaz —x* +a*arcsin x}+C

a
J a’ +x*dx

= l/Z{X\/aZ +x* +a’log (x+a* +x* )}+C
J\/xz—azdx

= 1/2{xm—a2 log (x+x* —a’ )}+C
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Form ax + b

Formax + b

In the following list, a constant of integration C
should be added to the result of each integration.

j(ax+b)"‘dx=M (m#1)
a(m+1)

m+2 m+1
Jx(ax+b)”’ dx = (a;c+b) - b(cix+b) ,
a’(m+2) a“(m+1)

(m#-1,-2)

dx 1
=—log(ax+b
J.ax+b a e( )

J dx __ 1
(ax +b)? a(ax+Db)

J‘ dx B 1
(ax+b)? 2a(ax+b)*

xdx x b
==-—1 +b
-[ax+b a a° oglax+b)

dex b

1
= +—log(ax+b
(ax+b)Y d*(ax+b) a° g )

_[ xdx b B 1
(ax+b) 2a*(ax+b)* da*(ax+b)

Ixz (ax+b)"dx

_ 1] (ax +b)"*? _ 2b(ax +b)"*? N b* (ax +b)"*"

e m+3 m+2 m+1

(m#-1,-2,-3)
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33.

34.

35.

36.

37.

38.

39.

40.

41.

2
J X dx :L l(ax+b)2—2b(ax+b)+b210g(a)c+b)
ax+b |2

2 2
j%:% (ax+b)- —2blog(ax +b)
(ax+b)" a ax+b
2 2
Iix dx 3 =L3 log(ax+b) + 2b —7b 5
(ax+b) a ax+b 2(ax+Db)

dx 1 X
j =—log
x(ax+b) b ax+b
dx 1 a ax+b
J37 =——+-~log
x*(ax+Db) bx b X
dx 1 1 ax+b
_[ 5= ——zlog
x(ax+b)> blax+b) b X

dx 2ax+b 2a ax+b
J. 2 I +7110g
x“(ax+b) b x(ax+b) b’ X

jx’” (ax+Db)"dx

1

_ m n+l m—1 n
_7a(m+n+l)|:x (ax+Db) me.x (ax+b) dx]

= m+n+1|:x’“+l(gx+b)" +nb.[x’” (ax+b)”’1dx:|

(m>0,m+n+120)

Forms ax + b and cx + d

J- dx _ 1 o cx+d
(ax+b)ex+d) be—ad S\ ax+b
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Forms with ax +b, cx+d, and<ax +b

42,

43.

4.

J‘ xdx
(ax+b)cx+d)

bc " [b log(ax+b)—log(cx+d)]

J dx
(ax+b) (cx+d)

1 1 c cx+d
= + log
bc—ad| ax+b bc—ad ax+b
J xdx
(ax+b)*(cx+d)

1 3 b __d o cx+d
bc—ad| a(ax+b) bc—ad g ax+b

Forms with ax +b, cx+d, and<ax+b

45.

46.

47.

2

J~ x“dx _ b?
(ax+b)(cx+d) a*(bc—ad)(ax+Db)

1

b(bc—2ad)
(bc ad)’ ?

|:d loglex+d 1+ 10g(ax+b)]

dx=—+
cx+d

J ax+b ax bc— log (cx+d)
c?

j(ax +b)" (cx +d)" dx

= 7[(ax +b)" (cx+d)"
am+n+1)

—n(bc_ad)J.(ax+b)'"(cx+d)”"dx:|
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48.

49.

50.

51.

52.

53.

54.

55.

Forms with Jax+b
I\/ax+ dx——\/(ax+b

_[xxlax+b d)cz2(3%_2217)\/(ax+b)3
a
2.2 2
I b 2(15a X —1221bx+8b )W
105a
_[x’"\/ax+b dx
2 [x'" \J(ax +b)’ —me.x'”'l\/ax-kbdx:I

T a@m+3)

(ax+b)? dx (ax+b)" dx
= =

- aj(ax+b)%dx+b

7-[ _ J~ dx

x(ax+b)? ax+b)* b (ax+b)?

J\/ax+bdx _ 2\/ax+b
cx+d c

+1\/bc ad1 ‘\/C(ax+b Jbe- ad‘

c ‘\/c(ax+b)+\/bc—ad‘

(c>0, bc>ad)

J\/ax+bdx _ 2\/ax+b
cx+d c

_2 Jad=bean [CTD) (50, be <ad)
c c ad — bc
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ax+b

Forms with

56.

57.

58.

59.

60.

61.

62.

| (c’fifx —(3ad 2be+acx)Wax
ax +

_[ dx 2 clax+b
= arc tan

(cx+d)\/ax+b _\/;\/ad—bc ad —bc
(c>0,bc<ad)

dx
J.(cx+d)\/ax+b

‘\/c(ax+b) \/bc ad‘

1
= log
\/;\/bc—ad ‘\/c(ax+b)+\/bc ad‘

(c>0,bc>ad)

j\/ax+b\/cx+d dx = J\/acxz + (ad + bc)x + bd dx

(see 154)
J\/ax+ dx 2\/_b+fl [\/ax+b+\/\/§]
(b>0)

J.M=2\/ax+b—2\/3arctan[ ““x\/__“;bJ

(b<0)

x/ax+b \/ax+b a
'[ x? '[x\/ax+
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63.

64.

65.

66.

67.

68.

69.

70.

1 \(ax+b)’ (Zm 5)aJ ax+bdx

(m _ l)b xnkl m 1
(m#1)
J- 2\ax+b
Nax+b a
J' x dx _ 2(ax—2b)\ax+b
\/ax+b 3a’

J dx 2(3a2x2 —4abx +8b*Wax+b
Jax+ b 154°

m m 1
dx 2 |:x”’ Nax+b — me- dx :|

'[\/ax+b am+1) Vax+b
(m=-73)
dx 1 ax+b—+b
=—log| ———F (b>0)
'[x\/ax+b \/Z \/ax+b+\/z
arctan |52 (<o)

'[x\/ax+ \/—

Forms with Jax+b and ax? + ¢

J- dx =_\/ax+b_ij /x
X*Nax+b bx 2b° xJax+b
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Form ax? + ¢

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

J- dx
x"Nax+b
Nax+b (2m—3)af dx

(m#1)

B (m—-Dbx"" 2m—-2)b? ym! \/ax +b
2tm
s oy 2D
a2t m)

4tm 2+m

o 2 e

J.x(ax+b)7zdx=£ (ax+Db) _b(ax+b)
a? 4+m 2+m

Form ax? + ¢

dx 1 JZ
~ =——arctan | x,/|— | (@>0,c>0)
'[ax“+c \ac [ C]

| e __ 1 [igh/*/:] (@>0, c<0)

ax’+c —ac

d 1 +xv/—
J 2x = log \/E Wa (a<0, c>0)
ax”+c¢ 2 \/;_x —a

d 1
J xzx =—1log(ax® +c)
ax*+c 2a
J‘ x2dx _*—*J-
ax*+c a a’ax*+c

md m-1 m—Zd
J-xzx:x —Exzx(m;tl)
ax*+c a(m-1) a’ax’+c

dx 1 ax®
J——5 =5 log|
x(ax“+c) 2c ax” +c
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81.

82.

83.

84.

85.

86.

87.

dx

x"(ax” +c¢) c(m— l)x (ax +c)
(m#1)
J- dx _ 1 . X
(ax*+¢)" 2(m-1)c (ax*+c)™"
2m-—3 dx
- 2(m—1)c '[ (ax* +¢)"! (m#1

Forms ax?+c and ax®+bx +c

xdx |
J‘ 2 -1 (m#1)
@ +o” " 2a(m—1yax® +o)"
J‘ x’dx N
(ax +C)m Za(m—l)(ax2+c)'”*l
! dx
+ 2a(m—1)J (@’ +o)" (m=1)
[—& - 1
x(ax* +¢o)"  2c(m—D(ax* +¢)""
¢ 1
'[x(ax +e)" r (m#1)

d 1 d .
J ’ 2x m:;-[ 2 ZX mfl_%',.(axziC)m

x“(ax” +c¢) Y (ax’ +0)

(see 82 and 83)
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Form ax2 + bx + ¢

88.

89.

90.

91.

92.

93.

Form ax? + bx + ¢

J- dx
ax* +bx+c

1 2ax+b—~b

= Io

g
\Vb* —4ac 2ax+b+\/b2—4ac

(b2 > 4ac)

_[ dx
ax* +bx+c

2 2
- an —2F 012 440
\/4ac—b2 \/4(10—172

j zdx 2 (b =4ac)

ax’ +bx+c 2ax+b
J dx

(ax® +bx+c)"™!

2ax+b

- n(4ac—b*)ax* +bx +c)"

2(2n—-1a J~ dx
n(4ac—b*)" (ax* +bx+c¢)"

J- xdx
ax* +bx+c

1 b d.
=—1log (ax’ + bx+c)—— 7)6
2a 2a7 ax® +bx+c

x*dx x b
— = Z " log(ax*+bx+c)
Ja)c2+bx+c a 2d* g

b*-2ac dx
+ 2 J 2
2a ax”+bx+c
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_[ x"dx x"! c x"2dx

94, = -
ax’+bx+c (m-Da a’ax®+bx+c

b x'de

a’ ax* +bx+c

Forms with ax? + bx +c¢ and+/2ax — x?

J- xdx _ —(2c+ bx)

95. 2 1 2 2
(ax> +bx+c)™"'  n(4ac—b)ax®> +bx+c)"

__b@n-1) dx

n(4ac—b*) ? (ax* +bx+c)"

2
96. szix:—log 2X7
x(ax® +bx+c) 2c ax’ +bx+c

L S

2¢? (ax* +bx+c¢)
97. J- : 2a’x =L,log ax‘+fx+c L
x“(ax~+bx+c) 2c” X cx

N | S
27 ¢ (ax* +bx+c)

Forms with \2ax — x>

2

98. J 2ax—x2dx=%\/2ax—x2 +azarcsin(x_a

a
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2ax — x?

Forms with

99.

100.

101.

102.

103.

104.

105.

Jx 2ax —x*dx

Jx’"x/Zax—x2dx:—

2 _h,2
=_3a +ax—2x \/27

2 a .
ax —x +?arcsm

6

m+2
2m+1
+7a( m+1) x"'\2ax - x*dx
m+2

3

2 .
=+2ax—x" + aarcsin

J'\IZax;xzdx \/7

]

J.\/2ax—x2

J- x dx
\2ax —x*

2ax —x*dx _ \JQax —x*)?

(x

xm a(zm_3)xtn
m-—3 J- 2ax —x*dx
a(2m—13) xm!
dx

= arcsin

x"dx

)

[ x
=—\2ax-x*+a arcsm(

x"'\2ax —x*

\2ax—x* o

2
+a( m

m

-1

-1
x"dx

m
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106.

107

108

Forms with \2ax — x* and
Forms +a? — x?

dx N2ax—x*

2
x\/2ax —-x" ax

dx _ N2ax-— x*

. X
X J az—xzdxzé(x\/cf—xz +azarcs1nJ

x" \/Za)c—x2 a(Zm—1x"

m—1 dx

' aZm—1) J. x"'\2ax - x*
Forms with va? — x?

a

109. Jx az—xzdx=—§ (a* —x*)*

110.

sz az—xzd)C:—% (@® —x2)’

2
a X
+8(x\/a2 —x? +a” arcsin =

a

111. _[x3\/a2 —xldx = (-t =2’ - x*)

[ 2 2
112. Jm:\/az—)f—alog
X
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a+Va’ -x°
x

)

2ax — x2 and Forms va® - x?

Forms with



2ax — x? and Forms +a® — x>

Forms with

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

=-— +—1
3
X 2x2 X
dx
J =arcsin—
2 2
a —x a
x dx 2 2
J =—a —x
2 2
a —x
2 2
x“dx 2 2 .
J =——+a" —x" +— arcsin—
2 2
a —x 2 a
3
X dx 2 213 2 [ 2 2
J —i\/(a -x*)yY —a’Na*—x
2 2
at—
2 2
dx 1 a+va —x
J.iz—flog _
2
xa® —x* a X
2 2
J dx _ Ja-x
- 2
x*Na*—x* ax
2 2
J dx a’—x* 1 ) a++va —x
- ———log| ———
2.2 3
3Ja? = x? 2a°x 2a X

Forms with \x? —a?
x+Vx*—d’

2
J\/xz —a’dx =§\/x2 —-a’ —%log
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123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

Jxx/xz —atdx= é\/(x2 -a*)
szxlxz —a’dx= %J(xz -a’

Jx3 x*—a’dx = é\/(x2 -a’

]

]
]

]
S
Je—

Nxt—a?
3 dx
X

—a—lo ‘x+
3 g

3 2
X —a

2
a x
Ve

\/x2 —azdx

\/x —a

dx
Nxt—a?

3
X

=log

xdx
/ P —a

xdx f\/x —a +%log

2x?

+—arccos <
2

[.2 2
X+NX"—a
/.2 2
=\NXx —a

2

a

5 +§\/(xz_az 3
2 2
[ [T e~ aarccos
X
=;1\/x2—a2+10g
X

X

x+yx*—a’

X

x+\1x2—a2

X dx 1\/( —a*)’ +a2\/x -a’

Forms «x?—a? and Va® + x?

]

dx

1 a
————— = — arccos —
xxP-a® @ x
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Forms with



a®+ x?

Forms with

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

2 2
X —a

_[ dx _
- 2
XNxt-a® ax
J dx Nxt—a? . 1 a
= —— arccos —
Y2xi =g 2a*x* 24°

Forms with v a® + x?

2

J\/az +x2dx=%\/a2 +x° -Fa—log(x+\/a2 +x2)

2

_[xx/az +x%dx = é\/(az +x%)?

2
_[xz\/a2 +xzdx=£\/(a2 +x%)? —%\/a2 +x°

4

—%bg (x+\/a2 +x2)

jx3 a* +xtdx = (%xz —%az)\/(az +x7)
Na* +x*dx > 5 a+a* +x*

Jf_ T x

a’* +x* —alog

2 2 2 2

jlelear oo o Ji )
X X

a+va’ +x°

X

J\/a2+x2dx \/az+x2 1
=— ——Ilog
x 2x° 2a

J% :10g(x+\/a2+x2)
a +x°
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147

148

149.

150.

151.

152.

J ==
J x’dx

-3

=vVa’+x°

f\/a +x° —710g(x+\/a +x )

Forms a® + x? and Vax® +bx+c

J- X dx

; JL
wa +x°

=——Ilog

(a +x%)° azx/a2+x2

1
X

2

at+x*

_[ dx _
. - 2
xX*Na*+x* ax

J dx _ Va® +x* + 1
X3 \/a2 +x? 2a°x* 2’
Forms with

dx

'[\/ax2+bx+c

a+Va’ +x°

log

a+Na® +x*
X

ax®>+bx®*+c

= \/l,log(Zax+b+2\/;\/ax2+bx+c), a>0
a

. . —2ax—b

dx 1
= sin
J.\/axz+bx+c N-a

xdx

\/ax +bx+c

NI 4ac

b dx

J’\/ax

+bx+c

a
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Forms va® + x? and Vvax®+bx +c



Form Jax?+bx+c

n—1

x"dx X
_[7: Nax* +bx+c
vax* +bx+c¢ an

_b@2n-1) x"dx
2an Nax* +bx+c
B c(n—=1) x"2dx

an \/ax2+bx+c

153.

2ax+b
ax” +bx+c

154. I ax* +bx+cdx =

4ac—-b* dx
+

8a \/ax2+bx+c

(ax* +bx +c)?

155. jx ax® +bx+c dx=
3a

—EJ. ax* +bx+c dx
2a

@ (ax* +bx+ c)%
6a da

156. '[xz ax® +bx+cdx=(x—

+(5b]h6_$'[\/axz +bx+cdx
a
Form vax?+bx+c

dx

J.x\/ax2 +bx+c

1 \/axz+bx+c+\/; b
-—log| —M8M8M8M8m +——
Je x 2e

157.

,c>0
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158.

159.

160.

161.

162.

163

16

N

dx 1
'[xxjax2+hx+c - \/:

o bx+2c

——,c<0
xVb* —4dac

2
d =——Vax’+bx,c=0

sin

J xvax® +bx bx

dx Nax*> +bx+c

Nax +bx+c © cn—1a
+ b(3-2n) _[ dx
2e1=1) 7 Jax + bx+c
a(2—n) dx

c(n=1) x”'z\/ax2 +bx+c

_[ dx _ 2(2ax+b) b £ dac
(ax? +bx+c)§ (b* —4ac)Nax® +bx+c |
dx ! ,b* =4ac

(@ +bx+c)  2a (x+b/2a)

Miscellaneous Algebraic Forms

-

94X e = Ja+ b+ x)

b+x
+(a—b)log(\/a+x+\/b+x)

(a+x>0andb+x>0)

b—x
a+b

Z+xdx =—4/(a+x)(b—x)—(a+ b)arcsin
—-X
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Form ~ax® + bx +c¢ and Miscellaneous Algebraic Forms

165. | 97X e = Ja—x)b+x) +(a+ byarcsin | 2
b+x a+b
166. j X e 1= 2" +arcsinx

dx x—a
167. —————=2arcsin, /
J\/(x—a)(b—x) b—a
— k+x
168. Parctan ==K 41 |
Iax +b 31;[ RN Og\/xz—kx+kz]
(b:to,k:i/;}
a
Form vax?+bx+c and
Miscellaneous Algebraic Forms
x dx
169. '[ax3+b
\/7arctan 2x— —log‘ k+x ‘
" 3ak W3 Y-kt k|
(b;ao,k:i/;J
b
170. jd7x=ilo o (b+0)
x(ax™ +b) bm ax" +b
171. dx _ x—a

\/Zax—xz)3 - az\/Zax—x2
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172.

173.

174.

175.

176.

177.

178.

179.

180.

_[ xdx _ X
(2ax—x*)’ a\/2ax—x2)

:log‘x+a+\/2ax+x2 ‘

dx
J‘\/2ax+xz
\/cx+d \/ax+b-\/cx+d
J dx =

ax+b a

(ad bc) J- dx

Nax+b -Nex+d

Trigonometric Forms
: 1
J(sm ax)dx =——cosax
a

2 1 . 1
J(sin‘ ax)dx = ——-cosaxsinax+—x
2a 2

Trigonometric Forms

1 1 .
=—x——sin2ax
2 4a

_[(sin3 ax)dx = —%(COS ax)(sin® ax +2)
a

_[(sinAax)dx _ 3x  sin2ax + sin4ax
8 4a 32a
. n—1 _]
J(sin”ax)dx _ S axcosax | n 'f(sin”’2 ax)dx

d 1
_[ - Zx =J.(csczax)dx=—fcotax
sin” ax a
209



Trigonometric Forms

181.

182.

183.

184.

185.

186.

187.

188.

]

dx

sin” ax

1

= J (csc™ ax)dx

cosax

dx

m—2
" '[si

(m—-1a . sin"tax m-—1

jsin(a +bx)dx = —%cos(a +bx)

]
]

]
]

]
]

1xsinax

dx

1xsinax

sinax

dx

dx

(1+sinax)®

dx

(1-sinax)’

sinax

F—tan

(sinax)(1 £sinax) - a

T

1

=—2c0
2a

(1+sinax)?

=

T _ax
T_ax
472

max
2

dx:ix+1tan(+
a

4

m=2

n ax



189.

190.

191.

192.

193.

194.

J sinax

(1-sinax)?
1 T ax 1 s oax
=——ocot| ——— |+—cot’ [ ———
2a 4 2 6a 4 2
_[ sin x dx _X a dx
a+bsinx b b’ a+bsinx

dx 1
_[— flogtanf—fj-i
(sinx)(a+bsinx) a a+bsinx @
S
J- dx w
(a+bsinx)’ S
b 3
- qcosx + 2a ZJ- dx. g
(@ —=b*)a+bsinx) a’—-b**° a+bsinx S
c
S
j% =
(a+bsinx)
acosx b dx
= — 0 [——
b* —a*)a+bsinx) b*—a*? a+bsinx

j\/1+sinx dx=12 sini—cosﬁ
2 2

[use+if kD)7 <x<Bk+3)7.

otherwise —; k an integer]
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Trigonometric Forms

195. J\/l —sinx dx = i2(sin)2c+cos)2€)

[use-+ if (8k=3)7 < x < Bk +1) 7.

otherwise —; k an integer]

1
196. _[(cos ax)dx = —sinax
a

197. J(cosz ax)dx = isinaxcosax + lx
2a 2

1 1 .
=—x+—sin2ax
2 4a

198. j(cos3 ax)dx = %(sin ax)(cos® ax +2)
a

in2 ind
199. j(cos4 ax)dx = 3—x+ Smcax | Smrax
8 4a 32a

200. j(cos" ax)dx

n

1 . . -1 _
=—-cos" " axsinax + I(cos” 2 ax)dx
n

na
201. j(coszm ax)dx

:mmm Q2m)!(r!)? - 2m)!

2m-2r 2 2m PR
a S22 2r+1)(m)) 2" (1)

. m 22m—2r ’ 2 2 |
202. _[(cosz””' ax)dx = smaxz () ( :) cos” ax
a = Qm+DI(r)

212




203.

204.

205.

206.

207.

208.

209.

210.

d. 1
_[7; = _[(secz ax)dx = —tanax
cos’ ax a

j dx = I(sec" ax)dx

cos" ax

1 sinax n—ZJ- dx

n—1

(n—Da cos"'ax n-17Ycos"?ax

Jcos(a +bx)dx = %sin(a +bx)

dx 1 ax

& L

l14+cosax a 2
J- dx 1 ax

——=——cot—

1—cosax a 2

5 va* -b? tanﬁ
tan_]
Ja? -2 a+b

_[ dx

—_= or

a+bcosx

cosax 1 ax
J‘idx =x——tan—

1+ cosax a 2
cosax 1 ax
Jidx =—x——cot—
1—cosax a 2

213
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Trigonometric Forms

211.

212.

213.

214.

215.

216.

217.

218.

219.

dx 1 T ax 1
J—: —logtan| —+— [-—tan—
(cosax)(1+cosax) a 4 2 2

(cosax)(1—cosax) T a

dx 1 T ax ax
I—— —logtan| —+— [-—cot—
4 2 a

—tan—+—tan’ —

_[ dx 1 ax 1 5 ax
(1+cosax)’ 2a 2 6a 2

J- dx 1 ot LCOEM
(1-cosax)’ 2a 2 6ba 2

cosax 1 ax 1 5 ax
Jiz X = —tan———tan” —
(1+cosax) 2a 2 6a 2
cosax 1 ax 1 5 ax
_"72 X = —cot— ——cot” —
(1—-cosax) 2a 2 6a 2
J cosxdx _X a dx
a+bcosx b bYa+bcosx
J dx
(cosx)(a+ bcosx)
1 x m) b dx
=—logtan| —+— —7'[7
a 2 4) a’a+bcosx
_[ dx
(a+bcosx)*
_ bsin x __a J- dx
b* —a*)a+bcosx) b*—a*? a+bcosx
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220.

221.

222,

223.

224.

225.

226.

227.

J- oS X
(a+bcosx)’

asin x a

(@ —bz)(a+bcosx)_a2 —-b*

_[Jl—cosax dx=— M
aN'1-cosax

J' dx
a+bcosx

22 S(ax

a

J«/l+cosaxdx =M 2\/Esm(axj
av'1+ cosax a 2

= +\/_logtanf

'[xll Ccos X

[use + if 4knt < x < (4k + 2)7, otherwise —;

k an integer]

dx X+T
A B m( )
'[\/1+cosx £ 4

[use + if (4k — 1) < x < (4k +1)7t, otherwise —;

k an integer]

[ sinmxsinnx)dx = sin(m—n)x _ sin(m+n)x
2(m—n) 2m+n)
(m*> #n’)
J(COS ) (cos mx)dy = ST X | sinGm +n)x
2(m—n) 2(m+n) ’
(m* #n*)

1
J(sin ax)(cos ax) dx = —sin> ax
2a

215
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Trigonometric Forms

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238.

cos(m—n)x B cos(m+n)x
2(m—n) 2(m+n)

_[(Sin mx)(cosnx)dx = —
(m*>#n*)

2 1 .
J(sinz ax)(cos ax)dx = ———sindax + >
32 8

a
m+1
J(sin ax)(cos™ ax)dx = _Los ax
(m+1)a
m sin™*! ax
J (sin™ ax)(cosax)dx =
(m+1)a
sinax 1 sec ax
_[ = de= =
cos” ax acosax a
sin” ax 1. 1 T ax
j dx = ——sinax+—logtan| —4+—
cosax a a 4 2
J cosax I _cscax
sin’ ax asinax a
1
_[ =—logtanax
(sin ax)(cos ax) a
dx 1 ax
jﬁ =—| secax +logtan—
(sinax)(cos” ax) a 2

_[. dx

(sinax)(cos” ax)

_ 1 + I dx
a(n—1cos" ax * (sinax)(cos" ax)
dx 1 1 T ax
_[.27 =-——cscax+—logtan| —+—
(sin” ax)(cos ax) a a 4 2
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239.

240.

241.

242,

243.

244.

245.

246.

247.

2
_[ =——cot2ax
(sin® ax)(coe ax) a
J sinax llog(l +cosax)
1% cos ax
J cosax log(l +sinax)
sin ax
-[ (sin ax)(l +cosax)
= i; —log tan 22
2a(l*xcosax) 2a 2

_[ dx
(cosax)(1 £sinax)

_ 1 1 L
=F— —logtan
2a(l1xsinax) 2a 4 2

I* = llog(sec axtl)
(cosax)(1£cosax) a

1
I& x = ——log(cscax £ 1)
(sinax)(1 £ sinax) a
_[ sinax
T TE— 2
(cosax)(1 +sinax)

1 1 ax
—— +—Ilogtan + —
2a(1 tsinax) 2a 4 2

_[ cosax »
(sinax)(1 £ cosax)

1 ax
= —log tan —
2a(l £cosax) 2a 2
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Trigonometric Forms

248.

249.

250.

251.

252,

253.

254.

255.

256.

257.

dx ax T
J‘.i logtan| —+—
sinax £ cosax a\f 8

dx 1 _T
J%=ftan ax +—
(sinax £ cosax)” 2a 4

1
R S P P
1+ cosax £ sinax a 2

dx 1 btan cx+a
J = lo

a’cos’cx—b*sincx  2abc T btan cx—a
cosax

J.\/1+bz sin” ax
1 . 2 .2
:—blog(bsmax+\/l+b sin ax)

a

dx

J‘ cosax

\/ Sln ax
j(cosax) 1+ b?sin® ax dx = S“;ﬂxll + b2 sin® ax

a

1
+—log(bsinax+ V1+b*sin’ ax)

2ab

J(cos ax)\1—b?sin’ ax dx
=X 1 b sin? ax +2—ll7$in" (bsinax)

2a a

— sm '(bsinax)

1 1
J(tan ax)dx =——logcosax = —logsecax
a a

1 1
J(cotax)dx =—logsinax = ——logcscax
a a
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258.

259.

260.

261.

262.

263.

1
_[(sec ax)dx = —log(sec ax + tanax)
a
1 T ax
=—logtan| —+—
a 4 2
1 1 ax
J(cscax)dx =—log(cscax — cotax) = —logtan—
a a 2
N 1
J(tan ax)dx = —tanax — x
a

1 1
J(tan3 ax)dx = — tan® ax +—logcos ax
2a a

3 1
J(tan" ax)dx = fan ax 1 nx+x
3a a
n-1
J(tan” ax)dx = ftan”_ax j(mn"’zax)dx
a(n—-1)

Forms with Trigonometric Functions
and Inverse Trigonometric Functions

264.

265.

266.

267.

1
_[(cotQ ax)dx =——cotax—x
a

J(cot3 ax)dx = —Lcot2 ax — llogsinax
2a a

1 1
'[(cot“ ax)dx = ——cot’ ax + —cotax + x
3a a

cot"" ax
a(n—1)
219
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Forms with Inverse Trigonometric Functions

268.

269.

270.

271.

272.

273.

274.

275.

2176.

Forms with Inverse
Trigonometric Functions

2.2

. . l—a’x
J(sm "ax)dx = xsin”'ax +
a
_ _ N1-a*x?
j(cos "ax)dx = xcos'ax - ————
a

I(ta.n"ax) dx=xtan™ ax — Zilog(l +a*x?)
a

J.(cot"ax)dx =xcot™ ax+ zilog(l +a’x?)

a

1 2
J(sec’1 ax)dx = xsec™ ax — flog(ax +a*x? - 1)

a

1 2
J(csc'1 ax)dx = xcsc™ ax + flog(ax +a*x? - 1)

a

Jx[sin" (ax)]dx

= ! [(Zazxz—1)sin"(ax)+axxll—a2x2]

4a*
jx[cos*‘(ax)]dx

= 41 [(Zazx2 —1cos™ (ax)— ax\1—a’x? ]

2

a

Mixed Algebraic and
Trigonometric Forms

. 1 . X
Jx(sm ax)dx = — sinax ——cosax
a a
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277.

278.

279.

280.

281.

282.

283.

284.

28s.

286.

. 2x . a
sz(smax)dxz—zsmax— ——cosax
a

2.2 3
jx3(sinax)dx = Msin ax —6x

1 X .
Jx(cos ax)dx = —-cosax +—sinax
a a

2xcosax a‘x*—=2

sz (cosax)dx = ——+————sinax
a a
2 3
s 3a°x* -6 ’xP —6x
Jx (cosax)dx = ———cosax +————sinax
a a’

2 .
_[x(sinz ax)dy = x”  xsin2ax  cos2ax
4 4a 8a®

_[xz (sin® ax)dx

o (x* 1), xcos2ax

= ——— [sin2ax - ——F—

4a 8a’ 4a”
Jx(sin3 ax)dx

xcos3ax sin3ax 3xcosax + 3sinax

12a 36a* 4a 4a*

_[)c(cos2 ax)dx = £+M cos 2ax
4 da 84>

sz (cos”® ax)dx

x [ x 1 ). xcos2ax
=—+| ———— [sin2ax + ———
6 4a 8a° 44°
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Mixed Algebraic and Trigonometric Forms

287. _[x(cos3 ax)dx

xsin3ax cos3ax 3xsinax 3cosax
= + + +

12a 36a’ 4a 4a’
288. Jsinaxd __ sinax a Icosaxdx
xm (m _ 1)xm—l m—1 xm—l
289, Jcosax dr=— cosax  a Ismax d
xm (m_l)xm—l m—1 xm—l
290. J x x =F XCOS.GX + ilog(l +sinax)
1xsinax a(ltsinax) d°

291. J.#dx = ftanﬂ+llogcosﬂ
1+ cosax a 2 & 2

292, [——ax= oot L iogsin ™
1—cosax a 2 a 2

i
293, [ dv=xtan
1+ cosx 2
294, [F"Sdv=-xcots
1—cosx 2

295, [——dx = [x(esc’ax)dx
sin® ax
__xcotax_’_ilo sin ax
- a a’ &3
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296. J - ): dx = jx(csc"ax)dx
sin" ax
_ X cosax
a@m—1)sin"" ax
3 1
a*(n—1)(n—2)sin" ax
n-2) ‘ x2 dx
n—-1) 7 sin"*ax
297. [ ——dr={ x(sec’ax) dx o
cos”ax
=
—ixtanax+i logcos ax 8
a a’ g w
Q
X X sin ax E
298. | dv=[ x(sec’ax) dv=—""""0 5
cos"ax a(n—1) cos" ax E
(o))
_ 1 Q
P—1) (1—2) cos"2ax ~
-2
2 x g
n—1 "7 cos" " ax

Logarithmic Forms
299. [ (logx) dx = xlogx—x

2 2

X X
X logx) dx =— logx——
300. [ x(logx) dx == logx—=
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Mixed Algebraic and Trigonometric Forms and Logarithmic Forms

Mixed Algebraic and Trigonometric

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

Forms and Logarithmic Forms

3

3
2loxdxzx—lo x—x—
[ ¥ (log) dx == Togx =

n+l n+l

x
x" (logax) dx = logax —
J (logax) n+l ST

| (logx)? dx = x(log x)* — 2xlog x +2x

1 n
[ O0B o 1 gy
X n+1

1 2 1 3
_[ & =log (10gx)+10gx+(0gx) +(0gx) +...
logx 2-2! 3.3!

J dx =log (logx)

x logx
J‘ dx _ 1
x (logx)" (n—1) (logx)"™"
ax+b
j [log(ax+b)] dx = log (ax+b) —x
| log@+0) 19 1ogx — b 100 (ax+b)
x’ b bx

J |:10gx+a:|dx
xX—a
=(x+a)loglx+a)—(x—a)log (x—a)
224



311.

312.

313.

314.

315.

316.

317.

| x"(logx) dx

n+l

+1

2 n+2
logX——c ol
n+1 X

where X = a+bx+cx®

_[ [log(x2 +a*)] dx

b xn+l

_n+1 X

= xlog (x* +a*) —2x+2a tan~ &
a

| log(x* - a*)1 dx

=xlog (x> —a’) —2x+a log al

| x log(x? £ a®)] dx

+a

X—a

=%(x2 ta*) log (* £ a*) —L1x?
Jl:log(x+m):|dx
=x log(x+m)— x> ta’
Jx[log (x+m)]dx

X

2

T4

fx'"[log (x+\/x2ia2 )]dx

m+l

+1

log (x+\/x2 iaz)

225

'_7+ 2
a Jlog(x+\/x2ia2)—xx_a

4

m+1J.\/7

dx

Mixed Algebraic and Trigonometric Forms and Logarithmic Forms



Exponential Forms

J_log(x+\/x2 +a2)

318. > dx
i
2 2
__10g(x+\/x +a ) _110 a+ /x2+a2
X a & X
10g(x+\/)c2 —-a’ )
319. J.—7 dx
2
10g(x+\/x2—a2) 1 x
= +—sec' =
X lal a

Exponential Forms
320. [etdv=e'

321. _[ etdx=—e"

3n.jwa=e

a
323. _[ xe“dr =" — (ax—1)
e
eLLV 1 el( a el(
324. dx=——— +
_[ m X m—l xmfl m—l _[ xmfl

ﬂ/\'l 1 ax
325. Jeax log x dx :ﬂ_f Je dx
a a X

X

e

326. | =x—log (1+¢*) =log

l+e" 1+e
226
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327.

328.

329.

330.

331.

332.

333.

334.

d 1
_[ al =£——log(a+be”")
a+be™ a ap

J dx - tan™' e'”“\/;
ae™ +be™™ m\/E b/

(@a>0,b>0)

a‘+a

J. (@ —a™) dx=
log a

ax 1 )
[ = dx=—log (b +ce”)
b+ce™ ac

ax ax

xe e
J > dx = 5
(1 +ax) a (1+ax)

Exponential Forms

e™lasin (bx) — bcos(bx)]
a’+ b*

J e [sin(bx)] dx =

J e™ [sin(bx)] [sin(cx)] dx

_e"[(b=¢)sin (b—c) x +a cos (h=c)x]
2[a® +(b—c)’]

_e"[(b+c)sin (b+c)x+acos(b+c)x]
2[a’ + (b +¢)*]
227




Hyperbolic Forms

ax

335. J e [cos (bx)] dx = [a cos (bx) + bsin(bx)]

a’ + b?
336. je“*‘[cos (bx)] [cos(cx)] dx

_ e [(b—c)sin (b—c) x + a cos (b—c)x]
2 [a* +(b-c)*]

N e“[(b+c)sin(b+c)x+acos®+c)x]
2 [@® +(b +c)*]

337 j ¢ [sin"bx] dx

ax

= ;[(a sinbx —nb cos bx)e™sin"" bx

a’+n*b?

+n(n=1)b* [ e [sin"bx] dx]

Hyperbolic Forms

138 j ¢ [cos"bx] dx

1
=———|(a cos bx + nb sin bx) e“ cos"" bx
a’ +n’b? [

+n(n—-1)b> j ™ [cos"*bx] dx]

339. j xe™ (sinbx)] dx

ax

- febz (asin bx — b cos bx)
a +

—W [(@® —b*)sin bx —2ab cos bx]
a +
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340.

341.

342.

343.

344.

345.

346.

347.

348.

349.

350.

351.

352.

j xe™ (cos bx)] dx

ax

= afj-bz (a cos bx + b sin bx)
e [(@® = b?) cos bx +2ab sin bx]
(a*+b*)’

_[ (sinh x) dx= coshx
j (cosh x) dx=sinh x
J. (tanh x) dx = log coshx
J (cothx) dx=log sinhx

_[ (sechx) dx=tan™" (sinhx)

J cschx dx = log tanh (;)

Hyperbolic Forms

| x(sinhx) dx = x coshx—sinh.x

j x" (sinhx) dx = x" coshx— nJ. x""(cosh x)dx
J. x(coshx) dx = x sinhx—cosh x

| %" (coshx) dx =x" sinhx—n [ x""'(sinh x) dx
| (sechx) (tanh x)dx = —sechx

_[ (cschx) (coth x)dx = —cschx

229



Hyperbolic Forms

353.

354.

355.

356.

357.

358.

359.

_[ (sinh® x) dx =

sinh 2x x

4 2

j (tanh? x) dx = x— tanhx

j (tanh” x) dx ="

n#1)

anh’
n-—1

j (sech® x) dx = tanhx

J (cosh® x) dx =

J (coth® x) dx =x

j (coth” x) dx =—

n#1)

sinh 2x

—cothx

coth"'x

n—1

230

-1
+I (tanh"*x) dx,

X

+J coth"?x dx,



Table of Definite Integrals

360.

361.

362.

363.

364.

365.

366.

367.

368.

m

X m—

j]w d—xz%, [m>1]

- dx
——— =mcsepm, [p<1
'[“ (I+x)x? p.lp<l]

dex

— &~ _qcotpm, [p<1]
O (1-x)x” pr.lp

o x"dx e
/. =——=B@l-p=T)I(-p),
1+x sin pm

[0<p<l1]
o mfld
[T =T 0<m<n]
0 1+x" . m
nsimn—

j”LG
° (1+x)x

| adx T o 050:0.ifa =0 —
Y+ x 2 2
ifa<0

j e dr =L (@>0)
0 a

—ax —bx

| €T e=log2, (@ b>0)
0 X a
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369.

370.

371.

372.

373.

374.

37s.

376.

377.

Tn+1)

, m>-1,a>0)

an +1
_[0 x"e “dx = or
n! e
— > (a>0, n positive integer)
a

_[ % exp (—ax”)dx = F(kk),
0 pa

+1
(n>—1,p>0,a>0,k=n )
p

o _ay _ 1 _L l
'[U e dx—%\/; = 1"(2], a>0)

2a
c e
Jo xe " dx =
j T xeVdx = ﬂ
0 4
_ 1-3-5...2n-1)
Zn ax®
J e s 125G fn
2n+1 —ax _ n
e dv=—""5 @>0)
m —ax _ m! _ ,-a S i
Jox e “dx m+1[1 e %r!]
- (7r2——> —2a
e dx = ¢ \/E , (@=20)
0 2



378.

379.

380.

381.

382.

383.

384.

38s.

386.

387.

LI 1
e J;sz"\/f
U \/7 \/7

I: e " (cos mx) dx =

L @>0)
a +m”

J.we’“(sinmx)dxz zm =, (@>0)
0 a +m

j: xe ™ [sin (bx)] dx = %, @>0)

2 2
j: xe“[cos (bx)] dx = -2 (@>0)

@ +b*)?’

n[(a+lb)n+1 (a n+1

" x"e ™ [sin (bx)] dx
[, e tsin o ST

(>=-1,a>0)

J : x"e""[cos (bx)] dx

n+1 n+l
- e @ =1.a>0
a +

o sin x _
JU — " dx=cot'a, (@>0)

X
- Jr b?

e bx dx = — — |, @h=#0
JU cos bx dx 2aexp[ 4a2J (a )
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388.

389.

390.

391.

392.

393.

394.

395.

396.

J‘: e " Isin (¢ sin 0)] dt = [T'(b)] sin (bo),

(b>0,—” <¢<”)
2 2

J(m e " cos (¢ sin 0)] dt = [[(b)] cos (bod),

0

b>0,—E <q><E
2 2

j: "' cos t dt = [T(b)] cos(b;),
0<b<1)

j """ (sin 1) dt = [T(b)] sin(an,
0 2
0<b<1)

[, (toga) dr=(-1"-n!

[ (log i]zdx:\/E

[ (log 1) dx=n!
0 X

[, xlog(t ~xydr=-2

4
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397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

J.Ol xlog(l +x)dx=

1
4

(—1)"n!

1
x" (log x)"dx = )
Jlo " Qlogydx =2

m>-1,n=0,1,2,...

If n#0,1,2,...,replace n! by I'(n+1).

'[ = sinx T
X= —"—, 0 < p< 1
o x? 2I'(p) sin (pw/2)
,[ = COSX , T 0<p<l
S~ 2T () cos (pn/2)’ P

w 1=
J cospxdx:%p

2
0 X

J-w sin px cos gx

0 X

:{O,q > p>0;§,p>q>0;z,l7=61>0}

J“ cos(mx) T gl
o xr4+q° 2lal

= 2 [T w2 _1lm
_[0 cos(x )dx—J'O sin(x )dx—a )

- 1
[ sinax" dv=—-T(Un)sin 2-, n>1
0 na 2n

o 1
J cos ax" dx = ——T'(1/n) cos 1, n>1
0 na n n
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407.

408.

409.

410.

411.

412.

413.

414.

415.

CoS x T

J“Slnxdx_'[o COSX 1 = 2

0 \/_

« sin’ x §1nx
@ |, —dv=1 ® [ = 3log 3

J- /2 dx cos ' a

= , (a<1
0 1+4a cosx /1_a2 ( )
N & T a>b>0)
O a+bcosx a’ — b2
.[2" h @<
0 1+a cosx 1- &
- - b
JU COS ax — cos xdleogé
X a

_[ /2 dx L

0 @’sinx+b* cos’x 2ab
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/2
JO (cos" x)dx

or

1:3:57..a-Dm
2-4.6-8...(n) 2’

(n an even integer, n # 0)
/2
416. _[0 (sin" x)dx = or

2-4-6-8...(n—1)
1:3-5-7...(n)

(n an odd integer, n # 1)
or

1,(n+1
2

AL A s)
n

N—_——

a

Table of Definite Integrals

\S}
—
—
N |
+
—

a7 [ SinmYdx T oS 0:0.im=0; — . ifm<0
0 X 2 2
418. _[: cosxdx:w
X
419. Jwtanxdx:E

0 X 2
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Table of Definite Integrals

420. J; sin ax -sin bx dx = Ion cos ax-cos bx dx =0,
(a # b; a, b integers)
a21. [ fsin @) [cos (@x)] dx

= jo [sin (ax)] [cos (ax)] dx = 0

422. jo" [sin (ax)] [cos (bx)] dx

2 . . . .
=— abz,1fa—blsodd,0r01fa—b1seven
a -

= sin x cos mxdx

a. | 0,
X
itm<—lorm>1L = itm=+1; % ifm* <1
4 2
= §in ax sin bx Ta
a4 | — o A= @sh)

425, J: sin® mx dx = I: cos’ mx dx = g

.2
a6, [ PE fpx)dx:”—;
X

J'llogxd __Tc2

U P vl
2

4z [Ny T
0]1—x 6
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2
a9, | tog(1+x) , _T°
0 X 12

a30. | log(1=%) 4 - —%

0 X
2

431. [ ogmllog (1 + x)] dx=2-2log2 - ’;—2

2

432. jol (log x)[log (1 — x)] dx=2— %

433 | logx o T
01— 42 8
1 1+ x dx n?
434. jo log[l - x} ~=
1 log x dx
435, | jf_ ——1 0g2
X

a36. [ ol 2 || ax =D
0 X (m+1)n+

ifm+1>0,n+1>0

"_x')d 1
431. [ @loade o f P+
log x q+1

Pp+1>0,9g+1>0)

438. lezﬁ
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439.

440.

441.

442,

443.

444.

44s.

446.

447.

448.

x x 1 2
J log[e hi dezn
0 1 4

e’ —
/2 . d 1[/21 1'51 )
_[0 (log sin x) x—JD 0g Cos xdx——g og

" de=[""1 dx="Tlog 2
JO (log sec x) x—jo 0g csc x x—aog

2

j i x(log sin x) dx =—Tc—log 2

0 2
/2

JO (sin x) (log sin x) dx = log2 —1
/2

jo (log tan x)dx = 0

jon log (@t b cos x)dx

l 2 2
=1tlog[a+a_b], (@a=b)

2

j: log (a® — 2ab cos x + b*) dx

2n loga, a=2b>0
2n log b, b=2a>0

= sin ax b amn
_[ ——dx = —tanh—
0 sinh bx 2b 2b
« COS ax b4 on
J x = —sech—
0 cosh bx 2b 2b
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Iw dx L4

449, =
0 cosh ax 2a
450 _[ < xdx n’
o Jo ginhax 442

451. j: ¢ (cosh bx)dx = O <lbl<a)

2 327
a -b

< ax g b
452. [ e (sinh bo)dx=——. (0 <bl<a)

453, J-w sinh ax 5 n an 1
[P | 2b b 2a

454, Jw sinh axd 1 T an

X cot
0 ™1 2a  2b b

ass. [ dx

O J1-k? sin’x

2 2 2
=21+ 1 K2+ 13 kot 135 K+,
2 2 2-4 2-4-5

ifk*> <1

|a

456. 2
'[0 1—k? sin’x dx

2 2 4 2 6
LI B B PR S I R
T2 2 2.4) 3 \246) 5
ifk> <1

457. [ e logxdx=—y = —05772157...
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458. j: e 10gxdx=—§(y+2 log 2)
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Appendix

TABLE A.1 Areas under
the Standard Normal Curve

z 000 001 0.02 0.03 004 005 006 007 008 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3883 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 04192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.441

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 04713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 04772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 04918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990

Reprinted from Tallarida, R. J. and Murray, R. B., Manual of Pharmacologic Calculations
with Computer Programs, 2nd ed., 1987. With permission of Springer-Verlag, New York.
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TABLE A.3 tDistribution

I
I
I
1
i
i
0

-t t
90% 95% 99%
Deg. Freedom,f (P=0.1)  (P=005) (P=0.01)
1 6.314 12.706 63.657
2 2,920 4303 9.925
3 2353 3.182 5.841
4 2132 2776 4.604
5 2015 2571 4.032
6 1.943 2447 3707
7 1.895 2365 3.499
8 1.860 2.306 3.355
9 1.833 2262 3.250
10 1812 2228 3.169
11 1.796 2.201 3.106
12 1.782 2.179 3.055
13 1771 2.160 3.012
14 1761 2.145 2977
15 1.753 2.131 2,947
16 1.746 2.120 2.921
17 1.740 2.110 2.898
18 1734 2.101 2878
19 1.729 2.093 2.861
20 1.725 2.86 2.845
21 1.721 2.080 2.831
2 1717 2.074 2819
23 1714 2.069 2.807
24 1711 2.064 2797
25 1.708 2.060 2787
26 1.706 2,056 2779
27 1.703 2,052 2771
28 1.701 2,048 2763
29 1.699 2.045 2756
inf. 1.645 1.960 2576

Reprinted from Tallarida, R. J. and Murray, R. B., Manual of
Pharmacologic Calculations with Computer Programs, 2nd ed.,
1987. With permission of Springer-Verlag, New York.
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TABLE A4 y2-Distribution

v 0.05 0.025 0.01 0.005
1 3.841 5.024 6.635 7.879
2 5.991 7.378 9.210 10.597
3 7.815 9.348 11.345 12.838
4 9.488 11.143 13.277 14.860
5 11.070 12.832 15.086 16.750
6 12.592 14.449 16.812 18.548
7 14.067 16.013 18.475 20.278
8 15.507 17.535 20.090 21.955
9 16.919 19.023 21.666 23.589

10 18.307 20.483 23.209 25.188

11 19.675 21.920 24.725 26.757

12 21.026 23.337 26.217 28.300

13 22.362 24.736 27.688 29.819

14 23.685 26.119 29.141 31.319

15 24.996 27.488 30.578 32.801

16 26.296 28.845 32.000 34.267

17 27.587 30.191 33.409 35.718

18 28.869 31.526 34.805 37.156

19 30.144 32.852 36.191 38.582

20 31.410 34.170 37.566 39.997

21 32.671 35.479 38.932 41.401

22 33.924 36.781 40.289 42.796

23 35.172 38.076 41.638 44.181

24 36.415 39.364 42.980 45.558

25 37.652 40.646 44.314 46.928

26 38.885 41.923 45.642 48.290

27 40.113 43.194 46.963 49.645

28 41.337 44.461 48.278 50.993

29 42.557 45.722 49.588 52.336

30 43.773 46.979 50.892 53.672

Reprinted from Freund, J. E. and Williams, F. J., Elementary Busi-
ness Statistics: The Modern Approach, 2nd ed., 1972. With permis-
sion of Prentice Hall, Englewood Cliffs, NJ.
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TABLE A.5 Variance Ratio

F(95%)
n

n, 1 2 3 4 5 6 3 12 24 o
1 1614 1995 2157 2246 2302 2340 2389 2439 2490 2543
2 1851 1900 19.16 1925 1930 1933 1937 1941 1945 19.30
3 1013 955 928 912 901 894 884 874 864 853
4 771 694 659 639 626 616 604 591 577 563
5 661 579 541 519 505 495 482 468 453 436
6 599 514 476 453 439 428 415 400 384 367
7 559 474 435 412 397 387 373 357 341 323
8 532 446 407 384 369 3358 344 328 312 293
9 512 426 38 363 348 3637 323 307 290 271

10 496 410 371 348 333 322 307 291 274 254

11 484 398 359 336 320 3.09 295 279 261 240
12 475 388 349 326 311 300 285 269 250 230
13 467 380 341 318  3.02 292 277 260 242 221
14 460 374 334 311 29 285 270 253 235 213
15 454 368 329 3.06 290 279 264 248 229 207

16 449 363 324 301 285 274 259 242 224 201
17 445 359 320 296 281 270 255 238 219 196
18 441 355 316 293 277 266 251 234 215 192
19 438 352 313 290 274 263 248 231 211 1.88
20 435 349 310 287 271 260 245 238 208 1.84

21 432 347 3.07 284 268 257 242 225 205 1.81
22 430 344 305 282 266 255 240 223 203 1.78
23 428 342 303 280 264 253 238 220 200 176
24 426 340 301 278 262 251 236 218 198 1.73
25 424 338 299 276 260 249 234 216 196 171

26 422 337 298 274 259 247 232 215 195  1.69
27 421 335 296 273 257 246 230 213 193 1.67
28 420 334 295 271 256 244 229 212 191 1.65
29 418 333 293 270 254 243 228 210 190 1.64
30 417 332 292 269 253 242 227 209 189 162

40 408 323 284 261 245 234 218 200 179 1.51
60 400 315 276 252 237 225 210 192 170 139
120 392 307 268 245 229 217 202 183 1.61 1.25
oo 384 299 260 237 221 210 194 175 1.52 1.00
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TABLE A.5 (continued)

Variance Ratio

F(99%)
n

n, 1 2 3 4 5 6 8 12 24 00
1 4052 4999 5403 5625 5764 5859 5982 6.106 6234 6.366
2 9850 99.00 99.17 9925 99.30 99.33 99.37 9942 99.46 99.50
3 3412 30.82 2946 2871 2824 2791 2749 27.05 26.60 26.12
4 2120 18.00 16.69 1598 1552 1521 1480 1437 1393 1346
5 1626 1327 12.06 11.39 1097 10.67 1029 989 947  9.02
6 1374 1092 971 915 875 847 810 772 731 688
7 1225 955 145 785 746 719 684 647 607 565
8 1126 865 759 701 6.63 637 603 567 528 486
9 1056 802 699 642 606 580 547 511 473 431
10 1004 756 655 599 564 539 506 471 433 391
11 9.65 720 622 567 532 507 474 440 402 3.60
12933 693 595 541 506 482 450 416 378 336
13907 670 574 520 486 462 430 396 359 3.6
14 886 651 556 503 469 446 414 380 343 3.00
15 8.68 636 542 439 456 432 400 3.67 329 287
16 853 623 529 477 444 420 389 355 318 275
17 840 611 518 467 434 410 379 345 308 265
18 828 601 509 458 425 401 371 337 300 257
19 818 593 501 450 417 394 3,63 330 292 249
20 810 585 494 443 410 387 356 323 286 242
21 802 578 487 437 404 381 351 317 280 236
22 794 572 482 431 399 376 345 312 275 231
23 788 566 476 426 394 371 341 307 270 226
24 782 561 472 422 390 367 336 303 266 221
25 777 557 468 418 386 363 332 299 262 217
26 772 553 464 414 382 359 329 296 258 213
27 768 549 460 411 378 356 326 293 255 210
28 764 545 457 407 375 353 323 290 252 206
29 760 542 454 404 173 350 320 287 249 203
30 756 539 451 402 370 347 317 284 247 201
40 731 518 431 383 351 329 299 266 229 1.80
60 708 498 413 365 334 312 282 250 212 160
120 685 479 395 348 317 296 266 234 195 138
oo 6.64 460 378 332 302 280 251 218 179 1.00

Reprinted from Fisher, R. A. and Yates, F., Statistical Tables for Biological Agricultural
and Medical Research, The Longman Group Ltd., London. With permission.
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TABLE A.6 Monthly Payments per $1,000
of Loan Value

Annual Payment ($) Annual Payment ($)
Rate (%) Monthly Rate (%) Monthly
3-Year Loan
4.00 29.52 9.500 32.03
425 29.64 9.750 32.15
4.50 29.75 10.00 3227
4.75 29.86 10.25 3238
5.00 29.97 10.50 32.50
5.25 30.08 10.75 32.62
5.50 30.20 11.00 32.74
5.75 30.31 11.25 32.86
6.00 30.42 11.50 32.98
6.25 30.54 11.75 33.10
6.50 30.65 12.00 33.21
6.75 30.76 12.25 3333
7.00 30.88 12.50 33.45
7.25 30.99 12.75 33.57
7.50 31.11 13.00 33.69
7.75 31.22 13.25 33.81
8.00 31.34 13.50 33.94
8.25 3145 13.75 34.06
8.50 31.57 14.00 34.18
8.75 31.68 14.25 34.30
9.00 31.80 14.50 34.42
9.25 31.92 14.75 34.54

15.00 34.67

5-Year Loan

4.00 18.42 9.500 21.00
425 18.53 9.750 21.12
4.50 18.64 10.00 21.25
4.75 18.76 10.25 21.37
5.00 18.87 10.50 21.49
5.25 18.99 10.75 21.62
5.50 19.10 11.00 21.74
5.75 19.22 11.25 21.87
6.00 19.33 11.50 21.99
6.25 19.45 11.75 22.12
6.50 19.57 12.00 2224
6.75 19.68 12.25 2237
7.00 19.80 12.50 22.50
7.25 19.92 12.75 22.63
7.50 20.04 13.00 2275
7.75 20.16 13.25 22.88
8.00 20.28 13.50 23.01
8.25 20.40 13.75 23.14
8.50 20.52 14.00 23.27
8.75 20.64 14.25 23.40
9.00 20.76 14.50 23.53
9.25 20.88 14.75 23.66

15.00 23.79
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TABLE A.6 (continued) Monthly
Payments per $1,000 of Loan Value

Annual Payment ($) Annual Payment ($)
Rate (%) Monthly Rate (%) Monthly
10-Year Loan
4.00 10.12 9.500 12.94
425 10.24 9.750 13.08
4.50 10.36 10.00 13.22
4.75 10.48 10.25 13.35
5.00 10.61 10.50 13.49
5.25 10.73 10.75 13.63
5.50 10.85 11.00 13.78
5.75 10.98 11.25 13.92
6.00 11.10 11.50 14.06
6.25 11.23 11.75 14.20
6.50 11.35 12.00 14.35
6.75 11.48 12.25 14.49
7.00 11.61 12.50 14.64
7.25 11.74 12.75 14.78
7.50 11.87 13.00 14.93
7.75 12.00 13.25 15.08
8.00 12.13 13.50 15.23
8.25 12.27 13.75 15.38
8.50 12.40 14.00 15.53
8.75 12.53 14.25 15.68
9.00 12.67 14.50 15.83
9.25 12.80 14.75 15.98

15.00 16.13

15-Year Loan

4.00 7.39 9.500 10.44
425 7.52 9.750 10.59
4.50 7.65 10.00 10.75
4.75 7.78 10.25 10.90
5.00 791 10.50 11.05
5.25 8.04 10.75 11.21
5.50 8.17 11.00 11.37
5.75 8.30 11.25 11.52
6.00 8.44 11.50 11.68
6.25 8.57 11.75 11.84
6.50 8.71 12.00 12.00
6.75 8.85 12.25 12.16
7.00 8.99 12.75 12.49
7.50 9.27 13.00 12.65
7.75 9.41 13.25 12.82
8.00 9.56 13.50 12.98
8.25 9.70 13.75 13.15
8.50 9.85 14.00 14.32
8.75 9.99 14.25 13.49
9.00 10.14 14.50 13.66
9.25 10.29 14.75 13.83
15.00 14.00

continued

251



TABLE A.6 (continued) Monthly
Payments per $1,000 of Loan Value

Annual Payment ($) Annual Payment ($)
Rate (%) Monthly Rate (%) Monthly
20-Year Loan
4.00 6.06 9.50 9.32
4.25 6.19 9.75 9.49
4.50 6.33 10.00 9.65
4.75 6.46 10.25 9.82
5.00 6.60 10.50 9.98
5.25 6.74 10.75 10.15
5.50 6.88 11.00 10.32
5.75 7.02 11.25 10.49
6.00 7.16 11.50 10.66
6.25 7.31 1175 10.84
6.50 7.46 12.00 11.01
6.75 7.60 12.25 11.19
7.00 7.75 12.50 11.36
7.25 7.90 12.75 11.54
7.50 8.06 13.00 11.72
7.75 8.21 13.50 12.07
8.25 8.52 13.75 12.25
8.50 8.68 14.00 12.44
8.75 8.84 14.25 12.62
9.00 9.00 14.50 12.80
9.25 9.16 14.75 12.98

15.00 13.17

25-Year Loan

4.00 5.28 9.500 8.74
4.25 542 9.750 891
4.50 5.56 10.00 9.09
4.75 5.70 10.25 9.26
5.00 5.85 10.50 9.44
5.25 5.99 10.75 9.62
5.50 6.14 11.00 9.80
5.75 6.29 11.00 9.80
5.75 6.29 11.25 9.98
6.00 6.44 11.50 10.16
6.25 6.60 11.75 10.35
6.50 6.75 12.00 10.53
6.75 6.91 12.25 10.72
7.00 7.07 12.50 10.90
7.25 7.23 12.75 11.09
7.50 7.39 13.00 11.28
7.75 7.55 13.25 11.47
8.00 7.72 13.50 11.66
8.25 7.88 13.75 11.85
8.50 8.05 14.00 12.04
8.75 8.22 14.25 12.23
9.00 8.39 14.50 12.42
9.25 8.56 14.75 12.61

15.00 12.81
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TABLE A.6 (continued) Monthly
Payments per $1,000 of Loan Value

Annual Payment ($) Annual Payment ($)
Rate (%) Monthly Rate (%) Monthly
30-Year Loan
4.00 4.77 9.500 8.41
4.25 4.92 9.750 8.59
4.50 5.07 10.00 8.78
4.75 5.22 10.25 8.96
5.00 5.37 10.50 9.15
5.25 5.52 10.75 9.34
5.50 5.68 11.00 9.52
5.75 5.84 11.25 9.71
6.00 6.00 11.50 9.90
6.25 6.16 11.75 10.09
6.75 6.49 12.25 10.48
7.00 6.65 12.50 10.67
7.25 6.82 12.75 10.87
7.50 6.99 13.00 11.06
7.75 7.16 13.25 11.26
8.00 7.34 13.50 11.45
8.25 7.51 13.75 11.65
8.50 7.69 14.00 11.85
8.75 7.87 14.25 12.05
9.00 8.05 14.50 12.25
9.25 8.23 14.75 12.44

15.00 12.64

The number of thousands borrowed is multiplied by the listed
monthly payment for the indicated annual interest rate. The product
is the total monthly payment. Due to rounding, this may be off by a
few cents from the actual.
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TABLE A.7 The Growth of $1 at Various Annual
Interest Rates and Specified Number of Years

Years 3% 4% 5% 6% 7%
1 1.0300 1.0400 1.0500 1.0600 1.0700
2 1.0609 1.0816 1.1025 1.1236 1.1449
3 1.0927 1.1249 1.1576 1.1910 1.2250
4 1.1255 1.1699 1.2155 1.2625 1.3108
5 1.1593 1.2167 1.2763 1.3382 1.4026
6 1.1941 1.2653 1.3401 1.4185 1.5007
7 1.2299 1.3159 1.4071 1.5036 1.6058
8 1.2668 1.3686 1.4775 1.5938 1.7182
9 1.3048 1.4233 1.5513 1.6895 1.8385
10 1.3439 1.4802 1.6289 1.7908 1.9672
11 1.3842 1.5395 1.7103 1.8983 2.1049
12 1.4258 1.6010 1.7959 2.0122 2.2522
13 1.4685 1.6651 1.8856 2.1329 2.4098
14 1.5126 1.7317 1.9799 2.2609 2.5785
15 1.5580 1.8009 2.0789 2.3966 2.7590
20 1.8061 2.1911 2.6533 3.2071 3.8697
25 2.0938 2.6658 3.3864 42919 5.4274
30 2.4273 3.2434 4.3219 5.7435 7.6123
35 2.8139 3.9461 5.5160 7.861 10.677
40 3.2620 4.8010 7.0400 10.286 14.974
45 3.7816 5.8412 8.9850 13.765 21.002
50 4.3839 7.1067 11.467 18.420 29.457
Years 8% 9% 10% 11% 12%
1 1.0800 1.0900 1.1000 1.1100 1.1200
2 1.1664 1.1881 1.2100 1.2321 1.2544
3 1.2597 1.2950 1.3310 1.3676 1.4049
4 1.3605 1.4116 1.4641 1.5181 1.5735
5 1.4693 1.5386 1.6105 1.6851 1.7623
6 1.5869 1.6771 1.7716 1.8704 1.9738
7 1.7138 1.8280 1.9487 2.0762 22107
8 1.8509 1.9926 2.1436 2.3045 2.4760
9 1.9990 2.1719 2.3579 2.5580 2.7731
10 2.1589 23674 2.5937 2.8394 3.1058
11 2.3316 2.5804 2.8531 3.1518 3.4785
12 2.5182 2.8127 3.1384 3.4985 3.8960
13 2.7196 3.0658 3.4523 3.8833 4.3635
14 2.9372 3.3417 3.7975 4.3104 4.8871
15 3.1722 3.6425 4.1772 4.7846 5.4736
20 4.6610 5.6044 6.7275 8.0623 9.6463
25 6.8485 8.6231 10.835 13.585 17.000
30 10.063 13.268 17.449 22.892 29.960
35 14.785 20.414 28.102 38.575 52.800
40 21.725 31.409 45.259 65.001 93.051
45 31.920 48.327 72.890 109.53 163.99
50 46.902 74.358 117.39 184.56 289.00
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TABLE A.8 Doubling Time for Various Annual
Interest Rates

Rate (%)  Years

1 69.7
35.0
3 234
4 17.7
5 14.2
6 11.9
7 10.2
8 9.01
9 8.04
10 727
11 6.64
12 6.12
13 5.67
14 5.29
15 4.96
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TABLE A.9 Monthly Savings to Produce $1,000
in the Specified Number of Years at the Given
Annual Interest Rate (Compounded Monthly)

Years 3% 4% 5% 6% 7%
1 82.19 81.82 81.44 81.07 80.69
2 40.48 40.09 39.70 39.32 38.94
3 26.58 26.19 25.80 25.42 25.04
4 19.63 19.25 18.86 18.49 18.11
5 15.47 15.08 14.70 14.33 13.97
6 12.69 12.31 11.94 11.57 11.22
7 10.71 10.34 9.97 9.61 9.26
8 9.23 8.85 8.49 8.14 7.80
9 8.08 7.71 7.35 7.01 6.67

10 7.16 6.79 6.44 6.10 578
15 441 4.06 3.74 3.44 3.16
20 3.05 2.73 243 2.16 1.92
25 224 1.94 1.68 1.44 1.23
30 1.72 1.44 1.20 0.99 0.82
35 1.35 1.09 0.88 0.71 0.56
40 1.08 0.85 0.66 0.50 0.38

Years 8% 9% 10% 11% 12%
1 80.32 79.95 79.58 79.21 78.85
2 38.56 38.18 37.81 37.44 37.07
3 24.67 24.30 23.93 23.57 23.21
4 17.75 17.39 17.03 16.68 16.33
5 13.61 13.26 12.91 12.58 12.24
6 10.87 10.53 10.19 9.87 9.55
7 8.92 8.59 8.27 7.96 7.65
8 7.47 7.15 6.84 6.54 6.25
9 6.35 6.04 5.74 5.46 5.18

10 547 5.17 4.88 4.61 435
15 2.89 2.64 241 2.20 2.00
20 1.70 1.50 1.32 1.16 1.01
25 1.05 0.89 0.75 0.63 0.53

30 0.67 0.55 0.44 0.36 0.29

35 0.44 0.34 0.26 0.20 0.16

40 0.29 0.21 0.16 0.12 0.08
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TABLE A.10 Monthly Savings to Produce $1,000
in Specified Number of Years at the Given Annual
Interest Rate (Compounded Annually)

Years 3% 4% 5% 6% 7%
1 83.33 83.33 83.33 83.33 83.33
2 41.05 40.85 40.65 4045 40.26
3 26.96 26.70 26.43 26.18 25.92
4 19.92 19.62 19.33 19.05 18.77
5 15.70 15.39 15.08 14.78 14.49
6 12.88 12.56 12.25 11.95 11.65
7 10.88 10.55 10.223 9.93 9.63
8 9.37 9.04 8.73 8.42 8.12
9 8.20 7.87 7.56 7.25 6.96

10 7.27 6.94 6.62 6.32 6.03
15 4.48 4.16 3.86 3.58 3.32
20 3.10 2.80 2.52 2.26 2.03
25 229 2.00 1.75 1.52 1.32
30 1.75 1.49 1.25 1.05 0.88
35 1.38 1.13 0.92 0.75 0.60
40 1.10 0.88 0.69 0.54 0.42

Years 8% 9% 10% 11% 12%
1 83.33 83.33 83.33 83.33 83.33
2 40.06 39.87 39.68 39.49 39.31
3 25.67 25.42 25.18 24.93 24.70
4 18.49 18.22 17.96 17.69 17.44
5 14.20 13.92 13.65 13.38 13.12
6 11.36 11.08 10.80 10.53 10.27
7 9.34 9.06 8.78 8.52 8.26
8 7.83 7.56 7.29 7.03 6.78
9 6.67 6.40 6.14 5.88 5.64

10 5.75 5.48 5.23 4.98 4.75
15 3.07 2.84 2.62 242 223
20 1.82 1.63 1.45 1.30 1.16
25 1.14 0.98 0.88 0.73 0.63
30 0.74 0.61 0.51 0.42 0.35
35 0.48 0.39 0.31 0.24 0.19
40 0.32 0.25 0.19 0.14 0.11
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TABLE A.11 Percentage of Funds That May Be
Withdrawn Each Year at the Beginning of the Year
at Different Annual Interest Rates

Years 4% 5% 6% 7% 8%
1 100.000 100.000 100.000 100.000 100.000
2 50.980 51.220 51.456 51.691 51.923
3 34.649 34.972 35.293 35.612 35.929
4 26.489 26.858 27.226 27.591 27.956
5 18.343 18.764 19.185 19.607 20.029
6 16.020 16.459 16.900 17.341 17.784
7 14.282 14.735 15.192 15.651 16.112
8 12.932 13.399 13.870 14.345 14.822
9 11.855 12.334 12.818 13.306 13.799
10 8.6482 9.1755 9.7135 10.261 10.818
15 7.0752 7.6422 8.2250 8.8218 9.4308
20 6.1550 6.7574 7.3799 8.0197 8.6740
25 5.5606 6.1954 6.8537 7.5314 8.2248
30 5.1517 5.8164 6.5070 7.2181 7.9447
35 4.8850 5.5503 6.2700 7.0102 7.7648
40 4.6406 5.3583 6.1038 6.8691 7.6470
45 4.6406 5.3583 6.1038 6.8691 7.6470
50 4.4760 5.2168 5.9853 6.7719 7.5688
Years 9% 10% 11% 12% 13%
1 100.000 100.000 100.000 100.000 100.000
52.153 52.381 52.607 52.830 53.052
3 36.244 36.556 36.866 37.174 37.480
4 28.318 28.679 229.038 29.396 29.752
5 23.586 23.982 24.376 24.769 25.161
6 20.451 20.873 21.295 21.717 22.137
7 18.228 18.673 19.118 19.564 20.010
8 16.576 17.040 17.506 17.973 18.441
9 15.303 15.786 16.270 16.757 17.245
10 14.295 14.795 15.297 15.802 16.309
15 11.382 11.952 12.528 13.109 13.694
20 10.050 10.678 11.313 11.953 12.598
25 9.3400 10.015 10.697 11.384 12.073
30 8.9299 9.6436 10.363 11.084 11.806
35 8.6822 9.4263 10.174 10.921 11.666
40 8.5284 9.2963 10.065 10.831 11.592
45 8.4313 9.2174 10.001 10.780 11.552
50 8.3694 9.1690 9.9639 10.751 11.530
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TABLE A.12 Growth of Annual
Deposits of $1,000 at the End of the
Year at Specified Annual Interest Rates

Years 6% 8% 10%
1 1000 1000 1000
2 2060 2080 2100
3 3183.60 32464 3310
4 4374.62 4506.11 4641
5 5637.09 5866.60 6105.11
6 6975.32 7335.93 7715.61
7 8393.84 8922.80 9487.17
8 9897.47 10636.63 11435.89
9 11491.32 12487.56 13579.48
10 13180.79 14486.56 15937.42
11 14971.64 16645.49 18531.17
12 16869.94 18977.13 21384.28
13 18882.14 21495.30 2452271
14 21015.07 24214.92 27974.98
15 23275.97 27152.11 31772.48
20 36785.59 45761.96 57275.00
25 54864.51 73105.94 98347.06
30 79058.19 113283.21 164494.02
35 111434.78 172316.8 271024.38
40 154761.97 259056.52 442592.56
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TABLE A.13 Growth of Annual
Deposits of $1,000 at the Beginning of the
Year at Specified Annual Interest Rates

Years 6% 8% 10%

1 1060.00 1080.00 1100.00

2 2183.60 2246.40 2310.00

3 3374.62 3506.11 3641.00
4 4637.09 4866.60 5105.10
5 5975.32 6335.93 6715.61

6 7393.84 7922.80 8487.17
7 8897.47 9636.63 10435.89
8 10491.32 11487.56 12579.48
9 12180.79 13486.56 14937.42
10 13971.64 15645.49 17531.17
11 15869.94 17977.13 20384.28
12 17882.14 20495.30 2352271
13 20015.07 23214.92 26974.98
14 22275.97 26152.11 30772.48
15 24672.53 29324.28 34949.73
20 38992.73 49422.92 63002.50
25 58156.38 78954.41 108181.77
30 83801.68 122345.87 180943.42
35 118120.87 186102.14 298126.81
40 164047.69 279781.03 486851.81
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TABLE A.14 Monthly Amount That Must Be Saved
for the Years Indicated (Down) in Order to Collect
$1,000 per Month Thereafter (Across) at 4% Annual
Interest Compounded Monthly

Years Years Collecting
Saving 5 10 15 20 25
5 819.00 1489.80 2039.10 2489.10 2857.50
10 368.75 670.77 918.11 1120.69 1286.61
15 220.65 401.36 549.36 670.57 769.85
20 148.04 269.29 368.60 449.93 516.54
25 105.61 192.11 262.95 320.97 368.49
30 78.24 142.31 194.79 237.71 272.97
35 59.43 108.10 147.96 180.60 207.34
40 45.94 83.56 114.38 139.62 160.29

TABLE A.15 Monthly Amount That Must Be Saved
for the Years Indicated (Down) in Order to Collect
$1,000 per Month Thereafter (Across) at 6% Annual
Interest Compounded Monthly

Years Years Collecting
Saving 5 10 15 20 25
5 714.37 1291.00 1698.50 2000.60 2224.55
10 315.63 549.63 723.11 851.73 947.08
15 177.86 309.72 407.48 479.96 533.69
20 111.95 194.95 256.48 302.10 335.92
25 74.64 129.98 171.00 201.42 223.97
30 51.49 89.67 117.97 138.95 154.51
35 36.31 63.22 83.18 97.97 108.94
40 2597 45.23 59.50 70.09 77.94
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TABLE A.16 Monthly Amount That Must Be Saved
for the Years Indicated (Down) in Order to Collect
$1,000 per Month Thereafter (Across) at 8% Annual
Interest Compounded Monthly

Years Years Collecting
Saving 5 10 15 20 25
5 671.21 1121.73 1424.13 1627.10 1763.34
10 269.58 450.52 571.98 653.49 708.21
15 142.52 238.19 302.40 345.49 374.42
20 83.73 139.93 177.65 202.97 219.97
25 51.86 86.67 110.03 125.71 136.24
30 33.09 55.30 70.21 80.22 86.94
35 21.50 35.93 45.62 52.12 56.48
40 14.13 23.61 29.97 34.25 37.11

TABLE A.17 Monthly Amount That Must Be Saved
for the Years Indicated (Down) in Order to Collect
$1,000 per Month Thereafter (Across) at 10% Annual
Interest Compounded Monthly

Years Years Collecting
Saving 5 10 15 20 25
5 607.79 977.20 1201.72 1338.18 1421.12
10 229.76 369.41 454.28 505.87 537.22
15 113.56 182.57 224.52 250.02 265.51
20 61.98 99.65 122.55 136.46 144.92
25 35.47 57.03 70.13 78.10 82.94
30 20.82 33.48 41.17 45.84 48.68
35 12.40 19.93 24.51 27.29 28.99
40 7.44 11.97 14.71 6.39 17.40
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Index

A
Abscissa, 33
Acceleration, 90
Adjoint matrix, 21-22
Algebra, 1-9
Algebraic equations, 8-9
Analytic geometry, 32-56
Angle of intersection, 69
Annuities, 168—170
Arc length, 78-79
Area
in rectangular coordinates,
78
in polar coordinates, 79
of surface, 80
Associative laws, 1
Asymptotes of hyperbola,
43-44
Auxiliary equation, 113-114

B

Balance calculation, 158
Base of logarithms, 2-3
Bayes’ rule, 118-120
Beatty theorem, 64
Bessel functions, 103-105
Binomial distribution, 120
Binomial theorem, 3—4
Bernoulli numbers, 57-62
Bonds, 173-175

Boyle’s Law, 75
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C
Cartesian coordinates,
see Rectangular
coordinates
Cauchy’s form of remainder, 72
Centroid, 83-85
table of, 85
Charles’ Law, 75
Chi square, 129-131
Circle, 11, 37,43
Coefficient of determination,
132
Coefficient of variation, 118
Cofactors, 16-17
Collatz conjecture, 67
Combinations, 7
Commutative laws, 1
Complex numbers, 5-7
Components of vector,
see Vector
Compound interest, 153-154
Concavity, 70-71
Cone, 13
Confidence interval, 124
Conformable matrices, 19
Contingency table, 129-130
Convergence, interval of, 58
Correlation coefficient, 133
Cosecant of angle, 27
Cosh, see Series of functions
Cosine of angle, 27



Cosines, law of, 25
Cotangent of angle, 27
Cramer’s rule, 23

Critical value, 70

Csch, see Series of functions
Ctnh, see Series of functions
Cubic equation, 8-9

Curl, 89-90

Curves and equations, 50-56
Cylinder, 12-13

Cylindrical coordinates, 80—81

D

Definite integrals, table of,
231-242

Degree of differential equation,
110

Degrees of freedom, 125,
127-128

Degrees and radians, 27

Degree two equation, general,
47

Deposit amount, 160

Determinants, 15-18, 22-23

Derivatives, 68

Derivatives, table of, 182—-185

Differential calculus, 68-76

Differential equations, 110-115

Directrix, 37

Distance between two points,
33

Distance from point to line, 37

Distributive law, 1

Divergence, 88—89

Division by zero, 1

Dollar cost average, 179

Double integration, 82—-83

Drug kinetics, 111-112
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E

Eccentricity, 41

Ellipse, 39, 41-42

Empirical distributions, 123

Error function, 63—-64

Estimation, 123

Euler numbers, 57-62

Even permutation, 15-16

Exact differential equation,
110-111

Expected value, 120

Exponential function, 51, 56

Exponents, 2

F
Factorials, 3, 93
Factors and expansions, 4
F-distribution, 132, 138-139
Fermat
little theorem, 64
last theorem, 64
near misses (cubic form),
64-65
Focus, 37-43
Fourier series, 100-103
Functions of two variables,
75-76
Fundamental theorem of
integral calculus,
77-78

G

Gamma function, 93, 139
Gas constant, 75

Gas laws, 75

Geometric figures, 9-14
Geometric mean, 116



Geostationary satellite orbit,
90-91

Goldbach conjecture, 66

Gradient, 88

H

Half-life, 56

Half wave rectifier, 103

Hermite polynomials, 108

Homogeneous differential
equation, 110

Homogeneous functions of x,y,
110

Horizontal line equation, 35

Hyperola, 43—45

Hyperbolic functions, 92-93

Hypothesis testing, 124-128

|
Identity laws, 1
Imaginary part of complex
number, 5-7
Inclination, angle of, 34
Indeterminant forms, 72
In-Out formula, 170-172
Integral calculus, 77-85
Integral, definite, 77-78
Integral, indefinite, 77
Integral tables, 187-242
Interest, 146147
Interest rate, effective, 154
Intersection, angle of, 69
Inverse laws, 1
Inverse matrix, 21-22
Inverse trigonometric
functions, 31
Inversions of permutations, 7

L

Laguerre polynomials, 107-108

Laplace transforms, 94-97

Lease squares regression,
131-134

Legendre polynomials,105-107

L’Hopital’s rule, 72-73

Linear differential equation,
111-112

Linear system of equations,
23-24

Lines, equations, 34-37

Loan balance, 149

Loan payment, 147,148

Logarithms, 2-3

Logistic equation, 56

Lump sum payment, 152

M

Major axis of ellipse, 41-43

Market average (stock), 177

Matrix, 18

Matrix operations, 18—19

Maxima of functions, 70

Mean, 116117, 120121, 123,
128, 138-141

Mean value of function, 79

Median, 116, 123

Midpoint of line segment, 33

Minimum of function, 70

Minor axis of ellipse, 41

Minor of matrix, 16

Mode, 116, 123

Moving average, 180—181

Multiple regression, 136-138

Mutual funds, 177
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N

Newton’s method for roots of
equations, 73

Nonlinear regression, 134-136

Nonsingular matrix, 21

Normal distribution, 121-122

Normal form of straight line,
35-36

Normal line, 69

Null hypothesis, 124, 126-127

Numbers, real, 1, 5

Numerical methods, 73-74

(0]

Odd permutation, 7, 15-16
Order of differential equation,
110-113

Ordinate, 33
Origin, 32, 47
Orthogonality, 108-109

P
Pairing in #-test, 127
Parabola, 37-39
Parallel lines, 34
Parallelogram, 10
Partial derivatives, 76
Partition (Beatty theorem), 65
Payment

Accelerated, 150

Loan, 147-150

lump sum, 152

monthly, 158

schedules, 148-149
Permutations, 7, 15-16
Perpendicular lines, 34
Poisson distribution, 122-123
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Polar coordinates, 47-50, 79

Polar form of complex number,
6-7

Polygon, 12

Population, standard deviation
of, 117

Population, variance of, 117

Power, 142-145

Powers of complex numbers, 6

Present value, 155,167

Probability, 118-120

Probability curve, 121

Probability distributions,
139-141

Prime number, 66, 67

Prism, 13

Progressions, 4-5

Pythagorean theorem, 9

Q
Quadrants, 26

Quadratic equation, 8

R
Radians, 27
Radius of curvature, 69
Rectangle, 10
Rectangular coordinates
(Cartesian
coordinates),
32-33,78-79
Rectifier, half wave, 103
Reduced cubic equation, 8-9
Regression, 131-132, 134-137
Regular saving, 156
beginning of year, 156
end of year, 157



Rodrigues formula, 107
Runge-Kutta method, 114,115

S
Sample, 117-118
Sample size
sample mean, 143
single proportion, 142
two means, 144
two proportions, 143
Sample standard deviation, 118,
126-128
Satellite orbit, 90-91
Sawtooth wave, 102
Scalar multiplication
of vectors, 87
of matrices, 18
Scalar product of vectors, 87
Secant, 27
Sech, see Series of functions
Second derivative, 68, 70-71
Second derivative test, 70
Sector of circle, 11
Segment of circle, 11
Separable differential equation,
110
Series of functions, 58—64
Sine, 25, 27
Sines, law of, 25
Sinh, see Series of functions
Skewness, 123
Slope, 33-34, 68—-69
Sphere, 14
Spherical coordinates, 80—82
Spherical harmonics, 105
Standard deviation, 117-118,
121,126-128
Standard error, 124, 133-134

Standard error of estimate, 133
Standard normal curve, 121-122
Statistics, 116-145
Stirling’s approximation, 3
Stock

options, 176

yield, 172
Stocks, 172
Sum of matrices, 18-19
Sum of progression(s), 4-5
Sum of vectors, 87
Surface area by double

integration, 83

Surface area of revolution, 80
Symmetric matrix, 20

T

Tangent of angle, 25, 27

Tangent line, 68

Tangents, law of, 25

Tanh, see Series of functions

Taylor’s formula, 71-72

t-distribution, 125-128

Translation of axes, 45-46

Transpose of matrix, 20

Trapezoid, 11

Trapezoidal rule, 74

Trigonometric functions of
angles, 26-27

Trigonometric identities, 28-30

Twin primes, 67

v

Variance, 117, 137, 139-141
analysis of, 131, 138-139

Vector, 86

Vector product, 87

Velocity, 90
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Vertical line equation, 34 Y

Volume by double integration, 83  Yield

Volume of revolution, 79-80 Stock, 172, 176
tax-free, 175

\%%
Withdrawals Z
Amounts, 151, 153 Z-transform, 97-100
Periodic, 161-163, 165-167 properties of, 98—99
Work, 80 table of, 99-100
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