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CHAPTER ONE

On Beauty and Power

No mathematician can be a complete mathematician unless
he is also something of a poet.
K. Weierstrass

Wisdom is rooted in watching with affection the way people
grow.
Confucius

This is a book about how to grow mathematicians. Probably you
have no intention of trying to grow mathematicians. Even so, I
hope you may find something of interest here. I myself have no
intention of growing plants. 1 never do any gardening if I can
possibly get out of it. But I like very much to look at gardens other
people have grown. And I am still more interested if I can meet a
man who will explain to me (what very few gardeners secm able
to do) just how a plant grows; how, when it is a seed under the
earth, it knows which way is up for its stem to grow, and which
way is down for the roots; how a flower manages to face towards
the light; what chemical elements the plant needs from the soil,
and just how it manages to rearrange them into its own living
tissue. The interest of these things is quite independent of whether
one actually intends to go out and do some hoeing.

What I am trying to do here is to write not from the viewpoint
of the practical grower, but for the man who wants to understand
what growth is. I am not writing for the professional teacher of
mathematics (though teachers may be able to make practical
applications of the ideas given here) but for the person who is
interested in getting inside the mind of a mathematician.

It is very difficult to communicate the things that are really
worth communicating. Suppose, for instance, that you have spent
some years in a certain place, and that these years are particularly
significant for you. They may have been years of early childhood,
or school days, or a period of adult life when new experiences,
pleasant or unpleasant, made life unusually interesting. If you
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revisit this place, you see it in a special way. Your companions,
seeing it for the first time, see the physical scene, a pleasant village,
a drab town street, whatever it may be. They do not see the essen-
tial thing that makes you want to visit the place; to make them
see it, you need to be something of a poet; you have to speak of
things, but so as to convey what you feel about those things.

But such communication is not impossible. Generally speaking,
we overestimate the differences between people. I am sure that if
one could go and actually be somebody else for a day, the change
would be much less than one anticipated. The feelings would be
the same, but hitched on to different objects. Most human mis-
understandings are due to the fact that people talk about objects,
and forget the varying significance the same object can have for
different people.

Generally speaking, teaching conveys thoughts about objects
rather than living processes of thought. Suppose someone comes
to me with some kind of puzzle; it may be a question in a child’s
arithmetic book, or a serious problem of scientific research. Per-
haps I succeed in solving the puzzle. Then it is quite easy to
explain the solution. Suppose I do so; I have shown the questioner
how to deal with that particular problem. But if another problem,
of a different kind, arises, I shall be consulted again. I have not
made my pupil independent of me. What would be really satisfac-
tory would be if I could convey, not simply the knowledge of how
to solve a particular puzzle, but the living attitude of mind that
would enable my pupil to attack puzzles successfully without
help from anyone.

Naturally, there must be certain limitations to what one can
expect. Intelligence is one of the factors in problem solving, and
it may well be inborn. But there are many other factors — emotions
of fear or confidence, habits of self-reliance, initiative, persistence
- which depend on education. I do not believe our ancestors at
the time of the cave men differed at all from us in inborn qualities
of intellect. All historical changes from that time to this, all
differences in institutions between one country and another, have
essentially been changes in education.!

Pelican Books are themselves a symptom of a profound his-

1. Kluckhohn in Mirror for Man gives an interesting example of an
Amcrfcan boy brought up in China. In physical appearance the boy was
American ; in all mental and emotional qualities, Chinese.
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torical change. That there should be in so many different coun-
tries of the world a large body of thoughtful men and women
reading, studying, forming a kind of invisible, international
university — a century ago, or in any previous age one would have
looked for such a thing in vain.

At the present time, when our knowledge of material things is
so great, and our understanding of ourselves so small, a true
appreciation of the enormous unused potentialities of education
is essential. The industrial revolution implies and requires a
psychological revolution. Psychologically, we still belong to the
era when people refused to believe that locomotives would run.

The present book was worked out in a country where a great
educational change was taking place. In 1948, the University
College of the Gold Coast was founded. The students were keen
and of first-rate ability. So far as inborn intelligence went, they
were capable of becoming, within ten or twenty years, research
workers in mathematics, university lecturers, professors. But of
course there was no mathematical tradition in the country. That
had to be created.

It was therefore necessary to obtain a sort of essence of mathe-
matics; to examine the life of a budding mathematician in one of
the older mathematical centres; to study all the influences that
helped him to grow; the atmosphere of school and college,
countless hints, allusions, suggestions from older mathematicians
and from books. From all of this to try to form some clear idea of
what we were trying to do, what the qualities of a mathematician
were, how they were to be stimulated.

In the first five chapters of this book, 1 try to give a specification
of what a mathematician is, and how he grows. These chapters
also contain various pieces of mathematics to illustrate what
interests a mathematician. The remainder of the book is an expo-
sition of various branches of mathematics; these have been selected
for their strangeness, their novelty, their stimulating power. More-
over, they are elementary. A confused recollection of School Certi-
ficate mathematics should be sufficient to see a reader through
them.
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Figure 1 - THE STRUCTURE OF TH1S BOOK

Chapters 1-5 use mathematics to illustrate the qualities of a
mathematician. They are not shown in the diagram.

Where one chapter is shown as resting on anotber, the
upper chapter makes use of the ideas explained in the lower
one. Thus, itis necessary to read Chapter 10 before Chapter | 1.

An arrow going from one chapter to another indicates some
connexion between the two chapters. For instance, one section
of Chapter 13 (the section ‘Finite Geometries®) cannot be
understood without reference to Chapter 11, But all the rest of
Chupter 13 could be read as the first chapter of the book.

1t will be seen that bungalows rather than skyscrapers pre-
dominate,

Calculus is referred to once or twice, but is nowhere used as
part of the argument. This fact is interesting, as showing that
some parts of recent mathematics (i.e. since 1800) are not a
development of the older work, but have gone off in quite a new
direction.

Nor will you find much in the way of long calculations here.
Nearly every mathematical discovery depends upon a fairly
simple idea. Textbooks often conceal this fact. They contain
massive calculations, and convey the impression that mathema-
ticians are men who sit at desks and use up vast quantities of
stationery. This impression is quite wrong. Many mathematicians
can work quite happily in a bath, in bed, while waiting at a rail-
way station, or while cycling (preferably not in traffic). The calcu-
lations are made before or after. The discovery itself grows from a
central idea. It is these central ideas I hope to convey. Naturally,
some details must be given, if the book is to be mathematics at all,
and not merely a sentimental rhapsody on the mathematical life.

But before you part with your money, I want to warn you that
there will be one or two pages on which you may see some lengthy
algebraic expression. One of the things I want to discuss is kow to
look at an algebraic expression. The longer the expression, the
more important it is to know how to look at it. For instance, in
Chapter 9, on determinants, you will see some long, sprawling
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chains of symbols. These are only introduced so that we can
exclaim, ‘Look at this mess! How are we to discover, in this ap-
parent chaos, some simple idea that we can think about? Where
lies the shape, the form, the pattern, without which nothing can
be regarded as mathematics?’

A point that should be borne in mind is that, generally speaking,
higher mathematics is simpler than elementary mathematics. To
explore a thicket on foot is a troublesome business; from an
aeroplane the task is easier.

One thing most emphatically this book does not claim to do;
that is, to give a balanced account of the development of mathe-
matics since 1800, nor even to give a rounded account of what
mathematicians are doing to-day. This book presents samples of
mathematics. It does not claim to do more. Indeed, it is doubtful
if more could be done in a book of this size.

THE EXTENT OF MATHEMATICS

Very few people realize the enormous bulk of contemporary
mathematics. Probably it would be easier to learn all the lan-
guages of the world than to master all mathematics at present
known. The languages could, I imagine, be learnt in a lifetime;
mathematics certainly could not. Nor is the subject static. Every
year new discoveries are published. In 1951 merely to print brief
summaries of a year's mathematical publications required nearly
900 large pages of print. In January alone the summaries had to
deal with 451 new books and articles. The publications here men-
tioned dealt with new topics; they were not restatements of
existing knowledge, or very few of them were. To keep pace with
the growth of mathematics, one would have to read about fifteen
papers a day, most of them packed with technical details and of
considerable length. No one dreams of attempting this task.

The new discoveries that mathcmaticians are making are very
varied in type, so varied indecd that it has been proposed (in
despair) to define mathematics as ‘what mathematicians do’.
Only such a broad definition, it was felt, would cover all the
things that might become embodied in mathematics; for mathe-
maticians to-day attack many problems not regarded as mathe-
matical in the past, and what they will do in the future there is no
saying.

11
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A little more precise would be the definition ‘Mathematics is
the classification of all possible problems, and the means appro-
priate to their solution’. This definition is somewhat too wide. It
would include such things as the newspaper’s ‘Send your love
problems to Aunt Minnie’, which we do not really wish to in-
clude.

For the purposes of this book we may say, ‘ Mathematics is the
classification and study of all possible patterns’. Pattern is here
used in a way that not everybody may agree with. It is to be
understood in a very wide sense, to cover almost any kind of
regularity that can be recognized by the mind. Life, and certainly
intellectual life, is only possible because there are certain regulari-
ties in the world.? A bird recognizes the black and yellow bands
of a wasp; man recognizes that the growth of a plant follows the
sowing of seed. In each case, a mind is aware of pattern.

Pattern is the only relatively stable thing in a changing world.
To-day is never exactly like yesterday. We never see a face twice
from exactly the same angle. Recognition is possible not because
experience ever repeats itself, but because in all the flux of life
certain patterns remain identifiable. Such an enduring pattern is
implied when we speak of ‘my bicycle’ or ‘the river Thames”’,
notwithstanding the facts that the bicycle is rapidly rusting away
and the river perpetually emptying itself into the sea.

Any theory of mathematics must account both for the power of
mathematics, its numerous applications to natural science, and
the beauty of mathematics, the fascination it has for the mind.
Our definition seems to do both. All science depends on regulari-
ties in nature; the classification of types of regularity, of patterns,
should then be of practical value. And the mind should find
pleasure in such a study. In nature, necessity and desire are
always linked. If response to pattern is characteristic alike of
animal and human life, we should expect to find pleasure asso-
ciated with the response to pattern as it is with hunger or sex.

It is interesting to note that pure mathematicians, moved only
by their sense of mathematical form, have often arrived at ideas
later of the utmost importance to scientists. The Greeks studied
the ellipse more than a millennium before Kepler used their ideas
to predict planetary motions. The mathematical theory needed by
relativity was in existence thirty to fifty years before Einstein

1. Compare Poincaré, Science and Method.
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found a physical application for it. Many other examples could
be given.

On the other hand, many very beautiful theories, to which any
pure mathematician would concede a place in mathematics for
their intrinsic interest, arose first of all in connexion with physics.

NATURE’S FAVOURITE PATTERN?

Another striking fact is that in nature we sometimes find the same
pattern again and again in different contexts, as if the supply of
suitable patterns were extremely limited. The pattern which
mathematicians denote by A2V occurs in at least a dozen different
branches of science. It arises in connexion with gravitation, light,
sound, heat, magnetism, electrostatics, electric currents, electro-
magnetic radiation, waves at sea, the flight of aeroplanes, vibra-
tions of elastic bodies and the mechanics of the atom -~ not to
mention a pure mathematical theory of first-class importance, the
theory of functions f(x + iy), where iis V' - 1.

Practical men often make the mistake of treating all these
applications as quite separate and distinct. This is a great waste of
effort. We have not twelve theories, but one theory with twelve
applications. The same pattern appears throughout. Physically
the applications are distinct, mathematically they are identical.

The idea of the same pattern arising in different circumstances
is a simple one. One only has to invent a Greek name for this idea
to have one of the commonest terms of modern mathematics —
isomorphic (isos, like; morphe, shape — having the same shapc).
Nothing delights a mathematician more than to discover that two
things, previously regarded as entirely distinct, are mathematically
identical. ‘Mathematics’, said Poincaré, ‘is the art of giving the
same name to different things.’

One might ask, ‘ Why does this one pattern, A?V, occur again and
again?’ Here we tremble on the brink of mathematical mysticism.
There can be no final answer. For suppose we show that this
pattern has certain properties which make it particularly suitable;
we then have to ask, ‘But why does Nature prefer those proper-
ties?’ — in endless mazes lost. Nevertheless a certain answer can be
given as to why A?V so frequently occurs.!

1. The explanation is along the following lines. In empty space every
point is as good as every other point, and every direction as good as every

13



Prelude to Mathematics

The impossibility of any final answer to the question, ‘Why is
the universe like it is?” does not therefore mean that the enquiry is
entirely useless. We may succeed in discovering that all scientific
laws so far discovered have certain properties in common. A
mathematician, in studying what patterns have these properties,
has a reasonable belief that his work will be useful to future
generations — not a certainty, of course; nothing is certain. He .
may also hope to satisfy his own desire to achieve a deep insight
into the workings of the universe.

THE MATHEMATICIAN AS CONSULTANT

Technical men and engineers do not, as a rule, have the vision of
mathematics as a way of classifying all problems. They tend to
learn those parts of mathematics which have been useful for their
profession in the past. In the face of a new problem they are
accordingly helpless. It is then that the mathematician gets
called in. (This division of labour between engineers and mathe-
maticians is probably justified; life is too short for the simulta-
neous study of technical practice and abstract pattern.) The
encounter between the mathematician and the technician is
usually amusing. The practical man, by daily contact with his
machinery, is so soaked in familiarity with it that he cannot
realize what it feels like to see the machine for the first time. He
pours out a flood of details which, to the consulting mathemati-
cian, mean precisely nothing. After some time, the mathematician
convinces the technical man that mathematicians are really
ignorant, and that the simplest things have to be explained, as to
a child or to Socrates. Once the mathematician understands what
the machine does, or is required to do, he can usually translate
the problem into mathematical terms. Then he can tell the
practical men one of three things, (i) that the problem is a well-
known one, already solved, (ii) that it is a new problem which
perhaps he can do something about, (iii) that it is an old problem
which mathematicians have tried to solve without success, and
other direction. Laws holding in empty spacc may therefore be expected
not to single out any particular point or direction. This considerably
restricts the choice of possible laws. A?V = 0 expresses in symbols the law
that the value of V at any point equals the average value of ¥ on a sphere

with centre at this point. This law treats all points and all directions alike,
and is the simplest law that does so.
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that several centuries may elapse before any advance is made
with it; the factory must deal with the problem empirically.
Situation (iii) occurs with distressing frequency. But situations (i)
and (ii) do also occur, and it is then that the mathematician, by
his interest in and classification of patterns, can be of service to
trades and professions about which, in one sense, he knows
nothing.

A mathematician who is interested in consultative work there-
fore needs not merely to study problems which have occurred, he
must be prepared for those that may occur. To a certain extent,
one can recognize that practical problems form a type. For
example, very often a practical problem takes the form of a
differential equation.! Some differential equations we know how
to solve, others we do not. A mathematician may therefore seek
to enlarge his armoury by studying those differential equations
which have so far defied solution. And this will lead him to ask
all sorts of fundamental questions, such as, ‘ What is the difference
between the equations that have been solved and those that have
not? What makes an equation easy or difficult to solve?’

But practical problems do not always conform to type. Some-
times problems arise which are quite unlike those of normal
routine. The clue to their solution may be found quite by chance;
perhaps they resemble some puzzle solved in an idle moment.
When this happens, the puzzle may prove to be the foundation of
a new and dignified mathematical theory. This doctrine, like all
doctrines, is capable of abuse. A man may waste his life on foot-
ling little puzzles, and defend this on the ground that these might
be the beginnings of new branches of mathematics. So they
might: the matter depends on one’s judgement of what is likely
to prove important, and there is no rule by which to settle the
question. And any mathematician will agree that there are sub-
jects which have not yet found any technical application, but
which one feels to be major parts of mathematics. They are part
of the battle, they are not escapism. Some time in the future like
the ellipse they will find their Kepler, like tensor analysis their
Einstein. But in any case there they are all recady, massive
machines to solve a certain class of problem, if the necessity
arises.

1. See M.D., Chapter 12, final section. The abbreviation M.D. will be
used for references to Mathematician’s Delight.
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THE MATHEMATICIAN AS ARTIST

As I write this, I imagine a pure mathematician reading it with
increasing distress; that is, supposing he gets as far as this. ‘You
are treating mathematics,” he will be saying, ‘as something useful.
But mathematics is not a means to something else; it is an end
in itself. Not the usefulness of mathematics is important but the
beauty. Technical mathematics is the dullest part of mathematics.
Look at the people working on the theory of numbers, which has
no application at all; would you prefer them to be working at
bookkeeping?’

This view ~ which is sincerely held by many eminent and some
great mathematicians — may be contrasted with its opposite, the
utilitarian, bureaucratic view of mathematics. According to this
somewhat Puritanical theory, mathematicians should be ashamed
of their interest in beauty and elegance; they should only work at
mathematics when some official summons them to solve an
immediately useful problem.

Both views are incomplete. Either of them, pursued to a logical
conclusion, would be fatal to mathematical and even to technical
progress.

Let us examine the ‘mathematics for mathematics’ sake’
theory first and consider (if I may take a particular example) its
application to the Gold Coast. The Gold Coast is a country of
lively, intelligent, and cheerful people; let nothing here said
suggest that it is a miserable place. But it is a country with certain
acute material needs. In many places water supply is uncertain,
sanitation lacking, disease widespread, food inadequate. Some
children grow up permanently hungry. How then are we to
defend the expense of the mathematics department in the new
university? On the grounds of the beauty of mathematics? To
defend mathematics in such circumstances purely on the grounds
of its beauty is the height of heartlessness. Mathematics has
cultural value; but culture does not consist in stimulating oneself
with novel patterns in indifference to one’s surroundings. Ob-
viously the power of mathematics, mathematics as a means to
engineering and medical science, is of first-rate importance in any
developing country; the beauty without the power is futile.

But there is still a word to be said for the artist. Power without
beauty is liable to be impotent. An activity engaged in purely for
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its consequences, without any pleasure in the activity itself, is
likely to be poorly executed. An engineer may begin to study
mathematics because it is useful for his profession, but if his con-
cern stops there, if he does not begin to feel the fascination of the
subject itself, he will not do much good with mathematics.

The utilitarian view of mathematics is realistic in one way; it
recognizes the fact that a mathematician is a human being,
dependent on the efforts of other human beings for his food and
clothing and shelter and fuel, and owing some return for these.
This is the aspect of the matter most easily appreciated by non-
mathematicians, by administrators and by taxpayers. Considera-
tions of utility may show that a country needs mathematicians;
but yet give no clue as to how it is to get them. It might be very
desirable for the Sahara to be covered by a forest of oak trees, to
give shade to travellers, but that does not cause trees to grow
there. Mathematicians, like trees, are living organisms and will
only grow in conditions where they can grow.

It might be objected that men are not trees; that if a man
realizes something ought to be done, he can go and do it. This
is true within certain limits. There can be social conditions
favourable to mathematical studies; if a country urgently needs
mathematicians, and if everyone knows this, mathematics may
well flourish. But this still does not answer the question of how
it comes to flourish. An external motive, good or bad, is not
enough. Greed for money, desire for fame, love of humanity are
equally incapable of making a man a composer of great music. It
has been said that most young men would like to be able to sit
down at the piano and improvise sonatas before admiring crowds.
But few do it; to desire the end does not provide the means; to
make music you must be interested in music, as well as (or
instead of) in being admired. And to make mathematics you must
be interested in mathematics. The fascination of pattern and the
logical classification of pattern must have taken hold of you. It
need not be the only emotion in your mind; you may pursue
other aims, respond to other duties; but if it is not there, you will
contribute nothing to mathematics.

To this extent, the artist is more realistic than the bureaucrat.
The artist does at least understand how people become mathema-
ticians. Both the pure artist and the pure bureaucrat are wrong,
or at least incomplete. If the teaching of mathematics had to be
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based on the theories of either one of them, that of the artist
would do less harm. An artist may be an anarchist, a bohemian, or
a tramp, but at least he is alive, and without life there is no growth.
If such a man can teach children to love a subject for itself, there
is always the hope that at a later age these children will turn their
gifts to useful ends. But if they are left in the hands of the
extreme utilitarians, they will have no gifts to turn.



CHAPTER TWO

What are the Qualities of a Mathematician?

I do not fancy this acquiescence in second-hand hearsay
knowledge; for, though we may be learned by the help of
another’s knowledge, we can never be wise but by our own
wisdom.

Montaigne, Of Pedantry

Mental venturesomeness is characteristic of all mathematicians. A
mathematician does not want to be told something; he wants to
find it out for himself. An adult mathematician, of course, if he
hears that some great discovery has been made will want to know
what it is, he will not want to waste time re-discovering it. But I
am thinking of mathematicians at an early age, where this mental
aggressiveness is very marked. For example, if you are teaching
geometry to a class of boys nine or ten years old, and you tell
them that no one has ever trisected an angle by means of ruler and
compasses alone, you will find that one or two boys will stay
behind afterwards and attempt to find a solution. The fact that
in two thousand years no one has solved this problem does not
prevent them feeling that they might get it out during the dinner
hour. This is not exactly a humble attitude, but neither does it
necessarily indicate conceit. It is simply the readiness to respond
to any challenge. In fact, of course, the trisection of the angle by
the means specified has been proved to be impossible; it is in the
same category as trying to express V'2 as a rational fraction p /g.
Again, a good pupil will always be running ahead of the
course. If you show him how to solve a quadratic equation by
completing the square, he will want to know whether it is possible
to solve a cubic equation by completing the cube. The rest of the
class do not ask such a question. Having to solve quadratics is
bad enough for them; they do not wish to add to their burdens.
The desire to explore thus marks out the mathematician. This
is one of the forces making for the growth of mathematics. The
mathematician enjoys what he already knows; he is eager for new
knowledge. Fractional indices, in school algebra, seem to illus-
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trate this point. I can well imagine anyone, after reading an
elementary account of fractional and negative indices, wondering
whether such things are really justified at all. There are many
logical difficulties to be overcome. The discoverer of fractional
indices, I feel, must have enjoyed working with ordinary indices
and been so anxious to extend this subject that he was willing to
take the logical risks. A new discovery is nearly always a matter of
faith in the first instance; later, of course, when one has seen that
it does work, one has to find a logical justification that will satisfy
the most cautious critics.

Interest in pattern has already been mentioned. Pattern appears
already in the first steps of arithmetic; in the fact, say, that four
stones can be arranged to form a square, while five cannot.
Mathematical, like musical, ability is apparent at a very early age;
four years old, or even earlier. A young child once said to me,
‘I like the word September. It goes sEptEmbEr’. I had never
myself noticed this pattern .*..*..*. in the vowels and conso-
nants of ‘September’. It is of course perfectly symmetrical. Such
a child should enjoy arithmetic.

A very elementary example of pattern is contained in the
multiplication tables. Children usually like the 2 x and 5 x
tables, because the final digits are easy to remember — always even
in the 2 X, and still better, always 0 or 5 in the 5 x. But even the
7 x table has its regularities. If one examines the final digits of
7,14, 21, 28, 35,42, 49, 56, 63, 70 they are

7418529630

with the differences -3 -3 +7; -3 -3 +7; -3 -3 -3, in
which quite a definite rhythm is apparent.! The final digits of the
7 x table read backwards are of course those of the 3 x table.
Even in the lowest forms at school, the habit of observing
mathematical regularities can grow. Much of the early work of
Gauss springs from his habit of making calculations and observ-
ing the results. Hermite, a great French mathematician, also

1. A very similar pattern occurs in the sharps and flats of key signatures.

The signature for seven sharps is &

which gives the sequence of steps, down 3, up 4, down 3, down 3, up 4,
down 3.
20
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stressed the importance of observation in leading to mathematical
discoveries.! Of course observation alone is not sufficient to make
a great mathematician.

Just as a pupil who notices arithmetical regularities will find
this helpful in doing arithmetic, so the observation of regularities
in algebra helps one to avoid or detect slips.

For example, the condition for the quadratic equation
ax? 4+ 2bx + ¢ =0 to have equal roots is b*—ac =0. (The
reader may be more familiar with this in the form b% —4ac = 0,
which holds for ax? + bx + ¢ = 0.) One can find a similar condi-
tion in connexion with a cubic equation. A cubic equation has
three roots; we enquire in what circumstances two of these three
roots are equal. For the equation ax® -+ 3bx% + 3cx + d = 0 the
condition is (be —ad)? — 4(ac — b*)(bd — ¢*) = 0. If you like, you can
multiply out completely and write the condition as

a?d® — 6abed + 4b°d + 4ac® —3b%*c* = 0.

If you work with such expressions you can hardly help noticing
certain things.

(i) The total number of letters in each term of the expression
is the same. For instance, in b® —ac, each term contains two
letters multiplied together, i.e. every term is of the second degree.
In the longer condition for the cubic to have equal roots, every
term contains four letters multiplied together. b%d is of course
short for bbbd. Every term is of the fourth degree.

(ii) It is nct so obvious, but there is another kind of balance in
these expressions, a balance between letters which occur early in
the alphabet and those which occur late. For instance, in the
condition for the cubic abed occurs. The term a*d?, or aadd, also
occurs. In the term aadd, the second letter a occurs earlier in the
alphabet than b, the second letter of abcd. But justice is done. If
we look at the third letters, aadd contains d while abcd contains
the earlier letter ¢. The balance is exact; b is immediately after q,
¢ is immediately before d. The same balance holds throughout.
This may be checked in the following way. Suppose we let each
term score in the following way. a, being the earliest letter in the
alphabet, scores 0; b scores 1, ¢ scores 2, d scores 3. It will be
found that each term scores a total of 6. For example, abcd scores
O+1+2+3=6;ac®scores0+ 2+ 2+ 2,

1. Hermite, Collected Works, Vol. IV, p. 586.
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The technical term for this score is weight: we say that each
term has the weight 6. In % — ac, for a quadratic, each term has
weight 2.

(iii) The sum of the coefficients in each expression is zero. In
b?—ac the coefficients are 1 and -1, which add up to 0. In
a*d?— 6abed + 4b%d + 4ac® — 3b%c? the coefficients are 1, -6, 4,
4, -3 with the sum 0. Another way of expressing the same thing
is to say that if we put a, b, ¢, d all equal to 1, the expression takes
the value zcro.

These three things we have noticed provide a check on our
accuracy. (i) enables us to check if we have made a slip in writing
the power to which any letter occurs, for such a slip will make the
terms of unequal degree (unless of course we make several slips,
which compensate each other in this respect). (ii) will save us from
slips in copying the letters. If, for example, we copied 4 as a at
some stage of the working, this would alter the weight of a term.
Test (iii) will save us from making slips in adding the terms
together. Suppose for example that we overlook a term, when we
are collecting the terms together. On putting the value 1 for every
letter we shall find we do not get zero, and our attention will be
drawn to the mistake.

This type of checking does not give a profound insight into
mathematics; it is one of the things a mathematician does almost
unconsciously, to look at an answer and make sure it has the kind
of symmetry, the kind of balance he expects. It is surprising how
often pupils are not taught to examine things in some such way.
In examinations, onc again and again finds pupils handing in
answers which - in the phrase of G. K. Chesterton’s Father
Brown - have ‘the wrong shape’, and which obviously are crying
out for some simple correction. The principle extends far beyond
the special type of work discussed above.

A GEOMETRICAL PATTERN

In school geometry one meets the result
. (ac + bd)(ad +- bc)
ab + cd

where x, a, b, ¢, d stand for the lengths of the lines shown in
Figure 2.
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This result is very easily proved, by find- Q
ing cos Q and cos S in terms of the sides
of the triangles POR and PSR. The sum
of the two expressions must be zero, for R
Q + 8 =180° (cyclic quadrilateral), so
cos S = - cos Q. The resulting equation
is then solved for x2 P

There is nothing very striking in this
proof, but the pattern of the result is re- Figure 2
markable.

There are three ways of dividing four objects up into pairs. If
four men play bridge, 4 and B are partners against C and D; or
A and C against B and D; or A and D against B and C. No other
arrangeinent is possible.

The algebraic expressions ab + c¢d, ac + bd, ad + bc are
also built by dividing up the four symbols q, b, ¢, d into pairs, and
putting a + sign in the middle. These three, and only these three,
can be formed in this way; ¢d + ab of course is the same as
ab + cd.

In the formula above all threc expressions occur, two of them
in the numerator, the remaining one in the denominator.

I do not here want to go into the question why this occurs, but
simply to point out that this formula is, in a quiet way, a very
memorable one.

4

SIGNIFICANCE AND GENERALIZATION

In other arts, if we see a pattern we can admire its beauty; we may
feel that it has significant form, but we cannot say what the sig-
nificance is. And it is much better not to try. A poet protested
against the barbarous habit of requiring children to paraphrase
poems. The only way you can explain the meaning of a poem, he
said, is by writing a better poem, and that is a lot to ask of chil-
dren.

But in mathematics it is not so. In mathematics, if a pattern
occurs, we can go on to ask, Why does it occur? What does it
signify? And we can find answers to these questions. In fact, for
every pattern that appears, a mathematician feels he ought to
know why it appears.

For example, we can explain why conditions for equal roots
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must have the properties (i), (ii), and (iii) described earlier. I will
indicate the general idea, and omit the algebraic details (which
are actually quite simple). repeated root

Figure 3a and b

Let us consider the graph of a cubic, which for short I will call
y=f(x). The first graph shown (Figure 3a) represents a cubic with
all itsroots real and unequal. But if the cubic were lifted up until the
points B and C coincided, we should obtain the second graph,
which represents a cubic with a pair of equal roots (Figure 3b).
In passing it may be mentioned that calculus gives us a simple
test for equal roots. At the point E, both

dy

y and o

are zero. Equal roots occur if the equation f’(x) = 0 has a root in
common with the original equation f(x) = 0.

Now imagine that the second graph (Figure 3b) were drawn
on a sheet of rubber. Suppose this rubber were to be stretched
vertically; this would have the effect of changing the scale on the
y-axis. The graph would become that of y = kf(x). Now ob-
viously if the original graph touched the x-axis (which it does
when there are equal roots), the new graph, obtained by stretch-
ing, would still do so. That is to say, if f(x) = 0 has equal roots,
so has kf(x) = 0. By considering the effect of the extra factor k on
the constants a, b, ¢, d, the coefficients in f(x), one can show that
the condition for equal roots must have all its terms of equal
degree — property (i).

In the same way, stretching horizontally will not affect the
general appearance of the graph. It will still touch the x-axis.
From this we may conclude that if f(x) = 0 has equal roots, so
has f(kx) = 0. This leads us to property (ii), that all the terms
have equal weight.

Property (iii) is the simplest of all. If we replace all the letters
a, b, c, d by 1, the quadratic equation becomes x* +2x +1 =0
and the cubic x®4 3x? 4+ 3x + 1 =0. These equations are
(x + 1) = 0and (x + 1)® = 0, which obviously have the root —
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repeated. (All three roots of the cubic are - 1; it would have been
sufficient for our purpose if two of them had been -1.)

So properties (i) and (ii) hold for any condition that is unaffected
by a change of scale of y (a vertical stretch) and a change of scale
of x (a horizontal stretch); property (iii) holds for any condition
that is satisfied by (x + 1)7 = 0.

This represents a great advance on the time when we had
simply noticed the properties (i), (ii), (iii). We have now inter-
preted them; we know why they hold and when they hold.

And this allows us to apply tests (i), (ii), (iii) to types of con-
dition other than those for equal roots. For example, with a
cubic equation, which has three roots, we may ask in what
circumstances one root occurs exactly mid-way between the other
two. In the first cubic graph, drawn earlier, this would mean the
point B is to be half-way from A4 to C. This property would not
be destroyed by changes of scale, vertical or horizontal. This
property holds for the equation (x + 1) = 0; for this equation,
the points 4, B, C all coincide at x = -1, and B thus is the mid-
point of AC. The algebraic condition for this property must
therefore have the features (i), (ii), (iii). The condition is in fact
2b® —3abc + a*d = 0, and as you can see it is of the form ex-
pected.

This is an example of gencralization, one of the most important
factors in the development of mathematics. We began with an
observation which applied only to conditions for equal roots; we
ended with a principle which applied to a much wider class of
conditions. This is obviously valuable; the wider the situations
to which a principle is relevant, the more often it is likely to help
us out of our difficulties. As Poincaré said, ‘Suppose I apply
myself to a complicated calculation and with much difficulty
arrive at the result, I shall have gained nothing by my trouble if
it has not enabled me to foresee the results of other analogous
calculations, and to direct them with certainty, avoiding the
blind groping with which I had to be contented the first time’.!

GENERALIZATION AND SIMPLICITY

When we generalize a result, we make it more useful. It may
strike you as strange that generalization nearly always makes the

1. Poincaré, The Future of Mathematics.

25



Prelude to Mathematics

result simpler too. The more powerful result is easier to learn
than the less powerful one.

This may be illustrated by means of a very trivial puzzle,
which runs as follows: One glass contains ten spoonfuls of water.
Another glass contains ten spoonfuls of wine. A spoonful of
water is taken from the first glass, put into the second glass, and
the mixture is thoroughly stirred up. A spoonful of this mixture is
then transferred to the first glass. Will the amount of wine in the
first glass, at the end of this procedure, be more or less than the
amount of water in the second glass?

The obvious way to go about this question involves the follow-
ing calculation. After a spoonful of water has been put into the
wine, the second glass contains 10 spoonfuls of wine and 1 of
water, 11 spoonfuls in all. One spoonful of this mixture will
therefore coniain 11 spoonful of wine, +'r of a spoonful of water.
After transferring it, the first glass will contain 9% spoonfuls
water, 11 spoonfuls wine. The second glass will contain i ¥ spoon-
fuls of water, 93% spoonfuls of wine. The amount of wine in the
first glass is therefore exactly the same as the amount of water in
the second glass.

This being exactly the same might be an accident, but if you
vary the conditions of the problem, you will find you always get
equal amounts. If we begin with x teaspoonfuls of water and x
teaspoonfuls of wine, the amount of wine that gets into the water
still equals the amount of water that gets into the wine. Even if we
make the glasses begin with unequal amounts, if we put x tea-
spoonfuls of water in one and y teaspoonfuls of wine in the other,
and then follow the rest of the instructions as in the original
problem, our calculation still shows that at the end the water
in the first glass is equal in amount to the wine in the second
glass.

Now this is a clear example of bad mathematical style.
In a good proof, an illuminating proof, the result does not ap-
pear as a surprise in the last line; you can see it coming all the
way.

This particular puzzle uses a kind of camouflage. It tells you
something which you do not need to know, and by so doing distracts
your attention from the real point. The unnecessary statement is
‘the mixture is thoroughly stirred up’. The essential point is that
we transfer one teaspoonful of liquid from the first glass to the
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second, and then we bring back one teaspoonful of liquid from the
second to the first. It does not in the least matter what kind of
liquid. All that matters is that, at the end, each glass contains the
same amount of liquid that it did at the beginning. If this is so, the
first glass must have received just enough wine to compensate for
the water that it has lost; and of course the water it has lost will be
found in the second glass. The amounts cannot fail to be equal;
no fractions, no algebra need be employed.

The general statement of the puzzle would therefore be: we

" have a glass of water and a glass of wine, we carry out any series
of operations with these liquids such that the total amount of
liquid in each glass is at the end what it was at the beginning:
then the amount of water that has got into the wine must equal
the amount of wine that has got into the water.

But this is so obvious that it is hardly worth saying. It is much
simpler than the calculations we had to do earlier. But the range of
puzzles to which it applies is far greater; you could switch tea-
spoonfuls of liquid backwards and forwards between the two
glasses as many times as you liked, and the principle would still
apply.

The investigation of a problem therefore consists of scraping
away all unwanted information, until only the essential facts
remain. The less you are told, the easier it is to find a solution. A
general theorem rarely says anything complicated; what it does is
to draw your attention to the important facts.

In elementary mathematics we have a hotch-potch of details. In
higher mathematics, we attempt to isolate the various elements
involved, and to study each by itself. Higher mathematics can be
much simpler than elementary mathematics.

Perhaps the most famous example of simplification by generali-
zation is Hilbert’s Finite Basis Theorem. In 1868 Gordan had
proved, by laborious calculations, a certain theorem which I will
not here attempt to state. It aimed at showing that certain collec-
tions of polynomials, which had arisen in connexion with a
particular theory, had a certain property. In 1890 Hilbert proved
this result, very simply and without calculations. The advance
was due to his throwing away 90 per cent of the information used
by Gordan. He proved the result to hold, not merely for those
particular collections of polynomials, but for any collection of
polynomials whatever !
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We have gone from the ridiculous to the sublime. Nothing
could be more trivial and localized than the wine and water prob-
lem, nothing more profound and far-reaching than Hilbert’s
theorem. The fact that both can be covered by the same maxim,
‘Greater generality and greater simplicity go hand in hand’, is
perhaps an example of the power of mathematical statements to
bring widely separated objects under the same roof.

One cannot judge the importance of any mathematical investi-
gation by the particular objects it discusses. Topology is an
example. Topology is sometimes referred to as ‘the rubber
geometry’ ~ the geometry of figures drawn on an elastic sheet.
And so in a way it is; it does treat of the properties of such
figures. But its importance derives from the fact that on a rubber
sheet there are no fixed lengths. There cannot be any result like
Pythagoras’ Theorem. We can only make remarks such as: This
curve is continuous: that one is broken into two separate parts.
Continuity is the basic property in topology, and topology has
something to say about anything which is capable of varying
gradually. As there are very few things incapable of such variation,
topology has a very wide influence; it is increasingly becoming the
concern both of pure mathematicians and of technicians; some
most remarkable results can be proved by it. It has the utmost
generality and the utmost simplicity.

UNIFICATION

All the tendencies we have so far discussed operate to enlarge the
subject matter of mathematics. To explore, to discover patterns,
to explain the significance of each pattern, to invent new patterns
resembling those already known - each one of these activities
increases the bulk of mathematics. From the practical viewpoint,
it becomes extremely difficult to keep track of all the results that
have been discovered; and a vast litter of unconnected theorems
hardly constitutes a beautiful subject. Both as a business man and
as an artist, the mathematician feels the urge to draw all these
separate results together into one.

The history of mathematics therefore consists of alternate
expansions and contractions. A problem occupies the attention of
mathematicians; hundreds of papers are written, each clarifying
one facet of the truth; the subject is growing. Then, helped per-
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haps by the information so painfully gathered together, some
exceptional genius will say, ‘All that we know can be seen as
almost obvious if you look at it from this viewpoint, and bear
this principle in mind’. It then ceases to be necessary to read the
hundreds of separate contributions, except for the mathematical
historian. The variegated results are welded together into a simple
doctrine, the significant facts are separated from the chaff, the
straight road to the desired conclusions is open to all. The bulk of
what needs to be learnt has contracted. But this is not the end.
The new methods having become common property, new prob-
lems are found which they are insufficient to solve, new gropings
after solutions are made, new papers are published; expansion
begins again.

If it were possible to weld together the whole of knowledge into
two general laws, a mathematician would not be satisfied. He
would not be happy until he had shown that these two laws were
rooted in a single principle. Nor would he be happy then; indeed
he would be miserable, for there would be nothing more for him
to do. But there is not the least likelihood of this state of stagna-
tion arising. It is a property of life, a property without which life
would be unendurable, that the solution of one problem always
creates another. There always is, there always will be something
to learn, something to conquer.

The way in which this happens can be seen from a remarkable
unification which took place round about 1800, when it was found
that the great majority of functions previously studied were
particular cases of one very general function, the hypergeometric
function. The theory of the hypergeometric function was then,
and still is, a powerful device for drawing scattered pieces of
information together. New ways of viewing the hypergeometric
function were discovered. It was shown, among other things, that
the special properties of the hypergeometric function were con-
nected with the fact that it had three singularities — exactly what
singularities are need not be explained just now. The functions
with simple properties, then, were those with three singularities or
less; it was with such functions that previous mathematics had
been concerned. But this immediately raised the question — un-
solved, to a large extent, to this day — what sort of properties
would a function with four singularities have?

And so it will always be. If it could be shown that all existing
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mathematics was concerned with things having properties 4, B,
and C, mathematicians would immediately ask, what happens if
an object only has some, or none of these properties? And they
would be off again.



CHAPTER THREE

Pattern in Elementary Mathematics

Our stability is but balance, and wisdom lies
In masterful administration of the unforeseen.
R. Bridges, The Testament of Beauty

Let us consider pattern for a moment from the lowest possible
point of view, that is, for a person who simply wants to pass an
examination. The most important question for the examinee is
the character of the examiner; what are the examiner’s interests?
what qualities is he trying to test in the examinee?

Some examiners seem mainly interested in the ability of the
student to carry out routine operations. Does the student know
his multiplication tables? Can he use logarithms? Can he use any
one of a hundred other stock methods? Doubtless it is necessary
to test the student’s knowledge of routine processes; but ever
since being a boy I have classified such tests as dull examinations.
They are very popular with the poorer teachers, since the teacher
knows he has merely to drill his class on exercises 1 to 50.

Other examiners wish to encourage the more enterprising
teachers, the teachers who are trying to convey not merely facts
but the feel of the subject; they wish to test the enterprise, the
imagination, the initiative of the students. And so they seek out
problems which call for these qualities.

Some teachers feel this to be unfair; they think that pupils
cannot be prepared for an unpredictable examination. But this is
not true. Is a battle predictable? Is it therefore impossible to train
military leaders? The training of officers is based (or should be)
partly on those general principles which are common to all
battles, and partly in developing initiative; the officer is placed in
a variety of unforeseen situations in which he has to improvise.
Exactly the same type of approach is possible in the peaceful
training of mathematicians. An examination and a battle have
much in common.

An examination paper may contain both routine and problem
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questions. How is the student to know which is which? They need

not look very different.
Take for,example the simultaneous equations below.
127x + 341y = 274
218x + 73y = 111

There is a routine method for solving such equations. If we
multiply the first equation by 73, the second equation by 341, and
subtract the first result from the second, we find that x must be
17,849 /65,067. This answer does not simplify; there can therefore
be no way of avoiding arithmetical calculations. An examiner who
set such a"question could merely be interested in seeing whether
the students knew the routine method, and had the persistence
and the accuracy to carry through the arithmetic. (I assume the
exact answer, as ‘a fraction, is wanted. If only an approximate
answer is required, the labour can, of course, be reduced - for
example, by using a slide rule.) The value of y is equally compli-
cated.
For contrast, consider the simultaneous equations

6,751x + 3,249y = 26,751
3,249x + 6,751y = 23,249

The numbers here are larger, but the problem is a much easier
one. The problem is not intended to test routine work. There is a
very simple way into it if the examinee can find how.

What clues are there to suggest that this question calls for an
imaginative attack? There are certain clues in the choice of the
numbers, but the most striking and significant clue is the pattern

‘o *
* O

which appears on the left-hand sides of the equations.
These left-hand sides have in fact the algebraic form

ax + by...(D
bx +ay...dD

In looking at these expressions I find myself reasoning in the
following somewhat idiotic fashion. If we were to re-christen our
unknowns x and y, so that x was called y and y was called x, the
expression (I) would become (II), and the expression (II) would
become (I). Sc the expressions (I) and (II) are just as good as each
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other. It would therefore be unfair to do anything to (I) that we
do not do to (II). Whatever steps we take ought to treat (I) and
(1) alike. '

What steps are there of this kind? The obvious step is to add
(D) and (II). This is a perfectly symmetrical operation.

Are there any other symmetrical operations that we could do?

We could of course multiply (I) and (I1) together, but that would
not be helpful towards solving the equations. We want an opera-
tion of the form m(I) + n(Il). At first sight, it seems that to be
fair we must take m = n. Otherwise, whichever expression gets
the bigger number, the other expression can complain of injustice.
There is however a possible solution. The equation p = q is cer-
tainly symmetrical as between p and g. But if we try to write this
equation with all the non-zero terms on one side we obtain
p—q =0. This appears unsymmetrical; we have taken an
arbitrary choice, in deciding to assign the + sign to p and the
- sign to g. But if we had taken the other decision, we should
have written g — p = 0, which again expresses p =q. Accor-
dingly, although the expression p —q is unsymmetrical, the
equation p — q = 0, being a form of p = g, must be regarded as
symmetrical. We need not feel we are sinning against symmetry
if, given two expressions of equal status, we subtract one of them
from the other.

Returning to our original problem, we now have two opera-
tions that seem to have the symmetry appropriate to the problem;
to add and to subtract the equations given. Carrying out these
operations, we find

10,000x + 10,000y 50,000
2,502x -~ 2,502y = 2,502

thatis,x + y=5and x —y = 1, from which x = 3,y = 2.

Children can find real pleasure in the experience of solving
such a problem. Not evervone will follow the somewhat fanciful
path T have just described; but anyone who solves this problem,
other than by sheer calculation, will in some way be responding
to the pattern of the equations. The conquest of the problem
depends on sensitiveness to pattern; this combination of a
military and an artistic aspect is perhaps not realized to such an
extent in any activity outside mathematics.

In adult problems, nature is the examincr. And here again it is
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of the utmost importance to determine whether any particular
problem involves a routine slog, or whether it has some special
feature that will make possible a simpler solution. Many practical
problems, of course, can only be solved by routine methods; they
lack pattern. This is particularly so if there is an element of
randomness in them. In surveying, for example, a host of geological
and historical causes have interacted to determine the positions of
towns and the mountains between them. One does not expect any
elegant relations between the distances on the map; calculation is
incvitable. On the other hand, in a fundamental scientific prob-
lem, the structure of the atom or of the universe, one does
(rightly or wrongly) expect to find an underlying simplicity; the
basic theories of physics usually possess mathematical elegance;
their applications to complex situations, needless to say, may not.

RECONSTRUCTING AN EXAMINER

Occasionally palacontologists dig up a small fossilized bone and
proceed to reconstruct the shape of an extinct animal. A similar
activity is possible in regard to examiners, the questions set taking
the place of the fossil bone.

A good examination question is not just a shapeless affair; it
should contain some interesting design or some surprising result.
Such questions are by no means easy to make up. Accordingly,
an examiner who is doing research work will usually be on the
look-out for some result that he can use in an examination ques-
tion. Often, in fairly advanced work, some small piece of algebraic
manipulaticn occurs, which can be detached from its context and
set as a problem.

For example, some years ago students brought me the following
question, which had been set in an examination paper, and which
they found hard to solve, or at any rate to solve in a satisfying
manner.

‘Prove that, if?*

ac=b*  bd-c*
a-2b+c b-2c+d
then the fractions just given are both equal to
1. It is assumed that b and ¢ are unequal. The text does not discuss this

point, as it is not relevant to the main theme. What suggested the question
to the examiner?
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ad - bc
a—-b-c+d

This question has a very definite form, and obviously to
hammer it out by a lengthy and shapeless calculation, while
verifying the result, would bring one no nearer to the heart of the
question. What interested me most was the question, how did the
examiner come to think of this question?

The pattern of the question includes the following aspects.
ac — b® = 0 is the condition for the three quantities a, b, ¢ to be
in geometrical progression. The numerator of the first fraction
contains ac — b%. A similar expression occurs in the numerator of
the second fraction. Down below we have expressions @ —2b + ¢
and b—2c + d which are associated with arithmetical progres-
sions, a—2b + ¢ = 0 being the condition for a, b, ¢ to be in
A.P. Again therc is a kind of rule by which the denominators
could be derived from the numerators; in the third fraction, for
example, we have a and d multiplied on top, added below, i.c.
the numerator contains ad, the denominator a + d. The negative
terms are similarly related; on top we have -bc, down below
~ (b + ¢). This rule applies equally well to the first two fractions;
in the first fraction, for instance, —b? is ~bb, and we find
—(b + b), that is, - 2b, below it.

To invent a problem so knit together is almost impossible. One
does not invent such things; one stumbles upon them. I was cer-
tain that the examiner had been finding the condition for something,
and these fractions had arisen in the course of the work.

The way to begin the problem was fairly obvious, to bring in
a new symbol, k, for the value of the fractions. The problem
then can be stated as follows.

ac—Db?
I —_—— =k, ..
f a-2b+c k-
bd - c*
aﬂd 'b*'_—zc—_—i'_—d = k . .(II)
ad—bc
prove ;—:b:c—;g =k.. .(III)

To bring in such a symbol k is routine procedure, when dealing
with the equality of several fractions. (See, for example, Hall and
Knight, Higher Algebra, Chapter 1.)
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What to do next was not at all obvious to me. I tried various
methods which, though they led to proofs, did not satisfy me.
I continued to think about this question in odd moments, and
about a week later, hit on the following approach. Equation (I)
can be put in the form ac — k(a + ¢) = b*—2bk. Both sides of
this equation are now crying out for an extra term k? to complete
their pattern. This will ‘complete the square’ on the right-hand
side, giving (b — k)%, and give (a — k)(c— k) on the left. So
(a — k)(c — k) = (b — k)2 That is to say, equation (1) expresses
the fact that a—k,b—k, c—k are in G.P.

Now we have the whole thing. Equation (II) shows that
b—k, c—k, d—k are in G.P. So a—k, b—k, c—k, d—k
are in geometrical progression. But if we multiply together the
first and fourth terms of a G.P. the result equals the product of
the second and third terms. (Let the G.P. be 4, AR, AR% AR®.
Then 4 x AR® = AR x AR%) So we have

(a—k)(d—k) = (b—k)(c—k).
If we multiply this out, cancel k% and solve the resulting linear
equation for k, equation (I1I) results.

Our conclusion therefore is that the examiner’s researches had
led him on some occasion to pose the question, ‘What is the
condition that four numbers a, b, ¢, d must satisfy, if, by sub-
tracting the same number from each of them, a gcometrical
progression can be obtained?’

The moral of this is not confined to examination questions.
It is meant to support the thesis, where there is pattern there is
significance. 1f in mathematical work of any kind we find a
certain striking pattern recurs, it is always suggested that we
should investigate wiy it occurs. It is bound to have some
meaning, which we can grasp as an idea rathet than as a collec-
tion of symbols. It is extremecly unsatisfactory to discover a
theorem, and only be able to prove it by shapeless calculations.
It means that we do not understand what we have discovered.

To find the significance of an algebraic formula may take a
long time; there are usually so many possible methods of attack,
and no way of telling which is the true one. 1 find that, in dealing
with such problems, my brain has a delayed action; at first I can
make nothing of the question; a day, or a week, or a month
later, an inspiration comes. If students are required to solve such
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a problem within three hours, that is, under examination con-
ditions, a considerable element of luck is brought in. The usual
way of overcoming this difficulty is to put in front of the problem
a piece of bookwork, or some simpler problem that will start the
mind working in the correct direction.

RECONSTRUCTING TWO AUTHORS

Fven more difficult than collecting enough good questions to
fill an examination paper is the task of collecting enough ques-
tions to fill a text-book. The best way to get interesting questions
in algebra, 1 believe, would be to read a large number of research
papers, written over the last couple of centuries, and take note of
all the algebraic results that have been proved incidentally in the
course of advanced work. The most interesting results in the
elementary algebra books probably did originate in this way.

If one looks through any text-book, a certain number of
examples are without pattern. They are the kind of thing anyone
could easily make up; they belong to the same class of approach
as the arithmetic question ‘Find 27 + 46 + 39° or the algebra
exercise ‘ Multiply 5x% — 3x + 7 by 4x + 11°. A certain number
of such routine exercises are of course necessary. Other questions
are of the kind that could not just be made up on the spur of the
moment, and it is always interesting to try to guess how the
author arrived at his problem.

For example, in Hall and Knight’s Higher Algebra (which of
course is not higher algebra in the modern sense) the question
occurs, If a = zb + ye, b = xc + za, ¢ = ya + xb prove

a? b? c?
T-x 13y 1-z#

This is not a difficult exercise to do, but we are not at the
moment concerned with how it is solved; we are concerned with
how it was composed.

Unless an enormous coincidence has occurred, it was arrived
at in the following way. Mr Hall and Mr Knight were discussing,
not algebra, but trigonometry. Now certain algebraic questions
arise in connexion with trigonometry. In algebra, as is well
known, you cannot find 3 unknowns from only 2 equations. If
you have 3 unknowns and 3 equations, you can (as a rule) find
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the unknowns. If you have 3 unknowns and 4 equations, generally
speaking, an impossibility arises. For example, you might have
the equations x =1, y=2, z=23, x+y + z =0, which
contradict each other. 4 equations for 3 unknowns can only be
solved if the 4th equation is a mere repetition of something we
could have discovered for ourselves from the other three, like, for
example x =1, y=2, z=3, x + y + z = 6. Then there is
no trouble.
A

B D C

Figure 4

Now look at the question of solving a triangle (Figure 4), when
the three sides a, b, ¢ are given, and we are asked to find the angles
A, B, C of the triangle. 3 unknowns, 3 equations will be enough;
more than 3 may be an embarrassment. Trigonometry gives us
eight.

First of all, if we drop a perpendicular AD on to BC, we have
BC = BD + DC, and this shows

(1) a=ccosB + bcos C

By dropping a perpendicular from B on to AC, or from C on to
AB, we find two more equations, which I will call equations (2)
and (3), but not write down here.

Three equations are quite enough to find three unknowns.
From the point of view of algebra, we now have all we need. But
trigonometry continues to pour its gifts upon us. The textbook
calls our attention to the Cosine Formula

b* + c*-at
A=t
@) cos T
and to the corresponding expressions for cos B and cos C,
equations (5) and (6).
And finally there is the Sine Rule
a b ¢
sin A sin B sin C
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which contains two ‘equal’ signs, and gives us equations (7) and
8).

Now we know that we can find the angles of a triangle, and
that these various results are not in conflict with each other. It
must then be that equations (4) to (8) add no new knowledge, but
are algebraic consequences of (1), (2) and (3).

This, as a matter of fact, is pretty obvious for equations (4), (5)
and (6), which are simply what onc gets on solving equations (1),
(2) and (3) for cos A, cos B and cos C. But it is not so obvious
that the Sine Rule follows. Here then is a result which is not too
obvious, and will make an exercise in algebra. To get rid of the
trigonometrical functions, we simply put cos A = x, cos B = y,
cosC=2z As sin®4 +cos?4 =1, we shall have to put
sin? A = 1 - x% We square the Sine Rule equations above, and
are thus able to translate the equations entirely into the language
of algebra. We so arrive at the problem as stated in Hall and
Knight.

in trigonometry, the cosine results are usually proved by one
geometrical procedure, the Sine Rule by another. The fact that
the Sine Rule is an algebraic consequence of the Cosine Formula
is not stressed.

Even now, we have not given the actual algebraic reasoning
for deducing one from the other. But we have seen that there
must be some way of proving this result algebraically. If not,
trigonometry contradicts itself.

TRANSLATION FROM ONE SUBJECT TO ANOTHER

The procedure of the previous section essentially is one of
translation. We begin with a known trigonometrical fact, that the
Sine Rule is not inconsistent with the Cosine Formula. We trans-
Jate into the language of algebra, and find that it must be possible
to deduce one set of equations from another. We have been led
from a familiar fact (familiar at any rate to anyone who has done
school trigonometry within the last two or three years) to an
unfamiliar fact. We have not merely gained a new result; we have
made somewhat sharper our view of the old result. ‘Not incon-
sistent with’ has been sharpened to ‘can be deduced from’.
Translation is a valuable exercise, because, before you can
express a fact in a new language, you must be clear what the fact
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is.! At various places in this book we shall try to state various
things in such a way that they could be explained ‘to an angel
over the telephone’; to explain geometry, for instance, without
drawing any diagrams or invoking any physical ideas. Geometry,
in fact, can be explained purely in terms of number. You may
think this strange, if you have been accustomed to think of
geometry as the study of the shapes of objects. But mathematics
deals with patterns; it is not concerned with the particular material
in which the pattern is realized. Our ability to explain geometry to
the angel means simply that we can, by means of numbers alone,
exhibit the same patterns as those that occur in geometry. Like
the wireless commentators, we could explain to the angel the
progress of a football match, by giving the score and saying,
‘Square 7°. We could not however explain to it what being kicked
on the shin felt like.

As an example of translation, 1 will try to translate into
algebra the fact that cos? 0 never exceeds 1.

Figure 5§

To get away from geometrical ideas we will make use of graph
paper. In Figure 5 let O be the origin, P the point (¢, b) and Q the
point (x, »). This gives us a triangle OPQ, and anything there is
to be said about this triangle can now be said in terms of the
numbers a, b, x, y, that is to say, in terms of algebra. It will be
convenient to use p for the length OP, ¢ for the length OQ, and r
for the length PQ. Of course p, g, r can be expressed in terms of
a, b, x, y; by applying Pythagoras to the triangles ONP, OSQ and
PMQ we have the very well known results

pt=a?+ b
q2 = x‘.’. + y2
rt=(x-a?+(->b?

1. This is not a plea for compulsory Latin.
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If the angle between OP and OQ is called 0, we can find cos 6
from the formula 2pgcos 0 = p* + g* — r%. On substituting for
P2, g* and r® from the three equations above, all the square terms
cancel out, and only 2ax + 2by remains. So we have

pqcos 0 =ax + by.

p and ¢ contain square roots, if we express them in terms of
a, b, x, y; however, as we want to express the fact that cos? 0
never exceeds 1, we shall be squaring anyway. We thus find that
(ax + by)? cannot exceed p%g®, that is, (ax + by)? never exceeds
(a® + b3)(x? 4 y?).

This is a purcly algebraic result; we may express it by saying
that for real numbers, (a® 4+ b*)(x® + y?) — (ax + by)* is never
negative.

Why is it never negative? The above statement corresponds
roughly to the trigonometrical statement that 1 — cos?0 is
never negative (for real angles 0). But this expression is the same
as sin? 0; we are familiar with the fact that squares of real numbers
are ncver negative.

We arc thus led to expect that the algebraic expression above
may very well be a square. And so it is. It is no great labour to
multiply it out completely. Of the seven terms so obtained, four
cancel. Those remaining are equal to (bx —ay)®. This can ncver
be negative, and we have thus proved our algebraic result
directly without any appeal to trigonomectry.

Our result may be written

@® + b)(x* 4 y*) = (ax + by)* + (bx—ay)>.

This identity holds for all numbers a, b, x, y.
1n Chapter 4 we shall return to this identity, and see in what
ways it can be generalized.

KNIGHT’S TOUR IN CHESS

While we are still thinking about translation, another example
may be given, which illustrates one very important use of trans-
lation, namely, to put a problem into a form where the answer
can be seen at a glance. Such translation does not change the
essential pattern of a problem; from a very abstract mathematical
viewpoint one might say that it did nothing at all: but for us as
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human beings it is most valuable, since it changes the unfamiliar
into the familiar.

Drawing the graph of an algebraic function illustrates my
meaning; a graph can be taken in by the eye at a glance. Here we
are translating from algebra to geometry. Very often we translate
in the opposite direction, from geometry to algebra; several
examples will be found in this book. And we may also translate
from geometry to geometry, from an unfamiliar type of problem
to 2 familiar one.

ZZm .
V| li2]s4ls
6|17(1819]10
n{12{13[14 |15

Z4

7z

Figure 6

Consider the puzzle of the knight’s tour. A knight is placed in
the centre of a square board of 25 squares (Figure 6). The knight
is to move in such a way that it visits cach square once and once
only.

1 {ind it very difficult in thinking about this puzzle to see clearly
in mv mind whether or not the knight is getting into difficulties
when he has made, say, a dozen moves: 1 cannot tell by looking
at the squares still unvisited whether they will join together in a
single chain of knight’s moves. Can we somehow restate the
problem so that we shall be able to see more easily what we are
doing?

From the point of view of the knight, the squares 2 and 13 are
neighbours. He can jump from 13 to 2 in a single move. But,
from his point of view, 12 and 13 are not neighbours; he cannot
pass from one to the other in a single move. So, if we are only
concerned with the problem of the knight’s tour, we can forget
the actual shape of the chess board. If we want to bring out the
things which are important for the task in hand, we must draw
a diagram of the twenty-five squares in such a way that 2 is close
to 13, while 12 is not so close. (In fact, the knight needs three
moves to pass from 13 to 12.)
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The resulting diagram is shown in Figure 7. If a knight can pass
from one square to another in a single move, the corresponding
numbers are joined by a straight line. The places where these lines
cross have no significance. In a diagram drawn on paper it seems
impossible to avoid such accidental crossings. They could be
avoided in a three-dimensional model, with wires joining the
points; these wires could be bent so as to avoid each other.

Figure 7

The drawing of such a diagram is not quite as simple as it looks.
Some care is needed if one is to avoid a tangled network of lines.
The main principle used was respect for symmetry. 13 had to be
in the centre, and the others arranged round it so as to preserve
the symmetry of the chess board.!

It is now very easy to choose a path for the knight. He can, for
example, go from 13 to 10, then go right round the ‘Inner Circle’
(19,22,11,2,9,20, 23,16, 7, 4, 15, 24, 17, 6, 3), pass to the ‘Outer
Circle’ and go round this (12, 21, 18, 25, 14, 5, 8, 1).

We need not go into the theory of knight’s tours. The example

1. Mr W. H. Joint, Principal of Nuneaton Technical College, suggested
the arrangement used in this diagram,
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is chosen not for the importance of the subject, but rather to
illustrate how a suitable way of visualizing the essential features
of a problem can simplify the task of finding a solution.

A UNIQUE PATTERN

In Chapter 10, on projective geometry, we shall meet the func-
tion (a — b)(c - d)/(b — c)(d — a). This is called the cross-ratio of the
four numbers a, b, ¢, d. As it is rather a lengthy expression, let
us refer to it as f{a, £, ¢, d), which is somewhat shorter.

The order of the letters a, b, ¢, d is important. For instance, if
we wrotc f(a, d, ¢, b) that would mean

(a—d)(c—b)/(d—-c)b—a),

which is not by any means the same as f(aq, b, ¢, d). In fact, as you
can casily see, it is the reciprocal of f(a, b, ¢, d). If fla, b, ¢, d) = x,
then f(a, d, c,b) = 1/x.

Altogether, there are 24 orders in which four letters can be
written, so that there are 24 diflerent expressions we can form,
by taking a, b, ¢, d in difterent orders; for example f(a, c, d, b),
J, c, b, a), fld, b, a, ¢). If you have the patience to write all
24 expressions out, you will find that they are not all different.
6 different values occur, each of them 4 times. You can check
this algebraically; or, if you like, you can take particular values,
saya=0,b=1, ¢c =2, d = 3. By taking the numbers 0, 1, 2, 3
in different orders, you can get the values ~ 4, -3, 1, 4, }, ¢ for
the function; each value can be got in four different ways, for

example
-1=/0,1,2,3) =(1,0,3,2) = f12,3,0,1) = /3,2, 1,0).

The six values so found are all connected. Tf we take any one of
them, and turn it upside down (take the reciprocal) we get another
value in the set; if we take any value and subtract it from 1, we
get another value in the set. For instance, if we start with — } and
turn it upside down we get — 3. Subtracting -3 from 1 gives 4.
Turn that upside down and get }. Subtract that from 1 to get %,
and turn that upside down to get 5.

Thus, if we are given any one value, we can find the others. If
we start with x and turn it upside down we get 1 /x. Subtracting
from one gives 1 — 1/x, which may be written (x — 1) /x. This
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turned upside down gives x/(x —1). Subtract from 1 to get
1/(1 — x) and finally turn this upside down to end with 1 — x.

You might think that by turning upside down and subtracting
from 1 a few more times you might be able to get some new
expressions. But you cannot. However many times you perform
these operations you will still stay within the family circle of x,
1/x, 1=x, 1/(1-x), (x—1)/x and x/(x—1).

If then you were told that f(a, b, ¢, d) had the value 5 say, you
would know that f(a, d, ¢, b) was i and f(a, c, b, d) was -4
(because 1 —5 = —4) without needing to be told what a, b, ¢, d
were. For naturally the single equation f(a,b,c,d) =5 is far
from fixing the four quantities a, b, ¢, d.

The interest of this fact lies in its uniqueness. No other function
does what this one does. Here, of course, we rule out trivial
amendments to the function itself. For instance, the function
3f(a, b, c,d)— 2 has the same kind of property. But we regard
this as the old function in disguise rather than as a new function.

Again, there are certain comparatively trivial ways of getting
a similar property. We might consider a symmetric function, say
w(@,b,c) =a+ b+ c. The sum of three numbers does not
depend on the order in which they are written. So, if we are told
%(a, b, ¢) = 5 we know that ¢(a, c, b)) = 5 too, and all the other
ways of writing a, b, ¢ would give 5 too. But this is too obvious to
be interesting.

Slightly less obvious are functions such as

F(a, b, c) = (@a—b)a—c)b—o).
If we exchange any two Ictters, this function changes sign. Thus

Fa,b,¢) = —-Fla,c,b) = - F(c,b,a)
= —F(b,a,c) = F(b,c,a) = F(c, a, b).

It has only the two values x and - x.

However many letters are involved, we can always construct
symmetric functions, like ¢, which remain unchanged however
the letters are shufiled, and functions like F, which only take two
values when the letters are shuffled.

But if we want to have more than two values in the set, and to
be able to predict all the values as soon as we are told one of
them, we must work with four lctters (such as a, b, ¢, d above),
and our function must be the cross-ratio f{a, b, ¢, d) or that func-
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tion thinly disguised. In this sense, the number 4 and the cross-
ratio f(a, b, ¢, d) are singled out from all other numbers and
functions.

An intcresting thing is that the uniqueness of the function
fla, b, ¢, d) can be proved without making any calculations
whatever, that is 10 say, by a conversational type of argument.
The proof is quite short, and depends on the thcory of groups.

A unique function is nearly always worth studying. If certain
towns can only be reached by passing a particular bridge, traffic
on that bridge is likely to be heavy. In the same way, if certain
propertics are possessed only by one particular function, any
problent which involves those properties must be solved by means
of that function. The cross-ratio f(a, b, ¢, d) does in fact occur in
many branches of mathematics.

You may find it interesting — if you have not already done so -
to verify, by elementary algebra, the property stated earlier in
this chapter that if f(a, b, ¢, d) = x then the 24 cross-ratios formed
with a, b, ¢, d are the functions of x stated earlier. This involves a
fair amount of work. Later, in Chapter 10, when we have Icarnt
the geometrical significance of the cross-ratio, we shall be able to
prove these results with very much less labour. You will appreciate
the help that geometry gives to algebra very much more if you
have worked at any rate a number of these verifications out for
yourself by the more clementary method.

Incidentally, for anyone learning algebra, it is oftecn more
instructive to work onc problem by threc or four different
methods than to work out three or four different problems.
Working the same problem by diffcrent methods, one has a
chance of learning how these miethods compare with each other
in shortness and efliciency. Thus an experienced outlook is built
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CHAPTER FOUR

Generalization in Elementary Mathematics

As mathematics passed the year 1800 and entered the recent
period, there was a steady trend towards increasing abstract-
ness and generality. ... Abstractness and generality, directed
to the creation of universal methods and inclusive theorics,
became the order of the day.

E. T. Bell, Development of Mathematics

In Chapter 2 generalization was mentioned as one of the great
processes leading to the growth of mathematics.

But generalization does not only make mathematics larger. It
helps to tie the subject together. An unfamiliar result can be
regarded as a generalization of a familiar one. This helps to give
the new result a place in one’s mind; it is tied on to the result
already known.

For instance, at the beginning of school algebra, a child may
be familiar with the fact that x —a is a factor of x*—a* Later
it will meet the results that x — a is a factor of x* — a* and indeed
of x* — a* for every whole number n. The old, familiar result
serves as a peg on to which to hang the new ones. It does not
explain or prove thc new results, but it heips the mind to accept
them. Very often, one of the greatest difficulties of learning is not
a logical difficulty at all. One sees cvery step, and admits that the
proof is logical, but one is left with an obstinate feeling of not
really knowing what the new result is, what it is all about.

For example, we meet sines and cosines at school. They are
connected with circles, which we are thoroughly used to, and
after working a few exercises we begin to feel that we know what
sines and cosines are, even though we have to use tables to find
the actual values of these functions. Later in life a mathematician
meets Bessel functions. The properties of Bessel functions are
learnt, the proofs are quite all right, but very often the student is
left feeling that after all he does not know what a Bessel function
is. He cannot see it in the same way that he sees a sine function.

Personally I was very much comfortcd when I discovered that a
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Bessel function could be regarded as a generalization of a sine
function; whether this idea will comfort other people in the same
way I cannot predict. These are matters of psychology, not of
logic. Anyway I give the idea for what it is worth.

In the theory of sound one meets the fact that when a stretched
wire or string — a piano string, for instance - is vibrating, its shape
will (in certain conditions) be a sine curve. Now of course a piano
string is made of uniform wire, and has the same tension through-
out. But it would be possible to have a string of variable thickness,
and with different tensions in different parts of it. Variable

[

Figure 8

thickness is simply a question of manufacture; variable tension
could be got, for example, by hanging the string vertically, or in
various other ways which we need not now go into. Moreover,
both things could be brought about gradually. We could begin
with our ordinary piano string, and gradually coat it with extra
material until it was thicker in some parts than in others. By
means of rather complicated apparatus we could produce gradual
variations of tension. The shape of the vibrating string would
gradually change from a sinc curve into some other shape. The
Bessel function is one of the shapes that could be obtained in this
way. Moreover, in this gradual process, a number of propertics
of the sine curve would be preserved, and we recognize certain
propertics of the Bessel function — for instance, its wavy graph -
as coming from those of the sine.

As a matter of fact, the shape of a vibrating drum can be given
by Bessel functions.

Indced by means of a loaded piano string, one can obtain not
only Bessel functions, but most of the functions that a mathe-
matical physicist meets in his work. All of them can, in this
respect, be regarded as gencralizations of the sinc. And it is a
great help in learning about these functions to find very similar
propertics turning up again and again.
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AN ALGEBRAIC GENERALIZATION

There is a section of algebra, taken in schools in some countries
and in first year university work in others, which serves as an
excellent illustration of generalization.

This section might be thought quite unsuitable for treatment in
a popular work; (i) it is at or near university level, (ii) it involves,
or can involve, very long algebraic expressions, (iii) students do
not find it particularly easy.

Nevertheless, I intend to deal with it now. The above objections
are met by the following considerations, (i) only an elementary
knowledge of algebra is needed, and no long calculations occur,
(i) although the expressions are long, they have a very definite
pattern, which the mind can grasp, (iii) the whole thing grows
from a single idea, which is usually not mentioned in the text-
books.

The single idea is the following; try to generalize the fact that
there is one, and only one, straight line joining two points.

Now of course this is, as it stands, a geometrical result, and we
might begin looking for a gcometrical generalization. Someone
may suggest the fact that a circle can be put through any three
points; someone with a little wider knowledge may know that a
parabola can be put through four points, and a conic section
through five. But there we run into something of a dead end;
nothing springs to mind as going through six points.

Accordingly we do what we did in Chapter 3, we try translating
into algebra. That is easy enough. It is well known that any
straight line (except a vertical one) can be got by choosing the
constants m and c suitably in y = mx + ¢.! A point is specified
by a pair of numbers. Our geometrical result when translated
becomes ‘it is always possible to choose m and c¢ so that
y = mx + ¢ passes through two given points (a, p) and (b, q).”
We should add that @ and b must not be equal, for then they
would lie on the same vertical line, and the gradient m would
have to be infinite.

Instead of saying that the line ‘passes through’ the points we
could write the equations

1. Compare M.D., Chapter 9, the section * Mathematicians and Graphs’,
and the examples following that section.
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p=ma+ec...(
g=mb+c...(

These state that the expression mx + ¢ takes the value p when
x = a, and the value ¢ when x = b,

Already an algebraic aspect of the problem has appeared. We
have two quantities, m and ¢, at our disposal, and there are two
equations that they have to satisfy. But we are quite used to
solving two equations for two unknowns.! We expect, given two
equations for two unknowns, to be able to solve them. This
suggests that if we want to put a curve through three points,
we ought to find an equation with three unknowns, for example
y = gx? + hx + k, where g, h, k are at our disposal. Now this
idea is in fact correct, but we have not yet proved it.

Unfortunately, it is possible to have three equations in three
unknowns with no solution. Consider for instance the equations

g—h=1
h—k=2
k—g=23.

These have no solution. The first tells us that g is bigger than A,
the second that 4 is bigger than %, the third that & is bigger than
g; it is impossible to find three numbers for which this is true!

Actually, exceptional equations of this type do not arise from
our particular problem; at any rate, they do not arise if we try to-
find y = gx? + hx + k to pass through three points (a, p), (b, q),
(¢, r), where a, b, ¢ are all different.? They would arise if, say,
a = b. Suppose we tried for example, to find a formula of the
type just considered to fit the table

x 1 1 3
y 2 45

This would mean that, when we substituted x = 1 in the expres-
sion gx? + Ax + ¢ we should have to get the value 2 and also the
value 4; and of course the same expression cannot have two
different values for x = 1.

‘This argument incidentally shows that there must be excep-
tional systems of equations, which have no solutions; such

1. M.D., Chapters 7 and 8, for instance. Chapter 8 is very close to our

present topic. . . . )
2. This can be shown by means of determinants, which are discussed in

Chapter 9.
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equations must arise whenever we make ridiculous, self-contra-
dictory demands. They are mathematics’ way of saying, ‘No”.

Fortunately for scientific workers, who often have to fit curves
to points given by experimental results, the insoluble equations
occur only when we ask for something obviously ridiculous. In
this problem there are no unreasonable catches. If we take any
three points, corresponding to dilferent values of x, we can in
fact put a quadratic graph through them. And it goes on in this
way. To four points we can fit a cubic, to five a function of the
fourth degree, and so on, indefinitely.

But this is still unproved, unless we are going to use the thcory
of determinants, to which we have not yet come.

Quite apart from proving that there is a function, it would be
good to know what it is. If we can actually find the functions that
solve the type of problem we are considering, this will automati-
cally overcome the difficulty of proving that such functions exist;
it will also save us solving equations every time we need such a
function to fit experimental data.

THE SEARCH FOR PATTERN

How are we to look for functions that will do what we want? In
such cases, it is usuvally wise ro take the simplest possible example
and examine it carcfully for hints of what happens in the more
complicated cases. This is a rule of general value; if you cannot
solve some problem, make up for yourself the simplest problem
of the same kind that you can devise, and see if it suggests any-
thing.

In our problem, the simplest case is the one we started from,
that of fitting mx -+ ¢ to two points. We can without difficulty
solve the equations (I) and (1I) given earlier, and find m and ¢ in
terms of the other letters. If this is done, the result is

_P-a _a=bp
m= a-b’ a-b"’

and the line is
P-4 aq — b,
- (£ 4 A1} |
Y (a—b)x+ a—b (D
The algebra used in doing this is quite simple routine work.
For anyone not in practice with algebra it may however represent
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quite an effort. Such a reader can follow one of two courses. The
first is to take the result just given on trust, and go on with the
main argument, which does not in any way depend on the details
of the calculations used in finding this result. Afterwards, if
desired, the calculations can be checked. This procedure leaves
the brain fresh to deal with the main argument.

But some pcople can only get the “fecl’ of the work by actually
carrying out the calculations. For these, the wise plan is to go
through the calculations first. If, when this has been done, the
reader is fatigued, the best thing is to put the work aside, and
return on a later occasion to the main argument, when the mind
is again alert.

Having found the result (I1I), what can we learn from it? What
hints does it give about the general result?

At first sight, not much; the algebraic expressions above look
pretty untidy.

We notice perhaps that a — b is the only expression that occurs
down below; it is in the denominator both of 7 and ¢. And this is
not surprising. As we saw, when a = b, the problem is an un-
reasonable one. Its solution must become meaningless when
a = b, and it does just that. When a = b, everything becomes
infinite. y = cox + o is a pretty useless formula!

This perhaps is a hint that when we have three values of x,
namely a, b, c, the only things occurring in the denominators will
bea-b,b—c,and c—a.

For the rest, there is not much to suggest what the correspond-
ing quadratic function through three points will look like. Very
likely, if T were investigating this question for the first time, I
would go on to work out the next case — the quadratic through
three points — and see if I could draw any morals from that one.
The algebra of course would be heavier, and the answer probably
still more of a muddle, but one might detect some pattern in it.

As a matter of fact, there is a feature of the function we have
already found. It is quite a striking fcature, though I would not
blame anyone for not seeing it.

A question to ask in studying an algebraic expression is, ‘In
what way does each symbol, taken separately, enter into it?” For
example, the complicated expression 5%*c® -+ ac® — Tab* + bc is
simple in respect to the symbol a. If we regard everything but a
as constant, for instance if we put b == 1, ¢ = 2 it reduces to the
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linear expression 25a + 10; and this would be so whatever con-
stant values we took for b apd ¢, we should simply get a linear
expression in a.

Now the expression in equation (II1) above is not particularly
simple in the way in which a and b enter into it, but it is simple in
regard to p and g. If we put in particular values for the other
letters, say @ = 2, b = 1, x = 5 we find it boils down to 4p — 34.
Whatever values we give to a, b, x we always find we get a linear
expression in p and g, of the form Ap + Bgq, where A and B are
constants. This suggests that we rearrange equation (I1I), so that
all the terms containing p are grouped together, and all those
containing g are grouped together.

If this is done we arrive at the result

x—b a-x
y=p(;73) +a(G=5)--aw

This is beginning to have some shape. To sec how the shape
works it is well to go back to our original problem. We were
looking for a function, such that when x — @, y = p and when
x = b, y = q. How does the above expression manage to satisfy
these requirements?

If we put x =a, the right-hand side above becomes
px14+qgx0. If we put x == b, it becomes p x 0+ ¢ x 1.

This shows us how the formula works. Expression (IV) con-
tains both p and q. But when x = q, y is to be simply p; g must be
blotted out somehow. The formula achieves this by having next
to g a bracket that becomes 0 when x = a, so that no ¢ appears in
the answer. On the other hand, when x = b, y should contain g,
and contain it exactly once. So when x = b, the bracket takes the
value 1.

The bracket that goes with p works the other way round. It has
to be 0 and blot out p when x = b, and be 1 when x = a.

Suppose we call these brackets f(x) and ¢(x) for short. Then
¥ = pf(x) + qo(x).

In functional notation, what we have just said will read as
follows; f(a) = 1, f(b) = 0, these two equations ensure that p is
in the answer when x = a and is not there when x = b; ¢(a) =0,
o(b) = 1, these two ensure that g is not there for x = a but is
there for x = b.
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CONSTRUCTION OF THE DESIRED FUNCTIONS

Now we have an idea that can be applied to the more general
problem. We will use it to find the quadratic such that when
x=a,y=p;,when x =5, y=g¢q; when x =¢, y=rt

We begin by supposing y = pu(x) + qv(x) + rw(x). u(x),
¥(x), w(x) are three functions which will have the duty of seeing
that p, g and r appear only when they are wanted. p is not wanted
when x = b, nor when x = ¢. So u(x) must be 0 when x takes
the value b or c. That is easily arranged. If u(x) contains the factor
x — b, it will be zero when x = b. If it contains x — ¢ it will
be zero for x = ¢. So we suppose it to contain both these factors.
Now y is to be quadratic only, so we do not want u(x), v(x) and
w(x) to be anything above the second degree in x. Accordingly
u(x) can only contain the variable factors x—»b and x-—ec.
There is however nothing to stop it having a constant factor as
well. So we may suppose wu(x) = k(x— b)(x--c). This function
will serve perfectly to shut out p when x is b or ¢, but it also has
the job of admitting just one p when x = a. We want u(4) to be 1.
This fixes k. We must have 1 = k(a— b)(a—c), so

1
" (a-b)a-0)
You remember, we were expecting a — b and @ — ¢ downstairs.
. (x b)(x - c)
Accordingly u(x) “hya= c)

This has a recognizable pattern, and without any more working
we can see that v(x) should be taken as

(x—a)x-o¢)

b-a)b-o
and w(x) as

(x—a)x-b

(c—a)c— by

Putting all this together, we have our final result
(x —b)(x - C) (x a)(x—c) + r(x ~a)(x—b)
Pa=b)a- “b-ab-0 " 'c=ac=-b

1. The c here of course has no connexion with the symbol ¢ used ez
in mx + c.

y=
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If you like, by putting in the values a, b and ¢ in turn for x, you
can check that this does, in fact, give the desired values p, g, r.

Moreover, if you want to go on to the next problem, that of
finding the cubic to fit four given points, no new ideas are needed.
The pattern of the above expression is easily adapted. The
formula for the cubic would be longer, but it would be no more
difficult, essentially, than what we have just done.

The complexity of an algebraic expression, therefore, cannot be
judged by the length of the expression, or the number of symbols
it contains. It may be physically tiring, or mentally boring, to
copy out a long formula; but if the longer formula brings in no
new ideas, if its pattern has already been grasped by the mind,
one should not regard it as being more difficult.

We could, if we had any sufficient reason for so doing, write
the formula for the equation of the 17th degree through a given
18 points. It would be wearisome writing, but no new thought
would be required.

GENERALIZATION AND RESEARCH

In reading mathematical publications, one is struck by the large
number of papers which attempt to generalize a known result.
Generalization is probably the easiest and most obvious way of
enlarging mathematical knowledge.

One might think that the natural thing to do would be to think
of some useful problem, and try to solve that. Indeed, much
research begins with the attempt to solve problems. But a really
difficult problem rarely yields to direct attack. One may cudgel
one’s brains for hours on end without getting any idea of how to
begin to attack it. Doubtless it has a solution, but one cannot
imagine what that solution will be like. Imagination needs some-
thing to feed on; one cannot produce a new idea out of a vacuum.
And so one tends to reverse the process. One looks at a method
that has worked well in the past; one tries to make that method
more general; and finally one sees what problems the new results
help to solve!

Often of course the desire to solve a problem guides one’s
choice of subject. One tries to generalize methods that have
worked well on simpler problems of the same type.

An element of generalization is present in every new discovery.
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One cannot help being influenced by the knowledge already in
one’s mind; the new discovery must have been suggested by some-
thing in that existing knowledge.

Sometimes, of course, in trying to generalize a familiar process
one stumbles on something completely novel and unexpected.
One may even discover that no generalization is possible; that the
old process or result is of its own kind, unique.

These remarks may be illustrated by a result found in Chapter 3,
that (ax 4- by)* never exceeds (a? 4 b*)(x* + »?), all symbols
standing for real numbers. This one result can lead to several
different enquiries.

In onc direction it can be generalized indefinitely. It is found
that (ax + by + ¢z)® never exceeds (a® -+ b® + c2)(x? + y? 4+ z9),
and one can find similar results with 4, 5, 6 . . . or any desired
number of terms in the brackets.

Instcad of trying merely to generalize the result one may seek
to generalize the method of proof. A statement that one function
never exceeds another is known as an inequality. The inequality
given in Chapter 3 was proved by showing that the difference of
the two functions was a perfect square. Can all inequalities be
proved by a method of this kind? The answer is ‘Yes’. If one
expression! is less than another for all real values of the symbols,
then the difference can be expressed as the sum of perfect squares.

In Chapter 3 we had the identity

(@® + b¥)(x® + %) = (ax + by)? + (bx—ay)?

This identity shows a remarkable pattern, which leads us off in
yet another direction. The first bracket, a* + b2, is the sum of
two squares. The second bracket, x* + y2, is also the sum of two
squares. And the whole of the right-hand side is the sum of two
squares. This is often quoted in words — if the sum of two squares
is multiplied by the sum of two squares the result is the sum of
two squares.

Can this be generalized? Can we, in thc statement above,
replace the word ‘two’ throughout by any other number?

Well, of course, we can replace it by ‘one’, since

(@)(x?) = (ax)™.

1. By ‘expression’ is to be understood the simple type of function nor-
mally considered in elementary algebra.
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This is not a very exciting result. A much more striking pattern
comes on replacing ‘two’ by ‘four’. The identity then is

@+ b2+ 4+ do)(x® 4+ y? + 22 + 12) = (ax + by + cz + di)?
+ (bx—ay + dz—c1)?
+ (ex—dy—az + br)?
+ (dx + cy—bz—at)?

There is another identity in which eight squares multiplied by
eight squares are equal to the sum of eight squares. I will not
reproduce it here.

So we have had identities with 1, 2, 4 and 8 squares. What will
the next one be? Obviously, one thinks, 16. But it is not so. The
sequence breaks off. It has been proved that only for 1, 2,4 and 8
can such an identity exist. Here then is something that cannot
be generalized.

ALGEBRAS

Very closely related to the question just discussed is the topic of
linear algcbras.

Ordinary people are satisfied with plain numbers like 5 or %,
but clectricians and mathematicians have found it of great benefit
to bring in a new symbol, i, together with the rule that ;> may
be replaced by - 1. The resulting expressions of the form x + iy
can then be handled by exactly the same rules as the numbers of
ordinary algebra.

It is natural to ask, ‘It has been found advantageous to bring
in this new number i. Why not bring in a few more letters, and
see if good results follow?’

It sounds a promising line of enquiry, but the main result is
negative. It has been proved that the extension of the real num-
bers to the complex numbers, x + iy, is the only extension that
can be made if the rules of elementary algebra are to be preserved.
Complex numbers are thus not merely useful; they possess a
unique status.

If one wants to go beyond them, one must be willing to sacri-
fice something. The usual law to sacrifice is ab = ba. If we do
not mind a times b becoming different from b times a, we can go
on to quaternions, where we meet numbers such as (say)
3 + 4i + 5j + 6k. The rules for combining the letters i, j, k are
rather more elaborate than the rules for ordinary complex num-
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bers. They are expressed by the following equations /# = -1,
Pl k=1 ii=k jk=1i ki=jiji= -k ki= -i
k= -j.

1 give these equations in full in case you would like to use them
to obtain the identity for four squares multiplicd by four squares
given in the previous section.

If you multiply out (a -+ ib + jc + kd)(x—iy—jz—kt) by
means of the rules for quaternions, you will find that you can get
rid of i2, ij, etc., and express the product in the form

() +i() + 4G + kCL),

where the brackets contain certain algebraic expressions. The
brackets are, in fact, exactly the same as the brackets occurring
in the identity for four squares.

Quaternions themselves also mark a milestone. If you want to
go bevond quaternions, you have to be prepared for still further
sacrifices of ordinary algebraic laws. You must in fact be pre-
pared to meet numbers p and ¢. neither of them zero, but yet
having their product pg =0, a thing which, of course, is im-
possible in ordinary arithmetic.

Ordinary nunibers, complex numbers, and quaternions are thus
maiked off from all other algebras by a great gulf, and are in a
class by themsclves as objects of mathematical study. All three
have, in fact, practical as well as theoretical importance.



CHAPTER FIVE

On Unification

Throughout life he was always seeking for hidden connex-
ions and an underlying unity in all things.

Written of Friedrich Froebel

(R. H. Quick, Educational Reformers)

In the last chapter we saw that every particular result can be
thought of as a source from which generalizations spread out in
all directions. The mind feels compelled to contemplate these
generalizations, and at the same time feels the tremendous burden
of this never ending variety. It becomes urgently necessary to
compress knowledge again to manageable proportions, to unify
this diversity of results.

One of the most satisfying moments in mathematical history is
the instant when it appears that two departments of mathematics,
until then regarded as separate and unconnected, are in fact
disguised forms of one and the same thing.

One such striking piece of unification is within reach of the
school syllabus. School mathematics seems to fall into two parts.
On the one hand we have arithmetic, from which develops
algebra, dealing with numbers. On the other we have geometry,
and its development trigonometry, admittedly using numbers
but mainly concerned with shapes. Trigonometry makes use of
algebraic manipulation, but its foundation at any rate seems to
lie in geometry and geometrical shapes, something quite distinct
from the counting which is the foundation of arithmetic.

But then certain patterns begin to emerge in these two depart-
ments. In algebra we work out the powers of (1 4+ x) and find

l+x=1+x
(+x)2=1+4+2x+x2
T+ x)P=143x+3x24+x°
(1 +x*=1+4x + 6x® + 4x* + x*
and thus arrive at the numbers of Pascal’s triangle!
1. This name is given to the numbers listed in M.D., Chapter 8, Table V1.
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11
1 21
1 3 31

1 4 6 41

In trigonometry we meet the formula for tan (4 + B), namely

. tan A+ tan B
an (4 +B) = 1 A tan B
From this formula, by putting B = A4, tan 24 can be found.
Then, by putting B = 24, and using the last result, tan 34 can be
found, and so on. If for shortness we write 7 for tan A4 the results
are

tan 4 = ¢
tan24 = Eﬂt,_’
— 13
tan 34 = 13% 32'2
tan44 = 1{12;4{_[‘

Here exactly the same set of numbers appear again. For instance,
the numbers 1, 4, 6, 4, 1 that appeared in (1 + x)* appear in
tan 44 in a wavering line
4 4
1 6 1

Admittedly there are minus signs before some of them. Neverthe-
less, the fact that the actual numbers of Pascal’s triangle occur
here is sufficient evidence of a common underlying pattern.

We might note this simply as an interesting oddity. But it was
emphasized in Chapter 2 that pattern is significant; it is a symp-
tom of some important relationship and calls for investigation.
If we sought the basic reason for this common pattern we should
eventually arrive at the famous equation!

€ = cos 0 + isin 0.
This relationship brings about the complete annexation of

trigonometry by algebra. It becomes possible to define cos 6 and
sin 6 as follows:

1. M.D., Chapter 15.
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cos 0 = ; (e® + £7%%) and sin 0 = —2!-1,-(e"9—e""’),

purely algebraic definitions without any appeal to geometry.
Trigonometry thus becomes purely a branch of algebra. All the
properties of sines and cosines follow from the definitions given
above, and can be proved more quickly and easily than by the
usual elementary methods.

A skilful teacher can lead his pupils to discover for themselves
both the Binomial Theorem and the relationship of trigonometry
to algebra, thus reproducing in the classroom the discoveries of
the seventeenth and eighteenth centuries, and giving the class
the experience of witnessing and assisting a mathematical dis-
covery.

The pleasure given by a unifying discovery is greatest when
a person has struggled with the masses of undigested information
in the old form, and is thoroughly familiar with these. Thus the
unification of trigonometry and algebra above is appreciated by
pupils who have worked through school trigonometry. One does
not get the same satisfaction if one is presented with a lot of new
information, which one only partly comprehends, and then hears
of a unifying principle. For this reason many examples of
mathematical unification which would be of interest to a mathe-
matical student are not suitable for discussing in this chapter.

THE HYPERGEOMETRIC FUNCTION

At the end of Chapter 2 mention was made of a very remarkable
example of unification, a single function which contained in itself
very nearly every function that had previously been studied.

There are many different viewpoints from which the hyper-
geometric function can be regarded. Here we can discuss only
one of these viewpoints — not the most instructive, but the one
most capable of being shortly described — the hypergeometric
function as represented by a series.

A very wide class of functions have the property of being
described by means of series.! In elementary texts you will find
such examples as the following

1. See M.D., Chapter 14, especially the sections ‘Other Scries’, ‘The
Dungers of Series’, and *The Series for e*’.
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1——1—*—=1+x+x’+x’+

1

1 -x?
loge (I + x) = x—3x* 4+ Ix3—Ixt...
tanlx = x—x® + 3x% —3x7 ...
PR T SV SV S
1 1.2 1.2.3 1.2.3.4
nct to mention more formidable-looking results such as
. . X0 2 xt 24 x* 246 x°
in 0t ="ty 435 6 Tas s
This is only a very small sample from the scrics that have been
discovered from time to time, with the following two properties
(i) the function represented is one that occurs naturally in elemen-
tary mathematics, (ii) the series shows a definite pattern which
allows us to write down further terms if we want them. For
example, the next term in the series for tan ! x would obviously be
-+ » x?; the next term in the last, rather complicated-looking
series would be

14 2x +3x2 + 4x° +

I

2.4.6.8 x°

3.5.7.9 10°
I should perhaps mention to avoid any misunderstanding that the
dots are intended to express multiplication. 2.4.6.8 means
2x4x6x8.

Anyone interested in secing a great mass of examples of this
kind will find them in the older calculus books, for example in
Chapter 5 of Edwards’ big Differential Calculus.

Particularly by studying the more complicated examples of
such series, one can arrive at the conclusion that they are all
related more or less directly to the following series

a@ + 1)bb + 1) ,

1+ T‘ e+ Y

a(a + D(a + 2)b(b + DO + 2)x

1.2.3¢(c + I)(c + 2)
This series is denoted for short by the sign F(a, b; c; x), because
the series contains the three constants a, b, ¢, to which we can
give values to suit ourselves, and the variable x. The pattern of the
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above series is not complicated - for instance, you would find no
difficulty in writing down the terms of the series containing x* and
x5,

Some of the series we have given above can be obtained
directly from this series. To take a very trivial example, if we make
a=b=c=1,wegetl+x+ x4+ x®+ ..., the first series in
our list. We can get the second series by puttinga =2, b =1,
c=1.

The third series, for log (1 + x), we obviously cannot get
directly by putting in values for a, b, ¢, because that series starts
off with x, while F(a, b; c; x) starts off with 1. However, if we put
a=1,b=1, c=2, we get something which is close to what we
want. Each term is short of a factor x, and also we do not get the
alternate + and — signs we need. But these defects are easily
remedied, and you can easily verify the result

log(1 + x) =xF(1,1;2;—x).

In the same way, we may meet series like tan~! x in which only

the odd powers of x occur. The appropriate result here is
tan 'x = xF(3, 1; 13; — x?).

To get e* we have to allow some of the quantities to tend to
infinity.

But none of these are very difficult operations; to bring in an
extra factor x, to replace x by -x or by —x? to let a constant
become very large — all can easily be done. Regarding such
operations as very simple, we see that the function F(a, b; c; x) is
remarkably adaptable. We can get almost any of the elementary
functions we want from it without difficulty.

Besides the functions that occur in school work, there are
many functions used by engineers or physicists - the Legendre
polynomials and the Bessel functions, for example — which are
particular cases of the hypergeometric function. In fact there
must be many universities to-day where 95 per cent, if not 100 per
cent, of the functions studied by physics, engineering, and even
mathematics students, are covered by this single symbol
F(a, b; c; x). ’

What does this fact mean? That there are no other functions
besides the hypergeometric type? Most certainly not; it is quite
easy to write down functions of other types. The explanation
lies in a different direction altogether.
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RECOGNIZING OUR LIMITATIONS

Imagine farmers living in a country where no other tool was
available except the wooden plough. Of necessity, the farms would
have to be in those places where the earth was soft enough to be
cultivated with a wooden implement. If the population grew
sufficiently to occupy every suitable spot, the farms would
become a map of the soft earth regions. If anyone ventured
beyond this region, he would perish and leave no trace.

It is much the same with mathematical research. At any stage
of history, mathematicians possess certain resources of know-
ledge, experience, and imagination. These resources are sufficient
to resolve some problems but not others. If a mathematician
attacks a problem which is completely beyond the range of the
ideas available to him, he publishes no papers and leaves no trace
in mathematical history. Other mathematicians, attacking prob-
lems within their powers, publish discoveries. Unconsciously,
therefore, the map of mathematical knowledge comes to resemble
the map of problems soluble by given tools.

But of course the discoveries themselves open the way for
the invention of fresh tools. As the coming of the steel plough
would change the map of the farmlands, so these new tools
open up new regions of profitable research. But the new tools
may take centuries to come, and while we wait for them, the
frontier remains an impassable barrier.

Something of the sort seems to be the case with the hyper-
geometric function. It appears to be the limit of the kind of pattern
we are able to recognize at present. If one goes just beyond its
boundaries, everything seems formless. Beyond doubt, pattern
exists there, but it is the kind of pattern we have not yet learnt to
see.

I do not wish to imply that the hypergeometric function is the
only function about which mathematicians know anything. That
is far from being true. There are other fertile valleys with which
the wooden ploughs of the twenticth century can cope; but the
valley inhabited by schoolboys, by engineers, by physicists, and
by students of clementary mathematics, is the valley of the
Hypergeometric Function, and its boundaries are (but for one
or two small clefts explored by pioneers) virgin rock.



CHAPTER" SIX

Geometries other than Euclid’s

1 could be bounded in a nutshell and count myself a king of
infinite space.
Hamlet

LEARNING TO FORGET

The main difficulty in many modern developments of mathema-
tics is not to learn new ideas but to forget old ones. To take, for
example, Einstein's theory of relativity; I do not believe that an
angel, a disembodied creature without any experience of space or
time, would find Einstein’s various theories any harder to under-
stand than the older views of the universe. The difficulty in
grasping a new theory is that one tends to carry over to it habits
of thinking which belong to the old theory. In the last 150 years,
mathematical ideas have been in a continual state of flux.
Traditional mathematical ideas have been closely examined and,
again and again, have been found either meaningless or wrong. If
there is any value in mathematical education as influencing one’s
general attitude to life, it probably lies in this training. The
present age is a striking example of the chaos produced by the
slow movement of men’s ideas. To future ages ~ if there are any
future ages, if we do not smash the whole basis of life in our
blunderings — we shall most certainly appear savages and lunatics.
But it is very hard for us to look at the present world and see it
exactly as it is, or could be; we are bemused by the mists of the
past.

Non-Euclidean geometry is one of the new ideas of mathema-
tics; in fact, the first and most striking break with tradition. Before
1800, and I suppose still to-day for some schoolboys and school-
girls, Euclid is the one true geometry, something certain and
proved. As children we tend to think of ‘Geometry’ rather than
‘a geometry’.
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PHYSICAL AND MATHEMATICAL TRUTHS

It is necessary to make a distinction between something which is
physically true and something which is mathematically true.
Physics rests upon experiment. Physical truths are — for example -
that the earth is (very roughly) a sphere of 4,000 miles radius, at a
distance of about 90,000,000 miles from the sun. But one could
very easily imagine these things being otherwise. One could
imagine the earth being smaller or larger; its shape could be
changed to a cube or a tetrahedron; there is no special reason why
it should be just 90 million rather than 47 million or 132 million
miles from the sun.

Mathematics is concerned with things that could not be other-
wise without logical contradiction. It is concerned with how one
thing follows from another. A jury may on occasion return a
verdict that is logically correct but actually untrue. Suppose for
example that a person in fact has committed a murder, but that
insufficient evidence is available to prove guilt. The jury act
correctly in returning a verdict of ‘Not guilty’; the guilt has not
been proved; whether the guilt exists is another question. The jury
in fact act as mathematicians. If new evidence is brought to light
after the trial, the jury are not to blame. In much the same way,
one might say that a general acted reasonably in view of the
information available to him at the time of the battle, even though
the actual consequences were disastrous in view of certain facts
which he did not and could not know.

The mathematical question then is not, ‘Do the angles of a
triangle in fact add up to 180°?” but ‘Is it logically necessary that
the angles of a triangle must add up to 180°?” If Euclid’s were the
one logically possible geometry, it would mean that if you were
going to create a universe, that universe would have to have
Euclid’s geometry. Can we imagine a universe with a geometry
different from ours? :

There is of course also the question for the physicist: is the
geometry of this universe in fact Euclid’s?

Mathematically it is certain that other geometries are possible;
physically it may well be that Euclid’s geometry is not exactly
true of this universe.
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NUMBER OF DIMENSIONS

We may begin loosening up our ideas by thinking about the num-
ber of dimensions. We live in a space of three dimensions; you can
go x miles to the East, y miles to the North, and z miles up. Your
distance from where you started would then be s miles, given by
the formula s? = x? + »? + z%

If you are now deprived of your balloon or helicopter, so that
vou can no longer rise from the surface of the earth, you are now
confined to a space of two dimensions. You can go x miles to
the East, and y miles North, and your distance is given by
s = x% 4y

If we limit you still further, by requiring you to ride in a truck
on a straight railway, running East and West, you now move in
one dimension only. You can go x miles to the East (if you travel
West x will be a minus number), and the distance you have gone
is given by s? = x2, which I leave in this form to keep the analogy
with the earlier two formulae. Finally, if you were chained to a
post, you could not move at all: you are now in 0 dimensions.

To us it seems quite reasonable that there should be just these
four possible spaces — points, lines, planes and solids. But let us
see how it looks to an inhabitant of another universe. Suppose you
have to explain the ideas of geometry to an angel over the tele-
phone. By an angel I mean some creature with no physical
experience at all. Length, colour, and so forth mean nothing to
it. We must imagine it able to hear and speak, so that we can
communicate with it, and we will suppose it to be extremely
intelligent. But of course we cannot show it diagrams or sketches;
for one thing, we are speaking to it over the telephone, and for
another, it cannot see or touch. We are able to convey to it what
number means. We go tap, tap, tap on the telephone mouthpiece
and say, ‘Those were three taps’. Being so intelligent, it soon has
the idea of the whole numbers 1, 2, 3, 4, 5 ... and from these we
explain fractions ¥ and % and so forth, and we also manage to
make clear the meaning of numbers like V2 and = and e. All of
these of course have to be explained purely arithmetically: we
cannot explain =, for instance, as the circumference of a circle
divided by the diameter, since the angel does not know what a
circle is, but we can give an infinite series for =.
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Now we come to geometry. Obviously the only way we can
explain it is by mecans of co-ordinate geometry, in which every
geometrical fact is turned into a fact of arithmetic or algebra. So
we start off. The angel does not know what East, North and up
mean, so we do not bring these terms in. We start off, ‘A line is
made up of points. You cannot understand what we mean by
points or lines, but anyhow, on a line, a point is fixed by giving a
single number, x. In a plane, a point is fixed by giving a pair of
numbers (x, y). In space of thrce dimensions, a point is fixed by
giving threc numbers (x, y, z). Then there is a thing called distance.
This is measured by a number, s.

On a line s? = x2

In a plane s? = x? -} 2

In three dimensions, s = x2 + y* + 22

Here we stop. The angel is disappointed. It expected us to go on
and say that in four dimensions a point was fixed by four num-
bers (x, y, z, ) and distance was given by s* = x? 4 y* + z? + 1%;
and after this it expected to hear something about five, and six,
and seven dimensions, and so on, indefinitely.

Mathematically, there is no obvious reason for stopping at 3
rather than any other number. In this universe, North is perpendi-
cular to East, and up is perpendicular to both, but we cannot find
a fourth direction perpendicular to all three. There is however no
reason why a universe should not exist with four or five or six
dimensions. We have got used to three, but that is not a reason.

Indeed, there is no nced to go as far as 3. One could create
a perfectly comfortable universe with only two dimensions; the
people wouid be shapes moving about in a plane. They would
have East and North, but no ‘up’. You may ask, ‘But what is
above or below the plane?’ There is no answer; this is a question
you are not allowed to ask. It has no physical meaning in a plane
universe. A dweller in four dimensions might just as well ask us,
"You can go East and North and up, but what happens if you
want to go in the fourth direction, at right angles to all three?’ We
can only answer, ‘There is no direction at right angles to all
three.”

Later in this chapter we shall consider people living in the
surface of a sphere. You may ask ¢ What is inside the sphecre, what
is outside it?” You must not ask this! The surface of the sphere is
their universe. For them, nothing else has physical reality.
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In fact, the whole nature of a universe would be changed if
creatures in it gained the power to enter an extra dimension —
that is, if the idea of a further dimension became a physical
reality.

In a plane (Figure 9), for instance, a square constitutes a prison.
If a square is drawn on the top of a table, and a coin placed inside
the square, the coin cannot leave the square without passing
through the walls of the square - that is to say, if the coin simply
slides on the table’s surface, in two dimensions. But if the coin is
allowed to move into the third dimension ‘up’, it can go from the
inside of the square to the outside of the square, without passing
through the walls of the square.

P /

I
J

Figure 9

In the same way, if we in three dimensions acquired the power
to travel in a fourth dimension, we could escape from a closed
prison cell. Suppose for example you had the power to travel in
time. If you were locked up in a fortress, you could travel back in
time to before the fortress was built, walk half a mile, and then
return to the present day. To the rest of us ordinary dwellers in
three dimensions it would scem that you had disuppeared from
inside the fortress, and reappeared half a mile away.

But this is pure fantasy. We can imagine it, but we cannot do it.
It has matliematical but not physical reality. In the sume way,
when we come to consider our universe that is the surface of a
sphcre, you must remeruber that only the surface is physically
real to these people. To us as creators it may have meaning to
talk of being inside or outside the sphere; philosophers in our
spherical universe may speculate about such ideas — as I above
speculated about journcys in time — but these are idle speculations;
none of our creatures can, in actual fact, leave the surface of the
sphere. That is their world, that is their reality.

It may be well to make clear that, as words are used among
mathematicians at present, the mere fact of a universe having
4 or 5 or 6 dimensions would not make it non-Euclidean. True, it
would be a different universe from the one Euclid thought about;
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but the term non-Euclidean is reserved for another use. The central
feature of Euclid’s geometry is Pythagoras’ Theorem. In the plane,
Pythagoras® Theorem is simply the formula s? = x? + y? that we
had earlier. In three dimensions, Pythagoras’ Theorem takes
the form s* = x2 4- % 4- z% In four dimensions, it would be
s2=x7+4 %+ 7%+ 1 in five dimensions, s®=x2+ y%+ 22+ 2+ u3;
and so on. We should describe these geometries as ‘Euclidean
space of 4 dimensions’ and ‘Euclidean space of 5 dimensions’,
because they are built around Pythagoras’ Theorem in an amended
form. By a non-Euclidean geometry, on the other hand, we mean
one in which Pythagoras’ Theorem is no longer true. This is a
much more profound change than simply throwing in another
dimension or two.

MATERIALS FOR A NEW UNIVERSE

It may very reasonably be said that mathematicians are wasting
their time thinking what the universe might have been like,
instead of being good physicists and discussing what it is. The
moon might have been made of green cheese, but the fact is of no
significance. Equally, it could be argued, it is pointless to say that
the universe might have had four or only two dimensions of
space, when in fact it obviously has three.

In a story of Graham Greenc’s a lawyer questions a witness;
*You are sure this is the man vou saw?” *Yes.” ‘Could you swear
it was not his twin brother who is sitting at the back of the
court?’ After the witness had seen the twin, the witness admitted
it was impossible to tell one from the other.

Mathematicians have done something the same with the
universe. We were all wiliing to swear that we were living in
Universe I, Euclid’s universe. Mathematicians have produced two
other unmiverses, Universe II and Universe 111, which are not
identical with Universe I - indeed, they differ in very important
respects — but the resemblance is sufficient to make us uncertain
whether we live in I, IJ, or I1I. We are in the position of the child
who ran out in a street of mass-produced houses, and could not
remember which was its home. .

Let us first consider the resemblances between Universes I, II,
and IIL In all of them there are rigid bodies, which are able to
move about. By a rigid body I mean something like a brick or a
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Figure 10 Figure 11

steel bar, not something like clay or putty. You would not make
a ruler out of putty, or elastic.

To test whether bodies are rigid is fairly simple. In Figure 10,
the points 4 and B of the horse-shoe shaped object just touch the
points C and D marked on the ruler. I separate the objects and
wave them about, and then bring them together again; if each
time I do this, I find that the points 4 and B can be made to
touch C and D, 1 conclude that the objects are rigid. 1 can then
bring in the idea of length, and say that 4B has the same length as
CD.

We also assume, in each of the Universes 1, 1I, and I, that
bodies behave in the same way at all places. If 4B has the same
length as CD when I compare the objects here, AB and CD will
have the same length if I take them both to America and measure
one against the other there.

Two assumptions so far: (i) rigid bodies, freely movable, making
possible the dcfinition of length, (ii) ihe properties of space the same
at all points.

By a line we shall understand the shortest distance between two
points. We can get a line, physically, by making a chain of rigid
bodies, as shown. If we pull 4 and £ until they are as far apart as
possible, the points B, C and D, at which the successive links of
the chain are joined to each other, will
lie on the straight line joining 4 to E Bg B,
(Figure 11). Bs

We make assumption (iii), there is only

one line joining two points. B,
Y ou may notice that our rigid bodies
allow us to measure angle as well as B,

length. Figure 12 shows how to make a

protractor. We have a rigid triangle, Figure 12

ABC. We swing it round to the position

AB,C,, where AB, is in the same direction that AC was at first.
Then we swing it round to the position AB;C:, and so on. If the
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triangle ABC were chosen with a sufficiently sharp point at A4,
the lines AB, AB,, AB,, etc., would be very close together, and we
could measure angles quite accurately. We can talk of right
angles in Universes 1I and 111, just as well as in our familiar
Univeise 1. Circles, too, can be drawn. All the points B, B,, B, ...
are the same distance away from A. They lie on a circle, centre A.
All of this is quite homely and usual.

WHERE PEOPLE FIRST DOUBTED EUCLID

Most of the things Euclid assumes, or takes for granted without
mentioning, are very ‘reasonable’ — regarded, that is, as a phy-
sical description of this universe. The ordinary man is prepared
to agree to them. But one of the things Euclid assumes is not so

Figure 13 Figure 14

obvious. He assumes this : through a point A (Figure 13) one and
only one line AB can be drawn paraliel to CD, and the angies BAC
and ACD then acdd up to 180°. If their sum is less than 180°, AB
will meet CD somewhere to the right of C. If their sum is more
than 180°, AR produced will mect CD somewhere to the left of C.

Now most of us would accept this as a theorem, something
proved from simpler assumptions. But Euclid does not give itas a
consequence of anything simpler. You must agree to this right at
the beginning; without this, we cannot start. Euclid does not say
it is obvious; he does say he cannot reduce it to any simpler or
more plausible assumption. Over the centuries many people tried
to do what Euclid had failed to do, to reduce this to some simpler
idea.

A certain simplification was achieved. It is not hard to show
that, if there is one and only one parallel line through 4, the
business about 180° follows from it. But can we assume that there
is a parallel line, and only one? And how can we decide? To
establish that two lines are parallel, you have to produce both of
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them to infinity, and see that they still do not meet; and infinity
is a place where none of us have been.

Let us look a little more closely at what is involved. In Figure 14
AOisdrawn perpendicular to the line CD. P and Q are two points
on CD. Q is just as far to the left of O as P is to the right of O.
AM is a line drawn to the right from A, so that the angle OAM is
90°. AN is drawn to the left, so that angle OAN is 90°. As these
two right-angles add up to 180°, NAM is a straight line.

According to Euclid, if P moves off to the right along CD, the
line AP will swing round closer and closer to AM; it will get as
near to AM as you like, but will never quite reach it. On the left-
hand half of the figure (which is symrnetrical about OA4), the line
AQ similarly will get indefinitely close to AN, but will never
reach it.

Figure 15

Euclid may be right about this. Let us call the possibility that
he is correct Possibility I. It corresponds to Universe L.

What can happen if he is wrong? He says that 4P approaches
as close as you like to AM but never reaches it for any finite dis-
tance OP. This could be wrong in two different ways:

Possibility 11. For a finite distance OP the line AP may actually
reach the position AM,

Possibility 111. On the other hand, it might be that AP could not
approach indefinitely close to AM (Figure 15). That is to say, as
P moves to the right, AP approaches, without ever actually
reaching, the direction AR, which lies below AM. In the same
way, as Q moved to the left, 4Q would approach, without ever
reaching, the direction AL, which lies below AN.

If you draw a figure to illustrate Possibility II, or look at the
figure 1 have drawn for Possibility 111, you will say that these
figures look wrong. I agree; to peoplc who have been brought up
as we have, they do look wrong. For centuries mathematicians
belicved that they were impossibilities — although no logical in-
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consistency could be proved against either of them. About 1830,
two mathematicians working quite independently — Lobachewsky
in Russia and Bolyai in Hungary - published papers which
admitted Possibility 1IT as a reasonable viewpoint. In 1854,
Riemann recognized Possibility II.

It is not surprising that Possibility 1II was seen before Possi-
bility 11, for Possibility 1I has a strange consequence. Under (II),
the point P can move a certain finite distance, say &, to the right of
O, and then OP coincides with AM. That is to say, NM meets
CD at a distance £ to the right of O. But by considering Q, by
just the same argument we sce that NM meets CD at a distance k&
to the left of O. Now tiwo lincs can only meet in one point. So the
point you get by going a distance A to the right of O must be the
same as the point you get by going a distance k to the left of O.
In fact, the straight line must behave rather like a circle. But why
not?

1f Possibility 1I is taken, there are no such things as parallel
lines. Any line drawn through A4 will meet CD somewhere.

Possibility 111 is not nearily so drastic. If the angle RAM was
very small — say a millionth of a degree — we should have the
utriost difficulty in distinguishing the geometry from Euclid’s.
But there would be an infinity of lines through A parailel to CD -
any line in fact that made an angle of less than a millionth of a
deuree with AM. But, without very accurate measuring apparatus
it would be very diflicult to distinguish this little bundle of paral-
lel lines from the single parallel line of Euclid.

A SPHERICAL GEOMETRY

I now want to consider the life of creatures whose whole universe
is the surface of a sphere. This geometry is not a perfect illusira-
tion of Riemann's geometry — Universe 1I - but it throws a good
deal of light on Universe 11, it illustrates several logical points,
and, since a sphere is so well known, it is very easy to see what is
happening. 1t is useful to have a globe of the world, or a bali, at
hand when reading this section, and also a small piece of plasti-
cine or similar material.

First of all, the surface of the sphere does satisfy assumptions
(i) and (ii). A rigid body can move freely on the sphere. If you
mould your plasticine so that it just covers India on the globe,
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you will find the plasticine can then slip freely on the globe’s sur-
face. You can slide your plasticine outline of India until it lies
over Europe, you can rotate it freely, and all without leaving the
surface of the sphere. Assumption (ii) was that the properties of
space were the same at all points - this is true of a sphere: any
point of it is exactly like any other point.

If your plasticine sets hard, you have a rigid body. By moving
it about the sphere, you can compare lengths at different places.
It may interest you to go back to the earlier diagrams - for making
a protractor, for instance, or of the ruler and the horseshoe - and
see that all this argument still works on the surface of a sphere.
We can speak of lengths and angles on the globe’s surface.
Lengths can be mecasured by a thread stretched on the globe. The
meridian of Greenwich meets the equator at right angles.

What is a ‘straight line’ in this universe? It is the shortest
distance between two points. As was emphasized earlier, the
universe is limited to the surface of the sphere; the shortest dis-
tance means the shortest route on that surface — no tunnelling
allowed! To us, looking at the globe from outside, the straight
path appears curved; the equator, for example, gives the shortest
route between two points on itself; the shortest way from London
to the Gold Coast is to go straight down the meridian of Green-
wich. For the purpose of the earthbound, these are ‘straight
lines’; they are given by the definition, they are the shortest paths.

J K

Figure 16

A defect of this model, from the point of view of geometry (1),
is that ‘straight lines’ meet in two points; for example, any two
meridians meet both at the North Pole and the South Pole. But so
long as we keep to a limited part of the world this complication
will not arise.

The globe illustrates well one aspect of geometry (IT) — there are
no parallel lines. Any two ‘straight lines’ meet. In Euclid’s
geometry, if you take a straight line JK and make right-angles
at both ends you get a pair of parallel lines (Figure 16).

But try this on the surface of the globe. Take J and K, for
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example, on the equator (Figure 17). The two ‘lines’ at right
angles to JK will be meridians, and these will meet at the North
Pole.

An interesting objection to the statement that there cannot be
parallel straight lines on the surface of the globe is ‘But what
about railway lines?’ The whole point of rails is that they should
remain a constant distance apart, to leave room for the axle. How
then can they meet?

7 K

Figure 17 Figure 18

Let us put this in rather more geometrical terms. If we had one
rail of a railway track laid, we could scrape out the track where
the other rail ought to go by having a rod so arranged that it
could slip along the first rail, but always remaining perpendicular
to that rail (Figure 18). In fact (in Euclid’s geometry) ‘the locus
of a point, which moves so that its perpendicular distance from a
given straight line is constant, is a parallel straight line’. What
happens 1o this construction on the globe?

Let us imagine the first rail laid along the equator. The second
rail is to be a constant distance frem the equator. Any of the
parallels of latitude will do for the second rail. We might take the
Arctic Circle for instance. A large enough vehicle could run with
one pair of wheels on the equator, the other on the Arctic Circle.
And certainly the equator and the Arctic Circle ncver meet.
Bere then are parallels? Yes, but not paraliel straight lines. The
Arctic Circle does not give the shortest distance between two of
its points; if one had to go from one point on the Arctic Circle
to the opposite point of that circle, it would be shorter to nip
across over the North Pole.

Do not think that the surface of the globe gives a geometry
entirely different from Euclid’s. Most of the theorems of Euclid
which do not depend on the idea of parallel lines remain true on
the globe. For example, the theory of congruent triangles is just
the same; the base angles of an isosceles triangle are equal; the
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perpendicular bisector of 4B is the locus of points equidistant
from A and B - these results hold just as well on the globe.

Two results which depend on parallels are ‘The angles of a
triangle add up to 180°’ and Pythagoras’ Theorem. Neither of
these hold on the globe.

Itis easy to give an example to show that the angles of a triangle
do not add up to 180°. Consider the triangle formed by starting
at the North Pole, going down the meridian of Greenwich until
the equator is reached; there turn East and go a quarter of the
way round the equator; you are now in longitude 90°E.; turn to
the North and go straight back to the North Pole, along ihe
meridian 90°E. This triangle has three angles, each of which is a
right-angle. The sum is therefore 270°. On the globe, the sum of
the angles of a triangle is not a fixed quantity. The larger the
area of the triangle, the larger the sum of its angles.

S 4

X
Figure 19

The same triangle shows quite clearly that Pythagoras’
Theorem does not hold, for it is right-angled and yet its three
sides are equal (Figure 19). If the radius of the globe is taken as
the unit, the formula for the globe corresponding to Pythagoras is

COS § = COS X COS y
The letters x, y, s here have the same meaning as in the formulae
given earlier in this chapter, under the heading ‘Number of
Dimensions’. x and y are the distances along two ‘straight lines’
on the globe, at right angles to each other. s measures the third
side of the triangle, the hypotenuse.

The geometry of the sphere evidently is very different from the
geometry of the plane. Would it be possibie for people to live in
such a spherical universe for thousands of years, and to believe
that they were living in a plane, until an Einstein arrived? It is
possible to mistake a sphere for a plane; the Flat Earth contro-
versy is evidence for that. The mistake is only possible so long as
you are living on a very small part of the sphere. A very small
piece of a sphere is almost indistinguishable from a very small
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part of a plane. An ant living in the Sahara desert may be par-
doned if it believes in the Flat Earth theory.

It was mentioned above that the sum of the angles of a spherical
triangle depends upon the area of the triangle. For a very small
triangle, the area is almost zero, and the sum is almost 180°.

Pythagoras’ Theorem also holds for very small triangles on a
sphere. This may surprise you, as the formula above with cosines
in it looks very different from s? = x* + y But in fact, if x, y
and s are small, the two formulae do agree. There is a series for
the cosine, namely

cosx = 1—3x% -+ Jixt—5lax® ...
(M.D., page 206). This series, incidentally, would give us a way of
explaining what we meant by cosine to our angel friend; because
the ordinary school explanation of cosine, based on drawing
diagrams, would be impossible.

If x is a small number, x* and higher powers of x are very small
compared with x2. Accordingly, if x is small, cos x is, to a high
degree of approximation, simply 1 — 3x2%; the higher powers of x
hardly affect the sum of the series. For instance, if x = 0-001,
1 — #x? would give cos x correct to 12 places of decimals, which
surely is enough. We use the same approximation for cos y and
cos s. Accordingly cos s = cos x cos y becomes

I-4s* =(1-#(1-19
We multiply out the right-hand side of this equation, cancel 1
from each side, and find #s% = $x* 4+ 42— $x%2 But x and y
are both small, so x?y? again only affects the twelfth place of
decimals or thereabouts, and we neglect it. Multiplying what is
left by 2, we have s* = x* + y?, the familiar form of Pythagoras’
Theorem.

We expected this answer, since we had observed that small
parts of spheres resembled small parts of planes. The calculation
served only to confirm what we already knew. Yet the calculation
brought to our attention certain things about cosines which
otherwise we might never have noticed. This is one of the ways in
which mathematical discoveries are made. We know, from our
expericnce, something to be true. We have formulae in which
that truth can be stated. By trying to translate our intuitive
knowledge into a formal proof, we discover new aspects of the
formulae.
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SPACE FINITE BUT UNBOUNDED

The traditional view of the universe is that it is infinite in size.
The argument was, suppose you start to travel in any direction
and keep on in a straight line. What is to stop you going on as
long as you like? Surely we shall not find that the universe is
bounded by a marble wall, that it is impossible to pass. If not, we
can travel in a straight line as far as we like; that is to say,
starting from the earth, the universe stretches out for an infinite
distance in all directions. If this is not true, then there must be
some sort of barricr surrounding us. And what about the other
side of the barrier? Would not that be space too? Even if you
admit the barrier, surely you admit something beyond it? In fact,
space is still infinite, even if there are a few barriers scattered
about.

Tt is sometimes held that relativity is a complicated theory. But
was the old theory a simple one? It was a terrific idea, that of an
infinite universe actually existing. Some philosophers have held
that infinity can exist only as a possibility. There is no limit to the
number of words that I might say, but the number of words that I
do say is — mercifully - finite. Is there a contradiction in imagining
an actually infinite universe? I can only say, I do not know.

With relativity, a new twist was given to the argument. The old
argument was, either you must be able to go on for ever to new
ground, or you must run into a barrier. But mathematicians have
discovered a third possibility. It is possible for a universe to be
finite — to occupy a limited amount of space — and yet for there to
be no barriers. This is the idea that was at one time such a popular
object of discussion — “space finite but unbounded’.

The spherical universe described in the preceding section is in
fact an example of this possibility. On the surface of the earth
there are no barriers. If you walk in a ‘straight line’ on the earth,
you can go on as long as you like (I assume you have some
means for passing over seas, mountains, ice, etc.). But, all the
same, the total surface of the earth is somewhat under 200,000,000
square miles. This illustrates the third possibility; if you walk long
enough in a straight line, you may come back to where you
started from!

You may think this is an absurd suggestion. But how would you
prove that it was physically impossible? A straight line can be
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defined as a definite physical object, for our purpose - say as a
thread stretched tightly between two points. Suppose you and a
friend have an indefinite supply of string. You stretch this string,
say, from the sun to the star Sirius. Then, all the while paying out
string, you back away from each other, always holding the string
tight and always having it pass close to Sirius and the sun, so that
in effect you are producing the line joining these two stars. How
do you know that, sooner or later, you will not bump into each
other, back to back, just as you would if you backed away from
each other round th: equator? If you say, no, that is impossible,
you are adopting a pre-scientific attitude; here is a proposcd
experiment in physics; you are claiming that you can predict
the result of it without actually pcrforming the experiment, and
that with certainty (for ‘impossible’ expresses complete certainty).
It is legitimate enough to say, ‘If the universe is as I imagine it,
then your idca is impossible’; this is much the same as saying, ‘If
the universe agrees with Euclid’s gecometry, your suggestion is
impossible’ — but we have seen there are other geometries, and
the universe may agree with one of them. Certainly, the universe
always seems to have a surprise up its sleeve. People have often
thought they had the final truth about the world; but it has never
turned out that way.

THE THREE-DIMENSIONAL SPHERICAL UNIVERSE

The surface of a globe has only two dimensions. Two numbers —
latitude and longitude, for instance — are enough to fix your
position. The idea that the universe might be represented as the
surface of the globe is the form that general relativity might have
taken among people who had previously believed themselves to
be living in a Euclidean plane. Note that the idea of a globe is
casy to us, but it would not be easy to the people themselves. We
visualize a globe easily, because we live in three dimensions. But
the people who actually live in a spherical universe have only two
dimensions; the third dimension, and the globe embedded in it,
are things which they could reach through an abstract mathema-
tical argument, but not visualize or feel through their senses.

In the same way, if we want to construct a model of a “finite but
unbounded’ 3-dimensional universe, we must be prepared to
think in terms of 4 dimensions, and the thing which in 4 dimen-
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sions corresponds to a sphere. There are no mathematical
difficulties in so doing.

It may help to start lower down. In the planc, which has 2
dimensions, every point is specified by 2 numbers, x, y. The points
of the plane which are at unit distance from the origin form a
circle. From Pythagoras® Theorem we see that, for such points,
x% 4+ y® = 1. We could imagine a universe consisting only of the
points of this circle. It would be a universe of one dimension. In
it, if you kept on walking, you would come back to where you
started.

In 3 dimensions, every point is specified by x, y, z. The points
at unit distance from the origin form a sphere. They satisfy the
equation x2 + y% + z2 = 1, and give us a model for a universe of
two dimensions.

So far, we have been able to visualize what was being discussed.
But to the angel at the other end of the telephone all of this has
been an abstract intellectual exercise. He is quite ready to take
the next step, and cannot see why it bothers us.

In 4 dimensions cvery point is specified by four numbers,
x, ¥, z, t. The distance of a point from the origin is given by
52 = x? 4+ »? 4 z2 + 2. All the points at unit distance from the
origin satisfy the equation x2 + y? + z2 + ¢* = 1. They form a
hypersphere (something like a sphere, only more so) and give us
a model for a three-dimensional universe.

I think it will be clear that this specification is exact enough for
mathematical treatment to be possible; the properties of such a
universe can be worked out. As has been emphasized before,
for the people in this universe only the points of the hypersphere
have physical rcality. The fact that they cannot get off it does not
worry them: indeed, they cannot imagine such a thing at all.
There is room in their universe for an earth and a solar system
like ours, for East, North and up, all of which lie in the hyper-
sphere itself. Going ‘out of the hypersphere’ means travelling at
right angles to East, North and up; such an idea never troubles
them.

1 do not wish to go into the mathematical treatment, but
simply to derive by analogy from the sphere two properties of
this universe.

Let us go back to the universe which consisted simply of the
surface of the globe. Light travels in a ‘straight line’. On the
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globe we have seen that the equator and the meridians are
‘straight lines’. Let us imagine a man standing at the North Pole
of a spherical universe, and looking out at the rest of the world.
What will he sce? Nearest to himself he will see, of course, his
immediate surroundings, ice and snow and polar bears. But his
view will not terminate with a horizon. For light follows the
contours of his globe. We should say it bent round the world.
But he does not say that. If the light went straight in our sense, it
would go clean out of his universe. The light goes as straight as it
can without leaving the universe. Suppose he is facing in the
direction of the meridian of Greenwich. He will be able to see
Greenwich, and behind that parts of France and Spain and
Africa (provided that these objects do not hide one another);
beyond that he will see a great stretch of sea, the ice of Antarctica,
and the South Pole. But his line of sight, still following the globe,
will continue up the meridian 180° from Greenwich. Behind the
South Pole he will see New Zealand, a few islands in the Pacific,
the extreme tip of Siberia, and behind all this — the back of his own
head! And in whatever direction he looks, the ultimate thing he
sees, filling the whole horizon, is the back of his head.

In the three-dimensional analogy, the same thing would be
true. If conditions were clear enough, and our telescopes were
sufficiently powerful, in whatever direction we looked, we should
see ourselves — or, more precisely, taking account of the time light
would require to go right round the universe, whatever was on the
earth some millions of years ago.

This is the first property 1 wished to explain. Now for the
second. How could our man, living on the globe, discover that he
was not inhabiting an infinite space? I suppose the weather to be
too bad for him to see more than a mile or so; he cannot tell just
by looking. We will suppose he has plenty of adhesive tape. He
drives a post in, at the North Pole, and starts to wind adhesive
tape on to it (Figure 20). Then he goes round and round, making
the post ever larger. In time he will have covered the entire
Northern Hemisphere with adhesive tape, and will be going
round the equator. He does not notice any sudden change when
he crosses the equator. The cquator is 25,000 miles round; he
does not notice that his circles are gradually growing smaller. He
still thinks of himself as on the outside of a huge circle, with its
centre at the North Pole, and continues applying adhesive tape.
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But, as he approaches the South Pole, he will begin to notice a
change. He is no longer on the outside of the circle, he is inside
it. The more tape he puts on, the smaller his prison grows, and
finally he has covered the whole earth with adhesive tape, and
shut himself in at the South Pole.

<>

Figure 20

Now lct us take the three-dimensional analogy of this process.
Instead of enlarging a post with adhesive tape, we may think of
ourselves starting with a cricket ball, and enlarging it by applying
successive coats of paint. We have unlimited supplies of paint
and we put more and morc on. As the radius of the ball grows,
naturally its surface seems less curved. But, in our hyperspherical
universe, the time comes when we pass the equator. The surface
of the enlarged ball has for some time appeared practically flat;
we do not notice any sudden change. But as we continue we do
notice something queer: the surface is not merely becoming flat,
it is starting to curve the other way. We are no longer outside the
paint; we are in a hollow sphere. As we continue to paint, this
sphere becomes smaller and smaller, and we stop painting when
we have no longer room to move. That is what it would feel like,
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if we lived in a space ‘finite but unbounded’. And it has been
seriously suggested that we do.

The experimental evidence is a matter for physicists. All that
concerns a mathematician is the logical possibility of this theory,
the fact — which mathematicians are agreed on — that it may be so.

EQUIVALENT UNIVERSES

You may feel unhappy about a ‘curved’ universe requiring an
extra dimension. If the universe is a sphere (or a hypersphere)
what is inside the sphere? What is outside it? But really the same
objection arises with a “flat’ (i.c. Euclidean) universe. If a two-
dimensional universe is a plane, what is above the plane, what is
below it?

Figure 21

In fact, mathematically, there is no difference between the two
ideas. Consider for cxample, pcople whose whole world is an arc
of a circle, AB (Figure 21). Imagine a light put at any point P,
and the shadows of the objects on the circle AB to fall on a
straight line CD. Let us now imagine a universe created on CD,
objects in which behave exactly like the shadows cast from AB.
The two universes will then have exactly the same laws. It will be
impossible for creaturcs living in AB to tcll that they are not
living in CD. These are in fact two different ways of describing the
samc universc. If we describe the universe as part of a circle, we
can say that rigid objects keep a fixed length as they move. If we
describe the universe as part of a straight line CD we shall have to
introduce some effect (something like temperature) to explain
why the length of an object changes as it moves along the line.
But no experiment will enable one to decide in which universe one
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lives. The two theorics are not different in their essential content;
only in picturesque details. It is a matter purely of taste which
picturc one prefers.

To illustrate this point I will give you a ‘flat’ model of a two-
dimensional universe embodying ‘Possibility 11I°. This universe
could also be got by considering objects sliding about on a
suitable curved surface. The model here used is due to Poincaré
(1854-1912).

POINCARE’S UNIVERSE

This universe is contained in the interior of a circle. At the centre
of the circle the temperature is fairly high, but as you go away
from the centre the temperature falls, and reaches the absolute
zero at the circumference. The law for the temperature is quite a
simple onec. If a is the radius of the circle, at a distance r from the
centre of the circle, the temperature is 7 = «* - 12

If now any object moves about in this universe, its size is
affected by the variation in temperature. We shall suppose that
the length of any object varies in proportion to the temperature
T. At the circumference of the circle, where r =a¢ and T =0,
the length of the object will shrink to zero. The breadth varies in
exactly the same way as the length.

But the inhabitants of this universe arc not aware of the
temperature. We suppose them to have no nerves sensitive to
heat, so they do not fec! temperature directly. Nor can they
measure it by means of thermometers. The ordinary thermometer
depends on the fact that mercury expands more rapidly than glass.
But in this universe, every oliject expands and contracts in exactly
the same way. If a creaturc is six feet long when it is at the centre
of the circle, and it goes to & colder part, it will still find itself six
feet long. If its length seems to us to be halved, so also is the
length of the foot ruler with which it mcasures itself. It is still
six times as long as the ruler.

But surely, someone may object, it will notice the fact that
objects become of zero size on the boundary? The answer to this
is that no one can rcach the boundary (Figure 22). For as a
creature starts to walk towards the boundary, its size (as seen by
us) decreases; the nearer it comes to the boundary, the more
rapidly it shrinks. To itsclf it scems to be taking steps of equal
size ; to us it seems to take shorter and shorter steps, the law being
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such that, however many steps it may take, it will never reach the
boundary.! The boundary, from the creature’s point of view, is
infinitely distant. Lines which meet there are parallel. Thus,
although this universe for us occupies a finite space, for the people
in it, it is infinite.

boundary of theuniverse boundary of theuniverse

f544 40

Figure 22 Figure 23

What will be a “straight line” in such a universe? By definition,
a ‘straight line’ is the shortest way from one point to another.
The length of a path, for this purpose, is the length as measured
by the creatures themselves. In Figure 23, ADB is a line that we
should call straight. The light and dark segments of ADB show
fifteen links of a chain connecting A and B. The links of this chain
are — for the creatures — of equal length. The links near D are of
course nearer the centre O; if these links were taken out to the

1. This can be scen by simple calculus. A lengih ds at the centre of the
circle will, when transported to a distance » from the centre, occupy a space
a*—r*

dr = --—-—ds.
a
So the creature regards a distance dr (in our measurcment) as having 2 length
al
ds = .t e,
a*-r?

The creature’s estimaic of the distance from the centre to the edge of the

circle is
a a*drt
0 @

26
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colder parts near A and B they would look just like the links at
present near 4 and B.

Another chain is shown in the path ACB. The links of this
chain are the same size as those of the first chain. Butas Cisina
warmer position than D, there are fewer links in the chain ACB
than in the chain ADC. ACB is a *shorter’ path than ADC. As a
matter of fact ACB is the ‘straight line’ joining 4 to B. Fewer
links are necded for the chain ACB than for any alternative

| O
NG

Figure 24

There is a simple geometrical construction for a ‘straight line’.
*Straight lines’ are in fact circles. Not any circle will do; it must
be a circle that crosses the boundary circle at right angles
(Figure 24). If 1 is any point outside the boundary circle, and IT
is the tangent from 7 to the boundary circie, then the circle centre
I, radius IT will do as a ‘straight line’. Onec and only one such
‘straight line’ can be drawn o icin any two points A and B in
the universe. A stretched wire would naturally come to this shape;
a ray of light would follow the same path. So, in the figure with
the two chains, 4CB is the shape that a chain stretched between
A and B would take; the creatures could check this by eye; since
light follows the track ACB, to a creature looking from B the
point C would hide the point 4 — and this is the way we check
that three points 4, C, B are in line. So the shortest paths would
look straight to the creatures inside the universe, although they
do not look straight to us.

When the diagram illustrating Possibility III was drawn
earlier, 1 remarked that it did not look right to us. Here is the
same diagram with the same lettering, as it would be in Poin-
caré’s universe. A0 is the ‘line’ perpendicular to the ‘line’ CD.
P is to the right of O, Q to the left. The dotted ‘line’ NAM is
perpendicular to OA. As P moves to ‘infinity” (i.e. to the bound-
ary of the universe) the ‘linc® AP approaches the position AR.

87



Prelude to Mathematics

This leaves a considerable angle between AR and AM. As Q
moves to the left to ‘infinity’, the ‘line’ AQ approaches AL.
Again, therc is a considerable angle between AL and AN. If we
take any direction from A that lies within the angle LAN or
within the angle RAM, and proceed in a ‘straight line’ passing
through A in this direction, we shall obtain a ‘straight’ path
that does not meet CD. There are thus an infinity of ‘lines’
through A that do not meet CD.

boundary of theuniverse

M

Q
i O
thelinecp P

Figure 25 Tigure 26

if we were to take a very small part of this universe, the tem-
perature would vary very little within this smail part. The geo-
nmictry of a small part of this universe would accordingly be the
same as Euclid’s. The inhabitants of this universe, if their oppor-
tunities for travel were restricted, might well believe that they
lived in a Euchidean plane. There is a moral in this for us, as we
live withim the solar system, which is a tiny speck in comparison
with the distainces between the stars.

In Poincaré’s universe, the sum of the angles of a triangle is
almost 180~ for a small triangle, but the larger the triangle, the
smaller the sum of the angles. If you look for instance at the
triangle in Figure 25 formed by AL, AR and CD, the two angles
on the boundary are nothing. The angle LAR is considerably less
than 180°, and so the sum of the angles is less than 180°. In the
triangle drawn in Figure 26 the sum of the angles is 0°.

By measuring the angles of a large triangle, it would be
possible to discover whether one lived in a universe using
Possibility 1, II, or Iil.
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CHAPTER SEVEN

Algebra without Arithmetic

Let U = the University, G = Greek, and P = Professor,
Then GP = Greek Professor.
Lewis Carroll

An old definition of mathematics is the study of number (arith-
metic) and of shape (geometry). Number and shape are two very
different ideas; why should these two be put together as one sub-
ject? It is true that shapes can be measured, and since Descartes
brought in the use of graph paper it has been possible to turn
every problem of geometry into one of algebra. But the idea of
mathematics as arithmetic + geometry is much older than
Descartes (1596-1650). In the traditional geometry, going back to
the ancient Greeks, arithmetic entered hardly at all.

It seems to me that arithmetic and geometry, by a historical
accident, were the first subjects to be given a fully logical form.
Since then many other topics have been treated mathematically.

1f one compares mathematics, biology, and art criticism, one
gets some indication of the characteristics of mathematics. Art
criticism does not — so far as I know -~ claim to be a deductive
science. It does not start out from a clear definition of artistic
value (I do not say beauty, because much great art is not
beautiful) and assess pictures, symphonies, or books, on the basis
of that definition. If our self-knowledge were suflicient, if we
could predict with great exactitude our reactions to any object, a
mathematical theory of art might conceivably be possible. I could
imagine an anthropologist determining the precise mixture of
acsthetic qualities that appealed to a primitive pcople, or the
optimum mixture of sex, sadism, and sentimentality required by a
modern film magnate. But in general art criticism is not, does not
claim to be, and would not gain by being a deductive exercise.

Biology is partly deductive. There are certain general proposi-
tions admitted - such as that every animal requires some supply
of energy to maintain lifc - and a system can to some extent be
built up as to what kind of creature is capable of living in any
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particular environment. But many terms are undefined - notably
the term ‘living’ — and along with the logical argument there is a
constant appeal to observation, expericnce, and common sense.
It is not a strict formal discipline.

In mathematical subjects a fully deductive treatment is aimed
at. The ideas are supposed to be so clearly defined that one can
develop them by a purely logical argument.

Scicnces in general tend to become mathematical, since, with
the development of a science, scientists gradually realize what
they are talking about and become conscious of the methods by
which they reason. As ideas become clarified, the possibility of
logical development grows. There must however be some limita-
tion to this process. If there were, for example, a mathematical
theory of history enabling one to predict the future, the very
knowledge so given would lcad people to act differently.r A
precisely formulated theory of art appreciation would have
similar effects; it would cause pcople to change their tastes.

Mathematics, then, is concerned with reasoning about clearly
specified things or ideas. There is no reason why mathematical
symbols should stand only for numbers (as in arithmetic,
algebra, trigonometry) or for points (as in geometry). They can
stand for anything. Whatever they stand for, we develop them
according to the properties that thing has.

AN ALGEBRA OF LOGIC

As an example of this, we will use symbols for the words ‘and’,
‘or’. Since the use of these two words is well understood, our
basic ideas have the necessary precision and clarity.?

We will let + stand for and
stand for or
a stand for “ Alfred is telling the truth®
b stand for ‘Betty is telling the truth’
¢ stand for ‘Charles is telling the truth’
= stand for has the same meaning as

1. This idea is entertainingly developed in E. Hyams’ novel, The Astro-
loger.

2. 1 do not know if any idea ever achieves complete precision. But all
that matters for a formal theory, is that the idea is sufficiently precise for
what you intend to do with it.
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If any collection of these symbols is written, we judge the result
to be true, false, or meaningless by using the vocabulary given
above. We replace each symbol by the word or words it stands
for, and pass judgement on the resulting sentence. What do you
think of the three equations below? I shall answer this below the
line of stars; if you want to work it out for yourself, do not read
straight on.

(¢)) a+b=>b+a

) a.b=b.a

3) a.b+c)=a.b+a-.c
* * * * *

Equation (1) reads, in effect: ‘ Alfred and Betty are telling the
truth’ has the same meaning as ‘Betty and Alfred are telling the
truth’. (Taken word for word it is slightly longer than this.
‘ Alfred is telling the truth and Betty is telling the truth’, etc. The
meaning however is as just given. I shorten the later examples in
the same way.) Equation (1) is thus cerrect, though the truth it
expresses is somewhat trivial.

Equation (2) reads, ¢ Alfred or Betty is teliing the truth’ has the
same meaning as ‘Betty or Alfred is telling the truth’. This again
is a somewhat obvious truth.

Equation (3) would apply in the situation where witnesses were
in conflict, Betty and Charles telling stories that corroborated
each other, while contradicting the version told by Alfred.
Equation (3) reads: ¢ Alfred is telling the truth or both Betty and
Charles are” has the same meaning as ‘ Alfred or Betty is speaking
the truth, and Alfred or Charles is speaking the truth’. This
statement too is correct.

The remarkable thing is that equations (1), (2) and (3) are
all equations that are correct in ordinary school algebra, with +
meaning plus and . meaning times. The same pattern occurs in
two widely different applications. The habits we have acquired for
equations representing numbers can be carried over, and will give
us logical truths. By multiplying out for example (a + b)(c + d)
and interpreting by the vocabulary above (d standing for the
truthfulness of David) you can obtain a true, but lengthy, logical
statement.

Another remarkable fact is that + and . can be switched
around. If you like to take + as meaning or and . as meaning
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and, the algebraic procedure still gives correct logical results. In
ordinary algebra one cannot switch + and . in this way. Accord-
ingly, while all results of ordinary algebra are true in the algebra
of logic! not all results of logical algebra are true in ordinary
algebra. For example, the equation derived from (3) by switching
+ and.

@) at+b.c=(@+b).(a+c)
holds in logic — ¢ Alfred is truthful and Betty or Charles is truth-
ful’ means the same as ‘Alfred and Betty or Alfred and Charles
are truthful’ — but does not hold for numbers.

But of course there is no need for every algebra to coincide with
the algebra of ordinary numbers. So long as there are definite
rules for manipulating the symbols, it does not matter what these
rules are.

THE ALGEBRA OF CLASSES

Another algebra, also related to logic, is the algebra of classes.
We might use, for example, s to stand for ‘all small things’ and ¢
to stand for ‘all green things’. We define sg to stand for “all small
green things’. This definition is very close to ordinary speech. The
letter s expresses the property of being small; the letter g expresses
being green. The twe letters sg together combine just as the words
small and green do in a sentence like ‘It is a small green door’.
But as algebraic symbols they look like a product; and in fact we
shall find they behave like onz.

S

shadedarcashowssg  shadedarca showss+g

Figure 27

The ‘sum’ s + g is defined in a rather strange way. It signifies
all things that arc small, or green, but not both! This is not a very
natural definition, but it is the one that leads to the simplest rules
for making calculations.

We may illustrate sg and s -+ g by Figure 27. The circle

1. Of course, provided they have a logical interpretation. 1 have not
giv.n any interpretation of, for instance, a - 4b.
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labelled s is supposed to contain all the small objects in creation;
that labelled g all the green objects.

Figure 28

It is worth noticing what a + b becomes if the class a lies
entirely inside the class b. The diagrams below show a + b when
the class a slips into class 4. (This can happen. Suppose a stands
for ‘all men under 60° and b for ‘all persons born since 1900°.
Figure 28 shows what happens between 1950 and 1970.)

You will see that, when a is part of b, a + b mcans ‘having
the property b but not the property a’.! If it should happen that
the class @ grows until it coincides with b, the shaded area in the
last diagram above will disappear. So a + a stands for emptiness,
for nothing. We can use the sign 0 for nothing. Thus a + a = 0.
For everything we use 1. In Figure 29 the large rectangle is
supposed to contain everything, the small circle to contain a.

X

\1iceverything
Figure 29

It will be seen that 1 -+ @ means ‘everything except a’. It stands
for the property ‘not a’.

You might think 1 —a would be a better sign for ‘everything
except a@’. There is no harm in using this sign if you prefer it. Since
a+ a =0, +a= -a.Plus and minus mean the same thing! On
the whole, it is better to use -, because s + g means the same as

1. This statement is a little loosc. The class and the property, 1 suppose,
ought not to be represented by the same letter a. But it does no harm, and
suves space, as 1 use it here.
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g + 5, which is easier to remember than the same result with —
instead of +. But you could use minus if you liked.

Of course 1 + 1 = 0. This may strike you as strange. It may
perhaps help you to think of the following. In some houses, for
the sake of safety, clectric switches are operated by long strings
hanging from the ceiling. If the lights are off, and you pull the
string, they come on. If you pull the string again, they go off.
Pulling the string twice has the same effcct as pulling it not at all.
For pulls of the string, 1 4+ 1 = 0. And indeed, the effect of the
string being pulled is the same as the effect of rot in logic. If the
lights are on, and you pull, they become not on. If they are off,
and you pull, they become rnot off.

In fact, we should expect to find 1 + 1 =0, to express this
property of not. a+ 1 means not a. a+ 1 + 1 must mean
not not a, or simply a. So 1 + 1 should be 0. There would be
something wrong if it was not.

We have discussed a + a. What about aa? This is very simple.
Take g for ‘green’ as an example. gg means ‘green, green things’.
In poetry, to say something was ‘green, green’ might mean that it
was very green, or ‘Ah, me, how green it is!’ or something like
that. In logic it simply means ‘all green things which are green’,
which is just the same as ‘all green things’. So g¢g = g. And in
the same way, whatever aq, we have aa = a.

It is a most remarkable thing that the symbols so defined obey
the laws of ordinary algebra — with, of course, the extra rule
1 + 1 = 0 thrown in. I will not give a systematic proof that this is
so, but will give some illustrations of how the algebra leads to
correct results.

What will ‘a or 6’ become in this symbolism? I use ‘or’ here in
the sense of a regulation ‘People may be admitted if they have
paid at the gate or if they hold season tickets’ — that is to say,
not to exclude any eccentric or charitable person who may hold a
scason ticket and also have paid at the gate. If you look at the
earlier diagrams, you will see that ‘green or small (or both)’
combines the shaded areas of the diagrams for sg and s + g. It
isin fact sg + s + g. I do not know if it strikes you the same way,
but as soon as I look at sg + s + g I think ‘That looks rather
like (s + 1)(g + 1) As (s + I)(g + 1) multiplied out gives
sg+s+g+1, we have sg +s+g=(@¢+1)(g+ 1)—1, and
as -1 is the same as +1, this equals (s + 1)(g + 1) + 1.
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But this last expression can be interpreted. s + 1 means ‘not
small’. g +1 means ‘not green’. The product (s + 1)(g + 1)
means ‘not small and not green’, And the +1 at the end means
‘not’ or ‘everything except’. So the whole expression means
‘what remains when you remove everything that is not small and
not green’. And this is what it should mean. For everything must
fall in one of the four classes

(1) Small and green.

(2) Small but not green.

(3) Green but not small.

(4) Not small and not green.

And removing Class (4) does leave us exactly those things which
are small, or green, or both. Not a very striking conclusion, but a
verification that the ordinary laws of algebra (together with the
extraordinary equation +1 = —]) do lead to correct logical
conclusions.

Another example. Multiply out a(1 + a). We have

al+a)=a+aa=a+a=0.

And this is correct, for a(1 + a) means ‘having the property a
and also the property not a’, which nothing has.

YNz X
)

Figuare 30

One can verify a(b + ¢) = ab + ac. We begin with a(b + ¢).
In Figure 30, b + c covers the regions ii, iii, v, vii. So a(b +¢)
contains regions ii and v. As for the other side of the equation, ab
contains ii, iv; ac contains iv, v. ab + ac consists of those
regions which occur in ab or in ac but not in both; that is, ii and v.

The expression a + b + ¢ has some interest. It means those 3
things that belong to an odd number of the classes a, b, c; that is,
regions i, iii, iv, vii. You can verify this; and also that one arrives
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at the same result whether one regards a + b + c as the result of
addingatob +c,orbtoa+c,orctoa+ b.

A final illustration: a puzzle asks, ‘If all boiled, red lobsters
are dead, and all boiled, dcad lobsters are red, does it follow that
all red, dead lobsters are boiled?” There are many ways of
answering this question. I will dcal with it by algebra.

As the whole question is about lobsters, we do not need to use
a sign for ‘lobsters’. We can work as if the universe contained
nething but lobsters, that is, regard lobsters as if they were
‘everything®. Let b stand for *boiled’, r for ‘red’, d for ‘dead’.

How arc we to express in symbols that all boiled, red lobsters
are dead? One way of looking at this statement is to re-word it,
‘No boiled, red lobsters are not dead’, i.e. the class of boiled, red,
not-dead lobsters is empty. In symbols br(i + d) =0. If we
multiply this out we get br + brd = 0, which means br = - brd,
and as minus is the same as plus, this gives br = brd. This result
we can check from its meaning; it says that the class of boiled,
red, dead is the same as the class of boiled, red. And that is as it
should be; we know that all lobsters with the properties boiled,
red have also the property of being dead.

In the same way, all boiled, dead lobsters are red gives us the
cquation bd = bdr. X

We are asked, arc al! red, dead lobsters boiled? That is, docs
the equation hold rd = rdb?

So the problem is; given br = brd and bd = brd, does it follow
that rd = brd? (The order of the letters b, r, d in products such
as brd, bdr, rdb makes no diffcrence.)

Now it does not look as if the third equation followed from the
first two. But how can we be certain that there is no way of
proving the third cquation from the first two? After all, we might
have overlooked some way of proving the result suggested.

If a proof existed, it would mean that all values of b, r, d that
satisfied the first two equations also satisfied the third equation.
For the third equation would hold whenever the first two did.
But we can quickly show that this is not the case. For r = 1,
d = 1, b == 0 makes the first two equations true, but turns the
third equation into 1 = 0, ‘everything equals nothing’, which is
not true.

So it docs not follow that all red, dead lobsters are boiled.
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GROUPS OF MOVEMENTS

We now leave questions of formal logic, and consider a symbolism
for representing the movements of bodies. In this section, by a
movement 1 shall understand something that can be done to a
rigid body, such as a rotation, or turning the body over, or
transporting it. T exclude any kind of treatment which involves
distorting the body, such as stretching, bending, or compressing
it or any part of it. In the next chapter such distortions will not
be excluded.

Capital letters will be used to stand for points of bodies, as
is usual in geometry. Small letters will stand for movements, as
for example we may say, let x stand for ‘move one inch to the
East’ and ¢ stand for ‘turn through 90° about a fixed point O’.
An equation such as Q = xP will mean that Q is the point you
get if you move P one inch to the East.

R
T <
~N
AN
\
X 2y Y
\ R
o E__)___)JQ oOP

Figure 31,aand b

We can consider the effect of one movement followed by
another. Suppose we take a point P, move it one inch to the East,
getting Q, and then turn through 90° about O, which brings the
point to the position R (Figure 31a). With symbols we can express
this much more shortly, Q = xP, R = Q. Since Q is xP, itis a
natural thing to replace Q in the second equation by P, and write
R = 1xP. This shows that R is obtained from P by applying first
the operation x and then the operation r. The overall effect is
denoted by rx. Notice that the operation performed second is
written first. This is quite in accord with ordinary language. ‘He
left the burning house’ means that the house first began to burn,
and then he left it. (Some writers on groups use the opposite con-
vention, so that there is considerable confusion caused by this
small matter.)
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The order in which the operations are carried out makes a
difference. The diagram (Figure 31b) shows the meaning of xr.
S = tP, U = xS, so U = xtP. U is not the same point as R. The
effect of xt is therefore different from the effect of tx. So xt + #x.
(This equation reads, x¢ is not equal to 1x.)

In both the logical algebras we considered ab had the same
meaning as ba. When ab = ba, we say multiplication is com-
mutative. But when the order counts, we say multiplication is
non-commutative. Very frequently multiplication is non-com-
mutative. One needs to get used to distinguishing the order of
symbols. A well-known example occurs in calculus,

d . h hing d
x"d)»c»y 1S not the same thing as Hixy'
A famous example is in quantum theory, where pg—gp = h [2xi.
There is nothing mysterious in this equation. p and g are not
numbers, they are operations, and the order in which they are
carried out happens to matter; that is all.

THE GROUP OF THE RECTANGLE

Suppose we have a rectangle, a piece of cardboard perhaps, and
we draw on a sheet of paper a space just large enough to contain
the rectangle (Figure 32). This could be done by putting the

|
]
T
’
Figure 32

cardboard on the paper and running a pencil round the rim. Now
there are various things I can do to the cardboard, which still
leave it fitted exactly into its frame. (i) 1 could turn it over about
the line OX, so that 4 and D change places, and B and C also.
This operation we call p. (i) I could turn it over about the line
OY. Operaiion q. (iii) I could turn it through 180° about O,
without lifting it from the paper. 4 and C would change places,
as would B and D. Operation r. (iv) I could simply leave it alone
as it is. Operation 1.
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If we blacken one corner of the rectangle so that it can be
identified (we must blacken the cardboard on both sides) we have
the diagrams (Figure 33) to show the effect of p, g, r and 1.

P 1-CJ qA=]
3= 3=

Figure 33

Now there are only four ways of putting the rectangle into its
box. The black spot must come in one of the four corners, and
once you have decided which corner, there is only one way of
fitting the rectangle in. Accordingly, if we carry out two opera-
tions, one after the other, we must end with one of the four
positions shown above. For example, suppose we want to know
what gp is. We start with the spot in the North-East corner (as
in all the diagrams above). p sends it to the South-East. Then
applying ¢ sends it to the South-West corner. But this is where the
single operation r would send it. So gp = r. In the same way you
can see that pp = I; this result is usually written p* = 1. You
can find the rest of the results easily. They are collected in the
Multiplication Table below.

1 P @ r Operation applied first (so written second)

IIIpqr

Operation p || p I r

applied

second q q r I P
rir g p I

In giving a multiplication table for operations, one usually
needs to indicate which operation is performed first, since in
general ab and ba are different things. This has been done in the
table above, though in the end it turns out to be unnecessary

1. The sign I is used partly because it is the initial letter of ‘identical’,
partly because it looks like the numeral 1, with which it has many properties

in common. To be consistent, a small letter should have been used for this
operation ; but i has associations with 4/-1. It seems best to be inconsistent.
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in this particular case; e.g. pgq and qp are both r. In fact, when any
two of p, ¢, r are multiplied together, the result is the third. This
multiplication table is commutative. But in general one should
expect multiplication to be non-commutative, as in the example
following.

THE GROUP OF THE EQUILATERAL TRIANGLE

Just as we made a frame for a rectangle, so we can take a piece of
cardboard cut in the shape of an equilateral triangle, pencil
round its outline on to a sheet of paper, and consider the different
ways of fitting the cardboard into the pencil

1 :' outline (Figure 34).

There are six possible movements. (i) We
may leave the triangle as it is; operation /.
(ii) We may rotate the triangle through 120°

_ 3 in the direction ~ ; operation o, (iii) We
may rotate through 240°. This is the same
thing as applying the operation o twice, so

it will be called operation 2. (iv) We may turn the triangle over,
about the dotted line marked 1; operation p. (v) We may turn

the triangle over, about the dotted linc marked 2; operation g.

(vi) We may turn the triangle over about the dotted line marked 3;

operation r.

‘"

Figure 34

If the triangle is thought of as being in the position BA c then
operation / leaves it in this position. Operation « would bring

it to the position ACB' If instead we applied operation 2, the

triangle would come to the position

A
B C

B .. .
C A Similarly p acting on
A

C .
. ting
racting on 5=

4. . A .
; g acting onB ngesB Pt

gives CB
B

AC
Now there are only six ways of putting the three letters 4, B, C

on the corners of a given triangle, so the positions listed above

must include all possible ways of putting the triangle into its

frame. If we carry out two operations successively, for example
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if we do pr, this must bring BA C to one of the six positions in the

list; that is, it must have the same effect as a single operation,
B

i §
B C C A t
has the same effect as »% So pr = 2, If we do the operations in
the other order, that is, if we consider rp, a different result comes.

A C
t

rp changes B C o 4B
rp = o. You may like to complete the multiplication table of this
group before checking it against the table below.

belonging to the six just listed. In fact pr on gives

and thus has the same effect as ». So

Operation performed first
{written second)

I o o p q r

I|\7] o o p gq r

Operation
performed o 1 0¥ I o g r p
second

gilqg r p o I o

rilr p q o o I

OTHER GROUPS OF MOVEMENTS

Other groups of movements can be found by considering other
figures. The more symmetrical the figure, the greater the number
of movements in the group. One can consider as examples the
letters of the alphabet. A cardboard .S can be fitted into its outline
in only two ways. Its group consists of the operation 7, and of a
rotation through 180° about the centre of the S. If we call the
latter operation k, the multiplication table is simply

Lk
[
k l‘ ko1
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Some letters have no symmetry at all, for example F, G, J, K,
P, Q. Such letters, once placed in their frames, cannot be replaced
in the frame by any operation except putting them back just as
they were. The only operation in the group is , and the multipli-

cation table is trivial,
I
i

There are many things you may notice about these multiplica-
tion tables. Groups are an important mathematical topic; they
enter into an astonishingly wide range of mathematical enquiries.
By means of group theory, you can obtain such different results
as the insolubility of the equation of the fifth degree by algebraic
methods, the fact that there are only 17 basically different wall-
papers,and information on the structure of molecules in chemistry.
At one time mathematicians felt groups were the key to the
secret of the universe, and one can hardly blame them.

Apart from calling attention to the existence of group theory,
this chapter tries to emphasize that mathematical symbols need
not represent numbers, but may stand for words like ‘or’ or
operations like ‘rotate through 120°’. In Chapter 8 we shall con-
sider matrices, which may be regarded as operations of a particu-
lar kind. They include the rigid movements we have considered
above, and also other types of movement, in which rigidity is not
preserved.



CHAPTER EIGHT

Matrix Algebra

There would be many things to say about this theory of
matrices, which, it seems to me, ought to come before the
theory of determinants.

A. Cayley, 1855

Descartes, as was mentioned earlier, showed that every geo-
metrical result could be turned into an algebraic result. The
points of a geometrical figure could be supposed drawn on graph
paper. The position of each point would then be measured by a
pair of numbers (x, y). Every property occurring in the geometri-
cal theorem could then be translated into an algebraic relation
between the xs and ys of the various points.

Some mathematicians admire Descartes’ invention because it
allows one to abolish geometry as a subject, and replace it by
algebra. Others prefer to think in terms of geometry, without
appealing to algebra. But the real value of Descartes’ thought, it
seems to me, is that it allows one to pass continually backwards
and forwards between geometry and algebra. The meaning of an
algebraic result can often be seen best by translating it into
geometry; geometry gives a way of seeing and feeling algebraic
abstractions. And geometrical results are often made more pre-
cise and clear when translated into an algebraic or arithmetical
form.

Chapter 7 was called ‘Algebra without Arithmetic’. In the
latter part of that chapter we discussed geometrical notions, such
as ‘a rotation of 120°’ or ‘moving 3 inches to the East’. Even in
these geometrical terms, numbers came, such as the 120 and the 3
just mentioned. We are now going to translate these geometrical
ideas almost entirely into the language of number. We shall not
need to say that an operation is a rotation; the numbers given will
speak for themselves, and make it clear that the operation is a
rotation. We shall in fact use four numbers to specify an opera-
tion. So arithmetic is coming back into the picture. But even so,
the operations are what we want to discuss. One could describe a
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punch by saying that it felt like 2 tons of lead hitting you at 60
miles an hour. We could express this symbolically by saying that
it was a (2, 60) punch, if we liked. But it would still be a punch;
one would have to argue about it as a punch, not just as a pair of
numbers. In the same way, in the remainder of this chapter,
numbers will be used to specify operations, actions, movements.
The correct way to handle these numbers is to think of the opera-
tions they represent. Of course, by thinking in this way, one can
obtain rules for carrying out the calculations. The subject could
be presented abstractly — for the benefit of angels on teiephones —
by simply stating these rules. In this way, it could be made purcly
a matter of arithmetic. This might have advantages from the
viewpoint of logical exactness; but it would greatly hinder under-
standing and appreciation of the subject.

SPECIFYING OPERATORS

The operations considered at the end of Chapter 7 were of two
types; either a body was turned over about a line, or it was
rotated about a point. We are now going to investigate these
operations in the spirit of Descartes.

In Chapter 7, an operation was represented by a small letter, so
that it would appear different from the geometrical points P, Q,
etc. In this chapter we shall have a lot of small letters representing
numbers, x, y, etc., and also we shall have some capital letters,
representing geometrical points. 1t is a pity that there are not more
alphabets available for symbols. To avoid confusion both with
numbers and points, I will represent operators by capital letters in
heavy type, A, B, C, etc.

> L x
) o
0 x, [P X Py
20 o A H
o
1
2 0
Figure 35 Figure 36

First consider operation A which means ‘turn over about the
axis OX’.
In the diagrams, we shall use P, to represent the position of a
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point before the operation is applied to it, P, the position after
the operation.

(xo, yo) are the co-ordinates of P,, (x,, y,) are the co-ordinates
of P,.

For operation A, it is evident from Figure 35 that P, has the
same x-co-ordinate as P,, but the sign of the y-co-ordinate is

changed. So we have
{xx =Xy
A
Y1 = Yo

Now these two equations completely specify the operation A.
They tell us what happens to any point (x,, ¥o).

Figure 37 Figure 38

In the same way, if operation B means ‘turn about OY’, we

have (Figure 36)
{xl = —Xg
B
V1= Yo

Taking operation C to mean ‘a rotation of 180° about O’ we
find (Figure 37)
Xy = —Xo
C
Y= =Yo

These operations A, B, C are the ones that arose in the group
of the rectangle in Chapter 7 and were there called p, g, r.

We may consider the operation D (Figure 38) for which,
instead of turning about an axis, OX or OY, we turn about a line
OL making an angle « with O X. We will call this ‘reflection in the
line OL’. This reflection sends P, to P,. N, is the point on OX
immediately under P,. The reflection of N, is N;. We know the
length ON, equals ON,, that is, x,; and N,P, equals N P,
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that is y,. We know the direction of ON,; it makes an angle 2«
with OX. N,P, is perpendicular to ON,. Accordingly we can find
the co-ordinates of P,, by going from O to P, via N,.* The result is

X1 = X0 CO8 22 + Y, sin 2«
D
Y1 = X, Sin 2a — ¥4 COS 2

There is a specially simple case of this, if « = 45°. Then we

have
{xx = Yo
E
Y1 = Xo

E signifies reflection in the line y = x. The effect of E is simply
to interchange the co-ordinates of a point. Thus if P, is the point
3, 4, P, = EP, will be (4, 3).

ROTATIONS

Very similar calculations enable us to specify a rotation. Let F be
the operation of rotating through an angle 6 about the origin O.

Iy
Po 1 Yo
Yo Xo Nl
(o] Xo NO O 0 X

Figure 3% and b

Figure 39a shows the position of P,. The lines of this diagram
are then rotated through an angle 6, as in Figure 39b, to give the
position of P,. Following the route from O to P, via N, we find

F{xl = X, €08 6 — y, sin 0

Y1 = X, sin 0 4 y, cos 0

STRETCHES

One last example may be considered before we try to draw some
general moral from these formulae. This operation will be called

1. Compare M.D., Chapter 13.
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stretching (Figure 40), G. This means that P, goes to a point P,
on the line OP,, the distance OP, being k times OP,. k is a con-
51
P

Figure 40

stant number. The effect of this operation is simply to change the
scale of a diagram. By means of similar triangles the formula for

it can be seen to be
’ x; =kx,
G
Y1 = ky,

MATRIX NOTATION

Looking back on all these results, we see that in each case x, and
¥, are given by linear expressions in x, and y,. That is to say,
in each case we have equations of the form

X1 = axe + by,
Y1 =CXo + dyo.

The operations can therefore be specified by saying what par-
ticular numbers a, b, ¢, d occur in each. When specifying them, it
is customary to write the numbers a, b, ¢, d in the positions in
which they occur in the equations, that is

(a b)
c d
This is known as the matrix method for specifying operations.
The set of numbers arranged in this form will be called @ matrix.
Each of the operations considered earlier can be written as a
matrix. In some of the formulae, certain terms are missing. Thus,
1. The mould in which a printer casts type is called a matrix. Matrix in

mathematics signifies simply that we have spaces into which numbers can
be put.
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for instance, in E we have only two terms on the right-hand side
of the equations, instead of the four there could be. We regard the
missing terms as having 0 in them. Thus the formula for E can

be written
x,=0x,+ Yo
E

yi= x¢+0y
In matrix notation we accordingly write

== (1 o)

In the same way, we may write the other results; thus

o) 2o e ()

cos 2a sin 2« cos 6 —sin ©
D - ( ) - )
sin 2¢ -cos 2a sin 0 cos 6

kK 0
= (, o)
0 k
Sometimes we want to show the symbols x,, y,, X, Vo as well

as the coeflicients a, b, ¢, d. To show that a particular matrix is
acting on a point with co-ordinates x,, y, we write

(;.)

Yo

after the matrix. The full symbolism for the equation E given a
little earlier would thus be

Y1 10 Yo
In this form there is not much economy in writing; nevertheless,
this notation has its advantages, as will appear shortly. The most

compact form of this statement is of course the original geometri-
cal one, P, = EP,.
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THE GENERAL MATRIX

The most general matrix appears in the equations
X1 = ax, + by, (x1> (a b)(x,.)
or = .
Y1 =cxo + dy, h4 c d Yo
We know that, for particular values of a, b, ¢, d this can
represent a rotation, a reflection, or a stretch. But are these the
only operations this can represent? What does the general matrix
do to a geometrical figure? How can we visualize the effect of it?
Let us investigate this, for perfectly general values of a, b, ¢, d.
We begin by seeing what it does to points on the axis OX. We

take L,, M,, N, at distances 1, 2, 3 from O, and substitute their
co-ordinates in the equations above.

o L, M, N, X

AsL, is (1, 0), L, must be (a, ¢).
As M, is (2, 0), M, must be (2a, 2¢).
As N, is (3, 0), N, must be (3a, 3c).

On plotting these points (Figure N
41), we see they lie at equal dis- M
tances along a straight line.

In the same way, by taking L
points Py, Qo, R, on OY, we find P ]
that (0, 1) goes to (b, d), (0, 2) aj a a
goes to (2b, 2d), (0, 3) goes to (36, O X
3d) (Figure 42). Figure 41

Thus

a 0 0\

Qo

Po
[e) L0 MO NO

Figure 42a and b
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Where does the point S, with co-ordinates (1, 1) go? By putting
xo =1, yo = 1 we find that S, is (a + b, ¢ + d). (Figure 43).

Re
Qo

P So goes to

0 Lo Mo No o)

Figure 43a and b

We can show that OL,S,P, is a parallelogram. The corners of
this figure have the co-ordinates (0, 0), (g, ¢), (b, d), (a+b, c+d).
It is a simple exercise to calculate the gradients of the sides, and
to verify that opposite sides have equal gradients.!

In fact, as a little further investigation shows (Figure 44),

goes to

Figure 442 and b

Straight lines go to straight lines; parallelograms go to parallelo-
grams; the origin stays where it is.

b
Accordingly, the effect of a matrix ( d)
c

can be seen without any need for calculation. The two numbers in
the first column q, c¢ give the co-ordinates of L,. The two numbers
in the second column b, d give the co-ordinates of P,. The
parallelogram with two sides OL, and OP, can be drawn, and by
repeating it the whole figure is obtained.

Conversely, if such a lattice-work is drawn, we can always find
a matrix that will produce it. We simply read off the co-ordinates
of the points L, and P,, and write these in the first and second
columns of the matrix.

1. This result is of course well known to students of mechanics. It
expresses the fact that the resultant force, as found by the parallelogram of

forces, is thc same as the resultant force found by adding horizontal and
vertical components.
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For example, to write down the matrix for a rotation through
90°. A rotation of 90° sends L, to the position (0, 1) and P, to the
position (-1, 0). The two columns required are accordingly

0 and -1.
1 0

()

APPLICATIONS OF MATRICES

The matrix is

The way in which we have been led to the idea of matrix might
suggest that matrices are only useful for the study of rotations,
reflections, and other distortions of geometrical figures. This
however is not the case; matrices pervade mathematics of almost
every kind.

Some of the applications arise directly from the aspect of
matrices we have been studying, that is, geometrical distortions.
An obvious example is the theory of building construction. If a
load rests on any material, whether it be india-rubber or steel,
a change of shape is produced, a state of strain. The strain may
be very small, but it is there. Even a steel bar cannot exert or
transmit any force so long as it is exactly in its natural shape.
(This is related to Hooke’s Law. We can regard the molecules of
the steel as if they were a great collection of little balls, held
together by extremely strong springs.) The effect of the strain
is that little squares of material become (to a sufficient degree of
approximation) little parallelograms; the strain can accordingly
be specified by means of a matrix.

In electricity and magnetism, a body in which electric and
magnetic forces act behaves in many ways as if it were a material
under strain. Here too matrices occur.

In aerodynamics — the study of air flowing past aeroplane
wings — matrices also occur. If one imagines a small square drawn
in smoke, which is pulled into the air stream, the shape of this
square will change as it moves along. The way in which it changes
will show what is happening in the stream. Matrices naturally are
used to specify the process. In books on aerodynamics you will
meet the term irrotational flow, which means that the little squares
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are distorted in shape, but do not rotate. (Some care is needed to
make this concept precise.) The reference to rotation shows the
link with what we have just been considering. The same term,
irrotational, is also used in hydrodynamics (flow of liquids).

In all these examples there is a direct connexion with geometry.
But there are many applications of matrices in which geometry
does not provide a link. The link comes from the algebraic form
of matrices. Matrices arose earlier in this chapter as a way of
writing linear equations. Linear equations, naturally, can arise in
almost any branch of mathematics. (In fact, to a large extent it is
true that mathematical progress has been made only with prob-
lems which are in one sense or another linear. Non-linear prob-
lems offer very great difficulties to which, as yet, the answer is not
known to any extent.) Where they do arise, matrices will be in
demand.

Linear equations arise automatically in any problem which is
concerned with small quantities. Suppose we have some function
f(x, y) and we are interested in what happens to this function in
a small region near the origin, that is, nzar x =0, y =0.
If f(x, y) belongs to a very wide class of functions it will be
possible to expand it in a series of powers of x and y, say

Sflx,y) =k + ax + by + ex® + gxy -+ hy* + mx® + nx% + ...

But x and y are small. So x?%, xy, »? etc., are very small indeed,
and can be neglected. To this order of approximation,

Sf(x,y) =k + ax + by.
When x =y = 0, f(x, y) is k. So k = £(0, 0). It follows

Sf(x,»)—/(0,0) = ax + by.

The expression on the left-hand side represents the change in f
in going from (0, 0) to (x, y). On the right-hand side, we have
ax + by, exactly the type of expression that led us to matrices
earlier. But of course we need two such expressions to give a
matrix. So in any problem concerned with the changes in two
functions f(x, y) and g(x, ) — and there are many such problems —
matrices will arise.

The small vibrations of any structure are an important
engineering application of matrices. The matrices come in, as
explained above, because the vibrations are small. Serious break-
downs can occur if in some machine the beat of an engine happens

112



Matrix Algebra

to coincide with the natural rate of vibration of some other part
of the machine. (You have probably noticed in some motor-cars,
at a certain speed some object in the car begins to chatter.) In
certain conditions, the perpetual vibration can lead to a serious *
rupture. It is like the old story of soldiers breaking step when
crossing a bridge. (As undergraduates some of us used to tap the
Cambridge lamp-posts in the hope of finding their natural rate of
vibration and causing them to disintegrate. We never succeeded.)

Quantum theory can be developed by means of matrices
(Heisenberg, Dirac). The tensors of relativity are a generalization
of matrices.

Matrices occur too in many branches of pure mathematics.
Conic sections are an elementary example; projective geometry,
groups, differential equations somewhat more advanced instances.

Matrix algebra is in fact one of the most striking examples of
a pattern that arises in the most varied circumstances.

MULTIPLICATION OF MATRICES

As A and B both stand for geometrical operations, by AB we shall
understand the matrix that represents the result of applying the
operations B and A in succession.

If we consider any point P, — we have now finished with the
diagrams in which P, stood for (0, 1) on the axis QY - if we con-
sider any point P, operation B sends P, to P,

P, =BP,
If now operation A is performed, it will send P, to P,.
P’ = AP;.
Combining these two results we write, much as in Chapter 7,
P, =ABP,.

We will continue for the rest of this chapter to use the numbers
0, 1, 2 in this sense. A suffix 0 will go with the place where any
object is first found; 1 will indicate an intermediate position after
an operation has been performed; 2 will show where it has gone
after two operations.

Taking the operations A and B to be those indicated by these
symbols near the beginning of this chapter, we know from the
group of the rectangle that AB = C.
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This result can also be reached algebraically, P, =BP,
means

X1 = —Xp
V1= Yo
P, = AP; means
Xy = X1
Vs = s 51
From these equations it is child’s play to deduce

x, = “"Xo

Y= —Yo

In matrix notation this would read :
X 1 0 X1
wom ()=, -) ()

Ya 0 -1 N

X1 -1 0 Xo
wa ()= 1))

M1 01 Yo

Xa -1 0 Xo
it follows that ( >=< )( )
Ya 0 -1 Yo

But we could also combine the equations ‘from ... and ... °’

-0 0

So we see that

1 0 ) -1 0 -1 0
(0—1<01><0—1)
that is, AB = C.

The method used here is perfectly general. If we have any two
matrices U and V, we can find UV as follows. We write down the
equations P, = UP,, P, = V P, in their algebraic form; that is
to say, we have equations giving x; and y, in terms of x, and y,,
also equations giving x, and y, in terms of x, and y,. Using the
latter pair, we substitute for x, and y, in the former pair. This
gives us x, and y; in terms of x, and y,. The new equations will
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represent a relation P, = W P,; the matrix W can be read off by
looking at the coefficients in the equations found. Then W = UV.

1 will now carry this through, and it will give us a rule for
multiplying matrices. We will suppose

a b P q
Uis( )andVis( )
c d r s

a, b, c, d, p,aq,r,sare of course just numbers.
The equation P, = UP, written in full gives the pair of

equations
X3 =ax; + by,
Y =cx; + dy,

The equation P, = V P, written in full gives

X1 =Ppxo + qyo
Y1 =1rXxe + 5y

On substituting in the first pair the values of x,, y, given by the
second pair we find

xs = a(pxo + qyo) + b(rxe + syo) = (ap + br)x, + (ag + bs)y,
¥s = c(pxo + qyo) + d(rxo + syo) = (cp + dr)x, + (cq + ds)y,
The numbers that occur as coefficients of x, and y, in the last
expressions above give the numbers that should be inserted in the
matrix W. Thus

(a b) (p q) <ap +br ag+ bs)
c d/\r s cp + dr cq +ds

This could be regarded as a formula for multiplying two
matrices. You could find the product of any two particular
matrices by substituting the values of a, b, c, d, p, g, r, 5. But in
practice there is a better rule. If you look at ap + br in the
product, you will see that the letters a and b in it come from the
top row of the first matrix. The letters p and r come from the left-

hand column of the second matrix. If we disregard the rest of the
result we see only

C '.’)(; f)’("”:"' )
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In the same way with all the other results; if we put an arrow
against any row of the first matrix, and an arrow against any
column of the second matrix, the numbers so singled out appear
in the product matrix. The place where they appear is shown by
putting two arrows at the side of the product matrix, in positions
corresponding to the arrows on the left-hand side of the equation.

Thus the numbers from the top row and the right-hand column

0 )

will appear at that place in the product where the top row meets
the right-hand column

"
Similarg ( _____ ) ( ) give the positio_r_x) ( . )
1 1
and ( ) ( ) give the position ( ‘).
T 1 T

All of this is much easier to demonstrate on a blackboard than

to write in a book.
1 think you will see the rule for the number written in this place.

To take our first example, the numbers in the top row were a, b
and in the left-hand column p, r

Corresponding numbers are multiplied together; this gives
ap, br and added, giving ap + br.

Anyone who works much with matrices becomes so familiar
with this rule for multiplying that he could do it in his sleep. The
finger of the left hand automatically moves across the rows of
the first matrix, the finger of the right hand down the columns of
the second. One multiplies the numbers while doing this, and
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then writes them down. The only pity is that nature has not given
us three hands.

You will find this rule not difficult to become accustomed to, if
you work a few examples. The best examples for this purpose are
those where you know in advance what the answer should be; for
then you will at once detect any slip you may make.

For example, the matrices A, B, D, E given earlier in this chap-
ter all represented reflections. Now a reflection, done twice, lands
you back where you were. Using A? as usual for AA, we should
find A% B2 D? and E? all to be I, where I means what it did in
Chapter 7, the operation of leaving things as they were. What is
the matrix representing 1?

Again, a rotation through the angle « followed by a rotation
through B should give a rotation through « + B. So, making use
of the matrix F for rotation, we should find

(cos o« -—sin a) <cos B -sinp
sine« cosa/ \sinB cos B)
cos(az + B) -—sin(x + B))

sin (x + B) cos (x + B)

This result, in fact, amounts to a way of proving the formulae for
the sine and cosine of a sum.

You may like to verify that FD and DF are different. Each of
them represents a reflection; the first about a line making the
angle « + $6, the second an angle « — $0. The products therefore
should have the form of D, but with « replaced by one of the
angles just mentioned. The correctness of these statements can
be seen geometrically.

ADDITION OF MATRICES

In algebra we usually carry out two operations; we add and we
multiply. So far we have only discussed the multiplication of
matrices. Is there any meaning which can be attached to addition
of matrices?

We had no difficulty in defining multiplication. With operators,
multiplication commonly means the result of carrying out the
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operations in turn. Applying this idea to matrices, we immediately
obtained a definition of multiplication, and from that, the rule for
multiplying matrices.

What advantages do we seek by carrying over such terms as
addition and multiplication from arithmetic into other, very
different subjects? We saw in Chapter 7 that certain problems of
logic could be solved by introducing the signs -+ and . and using
them exactly as if they represented addition and multiplication in
ordinary arithmetic or algebra. We did not have to form new
habits; our old habits gave us correct results. In formal mathe-
matics we are only concerned with patterns. We are not concerned
with what things are; we are only concerned with the patterns
they make. If some idea enters into a pattern in exactly the same
way as + enters into the pattern of arithmetic, no harm will come
from calling that thing +.

How do addition and multiplication come into the pattern of
arithmetic? What do we assume about the signs + and .? The
most important things we assume are the following.

Ma+b=b+a

M @+d)y+c=a+®b+0
aim a.b=b.a
av) (@.b).c=a.(b.c0)
V)a®b+c)=ab+a.c

(@) is called the Commutative Law for Addition, (II) the
Commutative Law for Multiplication, (IT) the Associative Law
for Addition, (IV) the Associative Law for Multiplication, (V)
is called the Distributive Law.

Usually, when we leave ordinary arithmetic, we drop require-
ment (T11). As mentioned earlier, we do not expect multiplication
to be commutative; in fact, for matrices it usually is not.

A few simple assumptions have to be added if Subtraction and
Division are to be brought in. I will not go into these here.

If one compares these assumptions with the axioms of Euclid’s
geometry — particularly allowing for the fact that Euclid uses a
lot of terms without really explaining what they mean — you will
see that the axioms of algebra are much simpler than those of
geometry. The simplicity of algebra as compared with Euclid’s
geometry is due to this fact.

Any of the well-known formulae of algebra can be proved by
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appeal to the axioms. It may interest you if I justify the formula
(a + b)® = a® + 2ab + b* by means of the axioms. 4® is an
abbreviation for a.a and 2ab for a.b + a.b, so what 1 really
have to prove is (a + b).(a + b) =a.a + (a.b -+ a.b) + b.b.

By (V) @a+b).(a+b)=(@+b).a+ (@a+b).b. Now I
cannot appeal again to (V) to multiply out (a + b).a, because
(V) only tells me about a.(b + ¢) with the multiplying a in front
of the bracket that gets broken up into two parts. I must appeal
to (III), which gives

@+ ba+@+b.b=a(a+b+b.(a+b)
= (a.a+a.b)+ (b.a+b.b)
using (V) twice
=ag.a+(@ab+b.a)+b.b
by an argument based on (II)
=aq.a+ (a.b + a.b) + b.b by (IlI);
what we wanted to show.

This may strike you as pedantic, and so it is for the ordinary
numbers. But we intend to apply algebra to all kinds of operators,
with which we are not so familiar as we are with arithmetic. We
are by no means sure that the ordinary rules of algebra are going
to apply. It is therefore most helpful to know that we can use our
usual formulae if we can verify the five results (I) to (V) for our
operators.

With matrices, for example, we cannot use

(A + B)? = A? 4 2AB 4- B?

because the proof of this formula twice uses Axiom (III), which
does not hold for matrices.

We shall be entitled to bring the sign + into matrix calculations
if we can find a way of defining it that will make axioms (I), (II)
and (V) hold. Axiom (III) is going to be dropped anyway; we are
building a non-commutative algebra. Axiom (IV) does not con-
tain the sign -+, so it is not affected by our definition of +.

Now obviously quite an investigation can start here, to find out
what will be a suitable way of defining U + V for matrices.
Can a definition be found, that will give properties (1), (II), (V)?
Is it the only definition possible to achieve this object? Are there
several definitions that would do equally well? The latter ques-
tions I will not go into, but will only report that it has been found
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possible to make a satisfactory definition of + for matrices. This
definition in fact is as simple as could be imagined. It is

(a b) (p q) (a+p b+q)
+ =
c d r s c+r d+s
One simply adds together the numbers in corresponding positions.
Thus, for example,

(1 2 ) 56 1+5 2+6 6 8
+(, )= )= (0 )
3 4 7 8 3+7 448 10 12
It can be verified without tremendous labour that this definition
satisfies all the axioms we expect it to. In regard to (V), since

multiplication is not commutative, it is worth noting tkat it
satisfies both

X.U+V)=X.U+XVand U+ V).X=UX+V.X

That is to say, the Distributive Law works all right, whether X is
in front of or behind the sum U + V.

In matrix algebra, the simplest form to which we can bring
(U + V)2, when it is multiplied out, is U2 + U.V + V.U + V3,
If you look back at our earlier proof of the formula for the square
of a sum, you will sece how the lack of Axiom (III) stops any
further progress.

HAS 3U + 4V A MEANING FOR MATRICES?

Quite early in school algebra, we meet expressions like 3x + 4y.
Algebra could not go very far without them. Can we, in matrix
algebra, attach any meaning to 3U + 4V?

We certainly can. 2U is an abbreviation for U + U, and the
meaning of U + U is already fixed by the definition of addition

for matrices. In fact

veo= (0 )+ (02 -G o)

2a 2b
So 2U ( ) .
2c 2d
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By adding a further U to this result, we find 3U (that is,

U+U+U)tobe
<3a Bb)
3¢ 3d

Continuing thus, we see that for n any whole number,

na nb
nuU = ( )

nc nd
As usual, we take from a result just a little bit more than we are
strictly entitled to. This formula has been justified for » a number
like 2, 3, 4, 5, etc. But it suggests very strongly that we might still
get quite a nice formalism if we assumed it to hold also for num-
bers like 13, -7, ¢, V2, =, and perhaps even sometimes numbers
like v/ = 1. And in fact it turns out that we do get a very satisfac-
tory and quite simple algebra by taking this step. Accordingly we
define, quite generally,

a b ka kb
(o o)™ e 1a)

c d ke kd
This step is prompted by faith, but the consequences of taking
it can be checked in the usual way by reason. It leads to a per-

fectly consistent and satisfactory pattern.
The things we can do with matrices now are (i) we can form
a product UV of two matrices, (ii) we can form a sum U + V
of two matrices, (iii) we can multiply a matrix U by a number %,

so that kU is defined. It is worth noting that Uk is supposed to
mean the same thing as AU.

ROTATIONS EXAMINED

With all this symbolism at our disposal, let us look back at the
matrix we found for a rotation,

cos® -—sinf
- ( )
sin 6 cos 6
Looking at this, it shows a certain pattern. cos 6 occurs in two
places, sin 6 in two places. Let us separate these two parts. This
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we can do now, by using the sum of two matrices. It is easily seen

that
cos® 0 0 -sinb
"= (o coe) * (im0 o)
0 cosb sin 6 0
The first of these contains the factor cos 6, which is a number. We
can put this factor outside the matrix, since we know how to
multiply a matrix and a number together. In the same way, we

can take the factor sin 6 out of the second factor. You can
immediately verify that

1 0 0 -1
F——-cosO( >+sin0( )
01 1 0

The matrix
(o 1)
01

we have met before. It is the identity operator I, which leaves
every point just where it was. What letter shall we use for the
matrix next to sin 0? Let us call it X for a moment until we think
of a better name. Suppose we multiply X by itself. We find by the
usual rule for matrix multiplication

0 -1y ,0 -1 -1 0
=( )G o )
1 0/ \1 0 0 -1
But the result here is what we should get if we multiplied the

matrix I by the number - 1. It could be written ( -~ 1) I or more
shortly, —I. Thus we have the equation

X = -1

As I plays the role for matrices that 1 plays for numbers, this
suggests that we should think of X as being, in some sense, a
square root of minus one. The appropriate name for it will
accordingly be i.

If we adopt this symbol instead of X, the equation for F above
becomes

F=1Icos6+isin0

1. Compare M.D., Chapter 15.
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which is strongly reminiscent of the very well-known expression
cos 0 + isin 6.

By following up this clue, it is possible to construct a theory of
the complex numbers a + ib. We can define the symbol a + ib
as standing for the matrix Ia + ib. This matrix written out in

full is a -b
(b a)

It will then be found that these matrices, combined by the rules
we have already discussed, behave exactly as we expect complex
numbers to do.

But do not make the mistake of thinking that this approach is
something entirely fresh. It is not. If you will look back in this
chapter, just above the heading ‘ Applications of Matrices’ you
will find the very matrix

0 -1
( 1 0)

that we have just used for i. And this matrix there arose as stand-
ing for the operation of rotating through 90°, which is exactly how
the operation i was explained first.? The matrix approach to i
simply gives a new notation for the geometrical approach. Being
algebraic in nature it may have advantages as allowing a more
clear-cut development of the subject.

MATRICES IN GENERAL

Throughout this chapter we have considered only matrices
containing 4 numbers arranged in two rows and two columns.
This was done in order to keep explanations as simple as possible.
But there is no reason for limiting ourselves to ‘two by two’ or
2 X 2 matrices, as they are called. We can just as easily write a
set of equations in three variables

Xy = axo + by, + czo
y1=dxo+ eyo + fZo
21 = gxo + hyo + kzo
1. M.D., Chapter 15, or any trigonometry textbook, De Moivre’s

theorem and related topics.
2. M.D. Chapter 15.
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in the matrix form
X1 a b ¢ Xo
p 4 = d e f Yo
Z g h k 2

and this in turn in the still shorter form P, = M P,. These
3 x 3 matrices can be combined with each other by adding and
multiplying, nor is there any great difference between their
behaviour and that of 2 x 2 matrices. The rule for multiplying
by rows and columns works in just the same way.

Square matrices can in fact be defined with any desired number
of rows. n x n matrices behave like 2 X 2 matrices in practically
everything except their geometrical interpretation (which of
course requires space of n dimensions). 1 x 1 matrices are just
ordinary numbers.

Rectangular matrices can be defined, with the number of rows
different from the number of columns. A rectangular matrix, too,
can be regarded as being the ‘soul’ of a system of equations. A
practical application of rectangular matrices occurs in electrical
circuit theory, Generally speaking, rectangular matrices are not
as interesting mathematically as square ones.



CHAPTER NINE

Determinants

But the next day one of his followers said to him, ‘O Perfect
One, why do you do this thing? For though we find joy in it,
we know not the celestial reason nor the correspondency of
it’.

And Sabbah answered :

I will tell you first what I do; I will tell you the reasons
afterward.’

Laurence Housman, The Perfect One

In almost any branch of mathematics, one finds a knowledge of
determinants is required. Determinants have a claim to the
attention of the applied mathematician because of their wide-
spread usefulness; for the pure mathematician they represent a
type of function with particularly simple and striking properties,
obviously significant and deserving of study. The rules for cal-
culating with determinants are simple; and many problems about
determinants have striking and elegant solutions.

Perhaps the most remarkable thing about determinants is that,
with all this evident mathematical significance and simplicity, their
teaching is a real problem. If one looks at most textbooks deal-
ing with determinants, the simple properties are reached by the
most appalling calculations. Nor does this represent carelessness
on the part of the authors. It is far from easy to find an elegant
and illuminating way of presenting determinants.

In this chapter I intend to discuss the problem of teaching
determinants. I shall first present the bare facts about deter-
minants, the fairly simple rules they obey. If I were given two
hours to teach a class of engineers how to use determinants, the
bare facts, as outlined below, are about all I could cover. But the
more intelligent students would certainly not be satisfied with
these bare facts; I then consider the questions that would arise in
these students’ minds. Finally, I sketch various considerations in
an attempt to illuminate the meaning of determinants. These are
not, and do not claim to be, a rigorous exposition. They are

125



Prelude to Mathematics

simply intended to provide some sort of background; to satisfy a
student that a treatment both rigorous and illuminating is
possible; to make the properties of determinants seem natural.

THE BARE FACTS ABOUT DETERMINANTS

Suppose then I have my large class of engineers, and a very
short period in which to show them how to use determinants.
First of all, of course, I apologize to them for what scarcity of
time is compelling me to do, to give the outer facts without the
inner meaning. Then I proceed more or less as follows.
They may have seen in books a sign such as
I ab
cd

This is a kind of abbreviation. It stands for the number ad — bc.
If the students knew anything about matrices or operators or
anything of that kind, I would emphasize that it was not a
matrix, not an operator, just a single number. (If a matrix were
meant, the side lines would be curved not straight.) It stands for the
single number ad — bc, nothing more, nothing less. For example,

2 3
519
stands for the number 23, because 2 X 19—3 x 5is 23.
Again, the sign
abc

de f
ghk

is also an abbreviation. It stands for the number
aek + bfg + cdh— ahf— bdk — ceg.

This also I would illustrate by a numerical example.

The square affairs with straight lines at the sides are called
determinants. In a moment I will mention their main properties.
Anyone with a knowledge of elementary algebra can verify these
properties, by testing that the functions given above actually
possess the properties stated.

(I) If two rows in a determinant are interchanged, the sign of
the determinant changes. For example

cd| _ _lab
ab cd
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(II) If to the numbers in one row are added & times the numbers
in another row, the value of the determinant is unaltered.
For example
(a+kc)(b+kd)| =Iab
c d cd
(IID) If rows and columns are interchanged, the value of the
determinant is unaltered. This means that, for example, if
instead of writing the letters a, b, ¢, d in alphabetical order across
the rows, we write them in alphabetical order down the columns,
it makes no difference.
ab| _ la c
cd bd
Another way of saying this is that it makes no difference if we
reflect the numbers of the determinant in the line running from
the North-West to the South-East corner. This means that any
statement that can truly be made about rows — in particular results
(I) and (II) -~ can equally well be made about columns.
(V) If all the numbers in any row are noughts, the value ox
the determinant is nought. For example,
abc
000
ghk
(V) Two determinants can be multiplied together by the follow-
ing rule. (I give the rule only for 2 x 2 determinants here.)
lab Pq =I(ap+br)(aq~}—bs)
cd r.s (cp + dr) (cq + ds)
(VI) And finally I think I ought to point out to them that there
is a connexion between 3 x 3 and 2 x 2 determinants. In fact

=0.

abc
de f =aief| -—bldf +cl|de
ghk hk gk gh

The 2 x 2 determinant here that multiplies a is got from the
3 x 3 determinant by crossing out the row and column containing
a. This leaves ef

hk

You will see that the other two determinants on the right-hand
side of the equation are obtained in a similar manner, one of them
by crossing out the row and column containing b, the other by
crossing out the row and column containing c.
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An extension of this rule gives us a way of defining 4 x 4
determinants. We use the equation

fegh egh efh efg
=alkmn| —b|jmn| +cl|jkn| —d|jkm
qrs prs pqgs pagr

to define the 4 x 4 determinant on the left of the equation. The
four 3 x 3 determinants on the right-hand side have a meaning
which we know, as 3 x 3 determinants have already been defined.

I hope it is clear that one could repeat this procedure to
obtain a definition of 5 x 5 determinants, and from them 6 x 6
determinants, and so on indefinitely. And at each stage you could
verify — provided you were energetic enough to undertake the
necessary algebraic calculations — that the properties (I), (II),
(III), (IV), and (V) still applied to the larger determinants just
brought in.

Six is not a large number of rules for an industrious student
to learn. The rules are not particularly complicated. In two lecture
periods of one hour each, with perhaps a bit of homework
thrown in, it would probably be possible to give the students
quite a fair idea of what could be done with determinants. One
would have to work a number of examples on the board, and
check the working of similar examples by the students themselves.

THE METHOD CRITICIZED

What criticisms would an intelligent student make of such an
exposition?

The first criticism would probably be that the definitions seem
arbitrary. I begin by defining 2 x 2 and 3 x 3 determinants,
and in section (VI) I show how this definition can be extended to
larger determinants. But how do I arrive at these definitions?
Why do I regard it as natural to start with such definitions?

A second criticism would be as to the method of proof. I invite
the students to check, by algebraic verification, that all the state-
ments I have made about 2 x2, 3 x3, 4 x4 and 5x 5
determinants are true. But it is evident that I believe the properties
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() to (V) are equally true of 6 X 6, 7 x 7 and in short n x n
determinants. Whence do I derive this faith that determinants of
whatever order, as found from my definition, will all enjoy the
same properties?

A third criticism would be one of clegance. The results (I) to
(V) are very simple. But the method 1 have suggested for verifying
them involves long and formless calculations. Seeing the results
are so simple, should there not be a correspondingly simple way
of proving them? If 1 really understood why these results came,
ought I not to be able to prove them by an argument containing
Jittle or no calculation?

If the instruction was being given in an unexpected emergency,
the criticisms might be disinissed as untimely. But in any situation
where reasonabic leisure was available to the students the
criticisms and the questions would be entirely justified.

Now I do not wish anything in the remainder of this chapter
tc be taken as a prescription for a perfect method of teaching
determinants. Indeed I have the feeling that somewhere in the
libraries of the world, if I had rather more time and somewhat
better facilities for searching, I might find, all ready and complete,
a far better exposition of this topic. What I write here shouild be
regarded only as suggestions of the way in which one might seek
for a better way of introducing to students the idea of deter-
minants,

FROM MATRICES TO DETERMINANTS

The last diagram of the section ‘ The General Matrix’ on page 110
shows the eflect of a matrix operation, how it changes squares
into parallelograms. Consider the effect of this operation on the
area of any figure. If the figure initially consisted of a certain
number of squares, it will after the operation consist of the same
number of parallelograms. Fractions of a square will be changed
into the same fractions of a parallclogram. That is to say, all
areas will be changed in the same ratio. If the area of the parallel-
ogram is g times the area of the square, then all areas will become
g times the size they were before the operation.

lt the ma tlix is
( )
c d
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what will g be? The corners of the parallelogram, it will be
remembered, were the points (a, ¢), (b, d) and (@ + b, ¢ + d),
together with the origin O. Figure 45 shows this parallelogram
enclosed in a rectangle. The lengths of various horizontal and
vertical lines are marked. The area of the parallelogram can be
found by subtracting from the area of the rectangle the various
unshaded areas, namely, two rectangles of area bc each, two
triangles each of area tac, and two triangles each of area $bd. As
the area of the large rectangle is (a + b)(c + d) the area of the
parallelogram is thus (a + b)(¢ + d)—2bc — ac — bd, which sim-
plifies to ad — bc. The square this parallelogram came from had
corners (0, 0), (0, 1), (1, 0) and (1, 1). The area of the square was
thus 1. Hence g = ad— bc.

b a
c 7
7
7
4
d
ya
ya
Va C
@ b
Figure 45

We recognize the answer. It is the determinant

lab .
cd

We thus have an interpretation for a 2 x 2 determinant; if
represents the ratio in which the matrix changes areas.

This idea does not work only for 2 x 2 determinants. If we
go on to consider 3 X 3 matrices, we can find a similar way of
seeing their effect on the points (x, y, z) of three dimensions. A
cube will be changed by a matrix into a little box, every face of
which is a parallelogram. The matrix will thus change the
volumes of bodies in threc dimensions in a constant ratio; this
ratio will be the determinant of the matrix. We are not able to
visualize the corresponding process in spaces of four or more
dimensions; but logically no difference exists. The idea we have
found applies in principle to all n x n matrices, whatever .
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The determinant then is a number associated with a matrix,

and that is why we write them in such a way that each reminds us
-of the other.

When we use U as an abbreviation for a matrix, we shall use

] U] to stand for the determinant associated with that matrix;

it is convenient to shorten this phrase to ‘the determinant of the

matrix’.
MULTIPLICATION OF DETERMINANTS

You may have noticed earlier in this chapter that Property (V)
of determinants uses exactly the same rule as we had in Ch. 8 for
multiplying matrices. If you look back to the section ‘ Multiplica-
tion of Matrices’ in Ch. 8, you will find that the rule for multiply-
ing arose very simply and naturally. It did not have to be dragged
in from the blue; it arose naturally in the course of the working.

But it is now easy to see why the same rule allows us to find the
product of two determinants. Suppose we have two matrices
Uand V. Let |U| =g, |V | =h This means that the
operation U multiplies every area by g, and the operation V
multiplies every area by h. The product UV of the matrices means
simply the result of applying first V then U. What will the
determinant of UV be? That is to say, in what ratio does UV
change areas? The answer is obvious. Operation V enlarges
every area A times; then operation U multiplies the area g times.
The combined effect will clearly be to enlarge areas gh times.
So | UV | =gh. That is to say, if we multiply two matrices
together, by the matrix multiplication rule, and take the deter-
minant of the result, what we get will be the product of the
determinants of the two matrices. This can be written

V] = JU|.]|V]

The importance of this result does not lie in its use for calcula-
ting the product of two determinants. If we know the value of one
determinant is g and the value of a second determinant is 4, then
it is far simpler to multiply together the two numbers g and 4
than to appeal to rule (V). The rule is more likely to be used in the
opposite direction. We have a complicated determinant to work
out. We notice that the numbers in it have the form of the matrix
product UV (that is, of the right-hand side of the equation given
in rule (V)), and so we can reduce the problem to that of finding
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the two simpler determinants, [U| and |V |. And we can
also use it for arguments like those used later in this chapter to

justify rules (1) and (1I).

STRETCHES, ROTATIONS AND REFLECTIONS

In Chapter 8 we found matrices representing various geometrical
operations. The effect of these operations on areas we know from
geometrical considerations. It we work out the determinants, we
obtain a verification of our argument, and also one unexpected
resiilt.

The determinant of the matrix G of Chapter 8 is

LEOl 1y o
IOA‘I = kk-0.0 =k

As G enlarges every length & times, it is quite correct that G
enlarges areas &* times.!

Rotations carry areas round without changing them. We should
expect 1 as the value of the determinant for a rotation. And in
fact, for C, which represents a rotation through 180°, we have

[C| =[‘0 _OI -1

For F, which represents a rotation through any angle 0, we have
jcos0 -—-sin0 A . .
| F| | sin 0 €05 (cos 0)(cos 0) — ( — sin 6)(sin 0)

II

cos?0 4+ sin%?0 =1,

I

So this too verifies.
There remain the reflections A, B, D, E. For these we find

11 oo _ _ | cos2a sin2«
IAI‘“‘IO— i_ L lDI”lsinZa—cosza =-L

~10 01
|B| = 01 = -1, IE]allO

after a simplification much like that done for | F | above,

1. Here and elsewhere, for the sake of having a definitc image, I use a
word which is strictly justified only in certain circumstances. G represents an
enlargement only if k is larger than 1. If k is fractional, G represents a
decrease in scale. And if negative values of & are in the reader’s mind, 1 shall
have to amend my statement even further. I find there is an economy of
mental cffort if one considers in the first place only the simplest, most
easily visualized situation. Afterwards one can check whether or not the

results apply in other situations.

= —l’
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Now here is something slightly unexpected. We normally
think of turning over a piece of cardboard as leaving its area
unchanged. In everyday life we think of area as always being
positive. But when we start to find areas by calculation, an area
miay turn out to be negative. It is well known in calculus that, on
finding an area by integration, the result may be negative. And
indeed this fact is often useful. Again, in a well-known result of
school mathematics, the area of a triangle is given by

Vs(s—a)s — b)(s — ¢).
There is a square root here, and in extracting a square root, the
question of + always arises. So a triangle has two areas, one +
and onc —, if we approach the question algebraically. The arca of
everyday life is simply the magnitude, the sign being negiected.

There arc even in practical life occasions where the double
sign of area can have some significance. There is a device known
as an indicator which can be fixed to a steam engine. A pencil
is connected to the pressure gauge, and a piece of paper to
certain moving parts of the engine in such a way that the engine
draws a kind of picture as it works. This picture takes the form
of a closed curve, and the area inside the curve shows how much
work the engine is doing at each stroke. But now suppose that,
instead of allowing the engine to do work, we do work on it. We
push against it in such a way that it retraces its steps; the pencil
goes back along the curve it drew, but in the opposite direction.
The area now represents not the work the engine has done but the
work the engine has absorbed — negative work. So the same
curve, traced in the opposite direction to the normal one, must
be regarded as having negative area.

Figure 46

If one ever found an engine drawing a figure-of-eight curve like
the one shown in Figure 46, it would mean that the engine was
doing work in one part of its cycle — say the larger loop which it
draws in an anti-clockwise direction — but absorbing energy
in the smaller lcop which it describes in the clockwise direction.
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If you do not like the idea of negative areas, negative volumes
and so forth, we could meet your views by rewording our earlier
statement about the connexion of determinants and areas. We
could say that the determinant of a matrix operation indicates
two things; its magnitude indicates the ratio in which areas are
changed; its sign indicates whether or not a reversal has taken
place. For instance, in three dimensions, a matrix operation
whose determinant was negative would change a car with right-
hand drive into one with left-hand drive — that is to say, it would
show the world as seen in a mirror.

But it is rather convenient to keep the idea of multiplying
areas or volumes by —1. For example; we know that no amount of
turning a car will change a right-hand into a left-hand drive; that
is, it is impossible to combine any number of rotations to obtain
a reflection. Can we prove this mathematically? Yes, in one
sentence, if I am allowed to speak of + and — volumes. Every
rotation multiplies volumes by +1; if several rotations are
applied in succession, each rotation will multiply the volume by
+1, and this can never lead to —1 times the original volume,
which is what a reflection gives.

DERIVATION OF RULES (I) AND (11)

Now let us consider the following simple procedure. We have a
2 x 2 matrix operation U, with determinant g. We perform this
operation U and then the operation E. What is the final effect of
this on the areas of the plane? The operation U will multiply all
areas by g. The operation E, which is a reflection in the line
y = x, multiplies every area by —1, as we saw in the last section.
The combined eflect is to multiply areas by (—1)g, that is, —g. So
the determinant of the combined operation, EU, must be —g.
|EU| =-¢ /a by
What is the actual form of EU? If we suppose U =
01 te d/

then, since E=(
1 0/
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That is to say, EU is the matrix obtained from U by interchanging
the rows. And its determinant, we saw above, is —g, that is to say,
the original determinant with its sign changed. Thus we have
proved Rule (I).

If you care to carry through a ‘similar argument for the
operation UE, you will find it gives the corresponding rule for the
effect of interchanging columns.

Rule (1I) can be obtained similarly, by considering the effect
of successive operations.

Let the operation H be the matrix that changes the unit square
into the parallelogram shown below. (Figure 47.)

H changes into 1

o=
]
}
1
1
'

DI

© 1 Figure 47

This operation does not involve any change in area; the
triangle that the figure gains on the right just compensates for
what it loses on the left. Nor does it involve a reflection. The
change could be brought about gradually, by someone leaning
with increasing force against the left-hand side of the square; a
reflection can never be brought about gradually, within the plane.
So the determinant of H must be + 1. Hence

|HU| = |[H|.|U| =lg=¢
The determinant of HU is the same as that of U.

What is HU? We shall first of all need to know the four
numbers in the matrix H. This is easily done by the method
explained at the end of the section ‘The General Matrix’ in
Chapter 8. H sends the point (1, 0) to the position (1, 0), so the

first column must be (I)

H sends (0, 1) to the position (%, 1), so the second column must be
k
1

(The information about where the points go is read off the
geometrical diagram above.) So H must be

)
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1 k\y/a b a+ ke b+kd
S T
\0 1/ \c d c d

But we have seen that the determinant of HU equals that of U.
And this is just what Rule (II) states.

The matrix < 1 0>

k1

has a geomectrical significance very similar to that of H: it also
distorts a square into a parallelogram of equal area, only the
displacement is vertical instead of horizontal. By its use we can
prove
l a b ‘ ab
c+hka d+kb ¢cd
that is, that we may add & times the first row to the second.
Results for columns instead of rows may be obtained by
considering products in the reverse order, UH for example.

GENERALIZATION OF THE METHOD

What shall we take for 3 x 3 matrices to correspond to the
oreration 1? This may be seen most easily by considering the
equations corresponding to P, = E P,, namely

X3 = Yo

Y1 = Xg

These represent an exchange of two letters. The new x is the

old y, the new y is the old x. If we are dealing with 3 variables
x, ¥, = we use the same idea; we change round any two of the
three letters. The third one of course remains unaltered. For
example, if we change x and y around, and Jeave z the same, we
have

Xy = Yo 0 l 0
Y1 = X giving the matrix 1 00
Zy = Zo 0 01

If instead we had changed y and z we would have arrived at the
matrix
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1 0 0\

001‘1
OIO/

or by changing x and z, the matrix
0 0 1

010
1 00

If you put any one of these matrices in front of a 3 x 3 matrix
and multiply, you will find two rows are interchanged as a resulit.

Geometrically, each of these matrices has the effect of a
reflection in a plane mirror. Taking x, y, z as East, North, up, the
matrix first found here corresponds to a reflection in a vertical
mirror, standing on a line in the North-East direction. This is
shown in Figure 48.

Figure 48

In the same way we can find a matrix in threc dimensions to
correspond to H. The matrix in fact is

1 £ 0
010

0 01

It has the effect of pushing a cube somewhat out of the straight
without changing the volume. Something like a slice of cheese is
lost on one side and gained on the other.

The method in fact can be carried over to n x n matrices.
The difficulty that would have to be overcome in finding a strictly
rigorous exposition would be the preliminaries necded to explain
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exactly what ‘volume’ meant in space of n dimensions. The
details of this we will not go into here. It is sufficient if it has been
shown that determinants do have a simple geometrical signifi-
cance, and that their properties can be seen, at any rate for 2 x 2
and 3 x 3 determinants, by means of simple geometrical argu-
ments.

It may be worth pointing out one thing which this method
does not do; it does not establish Property (11I) of determinants.
In fact Property (111) is quite different from Properties (1) and (1I).
It is impossible to find matrices that will do for Property (IIT)
what E and H do for (I) and (II). That is to say, it is impossible to
find matrices, made out of constant numbers, that by multiplica-

tion will turn
a b a ¢
( > into ( )
c d b d

Just how to fill this gap will not be discussed here.

SINGULAR MATRICES
If we look at the matrix
1 1
M=, )
2 2
we see that its determinant is zero. That is to say, the effect of

applying it is to multiply every area by 0.
B

(6]
Figure 49

Let us consider what it does to the square OABC in Figure 49,
O being the origin, A the point (1, 1), B the point (0, 2) and C the
point (-1, 1).

The equations corresponding to M are

Xy =Xo+ Yo
Y1=2x,+ 2y,
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By substituting the co-ordinates given above for (x,, y,) in these
equations we find that the origin (0, 0) goes to (0, 0); the point
A, (1, 1) goes to (2, 4); the point B, (0, 2) goes to (2, 4); the point
C, (-1, 1) goes to (0, 0). So O and C both go to the position
(0, 0); 4 and B both go to the position (2, 4).

In other words, the matrix squashes the sides OC and AB of
the square down to nothing at all. It is by doing this that it
manages to reduce the area of the square to zero. In fact every
area is reduced to zero. You will find that whatever values you
may give to (x,, ¥.), the point (x,, y;) will always lie on the line
y = 2x. The matrix thus compresses the whole plane into a line.

A matrix that has determinant zero is called singular. A
singular matrix always pushes some point, like C in the example
above, into the origin.

The two conditions are in fact equivalent. If some point, that
to begin with is distinct from the origin, is pushed into the
origin by a matrix, then the determinant of that matrix is zero.
And if the determinant is zero, some point must be so pushed
into the origin.

This means that the determinant of

)

c d

is zero if, and only if, there is some point (x, y) other than the

origin such that (ax + by, cx + dy) is (0, 0), i.e. the equations
ax+by=0
cx+dy=0

have a solution distinct from x =0, y = 0.

This statement can be generalized for 3 x 3 matrices, and
indeed for square matrices of any size. Probably the most com-

mon way in which determinants arise in algebra is by applying
this condition.

AN ALGEBRAIC APPROACH TO DETERMINANTS

Starting from this algebraic condition, one can see that it is
‘reasonable’ that determinants should have the properties they
do.

Take for example, the connexion between the determinants

139



Prelude to Mathematics

ab cd
cd and ab

If we call these D, and D, respectively, we know that

2 = "Dl;
this is simply Rule I. Could we have foreseen such a relation as
being likely?

Let us consider the meaning of the determinants. D, =0
is the condition for a pair of numbers, x, y, other than 0, 0, to
satisfy the equations

ax + by = 0...(1)

cx+dy=0...2
while D, = 0 is the condition that there should be two numbers,
other than 0, 0, to satisfy the equations

cx +dy =0...03)

ax + by =0...(4)
(Equations (3) and (4) are written down by looking at the letters
in the second determinant.)

But the equations (3) and (4) are simply the equations (1) and
(2) written in a different order. Naturally, if there is a solution
x, y apart from 0, 0 when ax + by =0 is written above
cx + dy = 0, there will be a solution when ax - by =0 is
written below ¢x + dy = 0. That means to say, if D, =0, it
must be that D, = 0. And vice versa, if D, = 0, that is, if (3)
and (4) have a solution, then (1) and (2) have a solution, and so
D, = 0. Thus D, and D, must be closely related; for if either one
of them is zero, the other must be. With a little care, one can
prove from this consideration (for determinants of any number of
rows and columns) that Rule I must be true.

There are certain snags to avoid in this proof; if one does not
care to prove Rule T this way, at least one can see that Rule I is
a very reasonable thing to happen.

In the sume way, Rule Il corresponds to the fact that it is
permissible to add & times equation (2) to equation (1).

(a+ kox + b + kd)y =0...(5
cx + dy =0...(6)

The equations (5) and (6) say exactly the same as equations (1)
and (2). It is not at all surprising that the determinants should
be equal in these two cases.
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Interchanging columns in the determinant would correspond
to writing the y terms in front of the x terms, like this

by +ax =0...(7)
dy +cx=0...(8)
This changes the sign of the corresponding determinant. We
should expect it only to have some simple ciiect on the deter-
minant, since it is itsell so trivial an alteration.
in the same way, aii the properties of determinants can be
shown to correspond to {airly obvious properties of the corres-
ponding systems of equations. We have succeeded in escaping
from sheer calculations, with which this chapter began, and have
reached the realm of ideas.
Probably the algebraic approach allows a simpler proof than
the geometrical approach via matrices; we do not have to go into
the question of what volume mecans in space of 7 dimensions.

QUADRATICS WITH THREE ROOTS

In algebra it is well known that a quadratic cannot have three
distinct roots. If the numbers a, b and ¢ satisfy a quadratic
equation, two of these three numbers must ceincide, @ = b or
b= ¢ or ¢ =u. Let us see how this known result appears in
terms of determinants.

We look for a quadratic equation px® -+ gx + r = 0, that is
to be satistied by «, b and ¢. Substituting @, b and ¢ in the equa-
tion, we tind that they will satisfy it if

a’p+ag+r=0
b0+ by +r=0
p+eg+r=0.
But these three cquations have a matrix form. They state that

the matrix a® a |
b* b 1
¢ ¢ 1

sends the point (p, g, r) to thic origin (¢, 0, 0).

Now there are two possibilitics. Perhaps (p, g, r) already is
at the origin, and the matrix is not doing anything unusual. But in
that case p = 0, g = 0 and r = 0, so that the quadratic equation
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that a, b and c satisfy is Ox2 + Ox + 0 = 0, which is not much
of an equation. It is satisfied by every number there is.

But if (p, g, r) is a point distinct from the origin, then the
matrix must be singular. So, if a, b, ¢ are to be the roots of a
genuine quadratic (one different from 0x% + Ox + 0 =0) we
must have the determinant condition
a al
b b1

¢t cl

=0

An exercise in many algebra texts is to show that the deter-
minant above equals (@a—b)(a— c)(b—c). The fact that it fac-
torizes in this way is not surprising; for as we saw at the beginning,
a, b, c can only satisfy a genuine quadratic equation if a = b
or a = ¢ or b = ¢, corresponding exactly to the three factors.

DETERMINANTS AS SOURCES OF PATTERN

Determinants often help to give shape to something that without
them would be shapeless. Imagine, for example, that you were
asked to generalize the well-known elementary result,

a®*—b? = (a + b)(a—b).
At first the expression a*—b? does not seem to have much

pattern. It might however strike you that it can be expressed as

the determinant
ab
ba

Here a certain pattern is beginning to reveal itself, and you might
be led to consider the determinant

abec

bca

cab
This expression when multiplied out comes to a® + b® + ¢®— 3abc
and has the factor (a -+ b -+ ¢). A generalization to 4, 5 or any
number of variables is cvident. Students often meet the expression
a® + b* + ¢®—3abc in exercises taken from algebra textbooks.
They may be puzzled why this particular expression keeps cropping
up. The determinant shows that it has a very definite pattern, and
may be expected to have a number of simple properties, suitable
for authors of textbooks in search of material for exercises.



CHAPTER TEN

Projective Geometry

Infinity is where things happen that don’t.
Starement made by a schoolboy

Projective geometry is one of the most bcautiful parts of ele-
mentary mathematics.

For the professional mathematician it is undoubtedly an
essential part of one’s education. One does not need to go very
far with it; the value of a detailed study of it is doubtful, except
for the specialist. But the basic patterns of projective geometry
can be traced in many other branches of mathematics; they serve
to guide and to unify.

For non-mathematicians, too, it is a worthwhile study. This is
not on account of its technical value. It has some connexion with
the theory of aerial photography, but I would not like to advocate
including it in the syllabus for that reason. Rather its value is
that it enlivens a course. A non-mathematician, learning mathe-
matics for technical reasons, often has to plough through masses
of routine procedures, which can be extremely dull. These tend to
drug the mind. An education should also contain elements that
perform the functions of a cold bath - to provide a shock and
keep one awake.

Projective geometry does this very nicely. It is surprising; it
does things one would not think allowable, and gets away with
them. It abounds in beautiful impossibilities. In it, parallel lines
meet, and there is a theorem (sufficient to make the average man
doubt the sanity of mathematicians) that all circles have two
points in common. These points, of course, are no ordinary
points; they are imaginary, and at infinity. Still, the result is
striking enough.

Moreover, the subject is an excellent example of mathematical
style. In projective geometry, if something can be proved at all,
it can usually be proved simply. In this respect, it is the opposite
of Euclidean geometry. In Chapter 2 we met the principle (illus-
trated by the Wine and Water problem) that a subject becomes
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both general and simple by the process of abandoning all un-
necessary information. Now this is precisely what projective
geometry does. It steadfastly ignores certain types of information
which cause much of the complexity of Euclidecan geometry.

Again, its history is extremely interesting, and shows how
little we realize the eventual consequences of anything we do.
Projective gcometry began as a very practical subject, in effect as
the theory of perspective. If an artist wants to draw a table or a
box, how should he deo it? The artist might, of course, bc an
engincer, and in fact G. Desargues (1593-1662), an engineer and
architect, was both. It is to his work that projective geometry
can be traced.

The theory of perspective in itself is interesting. It assumes
of course ordinary Euclidean geometry as a starting point, and
applies that geometry 10 the theory of drawing pictures. Projec-
tive geometry thus appears first of all as a part of Euclidean
geometry. It took centuriss before people realized that projective
geometry was in {act an independent subject; that it was in-
finitely simpler than Euclid; that it could be developed without
any mention of Luclid, and in fact that the best way of cleaning
up Euclid (which is a vast mess of unstated assumptions) was to
develop projective -geometry first, and get Euclidean geometry
from it. Projective geometry te-day is a clear, sharp, and logical
subject, which Euclid never was.

There are protlems for the teacher because of this history.
Should the teacher follow the historical approach? To do so has
the advantage that the pupils see and can understand how the
subject grew; the whole thing is scen as a natural development.
But there is an objection; Euclid is illogical, projective geometry
is logical. What a pity to make the logical seem to depend on the
illogical! What a pity for students to learn what they will later
have to unlearn! But on the other hand, if one starts from the
modern viewpoint, the work is clear and logical, but the pupil has
no idea what it is all about, or where it has come from.

It seems to me that onc should begin by showing pupils the
historical development, but warn them, from the first, that the
subject reached a stage where it had to be stood on its head.
Logically, for the angel on the telephone, the modern develop-
ment is undoubtedly superior; the assumptions are few and
simple; there is no appeal to diagrams or to physical experience
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of shapes and sizes. But just because it is so suitable for logicians
and angels, it is insufficient by itself for most human beings.
To see the clear, logical ideas gradually being disentangled from
vagueness and confusion is vastly more instructive than simply
starting with the logical ideas. If the limitations of the older
methods are clearly explained, I do not feel that too much
‘unlearning’ will be necessary. A student can distinguish between
a ‘proof’ that would have been accepted in 1640 and one that
would be acceptable in 1899 (the year when Hilbert published his
Foundations of Geomeiry), Whether future centuries will find it
necessary to speak of ‘so-calied proofs’ accepted by twenticth-
century mathemadticians | cannot guess: probably they will. But
at any rate we have advanced on the seventeenth century.

It was mentioned earlier that the practical value of projective
geometry rests not on its direct technical applications to photo-
graphy or drawing, but on the influence which it has had on other
branches of mathematics. Many cxamples could be given of
this influence; some of these would involve long explanations.
For the moment, just one examplc will be mentioned. Probably
the branch of mathematics most widely used by engineers and
scientists is that of differential equations. Anyone who has done a
course on this subject will remember how disjointed it seems to
be; here is an equation that you can solve by one method, here is
an equation that can be solved by another — countless different
types to remember, countless different methods to use. As one
disgusted lecturer said, ‘It is botany, not mathematics’. (Rather
unfair to botany, which, after all, aims at classification, not just
the mere collection of specimens.) Now there is a theory, due to
Sophus Lie (1842-1899), which establishes a single principle
underlying all these different types; it shows that all the equations
we know how to solve have a certain property in common; it
shows why they can be solved by the methods used. This theory
is obviously essential to any mathematician, who wants to help
practical men by showing how to solve types of difierential
equation that have resisted treatment until now. It is no accident
that Sophus Lie was a geometer. His ideas, which proved so
powerful for differential equations, had their origin in geometrical
questions, closely connected with projective geometry.
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THE THEORY OF PERSPECTIVE

So much, then, for the beauty and the utility of our subject. Now
let us look at the subject, as it develops from the theory of draw-
ing.

Here is Figure 50, intended to represent a cube. The picture
differs in many ways from the actual cube. The height, breadth,
and length of a cube are equal; but the lines in the picture which
represent them are unequal. The angles of a cube are right angles;

O

Figure 50

the corresponding angles in the picture are not right angles. Lines
parallel in the cube are not parallel in the picture. Even ratios
of lengths are not preserved. The dotted lines drawn on the top
of the cube bisect each other in reality; they do not do so in the
picture.

But yet something must be preserved. If nothing at all was
preserved in going from an object to its picture, there would be no
such thing as a bad drawing or a good one. And certain things are
preserved. For example, if in reality a line is straight, the picture
also must show it as straight. The picture of a point is a point.
If a point lies on a line, the picture should also show a point
lying on a line; just as, from an acrial photograph, you could tell
that a certain river passed through a certain town in reality,
because it appeared to do so on the photograph. (Towns ad-
mittedly are not points, nor rivers lines.)

Thus (1) being a straight line, (2) being a point, (3) being ‘on’,
are properties that the photograph preserves. Such properties are
called projective. A projective property is one that is preserved
when a photograph is taken. Projective geometry is concerned
only with such properties; it ignores all others.

If we take a photograph of a geometrical figure, and then take
a photograph of the photograph, all projective properties of the

146



Projective Geometry

original figure will appear in this second photograph. It does not
matter how many times you go on photographing. Projective
properties are preserved at each stage, and therefore are preserved
throughout the whole process.

As we saw earlier, length, angle, parallelism, ratios of lengths
are all altered by photography. None of these are projective
properties. None of them may be mentioned in strict projective
geometry.

Nearly all the results of ordinary school geometry are about
lengths or angles. What is there left to talk about if these things
are taboo? Are there any theorems at all?

A projective theorem, completely independent of measurement,
is shown in Figure 51.

Figure 51

Starting at O, draw the three lines OA, OB, OC. A, B, C can
be anywhere on these lines. Also mark any three points 4’, B, C’;
A’ on OA, B’ on OB, C’ on OC. Join AB and A’B’. These two
lines meet in F. In the same way, AC meets A’C’ in E, BC meets
B’C’in D. You will now find that D, E, F lie on a straight line.

This result makes no appeal to the ideas of length or angle. It
uses only the ideas of straight line and point. It is fully projective.
If you took a photograph of this diagram, the photograph would
do just as well as the original diagram.

This example shows that there are such things as projective
theorems.

This particular result is known as Desargues’ Theorem — the
same Desargues as was mentioned earlier. Incidentally this
theorem possesses a remarkable symmetry. Every point in it is as
good as any other point. The construction I gave earlier obscures
this fact. We began with O, then brought in 4, B, C and 4’, B,
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C’, and finally arrived at D, E, F. But if you rub out the letters on
the diagram, you will find that you can mark any one of the ten
points as being O. You can then find ways of marking in the
other nine letters so that the printed statement of the theorem
given earlier remains exactly tiue. The diagram is the same, but
the points are diffcrently named. One way of re-lettering is
shown here. (Figure 52.) There are in fact 120 difterent ways of

Figure 52

putting in the letters on this diagram, without any alteration in
the printed statement being necessary. There is perfect democracy
among the points and lines of the diagram. There are 10 lines,
each having 3 points on it; there are 10 points, each having 3 lines
through it. The diagram is spoken of as ‘a 10,, 10, configuration’.

An obvious problem of generalization; what other diagrams
have similar properties? In other words, what other configurations
exist? In a configuration, cach line must have the same number of
points on it, and each point the same number of lines through it.

Desargues’ Theorem incidentally gives the answer to a nursery
puzzle; plant ten trees in ten rows of three.

ORIGIN OF DESARGUES’ THEOREM

If you have any knowledge of Euclid, you will see that this
theorem is quite unlike most theorems of school geometry. It
would make a very nasty problem, if you were suddenly required
to prove it by means of Euclid (though it can be done). A more
interesting question is, how did Desargues come to think of this
result? Once you know how Desargues came to it, you can see
that the result is obvious.

Desargues, as we saw earlier, was interested in how to make
drawings of buildings and other solid objects. If you can look at
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Desargues’ diagram, and see it as the picture of a certain solid
object, you will have the result at once.

It is not easy to imagine solid objects, or to visualize them from
drawings. The best thing is actually to make them. A cheap and
convenient method is to get some old newspaper, and roll each
sheet up until it forms a rod or tube, about as thick as a pencil but
considerably longer. Instead of rolled newspapers you can use
pea-sticks if you have some to hand.

Figure 53

Take three rods, and place them to form a tripod. (Figure 53.)
O is at the top. 4, B, C are on the ground. 4/, B’ and C’ are next
chosen, placed on the three legs of the tripod as shown. These
points should not all be the same height above the ground.
Rather they should be so placed that if someone were to slash
through the tripod with a very sharp sword, cutting it at 4°, B’
and C’, then the sword would strike the earth not very far away
from A, B and C in its follow through. Now place a rod so as to
pass through A’ and B’, and lay another rod on the ground,
touching the fect 4 and B of the tripod. These two rods will meet
at F. In the same way rods AC and 4’C” will meet in a point E,
and rods B’C’ and BC will meet at D.

The points D, E, F so found all lie on the ground. But they
also lie in the plane of the siashing sword mentioned earlier.
These two planes will meet in a straight line, as you can see from
your model. If you now take a photograph, or make an accurate
drawing, of your model, you will obtain the figure for Desargues’
Theorem.

PAPPUS’ THEOREM

Another theorem independent of angle and length is Pappus’
Theorem. It involves the nin¢ points and nine lines shown in
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Figure 54. A natural way to draw this diagram would be first of
all to draw the lines ABC and DEF, and mark the points 4, B, C
anywhere on the upper line, D, E, F anywhere on the lower line.
Where FB meets EC gives L; M is found from FA4 and DC; N
from EA and DB. The points L, M, N will then be found to lie on
a line.

This diagram is also a configuration, being a 9;, 9,. There are
108 different ways of putting in the letters on this diagram,
without any change in the statement of the theorem becoming
necessary. Each point is as good as any other point.

Figure 54 Figure 55
WHAT IS A PICTURE?

So far we have talked about ‘taking photographs’ and ‘drawing
pictures’ but we have not explained exactly what this means.
Imagine you have a sheet of glass. You wish to draw on this glass
a picture of various objects behind it. You rest your head in such
a way that the position of your eye is fixed. If P is any point of the
object to be drawn, you make a mark on the glass at Q. (Figure
55.) This mark just hides the original point P from your sight;
your eye, the mark Q, and the point P are in line. If you make
similar marks on the glass for other points of the objects to be
drawn, you obtain a picture of these objects.

Figure 56 shows the process in the reverse direction; lines drawn
on a glass slide throw shadows on a screen - a simplified version
of the cinema or magic lantern.

Both of these processes we shall speak of as projection. It is
quite usual to speak of a cinema projector, so the use of the word
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in connexion with the second diagram is quite natural. In
geometry, it makes no difference whether the picture is being
enlarged or made smaller; we use the word projection also for the
first diagram. Indeed we shall use it also for a situation like this
one (Figure 57), which is something like what happens in a
photographic enlarger. The details are unimportant. All that
matters is that rays go from a point, to a point, or through a
point; a picture is formed where these rays meet a plane.
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Figure 56 Figure 57

PROJECTION OF A LINE

If I mark any two points on a piece of paper, I can claim the
result to be an aerial photograph showing the positions of Lon-
don and Paris. If L and P (Figure 58) are the actual positions of
London and Paris, and 4 and B are two points on my paper, 1
have only to place my eye at O in the figure here, and 4 will hide
London from my eye, while B will hide Paris.

o

B
A

L P
Figure 58

Two points of a line, then, have no projective property at all;
no information is gained from a picture of two points — except in
so far as it shows the two points to be distinct. My aerial photo-
graph could be criticized if 1 said, ‘B represents Paris and 4
represents the capital of France’.
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Nor is there anything to be said about three points in a line.
Suppose there are three towns, P, O, R on a straight road, and I
produce a line with any three points 4, B, C marked on it. I can
still claim it is an aerial photograph of the towns P, Q, R.

Suppose I place my picture so that 4 coincides with P. (Figure
59.) Now placing my eye at O, A, B and C represent the correct
positions for a picture of P, @ and R. Again, I am supposing
P, Q, R to be distinct points, and 4, B, C also to be three distinct
points.

(&)
C
B
A P Q]/R
P a R ,
Figure 59 Figure 130

Any professional mathematician reading the last paragraph
will be critical. The argument depends on *placing the picture’ in
a certain way. What do I mean by that? 1 must explain, logically,
what is implicd in moving a picture about. (A thing, by the way,
Euclid never did, and one of the reasons why we criticize him
these days.) I can avoid this, however, by saying that my picture
is only a photograph of a photograph of the three towns. Suppose
A, B, C (Figure 60) is my aileged photograph. P, Q, R are the
towns. We join PC, and take any point D on it. Let P4 meet DB
in 1. Looking at things from I, ABC is a true picture of PDC. But
PDC is a true picture of PQR. We have only to look at things
from the point J, where 2 Q meets CR.

So ABC is a picture of PDC, which is a picture of PQR.

But as we emphasized earlier, a picture preserves all projective
properties, and such properties still survive in the picture of a
picture. Sc we see that there is nothing to be said in projective
geometry about three points of a line. If somewhere in the world
there were a great flat desert, on which three rocks were known to
lie in line; and if an aeroplane flew over the desert and took a
photograph in which these three rocks and nothing else appeared
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- then no new information would be contained in that photo-
graph; if the position of the aeroplane when it took the photo-
graph were unknown, It would be impossible to work out
anything at all about the distances between the rocks.!

Projective geometry has nothing whatever to say about three
separate points in a line; except that there are three of them, and
that they are separate.

CROSS-RATIO

But the situation is different when there are four objects in a
straight line. An acrial photograph does tell you something about
these.

(o) A B C D
J | | ' i
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Figure 61

Suppose A4, B, C, D (Figure 61) are four points in a straight
line. Take any point, O, as origin and suppose that 4, B, C, D are
distances a, b, c, d respectively to the right of O.

We can calculate the quantity

_(@=b)c=a)
T (b-od-a)

This quantity has the property that it is exactly the same for the
picture as for the original object. 1f you wanted to caiculate x, it
would not matter if you measured the distances on the photo-
graph, or on the actual site.

The camera can lie. It lies when it tells us that equal lengths are
unequal, and that right-angles are not right-angles. The only
thing it does not lie about is this expression

(a—b)c—~d) [(b—c)d—a).

1. One could perhaps say that rock B was between rocks 4 and C. But
this is due to the nature of a camera; with projection defined in the most
gencral way, for the purposes of pure geometry, cven the order of three
points on a line is not preserved by projection.
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The value of this quantity we can find directly from a photograph.
And anything that can be asserted definitely on the evidence of a
photograph can be put in terms of such quantities.

Naturally, a name is given to this quantity. It is called the
cross-ratio of the points A4, B, C, D. The sign (ABCD) is com-
monly used as an abbreviation for this quantity.

Note that (4BCD) stands for a single number. For instance, if
in the diagram above a =2, b =3, ¢ =5, d = 7 then (ABCD)
means (2—3)(5-7)/3—=5)(7-2) = (-1)(-2) /(-2)(5) = —%. You
notice that this number can be negative. It can also be positive, as
you can verify by taking, say,a =2,b=3,¢c=15,d = 4.

It is a remarkable fact that this expression (4ABCD) was
already known to Pappus, who lived before A.D. 300. Naturally he
did not express it in terms of photographs (which date from
1829), nor in terms of perspective (the theory of which developed
after A.D. 1400). It would simply be put in terms of the geometrical
figure (Figure 62), for which (PQRS) = (4ABCD).

O

D
A/ B\C

P Q R S

Figure 62

It is not known whether Pappus himself discovered this result,
or whether he learnt it from some earlier writer. Nor do we know
what train of thought led to this theorem. Thisisa pity; it would
be extremely interesting to know how it was discovered. For it is
by no means an obvious result. Imagine that we did not know
about this expression, and we wanted to find some property that
was the same for the picture as for the object. How would we
begin to search for such a property? A modern mathematician,
with the help of invariant theory, would know what to do. But for
someone living in A.D. 300 to discover it — that is remarkable.

An example of how the cross-ratio can be applied to drawing;
I have tried here to draw (Figure 63) four lamp-posts, evenly
spaced along a road. Have I drawn them correctly?
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If in the picture I measure from the foot of the nearest lamp-
post, I find p = 0,9 = 6, r = 8, s = 9. So the cross-ratio (PQRS)
is (0—6)(8—9)/(6—8)(9—0), that is, —3%. For the four points
A, B, C, D which are equally spaced, as the lamp-posts should be
in reality, we have a =0, b =1, ¢ =2, d = 3. The cross-
ratio is (0—1)(2-3) /(1 —2)(3 —0), which is again - }. As the
cross-ratio is the same in the two cases, it follows that P, Q, R, S
can be regarded as a correctly drawn picture of 4, B, C, D.

!
1

A B C D
Figure 63
This calculation, you will realize, does not check how well 1
have drawn the lamp-posts themselves, but only whether I have
spaced out the points P, Q, R, S, representing the feet of the
lamp-posts, correctly.

THE HORIZON

One of the first things an art student learns is how to draw
parallel lines. Figure 64 shows how parallel lincs appear in a
picture. The picture represents, say, a lawn with a path all round
it. The shape ABCD is intended to represent a rectangle as it
appears to the eye. EFGH is also intended to represent a rec-
tangle. AB, EF, GH, DG are intended to represent parallel lines.
But the art student will not draw them as parallel. They will be
drawn so that if they were produced (as shown by the dotted

155



Prelude to Mathematics

lines) they would meet at the point Q. In the same way, AD, EH,
FG, BC are supposcd to represent parallel lines; they meet at a
point P, in the picture. The points P and Q lie on the horizon.
They are rather peculiar points. Any other point in the picture
represents an actual point. E represents a corner of the lawn; D
represents a corner of the path. But P and Q do not represent
actual points. Tt would be no good to say, ‘We will have a picnic
to-day at the point represented by Q°.

A

Figure 64

The most we can say Q represents is a direction. Any line,
drawn on the ground parallel to 4B will appear to go through Q.
In the same way, P represents the direction AD. Any line on the
ground parallel to AD will appear to go through P. Any other
peint on the horizon also represents a direction.

In the picture we therefore have two kinds of points, (i) honest
to goodness points, which really represent places, (ii) points on
the horizon, where parallel lines seem to meet.

Lines which all meet at a point arc known as concurrent. Thus,
in a picture, lines which in reality are parallel, appear concurrent.
This suggests that parallel lines and concurrent lines must have
many properties in common; in fact, all projective properties, for
these are the properties common to the picture and the reality.
Accordingly, mathematicians have come to regard parallel lines
as if thcy were a special case of concurrent lines (‘mathematics is
the art of giving the same name to different things’). In fact, we
talk as if P and Q really did represent something. We have got
into the way of saying ‘parallel lines meet at infinity’; P is spoken
of as representing ‘a point at infinity’. All such points together
form ‘the line at infinity’, represented by the horizon PQ on the
picture.
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The advantage of this manner of speaking is that it enables us
to unify theorems. Instcad of saying, ‘these two lines either meet
or are parallel’ we can say ‘these two lines must meet’; but of
course, it may be that they meet ‘at infinity’ — which is a new way
of saying that they do not meet!

In Desargues’ Theorem or Pappus’ Theorem it may well
happen that somie of the lines, which earlier T assumed to inter-
sect, are in fact parallel. By speaking of them ax mecting at
infinity, I can still interpret these thcorems and obtain a resuit
ihat is true even when the lines are parallel. You may care to
draw these figures, with some of the lines parallel, and see what
happens to the theorems.

You may have doubts about whether it is justificd 1o speak
of points at infinity as if such things actually existed. It is right
that you should have such doubts, and thinking about such
questions helps to form cne's philosophy. Later I will say some-
thing about the logic of the subject, that may, or may not,
satisfy you. For the moment, I suppose we are merely exploring.
We try this way of speaking to see where it leads. 1f we like the
results, we will adopt the habit of speaking so.

RATICS OF LENGTHS IN PICTURES

Suppose we look at a picture and on it we see three points A4, B,
C which are in line, and which represent stones lying on the
ground. Can we, from the picture, deduce anything about how
these stones are actually situated on the ground?

We certainly cannot deduce anything from the three points
A, B, C bccause, as we saw earlier, in projective geometry any
three points on a line are as good as any other three distinct
points. They have no projective properties. But suppose the
horizon is shown on the picture, meeting the line AC in D, so that
D represents the point at infinity on the line of the stones. We
now have four points 4, B, C, D on the line, and they do tell us
something. The cross-ratio (4BCD) in the picture will be the
same as the cross-ratio of the four points on the ground. Let
a, b, ¢ measure the positions of the stones along the line on the
ground. These distances will be measured from some fixed point
of that line, it does not matter which; D represents a point at an
infinite distance along the line, so we must take d = . No
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respectable analyst would dream of actually substituting an
infinite value for a symbol, still less of doing what we shall doina
minute. However what we do here can be justified for projective
geometry.r We substitute the value d = © in the expression
(@—b)c—d)/(b—c)d—a) c—d then becomes - oo, while
d—ais + . Cancelling (!) these we find the value —(a—5) /(b—c)
for the cross-ratio. This is the same thing as —(b—a) /(c—b).
Now if P, Q, R (Figure 65) represent the actual positions of the
stones on the ground, b—a measures the distance PQ, while
¢— b measures the distance QR. Accordingly

-(b-a)/(c-b) = -PQ/QR.

P Q R
a
—
< b —>
“«— < >
Figure 65

That is to say, the cross-ratio of P, Q, R and the point at infinity
on the line on the ground is equal to -PQ/QR: that is to say,
it is the ratio in which Q divides PR, with a minus sign. But the
cross-ratio is faithfully preserved in the picture. Accordingly, if
in the picture we measure the lengths AB, AC, AD and deduce
the cross-ratio (4BCD), it will have a minus sign, and its size will
tell us the ratio in which the middle stone divides the line joining
the other two stones.

In particular, if Q is the mid-point of PR, then PQ = QR,
PQ/QR =1, and (ABCD) = - 1. Four points, A4, B, C, D, on
a straight line for which (ABCD) = -1 are said to form a
harmonic range.? Harmonic ranges thus arise naturally in con-
nexion with the theory of perspective. A harmonic range gives a
picture of a bisected line, together with the point at infinity on
the line. Harmonic ranges play a considerable role in the develop-

1. In projective geometry there is a line at infinity ; in inversive geometry
a point at infinity; in analysis infinity is taboo. In fact the word ‘infinity®
means three different things in these three subjects, and it is a pity that we
have the same word for such different uses.

2. The name ‘karmonic’ is due to the fact that the lengths 4B, AC, AD
then have a certain connexion with the theory of musical instruments.
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ment of projective geometry in its modern sense (that is, as a
subject depending on neither the theory of perspective nor the
idea of length).

CONSTRUCTION OF HARMONIC RANGES

Earlier we considered how to draw a picture of a lawn. Suppose
(Figure 66) ABCD is our lawn, in the shape of a rectangle. 4C
and BD cross at R. RS is parallel to AD. Clearly S is the mid-
point of AB.

Now suppose we draw a picture of the lawn. It will look like
this.

C
D R B
S
A Thelawn
P &
= =27
\\\\\\‘\5 //,://
\\\\\\:\\\\\ c_-— e
\\\ \\ ~ ///
. B
D
A Its picture
Figure 66

The points P and Q of course are on the horizon. Since ASBQ is a
picture of a bisected line together with a point at infinity, ASBQ
must be a harmonic range, i.e. (4SBQ) = -1.

Now we can forget about the original lawn, and look at this
last diagram simply as a geometrical figure, not as a picture of
anything. It gives us a construction for a harmonic range. We
only need a ruler to draw it: it consists purely of straight lines;
no measurement of lengths or angles comes into it. It is a purely
projective construction for a harmonic range. If we took a
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photograph of this diagram, the photograph would do just as well
as the diagram.

GEOMETRY APPLIED TO ALGEBRA

In Chapter 3 cross-ratio was mentioned, and it was suggested
that the reader should do some rather heavy algebra to verify
its properties. Now we come back to the same question, but
armed with the knowledge that cross-ratio is something unaltered
by projection. We also know that three points can be projected
into any three points we like. By means of this we can simplify the
worl: considerably.

We shall project three points into standard positions, which
we will choose to make the expressions as simple as possible.
What would be a good choice for the three points, or for the
numbers that fix the positions of the points? 0 is an obvious
choice. So is 1. Both of these are casy to calculate with. The third
point we select is infinity, . These are the places to which we
shall try to project three of our points.

O </

A X
/7 M N
Figure 67

We suppose A4, B, C, D to be four points taken on a line
(Figure 67), at distances a, b, c, d from some fixed point of that
line.

Through A4 draw another line, AX. Let a point N be chosen on
AX so that the distance AN equals 1. Join N to D. Through C
draw a line parallel to AX, meeting ND in O. O is the point we
shall project from, so that the shadows of the points, 4, B, C, D,
fall on to the line AX. As OC is parallel to AX, C is projected to
infinity, as desired. A is already on AX and projects into itself, D
projects into N. If we measure from A4, A is at distance 0, N is at
distance 1. If we use the letter Q to stand for the projection of C,
Q being at infinity has the symbol o attached to it. Finally the
projection of Bis at M. We use x to stand for the distance AM,
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Since cross-ratio is unaltered by projection,
(ABCD) = (AMQN),

or, in terms of numbers f(a,b,c,d) = f(0,x, ©,1). But
S0, x, «, 1) is easily worked out; with the treatment of o that we
used earlier, we have f(0, x, ©, 1) = (- x)(©) /(- ©)(1) = x.

In the same way, if we alter the order of the letters, we have,
for example, (ABCD) = (AMNQ), so

fla,b,d, c) = f(0, x, 1, )
= (= x)(- ) /(x—1)(©) = x [(x—1).

This is one of the set that we met in Chapter 3, but this time it
comes straight out; there is no heavy algebra, no thinking what is
the best way of verifying the result.

This is a striking example of the benefit we can derive from
knowing that a function is unchanged by a certain procedure; the
procedure in this case being that of projection.

In studying any problem it is therefore wise to ask, ‘What
procedures leave this problem unaltered?’ The greater the variety
of procedures we can find that leave it unaltered, the greater free-
dom we shall have in manceuvring it into a manageable form. In
this last example, our freedom consisted in the fact that we could
manceuvre three of the symbols occurring in f(a, b, ¢, d) to the
three positions chosen by us in advance, 0, 1 and .

There is a moral here of very wide application.

A function unaltered by a particular procedure is called
invariant (= unvarying). Thus f(a, b, c,d) is invariant under
Dprojective transformation.

But projection is still a geometrical idea. If we can translate
this geometrical notion into algebra, we shall have a purely
algebraic result, something that we can verify by algebra without
any appeal to geometrical constructions.

In Figure 68 we have an example of projection. The lines OX
and HJ are fixed; so is the point E. F moves along the line HJ. Its
shadow, thrown on to OX by a light at E, gives the point G.

If we denote the distance HF by the letter ¢, and the distance
OG by u, then the quantity « has been obtained from the quantity
¢ by means of a geometrical construction involving projection,
i.e. by a projective transformation. Our present aim is to see what
sort of algebraic function gives « in terms of 1.
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But to find # in terms of ¢ is a straightforward piece of co-
ordinate geometry. We simply have to run through the geometri-
cal construction, and at each stage translate what is happening
into algebra.

Figure 63

We suppose O to be taken as origin, E to be the point (0, q),
H the point (r, 0), and the line HJ to make an angle ¢ with OX.
All this information is marked in the diagram. The quantities
q, r, ¢ of course are constants. The only things that vary are ¢
and u. You can, if you like, think of ¢ as standing for time, so
that the point F would be moving along HJ according to the law
s = t, that is, with unit velocity. The point G moves also, being
the shadow of F, and we want to find the law of its motion.

At any time ¢ the point F has the co-ordinates

(r + tcos o, tsin ¢),

as is easily seen on dropping a perpendicular from F to HG.
Now we know the co-ordinates of E and of F. There is only one
line joining these two points, and it is purely routine to find its
equation. There are several different ways of finding the equation.
Various methods or formulae are available. As we considered this
problem in Chapter 4, we may as well quote equation (III) of that
chapter, in which we must put a=r + fcose, p=tsing
these being the co-ordinates of F, and b = 0, for the x co-ordinate
of E. The letter g already has the correct meaning, being the y
co-ordinate of E. We thus find the line EF to have the equation
tsing—gq

=X .
y r+tCOSqa+q

G is where this line meets OX, which has the equation y = 0.
On putting y = 0 in the equation above, and solving, we find the
x co-ordinate of G must be

162



Projective Geometry

w30t 1c0S 9)
g—tsin @

This result looks much more complicated than it really is. The
only thing that is varying is 7. We are only interested in how ¢
appears in this equation. (This is the same point that was made in
Chapter 4.) If we carefully choose numerical values for the
constants g, r, ¢, the simplicity of the formula will appear. We
may, for example, choose for ¢ the angle 53° 8’ which has a
simple sine and cosine; in fact, cos ¢ = §, sin ¢ = %. Taking
g = 1,r = 2 we have as an example of a projective transformation

_ 10+ 3t
T 5—4t°

With other values for g, r, ¢ the numbers would not be quite so
simple arithmetically, but they will always be constants, and thus
always we have a relation of the form

g+ ht
= Py A .(P.T.)
The example selected above would correspond to g = 10, & = 3,
k=351= -4,

The letters P.T. above stand for ‘Projective Transformation’.
We see that a very simple algebraic process corresponds to the
geometrical idea of projection.

Geometry thus calls our attention to the type of algebraic
function labelled (P.T.) above. This function has important
properties and arises in many parts of mathematics which have no
obvious connexion with geometry.

For example, imagine we were studying the integral

dx
Vx-a)(x—bx—o)x—d)

Integrals can very often be dealt with by writing x = F(z);
if the function F(z) is carefully chosen, the integral may come to a
simpler form. This is the well-known device of change of variable,
in elementary calculus.? But what function F(z) are we to choose?
One might well be at a loss for an idea.

But if we look at the integral, we notice that the four numbers
a, b, ¢, d come into it. Evidently, something special happens for

1. See, for example, Fawdry and Durell, Calculus for Schools, Chapter 14.
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x =a, x = b, x = ¢, x = d. We saw earlier that any three points
could be projected into any three points. The corresponding
algebraic result is that we can always find a projective transforma-
tion that sends any three numbers to any three numbers. The
three numbers usually chosen (as we saw earlier) are 0, oo, 1.
This means that we can choose the constants g, A, k, / in the
equation
g+ hz

k + Iz

in such a way that x = a when z =0, x = b when z equals (or
tends to) infinity, x = ¢ when z = 1.

There is no difficulty in finding the constants, but I need not
give the result here. We suppose the constants to be found, and
then substituted in the equation above. We then use this equation
to replace the variable x by the variable z in the integral.

The details of this work can be carried out by anyone with a
knowledge of elementary algebra and calculus, and the willingness
to cover a couple of pages of paper with symbols. No difficulty of
principle arises.

For anyone who does not wish to carry out this work, the
interest of these remarks will lie in the general idea involved;
that the solution of a problem in calculus may be helped by the
use of an algebraic function suggested by the geometrical theory
of aerial photography. This strikingly illustrates the interdepen-
dence of the various branches of mathematics; the fact that there
is a subject mathematics, which is not merely a collection of
technological applications.

The result of the detailed calculation is to reduce the integral to
the form

Viz-1Dz-1)
The expression under the square root is now only of the 3rd
degree, instead of the 4th. (This is due to the fact that a point has
wandered off to infinity.) The quantity f that occurs above is
what we earlier denoted by f(a,d, b, ¢), the cross-ratio of the
numbers a, d, b, ¢. Again, geometry helps us: we have met
fla,d,b,c) in geometry. We therefore recognize this function
when it appears in a calculus problem. If we had not first of all
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studied projective geometry and seen the significance of cross-
ratio, we should have thought nothing of it if the expression
(a—d)(b— ¢) /(d— b)(c — a) occurred in the course of a calculation.
1t would just have been another collection of symbols. But now
we say, ‘Ah, the cross-ratio! Why does that occur here?’

TRANSFORMATIONS

The example just considered shows the usefulness of transforma-
tions, for the classification of problems. The two integrals that
appear in the last section look quite different. One contains a
quartic, the other a cubic. But projective transformation changes
the first into the second, and, if we want to reverse the process, it
is quite easy to change the second back again into the first. Each
integral therefore can be regarded as the other in disguise. Any-
thing we know about one of them tells us a corresponding fact
about the other. In fact, we soon come to regard them, not as two
different problems, but as two different forms of the same prob-
lem.

This is the great value of transformations. They cause problems
which, at first sight, we should regard as distinct, to merge into a
single problem. Having solved a problem, we not merely know
the solution of that problem, but also of all the problems which
can be considered as that problem in disguise. Some transforma-
tions are fairly feeble in their effect. They may provide only one
disguise for each problem. In that case, they double our know-
ledge. To every problem we have solved, the transformation pro-
vides a mate. Problems are thus classified in pairs. But some
transformations are much more powerful than this. The trans-
formation may contain one or more constants, which we can
choose at will. We are then able to transform our problem into an
infinity of different shapes. Knowing its solution, we know the
solution of a whole family of other problems.

Here again is a growing point for mathematics. We have found
one transformation, the projective transformation, which has a
certain interest and value. At first we may be content simply to
use this transformation, which enables us to classify problems.
But later we begin to think, ‘This particular type of transforma-
tion has helped us. It has multiplied our knowledge. What other
kinds of transformations are there?’
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We seek in fact not merely to generalize our results; we desire
also to generalize our methods. Having found a certain method
useful, we look for other methods with similar properties.
Having found a particular transformation useful, we look for
other transformations, we ask what their properties will be, we
try to classify them, In view of the power that transformations
have, the study of transformations is obviously a valuable line of
enquiry.

The unending nature of the mathematical process should be
evident. We first classify problems. That is easy enough to grasp.
We then classify ways of classifying problems. That sounds more
complicated. There is a third step in the process, but it sounds too
much like a tongue twister to be worth printing. And beyond
that are fourth and fifth steps, each one classifying what has been
achieved previously.

The process has no termination. But each stage of the process
yields a certain satisfaction; it enables us, with a few principles, to
survey a wide field of knowledge. We shall return to the study of
transformations in another chapter.

This chapter began with a reference to all circles having two
common points. This we have not yet discussed, nor have we
dealt with the logical justification of the line at infinity. Both
points will be dealt with in the next chapter.



CHAPTER ELEVEN

On Apparent Impossibilities

Reason has moons, but moons not hers
Lie mirrored in the sea,
Confounding her astronomers
But, oh, delighting me.
Ralph Hodgson
You have only to show that a thing is impossible and some
mathematician will go and do it.
A saying

In the last chapter we used some highly questionable arguments
about infinity, and left the way open for all kinds of philosophical
disputes, such as, ‘Is there really a place, infinity, where railway
lines meet? If not, is it justified for mathematicians to speak of
infinity, and of parallel lines as meeting there?’

The answer to these two questions is, or very well may be,
(1) No, (2) Yes. Of the correctness of the second answer 1 am
certain; the mathematical use of ‘the line at infinity’ is justified.
The first question belongs not to mathematics but to physics; it is
a question about what happens at the edges of the universe. 1 do
not know if the universe has any edges; if it has, 1 have not been
there, and [ do not know what they are like, nor how railway lines,
if transported thither, would behave.

This answer may leave you with the feeling that somehow you
are being cheated. We are brought up to think of geometry as
telling us the truth about things. What is to be said of a geometry
that claims to be true, even if things behave quite otherwise? Even
for a mathematician too it is a little disturbing. We do not want
it to be thought that mathematics has nothing to do with truth.

Mathematics in the first place is concerned with consistency
of argument. A mathematician can say to a physicist, ‘Here is a
consistent theory. Whether it actually fits the physical universe,
I do not know. But I do believe it to be consistent with itself; it
will answer yes or no to any question you put to it, and it will
never answer both yes and no to the same question’.
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The job of the physicist is to test whether such a mathematical
theory fits the observed facts; whether the pattern embodied
in the mathematics coincides with a pattern occurring in actual
life.

It is in fact found that this procedure is extremely fruitful;
that mathematical arguments do in fact lead to practical results.
I am not sure that this could be predicted by mathematics alone.
The universe might be chaotic. That it is orderly, that it can be
mastered by means of logical thinking, this seems to me to be a
result of experience, incapable of logical or mathematical proof.

When we say a mathematical procedure is justified, we mean
only that this procedure, however much you use it, will not lead
you to contradict yourself. We assert its formal consistency;
nothing more. Yet even this, I suppose, is a statement about
reality; we say that however much you use this argument, you
will never be led to contradict yourself, provided of course that
you use it properly. In the course of centuries this statement might
be found false; we should then abandon the argument in question,
and no longer recognize it as a valid mathematical procedure.

In this chapter, then, I have to try to show that a consistent
scheme can be produced, in which parallel lines meet at infinity.
The consistency of this scheme is accepted by all living mathema-
ticians.! Whether future ages will find any loophole in it is for
you to judge.

HOMOGENEOUS CO-ORDINATES

We shall find it easier to discuss points at infinity if we use a
particular device, known as homogeneous co-ordinates. This
device is very helpful throughout projective geometry, and also in
other branches of mathematics. It may not strike you as a very
natural procedure; your first impression may be that it is making
things more complicated, because instead of specifying a point of
a plane, as usual, by two numbers (x, y), we shall be using three
numbers (X, Y, Z). There are however many places in plane
geometry where the symmetry of the algebraic expressions arising
suggests the desirability of having three basic numbers instead of

1. In practice at any rate. Among mathematical philosophers the con-

sistency of arithmetic is still a matter for discussion. The consistency of
arithmetic being granted, that of projective geometry follows.
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two: I cannot give examples of this without going into greater
detail than is here desirable.

The new numbers, X, Y, Z are connected with the old co-
ordinates x, y by the equations

x=X[Z, y=Y]zZ,

which are certainly simple enough.

For example, if we want to express the point x = §, y=§}
in the new system, we can take X =7, Y =3, Z = 8. As you
can see from the equations above, this will give us the desired
values for x, y. I say here, ‘we can’ and not ‘we must’ choose the
values 7, 3, 8 for X, Y, Z. For, since  is the same as 3% and § the
same as 1%, we could just as well have taken the values 14, 6, 16,
or in fact any other three numbers having the form 7k, 3k, 8k.

This is the first peculiarity of homogeneous co-ordinates. You
can multiply the quantities X, Y, Z by any number you like
without altering the position of the point they represent.

n
D

Figure 69

We are now in a position to see something which works out
very simply in the new co-ordinates. In Figure 69, the point 4 has
x =2, y=1, while B has x = 8, y = 4. In the new system we
could take 4 to be (2, 1, 1) and B to be (8, 4, 1). Suppose now we
were to add these numbers together; will this give us anything of
interest? By adding together, I mean that we write the numbers
belonging to B below those belonging to A, and do three addition
sums,

Ais (2, 1, 1)
Bis ( 8, 4, 1)

Addition gives (10, 5, 2)
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This process is easy to perform; has it any geometrical meaning?
If we go back to our familiar x, y system we see that (10, S, 2)
corresponds to x = 5, y = 24. These are the co-ordinates of D,
the mid-point of AB.

I always think of D as being a mixture of A and B — something
like blending two kinds of tea in equal quantities. Let us see what
happens if we vary the proportions. Suppose we take two of A
to one of B.

The numbers for A4, doubled, are ( 4, 2, 2)
The numbers for B, as they stand ( 8, 4, 1)
Addition gives (12, 6, 3)

this result corresponds to x = 4, y = 2, the point C which is
one-third of the way from A to B. The point obtained is still on
the straight line, but doubling the contribution from A has pulled
the point towards 4. You can easily verify that taking the original
numbers (2, 1, 1) for A4, but doubling the numbers for B, leads on
addition to the point E, two-thirds of the way from 4 to B.

A natural way of recording these results with the minimum
of writing would be as follows: D = A4 + B, C=24 + B,
E = A + 2B. As you can verify for yourself, 4 + B also gives
the point C. The blend of tea obtained by mixing 2 Ib. of Ceylon
with 1 1b. of China tea (if such a mixture is ever made) is exactly
the same as that obtained by mixing | of Ceylon with £ of China.

A certain care is needed with the notation above. Do not fall
into the following fallacy. 24 + 0.B leads to the point 4. So
A and 24 both rcpresent the same point. Thus 24 = 4. Add B
to both sides. 24 + B=A4 + B, that is, C = D. But C and D
are distinct points. The fallacy of this argument is clearly seen in
terms of tea blending. A cup of tea made from a 2 Ib. packet of
Ceylon tea tastes exactly like a cup made from a 1 Ib. packet. It
does not follow that a blend of 2 1b. of Ceylon with 1 1b. of China
will taste like a blend of 1 1b. of Ceylon and 1 1b. of China.

With these equations, one must only use arguments that hold
inregard to proportions of mixtures. The proportion 1:0 and the
proportion 2 : 0 give the same type of mixture (the first ingredient
alone); but 1:1 and 2:1 give different mixtures.

Coming back to our diagram on the graph paper, we saw that
the points 4 + B, 24 + B, A + 2B all lay on the line AB. By
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choosing suitable positive numbers m and », we can get m4 + nB
to lie anywhere we like on the line between 4 and B. (You may
find it instructive to work out a number of examples. Where, for
instance, is 994 + B? Where is 494 + 51B?) To get outside the
stretch AB we need to use negative numbers. For instance, if we
take —44 -+ B, we make the following calculation.
—4 times the numbers for 4, (-8, -4, -4)

thenumbers forB, ( 8, 4, 1))

Additiongives ( 0, 0, -3).Sox =0,y =0,

-4A4 + B thus represents the origin, O, which as you can see
from the diagram, lies on the line AB.

If you work out in turn -34 + B, -24 + B, -1}4 + B,
~134 + B, - 144 + B, you will find that you get points lying
on the line BA, if it is extended to pass beyond O. Each point lies
further to the left than the previous one. The number that goes
with A is getting nearer and nearer to - 1. If we actually take the
value -1, and consider -A 4 B, we get the set of numbers
6, 3,0) for X, Y, Z. We are now unable to find x, y. Our standard
equations x =X/Z, y=Y/Z lead to the meaningless ex-
pressions 6 /0, 3 /0.

If we pass the value -1, no further difficulty arises; it is
perfectly easy to work out x and y. When we took the sequence of
values -4, -3, -2, —13, etc., approaching -1, the correspond-
ing point moved down the line getting further and further to the
left. By coming close enough to — 1, you can make this point go
as far away from the origin as you like. What do you think will
happen when the value -1 is passed? Where does -34 + B
lie? Where does —$A4 -+ B lie? (As oniy arithmetic is needed to
answer these questions, I leave them to you. It is quite interest-
ing to follow the path of the point k4 + B, as k passes from a
large negative value, say - 1,000,000, towards -1, through -1
and on to 0, and then up to a large positive value, say - 1,000,000.
Does it pass through all the points of the line 4B? Docs it end
near where it began?)

THE TELEPHONE AGAIN

In all the above work, we found that our (X, Y, Z) label gave us
a perfectly good (x, y) label for a point, except when Z = 0.
Here we come to the parting of the ways. If we decide that the
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(x, y) label is the important thing, we shall have to say that three
numbers (X, Y, Z) specify a point except when Z = 0. But
suppose we have no prejudices in favour of (x, y); then we may
equally well say that (X, Y, Z) always represents a point, and
regard it as a defect of the (x, y) system that it provides no label
for points with Z = 0.

If we were explaining this to our friend the angel over the
telephone, we should find him equally prepared to accept either
path. It would perhaps depend on how we put the matter. Sup-
pose we were approaching a celestial contractor with the follow-
ing specification for the creation of a universe:

1. The universe is to contain points specified by numbers
*, ,2).

I1. Only the ratios of these numbers are to be significant. The
point with the label (kX, kY, kZ) is to be identical with the point
(X, Y, Z), whatever k.

I11. There is to be a point with the label (X, Y, Z) whatever
numbers X, Y, Z may be; except that in no case is Z to have the
value 0.

1V. All other details to be at the discretion of the architect.

As you know, architects are rarely willing to accept specifica-
tions. We can imagine our angel objecting, ‘I don’t much like the
look of Clause III. Our firm has a reputation for creating only
universes of mathematical elegance. Aren’t you being rather
arbitrary in picking on Z? If you wanted to exclude (0, 0, 0), I
would be inclined to agree with you, because 0:0:0 does not
establish a proportion for a mixture, but I see nothing wrong
with 6:3:0°.

If we gave way completely, the result would be a universe with
projective geometry. If the angel gave way completely, the result
would be our usual Fuclidean geometry. If a compromise was
established, by which a notice was erected on all points having
Z = 0, ‘Out of bounds. This point is at infinity’, the result would
be (I think) Euclidean geometry regarded as a particular case of
projective geometry.

LINES AND POINTS

In the preceding chapter we saw that there were projective
theorems, theorems using only the ideas of point and line, points
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on lines, lines through points. We must specify what we under-
stand by a line, if such theorems are to occur in the universe we
are designing.

How is a line specified in the usual (x, y) geometry? It is a
well-known result in elementary co-ordinate geometry that the
equation ax + by + ¢ = 0 always represents a line, and that
every line can be represented in this way. (The better known form
y = mx + c fails for vertical lines.) If we substitute x = X /Z,
y = Y /Z in the above equation, and multiply by Z, we arrive at
the equation aX + bY + ¢Z = 0.

This argument is based on our usual geometry. Our new uni-
verse, of course, need not have the same laws as the old one. The
above argument is not therefore meant to prove anything. But it
does suggest something. If our new universe is to be helpful for the
understanding of the old one, it should at least be similar to the
old one. We decide to carry over the form of the equation above.
We accordingly agree to the following definition of a line: all the
points (X, ¥, Z) which satisfy a given equation aX + bY + cZ=0
are said to form a line. The points that satisfy the equation will
be spoken of as being ‘on the line’; the line will be said ‘to go
through these points’.

All of this will go over the telephone quite nicely, and the
angel will know what we mean if we speak of points on a line. We
cannot of course define a line as the shortest distance between two
points, because we arz designing a projective universe, in which
there is no such thing as distance. The inhabitants of this new
universe will be completely unable to attach any meaning to the
word. The reason for throwing out the idea of distance is that,
as we saw in Chapter 2, the /ess you have in a subject, the simpler
and the more powerful that subject becomes.

Now suppose we have two lines, say

aX+bY+c¢Z=0...(D)

pX+qY +rZ=0...(d0)
Will these two lines meet? In other words, is there a point that is
on them both? It is easily seen that if you take X = br—cgq,
Y = cp—ar, Z = aq — bp, these values satisfy both equations (I)
and (II)%. So there is always a point where any two lines meet. In
projective geometry there is no such thing as paralle! lines.

1. The angel suggested, and we accepted, that X =0, ¥ =0, Z = 0
should not be regarded as a point. If it were regarded as a point, it would
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In Euclidean geometry how do lines manage to be parallel?
Let us take two parallel lines in the usual (x, y) system, say
y = x + 1 and y = x + 2. If we translate these into the (X, Y, Z)
system by means of x = X/Z, y = Y/Z, they become

X-Y+Z=0andX-Y +2Z=0.

These lines meet where X =1, Y =1, Z = 0. It is owing to the
fact that Z = 0 that we cannot find a point (x, y) lying on both
lines.

Accordingly, if we decide to disqualify all the points having
Z =0, and to say that two lines which meet at a point where
Z = 0 will be regarded as not meeting, we get back from pro-
jective geometry to a geometry with parallel lines in it.

We do this in effect every time we look at a picture, and see
lines which appear to meet on the horizon; we automatically
disqualify the points of the horizon, they do not represent ‘real’
points.

Incidentally, it is worth noticing that the disqualified points
are given by Z = 0, which is a linear equation, the equation of a
line. For this reason we speak of ‘the line at infinity’. Geometri-
cally, this squares with the fact that the horizon appears straight.

From the viewpoint of projective geometry, the line at infinity
is no different from any other line. If you have a piece of paper
you can rule any straight line on it, and say, ‘That is to represent
the horizon’. Of course, you must view the picture in such a way
that the selected line becomes level.

Projective geometry is very simple to specify. Any three num-
bers X, Y, Z specify a point, provided they are not all zero. An
equation aX + bY + ¢Z = 0 specifies a line (provided a, b, ¢
are not all zero). Any two points can be joined by a line; any two
lines meet in a point.

This is a simple scheme. To anyone used to this scheme our
ordinary geometry would appear as follows. A particular line is
singled out from the rest. Although this line is exactly like all the
others, a special name is given to it. It is called the line at infinity.
A special name is given to two lines that happen to meet on this
linc. They are called parallel. Points on the special line are treated

te on every line whatever, which would be inconvenient! A difficulty
would appear to arise if the solution given in the text reduced to (0, 0, 0).
But it can be shown that this only happens when the lines (I) and (II) are
identical, and then of course all the points of (1) lie on (II) also.

174



On Apparent Impossibilities

as if they did not exist. For this reason, parallel lines are said not
to meet.

Euclidean geometry is thus obtained from projective geometry
by disqualifying the points of a particular line. (Figure 70.) You
can see that there is only one line through a given point P parallel
to a given line AB. The line PQ is only called parallel to AB if PQ
and AB meet in a disqualified point. All the disqualified points lie
on the special line, the line at infinity (/, for short). The only
disqualified point on 4B is C, the point where /,, cuts AB. So, if
PQ is to be parallel to AB, to meet AB in a disqualified point, it
must meet AB in C. Joining P to C thus gives the line through P
parallel to AB. Clearly this construction gives one and only one

line. F p
<

Figure 70 Figure 71

OTHER GEOMETRIES

In Chapter 6 we saw that the possibility of geometries other than
Euclid’s was not a purely theoretical speculation, but might have
importance in physics. The procedure we have just followed
suggests a way of getting other geomctries. Why should we dis-
qualify the points of a line? Why not choose some other curve, or
region? In Figure 71 suppose that we start off with an ordinary
sheet of paper, and disqualify all points lying on or outside a
certain circle. This circle we can, if we like, call ‘the circle at
infinity’; mathematicians more commonly call it ‘the absolute’.
Two lines are only regarded as meecting if they meet inside the
circle. The lines PC and PD thus count as meeting the line 4B.
But PA counts as parallel to 4B, for it meets AB on the circle,
that is, ‘at infinity’. If the line PA swings round to the position
PE it is still not meeting 4AB. If it continues to swing round in a
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clockwise direction, by the time it has reached PF it will once
again be ‘just’ parallel, since PF meets AB at B. Any further
clockwise rotation will cause the line to meet 4B at a ‘qualified’
point. There are thus a whole bundie of lines through P that do
not meet AB.

This type of behaviour will no doubt remind you of Poincaré’s
universe, which was discussed in Chapter 6. It is in fact Poin-
caré’s universe very thinly disguised. By projecting Poincaré’s
universe on to a suitably placed sphere, and then back again on to
a plane, you can obtain the geometry just discussed.

THE COLOUR TRIANGLE

The Figure 72 represents (in perspective) a piece of graph paper.
0, as usual, is the origin. 04, OB represent the two axes, AB the
horizon.

B A

o
Figure 72

In the usual co-ordinates x, y OA4 would be the line y =0,
OB the line x = 0. In homogeneous co-ordinates, the equations
are practically the same. Since y = Y/Z, OA has the equation
Y = 0. Similarly, OBis X = 0.

The horizon, 4B, represents the line at infinity, which has the
equation Z = 0. The figure thus shows a threefold symmetry.
Ordinarily, we think of graph paper as having a twofold sym-
metry. There are two axes, the x-axis and the y-axis, each as good
as the other. But in our picture we have three lines with equal
claims, OB labelled X = 0, OA labelled Y = 0, AB labelled Z = 0.

Thus the triangle OAB appears as the basic figure. O is the
point (0, 0, 1), A the point (1, 0, 0), B the point (0, 1, 0). You can
check the agreement of this with our previous ideas, by sub-
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stituting these values in x =X/Z, y = Y/Z. O comes without
any difficulty, as x =0, y =0. For 4 we find x = o, y =0,
so that A4 should be an infinite distance along the x-axis, which it
is. Similarly B is x =0, y = o, an infinite distance along the
y-axis, as required.

In the usual co-ordinates, a line through the origin is y = mx.
In homogeneous co-ordinates we have, for a line through O,
Y = mX. What about lines through A? These represent lines
parallel to the x-axis, i.e. lines of the type y = c. In homogeneous
co-ordinates this equation becomes Y = cZ. Similarly, lines
through B have equations of the form X = kZ. Again, there is
symmetry; lines through O, lines through A, lines through B are
all treated fairly; the same type of equation is given to each.

Figure 73

Since A has co-ordinates (1, 0, 0), B has co-ordinates (0, 1, 0),
and O has co-ordinates (0, 0, 1) we can regard any point (X, Y, Z)
as being a mixture of A, B and O. We have only to take X times
the co-ordinates of A4, Y times those of B, Z times those of O, and
add. ‘Mixture’ is here used in the same sense as earlier in the
chapter, where the ‘mixing’ of points was compared to the blend-
ing of tea.

This same idea of mixing is used in the Colour Triangle. The
three-colour printing process depends on the fact that any colour
can be obtained by mixing, in suitable proportions, the three
primary colours red, blue, and yellow. The effect of this mixing
can be illustrated by the colour triangle. (Figure 73.) Suppose we
put pure red at A, pure blue at B, pure yellow at O. At D, midway
between A and B, we put the tint obtained by mixing a pint of
red with a pint of blue paint. Similarly, E shows the colour got by
mixing yellow and blue in equal amounts, F that for red and
yellow in equal amounts. G, in the centre, shows the effect of
mixing 1 of red with 1 of blue and 1 of yellow.

Calling G the point (1, 1, 1), D the point (1, 1, 0) and so forth,
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the co-ordinates X, Y, Z of any point give the proportions in which
the three basic colours are to be mixed at that position. This again
shows that only the ratios of X, Y, Z arc significant. The point
(2, 2, 2) for instance is the place where 2 pints of red are mixed
with 2 of blue and 2 of yellow: but this is exactly the same tint as
is obtained from 1 pint of each. (2, 2, 2) is the same point as
(1,1, 1)

This type of triangular diagram is also used by chemists, when
they wish to show the effect of mixing three ingredients in various
proportions.

Anyone familiar with mechanics will see yet a third way of
visualizing the diagram. The point (X, Y, Z) is the centre of
gravity of X pounds placed at 4, Y pounds placed at B, and Z
pounds placed-at O.

We have completely got away from the way in which we first
introduced the co-ordinates X, Y, Z, by means of graph paper.
We can now start directly from any triangle as a basic triangle.
This gives us much greater freedom. If we are attacking a problem
about a triangle, we do not need to drag two lines at right angles
into the question. We can take the triangle itself as the basis of
co-ordinates.

We are still far from having reached the most general type of
homogeneous co-ordinates. The idea of centre of gravity, too, is a
metrical one; it rests on the idea of length. It is possible to develop
homogeneous co-ordinates in a purely projective manncr, taking
any four points of a plane as (1, 0, 0), (0, 1, 0), (0, 0, 1) and
(1, 1, 1), and simply by drawing straight lines to spread a network
over the whole plane, each point of the network receiving a label
(X, Y, Z) without any appeal being made to the idea of length at
all. Details of this procedure will be found in books on projective
geometry, under the heading of Mobius nets.

IMAGINARY POINTS

In our specification for a universe, the first clause read ‘I. The
universe is to contain points specified by numbers (X, Y, Z)’.
Nothing was said about the nature of these numbers. Up till now
we have, without saying so, been treating these numbers as real
numbers. But there is no special reason why they should be real.
All our geometrical results are obtained by algebraic calculations.
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Provided the numbers used for X, Y, Z satisfy the laws of algebra,
we can go ahead. Now it is well known that complex numbers,
numbers of the form a + ib where i = V' -1, do satisfy all the
laws of algebra. So we could have a universe in which every point
had a label (X, Y, Z), the numbers X, Y, Z being complex numbers.
This universe would be no harder to handle mathematically than
when X, Y, Z were supposed to be real, since complex numbers
behave exactly like real ones in algebraic work.

But of course this universe would be very different from the
geometry we are accustomed to. With complex numbers, every
equation has a root. The geometrical translation of this is ~ any
two curves meet ! But in ordinary geometry it is easy to draw, for
example, two circles that do not meet.

We can however overcome this divergence by adding an extra
clause; Ia. The creatures living in the universe shall only be able
to perceive points for which X, Y, Z are real.

So now we have two kinds of disqualification for points.
(i) the points with Z = 0 are called at infinity, and are not
capable of being reached by the creatures, (ii) points with com-
plex values for X, Y, Z cannot be perceived at all.! They are called
imaginary points.

The two types of disqualification are different. Two lines that
meet at infinity are called parallel; but two curves that meet in
imaginary points are not called parallel. The creatures simply
say, ‘These curves do not meet’.

What advantage is there in this curiously elaborate procedure
of bringing in points with imaginary co-ordinates, only to shut
them out again?

T

l‘

Figure 74

Its usefulness may be shown by the following example. A well-
known theorem of Euclid is that, for Figure 74, PT? = PA.PB.

1. Strictly spcaking, it is only the ratios X:Y:Z that necd to be real. The
point (i, i, i) is the same point as (1, 1, 1) and would count as a point the
creatures could perceive. But as it is the same point as (1, 1, 1) we should
have no occasion to write it with complex values.
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Now suppose we have two circles, each passing through the
points 4 and B. (Figure 75.) From P, any point on 4B, tangents
PS and PT are drawn to the two circles. The theorem above gives

PS* = PA.PB = PT?,

so that PS = PT. This is a well-known result in school geometry;
the tangents from P to the two circles are equal, for any point P
on the line AB.

Figure 75

The proof is simple, but the annoying thing - at the level of
school geometry - is that it only works when the circles meet.
The result - that there is a line, such that the tangents from any
point P of it to the two circles are equal — is still true when the
circles do not meet. But our method of proving it has evaporated.

Now let us look at it algebraically. We will take two circles
that do not meet, say the circle with centre (0, 20) and radius 16,
and the circle with centre (0, - 15) and radius 9. The equations of
these circles are x? + (y—20)® = 16® and x% + (y + 15)2 = 92,
These two circles do not in fact meet; but suppose we thought they
did. It would then be natural to look for the points 4 and B,
where they met, and to find the equation cf the line A8, on which
P would have to lie. To find the points 4 and B we should solve
the equations as simultaneous equations. This would lead us to
the solutions x =12/, y =0 and x = -12/, y = 0. You can
easily check that these values satisfy both equations, i.e. the
points (12i, 0) and ( - 12i, 0) lie on both circles. These, then, must
be A and B. Both of them lie on the line y = 0.

So the line 4B seems to be y = 0.
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Now y = 0 is a perfectly good, real line. Moreover, if you
draw the two circles on graph paper, and take any point P on the
line y =0, you will find that the tangents from P to the two
circles are in fact equal. If you are sufficiently familiar with
co-ordinate geometry, you will be able to prove this result by
calculation, and not merely verify it.

What we have done amounts to this: we have carried out the
calculations we would have made if the two circles met in real
points; we have gone ahead even though v/ ~1 turned up in our
calculations; and we have ended with a correct result, in which
4/ =1 did not appear.

That is to say, we no longer bother whether the circles meet
in real points or not; we carry out the same calculations in either
case. This principle, applied throughout geometry, saves an
enormous amount of messing around with special cases. In a
problem with three circles, for instance, all the circles might meet;
or none of them might meet; or two might meet each other, but
not the third; or one might meet both the others, but the others
not meet. By allowing imaginary meeting points, we avoid all
this detail.

Do not get worried by philosophical speculations about
whether these imaginary points ‘really exist’. Mathematics deals
with patterns, not with things. If we can show that the pattern
of the universe which incorporates Clause la is the same as the
pattern of Euclid’s plane, that is all we need do. Whether such a
universe actually exists anywhere does not affect the logic of the
method. It is sufficient if, without logical contradiction, it could
exist.

THE CIRCULAR POINTS AT INFINITY

In the previous section, for the problem of the two circles, we
used the ordinary x, y co-ordinates. As the line at infinity did not
come into the question, that was sufficient. The only novelty was
that complex numbers came in.

We are now going to ask, ‘Where does a circle cut the line at
infinity?’ Since infinity comes in, we shall have to use X, Y, Z.
Since circles do not actually go off to infinity at all, the points in
question must be imaginary; complex numbers must come into
the answer.
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In ordinary x, y co-ordinates, the circle with centre (a, b) and
radius » has the equation (x—a)®+ (y—5)* =r% In homo-
geneous co-ordinates, introduced by means of x =X/Z,
y = Y /Z this equation becomes (X—aZ)? + (Y-bZ)* =r*Z?2

The line at infinity is Z = 0. Where the circle meets the line is
found by putting Z = 0 in the equation of the circle. This gives
X2+ Y?*=0. So Y*= -X2 Taking the square root, Y =iX or
—-iX. We can take any value we like for X, since it is only the
ratios X : Y:Z that matter. We may as well take X = 1. We thus
find the points (1, i, 0) and (1, —i, 0) to be the intersections.
These points are usually referred to as 7 and J.

The remarkable thing about the answers (1, i, 0) and (1, -, 0)
is that these do not depend at all on the values a, b, r which dis-
tinguish one circle from another. That is to say, it does not matter
where the centre of the circle is, or what the radius of the circle is,
the circle always meets Z = 0 in the same two points, I and J.
This is a very unexpected result. It clears the way for an entirely
novel definition of a circle.

A straight line always has an equation of the form

aX 4 bY +¢Z =0.
Fach term contains one of the quantities X, ¥, Z. The expression
is called of the first degree. The natural thing to study after lines
would be curves of the second degree; the equation is now to
contain fwo quantities X, Y, Z in each term. Any such curve is
called a conic. Its equation will be of the form

aX®+ bY? + cZ® + 2f YZ + 2gZX 42hXY= 0.

It is not hard to show that if a conic passes through the points
1, J it must be a circle.

We are thus led to the quite new definition of a circle: a circle
is a conic passing through the two points / and J. This definition,
though it may seem a strange one, is in fact clear cut and much
simpler to handle mathematically than the vague ideas of Euclid’s
geometry. It is the starting point for the modern development of
the geometry of circles.



CHAPTER TWELVE

On Transformations

The art of reasoning consists in getting hold of the subject
at the right end, of seizing on the few genecral ideas that
illuminate the whole, and of persistently organizing all
subsidiary facts round them. Nobody can be a good reasoner
unless by constant practice he has realised the importance of
getting hold of the big ideas and hanging on to them like
grim death.
A. N. Whitehead
Presidential Address to the London Branch
of the Mathematical Association, 1914

In Chapter 10 we discussed the idea that one problem might be
another problem in disguise. The process of putting on, or taking
off, a disguise is known as transformation. Obviously transforma-
tions have the cffect of multiplying our knowledge, and are
useful for economizing effort.

Let us first consider one or two very elementary examples of
transformation. These will not yicid any surprising results, but
will simply show the meaning of transformation in its simplest
and barest form, stripped of all complications. Later we will go to
the other extreme, in order to show the great and unexpected
power transformations can have.

Let us consider then the two following questions, (i) find the
square root of 2, (ii) find the square root of 200.

Question (i) is simply a matter of looking up a table of square
roots, in which we find that V2 is approximately 1-4142. 1f we
look in the table for the square root of 200 we do not find it; as a
rule, only numbers between 1 and 100 are listed in tables of
square roots. The reason of course is that v/200 is just 10 times
V2. Multiplying by 10 is such a simple operation, that it would
be most wasteful actually to print extra tables for numbers
larger than 100. In fact, the principle just used to find V200 can
be used to find the square root of any number, however large or
small. An infinite extension of the tables is thus provided by
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that principle. Along with V2 we have all the disguised forms
/200, V20,000, ...v/0-02, +/0-0002, ... unlimited in number.

The above argument for finding V200 could be expressed in the
following algebraic form. To solve the equation (ii) x% = 200
we apply the transformation x = 10y which reduces the problem
to that of solving (i) y® = 2.

To be useful, a transformation should be simple to apply.
Here, in our example, we only have to multiply by 10, which is
easily done. Some transformations, naturally, are more compli-
cated than this, but generally speaking we are quite satisfied if
the transformation is simple in comparison with the problem being
transformed. In a problem on integration, we should regard as
simple any transformation that could be carried out by purely
algebraic processes — for instance, the projective transformation
applied to an integral towards the end of Chapter 10.

TRANSFORMATIONS AND EQUATIONS

It is easy to generalize the process just considered. Given any
equation, is it possible to find a transformation that will bring it
to a simpler form?

At school we learn to solve quadratics by a variety of methods
- by factors, completing the square, or by formula. All of these
methods we are rold. Let us look at the question of solving a
quadratic as if we were the first people ever to encounter that
problem.

First of all, consider what would be involved in making tables
for the solution of quadratics, supposing we decided simply to
tabulate all the solutions. It is easy to make a table containing a
thousand entries ~ think of an ordinary table of logarithms, which
directly gives the logarithms of all numbers from 1-00 to 9-99,
nine hundred entries usually filling a couple of pages. But if we
wish to tabulate something depending on two quantities, each of
which takes a thousand values, there will be a million entries. For
example, if we have two variables a and b, each running from
0-00 to 9-99, we would need to have a first sheet on which a was
0-00 and b had the values from 0-00 to 9-99; then a second sheet
on which g was 0-01, and b ran through the values from 0-00 to
9-99; and so on, up to a thousandth sheet on which a was 9-99
and b ran from 0-00 to 9-99.
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Thus a table involving two variables would need not one sheet
but a book of a thousand leaves.

In the same way a table involving three variables would require
a thousand books, each with a thousand leaves. All of this is
well known to makers of tables.

Now a quadratic equation contains three constants a, b, c,
being ax® + bx + ¢ = 0. Tables for the solution of quadratics
would at first sight seem to require the formidable library men-
tioned above. Some relief is given by the fact that we can divide
by a, and thus make the coefficient of x2 unity. This leaves us with
an equation of the form x2 + px + ¢ = 0. Even so, we still have
two quantities p, ¢ and a volume of a thousand pages appears
necessary.

Can we improve the situation by means of transformations?
That is, can we make the equation simpler by putting x equal to
some expression containing a new variable y?

Take for example the equation x*—3x—5 = 0. Our trans-
formation, as was mentioned earlier, should be a simple one. As
the problem itself is quadratic, this suggests that the transforma-
tion should be something even simpler, that is, linear. We might
try the general linear expression, that is, x = my + ¢. However
it turns out to be sufficient simply to take x = y + c. On sub-
stituting this in our equation we have, after multiplying out and
collecting terms y® + (2c—3)y + ¢2—3¢c—5 = 0. The simplest
thing that occurs here is the coefficient of y, namely 2c—3. If
we choose ¢ to be 13, this coefficient will become zero.

Accordingly we find that the equation x*—3x—5=0 is
simplified by the transformation x =y + 1%, which in fact
reduces it to the equation y*— 7} = 0.

This last equation is the same as y* = 7-25 and can be solved
straight away by consulting a table of square roots. The fact that
the fraction } occurs in the reduced equation, while there were
no fractions in the original equation, is immaterial. It is as easy
to look up the square root of 7-25 as the square root of 7. We can
then deduce the solutions of the original equation by adding on
13.

In fact any quadratic equation can be reduced by a suitable
transformation to a form in which it is only necessary to consult
a table of square roots.

Thus, so far from requiring the fantastic collection of volumes
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which at first seemed necessary, we require only our usual table
of square roots in order to solve any quadratic equation what-
ever.

This particular example illustrates the role which transforma-
tions play and the economy which they effect. The example is
elementary, but the principle involved applies equally well in
many advanced branches of mathematics.

A SIMPLE TRANSFORMATION OF A GRAPH

A natural thing to consider in connexion with any shape is the
possibility of moving that shape to another position. For instance,
it is well known that the graph of y = x* is a U-shaped curve like
that shown in the figure. In Figure 76, A is at the origin, P is any
point of the curve, Q is immediately below P, and the relation
PQ = AQ* holds, since PQ is y and AQ is x.

P
Q
A
Figure 76

Suppose we trace this figure with tracing paper, and then move
the tracing paper until the point A4 is over the point (3, 2) on the
graph paper. The situation is then as shown in Figure 77. What
will be the equation of the curve in its new position?

=3

1ty

A

Ol

— >
X

Figure 77

Since the curve is still of the same shape, we still have
PQ = AQ? but it is no longer correct to say that 4AQ equals x.
The distance P is to the East of the origin O is not 4Q now, but
3+ AQ, and AQ =x-3. In the same way, PQ =y—2.
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Accordingly, the property PQ = AQ? translated into algebra now
becomes y — 2 = (x — 3)?% which on simplification gives

y=x%—6x + 11.

That is to say, if you have drawn the graph of y = x? and
you are asked to draw the graph of y = x*—6x + 11, you do
not need to make any calculations. The new graph is simply the
old one moved 3 units to the East and 2 units to the North.

It is not difficult to show that any graph with an equation of the
form y = x® + px + q is simply the graph y = x? displaced a
certain distance from its original position.

If you know all about the graph y = x2, you know all about
all the graphs of the form y = x? + px + q.

CONFORMAL TRANSFORMATIONS

In Chapter 1, under the heading ‘Nature’s Favourite Pattern’, a
list was given of a dozen or so subjects of practical importance,
which had a certain connexion with v/ ~1.

Certain problems arising in these subjects have the property
that they can be transformed into a whole host of other problems,
so that if we know the solution of one problem, we can im-

nediately deduce the solutions of a whole family of other prob-
lems.

The transformations used are known as conformal transforma-
tions. First of all I will try to explain what such a transformation
consists in, and then an example will be given showing the great
power of this method.

To every function f(z) — or at any rate, to every ‘reasonable’
function — there corresponds a conformal transformation. The
function might be z*—7z+ 2, or ¢, or log z, or Vz 4 3,
or many another, it does not matter. To each of these functions
there corresponds a transformation, and each transformation is
different. 1t is because of this great freedom of choice that we can
transform a single problem into a multitude of others.

To illustrate how the transformation is carried out, we will
choose a very simple function, z2, and show what the correspond-
ing transformation does to a simple diagram.

Consider the four squares (Figure 78), formed by parts of
thelinesx = 1, x =2, x =3,y =1,y = 2, y = 3 on ordinary
graph paper.
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The transformation is carried out in three stages. (i) Corres-
ponding to each point of the diagram we write down a complex
number. (ii) We square that number. (This is because we chose z*
as our function. If we had chosen some other function, f(z), we
should have calculated that function of our complex number.)
(iii) We turn the number given by process (ii) back into a point
on the diagram.

Figure 78

All of these processes are easy to carry out. For example, if we
want to find where the transformation sends the point (2, 3), the
calculations would run as follows.

Stage (i). Corresponding to the point (2, 3) we take the complex
number 2 + 3i. The general rule is that corresponding to any
point (x, y) we take the complex number x + iy.

Stage (ii). We square the number found in Stage (i). The square
of 2 + 3iis -5+ 12i.

Stage (iii). We find the point corresponding to -5 + 12i.
Itis ( - 5, 12). The rule is the same as that used in the first stage,
but working in the opposite direction.

The result of the whole calculation is that the point (2, 3) is
transformed to the position ( -5, 12).

The same calculation is made for each of the nine points where
the lines of the original diagram cross each other. In this way it is
found that (1, 1) goes to (0, 2), (1, 2) goes to (-3, 4), (1, 3) goes
to ( - 8, 6), and so on for the rest of the points.

We plot the nine new points on graph paper, and join them up
by curves, corresponding to the lines of the original figure.

The result is shown in Figure 79 where we have the diagram
obtained from the original diagram by the transformation z2.

You will see that a transformation acts something like a dis-
torting mirror. When you look at yourself in the bowl of a spoon
or a polished jar, you see a creature with a face and hands that are
reminiscent in a vague way of your own face and hands, yet with-
out being faithful copies of the originals. Something in the way of
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proportions has been destroyed, yet something also has been
preserved that enables you to recognize the reflection as the
reflection of a human being.

Figure 79

Conformal transformations distort straight lines into curves
and alter distances. They preserve angles - in the last diagram
above the curves still meet at right angles, as did the lines in the
original diagram. And - the important property for practical
applications - they preserve the quality of being a solution of a
physical problem. If the original diagram represented lines of
force or lines of flow (in a certain class of problems), so will the
new diagram represent lines of force or lines of flow.

A very striking example of this principle is the Joukowski
aerofoil.

A problem with a simple and elementary mathematical solu-
tion is to determine the way in which a stream passes round a
circular obstacle. The lines of flow are something like the lines
shown in Figure 80. This is our starting point, a problem the
solution of which is known. Since a circle is such a simple shape,
it is not surprising that this problem should have an exact,

simple solution.

N
=

e S

Figure 80

The practical problem is to find the lines of flow for a stream
of air as it passes the wing of an aeroplane, the section of which is
nothing so simple geometrically as a circle.
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Joukowski discovered that, by choosing quite a simple func-
tion, namely z + 1/z, and applying the corresponding conformal
transformation, the shape of the circle could be transformed into
something which at any rate resembled the section of an aero-
plane’s wing. The curve to which the circle is transformed is
shown in Figure 81. This curve is not used in practice for the
section of any wing; it would be inefficient if it were. But the curve
is useful theoretically as giving some indication of how an air-
stream is likely to behave in passing round an obstacle of this
general shape. Without the transformation, to cope with such a
problem at all would be a very difficult matter.

Figure 81

To solve the problem by means of the transformation, one
simply transforms the whole diagram for the flow round a circle.

The circle goes into the aerofoil. The lines of flow past the
circle are transformed into lines of flow past the aerofoil.

The diagram above for the flow past a circle is simply a rough
sketch. Anyone who is interested in the mathematical solution
and an accurate diagram of the flow will find it in Lamb’s Hydro-
dynamics (pages 77, 78). Joukowski’s aerofoil, and other con-
formal transformations, are described in Phillips’ Functions of a
Complex Variable. To read these books a mathematical training
is necessary.



CHAPTER THIRTEEN

Finite Arithmetics and Geometries

Curr, whom we have already quoted in connection with the
Australian tribes, claims that most of these count by pairs.
So strong indeed is this habit of the aborigine that he will
rarely notice that two pins have been removed from a row
of seven ; he will, however, immediately become aware if one
pin is removed.

Tobias Dantzig, Number, the Language of Science

The topics presented in this chapter are something in the nature
of novelties, and hence interesting to the human mind. This is the
aspect of them that first strikes one. They also have a certain
value in various branches of higher mathematics. This is their
second aspect. Their third aspect — a most unexpected one - is
that of practical utility. Bizarre as they may seem, they can be
useful. This chapter concludes with a brief account of one appli-
cation of finite arithmetics - to agricultural research.

AN ALTERNATIVE ARITHMETIC

Few of us, I suppose, have ever verified directly by counting that
12 x 12 x 12is really 1,728. For a great many people arithmetic
is taken on trust. Certain rules are taught in schools and these
are not questioned. Even in this relatively enlightened century
that probably applies to the majority of school children and
school teachers. Others, of a more critical cast of mind, are
reassured by the general consistency of arithmetic. Often there
are several different ways of performing a calculation, but all
lead to the same answer. For example, if we are asked to find
5 x (7 + 3), we can either add the 7 and 3 to get 10, and then
multiply by 5 to get 50, or we can write the expression as
(5 x 7) + (5 x 3), which equals 35 + 15, again leading to the
answer 50. The rules are at least consistent, and this suggests
that they may be true.

The arithmetic about to be described, while different from the
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arithmetic in common use, would pass the tests applied above.
It can be taught by rule, the rules resemble very closely those of
ordinary arithmetic, and they are consistent, they always lead to
the same answer.

Let us imagine a young child on entering school required to
memorize the two tables given below, an addition table and a
multiplication table. If it gives an answer other than that shown
in these tables, it is beaten. Apart from these tables, the ordinary
rules of arithmetic apply.

In this new arithmetic, there are only five numbers, 0, 1, 2, 3
and 4. No question ever leads to any answer other than one of
these five. The child does not have to bother with tens and units
columns, or anything of that sort.

Here are the two tables it has to memorize.

ADDITION TARBLE MULTIPLICATION TABLE
0123 4 0123 4
o{-01234 olfo o 0oo0o0
111 23 40 1/lo1 23 4
2112 3 4 01 210 2 4 1 3
303 401 2 30031 4 2
4ll4a 0123 4o 4 3 21

To find, for example 1 + 3 the child looks at the addition
table. It looks along the row opposite 1 and travels along this
row until it is in the column underneath 3. There it finds the
answer, 4 — quite in agreement with orthodox ideas on arithmetic.
Less orthodox is the result 3 -+ 4 = 2, and, in the multiplication
table, 2 x 3 = 1. However, the child knows nothing of orthodox
arithmetic. It learns these tables as it is told.

But suppose it wishes to check a calculation of the same type
as we considered earlier, for example 3 x (2 + 4). It may say,
this is (3 x2)+ (3 x4). From the multiplication table,
3 x2=1and3 x 4 = 2. So the answer is 1 + 2 = 3. Or it may
say, 2 + 4 =1, 3 x 1 = 3. Reaching the same answer by either
route, it is satisfied with the correctness of what it has learnt.

You may like to check other calculations in this arithmetic.
You will find that, if you use these tables correctly, you always
come to the same answer, whatever route you follow.

Indeed, this arithmetic has many advantages over the ordinary
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one. For instance, there are no fractions or negative numbers in it.
We have results like 2 <3 =4, 2—3 = 4. Any number can be
divided exactly by any number (except of course 0) without
remainder. Every number has a reciprocal. The reciprocal of 1 is
1;0f 2is 3; of 3is 2; of 4 is 4.
A question like "
Simplify 5
is worked as follows. 3is2(since3 x 2=1).Sol} =1+ 2 =3,
the value of the numerator. 2} is found similarly. } = 4 (since
4 x 4=1). So 2} =2 + 4 = 1. The fraction is accordingly %,
that is, 3.

An algebra can be built on this arithmetic and works very
much like ordinary algebra. A quadratic equation can be solved
by completing the square, and never has more than two solutions.
For example, if we have to solve x2—2x + 2 =0 we add 3 to
both sides, giving x2—2x = 3. (Remember 2 + 3 =0.) To
complete the square we add 1. x2-2x + 1 =4, that is,
(x—1)> = 4. 4 is the square of 2, but it is also the square of 3
(see multiplication table). So x—1 is either 2 or 3, that is x
must be 3 or 4. You can check the correctness of these answers by
substituting the answers in the original equation; of course you
must be careful not to lapse into the addition and multiplication
tables you learnt at school.

In such an algebra there would be a limit to the number of
quadratic equations. The coefficient of x? could only be 1, 2, 3, 4;
if it were 0 the equation would not be quadratic. The coefficient
of x, and the constant term could each be chosen from the num-
bers 0, 1, 2, 3, 4. Altogether there would be a hundred quadratics,
so it would be possible for a pupil to say that it had solved all
possible quadratic equations.

CONSTRUCTION OF FINITE ARITHMETICS

Where do the tables given above come from? How are they made
up?

I was once told of a bank where the clerks were alarmed to find
that they were exactly a million pounds out in their accounts. For
the truth of the story I cannot vouch. It was said that they were
using a calculating machine, which only carried six figures for the
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pounds, so that the largest amount it could show was
£999,999 /19 /11%. It was round about this amount, and someone
had added £5, with the result that the machine showed
£000,004 /19 /11%, exactly a million pounds less than it should
have.

The arithmetic we have just considered would arise from a
calculating machine which only carried the numbers 0, 1, 2, 3, 4
arranged in a circle, so that going a step beyond 4, 0 would again
be reached. The effect of such a machine is that adding 5 makes
no difference to it. No record is kept of how many times the wheel
has turned. Every number is replaced by its remainder on division
by 5. For example, 3 x 4 = 12. The remainder on dividing 12 by
5 is 2, so in the multiplication table 3 x 4 appears as 2.

The simplest arithmetic of this kind is that with only two
numbers, 0 and 1, and the tables

ADDITION MULTIPLICATION
01 01
0 01 000
110 1 01

This arithmetic arises if we replace every number by its
remainder on being divided by 2. If you like, you can interpret
0 above as meaning ‘Even’, 1 as meaning ‘Odd’. The addition
table above then takes the perfectly intelligible form

Even + Even = Even
Even + Odd = Odd
Odd + Odd = Even,

and similarly for the multiplication table.

This seems to be the arithmetic of the tribe mentioned in the
quotation at the head of this chapter. Apparently they count
with their hands, rather than their fingers, ‘Left, Right, Left,
Right, Left, Right ...” In effect, ‘Left’ means ‘Odd’ and ‘Right’
means ‘Even’, with the curious consequence that they fail to
detect the theft of an even number of articles.

In Chapter 7, under the heading ‘The Algebra of Classes’, we
had occasion to use this arithmetic, with 1 4+ 1 = 0. This is an
example of an application of this arithmetic to another branch
of mathematics.
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FINITE GEOMETRIES

We are now ready to create yet another universe. In Chapter 11
the first clause stated, ‘The universe is to contain points specified
by numbers (X, Y, Z)’. These numbers were, of course, the num-
bers of ordinary arithmetic. The universe would therefore con-
tain an infinite number of points. But we are now in a position
to amend this clause so as to get a universe containing only a
finite number of points. All we have to do is to say that the num-
bers X, Y, Z shall be numbers belonging to one of the finite
arithmetics discussed in this chapter, and operated with accord-
ing to the laws of that arithmetic.

The arithmetic containing only the numbers 0 and 1 is called
‘the arithmetic modulo 2°. Let us see what sort of a universe
we would get if we said that each point was to have a label
(X, Y, Z), the numbers being drawn from the arithmetic modulo 2.
As usual, we exclude (0, 0, 0). If (0, 0, 0) were allowed in, we
should have 8 points altogether. Since it is excluded we have only
7. They are listed below.

A(1,0,0) C(0,0,1) E (1,0,1) G(1,1,1)
B (0,1,0) D@©,1,1) F(1,1,0)

These seven points constitute our universe.

In Chapter 11 we saw that all the points on a line could be
obtained by ‘mixing’ two points. What can we get by mixing, say,
A and B? We are very limited in our mixtures, because only the
numbers 0 and 1 are at our disposal. The only conceivable mix-
tures are the following.

(i) 1 of A and 0 of B. This is simply A.
(ii) 0 of 4 and 1 of B. This is simply B.

(iii) 1 of A and 1 of B, that is, A + B. Adding the co-ordinates

of 4 and B we have

,0,0
, 1,0

(=Y

Total 1, l,_(-), that is to say, F.

(iv) 0 of 4 and 0 of B. But this gives (0, 0, 0) which is not
allowed.

Accordingly, there are only three points on the line 4B,
namely, A, B, and F.
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Exactly the same argument shows that there are only three
points on the line joining any two points; the points on 4B were
A, B, and A + B which is F. In the same way, the points on AC
are A, C and 4 + C, which is E.

Altogether we can find the lines listed below:

1. BDC 3. AFB 5. BGE 7. DEF
2. AEC 4. AGD 6. CGF

Unfortunately, it is not possible to draw this universe on
paper in such a way as to show the straight lines as actually
being straight. Figure 82 makes the first six lines appear straight,
but the seventh line, DEF, looks quite wrong. The curved dotted
line indicates that D, E and F ought to be in line.

Figure 82
The equations of the seven lines listed above are
.X=0 3.Z=0 5X+Z=0 7.X+Y+Z=0

22Y=0 4Y+Z=0 6.X+Y=0

In checking these equations, you must not forget that
1 + 1 = 0. Indeed, this must be borne in mind throughout the
work.

The diagram above is very unsatisfactory, because it suggests
that there are differences between the points. G, for instance,
is in the centre of the diagram. This is true of no other point. The
line DEF appears curved, while the other lines appear straight.

Actually this is an extremely democratic universe. Each point
is just as good as every other point; each line as every other line.

For example, on the line A8 you may think, from the diagram,
that F is between 4 and B, as suggested by the equation
F = A + B. But the relation between A4, B and F is perfectly
symmetrical. It is equally true that 4 = F+ B and that
B = F + A. Each point is a mixture of the other two, as you can
verify by adding the co-ordinates.
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In Chapter 10, in connexion with Desargues’ Theorem, we
discussed diagrams in which it was possible to re-letter the figure
in many ways without destroying the truth of the theorem. The
diagram above has the same property. There are altogether 168
ways of putting the letters on it. As it stands, the letters 4, B, C
are at the corners of the triangle. You can re-letter the diagram in
such a way that any three letters you like come at the corners,
provided only that these letters do not belong to three points in
line with each other. You could, for example, put E, F, G at the
corners; but you could not put D, E, F at the corners, because
DEFisline 7.

The universe just described is of interest in connexion with
the theory of groups. From it we can also obtain the idea of
having matrices built up, not from ordinary numbers, but from
numbers in a finite arithmetic.

AGRICULTURAL RESEARCH

Suppose it is desired to test a number of varieties of wheat. At
first sight nothing seems easier. Plant some of each kind in a
field, and see which does best. Perhaps the wheat sown in the
North-East corner does best. But then the objection may be
raised — perhaps the North-East corner was a more favourable
position for wheat than any other part of the field, perhaps the
soil there is richer, perhaps the good crop has nothing at all to
do with the variety of wheat, but only with where it was planted.
In short, what onc crop does is not evidence.

The way to meet this objection is obvious. The same variety of
wheat must be planted in all kinds of different situations, so as
to eliminate, as far as possible, the effect of differences in soil
fertility. Scientific experiments of this sort are usually subjected
to statistical analysis, to show how much weight can be attached
to the results of the experiment, and what chance there is that the
apparent result is purely due to outside causes. Accordingly, it is
necessary to have some systematic way of mixing up the various
types of wheat, so as to make the statistical analysis simple to
carry out.

Such a system can be worked out with the help of finite
arithmetic. We will use the arithmetic explained at the beginning
of this chapter, that is, the arithmetic modulo 5, with the numbers
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0, 1, 2, 3 and 4. With the help of this arithmetic we will obtain a
scheme for the planting of four square plots with five varieties of
wheat, that are to be compared with each other.

We begin by setting out the numbers in the following way.

01234 01234 01234 01234

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

The row at the top is the same in each case, 0, 1, 2, 3, 4. The
columns are taken from the multiplication table. When the
numbers 0, 1, 2, 3, 4 are multiplied by 1 we get 0, 1, 2, 3, 4; these
numbers form the first column. When 0, 1, 2, 3, 4 are multiplied
by 2 we get 0, 2, 4, 1, 3; these numbers form the second column
above. The third column, in the same way, is found from multi-
plication by 3; the last column from multiplication by 4.

The squares are then completed by means of the addition table.
For instance, in the second square

0123
2 :
4 :
1..... 4
3

4 is written in the space shown because it is the sum of 1 and 3.

In order to fill in any space, we look at the number at the begin-

ning of the row containing that space, and the number at the

head of the column containing that space; the sum of these two

numbers is then written in. By the ‘sum’ of course we under-

stand the sum in the arithmetic modulo 5, so that 4 + 3 means 2.
In this way we arrive at the four squares shown below

01234 01234 01234 01234
12340 23401 34012 40123
23401 40123 12340 34012
34012 12340 40123 23401
40123 34012 23401 12340

This gives us our pattern for planting the wheat; wherever 1
appears, we plant the first variety; wherever 2 appears, the second,
and so on; where 0 appears, we plant the fifth variety.

If you examine any one square — the first for example — you will
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see that there is a 0 in each row, so that, if the field happened to
get gradually more fertile as one went from North to South, it
would not affect the average scored by variety 0. There is one 0
in each column; so that a gradual change of fertility in the East-
West direction would not affect the result. What is true of 0 is
true of the other four numbers.

Nor is there any harmful connexion between the layout in one
square and in the next. In the first square 0 occurs in the positions

Look at the second square, and see what numbers occur in these
positions. They are 0, 1, 2, 3, 4 - each number once. You will
find a similar result for any square and any number. Pick any
square you like, and note the positions in which any particular
number occurs. Go to any other square, and note the numbers
that occupy these positions. You will find the positions are
shared out equally between all the five varieties.

The arrangements above are known as a set of ‘orthogonal
Latin squares’.! The finding of such sets looks like a purely
trivial puzzle; in fact it is an important practical task.

In a problem of applied mathematics, it is often helpful to
begin by searching through pure mathematics, and seeing if there
may not be somewhere in the literature a procedure which has
already provided the pattern required for the solution of the
practical problem.

EXTENSIONS OF FINITE ARITHMETICS

In the arithmetic we have just made use of, there were exactly
five quantities 0, 1, 2, 3, 4. We can enlarge this arithmetic in the
following way.

In that arithmetic, the equation x® = 1 has the solutions 1 and
4, the equation x? = 4 has the solutions 2 and 3, and the equation
x? =0 has the solution 0. The equations x* =2 and x* =3
have no solutions.

1. Mann, Analysis and Design of Experiments.
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We can bring in a new symbol, V2, to provide a solution for
the equation x* = 2.
We now have at our disposal the following 25 quantities

0 1 2 3 4

V2, V241, V242, V2+3 V2+4
2V2, 2V2+1, 2V2+42, 2V243, 2V2+4
3v2, 3W2+1, 3V242 3V2+3, 3V2+4
4V2, 4V2+1, 4V2+2, 4V2+3, 4V2+4

These again form a finite arithmetic; you can add, subtract,
multiply and divide (except by 0) without ever going outside the
25 symbols above.

The theory of such extensions is known as the theory of Galois
Fields. This theory belongs to what is called Modern Higher
Algebra, which sounds imposing. Galois Fields however, since
they consist of only a finite number of elements, are a particularly
simple and easy branch of modern algebra.

An interesting property of the set of numbers above is that
if one takes V2 4+ 2 and keeps multiplying it by itself one
obtains in turn all the numbers of the set, except 0. That is to
say, every number but zero is a power of (V2 + 2) and can be
written as (V2 + 2). for some whole number n. A property of
this kind holds for every Galois Field.!

1. The word ‘Field” has a special meaning in algebra. It has nothing
whatever to do with the ficlds of wheat mentioned earlier, but indicates a
set of symbols within which one can add, subtract, multiply and divide -
what I have called ‘an arithmetic’.



CHAPTER FOURTEEN

On Groups

The mathematics of the twenty-first century may be very
different from our own; perhaps the schoolboy will begin
algebra with the theory of substitution groups, as he might
now but for inherited habits,

Simon Newcomb, 1893

Towards the end of Chapter 7 various groups of movements
were discussed. The arguments of that chapter were, I think,
simple ones. The main difficulty the student of groups meets is
not that of following the argument, which is nearly always
straightforward, but of grasping the purpose of the investigation.
This chapter tries to deal, to a limited extent, with the question,
‘How did the theory of groups arise, and what is it for?’

* THE AXIOMS OF A GROUP

In Chapter 7, although we used the word ‘group’, we did not say
exactly what it implied.

The first thing we understand by the use of the word group is
that we are dealing with a collection of symbols, operations or
things that can be combined in some way, and that when com-
bined still give something belonging to the collection. For
example, when we multiply two numbers together (which is a way
of combining the two numbers) we expect the result to be a
number. However little we know about arithmetic, we should be
surprised if the answer was a bunch of parsley. In the same way,
movements can be combined; a rotation through 90° followed by
a rotation through 45° gives a rotation through 135°; the com-
bined effect of two movements is again a movement.

Group theory only gradually emerged as a precise theory; in
the early days the above property was the only one emphasized.
It was often referred to as ‘the group property”’.

To-day, there are three other requirements before a collection
of symbols can be called a group.
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(i) The collection must contain a symbol I which has no effect
on any of the other symbols when it is combined with them. That
is to say, if X is any other symbol, we must have I.X =X,
and X./ =X.

(ii) Every symbol must have an inverse, that is to say, whatever
a symbol does, another symbol must exist that undoes it. For
example, if a group contains the operation ‘multiply by 2’ it
must also contain the operation ‘multiply by 3’. So for example,
the collection of operations consisting of ‘multiplication by
whole numbers’ do not form a group.

(iii) The symbols must obey the Associative Law. That is, if
X, Y, Z are any symbols in the collection, (XY)Z and X(YZ)must
mean the same thing. In any group consisting of operations this
law is automatically satisfied. Suppose, for example, the opera-
tions are movements. Suppose Z shifts an object from position
(1) to (2), while Y shifts it from (2) to (3) and X shifts it from (3)
to (4). XY means the combined effect of movement Y followed by
movement X (remember the reversal of order in writing), i.e. XY
shifts from (2) to (4). (XY)Z means that we do operation Z, and
then operation XY as just specified. Z shifts from (1) to (2) and
XY from (2) to (4); the combined effect is to take the object from
(1) to (4). In the same way, you can see that X(YZ) also means
(1) to ().

All this amounts to, in fact, is that saying, ‘(1) to (2)’ and then
in one breath ‘and-(2)-to—(3)-to—(4)’ is no different in its meaning
from saying breathlessly ‘(1)-to—(2)-to—(3)’ and then calmly ‘and
(3)to (¥°.

The first statement corresponds to (XY)Z; the second to
X(YZ), as you can read off from Figure 83.

Figure 83

As we shall be concerned mainly with groups of operations, you
need not pay much attention to requirement (iii).
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A group of operations then has the properties that any two
operations combined are equivalent to an operation of the set;
there is an operation, J, that consists of leaving things just as they
are; and whatever you do, you can also undo.

What is very remarkable is the immense theory that can be
built on these few assumptions.

You may like to turn back to Chapter 7, and check that these
assumptions do hold for the group of the rectangle and the group
of the equilateral triangle. In the group of the rectangle what is
the operation that undoes p? p itself.

THE ORIGIN OF GROUP THEORY

The need for group theory arose in connexion with a question
which, in itself, is of no practical importance, but as a model for
a method of investigation is of the utmost importance in all
branches of mathematics.

The problem was that of solving algebraic equations. Linear
and quadratic equations were solved in ancient times. Equations
of the third and fourth degree were solved shortly before 1550.
And there things stuck. Many mathematicians tried to solve the
equation of the fifth degree, but none succeeded. Some unifica-
tion was achieved; it was shown that all the methods that had
worked with equations of the 1st, 2nd, 3rd and 4th degree could
be regarded as particular cases of one single method, and this
method failed when applied to the equation of the fifth degree. To
solve a problem means to reduce it to something simpler than
itself. It gradually began to occur to people that perhaps the
equation of the fifth degree could not be reduced to anything
simpler than itself. Eventually this was proved to be the case.

ATOMIC PROBLEMS

The equation of the fifth degree therefore appeared as a kind of
mathematical atom — something that could not be split into any-
thing simpler by algebraic means.

A very simple example will serve to illustrate this idea of an
atomic problem. If we want to solve the equation x® = 2, we
can, if we like, do it in two steps. With a table of square roots
we can find V2 = 1-4142, and with a table of cube roots we find
that the cube root of 1-4142 is 1-1223. A table of sixth roots is
therefore not essential; a sixth root can be found with the help of
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tables of square and cube roots. Algebraically this means that
solving the equation x® =2 may be replaced by solving the
equations y* =2, x3 = y.

Accordingly, solving x® = 2 is not an atomic problem; it can
be split up into the solving of two simpler problems.

On the other hand x* = 2 cannot be dealt with in this way.
This problem is atomic. It cannot be broken up into two simpler
problems.

With any algebraic equation one may therefore ask whether it
can be split up into two simpler equations. If it cannot, it is (so
far as algebra is concerned) atomic, and it is a waste of time look-
ing for tricks to solve it. It is noteworthy that mathematicians
passed more than 250 years looking for tricks to solve the fifth
degree equation, before they realized they were attempting the
impossible.

An atomic problem is not absolutely insoluble. If one brings
up heavier artillery, it may cease to be so. For instance, square
roots can be found with the aid of logarithms. A problem is only
relatively insoluble; insoluble with given tools — like the wooden
ploughs of Chapter 5. A great saving of time is effected by a
theory which shows the impossibility of solving a problem by a
given type of method. One then sets out straight away to find
a new kind of method, instead of passing a century or so looking
for tricks within the old methods.

Galois, a brilliant mathematician who was killed at the age of
twenty-one (in 1832), showed that every algebraic equation was
connected with a group, and by examining this group one could
say whether the equation was atomic or not. If the group was
what is called compound, the equation could be broken up into
two simpler equations; if the group was simple, the equation was
atomic.

The Galois Theory takes a certain amount of mastering. In
works on modern higher algebra it is presented in a form rather
different from that in which Galois left it.

Here I cannot do more than try to give a very faint idea, by
one or two illustrations, of how an equation has a group asso-
ciated with it, and of what is meant by the group being compound
or simple. These illustrations may have something of the appear-
ance of a conjuring trick; I have not space to show the theory
which leads me to these particular examples.
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A CYCLIC EQUATION

First of all we consider the equation x®*—3x + 1 = 0, the roots
of which we will call @, b and c. As a matter of fact, these roots
can be given by means of trigonometry; a is 2 cos 40°, b is 2 cos
80°, and c is 2 cos 160°. If you look at the three angles here, you
will see that 80° is twice 40°, and 160° is twice 80°. This suggests
that we ought to see what we get if we double the angle again.
Twice 160° is 320°, and the cosinc of 320° is the same as the
cosine of 40°, so we have here the pattern of the snake biting its
own tail. The operation (doubling the angle) that leads us from a
to b, also leads us from b to ¢ and from c to a. The letters a, b, ¢
exhibit the same kind of symmetry as the toothed wheel shown
here.

Figure 84

We could turn this wheel in such a way that where a previously
stood, we saw b; where b was, we saw ¢; where ¢ was, we saw a.
The relationship of a, b, and ¢ can also be shown by means of

the equations @ b=a>-2
an c=5*-2
dm a=c*-2.

The symmetry of these relations is worth considering. Certainly
these equations are fair to a, b and c; no letter can complain of
being unfairly treated. And yet there is not total symmetry. For
instance, in equation (I) we cannot exchange a and b without
producing an untrue statement. The actual relation of b to a is
given by the equation

IVya=-b-b+2
which of course has its companion equations
MNb=—c*-c+2
(V) c=—a*-a+2
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One might compare it with the situation that sometimes arises
in games, B can beat 4, C can beat B, A can beat C.! This
situation is symmetrical, but the symmetry has, so to speak, a
twist in it. The companion statements ‘A loses to B’, ‘B loses to
C’, ‘Closes to A’ have the same symmetry.

The situation with complete symmetry is when B draws with A4,
C with B, and A4 with C. One can then interchange 4 and B in the
statement ‘B draws with 4’ to obtain the equally true statement
‘A draws with B’.

Complete symmetry corresponds to the group of the equi-
lateral triangle, discussed at the end of Chapter 7.

The type of symmetry that is possessed by the toothed wheel,
by the equations (I), (II), (I11I), and by the players when A4 loses to
B, B to C, and C to A, is called cyclic symmetry. The toothed
wheel can be turned round, but (unlike the equilateral triangle)
it cannot be turned over.

THE CYCLIC GROUP

When we have this type of symmetry, that of a dog chasing its
tail, it is clear that if a statement about players 4, B, C is true, the
corresponding statement about B, C, A will be equally true. In the
same way, if from equations (I), (I1I), (III) we can deduce an
equation f(a, b,c) = 0, we shall also be able to deduce an
equation f(b, c,a) = 0.

By what procedure is the second equation obtained from the
first? Wherever a occurs in the first equation, we rub it out and
write b; where b occurs, we rub it out and write ¢; where ¢ occurs,
we rub it out and write a.

The operation just explained is often denoted by the symbol
(abc). Each letter becomes the letter that follows it inside the
bracket; a becomes b, b becomes ¢. Now c is the last letter in the
bracket and strictly speaking, nothing follows it; we, however,
agree to regard the first letter in the bracket as coming after the
last; thus ¢ becomes a.

For short, I shall use the letter w to denote (abc). Thus, if we

1. An African schoolboy once asked me how, in view of the possibility
of this situation, one could maintain that the statement ‘If x is greater than
¥, and if y is greater than z, then x is greater than z’ was correct. As with
most questions asked me by children, I found I had to think very, hard
before I could answer it.
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have any function f(a, b, ), then w.f(a, b, ¢) = f(b, ¢, a). Read
this as, ‘The operation w acting on f(a, b, ¢) gives f(b, ¢, a)’.

This operation could of course be repeated. Applying it again
we find w?.f(a, b,c) = f(c,a,b). And it could be applied yet
again, to give wf(a,b,c) = f(a,b,c). Thus the operation w
applied three times brings us back to where we started, and we
may write w® = L.

The operations I, w, w? form a group, technically known as ‘the
cyclic group of order 3°, or C; for short. This group is the group
associated with the equation x®—3x + 1 = 0, and is referred to
as the Galois Group of the equation.

If we have any true relationship involving the roots a, b, ¢ of
this equation, and we apply to this relationship any operation of
the Galois Group, we shall obtain a true relationship as the result.
For example, equation (IV) given earlier in this section is a true
relationship between a, b and c. If we apply the operation I, that
is to say, if we leave it alone, we simply have equation (IV). If we
apply the operation w to equation (IV), we obtain equation (V),
which is of course a true relationship between the roots. If we
apply operation w?, we obtain equation (VI).

1 expect that, when you were reading the earlier part of this
section, and you came to equation (1V), you felt that it was
reasonable that it should have the companion equations (V) and
(VI), and I expect you could have written these equations down
yourself if I had not given them. So do not regard my explanation
of the operations w and w? as something new; the operations w and
w? are simply what you were doing when you saw that equations (V)
and (V1) were the natural companions of equation (1V). The object
of bringing in these operations w and w? is to replace the vague
sense of pattern with which we started by a precise and conscious
idea, which can be expressed by means of symbols and form the
foundation for a mathematical theory.

The Galois Group consists of those interchanges which can be
made between the roots of an equation, such that any statement,
which is true before the interchanges are made, will give a true
statement after the interchange.

A RESTRICTION ON STATEMENTS

We have to be a little careful here about what we mean by
‘statement’. We said earlier that, for the three players 4, B, C
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in the circumstances then considered, any statement that held
about 4, B, C would hold equally well for B, C, A. But this
clearly does not apply to such a statement as ‘A has a red nose’;
we cannot deduce from it that B and C also have red noses. The
statement must be about the game. Nor will any statement about
the game do. For example, from the statement ‘A4 has a strong
forehand drive’ it does not follow that B, who beats A, also has a
strong forehand drive. B’s victory may be due to craftiness, which
gives A no chance to use his forehand drive. In fact, the state-
ments must be confined to statements about the results of the
game; any statement probing too deeply into how that result is
achieved must be disqualified for our present purposes.

A similar limitation is necessary in our algebraic problem.
Consider, for example, the fact that a, which is 2 cos 40°, has the
value 1-53208 ... If to the equation a = 1-53208 ... we apply
the operation w, then a is replaced by b and the equation becomes
b = 1-53208 ..., which is not true. We must restrict our functions
f(a, b, ¢) to polynomials in a, b, ¢ with whole numbers only for
coefficients. Thus an equation like ac—abc +a®* +a—-2=0
qualifies all right as being ‘a statement’; but we exclude expres-
sions such as @ + bV'2 or ¢— = in which irrational numbers, V2
and =, occur. Fractions, however, do no harm. For instance
#(a® + a + ¢)— 1 = 0 means exactly the same as

a+a+c—-2=0,
and is permitted to count as a statement. It is, in fact, equation

(VD).

STATEMENTS ABOUT V2

Still using ‘statements’ in the same sense, let us consider what
statements can be made about V2. Such a statement will take the
form f(V2) = 0; or, if we prefer, f(x) =0 for x = V2. f(x)
is to be a polynomial with whole number coefficients. Suppose we
divide f(x), whatever it is, by x2— 2. This will give us a quotient,
say ¢(x), and a linear remainder, say px + g, where p and q
will be whole numbers; you can see this is so, if you write down
any polynomial with whole number coefficients, say
3x4—=Tx* +4x* +9x + 5

and divide it by x* — 2. Nowhere in the long division is there any
occasion for fractions to arise. When 23 is divided by 7 the
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quotient is 3 and the remainder 2; all of this is summed up in the
single equation 23 =7 x 3 + 2. In the same way, the division
specified above can be summarized by the equation

S(x) = (x*-2)e(x) + px +q.

In this equation, we may put any value for x we like. Let us put
x=V2 That will make x*—2 become zero. Also, since
f(V2) =0, it will make f(x) become zero. The equation above
thus reduces to B

0=pV2+gq

which seems to lead to the result V2 = — g /p. Now it is well
known that v/2 cannot be expressed as a rational fraction, so we
seem to have been led toa contradiction. The only escapeisprovided
by the possibility that p and g are both zero. As this is the only
way of avoiding an absurdity, it must be what happens. Accord-
ingly p = 0, g = 0, that is to say, the remainder px + q is zero.
This means that the function f(x) must divide exactly by x*—2;
we must have f(x) = (x*— 2)o(x).

What we have found is that we can make a statement,
f(V2) =0, only if f(x) is of the form (x2 — 2)e(x).

But now, if this is so, on putting x = —v2, we shall find
f~v2) =0.

This means; if any statement can be made about V'2, the same
statement can be made about —V'2. ‘Statement’ here must of
course be understood in the special restricted sense we have been
using; the above result would make nonsense if applied to a sen-
tence like ¢ V/2 is a positive number’.

The proper use of the principle would be, for example, to
deduce from the fact that x = V/2 satisfies x*—x?—2x +2 =0
that x = —V/2 also satisfies it, since an equation of this type (‘a
statement’) that holds for v'2 must hold equally well for ~v'2.

THE EQUATION x*-10x2+1=0

The principle we have just had for /2 can be extended to give us

the Galois Group of the equation x4 — 10x* + 1 = 0, which has

the four roots a, b, c, d where a = V2 + V3, b = V2-vV3,

c=—vV2+ V3, d=-v2-+3.1 will not go into the details

of the proof, but the principle still holds that any statement

about a, b, ¢, d will remain true if we everywhere replace v'2 by
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—v/2. Now the effect of replacing V2 by —V'2 is that a will
change from V2 + V3 to —V'2 + /3, i.e. it will become c. In
the same way, ¢ will become a. Further b will become d and d will
become b. B

The effect then of replacing V2 by —v/2 is that a and ¢ will
change places, as will b and d. That is, f(a, b, ¢, d) will become
flc,d,a,b).

Now it is also true that no statement can be made about V3
that does not equally well apply to —V/3. We can therefore
change V'3 into —V/3. This has the effect of interchanging @ and b,
and also c and d. f(a, b, ¢, d) becomes f(b, a, d, c).

Finally, if we like, we may do both things simultaneously. We
may replace V2 by —v'2 and V'3 by —V'3. This will turn « into d,
b into ¢, ¢ into b and d into a. So f(a, b, ¢,d) will become
fd, ¢, b,a).

The operations listed above, together with I, the operation of
leaving a, b, c, d exactly as they were, constitute the Galois Group
of the equation. If f(a, b, c,d) = 0 is a true statement about the
roots of this equation, so also will f(c, d, a,b) = 0, f(b,a,d,c) =0,
and f({, ¢, b, a) = 0 be true statements.

The Group we have just found is one that we have met before.
If the letters a, b, ¢, d are written on the corners of the rectangle in
Figure 85, the interchanges of these letters found for the equation
x*—10x? 4+ 1 = 0 are precisely the interchanges that arise if the
rectangle is picked up and put back into its box in a different
position. The group of the rectangle was the first group considered
in Chapter 7.

b a

d C

Figure 85

Both with the equation x*—10x* + 1 =0, just considered,
and with the equation x®*—3x 4+ 1 = 0 considered earlier, we
knew the roots of the equation before we knew the Galois Group.
However, it is possible, by a procedure which is fairly complicated,
to determine the Galois Group before the equation has been
solved. If it were not so, the theory would be useless, for the whole
point of the Galois Group is that it tells us sow hard it is going to
be to solve the equation, and by what steps we should proceed.
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SIMPLE AND COMPOUND GROUPS

How does the group of an equation give us information about
solving the equation? I will answer this question in one respect
only, by showing how a group tells us whether a problem is atomic
or not, that is to say, whether or not it can be broken up into
simpler problems. I shall simply explain what one looks for in
the group, without attempting to prove what I assert.

Let us consider an equation which has for its Galois Group a
group mentioned in Chapter 7, namely, the group of the equi-
lateral triangle.

An equation which has this group is the equation x* = 2. You
might at first think this equation to be atomic. There does not
seem to be any way of breaking up the extraction of a cube root.
But you must remember that a cubic equation has three roots.
The full solution of this equation is given by the roots a, b, ¢
where a="V2,

vz (LY,
2

R
2

Accordingly solving the equation fully involves finding two dis-
tinct things, namely V2 and v—3. The problem therefore breaks
up into two distinct problems, and is not atomic.

How does this capacity for being broken up show itself in the
Galois Group of the equation? As was stated above, the Galois
group is the group of the equilateral triangle, that is to say, the
group with the table

o o p g r

I||] o ©®* p g r
wlf|le o* I r p g

w2 I © g r p

€

p g r I o

QN

q r p o I o

riir p g o o I
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At a glance, this table shows a peculiarity. It breaks up into
squares. The letters p, g, r occur in the North-East and South-
West; the symbols 7, , »? in the North-West and South-East. If
we were to write /, », »? in red ink, and p, g, r in black ink, the
table would show vividly how these letters occurred in blocks.
If we were to look at the table from such a distance that we could
distinguish only the colours, but not the actual letters, the table
would appear to us as below

Red Black
Red J Red Black
Black Black Red

Now this is itself the pattern of a group, a smaller group than
the original one. We can read it as ‘Red x Red =Red,
Red x Black = Black’, etc. This little group has the same pat-
tern as the little group given in the last section of Chapter 7

I k
11 k
k| k I
or as the multiplication table for the numbers 1 and —!
1 -1
X 1 1 -1
-10-1 1

or as the addition table for,Even and Odd
Even Odd
+ Even Even Odd
Odd Odd Even
The bigger group, with the six elements, may thus be regarded
as an elaboration of the pattern of the smaller group. We may
say if we like that the big group is mapped on the small one by

means of the correspondence
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When an equation can be broken up into simpler equations,
this fact always betrays itself in the pattern of the group table,
which conceals within itself the pattern of a smaller group.

We had earlier in this chapter the equation x*—10x2 + 1 = 0,
which, since it could be solved with the help of the two quantities
v/2 and V'3, was not atomic. The Galois Group of this equation
was the group of the rectangle, with the table

1 p q r
150 r
p!pqu
qvgqup
riirqpl

The fact that the equation is not atomic is immediately seen
if I and p are written in red, ¢ and r in black.

When a group carries in this way within itself the pattern of a
smaller group it is said to be compound. When it does not do so,
it is called simple. Simple groups correspond to atomic problems.

The group 7, w, w2, that we met in connexion with the cyclic
equation x*—3x + 1 = 0, is simple. It contains 3 elements, and
3 is a prime number. Any group containing a prime number of
elements is necessarily simple. Simple groups, which have a non-
prime number of elements, are interesting and somewhat rare.
A group known as the Group of the Icosahedron, with 60
elements, is the smallest such group. The insolubility of the
equation of the fifth degree is connected with it. Next comes a
group with 168 elements, which is connected with the finite
geometry described in Chapter 13.

ANALOGIES OF THE GALOIS THEORY

The Galois Theory is interesting, but is it useful? The answer to
this question provides a good illustration of the kind of usefulness
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a mathematical theory may have. For the Galois Theory has no
direct application to any practical purpose. Nobody in practice
wants to solve equations of the fifth degree. If an equation of the
fifth degree arose in any technical activity, one would simply
draw a graph, and see where the graph crossed the x-axis.

The real value of the Galois Theory is that it provides a model
for almost any kind of investigation. The mathematician of older
times asked, ‘Can I find a trick to solve this problem?’ If he
could not find a trick today, he looked for one tomorrow. But
the Galois Theory being known, we no longer assume that a
trick need exist at all. We ask rather, ‘Is there any reason to
suppose that this problem can be solved with the means we have
at hand? Can it be broken up into simpler problems? What is it
that makes a problem soluble, and how can we test for solubility?’
We no longer try to invent; we try to discover the nature of the
problem we are dealing with.

Unlike the solution of algebraic equations, the solution of
differential equations is a matter of great practical importance.
Between 1883 and 1892 Picard and Vessiot successfully con-
structed a theory of differential equations, which very closely
resembles, and was obviously inspired by, the Galois theory of
algebraic equations.

An obvious task for mathematical research is to extend the
ideas of Galois to cover all types of mathematical problem; to
show which problems are atomic, and by what means compound
problems may be recognized.

The usefulness of any such theory is, in the main, for the
research mathematician. It saves him wasting his time trying to
solve a problem by means which are inadequate to the task. It may
suggest ‘a systematic way of attacking new problems. The
engineer rarely has time for fundamental mathematical research,
and is generally content to use the methods developed by
mathematicians, except in so far as he adapts them to the needs
of practical calculation. The Galois theory has no direct applica-
tion to technology.
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A DICTIONARY OF SCIENCE

E. B. Uvarov and D. R. Chapman
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In its new edition the value of the Dictionary of Science to
students and Jaymen has been extended by the addition of
explanations of many new words which have come into
use in recent years. This is particularly true in physics,
where recent advances have given rise to large numbers of
new ideas and terms such as atomic energy, radar, and
radioactive isotopes. Many new terms relating to modern
advances in chemistry have also been added. Together with
this new material, the student will find in this book reliable
definitions and clear explanations of the simpler terms used
in astronomy, chemistry, mathematics, and physics, as
well as short notes on all the chemical elements and their
most important compounds conveniently arranged in
alphabetical order. The intelligent layman will find this
Dictionary helpful when faced with the numerous scientific
and technical terms which are increasingly becoming an
important part of our daily lives.



CHEMISTRY

Kenneth Hutton

A 353

Lots of people wonder ‘what’s this new stuff?’ when they
handle fibres, detergents, or other synthetics. Their interest
in chemistry is apt to be stifled if the reply is ‘sodium dich-
lorophenoxyacetate’, and not sufficiently satisfied if they
are airly told that it is made from coal, chalk, and salt. The
author hopes to make both these answers intelligible and
satisfying, and to provide enlightenment on a subject about
which many people feel intelligent curiosity. He wishes to
show the fascination and importiance of chemisiry, and to
make it intelligible.

After an account of the most important of the chemical
clements, such as oxygen, hydrogen, and carbon, chemical
formulae and equations are explained in enough detail for
the rest of the book to be understood. The various com-
pounds are classified according to the ways in which they
are useful to man: fuels and foods, clothes, fibres and
plastics, anaesthetics, drugs, explosives, and the ‘heavy
chemicals’, such as ammonia and sulphuric acid, which are
used on a large scale in industry.




ALCHEMY

E. J. Holmyard

A 348

From the dawn of history the shining and untarnishable
metal, gold, has exerted its fascination upon man. Very
carly the idea arose that other metals were either impure or
unripe gold, and that therefore by suitable treatment they
could be converted into the precious metal itself. Such a
belief, the principal tenet of alchemy, led to vast programmes
of experiment, from which, after the lapse of centuries, a
scientific practical chemistry developed. But the fact that the
belief in transmutation was almost universally accepted
offercd great opportunities to rogues and charlatans, who
were not slow to take advantage of human credulity and
avarice. Side by side with honest searchers, therefore, were
clever scoundrels who fleeced prince, peer, and peasant
by the skill with which they carried out tricks of sleight-of-
hand and deluded their victims into thinking that here was
an infallible method of acquiring unlimited wealth.

In this book the origins and growth of alchemy are
described, with an account of the underlying philosophical
conceptions; and the romance attaching to the art is illu-
strated by stories of some of the most celebrated or notor-
ious of its practitioners.




ANIMALS PARASITIC IN MAN

Geoffrey Lapage

A 394

This book is not about bacteria or viruses, but about the
animals that are parasites of man and cause, all over the
world, serious diseases, such as malaria, sleeping sickness,
the illnesses due to parasitic worms and other troubles.
Some of these parasites were plagues as long ago as
1600 B.c. They still inflict on man and other animals incal-
culable suffering, especially in tropical countries, and they
hamper human industrial enterprises, reduce the world’s
food supplies, hinder or prevent the colonization of certain
areas, and even prevent war.,

The book explains how a parasite lives and it describes
the life histories of animals that are parasites of man, how
he becomes infected with them, and how his body fights
back against the parasitic animals. It may therefore be use-
ful to doctors and medical students and to others who try
in various ways to promote the welfare of man. For the
philosopher there is the fact that these parasitic animals,
which cause so much suffering and kill so many human
beings and other animals, arc as beautifully and wonderfully
adapted to their modes of life as are animals that live in
other ways.




ATOMIC RADIATION AND LIFE

Peter Alexander

A 399

With the developments of nuclear energy and weapons the
subject of radiation biology has come to the forefront of
public attention since the hazards of radiation are a problem
of national importance both for peace and war. In the long
run the survival of modern civilization will depend on the
successful exploitation of atomic power and this must be
achieved without endangering the health of present or
future generations.

This book puts the reader into possession of the facts
that are available and indicates the great gaps in our know-
ledge which are responsible for making this subject one of
controversy. It aims to tell the story of how a minute
amount of energy in the form of atomic radiation can alter
the life of individual cells and whole animals, how it can
cure and yet cause cancer, and how it affects the genetic
mechanism thereby producing changes which will only
become apparent in later generations.

One of the great challenges to contemporary scientists is
to find the mechanisms by which these biological effects
are produced though a general pattern can be seen which
links the physics of the radiation to the chemical change
they produce. The emphasis of the book is on these scientific
aspects which encompass physics, chemistry, biology, and
medicine.




SOCIAL WELFARE AND THE CITIZEN

Edited by Peter Archer

A 396

We live in the age of the Welfare State, when the commu-
nity does what it can to assist its members while they are in
need of help. But the difficulty is often that of finding out
what provisions exist, and how to apply for them. The pur-
pose of this book is to set out clearly the help which is
available for those who require it, and the corresponding
responsibilities of the public generally.

It has been written by a group of professional people,
each of whom has had practical experience of the services
which he or she explains. The subjects have been selected
in the light of experience, as those on which members of the
public most frequently require information, not always
readily accessible. The topics covered include National
Insurance, Income Tax, health provisions, family rights and
welfare, education, tenants’ rights, town planning, in-
dustrial relations, traffic regulations, national service, and
provision for the aged and the handicapped.

The primary object has been to set out the facts, but the
authors have also attempted, within the space available, to
give a bird’s eye view of social welfare in Great Britain.
Sometimes they are controversial, and some attempt is
madec to point the way towards future developments.

There is an appendix setting out the addresses from which
help and further information are obtainable.




THE QUEEN’S COURTS

Peter Archer

A 365

An account of the history, jurisdiction, and procedure of
the various courts and tribunals which administer English
law.

The British genius for government, which has combined
democracy and personal freedom with orderly admini-
stration, owes much to English ideas of law. These in turn
are the products of the legal system, developed over many
centuries by the legal profession. And that system has been
determined less by abstract speculation than by the practi-
cal working of the law courts.

An account of the institutions which produced the
criminal trial for the protection of the citizen against un-
lawful interference alike by wrongdoers, and the police,
and the civil action for the effecting of justice between
citizens, is not a static picture. English law embodies
generations of experience, but it is constantly adapting it-
self to new situations, and the twentieth century has wit-
nessed the birth of numerous tribunals which have taken
their place alongside the ancient courts.

Of all these, their work, and their place in English life,
this book sets out to tell. It concludes with a comparison
between the legal institutions of this country and those which
function in different settings for different ways of life.
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