

Programming

I

.t .
r-.

Programming

Principles and Practi ce

Using C++

Bjarne Stroustrup

.'. Addison-Wesley
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • london • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

~Ia.ny of the desigll3tions used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where t11O$C design'llions app:ar in this book, and tIu:: publisher was aware of 3 tT"Jdcmark
claim. the designations h,l\'e been primed with initial capitalleu",rs or in all capitals.

A complete list o f photo sources and credits appears on pages 1235- 1236.

TIte author and publisher have taken care in the preparation of this book, but make no expressed or into
plied warranty of any kind and assume no respon!! ibi!iLy for errors or omissions. No liability is ass umed
fo r incidental or comcqucntial damages in connection with or arising out of the usc of dte infonnation or
prognum contained hcrein.

11lC publili her offcrs exccllent discoun ts on thi!! book when ordered in quantity for bulk purchases or spc­
cial sales, which may inelude electronic ver!!ions and/or custom C()\"crs and content particular to your busi·

ness. training go.~ls. marketing focus. ~nd branding interests . For more info rmation. please: contact:

U.S. Corpor~Le and Go\"ernment Sales
(800) 382-3419
corpsalcs@pears01!tcchgroup.oont

For salcs oULSide the United Statcs, please contact:

Im",m:uional Sales
imemational@p:arsolled.com

Copyright 0 2009 Pearson EdUCllUon, Ill(:.

StrouStrup. Bjame.
Programming principia and practice using C++ I BjanlC Slroustrup.

p. em.
Includes bibliographical references and index.
ISBN 978-{)'321·54372·1 (pbk. : alk. paper) I. C++ (Cornputer program language) I. ·litle.

Q.A76.73.C l535822008
005. 13'3-dc22

2008032595

All righLS rc:scr"\'ed. Printed in the United States of America. ·n tis pUblication is]Itutectcd by copyright. and
p:nnission mUSt be: obtained from tIte publisher prior to any prohibited reproduction, ~ tor.lge in a mric\'al
syst"'m. or transmission in any fOnll or by any mcans. electronic, IlIcchanic.1l, photocopying. recording, or
lik",wisc:. For infom13tion rcg-Mding penn.issions. write to :

PearKltl Education. Inc.
RighLS and Contracts Departmcnt
50 1 Boylston Strc:ct, Suite 900
Boston. MA 02116
FaJ<; (617) 671 ·3447

ISBN·13: 978·0·321 ·54372·1
ISBN· IO: 0-32 1·54372-6
·lo.a primed in the United States on rn:rded p.1p:r at CQurier in Kendalhille, Indiana.
First printing, December 2008

Preface xxiii

Chapter 0 Noles to the Reader

0. 1 111C structure o f lhis book 2
0.1. 1 Gcncntl approach 3
0. 1.2 Drills, exercises, etc. 4
0. 1.3 What comes after this book? 5

Contents

0.2 A philosophy of teaching and learning 6
0.2. 1 lllC: order of topics 9
0.2.2 Programming and programming language 10
0.2.3 Portability I I

0.3 Programming and computer science 12
0.4 Creativity and problem solving 12
0.5 Request for feedback 12
0.6 References 13
0.7 Biographies 14

8jamc SrrouSll'UP 14
Lawrence "Pete" Pctcrsc=n 15

,

Chapter 1 Computers, People, and Programmi ng 17

1.1 Introduction 18
1.2 Software 19
1.3 People 2 1
1.4 Computer science 24
1.5 Computers are evel)"vhere 25

1.5.1 Screens and no screens 26
1.5.2 Shipping 26
1.5.3 l 'i::lecommunications 28
1.5.4 Medicine 30
1.5.5 lnfonnation 31
1.5.6 A "crtical view 32
1.5.7 So what? 34

1.6 Ideals for programmers 34

Part I The Basics 41

Chapler 2 He llo. World! 43

2. 1 Pl.'Ograms 44
2.2 The classic first program 45
2.3 Compilation 47
2.4 Linking 51
2.5 Programming environments 52

Chapter 3 Objects. Types, and Val ues 59

3. 1 Input 60
3.2 Variables 62
3.3 Input and type 64-
3.4 Operations and operators 66
3.5 Assignmem and initialization 69

3.5. 1 An example: dcJete repeated words 71
3.6 Composite assignment operators 73

3.6.1 An example: count repeated words 73
3.7 Names 74
3.8 Types and objects 77
3.9 Type safety 78

3.9. 1 Safe conversions 79
3.9.2 Uns •• fe conversions 80

Chapter 4 Computation 89

4.1 Computation 90
4.2 Objectives and tools 92

CONTENTS

CONTENTS

4.3 Expressions 94
4.3.1 Constant expressions 95
4.3.2 Operators 96
4.3.3 Conversions 98

4.4 Statements 99
4.4 .1 Selection 10 1
4.4.2 Iteration 108

4.5 Functions 112
4.5.1 Why bother wilh functions? 114
4.5.2 Function declarations 115

4.6 Vcclor 116
4.6.1 Growing a vector 11 8
4.6.2 A numeric example 119
4.6.3 A text example 121

4.7 Language features 123

Chapler 5 Errors 1 3 1

5. 1 Imroduction 132
5.2 Sources o f errors 134
5.3 Compile-time errors 134

5.3. 1 Syntax errors 135
5.3.2 Type errors 136
5.3.3 Non·errors 137

5.4 Link-time errors 137
5.5 Run·time errors 138

5.5. 1 llie caller deals with errors 140
5.5.2 -nle c.1.llec deals wilh errors 14 1
5.5.3 Error reporting 143

5.6 Exceptions 144

5.7
5.8
5.9

5. 10

5. 11

5.6. 1 Bad arguments 145
5.6.2 Range errors 146
5.6.3 Bad input 148
5.6.4 Narrowing errors 15 1
Logic errors 152
Estimation 155
Debugging 156
5.9. 1 Praetical dcbug advice 157
Pre· and post-conditions 161
5.10. 1 Post·conditions 163
Testing 164

vii

viii

Chapter 6 Writing a Program 171

6.1 A problem 172
6.2 111inking about the problem 173

6.2. 1 Stages of dcvelopmcnt 174
6.2.2 Slralcgy 174

6.3 Back to the ca1culaLOr! 176
6.3. 1 Firs t attempt 177
6.3.2 Tokens 179
6.3.3 Implementing tokcns 181
6.3.4 Using tokens 183
6.3.5 Back to the drawing board) 8S

6.4 Granunars 186
6.4. 1 A detour: English grammar 191
6.4.2 Writing a grammar 192

6.5 Turning a grammar into code 193
6.5. 1 Implcmcmi.ng gr.unmar rulcs 194
6.5.2 Expressions 195
6.5.3 Tcnns 198
6.5.4 Primary expressions 200

6.6 T rying the first version 201
6.7 T rying the second version 206
6.8 Token streams 207

6.8. 1 Implementing Token_slream 209
6.8.2 Reading tokens 2 11
6.8.3 Rcading numbcrs 212

6.9 Program structure 213

Chapter 7 Completing a Program 219

7. 1 Introduction 220
7.2 Input and output 220
7.3 Error handling 222
7.4 Negative numbers 227
7.5 Remainder : % 228
7.6 C leaning up lhe code 23 1

7.6.1 Symbolic constants 23 1
7.6.2 Usc of functions 233
7.6.3 Code layout 234
7.6.4 Commenting 236

7.7 Recovering from errors 238
7.8 Variables 241

7.8. 1 Variablcs and dcfini tions 241
7.8.2 Introducing namcs 246
7.8.3 Predefmcd names 249
7.8.4 Arc wc there yct? 249

CONTENTS

CONTENTS he

Chapter 8 Technicalities: Functions, etc. 253

8.1 Technicalities 254
8.2 Declarations and definjtions 255

8.2.1 Kinds of declarations 259
8.2.2 Variable and constant declarations 260
8.2.3 Default initialization 261

8.3 Header files 26 1
8.4 Scope 264
8.5 Function call and return 269

8.5.1 Declaring arguments and return type 270
8.5.2 Reluming a value 271
8.5.3 Pass-by-value 273
8.5.4 Pass-by-const-reference 273
8.5.5 Pass·by-refcrellce 276
8.5.6 Pass·by-value vs. pass-by-refercnce 279
8.5.7 Argument check.ing and conversion 281
8.5.8 FUllction call implementation 282

8.6 Order of evaluation 287
8.6. 1 E.o.:prcssion evaluation 288
8.6.2 Global initialization 288

8.7 Namespaces 290
8.7.1 using declarations and using directives 291

Chapter 9 Technica lities : Classes, etc. 299

9.1 User-defined types 300
9.2 Classes and members 301
9.3 Interface and implementation 302
9.4 Evolving a class 304

9.4. 1 slrucl and functions 304
9.4.2 Member functions and constructors 306
9.4.3 Keep details private 308
9.4.4 Defining member functions 309
9.4.5 Referring to the current object 312
9.4.6 Rcportingerrors 313

9.5 Enumerations 314
9.6 Operator overloading 316
9.7 Class interfaces 3 18

9.7.1 Argumelll types 319
9.7.2 Copying 321
9.7.3 Default constructors 322
9.7.4 const member functions 325
9.7.5 Members and "helper fu nctionsn 326

9.8 TIle Oate class 328

" CONTEN TS

Part II Input and Output 337

Chapter 10 Input and Output Streams 339

10.1 Input and output 340
10.2 TIle 110 stream model 341
10.3 Ftles 343
10.4 Opening a me 344
10.5 Reading and writing a me 346
10.6 1/0 error handling 348
10.7 Reading a single value 352

10.7. 1 B~aking the problem into manageable parts 353

10.7.2 Separating dialog from fu nction 356
10.8 User-defined Output operators 357
10.9 User-defined input operators 359
10.10 A standard i.l1plllloop 359
10.11 Reading a structured me 36 1

10.1 1.1 In·memory n:presentation 362
10. 11 .2 Reading sU"Uctured values 364
10.11.3 Changing n:presentations 368

Chapter 11 Customizing Input and Output 375

ll.l Regularity and irregularity 376
11 .2 Output formatting 376

11 .2. 1 Integer output 377
11.2.2 Integer inpm 379
11 .2.3 Hoating-point output 380
11 .2.4 Precision 382

11.2.5 Fields 383
11 .3 Ftle opening and positioning 384

11.3.1 File open modes 385
11 .3.2 Binary files 386
11.3.3 Positioning in files 389

11.4 String streams 390
11.5 Linc-oriented input 391
11 .6 C haracter classification 392
11.7 Using nonstandard separators 394
11.8 And there is so much more 401

Chapter 12 A Display Model 407

12.1 Why graphics? 408
12.2 A display model 409
12.3 A first examplc 410

CONTENTS

Chapter 13

Chapter 14

12.4 UsingaGUIlibrary 414
12.5 Coordinales 415
12.6 Shapes 4 16
12.7 Using Shape primitives 417

12.7.1 Graphics headers and main 417
12.7.2 An almost blank window 418
12.7.3 Axis 420
12.7.4 Graphing a function 422
12.7.5 Polygons 423
12.7.6 Rectangles 424
12.7.7 Ell 427
12.7.8 Text 427
12.7.9 Images 429
12.7. 10 And much more 430

12.8 Gelting tills to run 431
12.8.1 Source fues 432

Graphics Classes 437

13.1 Overview of graphics classes
13.2 Point and line 440
13.3 lines 443
13.4 Color 445
13.5 line_style 448
13.6 Open_polyline 450
13.7 Closed_polyline 451
13.8 Polygon 453
13.9 Rectangle 455
13. 10 Managing unnamed objects
13.11 Text 462
13. 12 Circle 464
13. 13 Ellipse 466
13.14 Marked_polyline 468
13. 15 Marks 469
13 .16 Mark 470
13.17 Images 472

GraphiCS Class Design 479

14.1 Design principles 480
14. 1.1 Types 480
14.1.2 Operations 482
14.1.3 Naming 483
14 .1.4 Mutability 484

438

459

,;

xii

Chapte r 15

14.2 Shape 485
14 .2.1 An absmlct class 487
14.2.2 Access control 488
14.2.3 Drawing shapes 491
14.2.4 Copying and mutability 494

14.3 Base and derived classes 496
14 .3. 1 Objcct layout 497

CONTEN TS

14.3.2 Deriving classes and defining virtual functiollS 499
14.3.3 Overriding 500
14.3.4 Access 501
14.3.5 Pure vinual funcuons 502

14.4 Benefits of object-oricnted programming 504

Graphing Functions and Data 509
IS. I IntroductiOIl SIO
IS.2 Graphing simple functions SIO
IS.3 Function SI4

15.3. 1 Default argumcnts 515
15.3.2 More examples 517

15.4 Axis 518
15.5 Approximation 52 1
15.6 Graphing data 526

15.6.1 Reading a rue 528
15.6.2 Gcnerallayout 530
15.6.3 Scaling data 53 1
15.6.4 Building the graph 532

Chapter 16 Graphica l User Interfaces 539

16.1 User interface ahemativcs 540
16.2 Thc "Next" butlon 541
16.3 A simple window 542

16.3. 1 A callback function 544
16.3.2 A wait loop 547

16.4 Bullon and othcr Widgets 548
16.4. 1 Widgets 548
16.4.2 Bultons 549
16.4.3 In_box and Oul_box 550
16.<1.4 Menus 55 1

16.5 An example 552
16.6 Control inversion 556
16.7 Adding a menu 557
16.8 Debugging CUI code 562

CONTENTS xiii

Part lit Data and Algorithms 567

Chapte r 17 Vector and Free Store 569

17.1 Introduction 570
17.2 vector basics 572
17.3 Memory, addresses, and poimers 574

17.3.1 111C sizeof operator 576
17.4 Free store and pointe rs 577

17.4.1 Free-store allocation 578
17.4.2 Access through pointers 579
17.4.3 Ranges 580
17.4.4 Initialization 582
17.4.5 TIle nuU poilller 583
17.4.6 Frec-slOrc deallocation 584

17.5 Destructors 586
17.5.1 Generated destructors 588
17.5.2 Dcstructors and fTC(: store 589

17.6 Access to clements 590
17.7 Pointers to class objects 591
17.8 Messing with types: void" and casLS 593
17.9 Pointers and references 595

17.9. 1 Pointer and reference parameters 596
17.9.2 Pointers, references, and inheritance 598
17.9.3 An example: lists 598
17.9.4 List operations 600
17.9.5 List usc 602

17.10 The this pointer 603
17.10. 1 More link usc 606

Chapter 18 Vecto rs a nd Arrays 6 1 1

18.1 Introduction 6 12
18.2 Copying 6 13

18.2. 1 Copy constmctol"S 614
18.2.2 Copy assignments 616
18.2.3 Copy tcnninology 6 18

18.3 Essential operations 620
18.3. 1 Explicit constmclOrs 621
18.3.2 Debugging constmctors and dcstmctors 622

18.4 Access to ve ctor clements 625
18.4.1 Overloading on consl 626

xiv CONTENTS

18.5 Array, 627
18.5.1 Pointers to array clements 628
18.5.2 Pointers and arrays 631
18.5.3 Array initialization 633
18.5.4 Pointer problems 634

18.6 Examples: palindrome 637
18.6.1 Palindromes using Siring 637
18.6.2 Palindromes using arrays 638
18.6.3 Palindromes using pointers 640

Chapter 19 Vector, Templates, and Exceptions 645

19.1 1ne problems 646
19.2 Changing size 649

19.2.1 Representation 649
19.2.2 reserve and c",pacily 651
19.2.3 res i~e 652
19.2.4 push_back 652
19.2.5 Assignment 653
19.2.6 Our veclor so far 655

19.3 Templates 656
19.3.1 l yPcs as template parameters 656
19.3.2 Generic programming 659
19.3.3 Containers and inheritancc 661
19.3.4 Integers as template p.1ramcters 662
19.3.5 l cmplate argument deduction 664
19.3.6 Generalizing vedor 665

19.4 Range checking and exceptions 668
19.4.1 An aside: design considerntions 670
19.4.2 A confession : macros 67 1

19.5 Resources and exceptions 672
19.5.1 Potential resource management problems 673
19.5.2 Resource acquisition is initiat ization 675
19.5.3 Guarnntecs 676
19.5.4 auio-pir 678
19.5.5 RAIl for vedor 678

Chapter 20 Containers and ilerators 685

20. 1 Storing and processing data 686
20. 1.1 Working with data 687
20. 1.2 Gcnernlizing code 688

20.2 sn. ideals 690

CONTENTS xv

20.3 Sequences and ilerators 694
20.3.1 Back to the example 696

20.4 Linked lists 698
20.4.1 List operations 699
20.4.2 Iteration 701

20.5 Generalizing vector yet again 703
20.6 An example : a simple text editor 704

20.6. 1 Lines 707

20.7

20.8
20.9
20. 10

20.6.2 Iteration 708
vector, list, and string 71 1
20.7.1 insert and erase 713
Adapting our vector to the STL 715
Adapting built-in arrays to the SlL 718
Container overview 719
20.10. J Iterator categories 722

Chapter 21 Algorithms and Maps 727

2 1.1 Standard library algorithms
2 1.2 The simplest algorithm: findO

21.2.1 Some generic uses 73 1

728
729

2 1.3 The general search: findjfO 732
2 1.4 Function objects 734

21.4.1 An abstract view of function objects 736
21.4.2 Predicates on class members 737

21.5 Numerical algorithm.s 738
21.5.1 Accumulate 739
21.5.2 Generalizing accumulate{) 740
21.5.3 Innerproduct 742
21.5.4 Generalizing inner_productO 743

21.6 Associative containers 744
21.6. 1 Maps 745
21.6.2 map overview 747
21.6.3 Another map example 750
21.6.4 unordered_map 753
2 1.6.5 SelS 755

2 1.7 Copying 757
21.7.1 Copy 757
21.7.2 Stream iterators 758
21.7.3 Using a set to keep order 76 1
21.7.4 copy_if 761

2 1.8 Sorting and searching 762

xvi CONTENTS

Part IV Broadening the View 769

Chapte r 22 Ideals a nd H istory 77 1

22. 1 History, ideals, and prorcssionalism 772
22.1.1 Programmi.ng language ai.ms and philosophies 772
22.1.2 Progr.lIlll11ing ideals 774
22. 1.3 Styles/paradigms 781

22.2 Programming language history overview 783
22 .2.1 TIle earl iest languages 784
22.2.2 TIle roots of modem languages 786
22.2.3 TIle Algol family 791
22.2.4 Sillluia 798
22.2.5 C 800
22.2.6 C++ 804
22.2.7 Today 807
22.2.8 lnfonnation sources 808

Chapte r 23 Text Manipulation 813

23. 1 Text 814
23.2 Strings 8 14
23.3 110 streams 819
23.4 Maps 820

23.4. 1 Implementation details 826
23 .5 A problem 828
23.6 '11e idea of regular expressions 830
23.7 Searching with regular expressions 833
23.8 Regu lar expression syntax 836

23.8. 1 Characters and special chameters 836
23.8.2 Character classes 837

23.9
23. 10

23.8.3 Repeats 838
23.8.4 Grouping 840
23.8.5 Atternation 840
23.8.6 Character sets and ranges 841
23.8.7 Regular expression errors 842
Matching wilh regular expressions
References 849

Chapter 24 Numerics 853

24. 1 Introduction 854
24.2 Size, precision, and overflow 854

24.2. 1 Numeric limits 858
24.3 Arrays 859

844

24.4 C·slylc multidimensional arrays 859

CONTENTS

24.5 Thc Matrix library 861

24.6

24.7
24.8
24.9
24. 10

24.5.1 Dimensions and access 862
24.5.2 ID Matrix 865
24.5.3 2D Matrix 868
24.5.4 Matrix 110 870
24.5.5 3D Matrix 871
An example: solving linear equations 872
24.6. 1 Classical Gaussian elimination 874
24.6.2 Pivoting 875
24.6.3 Testing 876
Random numbers 877
The standard mathcmaticaJ functions 879
Complex numbers 880
References 882

Chapter 25 Embedded Systems Programming 887

25.1 Embedded systems 888
25.2 Basic concepts 891

25.2. 1 Prcdiclability 894
25.2.2 Ideals 894
25.2.3 Living with fail ure 895

25.3 Memory managemcm 897
25.3. 1 Free-store problems 898
25.3.2 Alternatives to general free store 901
25.3.3 Pool example 902
25.3.4 Slack example 903

25.4 Addresses, pointers, and arrays 905
25.4. 1 Unchecked conversions 905
25.4.2 A problem: dysfunctional intcrfaces 905
25.4.3 A solution : an illlcrface class 909
25.4.4 Inheritance and containers 912

25.5 Bits, bytes, and words 916
25.5. 1 Bits and bit operations 916
25.5.2 bitsel 920
25.5.3 Signed and unsigned 922
25.5.4 Bit manipulation 926
25.5.5 Bitfic1ds 928
25.5.6 An example: simple encryption 930

25.6 Coding standards 935
25.6. 1 What should a coding standard be? 936
25.6.2 Sample mles 937
25.6.3 Real coding standards 943

xvii

xviii

Chapter 26 Testing 949
26.1 What we wam 950

26. 1.1 Caveat 95 1
26.2 Proofs 952
26.3 Testing 952

26.3.1 Regression tests 953
26.3.2 Unit tests 954
26.3 .3 Algorithms and non·algorithms 961
26.3 .4 System tests 969

26.3.5 Testing classes 973

CONTENTS

26.3.6 Finding as~umptions that do not hold 976

26.4 Design for testing 978
26.5 Debugging 979
26.6 Performance 979

26.6.1 Timing 981
26.7 References 983

Chapter 27 The C Programming language 987

27.1 C and C++: siblings 988
27.1.1 ClC++ compatibility 990
27.1.2 C++ features missing from C 99 1
27.1.3 The C standard library 993

27.2 Functions 994
27.2. 1 No function name overloading 994
27.2.2 Function argument type checking 995
27.2.3 Function definitions 997
27.2.4 Calling C from C++ and C++ from C 998
27.2.5 Pointers to functions 1000

27.3 Minor language difTcrenccs 1002
27.3.1 struet tag namespace 1002
27.3.2 Keywords 1003
27.3.3 Definitions 1004
27.3.4 C·style casts 1006
27.3.5 Conversion of void· 1007

27.3.6 enum 1008
27.3.7 Namespaces 1008

27.4 Free store 1009
27.5 C·stylc strings lO ll

27.5. 1 C·style strings and consl 1013

27.5.2 Byte operations 1014
27.5.3 An example: strcpyn lOIS
27.5.4 A style issue 1015

CONTENTS

27.6 Input/output: stdio 10 16
27.6.1 Output 1016
27.6.2 Input 1017
27.6.3 rues 1019

27.7 Constants and macros 1020
27.8 Macros 1021

27.8. 1 Function·likc macros 1022
27.8.2 Syntax macros 1023
27.8.3 Conditional compilation 1024

27.9 An example: intrusive containers 1025

Part V Appendices '035

Appendix A Language Summary 1037

Al General 1038
A.l.l Tcnninology 1039
A.1.2 Program start and tcmlination 1039
A.1.3 Commcllts 1040

A.2 Literals 1041
A.2. 1 Integcr litcrals 104 1
A.2.2 Floaling·point-lilcrals 1042
A.2.3 Boolcan lilcrals 1043
A.2.4 Characlcr lilcrals 1043
A.2.5 String litcrals 1044
A.2.6 Thc pointcr litcral 1044

A3 Identifiers 1045
A.3.! Keywords 1045

A4 Scope, storage class, and lifetime 1046
AA.1 Seope 1046
A.4.2 Storage class 1047
A.4.3 Lifctimc 1048

AS Expressions 1049
A.5.1 Uscr-defined operators 1054
A.5.2 Implicit type convcrsion 1054
A.5.3 Constant cxpRSSions 1056
A.5A sizeof 1057
A.5.s Logical expressions 1057
A.5.6 new and delete 1057
A.5.7 Casts 1058

A.6 Statements 1059
A7 Declarations 1061

A.7.1 Definitions 1061

xix

xx CONTENTS

AS Built-in types 1062
A.8. 1 Pointers 1063
A.8.2 Arrays 1064
A.8.3 RefefCnces 1065

A.9 Functions 1066
A.9.1 Overload resolution 1067
A.9.2 Default arguments 1068
A.9.3 Unspecified arguments 1068
A.9.4 Linkage specifications 1069

AIO User·defmed types 1069
A. IO.I Operator overloading 1069

All Enumerations 1070
A 12 Classes 1071

A.12. 1 Member access 1071
A.12.2 Class member definitions 1074
A.12.3 Construction, dcstmction. and copy 1075
A.12.4 Derived classes 1078
A.12.5 Bitfidds 1082
A.12.6 Unions 1082

A. 13 l cmplates 1083
A.13.! Template arguments 1084
A. 13.2 "Icmplatc illStalltiauon 1084
A.13.3 "lcmplate member types 1086

A.14 Exceptions 1086
A 15 Namespaces 1088
A16 Aliases 1089
A 17 Preprocessor directives 1090

A. 17. 1 #include 1090
A. 17.2 #define 1090

Appendix B Standard Library Summary 1093
n.1 O verview 1094

8.1. 1 Header files 1095
B.1.2 Nalllespace SId 1098
B.l.3 Description style 1098

B.2 Error handling 1098
B.2.1 Exceptions 1099

B.3 Itcrators 1100
B.3. 1 Itcrator model 1101
B.3.2 Itcrator categories 1103

CONTENTS

B.4 Containers 1105
8.1.1 Overview 1107
B.4.2 Member types 1 !OS
B.4.3 ConstTIlctors, destructors, and assignmcnts 11 OS
B.4.4 Itcrators 1109
8.4.5 Element access 1109
8.4.6 Stack and queue operations 1110
8.4.7 List operations 1110
8.4.S Size and capacity 1110
8.4.9 Other operations 1111
8.4.10 Associative container operations 1111

B.5 Algorithms 111 2
B.5. 1 Nonmodifying sequence algorithms 1113
B.5.2 Modifying sequence algorilluns 1114
B.5.3 Utility algorithms 1116
B.5.4 Soning and searching 1117
B.5.5 Set algorithms IllS
B.5.6 Heaps 1119
B.5.7 Pcnnutations 1120
B.5.S min and ma;ll: 1120

B.G STL utilities 1121
B.6.1 Inserters 1121
B.6.2 Function objects 11 22
B.6.3 pair 1123

B.7 1/0 streams 11 24
D.7.1 110 streams hicrarchy 1126
D.7.2 EITOr handling 1127
B.7.3 Input operations 1128
B.7.4 OmpUl operations 112S
B.7.5 Fonnatting 1129
B.7.6 Standard manipulators 1129

B.S String manipulation 1131
B.8.l Character classifica tion 113 1
8.8.2 String 1132
B.S.3 Regular expression matching 1133

B.9 Numerics 1135
8.9.1 Numerical1imits 1135
8.9.2 Standard mathematical functions 11 37
8.9.3 Complex 1138
8 .9.4 valarray 11 39
B.9.5 Generalized numerical algorithms 1139

xxi

uii

RIO C standard library fu nctions 1140
B.lO.1 Fiies 1140
B.10.2 -nle prinlf() family 1141
B.10.3 Cstyle strings 11 45
B.I O.4 Memory 1146
B.IO.5 Date and time 1147
B.IO.6 Etc. 1149

B.II Other libraries 1150

Appendix C Getting Started with Visual Stud io 1151

C. I Getting a program to run 11 52
C.2 Installing Visual Studio 1152
C.3 Creating and running a program 1153

C.3. 1 Create a new project 1153

CO NTENT S

C.3.2 Use the sld_lib_facilities. h header file 1153
C.3.3 Add a C++ source file to the project 1154
C.3.4 Enler your source code 1154
G.3.5 Build an executable program 1154
C.3.6 Execute the program 11 55
C.3.7 Save the program 1155

C.4 Later 1155

Appendix 0 Installing FlTK 1157

0 .1 Introduction 1158
0 .2 Downloading FLTK 1158
0 .3 Installing FLTK 1159
0 .4 Using FLTK in Visual Studio 1159
0 .5 Testingifit all worked 11 60

Appendix E GUl lmplementation 1161

E.l Callback implementation 1162
E.2 Widget im plementation 11 63
E.3 Window implementation 11 64
E.4 VeClouef 1166
E.5 An example: manipu lating Widgets 11 67

Glossary 1171
Bibliography 1 177
Index //81

Preface

"Damn the torpedoes !
Full speed ahead."

-Admiral Farragut

Programming is the an of expressing solutions to problems so that a computer
C;1.Il execute lhose solutions. Much of the effon in progranuning is spem fi nding
and refining solutions. Often, a problem is only full y understood through the
process of programming a solution for it.

111i5 book is for someone who has never progranullcd before but is willing
to work hard to learn. It helps you understand the principles and acquire the
practical skills of programmi ng using the C++ programming language. My aim
is for you to gain sufficient knowledge and experience to perform simple useful
programming tasks us ing the best up-to-date techniques . H ow long will that
take? As pari of a first-year university course, you can work through this book in
a semester (assuming that yOll have a workload of four courses of average diffi­
culty). If you work by yourself, don 't expect to spend less time than that (maybe
15 hours a week for 14 weeks).

111ree lllonths may seem a long time, but there's a lot to learn and you 'll be
\vriting your rlISI simple programs after about an hour. Also, all learning is grad­
ual: each chapter introduces new useful concepts and illustrates them with exam­
plcs inspired by real-world uscs. Your ability to express ideas in code - getling a
computer to do what you want it to do - gradually and steadily increases as you
go along. I never say, "Learn a month's worth of theory and then see if YOll can
use 11."

xxiii

u iv PREFA C E

Why would you wam to program? Our civilization runs on software. With­
out understanding software you are reduced to believing in "magic" and will be
locked alit of many of tile most interesting, profitable , and socially usefu l techni­
cal fie lds of work. When I talk about programming, I think of the whole spec­
trum of computer programs from personal computer applications with GUls
(graphical user interfaces), through engineering calculations and embedded sys­
tems control applications (such as digital cameras, cars, and cell phones), to text
manipulation applications as found in many humanities and business applica­
tions. Like mathematics, programming - when done well - is a valuable intellec­
tual exercise that sharpens ou r ability to think. However, thanks to feedback
from the computer, programming is more concrete than 1110St forms of math, and
therefore accessible to more people. It is a way to reach out and change the world
- ideally for the better. Finally, programming can be great fun.

Why C++? You can't learn to program without a programming language,
and C++ directly su pports the key concepts and techniques used in real-world
software. C++ is one of the most widely used programming languages, found in
an unsurpassed rallge of application areas. You fmd C++ applications every­
where from the bottom of the oceans to the surface of Mars. C++ is precisely
and comprehensively defmed by a nonproprietary international standard. Qlal­
ity and/or free implementations arc available on every kind of computer. Most of
the programming concepts that you will learn using C++ can be Llsed directly in
other languages, such as C, C#, Fortran, and J ava. i;"jnally, I simply like C++ as
a language for writing elegant and efficient code.

This is not the easiest book on beginning programming; it is not meant to
be. I just aim for it to be the easiest book from which you can learn the basics of
real-world progranuning. That's quite an ambitious goal because much modern
software relics on techniques considered advallced just a few years ago.

My fundamental assumption is limt you wam to write progralllS for the use
of others, and to do so responsibly, providing a decent level of system quality:
that is, I assume that YO LI want to achieve a level of professionalism. Conse­
quently, I chose the topics for this book to cover what is needed to get started
with real-world programming, not just what is easy to teach alld leam. If you
need a tcdmique to get basic work dOlle right, I describe it, demonstrate concepts
and language facilities needed to support the technique, provide exercises for it,
and expect you to work on those cxel·ciscs. If you JUSt want to understand toy
programs, you can get along with fa r less than I present. On the other hand, I
won't waste your time with material of marginal practical importance. If an ide:.
is explained here, it 's because you 'll almost certainly need it.

If your dcsire is to usc the work of others without understanding how lhinb'S
are done and withou t adding significantly to Ille code yourself, this book is not
for YO Li. If so, please consider whether yO Ll would be better served by another
book and another language. If that is approximately your view of programming.
please also consider from where yOli got that view and whethcr it in fact is ade­
quate for your needs. People often underestimate the complexity of program-

PR EFACE

ming as well as its value. I would hate for you lO acquire a dislike for program­
ming because of a mismatch between what you need and the part of the software
reality I describe. There arc many parts of the "information technology" world
that do not require knowledge of programming. 111is book is aimed to serve
those who do wallt to write or understand nontrivial programs.

Because of its Slnlcture and practical aims , this book can also be used as a
second book on programming for someone who ail'eady knows a bit of C++ or
ror someone who programs in another language and wants to learn C++. If you
lit into one of those categories, I refrain rrom guessing how long it will take YOll
to read this book, but I do encourage yO Li lO do many of the exercises. 'n lis will
help you to counteract tbe conmlOn problem or writing programs in older, famil ·
iar styles rather tlmn adopting newer techniques where these arc more appropri­
ate. If you have learned C++ in one of the more traditional ways, you'll lind
something suq>risi ng and useful before you reach Chapter 7. Unless your name
is StTOustrup, what I discuss here is not "you r father's C++."

Programming is learned by writing programs. In this, programming is similar
to other endeavors with a practical component. You cannot learn to swim, to play
a musical insnutnent, or to drive a ,,'W JUSt rrom reading a book - you must prac­
tice. Nor "'l.n you learn to program without reading and writing lots of code. This
book rocuses on code examples closely tied to explanatory text and diagrams. You
need those to understand the ideals, concepts, mld principles of programming and
to master the language constructs used to express them. 111at's essential, but by it­
selr, it will not give you the practical skills or progrmnming. For that, you need to

do the exercises and get used to the tools ror writing, compiling, and running pro­
grams. You need lO make your own mistakes and learn to correct them. 'nlere is
no substitute ror writing code. Besides, that's where the run is!

On the other hand, there is more to programming - much more - than rol­
lowing a rew rules and reading the manual. This book is emphatically not ro­
cused on "the syntax of C++." Understanding the fundamemal ideals, principles,
and techniques is the essence of a good programmer. Only well-designed code
has a chance of becoming part or a correct, reliable, and maintainable system.
Also, "the rundamentals" arc what last: they will still be essential arter today's
languages and tools have evolved or been replaced.

\<Vhat about computer science, sortware engineering, inrormation technol·
ogy, etc.? Is that all programming? Of course not! Programming is one or the
rundamental topics that underlie everything in computer·related fields, and it has
a natural place in a balanced course or computer science. I provide brief intro­
ductions \0 key concepts and techniques or algorithms, data structu res, user in­
terraces, data processing, and sortware engineering. However, this book is not a
substitute ror a thorough and balanced study of those topics.

Code can be beautirul as well as useful. TIlis book is written to help you sec
that, to understand what it memlS for code to be beautiful, and to help you to
master the principles and acquire the practical skills to create such code. Good
luck with programmingl

xxvi PREFACE

A note to students
Of the 1000+ fIrst-year studcnts we havc taught so far using drafts of this book at
Tcxas A&M Univcrsity, about 60% had programmcd bcfore and about 40% had
ncver seen a linc of code in their lives . Most succcedcd, so you can do it, too.

VOli don't have to read this book as part of a course. r assume that the book
will be widely used for self-study. However, whcther you work your way through
as part of a course or independcntly, try to work with others. Programming has
an - unfair - reputation as a lonely activity. Most people work belle .. and lealll
fastcr when thcy arc part of a group with a common aim. Learning together and
discussing problems with friends is not cheating! It is the most efficient - as well
as Illost pleasant - way of making progress. If nothing else, working with fri ends
forces you to articulate your ideas , which is just about thc most efficient way of
tcsting your understanding and making sure you remcmber. You don't actually
have to personally discover thc answer to evcry obscure language and program­
ming environment problem. However, please don't cheat yourself by not doing
the drills and a fair number of cxcrcises (even if no teacher forces YOll to do
them). Remcmber: programming is (among other thin~) a practical skill that
you need to practice to master. If you don't write code (do scveral exercises for
each chapter), reading this book will be a pointless theoretical exercise.

Most students - especially tllOughtful good studellts - face times whcn they
wonder whet.her tllCir hard work is worthwhile. When (not if) tills happens to you,
take a break, reread lhe preface, and look at Chapter I ("Computers, People, and
Progr:unming"') and Chapter 22 ("Ideals and History"). There, I tI)' to articulate
what I fInd exciting about programming and why I consider it a clucial tool for
making a positive contribution to the world. If you wondcr about Illy tcaching phi­
losophy and gcncral approach, have a look at Chapter 0 (,'Notes to the Reader") .

You might fmd the weight of this book wonying, but it should reassure you
that pan of the reason for the heft is that I prefer to repeat an explanation or add an
example ralher than have yOll scarch for the onc and only explanation. Tnc other
major part of the reason is that the second half of the book is reference material and
"additional material" prcsented for yOll to explore only if yOll are interestcd in
more information about a specific area of programming, such as cmbedded sys·
tems programming, text analysis, or numerical computation.

And please don't be too impatient. Learning any major ncw and valuable
skil.l takes lUne and is worth it

A note to teachers
No. This is not a traditional Computer Scicnce 101 course. It is a book about
how to construct working software. As such, it leaves out much of what a com­
pllter scicnce student is traditionally exposcd to rruring complctcness, state mao

PREFACE

chines, discrete math, C homsky grammars, etc.). Even hardware is ignored on
the assumption that students have used computers in various ways since kinder­
garten. This book docs not even try to mention most importam CS topics. It is
about programming (or more generally about how to develop software), and as
such it goes into more detail about fewer topics than many traditional courses. It
tries to do juSt one thing well, and computer science is not a one-course LOpic. U
this book/course is used as part of a computer science, computer engineering,
electrical engineering (many of our first students were EE majors), information
science, or whatever program, I expect it to be taught alongside other courses as
part o f a wcll-rounded imroduction.

Please read C hapter 0 ("Notes to the Reader") for an explanation of my
teaching philosophy, general approach, etc. Please try to convey those ideas to
your students along the way.

Support
111e book's support website, www.stro ustrup .comlProgramming. comains a va­
riety of materials supporting the leaching and leaming of programming using
this book. "111e material is likely to be improved with time, but for starters, you
can find:

Slides for lectures based on the book

An instructor's guide

Header fil es and implementations of libraries used in the book

Code for examples in the book

Solutions to selected exercises

Potentially useful links

Errata

Suggestions for im provements arc always welcome.

Acknowledgments
I'd especially like to thank my late colleague and co·teacher Lawrence "Pete" Pc·
tersen fo r encouraging me to tackle the task of teaching beginners long before I'd
otherwise have fclt comfortable doing that, and for supplying the practical teach·
illg experience to make the course succeed . Without him, the first version of the
course would have been a failure. We worked together on the first versions of the
course for whidl this book was designed and together taught it repeatedl y, leam­
ing from Ollr experiences, improving the course and the book. My usc of "we" in
this book initially meant "Pete aJld me."

xxyii

)(Xviii PREFACE

Thanks to the students, teaching assistants, and peer teachers of ENGR 11 2
at Texas A&M University who directly and indirectly helped us conSlnlct this
book, and to Walter Daugherity, who has also taught the course. Also thanks to
Damian Dcchev, Tracy Hammond , Ame Tolstrup Madsen, Gabriel Dos Reis,
Nicholas Strousmlp,j . C. van 'Winkel, Greg Versoonder, Ronnie Ward, and Lear
Zolman for conslnlctive comments on drarts of this hook. ' 1lanks [Q Mogens
Hansen for explaining about engine control software. l1lallks to AI A1l0, Stephen
Edwards, Brian Kernighan, and Daisy Nguyen for helping me hide away from
distractions to get writing done during the summers.

Thanks to the reviewers that Addison-Wesley found fo r me. l1leir comments,
mostly based on teaching either C++ or Computer Science 101 at the college
level, have been invaluable: Richard Enbody, David Gustafson, Ron McCarty,
and K. Narayanaswamy. Also tlmnks to my editor, Peter Gordon, for many usefu l
comments and (not least) for his patience. I'm very grateful to the production
team assembled by Addison-Wesley; they added much to the quality of the book:
j ulie Grady (proofreader), Chris Keane (compositor), Rob Mauhar (illustrator),
j ulie Nahil (production editor), and Barbara Wood (copy editor).

In addition to my own unsystematic code checking, Bashar Anabta\\~ , Yinan
Fan, and Yuriy Solodkyy checked all code fragments using Microsoft C++ 7. 1
(2003) and 8.0 (2005) and GGG 3.4.4.

I would also like to thank Brian Kemighan and Doug Mcilroy for sening a
very high standard for writing about programming, and Dennis Ritchie and Kristen
Nygaard for providing valuable lessons in practicallanguagc design.

•• _1-.

,-- 0

Notes to the Reader

"When the terrain disagrees with the map,
trust the terrain."

-Swiss army proverb

T his chapter is a grab bag of information; it aims to give you

an idea of what to expect from the rest of the book. Please

skim through it and read what you find illlcresling. A teacher

will find most parts inuncdiatcly usefuL If you are reading this

book without the benefit of a good teacher, plcase don't try to

read and u nderstand everyth ing in tlus chapter ; just look at "~111e

structure of this book n and the first pan o f the "A philosophy o f

teaching and Icaming" sections. You may want to retu rn and

reread this chapter o nce you feel comfortable writing and execut­

ing small programs.

1

1

2

0.1 The structure of this book

0.1.1 General approach
0.1.2 Drills, exercises, etc.
0.1.3 What comes afle r th is bookl

0.2 A philosophy of leaching and
learning
0.2.1 The orde r of topics
0.2.2 Programming and programming

language
0.2.3 Portability

CHAPTER 0 • NOTES TO THE READER

0.3 Programming and computer science

0.4 Creativity and problem sol1ling

0.5 Request for feedback

0.6 References

0.7 Biographies

0.1 The structure of this book
This book consists o f four pans and a collection of appendices:

/=!trl I, "171£ Basics," presems the fundamental concepts and techniques of
programming together with the C++ language and library facili ties
needed to get started writing code. 111is includes the type system, arith­
metic operations, control structures, elTor handling, and the design , im­
plementation, and use of fu nctions and user-defined types.

Part II, "Input and Output," describes how to get numeric and text data
from the keyboard and from fLies , and how to produce col"responding
output to the screen and to ftl cs. Then, it shows how to present numeric
data, text, and geometric shapes as graphical output, and how to gel
input into a program from a graphical user interface (CUI).

Part III, "Data and Algcnilh/1lJ,'" focuses on the C++ standard library's con­
tainers and algorithms framework (the 511." standard template library).
It shows how containers (such as veclor, lisl, and map) arc implemented
(using pointers, arrays, dynamic memory, exceptions, and templates)
and used. It also demonstrates the design and usc of standard library al­
gorithms (such as sari, find, and inne r_produ cl).

Pari nt; "BrQ(uiening lhe Viau," offers a perspective on programming
through a discussion o f ideals and history, through examples (such as
matrix computation, text manipulation, testing, and embedded systems
programming), and through a brief description of ule C language.

AppetuJi(1!J provide useful information that doesn't fit into a tutorial presen'
tauon, such as surveys of C++ language and standard library faci lities,
and descriptions of how to get started with an integrated development ell '
vironment (I DE) and a graphical user interface (CUI) library.

0.1 TH E STRUC TURE OF THIS BOOK

Unfortunately, the world of programming doesn' t really fall into four cleanly sep­
arated parts. ~nlercfore, the "parts" of this book provide only a coarse classi fica­
tion of topics. \'Ve consider it a useful classification (obviously, or we wouldn 't
have used it), but reality has a way of escaping neat classifications. For example,
we need to lise input operations far sooner than we c.an give a dlOroligh explana­
tion of C++ standard 1/0 streams (input/output streams). Where the set of topics
needed to preselll an idea conflicts widl the overall classification, we explain the
minimum needed for a good presentation, rather than just referring to the com­
plete explanation elsewhere. Rigid classifications work much better for manuals
than for tutorials.

The order of topics is determined by programming tedmiques. rather than
programming language fealllres; see §O.2. For a presentation organized around
language features, see Appendi.x A.

To case review and to help you if YOli miss a key point during a first reading
where you have yet to discover which kind of information is crucial , we place
three kinds of "alert markers" in the margin:

Blue: concepts and techniques (this paragraph is an example of that)

Green: advice

Red: w,u·ning

0.1 .1 General approach
In this book, we address you directly. 'Tllat is simpler and dearer than the con­
ventional "professional" indirect form of address, as found in most scientific pa­
pers. By "you" we mean "you , the reader," and by "we" we refer either to
"ourselves, the author and teachers," or to you and us working together through
a problem, as we m.ight have done had we been in the same room.

'11is book is designed to be read chapter by chapter from the beginning to
the end. Often, you'll want to go baek to look at something a second or a third
time. In fact , that's the only sensible approach , as you'll always dash past some
details that you don't yet sec the point in. In such cases, you'll eventually go back
again. However, despite the index and the cross-references, this is not a book that
you can open on any page and start reading with any expectation of success.
Each section and each chapter assume understanding of what came before.

Each chapter is a reasonably self-contained unit, meant to be read in "one sit­
ting" nogically, if not always feasible on a student's tight schedule). "nmt's one
major criterion for separating the text into chapters. Other criteria include that a
chapter is a suitable unit for drills and exercises and that each dlapter presents
some specific concept, idea, or technique. '11is plurality of criteria has left a few
chapters uIlcomfortably long, so please don' t takc Min onc sitting" tOO literally. In
particular, once you have thought about the review questions, done the drill, and

3

4 CHAPTER 0 • NOTES TO THE READER

worked on a few exercises, you'll often [md that you have to go back to reread a
few sections and that several days have gOlle by. We have clustered the chapters
imo "parts" focused on a major lopic. such as input/ampul. These parts make
good units of review.

Common praise for a textbook is " It answered all my questions just as I
thought of them!" l11at's an ideal for minor technical questions, and early read­
ers have observed the phenomenon with this book. However, thm canllot be the
whole ideal. We raise questions that a novice would probably not think o f. We
aim to ask and answer questions that you need to cons ider to write quality soft­
ware for the use of Olhcrs. Lcaming to ask the right (often hard) questions is an
essential part of lcaming to think as a prognunmer. Asking only the easy and ob­
vious questions would make you feel good , but it wouldn't help make you a pro­
grammer.

\OVe try to respect your intelligence and to be considerate about your time. In
our presentation, we aim for professionalism rather than cuteness, and we'd
ra ther understate a poim than hype it. We try not to exaggerate the importance
of a programming technique or a language feature, but please don' t underesti­
mate a simple statement like "111is is often useful." If we quie tly emphasite that
something is important, we mean that you 'll sooner or la ter waste days if you
don't master it. Our usc o f humor is more limited than we would have preferred ,
but experience shows that people's ideas of what is funny differ dramatic..1.lly and
that a fai led a ttempt at humor c..1n be confusing.

\OVe do not pretend that our ideas or the tools offered arc perfect. No tool, li­
brary, language, or technique is " the sollllion" to all of the many challenges fac­
ing a progranuner. At best, it can help you to develop and express your solution.
We try hard to avoid "white lies"; that is, we refrain from oversimplified explana­
tions that arc clear and easy to understand, but not true in the context of real lan­
gu ages and real problems. On the other hand. this book is not a reference ; for
more precise and complete descriptions of C++, see BjaOle Stroustrup, 'flu! C++
Programmillg ul1lguage, Spedal Edition (Addison-Wesley, 2000), and the ISO C++
standard .

0.1.2 Drills, exercises, etc.
Programming is not just an intellectual activity, so writing programs is necessary
to master progranuning skills. We provide two levels of programming practice:

Drilb: A drill is a very s imple exercise devised to develop practical, al­
mOst mechanical skills . A drill usually consists o f a sequence of modifica­
tions of a single program. You should do evely dri ll. A drill is not asking
for deep understanding, cleverness, o r initiative. We consider the d rills
part of the basic fa bric of the book. If you haven't done the drills, you
have not "done" the book.

0.1 THE STRUCTU RE Of THIS BOOK

Exercise;: Some exercises arc trivial and others are very hard, bUl most
are intended to leave some scope for initiative and imagination. If you
arc serious, you'll do quite a few exercises. At least do enough to k.now
which arc difficult for you. Then do a few more of those. TIlat's how
you 'Jlleam the most. Tbe exercises are meant to be manageable without
exceptional cleverness, rather than to be tricky puzzles. However, we
hope that we have provided exercises that arc hard enough to challenge
anybody and enough exercises to exhaust even the best student's avail­
able lime. We do not expect you to do them all, but fee l free to try.

In addition, we recommend that you (every student) take part in a small project
(and more if time allows for it). A project is intended to produce a complete useful
prq,rr.un . Ideally, a project is done by a small group of people (e.g., three people)
working together for about a month while working through the chapters in Part
Ill. Most people fi nd the projects the most fun and what ties everything together.

Some people like to put the book aside and try some examples before read­
ing to lhe end of a chapter; others prefer to read a11ead to the end before trying to
get code to run. To support readers with the fanner preference, we provide sim­
ple suggestions for practical work labeled "Try this:" at natural breaks in the
text. A Try this is generally in the nature of a drill focused narrowly on the topic
that precedes it. If you pass a Try this without trying - maybe because you are
not near a computer or you find the text riveting - do return to it when you do
the chapter dri ll ; a Try this either complements the chapter drill or is a part of it.

At the end of each chapter you'll find a set of review questions. They are in­
tended to point you to the key ideas explained in the chapter. One way to look at
the review questions is as a complement to the exercises: the exercises focus on the
practical aspects of programming, whereas the review questions try to help YOli ar­
ticulate the ideas and concepts. In thaI, they resemble go<xI interview qucstions.

TIle "Terms" section at the end of each chapter presellls the basic vocabulary
of programming and of C++. If you want to understand what people say about
programming topics and to articu late your own ideas, you should know what
each means.

Learning involves repetition. Our ideal is to make every important point at
least twice and to reinforce it with exercises.

0.1.3 What comes after this book?
At the end of Lhis book, will you be an expert at programming and at C++? Of
course not! \Vhcn done well, progrrunming is a subtle, deep, and highly sk.illed
an building on a variety of technical skills. You should no more expect to be an
expert at programming in four months than you should expect to be an expert in
biology, in math, in a natural language (such as Chinese, English, or Danish), or
at playing the violin in four months - or in half a year, or a year. What you

5

• C HAPTER 0 • NOTES TO THE READER

should hope for, and what you can expect if you approach this book seriously. is
to have a really good start that allows you to \vntc relatively simple useful pro­
grams, to be able to read more complex programs, and to have a good concep­
tual and practical background for further work.

TIle best follow-up to this initial COUTse is to work on a real project develop­
ing code to be used by someone elsc. Mlcr that, or (even better) in parallel with a
real project, read either a professional-level gencral tcxtbook (such as Stroustrup,
The C++ Programming Langutl§), a more specialized book relating to the needs of
your project (such as Q! for G UI , or ACE for distributed programming), or a
textbook focusing on a particular aspect of C++ (such as Koenig and Moo, Ac«/­
(rate(J C++ j Sutter's £y.teptiQlIal C++; or Gamma et ai. , Design Itl/lems). For com­
plete references, see §O.6 or the Bibliography section at the back of me book.

Evelltl lally, YOll should learn anomcr progrnmming language. We don't con­
sider it poss ible to be a professional in the realm of software - even if you arc not
primarily a programmer - without knowing more than one language.

0.2 A philosophy of teaching and learning
What arc we trying to help you leam? And how arc we approaching the process
of leaching? We try to present the minimal concepts, techniques, and tools for
you to do effective practical programs, including

Program organization

Debugging and testing

C lass design

Computation

Function and algorithm design

Graphics (two-dimensional only)

Graphical user interfaces (G U ls)

Text manipulation

Regular expression matching

Files and stream input and output (l /O)

Memory management

Scientifid numericaVengineering c."llcularions

Design and programming ideals

TIle C++ standard library

Soft\vare development strategies

C-Ianguage programming techniques

0.2 A PHILOSOPHY OF TEACH ING AND LEARNING

lvVorking our way through these topics, we cover the programming techniques
called proceduraJ programming (as with the C programming language), data ab­
slraction, object-orientcd programming, and generic prob'Tamming. The main
topic of this book is jJrogralllwillg, that is, the ideals, techniques, and tools of ex­
pressing ideas in code. -nle C++ programming I.mguage is our main tool, so we
describe many of C++'s facilities in some detail. But please remember that C++
is just a tool, rather lhan the main topic of lhis book. "This is "programming using
C++ ,tt nOt. "C++ wilh a bit of programming theory."

Each topic we address serves at least twO purposes: it presents a technique,
concept, or principle and also a practical language or library feature. For exam·
pic, we usc the interface to a two-dimensional graphics system to illustrate the use
of classes and inheritance. 111is allows us to be economical with space (and your
time) and also to emphasize that programming is more than simply slinging code
together to get a result as quickly as possible. TIle C++ standard library is a
major source of such "double duty" examples - many even do triple duty. For
example, we introduce lhe standard library vector, use it LO illustrate widely use­
ful design techniques, and show many of the programming techniques used to
implement it.. One of our aims is to show you how major library facilities arc un­
plemellted and how they map to hardware. We insist that craftSmen must under­
stand their lools, not just consider them "magical."

Some topics will be of greater uuerest to some programmers than to others.
However, we encourage you nOt. to prejudge your needs (how would you know
what you' ll need in the future?) and at least look at every chapter. If you read this
book as part of a course, your teacher will gu ide your selection.

We characterize our approach as "depth-first." It is also "concrete- first" and
"concept-based." First, we quickly (well, relatively quickly, Chapters 1- 11) assem­
ble a set of skills needed for writillg small practical programs. In doing so, we
present a lot of tools and techniques in minimal detail. We focus on simple con­
crete code examples because people grasp the concrete faster lhan the abstract.
"nlat 's simply the way mOSl humans learn. At lhis initial smge, you should nOl
expect to understand every Iiltle detail. In particular, you' ll rmd that rrying some­
thing slightly different from what just worked can have "mysterious" effeclS. Do
lry, though! And please do the drills and exercises we provide. Just remember
that early on you JUSt don 't have the conceptS and skills to accllrately estimate
what's simple and what 's complicated; expect surprises and leam from them.

We move fast in this initial phase - we want to get you to the point where
you can write imeresting programs as fast as possible. Someone will argue, "We
mliSl move slowly and carefully; we must walk before we can run!" BUl have you
ever watclled a baby leaming to walk? Babies really do run by themselves before
they leam the finer skills of slow, controlled walking. Similarly, you will dash
ahead, occasionally stumbling, to get a feel of progranuuing before slowing down
to gain the necessary finer conlTOl and understanding. You mllst run before you
can walk!

7

• CHAPTER 0 • NOTES TO THE READER

Il is essential that you don'l gel stuck in an auempt to leam "everything"
about some language detail or technique. Fo r example, YOLI could memorize all of
C++'s built-in types and all the rules for their usc. Of course you could , and
doing so might make you feel knowledgeable. However, it would not make you a
programmer. Skipping details will gel you "bumcd" occasionally for lack of
knowledge, but it is the fastest way to gain the perspective needed to write good
programs. Note that our approach is csscntiaJly lhe o ne lIsed by children learning
their native language and also the most eJTective approach lIsed to lcach foreign
languages. We encourage you to seck help from lcachers, friends, colleagues, in­
stmctors, Mentors, etc. on the inevitable occas ions when you are stuck. Be as­
sured that nothing in these early chapters is fundamentally difficult. However,
much will be unfamiliar and might therefore feci difficult a t fi rst.

L-uer, we build a ll the initial skills to broaden your base of knowledge and
skills. We usc examples and exercises to sotidify your understanding, an d to pro­
vide a conceptual base for programming_

We place a heavy emphasis on ideals and reasons_ You need ideals to guide
you when you look for practical solutions - to know when a solution is good and
principled _ You need to understand the reasons behind those ideals to under­
stand why they should be your ideals, why aiming for them will help you and the
users o f your code. Nobody should be satisfied with "because that 's the way it is "
as an explanation. More importantly, an understanding of ideals and reasons al­
lows you to generalize from what you know to new situations and to combine
ideas and tools in novel ways to address new problems. Knowing "why" is an es­
sential pan o f acquiring programming skills . Converscly,jusl memorizing lots of
poorly understood rules and language facilities is limiting, a source of errors, and
a massive waste of time. We consider your time precious and try not to waste it.

Many C++ language·technical details are banished to appendices and manu­
als, where you can look them up when needed . We assume that you have the ini­
tiative to search out information when needed . Use the index and the table of
contents. Don 't forget the online help facil ities of your compiler, and the web. Re­
member, though, to consider every web resource highly suspect lIntil yOll have
reason to believe better of it. M any an authoritative-looking v .. ·ebsite is put up by
a progranuuing novice or somcone with something to sell _ Others arc simply out­
dated. We provide a collection of links and information on our suppo rt website:
www.strouslrllp.comIProgram mi ng.

Please don't be too impatiem for "realistic" examples. Our ideal example is
the sho rtest and simplest code that dircctly illustrates a language facility, a can­
ccpt, o r a technique. M ost real-world examples are far messier than o urs, yet do
not consist of more than a combination of what we demonstratc. Successrui com­
mercial programs with hundreds of thousands of lines of code are based on tech­
niques that we illustrate in a dozen 50-line programs. -n IC fastest way to
understand real-world code is through a good understanding of Ule fundamcntals.

0 ,2 A PHILOSOPHY OF TEACHING AND LEARNING

On the other hand, we do not use "cute examples involving cuddly animals"
to illustrate our points. We assume that you aim to write rea1 programs to be
used by real people, so every example that is not presented as language-technical
is taken from a real-world usc. Our basic tone is that of professionals addressing
(future) professionals.

0.2.1 The order of topics
"111ere arc many ways to teach people how to program. Clearly, we don't sub­
scribe to the popular "the way I leamed to program is the best way to leam" the­
ories. To case leaming, we carlyon present topics that would have been
considered advanced only a few years ago. Our ideal is for the topics we present
to be driven by problems you meet as you learn to program, to flow smoothly
from topic to topic as you increase your understanding and practical skills. The
m~or flow of this book is more like a story than a dictionary or a hierarchical
order.

It is impossible to learn all the principles, techniques, and language facilities
needed to write a program at once. Consequently, we have to choose a subset of
principles, techniques, and features to start with. More gellerally, a textbook or a
course must lead studellts tllTough a series of subsets. We consider it our respon­
sibility to select topics and to provide emphasis. We can't just present everything,
so we must choose; what we leave out is at least as important as what we leave in
- at each stage of the joumey.

For contrast, it may be useful for you to sec a JiSt of (severely abbreviated)
characterizations of approaches tlIat we decided not to take:

"CjirJ/": '11is approach to learning C++ is wasteful of students' time
and leads to poor programming practices by forcing sLUdents to ap­
proach problems with fewer facilities, techniques, and libraries than nec­
essary. C++ provides stronger type checking than C, a standard library
with bener support for novices, and exceptions for error handling.

&IIQ111-IIP: TIlis approach distracts from lcaming good and effective pro­
gramming practices. By forcing students to solve problems with insuffi­
cient suppon from the language and libraries, it promotes poor and
wasteful programming practices.

"!fJOIi trese/It J01IIelhillg, Jail mllJl pramt itfoiiy": This approach implies a
bottom-up approach (by drilling deeper and deeper into every topic
touched). It bores novices \vith technical details they have no intercst in
and quite likely will not need for years to come. Oncc yOll can program,
you em look up technical details in a manual. Manuals are good at that,
whereas they are awful for initialleaming of concepts.

,

I. CHAPTER 0 • NOTES TO THE READER

'lOp..Juwn: This approach, working from first principles toward details,
lends 10 distract readers from the practical aspects of programming and
force them to concentrate on high-level concepts before they have any
chance of appreciating their importance. For example, yOll simply can't
appreciate proper software development principles before you have
learned how easy it is to make a mistake in a program and how hard it
can be to correct it.

''AbJlracljinJ '': Focusing on general principles and protecting the student
from nasty real-world constraints can lead to a disdain for real-world
problems, languages, tools, and hardware constraints. Often, this ap­
proach is su pported by Mtcaching languages" that cannot be used later
and (deliberately) insulate students from hardware and system concerns .

&yhuare engineering principtesjirJI: TIlis approach and the abstract-first ap­
proach tend to share the problems of the top-down approach: without
concrete examples and practical experience, you simply cannot appreci­
ate the value of abstraction and proper soft\'vare devcJopmellt practices .

"Oiject-orU:tJtelifiom du.y one": Object-oriented programming is one of the
best ways of organ.izing code and progranmung efforts, but it is not thc
only effective way. Ll particular, we fed that a grounding in the basics of
types and algorithmic code is a prerequisite for appreciation of the design
of classes and class hierarchies. We do use user-dcfined typeS (what some
people would call "objects") from day one, but we don't show how to de­
sign a class until Chapter 6 and don't show a class hierarchy ulllil Chap­
ter 12.

'111s1 beli£ue ill 11WgiC": Ths approadl relics 011 demonstrations of power­
ful tools and techniques withom introducing the novice to the underly­
ing techniques and facilities. TIus leaves the student guessing - and
usually guessing wrong - about why things arc the way they are, what it
costs to use them, and where they can be reasonably applied. Illis can
lead to ovcrrigid following of familiar patterns of work and become a
barrier to further [earning.

Naturally, we do not claim that these other approaclles arc never useful. Ln fact ,
we use several of these for specific subtopics where their strengths c.."lJl be appre­
ciated. However, as general approaches to leanung programming aimed at real­
world usc, we reject them and apply our mternative: concrete-first and depth-first
with an emphasis on concepts and techniques.

0.2.2 Programming and programming language
We teach programming first and treat our chosen programming language as sec­
ondary, as a tool. Our general approach can be used with any general-pUl]>Ose

0, 2 A PHILOS OPHY OF TEACHING AND LEARNING

programming language. Our primary aim is to help you learn general concepts,
principles , and techniques. However, those cannot be appreciated in isolation.
For example, details of syntax, the kinds of ideas that can be directly expressed ,
and tool support differ from programming language to programming language.
However, many or the fundamental techniques for producing bug-free code, such
as writing logically simple code (Chapters 5 and 6), establishing invariants
(§9.4.3), and separating interfaces from implementation details (§9.7 and
§14.1 -2), v<uy little from programming language to programmillg language.

Progrdmming and design techniques must be learned using a programming
language. Design, code organization, and debugging are not skills you can ac­
quire in the abstract. You need to write code in some programming language and
gain practical experience with that. This implies that you must learn the basics of
a progranuning language. We say "the basics" because the days when you could
learn all of a major industrial language in a rew weeks are gone for good . l11e
parts of C++ we present were chosen as the subset that most directly supports
t.he production of good code. Also, we present C++ fcarures that you can't avoid
encoumering either because they are necessary ror logical completeness or are
common in the C++ community.

0.2.3 Portability
It is common to write C++ to lUll on a variety of machines. Major C++ applica­
tions run on machines we haven't ever heard on We consider portability and t.he use
or a variety or machine archit.ectures and operating systems most important. Essen­
tially every example in this book is not only ISO Standard C++, but also portable.
Unless specifically stated, the code we present should work on evel)' C++ imple­
mentation and has been tested on several machines and operating systems.

The details or h("o\' to compile, link, and run a C++ program differ rrom system
to system. It would be tedious to mention the details or evcl)' system and evel)'
compiler each timc we need t.o refer to an implementation issue. In Appendix E, we
give the most basic infomlation about getting started using VISual Studio and
Microsort C++ on a Wmdows machine.

U you have trouble wit.h one or the popular, but ralher elaborate, IDEs (inte­
grated development environments), we suggest you try working rrom the com­
mand line; it 's surprisingly simple. For example, here is the rull set or commands
needed to compile, link, and execute a simple program consisting or two source
files, my_filel .cpp and my_file2.cpp, using t.he GNU C++ compiler, g++, on a
Unix or Linux system:

g++ -0 my_program my_file1.cpp my_fi le2.cpp
my_program

Yes, that really is all it takes.

11

12 CHA PTER 0 • NOTES TO THE READ ER

0.3 Programming and computer science
Is programming all that there is to compuler science? Of course not! lbc only
reason we raise this question is that people have been known to be confused
about this. We LOuch upon major topics from computer science, such as alga­
riuuns and data structures, but our aim is to teach programming: the design and
implementation of programs. That is bom more and less than most accepted no­
lions of compuler science:

M (JTf:, because programming involves many lcchniC<ll skills that arc not
usually considered pan of any science

Ull, because we do nm systematically present the foundation for the
pans of computer science we use

TIle aim of this book is to be pan of a course in computer science (if becoming a
computer scientist is your aim), to be me foundation for the first of many courses
in software construction and maimenance (if your aim is to become a program­
mer or a software engineer), and in general to be pan of a greater whole.

We rely on computer science throughout and we emphasize principles, but
we teach programming as a practical skill based on theory and experience, rather
than as a science.

0.4 Creativity and problem solving
TIle primary aim of this book is to help you to express your ideas in code, not to
leach you how to get those ideas. Along the way. we give many examples of how
we can address a problem, usually through analysis o f a problem followed by
gradual refmement of a solution. We consider programming itself a form of prob­
lem solving: only through complete understanding of a problem and its solution
can you express a correct program for it, and only through constructing and test­
ing a program can you be certain that your understand ing is complete. lllllS,
progranuuing is inherently part of an effort to gain understanding. However, we
aim to demonstrate this through examples, rather than through "preaching" or
presentation of detailed prescriptions for problem solving.

0.5 Request for feedback
We don 't think mat the perfect textbook can exist; the needs of individuals differ
too much for that. However, we'd like to make this book and its supporting ma­
terials as good as we " ... n make them. For that, we need feedback ; a good text­
book cannot be written in isolation from its readers. Please send us reports on

0.6 REFERENCES

errors, typos, unclear text, missing explanations, etc. We'd also appreciate sug­
gestions for better exercises, better examples, and topics to add, topics to delete,
etc. Constructive comments will help future readers and we'll post errata on our
support website: www.slrouslrup.com/Programming.

0.6 References
Along with listing the publications mentioned in this chapter, this section also in­
cludes publications you might find helpful.

Alistem, Matthew H. Qmeric ltogrammillg alld Ihe STL: Usillg alld £>:Inu./ing the C++
Sialldard 'Template Library •. Addison-Wesley, 1999. ISBN 0201309564.

Alistem, Matthew H. (editor). "Technical Report on C++ Standard Library Ex­
tensions." ISO/IEC Pffi"'R 19768.

Blanchette, j asmin, and Mark Summerfield. C++ CUI Programmillg willt Q!, 4.
Prentice Hall, 2006. ISBN 013 1872493.

Gamma, Erich, Richard Helm, Ralph j ohnson, and john M. Vlissides. Desigll
Hi/lents: ElemetllJ qf&lJSiwle ObjecJ-Oritmled &fiware. Addison-Wesley, 1994. ISBN
0201633612.

Goldthwaite, Lois (editor). "'Technical Report on C++ Performance." ISO/ IEC
PDTR 180 15.

Koenig, Andrew (editor). TIlL C++ Slmu/ard. ISO/IEC 14882:2002. Wuey, 2003.
ISBN 0470846747.

Koenig, Andrew, and Barbara Moo. Aaelerated C++: Pnu:ticaJ ProgrrUlllllillg by £>:fJlllpl£.
Addison-Wesley, 2000. ISBN 020170353X.

Langer, Angelika, and Klaus Kreft. Siantlllrd C++ IOSIrea1ll.J amI LomleJ: AdlXl1lu d
Programmer; Guiil£ antI Rifm llu . Addison-Wesley, 2000. ISBN 0201 183951.

Meyers, Scott./ijfoctive STL: 50 Specific unys 10 Improve wur Use qflhe Simu/mr/ Tem­
p/ale Library. Addison-Wesley, 2001. ISBN 020 1749625.

Meyers, SCOII . /ijfictive C++: 55 Specf!ic I#lys 10 im/Jrove lOur Programs alld Designs
(3nl Edilioll). Addison-Wesley, 2005. ISBN 0321334876.

Schmidt, Douglas C. , and Stephen D. H uston. C++ Nctwork Programming, Vo/ume
1: Maslerillg Complexity wilh ACE and /hI/ems. Addison-Wesley, 2002. ISBN
0201604647.

Schmidt, Douglas C., and Stephen D. H uston. C++ Network ltogrammillg, Volume
2: Syslemalic ReuJe wilh ACE alld FramroJOriu. Addison-Wesley, 2003. ISBN
020 1795256.

StrouStrup, Bjarne. The Design alld Evoluliall qfC++. Addison-Wesley, 1994. ISBN
020 1543303.

StrOllstrup, Bjarne. "Learning Standard C++ as a New Language." C/C++ U;ers
JounUlI, May 1999.

13

14 CHAPTER 0 • NOTES TO THE READE R

StrOuslrup, Bjarnc. 'The C++ Programmi1lg Language (Special £iii/ion). Addison­
Wesley, 2000. ISBN 0201700735.

Stroustrup, Bjarne. "C and C++: Siblings"; "C and C++: A Case for Compati­
bility" ; and "C and C++: Case Studies in Compatibility." CIC++ UJerl JOIln/a/,
July, Aug. , Sept. 2002.

Sutler, Herb. EYceptumai C++: 47 Engineering Puuks, Programming Problems, mit/ &/11-
(iom. Addison-Wesley, 2000. ISBN 0201615622.

A morc comprehensive list o f references can be found in the Bibliography section
at lhe back of the book.

0.7 Biographies
You might reasonably ask, "V\'ho arc these guys who want to teach me how to
program?" So here is some biographical infomlation. I, Bjarne Stroustrup, wrote
this book, and together with La\\lTcncc "Pete" Petersen, I designed and taught the
university-level beginner's (first-year) course that was developed concurrently
with the book, using drafts of the book.

Bjarne Stroustrup
I'm the designer and original implementcr of the
C++ programming language. I have used the lan­
guage, and many other programming languagcs,
for a wide variety of programming tasks ovcr the
last 30 years or so. I j ust love elcgant and efficient
code used in challenging applications, such as
robo t control, graphics, games , text analysis, and
networking. I have taught design, programming,
and C++ to people o f essentially all abilities and
interests. I'm a founding member o f the ISO stan­
dards commiuce for C++ where , serve as the

chair of the working group for language evollllion .

This is my first introductory book. My Olher books, such as -me C++ ft<r
grammillg Ltmgrwge and '(II(! DeJi~,'71 alld Eoo/litioll 0/ C++, were written for experi­
enced progranullers.

I was bo rn into a blue-collar (working-class) family in rhus, Denmark, and
got my master's degree in mathematics with computer science in my hometown
university. My Ph.D. in computer science is from Cambridge University, Eng­
land. I worked for AT&T for about 25 years, first in the famous Computer Sci­
ence Research Center of Dell Labs - where Unix, C , C++, and so much else
were invented - and later in AT &T L..'lbs-Research.

"m a member of the U.S. National Academy of Engineering, a Fellow of the
ACM, an IEEE Fellow, a Bell Laboratories Fellow, and an 1\"l"'&T Fellow. As the

0.7 BIOGRAPHIES

first computer scientist ever, I received the 2005 William Procter Prize for Scien­
tific Achievement from Sigma Xi (the scientific research society).

I do have a life outside work. I'm married and have twO children, one a med·
ical doctor and one a Ph.D. student. I read a lot (including history, science fiction,
crime, and current affairs) and like most kinds of music (including classical, rock,
blues, alld country). Good food with friends is an essential part of life, and I
enjoy visiting interesting places and people, all over the world. To be able to
e l~oy the good food, I nlll.

For more informa tion, see my home pages: w\'Vvv.researeh.att.com/- bs and
www.cs.tall1u .edu/people/facultylbs. In particular, there you can find out how to
pronounce my name.

l awrence "Pete" Petersen
In late 2006, Pete introduced himself as follows: "I
am a teacher. For almost 20 years, I have taught
programming languages at Texas A&'M. I have
been selected by slUdents for Teaching Excellence
Awards five times and in 1996 received the Distin­
guished Teaching Award from the Alumni Associ­
auon for the College of Engineeling. I am a
Fellow of the Wakonse Program for Teaching Ex­
cellence and a Fellow of the Academy for Educa­
tor Development.

As the son of an army officer, r was raised on
the move. After compleung a degree in philosophy at the University of Washing­
ton, I served ill the anny fo r 22 years as a l<icld Artillery Officer and as a Research
Analyst for O penllional Tesung_ I taught at the .. icld Artillery Officer's Advanced
Course at Fort Sill, OkJahoma, from 1971 to 1973. In 1979 I helped organize a
' lest Officer's Training Course and taught it as lead instmctor at nine different lo­
cations across the United States from 1978 to 198 1 and from 1985 to 1989.

In 199 1 I formed a small software company that produced management soft ­
ware for university departments until 1999. My interests are in teaching, design.­
ing. and programming software that real people can use. I completed master's
degrees in industrial engineering at Georgia 1ech and in education curriculum
and instruction at Texas A&M. I also completed a master's program ill micro­
computers from NTS. My Ph.D. is in information and operations management
from Texas A&M.

My wife , Barb.ml, and I live in Bryan , 1exas. We like to travel, garden, and
entertain; and we spend as much time as we can with our sons and their families,
and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas,
and Jordan."

Sadly, Pete died of lung cancer in 2007. Without him, the course would never
have succeeded.

15

" (HAPTER 0 • NOTES TO THE READER

Postscript

Most chapters provide a short "postscript" trying to give some perspective on ,he
infannation prescllIcd in the chapter. We do t.hat in lhe realization that the infor­
mation can be - and often is - daunting and will only be fully comprehended
after doing exercises, reading further chapters (which apply the ideas of the chap­
ter), and a later review. Don't panic. Relax ; this is natural and expected. You
won' t become an expert in a day, but you can become a reasonably competent
programmer as you work your way through the book. On the way, you'll en­
COlinlef much infannalion, many examples, and many techniques that lots of
programmers have found stimulating and fun.

Computers, People, and
Programming

"Specialization is for insects."

-R. A. Heinlein

I n lhis d lapter, we present some of the lhings that we think

make progranuning important, interes ting, and fun . We also

present a few fundamental ideas and ideals. We hope to debunk

a couple of popular myths about progranuning and program­

mers. This is a chapter to skim for now and to return to later

when you arc struggling with some progranuning problem and

wondering if it's all worth it.

17

18

1.1 Introduction

1.2 Software

1.3 People

C HAPTER 1 • C OMP U TERS , PEOPL E, ANO PROGRAMMI N G

1.4 Computer science

1.5 Computers are everywhere
1.5.1 Screens and no screens
1.5.2 Shipping
1.5.3 Telecommunications
1.5.4 Medicine
1.5.5 Information
1.5.6 Ii vertical view
1.5.7 SowhaU

1.6 Ideals for programmers

1.1 Introduction
Like most learning, learning how to program is a chicken and egg problem: We
want to gel started, but we also want to know why what we arc about to learn
matters . We want to learn a practical skill, but also make sure it is not just a pass·
ing fad. We want to know that we are not going to waste our time, but don' t
want to be bored by still more hype and moralizing. For now, just read as much
of this chapter as seems interesting and come back later when you feci the need
to refresh your memory of why the technical details matter outside the class­
room.

TIlis chapter is a personal statement of what we find interesting and impor­
tant about progranuning. It explains what motivates liS to keep going in tltis field
after decades . This is a chapter to read to get an idea of possible ultimate goals
and an idea of what kind of person a programmer might be. A beginner's techni­
cal book inevitably contains much pretty basic stuff. In this chapter, we lift our
eyes from the tcchnicaJ details and consider the big picture: \-Vhy is progr,unming
a worthwhile activity? What is the role of programming in our civilization?
Wherc can a programmer make contributions to be proud of? Whcre docs pro­
gramming fit into the greater world of software development, deployment, and
maintenance? When people talk about "computer science," "software engineer­
ing," "information technology," etc. , where does prograuUlling fit into the pic­
ture? What does a programmer do? What skills docs a good progranuner have?

To a student, the most urgent reason for understanding an idea, a technique,
or a chapter may be to pass a test with a good grade - but there has to be more
to leanung than that! To someone working i.n the software industry, the most ur­
gent reason for understanding an idea, a technique, or a chapter may bc to find

1.2 SOFTWAR E

something thm can help with the current project and Lhat will nOt annoy the boss
who controls Lhe next paycheck, promotions, and firings - but there has to be
more to learning Lhan that! We work best when we feci that our work in some
small way makes the world a beuer place for people to live in. For tasks that we
perform over a period of years (the "things" thaI. professions and careers arc
made of) , ideals and more abstract ideas are en _cia!.

Our civilization lUllS on software. Improving software and finding new L1ses
for software are twO of the ways an individual can help improve the lives of
many. Programming plays an essemial role in Lhat.

1.2 Software
Cood software is invisible. You "m 't sec it, feci it, weigh it, or knock on it. Soflwan
is a collection of programs running on some computer. Sometimes, we can see
the computer. Often, we can see only something that contains the computer, such
as a telephone, a camera, a bread maker, a car, or a wind turbine. We can see
what that software docs. We can be annoyed or hurt if it doesn't do what iL is
supposed to do. We can be annoyed or hurt if what it is supposed to do doesn' t
suit our needs.

How many computers arc Lhere in the world? We don't know; billions at
least. 111ere may be more computers in the world than people. A 2004 estimate
from rru (International "le leconUllUnication Union, a U N agency) lists 772 mil­
lion PCs and most computers afe not PCs.

How man)' computers do you (more or less direclly) use every da)'? 111erc
arc more than 30 computers in my car, twO ill m)' cell phone, one in my MP3
player, and one in m)' camera. 111en there is my laptop (on which the page you
arc reading is being written) ruld my desktop machine. 111e air-conditioning con­
troller that keeps the summer heat and humidit), at bay is a simple computer.
"111ere is one controlling the computer science department 's clevaLQr. If you usc a
modern television, there will be at least a ile computer in there somewhere. A bit
of web surfmg gets),Oll into direCL comact with dozens - possibly hundreds - of
servers through a telecommunications system consisting of many thousands of
computers - telephone switches, routers, ruld so 011 .

No, I do not drive around with 30 laptops on the backseat of my car! ~nle
point is that most computers do not look like the popular image of a computer
(with a screen, a keyboard, a mOllse, etc.) ; they are small "parts" embedded iJl
the kind of equipment we usc. So, that caf has nothing that looks like a computer,
not even a screen to display maps and driving directions (though such gadgets
arc popular in other cars). However, its engine contai.ns quite a few computers,
doing things like fuel iI~ecLion control and temperature monitoring. 111e power­
assisted steering involves at least one computer, the radio and the securit), s),stem

19

CHAPTER 1 • COMP UTERS, PEOPLE, AND PROGRAMMIN G

contain some, and we suspect that even the open/close controls of the windows
are computer controlled. Newer models even have computers that continuously
monnor ure pressure.

How many computers do you depend on for what you do during a day? You
eat; if you live in a modern city, gelting the food to you is a major effort requiring
minor miracles of planning, transport, and storage. TIle management of the dis­
tribution networks is of course computerized, as arc the communication systems
that stitch them all together_ Modern farming is highly computerized; next to the
cow barn you find computers used to monitor the herd (ages , health, milk pro­
duction, elc.), fann equipment is increasingly computerized, and the number of
forms required by the various branches of government can make any honest
farmer cry, If something goes wrong, you can read all about it in YOllr newspa­
per; of course, the articles in that paper were written on computers , sct on the
page by computers, and (if you still read the "'dead tree edition") printed by com­
puterized equipment - often after having been eleclronically transmitted to the
priming plant. Books are produced in the same way. If you have to commute, the
traffic flows arc monitored by computers in a (usually vain) attempt to avoid traf­
fic jams. You prefer to take the train? "l1lat train will also be compUlerized; some
even operate without a driver, and the train 's subsystems, such as announce­
ments , braking, and ticketing, involve lots of computers . Today's entertainment
industry (music, movies, television, stage shows) is among the largest users of
computers. Even non-cartoon movies usc (computer) animation heavily; music
and photography also tend to be digital (i.e. , using compUlers) for both recording
and delivery. Should you become ill, the tesls your doctor orders will involve
computers , the medical records arc often com putelized, and most of the medical
equipment you' ll encounter if you arc sent to a hospitallO be cured contains
computers. Unless you happen to be staying in a cottage in the woods without
access to any elew'ically powered gadgets (including light bulbs), YOli lise energy.
Oil is found , extracted, processed, and distributed through a system using com·
puters every step along the way, from the dJ"iH bit deep in the ground to yoUI'
10c.,1 gas (petrol) pump. If yOll pay for that gas with a credit card , you again exer­
cise a whole host of computers. It is the same Story for coal, gas, solar, and wind
power.

TIle examples so far are an "operationaJ"; they arc directly involved in what
you are doing. Once removed from that is the important and interesting area of
design. "111e clothes you wear, lhe telephone you talk into, and the coffee ma­
chine that dispenses your favorite brew were designed and manufactured using
computers. The superior quality of modern photographic lenses and the exqui­
site shapes in the design of modern everyday gadgets and utensils owe almost
everything to computer-based design and production methods. 111e crafts­
menJdesignersfanistsfengineers who design our environment have been freed

1.3 PEOPLE

from many physical constraints previously considered fundamental. If you get ill ,
the medicines given to cure you will bave been designed using computers.

Finally, researdl - science itself - relics heavily on computers. The tele­
scopes that probe the secrets of distant stars couJd not be designed, built, or oper­
ated without computers, and the masses of data they produce couldn 't be
analyzed and understood without computers. An individuaJ biology field re­
sellrcher lllay not be heavily computerized (unless, of course, a camera, a digitaJ
tape recorder, a telephone, etc. arc used), but back in the lab, the data has to be
stored, analyzed, checked against cOlllputer illodels, and communicated to fellow
scientists . Modem chemistry and biology - including medical research - use
computers to an extent undreamed of a few years ago and still unimagined by
most people. The human genome was sequenced by computers. Or - let's be
precise - the human genome was sequenced by humans using computers. In all
of these examples , we see computers as something t.hat enables liS to do some­
thing we would have had a harder lUne doing without computers.

Every one of those computers runs software. Without software, they would
just be expensive lumps of silicon, metal, and plastic: doorstops, boat anchors,
and space healers. Every line of that software was written by some individual.
Every one of those lines that was actually executed was minimally reasonable, if
not COITeCt. It 's amazing that it aJl works! We are talking about billions of lines of
code (program tcxt) in hundreds of prograUlming languages. Getting all that to
work took a staggering amount of efTort and involved an unimaginable number
of skills. We wam further improvements to essentially every service and gadget
we depend on. Just lhink of anyone service and gadget yOll rely on; what would
you like to sec improved? If nothing else, we want our services and gadgets
smaller (or bigger), faster, more reliable, with more features , easier to usc, with
higher capacilY, better looking, and cheaper. TI1C likelihood is that the improve­
ment you thought of requircs some programming.

1.3 People
Computers arc bu ilt by people for the lise of people. A computer is a very generic
tool; it can be lIsed for an unimaginable range of tasks. It takes a program to
make it useful to someone. In other words, a computer is just a piece of hardware
until someone - some programmer - writes code for it to do something useful.
We often forget about the software. Even more often, we forget about the pro­
grammer.

Hollywood and similar "popular culture" sources of disinfommtion have as­
signed largely negative images to programmers. For example, we have all seen
lhe solitary, fat , ugly nerd with no social skills who is obsessed with video games
and breaking into other people's complllers. He (almost always a male) is as

21

22 (HAPTER 1 • COMP UTERS, PEOPLE. AND PROGRAMMING

likely to want to destroy the world as he is to wam to save it. Obviously, milder
vers ions of such caricatures exist in rcallifc, but in our experience they arc no
more frcquem among software developers than they arc among lawyers, police
officers, car salesmen, joumalists, arusts, or politicians.

Tllink about the applications of computers you know from your own life.
Were they done by a loner in a dark room? Of course nOt; lhe crealion of a suc­
cessful piece of software, compUlcrized gadgel, or system involves dozens, hun­
dreds, or thousands of people pcrfonning a bewildering set of roles: for example,
progranuncrs, (program) designers, testers, animators, foclls group managers, ex­
perimental psychologists, lIscr imerface designers, analysts, system administra­
tors, customer relations people, sound engineers, project managers, quality
engineers, statisticians, animators, hardware interface engineers, requirements
enJ:,,;neers, safety officers, mathematicians, sales support personnel, troubleshoot­
ers, network designers, methodologists, softlvare tools managers, software librar­
ians, etc. 111e range of roles is huge and made even more bewildering by the titJes
varying from organization to organization: one organization'S "engineer" may be
another organization's "programmer" and yet another organization's "devel­
oper," "member of technical staff," or "'architect." TIlere arc even organizations
that let tJleir employees pick their own litJes. Not all o f these roles dircctJy involve
progranmung. However, we have personally seen examples of people perfo rming
each of the roles mentioned while reading or writing code as an esseillial pan of
their job. Additionally, a programmer (pcrfonning any of these roles, and more)
may over a short period of time interact WitJl a wide range of people from appli­
cation areas, such as biologists, engine designers, lawyers, car salesmen, medical
researchers, historians, geologists, astronauts, airplane ellJ:,,;neers, lumberyard
managers, rocket scientists, bowling alley builders, joumalists, and animators
(yes, this is a list drawn from personal experience). Someone may also be a pro­
grammer at limes and Jill non-programming roles at otJler stages of a professional
career.

TIle myth o f a programmer being isolated is j ust that: a myth. People who
like to work on their own choose areas of work where that is most feasib le and
usually complain bitterly about the number of "uuemlptions" and meetulgs. Peo­
ple who prefer to ulteract with other people have an easier time beQlUse modem
software development is a team activity. The implication is tJlat social and com­
IllUlucation skills are essential and valued far more than tJle stereotypes indicate.
On a shon list of lughly desirable skills for a programmer (however YO LI realisti­
cally defme progra1ll1lldj, you find the ability to communicate well - with people
from a wide variety of backgrounds - infonnally, Ul meetings, in writing, and in
formal presentations. We arc convinced that until you have completed a team
project or twO, you have no idea of what programming is and whether yOll really
like it. Among the things we like about programming are all tJle nice and interest-

1.] PEOPLE

ing people we meet and the variety of places we get to visit as part of our profes­
sionallives.

One implication of all this is that people with a wide variety of skills, inter­
ests, and work habits are essential for producing good sofn-vare. Our quality of
life depends on those people - sometimes even our life itself. 0 one person
could fill all the roles we mention here; no sensible person would want every
role. l oe point is that you have a wider choice than you could possibly imagine;
not that you have to make any particular choice. As an individual you will "drift"
toward areas of work that match you r skills, talents, and interests.

We talk about Mprogrammers" and "programming," but obviously program­
ming is only pari of the overall picture. The people who design a ship or a cell
phone don't think of themselves as programmers. Programming is an important
part of software development, but not all there is to software development. Simi­
larly, for most products, software development is an important part of product
development, but not all there is to product development.

We do not assume that you - OUT reader - want to become a professional
programmer and spend the rest of your working life writing code. Even the best
progranuners - especially the be;r programmers - spend most of their lime lIor
writing code. Understanding problems takes serious time and often requires sig­
nificant intellectual effort. That intellectual challenge is what many programmers
refer to when they say that programming is interesting. Many of the best pro­
grammers also have degrees in subjects not usually considered part of computer
science. For example, if YOll work on software for genomic research, you will be
much more effective if you understand some molecular biology. If you work on
programs for analyzing medieval literature, you could be much beuer off reading
a bit of that literature and maybe even knowing one or more of the relevant lan­
guages. In particular, a person with an Mall I care about is computers and pro­
gramming" attitude will be incapable of interacting with his or her
non-programmer colleagues. Such a person will not only miss OUI on the best
parts of human interactions (i.e., life) but also be a bad software developer.

So, what do we assume? Programmillg is an intellectually challenbring set of
skills that arc part of many important and interesting technical disciplines. In ad­
dition, progranuning is an essential part of our world, so not knowing the basics
of programming is like not knowing the basics of physics, history. biology, or lit­
erature. Somcone totally ignorant of programming is reduced to believing in
magic and is dangerous in many technical roles. If you read Dilbert, think of the
pointy-haired boss as the kind of manager you don't want to meet or (far worse)
become. In addition, programming can be fun.

But what do we assume you might lise programming for? Maybe you will
use programming as a key tool in your further studies and work without becom­
ing a professional programmer. Maybe you will interact with other people profes­
sionally and personally in ways where a basic knowledge of programmi.ng will be

23

2' CHAPTER 1 • COMPUTERS, PEOPL E, AND PROGRAMMING

an advantage, maybe as a designer, writer, manager, or scientist. Maybe you will
do programming at a professional level as part of your studies or work. Even if
you do become a professional progranuncr it is unlikely that you will do nothing
but programming.

You might become an engineer focusing on computers or a computer scien­
tiSt, but evell then you will not "program all the time." Programming is a way of
presenting ideas in code - a way of aiding problem solving. It is 1l00hing - ab­
solutely a waste of time - unless you have ideas that are worth presenting and
problems worth solving.

This is a book about programming and we have promised to help you Jcam
how to program, so why do we emphasize non-progranuning subjects and the
limited role of programming? A good programmer understands the role of code
and programming technique in a project. A good programmer is (at most times)
a good team player and tries hard to understand how the code and its production
best support the overall project. For example, imagine that I worked on a new
MP3 player and all that I cared about was the beauty of my code and the num­
ber of neat features I could provide_ I would probably insist on t.he largest, most
powerful computer to run my code. I might disdain the theory of sound encod­
ing because it is "not programming." I would stay in my lab, rather than go out to
meet potential users, who undoubtedly would have bad Lastes in music an)"vay
and would not appreciate the latest advances in CUI (graphical user interface)
progranuuing. TIle likely result would be disaster for the project. A bigger com­
puter would mean a costlier M P3 player and most likely a shorter battery life.
Encoding is an essential part of handling music digitally, so failing to pay allen­
lion LO advances in encoding leclmiques could lead LO increased memory require­
ments for each song (encodings difTer by as much as 100% for the same-quality
output). A disregard for users ' preferences - however odd and archaic they may
seem to you - typically leads to the users choosing some other product. An es­
sential part of writing a good program is to understand the needs of the users and
the constraints that those needs place on the implementation (i.e. , the code). To
complete this caricature of a bad progranuner, we just havc to add a tendency to
deliver late because of an obsession with details and an excessive confidence in
the correctness of lightly tested code. We encourage you to become a good pro­
grammer, with a broad view of what it takes to produce good software. TIlat's
where both the value to society and the keys to personal satisfaction lie.

1.4 Computer science
Even by the broadest definition, programming is best seen as a part of something
greater. We can see it as a subdiscipline of computer science, computer engineer­
ing, software engineering, information technology, or any other software-related
discipline. We see programming as an enabling technology for those computer

1.5 COMPUTERS ARE EVERYWHERE

and information fields of science and engineering, as well as for physics, biology,
medicine, history, literature, and any other academic or research field.

Consider compuler science. A 1995 U.S. goverlUllenl "blue book n de[mes it
like this: "TIle systematic study of computing systems and computation. TIle
body of knowledge resu lting from this d iscipline contains theories for under·
standing computing systems and methods; design methodology, algorithms, and
tools; methods for the testing of concepts ; methods of analysis and verification;
and knowledge representation and implcmentation.n As we would expect, the
Wikipedia entry is less formal: "Computer science, or computing science, is the
study of the theoreticaJ foundations of information and computation and their
implementation and application in computer systems. Computer science has
many sub-fields ; some emphasize the computation of specific resulls (such as
computer graphics), while others (such as computational complexity theory) re­
late to properties of computational problems. Still others focus on me challenges
ill implementing computations. For example, programming language theory
studies approaches to describing computations, while computer programming ap­
plies specific programming languages to solve specific computational problems.n

Programming is a tool; it is a fundamental tool for expressing solutions to
fundamental and practicaJ problem.'! so that they can be tested, improved through
experiment, and used. Programming is where ideas and theories meet reality.
1l1is is where computer science c:."Ul become an experimental discipline, rather
than pure theory, and impact the world . In this context, as in many o thers, it is
essential that programming is an expression of well-tried practices as well as the
theories. It must not degenerate into mere hacking: just get some code written,
any old way that meets an inmlediate need .

1.5 Computers are everywhere
Nobody knows everything there is to know about computers or software. This
section JUSt gives you a few examples. Maybe you' ll see somethillg you like. At
least you might be convinced that the scope of computer use - and through that,
programming - is far larger than any individual can fully grasp.

Most people think of a computer as a small gray box attached to a screen
and a keyboard. Such computers tend to hide under tables and be good at
games, messaging and email, and playing music. Other compu ters, called lap­
tops, are used on planes by bored businessmen to look at spreadsheets, play
games, and watch videos. This caricature is just the tip of the iceberg. Most com­
puters work out of our sight and arc part of the systems mat keep our civilization
going. Some flll rooms; others arc smaller than a small coin. Many of the most in ..
teresting computers don't directly imcract with a hUlllan through a keyboard,
mouse, or sUlular gadget.

26 C HAPTER I • COMP UTERS , PEOPLE , AN D PRO G RAMMIN G

1.5.1 Screens and no screens
TIle idea of a computer as a fairly large square box with a screen and a keyboard
is common and often hard to shake off. However, consider these twO computers:

Both o f these "gadgets" (which happen to be watches) arc primarily computers.
In fact, we COlycclurc that they arc csscmially I.hc same model computer with dif­
ferent 110 (input/output) systems. 111e left one drives a small screen (si.milar to
the screens on conventional computers, but smaller) and the second drives linle
electric motors controlling traditional clock hands and a disk of numbers for day­
of-momh rcadOlll. 111cir input systems arc the foul' buttons (morc easily seen on
the right-hand watch) and a radio receiver, lIsed for synchronization with very
higb-precision "atomic" clocks. Most of the programs controlling these tWO com­
puters are shared between them.

1.5.2 Shipping
TIlese two photos show a large manne dicscl engine and the kind of huge ship
that it may power :

1.5 COMP UTERS ARE EVERYWHERE

Consider where computers and software play key roles here:

/Je5ig1l: Of course, the ship and the engine were both designed uSLIlg
computers. ~nle list of uses is almost endless and includes architectural
and engineering drawings, general calculations, visualization of spaces
and parts, and simulations of the performance of parts.

ums/me/ioll: A modern shipyard is heavily computerized. 111c assembly
of a ship is carefully planned using computers , and the work is done
guided by computers. Welding is done by robots. In particular, a modem
double-hul led tanker couldn't be built without little welding robots to do
the welding from within the space between the hulls. 111ere just isn 't
room for a human in there. Cutting steel plates for a ship was one of the
world 's first CAD/CAM (computer-aided design and computer-aided
manufacture) applications.

The ellgine: TIle engine has electronic fuel injection and is controlled by a
few dozen computers. For a !DO,OOO-horsepower engine (like the one in
the photo), that 's a nontrivial task. For example, the engine management
computers cominuously adjust fuel mix to minimize the pollution that
would result from a badly tuned engine. Many of the pumps associated
with the engine (and other parts of the ship) are themselves computer·
ized.

Mallagemen/: Ships sail where there is cargo to pick up and to deliver. TIle
scheduling of fleets of ships is a continuing process (computerized, of
course) so that routings change with the weather, with suppl y and de­
mand, and with space and loading capacity of harbors. There are even
wcbsitcs where you ca.n watch the position of major merchant vessels at
any lime. The ship in the photo happens to be a container vessel (the
largest such in the world; 397m long and 56m wide), but other kinds of
large modem ships are managed in similar ways.

MOllitorillg: An oceangoing ship is largely autonomous; that is, its crew
can handle most contingencies likely to arise before the next port. How­
ever, they arc also part of a globe-spanning network. TIle crew has ac­
cess to reasonably accurate weather infonnation (from and through -
computerized - satellites). TIley have CPS (global positioning system)
and computer-controlled and computer--enhanced radar. If the crew
needs a rest, most systems (including the engine, radar, etc.) can be mon­
itored (via satellite) from a shipping-line control room. If anything un­
usual is spotted, or if the eonnection "back home" is broken, the crew is
notified.

Consider the implication of a failure of one of the hundreds of computers explic­
illy mentioned or implied in this brief description. Chapter 25 ("Embedded Sys­
tems Programming") eXaJlunes this in slightly more detail. Writing code for a
modern ship is a skilled and interesting activity. It is also useful. The COSt of

27

2. CHAPTER I • CO MPUTER S, PEOPLE, AND PROGRAMMI NG

transport is really amazingly low. You appreciate that when you buy something
that wasn't manufactured locally. Sea transport has always been cheaper than
land transport; these days one of the reasons is serious usc of computers and
information.

1.5.3 Telecommunications

"Illesc twO photos show a telephone switch and a telephone (that also happens to
be a camera, an M P3 player, an FM radio, and a web browser):

\

\ ".
\ " " .\ ,. , t

l'I · ,iI') ~ (, ~~, t
! \

\.

Consider where computers and software play key roles here. You pick up a tele­
phone aJld dial, the person you dialed answers, and you talk. 01' maybe yOll get
to talk to an answering machine, or maybe you send a photo from yom phone
camera, or maybc YOll send a tCXt message (hit "send" and let the phone do the
dialing). Obviously the phone is a computer. l11is is especially obvious if the
phone (like most mobile phones) has a screen and allows more than traditional
"'plain old telephone services," such as web browsing. Actually, such phoncs tend
to contain several computers: one to manage the screen, one to t,llk to the phone
system, and maybe more.

l11e part of the phone that manages the screen, docs web bJ'Owsing. etc. is
pJ'Obably the most familiar to computer users: it just nms a gmphicaJ user inter·
face to "all the usual Sluff." What is un.known to and largely unsuspected by most
users is lhe huge system that the litt1c phone talks to while doing its job. I dial a
number in Texas, but you arc on vacation in New York City, yet within seconds
your phone rings and I hear you r "'Hello!" over the roar of city traffic. Many
phones can perform that trick for essentially any two locations o n earth and we
JUSt take it for granted. How did my phone rmd yours? How is the sound lrans·
nUlted? How is the sound encoded into data packets? l 11e answer could fi ll

1.5 COMPUTERS ARE EVE RYWHERE

many books much thicker than this one, but it involves a combination of hard­
ware and software on hundreds of computers scattcred over the geographical
area in question_ Ir you are unlucky, a few telecommunications satellites (them­
selves computerized systems) arc also involved - "unlucky" because we cannot
perfectly compensate fo r the 20,OOO-mile detour out into space; the speed of light
(and therefore the speed of your voice) is finite (light fiber cables are much beuer:
shorter, fasler, and carrying much more data). Most of this works remarkably
well ; the backbone telecommunications systems arc 99.99990/0 reliable (for exam­
ple, 20 minutes of downtime in 20 years - tim's 20120*365*24*60)_ The trouble
we have tends to be in the communications between our mobile phone and the
nearest main telephone switch.

111ere is software for connccting the phones, for chopping our spoken "mrds
into data packets to be sent ovcr wires and radio links, for routing those mes­
sages, for recovering from all kinds of failures, for continuously monitoring the
quality and reliability of the services, and of course for billing. Even keeping
track of all the physical pieces of the system requires serious amounts of clever
software: '#hat talks to what? What parts go into a new system? \¥hen do you
need to do some preventive maintenance?

Arguably the backbone telecommunications system of the world, consisting
of semi-independent but interconnected systems, is the largest and most compli­
cated man-made artifact. To make things a bit more real: remember, this is not
just boring old telephony with a few new bells and whistles. The various infra­
structures have merged. They arc also what the internet (the web) runs on, what
our banking and trading systems run on, and what carry our television programs
to the broadcasting stations. So, we can add anmher couple of photos to illustrate
telecommunications:

"n,e room is the "trading floor" of the America.n stock exchange on New York's
Wall Street and the map is a representation of pans of the intemet backbones (a
complete map would be too messy to be useful).

As it happens, we also like digital photography and the usc of computers to
draw specialized maps to visualize knowledge_

30 (HAPTER 1 • CO M P UTERS, P EOP LE, AND PROG RAMM ING

1.5.4 Medicine
These two photos show a CAT (computed axial tomography) scanner and an op­
erating theater for computer-aided surgery (also called "robol-assisted surgery"
or "robotic surgcIY"):

Consider where computers and software play key roles here. 111C scanners basi­
cally arc computers; the pulses they send Ollt a TC controlled by a computer, and
the readings are nothing but gibberish until quite sophisticated algorithms arc ap­
plied to convert them to something we recognize as a (three-dimensional) image o f
the relevant part of a human body. To do computerized surgery, we must go sev­
eral steps further. A wide variety of imaging techniques arc lIsed to let the surgeon
sec the inside of the paticlll, to see the point of surgery with significam emarge­
mem or in beller light tlUUl would othen vise be possible. With the aid of a COIll ­

pUler a surgeon can usc tools thal are too fine fo r a human hand to hold or in a
place where a human hand could not reach withoUi U1Ulecessary cutting. TIle usc
of minimally invasive surgery (Iaparoscopie surgery) is a simple example of this
that has minimized the pain and recovery time fo r millions o f people. TIle com­
puter can also help stead y the surgeon's "hand" to allow for more delicate work
tll3.11 would othen vise be possible. Finally, a "robotic" system C<"tn be operated re­
motely, thus making it possible for a doctor to help someone remotely (over tile
internet). The computers and progra.1luning involved are mind·boggling, COIll­

plex, and interesting. TIle user-interface, equipmem control, and imaging elml­
lenges alo ne will keep thousands of researchers, engineers, and programmers
busy fo r decades.

We heard o f a discussion among a large group of medical doctors about
which new tool had provided the most help to them in their work : 'nle CAT
scanner? TIle MRl scanner? The automated blood analysis machines? 11le high­
resolution ultrasound machines? PDAs? Nter some discussion, a surprising
"wilmer" o f tllis "competition" emerged : instant access to patient records. Know­
ing ti le medicaJ history of a patient (earlier illnesses, medicines tried earlier, aller­
gies, hereditary problems, gcneral health, current med ication, etc.) simplifies the
problem of diagnosis and minimizes the chance of mistakes.

1.5 CO MP UTE RS ARE EVERYW H ERE

1.5 .5 Information
These two photos show an ordinary PC (well, two) and part of a server fann:

\o\'e have fOCllsed on "gadgets" for the lIslial reason: yOll ealUlot sec, feci, or hear
software. \'\Ie cannOt present you with a photograph of a neat program, so we
show YOll a "gadget" that runs one. However, much software deals directly with
"infonnation." So let's consider "ordinary uses" of "ordinary computers" rtmning
"ordinary software."

A "server farm" is a collection of computers providing web services. By using
Coogle (a web search engine), we found the following infonnation supplied by
Wikipedia (,\ web dictionary). In 2004 it was estimated that Coogle's server farm
had the following specs:

719 racks

63,272 machines

126,544 C PUs

253THz of processing power

126,544GB of RAM

5,062TB of hard drive space

A Gll is a gigabyte, that is, about 1,000,000,000 characters. A Tn, a terabyte, is
about 1,000GB, thaI is, about 1,000,000,000,000 characters. These days, the
"farms " arc much bigger. ~111is is a preuy extreme example, but every major com·
pany runs programs on the web to interact with its users/customers. Examples
are Amazon (book and Olher sales), Amadeus (airline ticketing and automobile
rental), and eBay (online auctions). Millions of liule companies, organizations,
and individuals also have a presence on the web. Most don't nUl their own soft ­
ware, but many do and much of that is not trivial .

'11e other. and more traditional, massive computing eITort involves account­
ing, order processing, payroll , record keeping, billing, inventory management,

31

32 CHAPTER 1 • COMPUTE RS, PEOPLE , AND PROGRAMMING

personnel records, studclll records, patient records, etc. - the records that essen­
tially every organization (commercial and nonconlllcrcial, govcmmental and pri­
vate) keeps . These records arc the backbone of their respective organizations. As
a computing effort, processing such records seems simple: mostly some informa­
tion (records) is just stored and retrieved and very liule is done to it. Examples
include

Is my 12 :30 flight to Chic.'l.go still on lime?

Has Gilbert Sullivan had the measles?

Has the coffcemakcr that Juan Valdez ordered been shipped?

What kind of kitchen chair did Jack Sprat buy in 1996 (or so)?

How many phone calls originated from the 2 12 area code in August of
2006?

What was the number of coffeepots sold in J anuary and for what total
price?

TIle sheer scale of the databases involved makes these systems highly complex.
To that add the need LO respond quickly (often in less than twO seconds for indio
vidual queries) and to be correct (at least most of I.he time). TIlese days, it is not
uncommon for people to talk about terabytes of data (a byte is the amount of
memory needed LO hold an ordinary character). That's I.raditional ';data process·
ing" and it is merging wil.h "me web" because mosl. access to the databases is
now though web interfaces .

This kind of computer usc is often referred to as ilyarlllation j)f(xcssillg. It fo·
cuses on data - often lots o f data. ~rbis leads to challenges in the organization
and transmission of data and lots o f interesting work on how to present vast
amounts of data in a comprehensible form: "user interface" is a very important
aspect of handling data. For example, think of analyzing a work of older litem­
ture (say, Chaucer's CAnterbury "faUJ or Cervantes' Dml O!Jixote) to figure out what
the author actually wrOle by comparing dozens of versions. We need to search
through the texts with a variety of criteria supplied by the person doing the
analysis and to display the results in a way that aids the discovery of salient
poims. 111inking of text analysis, publishing comes to mind : today, just about
every article, book , brochure, newspaper, etc. is produced on a computer. De­
signing software to support that well is for most people still a problem that lacks a
really good solution.

1.5.6 A vert ical view
It is sometimes claimed that a paleontologist can reconstruct a complete dinosaur
and describe its lifesty le and natural environment from sl.Ud ying a single small
bone. 111at may be an exaggeration, but there is something to the idea of looking
at a simple artifact and thinking about what it implies. Consider this photo show­
ing the landscape of Mars taken by a ca.mera on one of NASA's Mars Rovers:

I .S COM PU TER S AR E EV ERYWH ERE

If you want to do "rocket science," becoming a good programmer is one way.
TIle vilriol,.lS space programs employ lots of software designers , especially ones
who can also understand some of the physics, math, electrical engineering, me­
chanical engineering, medical engineering, etc. that underlie the manned ,md un­
manned space programs. Getting those two Rovers to drive around on Mars for
over four years (their estimated design life was three months) is one of the great­
est technological triumphs of ollr civilization.

111e photo was transmitted to earth through a communication channel with
a 25-minu te transmission delay each way; there is a lot of clever programming
and advanced math to make sllre that the picture is transmitted Llsing the mini­
llIal number of bits without losing any of them. On earth, the photo is then ren­
dered using algorithms to restore color and minimize distortion due to the optics
and electronic sensors.

11le control programs for the Mars Rovers are of course programs - the
Rovers drive autonomously for 24 hours at a time and follow instructions sent
from earth the day before. TIle transmission is managed by programs.

~l1le operating systems used for the various computers involved in the
Rovers, the transmission , and the photo reconstruction are programs, as arc the
applications llsed to write this chapter. The computers on which these programs
run arc designed and produced using CAD/CAM (computer·aided design and
computer-aided manufacture) programs. TIle dlips that go into those computers
arc produced on computerized assembly lines constructed using precision tools,
and those tools also use computers (and software) in their design and manufac­
ture. The quality con11'ol for those long construction processes involves serious
computation. All that code was written by humans in a high·lcvcJ programming
language and translated into madline code by a compiler, which is itself such a
program. Many of these programs interact with lIsers using G U I and exchange
data llsing input/output streams.

Finally, a lot of programming goes into image processing (including the pro­
cessing of the photos from the Mars Rovers), animation, and photo editing (there
arc versions of the Rover photos floating around on the web featuring "Martians") .

33

J4 C H APTE R ' • COMPUTE RS, P EOPLE , ANO PROGRAMMING

1.5.7 So what?
What do all these "fancy and complicated" applications and software systems
have to do with learning programming and lIsing C++? '11C connection is sim­
ply that many programmers do gel to work on projects like these. These arc the
kinds of lhings that good programming can help achieve. Also, every example
used in this chapler involved C++ and at least some of the techniques we de­
scribe in this book. Yes, there are C++ programs in M P3 players, in ships, in
wind mrbines, on Mars, and in the human genome project. For more applications
using C++, see \",",,\V.research.au} - bs/applic.:"1tions.html.

1.6 Ideals for programmers
What do we wallt from our programs? What do we want in general, as opposed
lO a particular feature of a particular program? We want CQI'rectllesJ and as part or
that, rdinbilil)'. If the program doesn't do what it is supposed to do, and do so in a
way so that we ca.n rely on it, it is at best a serious nuisance, at worst a danger.
We want it to be well d£sig1~(J so umt it addresses a real need well ; it doesn't really
mattcr that a program is correct ir what it does is irrelcvant to us or ir it cOlTcctly
does something in a way that rumoys us. We also Wrult it to bc tifJordable; I might
prdcr a Rolls-Royce or an executive jet to my usual rorms or transport , but un­
less I'm a z.illionaire, COSt will enter into my choices.

ll1ese arc aspects or sorl\\'arc (gadgets, systcms) umt can be appreciated rrom
the outside, by non-programmers_ They must be ideals ror programmers and we
must keep them in mind at all times, especially in the early phases or develop­
ment, if we want to produce successrul sornvarc. In addition, we must coneem
ourselves with ideals related to the code itsclr: our code must be mail//ail/llble; that
is, its structu.rc must be such that someone who didn' t write it can understruld it
and make changes_ A successrul program "lives" ror a long time (orten for
decades) and will be changed again and again. For example, it will be moved to
new hardware, it will have new reatures added, it will be modified to use new 1/0
racilities (screens, video, sound), to interact using new natural languages, etc.
Only a railed progrrun will never be modified. "Ib be maintainable, a program
must be simple relative to its requirements, ruld the code must directly represent
the ideas expressed. Complexity - the enemy or simplicity and maintainability -
can be intrinsic to a problem (in that case we JUSt have to deal with it), but it can
also arise rrom poor expression or ideas in code. We must try to avoid that
through good coding style - style matters!

llis doesn't sound too difficult, but it is. Why? Programming is rundamen­
tally simple: just tell the machine what it is supposed to do. So why can program·
ming be most challenging? Computers arc rundamentally simple; they can just

1.6 IDEAL S FOR PROGRAMMERS

do a few operations, such as adding twO numbers and choosing the next instruc·
tion to cxecute based on a comparison of two numbers. "n lC problem is that we
don't want computers to do simple things. Wc want "lhe machine" to do lhings
that arc difficult cnough for us to want help with them, but computers are nit­
picking, unforgiving, dumb beasts. Furthennore, the world is more complex than
we'd like to believe, so we don't really know the implications of what we request.
We juSt want a program to "do someLhing like this" and don't want to be bOlh·
ered with technic.11 details. We also tend to assume "common sense." Unfortu·
nately, common sense isn't all that common among humans and is totally absent
in computers (though some reaUy weU·designed programs can imitate it in spe·
cific, well·understood cases).

111is line of thinking leads to the idea I.hat "programming is understanding":
when you can program a [ask, you understand it. Conversely, when you under­
stand a task thoroughly, you can write a program to do it. In oLher words, we can
see programming as part of an effort to thoroughly understand a topic. A pro­
gram is a precise representation of our understanding of a topic.

When you program, you spend significant time trying to understand the task
you are trying to automate.

We can describe the process of developing a program as having four stages:

A1I(I/ysis: \>Vhat's the problem? 'What does the user want? \.vhat does the
user need? What can the user afford? 'What kind of reliability do we
need?

Desigp: How do we solve the problem? What should be Lhe overall Sll"UC­

lU re of the system? Which parts docs it consist of? How do Lhose parts
communicate wiLh each other? How does the system communicate with
its users?

Programming: Express the solution to the problem (Lhe design) in code.
Write the code in a way Lhat meets all constraints (time, space, money,
reliability, and so on). Make sure that the code is correct and maintain·
able.

7CShiJg: Make sure the system works correctly under all circumstances re·
quired by systematically trying it out.

Programming plus testing is often called implementati(J1I. Obviously, this simple split
of software developmcnt into four parts is a simplification. llick books havc bccn
written on each of these four topics and more books still about how they relatc to
each other. One imponam lhing to note is that Lhesc stages of developmcnt are
not independent and do not occur strictly in sequence. We lypically start wilh
analysis, but feedback from testing can help improve the programming; problems
with gctting the program working may indicate a problcm with the design; and

35

36 (HAPTER 1 • COMP UTERS, PEOPLE , AND PROGRAMMING

working with lhe design may suggest aspects of the problem that hitherto had
been overlooked in the analysis. Actually using the system typically exposes weak­
nesses of the illmlysis.

The crucial concept here is ftedlmclr.. We learn from experience and modify
our behavior based on what we learn. That's essential for effective software de­
velopment. For any large project, we don't know everything there is to know
about the problem and its solution before we start. We can try out ideas and get
feedback by programming, but in me earlier stages of development it is casic]­
(and faster) to gel feedback by writing down design ideas, trying out those design
ideas, and using scenarios a ll friends. The best design tool we know of is a black­
board (usc a whiteboard ins tead if you prefer chemical smells over chalk dust).
Never design alone if you can avoid itl Don't st.-u"! coding before you have tried
out your ideas by explaining them to someone. Discuss designs and program~

millg techniqucs with friends , colleagues, potential users, and so on before you
head for the keyboard. II is amazing how much you can learn from simply trying
to aniculate an idea. After all, a program is nothing more than an expression (in
code) of some ideas.

Similarly, when you get stuck implementing a program, look up from the
keyboard. Think about the problem itself, rather than your incomplete solution.
Talk with someone: explain what you want to do and why it doesn't work. It 's
amazing how often you find the solution just by carefully explaining the problem
to someone. Don't debug (find program errors) alone if you don't have tot

The focus o f this book is implementation, and especially programming. We
do not teach ';problem solving" beyond giving you plenty of examples of prob·
lems and their solutions. Much of problem solving is recognizing a known prob·
lem and applying a known solution technique. Only when most subproblems arc
handled this way will you find the time to indu lge in exciting and creative "out·
of·the·box thinking." So, we focus all showing how to express ideas clearly in
code.

Direct expression of ideas in code is a fundamental ideal of programming.
That's really pretty obvious , but so far we are a bit shan o f good examples. We'll
come back to this, repeatedly. When we want an integer in our code, we store it
in an int , which provides the basic integer operations. When we want a string o f
characters, we store it in a s tring, which provides the most basic text manipula·
tion operations. At the most fundamental level, the ideal is that when we have an
idea, a concept, an entity, something we think of as a "thing," something we can
draw on our whiteboard, something we can refer to in our discussions, some·
thing our (non-computer science) textbook talks about, then we want that some·
thing to exist in our program as a named entity (a type) providing the operations
we think appropriate for it. If we want to do math, we want a complex type for
complex numbers and a Malrix type for linear algebra. If we want to do graphics,

CHAPTE R I REV IEW

we wam a Shape type, a Circle type, a Color type, and a Dialo&.-boJl: . "Vhen we
want to deal with streams of data, say from a temperature sensor, we want an
istream type (" i" for input). Obviously, every such type should provide the ap­
propriate operations and only the appropriate operations. Illese arc just a few
examples from this book. Beyond that, we offer tools and techniques for you to
build your own types to directly represent whatever concepts you want in your
program.

Programming is part practical, part theory. If you arc just practical, you will
produce non·scalable, unmaintainable hacks. If you arc just theoretical, you will
produce unusable (or unafTordable) toys.

For a different kind of view of the ideals of programming and a few people
who have contributed in major ways to software through work with program·
ming languages, sec Chapter 22, "Ideals and History."

Review

Review questions arc intended to point you to the key ideas explained in a chap'
tel'. One way to look at them is as a complement to the exercises: the exercises
focus on the practical aspects of programming, whereas the review questions try
to help you articulate the ideas and concepts. In that, they resemble good inter·
view questions.

I. What is soft\vare?
2. VVhy is software important?
3. Where is software important?
4. \¥hat could go wrong if some software fails? List some examples.
5. \"'here docs software play an important role? List some examples.
6. What arc some jobs related to software development? List some.
7. What's the difference between computer science and programming?
8. Where in the design, construction, and use of a ship is software used?
9. What is a server farm?

10. What kinds of queries do you ask online? List some.
II . VVhat are some uses of software in science? List some.
12. \¥hat are some uses of soft\vare in medicine? List some.
13. \¥hat arc some uses of software in entertainment? List some.
14. \¥hat general properties do we expect from good software?
15. What docs a software developer look like?
16. What arc the stages of software development?
17. Why can software development be difficult? List some reasons.
18. What arc some uses of software that make your life easier?
19. What arc some uses of software that make your life more difficult ?

37

J8 C HA PTE R t • COMPUTE RS, PEOP LE , AN D PROGRAM MI NG

Terms

"Illese terms prescnt the basic vocabulary of programming and of C + +. Ir yOLi

waIll to understand what people say about programming topics and to articulate
your own ideas, you should know what each means.

aITordabiJity
analysis
blackboard
CAD/CAM
communications
correctness

Exercises

customer
design
feedback
CUI
ideals
implementation

programmer
programming
software
stereotype
testing
user

I. Pick an activity you do most days (such as going LO class, eating dinner,
or watching television). Make a list of ways computers arc directly or in­
directly involved .

2. Pick a profess ion , preferably one that you have some interest in or some
knowledge of. Make a list o f activities do ne by people in that profession
that involve computers.

3. Swap your list rrom exercise 2 with a rriend who picked a different pro·
ression and improve his or her list. 'When you have both done that, COIll­

pare your results. Remember: 'Tllere is no perrect solution to ;tn
open-ended exercise; improvements arc always possible.

4. From your own experience, describe an activity that would not havc
been possible without computers.

5. Make a list or programs (sort\ivare applications) that you have directly
used. List only examples where you obviously interact with a program
(such as when scJcCling a new song on an M P3 player) and not cases
where there just might happen to be a complll"er involved (such as turn·
ing the steering wheel or your car).

6. Make a list or ten activities that people do that do not involve computers
in any way, even indirectly. This may be harder than you think!

7. Identify five tasks ror which complilers arc not used today, but ror which
you think they will be used ror at some time in the ruture. Write a rew
sentences LO elaborate on each one that you choose_

8. Write an explanation (at least 100 words, but rewer than 500) or why
you would like to be a computer progranuner. If, on the other ha.nd, you
arc convinced that you would not like to be a programmer, explain tllat.
In either case, present well-thought-out, logical arguments.

CHAPTER 1 POSTSCRIPT

9. Write an explanation (at least 100 words, but fewer than 500) of what
role other than programmer you'd like to play in the computer industry
(independently of whether "programmer" is your first choice).

10. Do you think complilers will ever develop to be conscious, thinking be­
ings, capable of competing with humans? Write a short paragraph (at
least 100 words) supporting your position.

II . List some characteristics that most successful programmers share. Then
list some characteristics that progranmlers arc popularly assullled to

have.
12. Identify at least five kinds of applications for computer programs men­

tioned in this chapter and pick the one that you find the most interesti.ng
and that you would most likely want to participate in someday. Write a
short paragraph (at least 100 words) explaining why you chose the one
you did.

13. How much memory wou ld it take to Store (a) this page of text, (b) this
chapter, (c) all of Shakespeare's work? Assume one byte of memory
holds one character and just uy to be precise to about 20010.

14. How much memory docs YOllr computer have? Main memory? Disk?

Postscript
Qur civilization mns on software. Software is an area of unsurpassed diversity
and opportunities for interesting, socially useful , and profitable work. \lVhen YOll
approach software, do it in a principled and serious manner: you want to be part
of the sollilion, not add to the problems.

We arc obviously in awe of the range of software that permeates our techno­
logical civilization. Not all applications of software do good, of course, but that is
another story. Here we wamed to emphasize how pervasive software is and how
much of what we rely on in our daily lives depends on software. It was all written
by people like us. All the scientists, mathematicians, engineers, programmers, etc.
who built the software briefly mentioned here stancd like you arc starting.

Now, let's get back to the down·to-earth business of learning the technical
skills needed to program. If you start wondering if it is worth all your hard work
(most thoughtful people wonder about that sometime), come back and reread this
chapter, the Preface, and bits of Chapter 0 ("Notes La the Reader"). If you start
wondering if you can handle it all, remember Lhat millions have succeeded in be­
coming competent progranuners, designers, software engineers, etc. You can, too.

Part I
The Basics

\.1 .
r 2

Hello, World!

"Programming is learned
by writing programs."

-Brian Kernighan

H ere, we presem the simplest C++ program that actually

does anything. The purpose of writing this program is La

Let YOli try your programming environment

• Give you a first feci of how you can gel a computer to do

things for you

Thus, we present the notion of a program, the idea of trans­

lating a program from human-readable form to mach ine instmc­

tions using a compiler, and finally execu ting those machine

Illstrucuons.

44

2.1 Programs

2.2 The classic first program

2.3 Compilation

2.4 Linking

2.5 Programming e nvironme nts

2.1 Programs

(HAPTER 2 • H EllO, WORLD!

To get a computer to do something, YOli (or someone else) have to tell it exactly
- in excruciating detail - what to do. Such a description of "what to do" is called
a program, and programmillg is the activity o f writing and tcsting sllch programs.

In a sense, we have all programmed before. After all, we have given descrip­
tions of tasks to be done, such as "how to drive to the nearest cincma,n "how to
rU1d the upsta irs bathroom," and "how to heat a meal in lhe m icrowave." "n 1C dif­
ference bct'o\lccn slI ch descriptions and programs is one of degree of precision:
humans lend to compensate for poor instructions by using common sense, but
computers don' t. For example, "turn right in the corridor, up the stairs, it' ll be on
your lcft " is probably a linc description of how to gct to the upstairs bathroom.
However, when you look at thosc simple instn lctions, you 'll lind the grammar
sloppy and the instructions incomplete. A human casily compensates. For exam­
ple, assumc that you are sitting at the table and ask for directions to the bath­
room. You don't need to be told to get lip from yom chair to get to the cOITidor,
somehow walk around (and not across o r u nder) the table, not to step on the cat,
etc. You 'll not have to be told not to bring your k.nife and fork. or to remember to
switch o n the light so that you ca n see thc stairs. O pening the door to the bath­
room before cnteri ng is probably also something you don't have to be told .

In contrast, computers arc "ally dumb. ~nlcy have to have everything de­
scribed prccisely and in detail. Consider agai n "tum right in the con 'idor, up the
stairs. it 'll be on your left." Where is the corridor? W hat's a corridor? W hat is
;' tum right"? What stairs? How do I go up stairs? (One step at a time? l\vo
steps? Slide up the banister?) "What is on my left? W hen will it be on my left ? To
be able to describe "things" precisely for a computer, we need a precisely ddined
language with a specific grammar (English is far tOO loosely structured for that)
and a well-defi ned vocabulary for the kinds of actions we want performed. Such
a language is called a programming langu~, and C++ is a programming language
dcsigned for a wide selection of programming tasks.

If you waUl greater philosophical detail about computers, programs, and pro­
gramming, (re)read Chapter I . Here, lei's have a look at some code, starting with
a very simple prOb'l'am and the tools and techniques you need to get it to ru n.

22 THE ClASSIC FIRST PROGRAM

2.2 The classic first program
Hen: is a version of l,he classic ftrst program. It writes "Hello, World!" to your screen:

IIThis program outputs the message "Hello, World ! ~ to the monitor

#include "SldJ ib_facililies. h"

int mainO
(

II C++ programs start by executing the function main

coul « "Hello, World!\n"; II output HHello, World!"
return 0;

)

~nlink of this text as a set of instructions Lhat we give to the computer to execute,
much as we would give a recipe to a cook to follow, or as a list of assembly in·
structions for us to follow to get a new toy working. Let's discuss what each line
of this program docs, starting with the line

cout « "Hello. World !\n"; II output HHello, World!"

1113t's the line that actually produces the output. It prints the characters He llo,
World! followed by a newline; that is, after writing Helio, World! , the cursor will
be placed at the strut of the next line. A CUTlOr is a little blinking character or line
showing where you can type the next character.

In C++, string literals arc delimited by double quotes ("); that is, "He llo,
World!\n" is a string of characters. The \n is a "special character" indicaLing a
newline. 111e name coul refers to a standard output stream. Characters "put into
cout" using the output operator « will appear on the screen. TIle name cout is
pronounced "see·out" and is an abbreviation of "character output strerun." You'll
find abbreviations rather common in programming. Naturally, an abbreviation
can be a bit of a nuisance the first time you see it and have to remember it, but
once you start using abbreviations repealedly, they become second nature, and
they arc essential for keeping program text short and manageable.

"nle end of that line

II output HHcllo, World!"

is a comment. Anything written after the token II (that's the character I, called
"slash," twice) on a line is a comment. Comments are ignored by the compiler
and writlen for the benefit of progrrunmers who read t.be code. Here, \ve lIsed the
comment to tell you what the beginning of that line actually did.

45

46 C HAPTER 2 • HEllO, WORLD!

Comments arc wriucl1 to describe what lhc program is intended to do and in
gcncrallo provide information useful for humans that can't be directly expressed
in code. TIle person most likely to benefit from the comments in your code is
you - when you come back to that code next week , or next year, and have for­
gotten exactly why you wrolC the code the way you did. So, document your pro­
grams well. In §7.6.4, we'll discuss what makes good comments.

A program is wrincn for two audiences. Naturally, we write code for com­
puters to execute. However, we spend long hours reading and modifying the
code. 'nms, programmers are another audience for programs. So, writing code is
also a form of human-to-human communication. In fact , it makes sense to COIl ­

sider the human readers of our code our primary audience: if they (we) don't
fUld the code reasonably easy to understand, the code is unlikely to ever become
correct. So, please don 't forget: code is ror reading - do all you can to make it
readable. Anyway, the commems arc for the benefit o f human readers only; the
computer doesn't look at me text in CQUUllenLS .

The first line of the program is a typical comment; it simply tells the human
reader what the program is supposed to do:

I/This program outputs the mess..lgc "Hello, World ! ~ to the monitor

Such comments arc useful because the code itself says what the program docs,
not what we meant it to do. Also, we can usually explain (roughly) what a pro~

gram should do to a human much more concisely than we can express it (in de­
tail) in code to a computer. Often such a comment is the first part of the program
we write. If nothing else, it reminds us what we are trying to do.

llle next line

#indude "std_lib_facilities .h"

is an "#i ndude directive." It instnlcts the computer to makc available ("to in­
clude"') facili ties from a fil e called sld_lib_facilities.h. We wrote lhal fi le to simplify
lise of the faciliti es aVi.ilable in all implementations of C++ ("the C++ standard li­
brary"'). We will explain its contents as we go along. It is pcrfecLly ordinary stan·
dard C++, but it coma.ins details that we'd ramer not bother you with for another
dozen chapters. Fo r this program, the importance of stdJi b_faci lities. h is that we
make lhe standard C++ stream 110 facilities available. Here, we just usc the stan­
dard outpu t stream, coul, and its output operator, « . A fil e included using
#include usually has the surf!."< .h and is called a IleUM or a /teader file. A header
contains defin itions of terms, such as coul, thai we use in our program.

H ow docs a compuler know where to Start executing a program? It looks for
a function called main and starts executing the instmctions it fi nds there. Here is
the function main o f our "Hello, World!'" program:

2. 2 THE Cl ASS IC FIR ST PROGRAM

inl mainO II C++ programs start by executing the (unction main
{

)

coul« "Hello, World!\n"; /I output "Hello. World!"
relurn 0;

Every C++ program must have a function called main to tell it where to Start ex­
ecuting. A function is bas ically a named sequence of instructions fOT the COIll­
puter to execute in the order in which they are written. A function has four pans:

A rellln! ty/N, here inl (meaning '"' integer"), which specifics what kind of
result, if any, lhe function will return to whoever asked for it to be exe­
cuted. The word inl is a reserved word in C++ (a keyword), so inl cannot
be used as the name of anything else (see §A.3.1).

A name, here main .

A parameter lisl enclosed in parentheses (sec §8.2 and §8.6), here () ; in this
case, the parameter list is empty.

Ajimdioll body enclosed in a set of "curly braces," {) t which lists the ac­
tions (called J/(I/ements) that the function is to pcrfornl.

It follows that the minimal C++ program is simply

inl mainO { }

'Tlmt's not of much usc, though, bec.'\use it doesn't do anything. 111e mainO ("the
main function j of our "Hello, World!" program has two statements in its body:

coul « "Hello, World!\n "; II output "Hello, World !"
relurn 0;

First it 'll write Hello, World! to the screen, and then it will return a value 0 (zero)
to whoever called it. Since mainO is called by "the system," we won' t usc that re­
turn value. However, on some systems (notably UnixlLinux) it can be used to
check whether the program succeeded. A zero (0) returned by mainO indicates
the program tenninated successfully.

A part of a C++ program that specifies an action and isn't an #include direc­
tive (or some other preprocessor directive; sec §4.4 and §A. 17) is called a Jlate1l/ent.

2.3 Compilation
C++ is a compiled language. "nlat means that to get a program to run, you must
first translate it from the human-readable fonn to something a machine can

47

48 CHAPTER 2 • H EllO, WO RL D!

"understand." "That translation is done by a program called a rompiler. What you
read and write is called source {(XU or program ltxl, and what the computer excelllcs
is called executable, Qi!jeci~, or lIIachinc code. Typically C + + source code files are
given the suffix .cpp (e.g., hello_world .cpp) or .h (as in stdJib_facilities .h), and
object code files arc given Lhe SUfflX .obj (on Windows) or . 0 (Uni;I{). The plain
word (ode is therefore ambiguous and can cause confusion; usc it with care only
when it is obvious what's meant by it. U nless otherwise specified, we use c()(k to
mean "source code" or even "the source code except the comments," oecause
co m ll1ents really aTC there just fo r us humans and are not seen by the compiler
generating object code.

I C++ source code I- C++ compiler - Object code

"111C compiler rcads your source code and tries to make sense o f what you wrote.
h looks to sec if your program is grammatically correct, if every word has a de­
fi ned meaning, and if there is anything obviously wrong that can be detected
without trying to actually execute the program. You'll find that computers arc
rather picky about syntax . Leaving out any detail o f our program, such as an
#include file , a semicolon, or a curly brace, will cause errors. Similarly, the com­
piler has absolutcly zero tolerance for spelling mistakes. Let us illustrate this with
a series of examples that each have a single small error. Each error is an example
of a kind of mistake \\'c often make :

/I no : include here
int main{)
(

)

cout « "He llo, World!\n" ;
return 0;

We didn't include something to tell the compiler what cout was, so the compiler
complains. 1b correct that, let's add a header file:

#include "std_facilities .h"
int main O
(

)

co ut « "Hello, World !\n";
return 0;

2 .3 COMPILATION

Unfortunately, tllC compiler again complains: we misspelled sld_Iib_facilities. h.
The compilcr also objects to this:

#include "std_lib_facilities. h"
int mainO
(

cout « "Hello, World!\n ;
return 0;

We didn'ttenrunate lhe string with a n. The compiler also objects to this :

#include "std_lib_facilities. h"
integer mainO
(

)

(out « "He llo, World !\nn;
return 0;

~nle abbreviation int is used in C++ rather than the word integer. The compiler
doesn't like lhis either:

#include "stdJi b_faci lities. h"
inl mainO
(

(out < "Hello, World!\n";
return 0;

We used < (the less-than operator) rather than « (the output operator). The
compiler also objects to this:

#include "std_lib_facilities.h"
int mainO
(

)

(out « 'Hello, World!\n ';
return 0;

We used single quotes rather than double quotes to delimit the string. Finally, the
compiler gives an elTOr for this:

49

50

#include "std_lib_facilities. h"
inl mainO
{

)

coul « "Hello, World!\n"
return 0;

CHAPTER 2 • HElLO, WORLD!

We forgol to terminate the output statement with a semicolon. Note that many
C++ statements are terminated by a semicolon (;). The compiler needs those
semicolons to know where olle statement ends and the next begins. "n Iere is no
really short, fully correct, and nontechnical way of summarizing where semi­
colons arc needed. For now, just copy our patlern of usc, which can be summa­
rized as: "'Put a semicolon after every expression that doesn't end with a right
curly brace (})."

Why do we spend twO pages of good space and mil1Ules of your precious
lime showing you examples of trivial errors in a trivial program? To make the
point that YOli - like all programmers - will spend a lot of time looking for errors
in program source text. Most of the time, we look at text with errors in it. After
all, if we were convinced that some code was correct, we'd typic.1.lIy be looking at
some other code o r taking the time off. It came as a major surprise to the early
computer pioneers that they were making mistakes and had to devote a m.yor
portion of their time to finding them. It is still a surprise to most newcomers to
programmmg.

When you progra m, you' ll gct quite annoyed with the compiler at limes.
Sometimes it appears to complain about unimportant details (such as a missing
semicolon) o r about things you consider "obviously right.n However, the COIll '

piler is usually right : when it gives an error message and refuses to produce ob­
ject code from yOllr source code, there is something not quite right with your
program; that is, the meaning of what you wrote isn't precisely defined by the
C++ standard.

The compiler has no COIlUTIon sense (it isn't human) and is very picky about
details. Since it has no common sense you wouldn' t like it to try to guess what
YOll meant by something that "looked OK" but didn't conform to the definition
of C++. If it did and its guess was different from YOllrs, you could end up spend·
ing a lot of time trying to figure out why the program didn't do what you thought
yO Li had told it to do. W hen all is said and done, the compiler saves us from a lot
of self-inflicted problems. It saves us from many more problems than it causes.
So, please remember: the compiler is your friend ; possibly, the compiler is the
best friend yOll have when you program.

2.4 LI N KI NG

2.4 Linking
A program usually consists of several separate parts, often developed by difTerem
people. For example, the "Hello, World!" program consists of the part we wrote
plus pans of the C++ standard library. 111ese separate parts (sometimes called
Inmslalioll III11~S) must be compiled and the resulting object code filcs must be
linked together to fonn an executable program. The program that links such
parts together is (unsurprisingly) called a linker:

C++ source code:
hello_world.cpp

~
C++ compiler

Object code from the

Object code: ~ C++ standard library:

hello_world.obj ostream.obj

~ Linker
/

Executable program: ~ hello_world.exe

Please note that object code and executablcs arc no/ portable among systems. For
example. when you compile for a Windows machine, you get object code for
Windows that will not run on a Linux machine.

A library is simply some code - usually written by others - thaI we access
using declarations found in an #included file. A d£c/aralion is a program statement
specifying how a piece of code can be used ; we'll examine declarations in detail
b'e, (e.g. , §4.5.2).

EITOrs found by the compiler arc called {ompile-lime errors, errors fOllnd by the
linker arc called IiIlR -lime errors, and errors not found until lhe program is run arc
called nm-hme errors or logic em:nJ. Generally, compile-time errors arc easier to Ull ­

derstand and fix than link-lime errors, and link-time errors arc of len easier to
find and fix than nm-time errors and logic errors. In Chapter 5 we discuss errors
and the ways of handling them in greater detail.

51

52 (HAPTER 2 • H EllO, WORLD!

2.5 Programming environments
To program, we usc a programming language. \lVc also lISC a compiler to trans­
late ollr source code into object code and a linker to link Ollf object code into an
executable program. In addition, we lISC some program to e nler OLlI' source code
text into the computer and to edit it. lncsc arc just the first and most crucial
tools that constitute ollr programmer's tool sct o r "program development c!lvi­
ronmcnl.n

If you work from a command-line window, as many profess ional program·
mers do, you will have to issue the compile and link conmlands yourself. tr in­
stead you lISC an IDE ("interactive development environment" or "integrated
development environment"), as many professional programmers also do, a sim­
pic dick on the correct bulton will do the job. Sec Appendix D for a description
of how to compile and link on your C++ implementation.

IDEs usually include an editor with helpful features like color coding to help
distinguish between comments, keywords, and Olher parts of your program
source code, plus o ther facilities LO help you debug your code, compilc it, and nUl

it. Debu{g7'ng is the activity of finding crrors in a program and removing them;
you'll hear a lo t about that along the way.

In this book, we use Visual C++ from Microsoft as our example program
development ellvironment. If we JUSt say "the compiler" or refer to parts of "the
I DE," that's the system we are referring to. However, you can lise any system
that provides an up-to-date. standards-conforming implementation of C++. Most
of what we say will, with very minor modific..'l tions, be true for all implementa­
tions of C++, and lhe code will run everywhere. In oLir work, we Lise several dif­
ferelll implementations .

....;' Drill

So far we have talked about programming, code, and tools (such as compilers).
Now YOll have to get a program to run. This is a crucial point in this book and in
leanting to program. This is where you start to develop practical skills and good
programming habits. The exercises for this chapter arc focused on gelting you ac­
quainted with your software development environment. Once you get the
"Hello, World!" program to nm, you will have passed the first major milestone
as a programmer.

TIle purpose of a drill is to establish or reinforce your practical programming
skills and give you experience wilh programming environment tools. Typic..-uly, a
drill is a sequence of modifications to a single program, "growing" it from some­
thing completely trivial to something that might be a useful part of a real pro·
gram. A traditional set of exercises is designed to tcst your initiative, cleverness,
or invemiveness. In contrast, a drill requires little invention from YOll. Typically,

CHAPTER 2 DRill

sequencing is crucial, and each individual step should be easy (or even trivial).
Please don't try to be clever and skip steps; on average that will slow you down
or even confuse you.

You might think you understand everything you read and everyth ing your
Memor or instructor told you, but repetition and practice arc necessary to de­
velop progranuning sltills. In this regard, programming is like athJctics, music,
dance, or any skill-based craft. Imagine people trying to compete in any of those
fields without regu lar practice. You know how well they would perform. Con­
stant practice - for professionals that means lifelong constant practice - is the
only way to develop and maintain a high·level practical skill.

So, never skip t.be drills, no matter how tempted you are; they arc essential to
the learning process. Just start with the first step and proceed, testing each step as
you go to make sure you arc doing it right.

Don't be alarmed if you don't understand every detail of the syntax you are
using, and don't be afraid to ask for hcJp from instructors or friends. Keep going,
do all of the drills and many of the exercises, and all will become clear in due
mile.

So, here is your first drill:

1. Go to Appendix D and follow the steps required to set up a project. Set
up an empty, console C++ project called hello_world.

2. 1")rpe in hello_world .cpp, exactly as specified below, save it in your prac-
tice directory, and include it in your hello_world project.

#include "sld_lib_facililies.h"
int mainO /I C-+--+- programs start by execuling the funClion main
{

cout « "Hello, World!\n"; 1/ Oulrul "Hello, World!·
keep_window_openO; 1/ wail for a character to be entered
return 0;

111e call to keep_window_openO is needed on some Windows ma­
chines to prevent them from closing the window before you have a
chance to read the output. This is a peculiarity/feature of Wmdows, nOt
of C++. We defined keep_window_opeIlO in std_lib_racilities. h to sim­
plify writing simple text programs.

How do YOll ftnd std_lib_racilities .h? If you are in a course, ask your
instructor. If not, download it from our support site www.strowtrup.comf
Programming. But what if you don' t have an instructor and no access
to the web? In that case (only), replace the #include directive with:

#include<ioslream>
#include<String>
#include<vectoD

53 ~

I ..
#include<algorithm>
#indude<cmath>
using namespace sid ;

CHAPTER 2 • Hel lO, WORLD !

inline void keep_window_ope nO (char Chi cin» chi)

TIlis uses the standard library directly, will keep you going until Chapter 5,
and will be explained in detail later (§8.7).

3. Compile and run the "Hello, World!" program. QyilC likely, something
didn't work quite right h very rarely docs for a first attempt to use a
new programming language or a new programming environment. Find
the problem and fix it ! lfiis is a point where asking for help from a morc
experienced person is sens ible, but be sure to understand what you are
shown so that you can do it all by yourself before proceeding further.

4. By now, you have probably encountered some errors and had LO correct
them. Now is the time to get a bit better acquainted with YOUT compiler's
error-detection and crror-reporting facili ties! Try thc six crrors from §2.3
to scc how your programming cnvironmcnt rcacts. ~nlink of at least five
more errors you might have made typing in your program (e.g., fo rget
keep_window_openO, leave the Caps Lock key on while typing a word,
or type a comma instead of a semicolon) and try each to see what hap­
pens when you try to compile and run those versions.

Review

The basic idea of these review questions is to give you a chance to see if you have
noticcd and understood the key points of the chapter. You may have to fder back
to the tcxt to answer a qucstion ; that's nonnal and expectcd. You may have to
reread wholc sections; that too is nonnal and expectcd. Howcver, if you have to

reread thc wholc d lapter 0 1' have problems with every revicw question, you
should consider whcther yOllr style of lcanung is effectivc. Arc you reading too
fast? Should yOll SLOp and do some of dIe Try this suggestions? Should you study
with a fricnd so dlat you can discuss problems with thc explanations in the text?

l. What is the pu rpose of the "Hcllo, World! " program?
2. Name the four pans of a function.
3. Namc a function dlat must appear in cvery C++ program.
4. In dIe "Hello, World!n program, what is thc purpose of dIe line return O;?
5 . \"'hat is the purpose of the compiler?
6. What is dIe purpose of the #i nclude directivc?
7. \Vhat docs a .h suffix at the cnd of a rue nillIlC signify in C++?
8. What docs the linker do for your program?
9. What is the difference between a source file and an object fi le?

10. W hat is an IDE and what docs it do for you?
II . If you understand everything in the textbook, why is it necessary to

practice?

(HAPTER 2 EXERCISES

Most review questions have a clear answer in the chaptcr in which they appear.
Howevcr, we do occasionally include questions to remind you of relcvalll infor·
mation from other chaptcrs and sometimes even relating to thc world outside this
book. We consider that fair; there is more to writing good software and thinking
about the implications of doing so than fits into an individual chapter or book.

Terms

TIlese terms present the basic vocabulary of programming and of C++. If you
want to understand what people say about programming topics and to articulate
your own ideas, you should know what each means.

/I cxecutable mainO
« function object code
C++ header output
comment IDE program
compiler #include source corle
compile·time error library statement
cout linker

You might like to gradually develop a glossary written in yOUT own words. You
can do that by repeating exercise 4 below for each chapter.

Exercises

We list drills separatcly from exercises ; always complete the chaptcr drill before
anempting an exercise. Doing so \viU save you time.

1. Change the program to output the twO lines

Hello, programming!
He re we go!

2. Expanding on what you have learned, write a program that lists the in·
structions for a computer LO find the upstairs bathroom, discussed in
§2. 1. Can you think of any more steps that a person would assume, but
that a computer would not? Add them to your list. This is a good start in
"thinking like a computer." Warning: For most people, "go to the bath­
room" is a perfectly adequate instruction. For someone with no experi­
ence with hOllses or bathrooms (imagine a stone-age person, somehow
transported into your dining room) the list of necessary instructions
could be very long. Plcase don't use more than a page. For the benefit of
thc reader, you may add a short description of the layout of thc housc
YOll are imagining.

3. Write a description of how to gel from thc from door of your dorm room,
apartment, house, whatever, to the door of your classroom (assuming you

55

CHAPTER 2 • HelLO, WORLD !

are attending some school ; if you are nOt, pick another target). Have a
friend try to follow the instructions and annotate them with improve­
ments as he or she goes along. To keep friends, it may be a good idea to
"field lest" those instmctions before giving them to a friend .

4. Find a good cookbook. Read the instmctions for baking blueberry
muffins (if you are in a country where "blueberry muffins" is a strange,
exotic dish, usc a more familiar dish instead). Please note that with a bit
of help and instruction, most of the people in the world can bake deli·
cious blueberry muffins. It is not considered advanced or difficuh fine
cooking. However, for the author, few exercises in this book arc as diffi­
cult as this one. It is amazing what you can do with a bit of practice.

Rewrite those instmctions so that each individual action is in its own
numbered paragraph. Be careful to list all ingredients and aU kitchen
utensils used at each step. Be careful about crucial details, such as
the desired oven temperature, preheating the oven, the preparation
of the baking sheet, the way to time the cooking, and the need to
protect your hands when removing the mufTins from the oven.

Consider those instmctions from the point of view of a cooking
novice (if you arc not one, get help from a friend who docs not know
how to cook). Fill in the steps that the book's author (almost cer·
tainly an experienced cook) left out for being obvious.

Build a glossary of terms used. (\'\'hat's a muffin pan? What docs
preheat do? What do you mean by "oven"?)

Now bake some muffins and enjoy your results.

5. Write a definition for each of the terms from "Tenus." First cry to sec if you
c."ln do it without looking at the chapter (not likely), lhen look through the
chapter to ftnd defmitions. You might find the difference between your first
attempt and the book's version interesting. You might consult some suit­
able online glossary, such as w\V\v.rcsearch.att.comJ-bs/glossary.html. By
writing your own defmition before looking it up, you reinforce the learning
you achieved through your reading. If you have to reread a section to form
a definition, that just helps you to understand. Feel free to usc your own
words for the definitions, and make the definitions as detailed as you think
reasonable. Often, an example after the main definition will be helpful. You
may like to store the definitions in a file so thm you c.'ln add to them [rom
the "Tenus" sections oflater dlapters.

CHAPTER 2 PO STSCRIPT

Postscript

What's so important about the "HeUo, World !" program? Its purpose is to get us
acquainted with the basic tools of programming. We tend to do an extremely
simple example, such as "Hello, World! ," whenever we approach a new tool.
That way, we separate our learning into two parts: first we learn the basics of our
tools with a trivial program, and later we learn about marc complicated pro­
grams without being distracted by our tools. Lcaming the tools and the language
simultaneously is far harder than doing first one and then the other. This ap­
proach to simplifying leaming a complex task by breaking it into a series of small
(and more manageable) steps is not limited to programming and computers. It is
common and useful in most areas of life, especially in those that involve some
practical skil l.

57

1-
r 3

Objects, Types, and Values

"Fortune favors the prepared mind."

- louis Pasleur

T his chapter illlroduces the basics of sLOring and using data

in a program . To do so, we first conCClllratc on reading in

data from the keyboard. After establishing me fundamental no­

tions of objects, types, values, and variables, we introduce several

operators and give many examples of usc of variables of types

char, int , double , and string.

59

60 CHAPTE R 3 • OBJEC TS, TYPE S, AND VALUES

3.1 Input

J.2 Variables

3.3 Input and type

3.4 Operations and operators

J.S Assignment and initialization
3.S.1 An eumple: delete repeated

words

3.1 Input

3.6 Composite assignment operators
1.6.1 An e.u.mple : count repealed words

3.7 Names

3.8 Types and objects

3.9 Type safe ty
3.9.1 Safe conversions
3.9.2 Unsafe conve rsions

The "Hello, World! " program just writes to the screen. h produces Olltpul. It
docs not read anything; it does not get input from its lIscr. llmt's rather a bore.
Real programs lcnd to produce results based on some input we give .. hem, rather
than just doing the same thing each time we execute them.

To read something, we need somewhere to read into; that is, we need some­
where in the computer's memory to place what we read. We call such a "place"
an object. An object is a region of memory with a type that specifics what kind of
information can be placed in il. A named object is called a uariable. For example,
character strings are put mto string variables and integers are put into inl vari­
ables. You can think of an object as a "box" into which you can put a value of the
object's type:

inl :

age : I 42

This would represent an object of lype inl named age containing the integer
value 42. Using a string variable, we can read a string from input and \vnte it out
again like this:

II read and write a fi rst n,1me
#include "sld_lib_facililies.h"

int mainO
{

cout « "Please enter your first name (fo llowed by 'enter'):\n";
string firsC name; /I firs t_name is a variablc of typc string
cin » fi rst_name; /I read characters into firs,-narnc
cout « "Hello, "« firsCname« "!\n";

}

].1 INPUT

The #include and the main O are familiar fr0111 C hapter 2. Since the #include is
needed for all our programs (up to Chapter 12), we'll leave it out of our presen­
tation to avoid distraction. Similarly, we'll sometimes present code that will work
only if it is placed in main () or some other function by itself, like this:

co ut « "Please enter your first name (followed by 'enler'):\n";

'We assume that you can figure out how to put such code into a complete pro­
gram for tcsting.

111e fi rst line of mainO simply writes out a message encouraging the lIser to

emer a first name. Such a message is typically called a prompt because it prompts
lhe user to take an action. 111e next lines define a variable of type string c.'llled
firs,-name, read input from the keyboard into that variable, and write out a
greeting. Let's look at those three lines in turn :

string firsCname; 1/ first_name is a variable of type string

l 1lis sets aside an area of memory fo r holding a string of characters and gives it
the name first_name:

siring:
firs,-name : I

'------'

A statement that introduces a new name into a program and sets aside memory
for a variable is c.1.lled a dqinitiou.

"n e next line reads characters from input (the keyboard) into that variable:

dn »first_name; 1/ read characters into name

"111e name dn refers to the standard input stream (pronounced "sec-in," for
"character input") defi ned in the standard library. 111e second operand of the »
operator ("get from") specifics where that input goes. So, if we type some fi rst
name, say Nicholas, followed by a newline, the string "Nicholas" becomes the
value of first_name:

siring:
firs,-name : I Nicholas I

111e newline is necessary to get the machine's attention. Until a newl ine is ell­
tered (the Enter key is hit), the computer simply collects characters. 11ml "delay"
gives you the chance to change your mind , crase some characters, and replace

61

.2 CHAPTER 3 • OB JE CT S, TY PE S, AND VA LUES

them with others before hitting Enter. The newline will not be part of lhe string
sto red in memory.

H aving gotten the input string into fi rsCname, we can usc it :

co ul « "Hello,"« firsCname « "!\n ";

This prints Hello, followed by Nicholas (the value of fir sC name) followed by !

and a newline ('\n') on the screen:

Hello , Nicho las!

If we had liked repeti tion and extra typing, we could have written three separate
a lilpUl statements instead:

co ut « "Hello, It ;

co ul « fi,sCnamc;
co ut «"!\n";

However, we arc indifferent typists, and - morc importantly - strongly dislike
needless repetition (because repetition provides opportunity fo r errors), so we
combined those three output operations into a single sta tement.

Note the way we usc quotes around the characters in "Hello, " bu t not in
rirst_name . We usc quotes when we want a literal string. When we don 't quote,
we rerer to lhe value or something with a name. Consider:

cout « "fir st_name" « M is " «first_name ;

Here, "firs t_name " gives us the ten characters firscname and plain firsc name
hrives us the value o r the variable firsCname, in this case, Nicho las. So, we get

first_name is Nicholas

3.2 Variables
Basically, we can do nothing or interest with a compu ter without slOring data in
memory, the way we did it with the input string in the example above. ~111e
"places" in which we store data are called oldectJ. 1'0 access an object we need a
lIome. A named object is called a variable and has a specific IyJM (such as inl or
string) that determines what can be put into the object (e.g., 123 can go into an
int and "Hello, World!\n" e'111 go illlo a siring) and which operations can be ap'
plied (e.g., we can mu ltiply inls using the · operator and compare strings lIsing
the <= operator). The data itellls we put into va riables arc called vallleJ. A smte-

3. 2 VAR IABLES

melll that defines a variable is (unsurpris ingly) called a dejillitiQTl, and a dermition
can (and usually should) provide an initial value. Consider

string name = "Annemarie ";
int numbe r_o Csteps = 39;

You can visualize these variables like this ;

int; string ;

numbe r_oCste ps ; 39 name ; I Annemarie I
You cannot pul values o f the wrong type into a variable ;

string name2 = 39; /I error: 39 isn't a string
int number_oCsteps = "Annemarie "; /I error: "Anne marie'" is not an int

~nle compiler remembers the type of each variable and makes sure that you use
it according to its type, as specified in its definition.

C++ provides a rather large nu mber Of lype5 (sec §A.8). However, yOLl can
write pelfecl1y good progrruns using only five of those:

int numbe,_o Csteps = 39;
double fl yin&-time = 3.5;
char decimal_point = '. ';
string name = "Annemarie ";
bool tap_on = true ;

/I int for integers
/I double for floating-point numbers
/I char for individual characters
/I string for character strings
/I bool for logical variables

TIle reason for the name d ouble is historical: double is short fo r "double­
precision floating point." Floating point is the computer 's approximation to the
mathematical concept of a real number.

Note I1mt each of these types has its own characteristic sty le of literals:

39
3.5

"
"Ann ema,ie n

Clue

/I int : an integer
II double: a floating-point number
II char: an individual character enclosed in single quotes
II sIri ng: a sequence of characters delimited by double quotes
/I bool : e ither true or false

That is, a sequence of digits (such as 1234, 2, or 976) denotes an integer, a single
character in single quotes (such as '1', '@', or 'x') denotes a character, a sequence
of digits with a decimal point (such as 1.234, 0_12, or _98) denotes a floating-point
value, and a sequence of characters enclosed in double quotes (such as "1234",
"Howdy! ", or "Annemarie ") denotes a string. For a detailed description of literals
see §A.2.

63

64 CHAPTE R 3 • OB JECTS, TYPES. AND VALUE S

3.3 Input and type
The input operation » ("gel from") is sensitive to type; that is, it reads according
to the type of variable you read into. For example:

/I read name and age

int mainO
{

coul « "Please ente r your first name and age\n" ;
string first_name; II string variable
int age; 1/ integer variable
cin » firsCnamc; II rcad a string
cin » agc; /I read aI' ir,tcgcr
coul« "Hello, " «firsCname « " (age " « age « ")\n " ;

)

So, if you type in Carlos 22 the » operator will read Carlos into firsCname, 22
into age, and produce this output:

Hello, Carlos (age 22)

Why won 't it read (all of) Carlos 22 into firsC name? Because, by convention,
reading of strings is terminated by what is called whikspace, that is, space, newline,
and lab characters. Othenvise, whitespace by default is ignored by » . For exam­
ple, you can add as many spaces as you like before a number to be read ; » will
j ust skip past them and read the number.

Ir you type in 22 Carlos, you' ll see something that might be surprising until
you think about it. The 22 will be read into firsCname because, aft er all, 22 is a
sequence of characters. On the other hand, Carlos isn't an integer, so it will not
be read . 111e output will be 22 followed by some random number, such as -%739
or o. Why? You didn't give age an initial value and you didn't succeed in reading
a value imo it. Therefore, you get some "garbage value" that happened to be in
that part of memory when you started executing. In §10.6, we look at ways to
handle "input fonnat errors." Fo r now, let's just initialize age so that we get a pre­
dictable value if the input fail s:

/I read name and age (2nd version)

int mainO
{

cout « "Please enter you r fi rst_name and age\n";

J .J IN I)UT AND TYPE

)

string firscname = "???"; II string variable
II (U???'" means Ndon'(know the nameN)

int age = - 1; II inleger variable (- 1 means Ndon', know the age")
cin » fi rsCname» age ; II read a string follO\ved by an integer
cout « "He llo,"« firsCname«" (age"« age« ")\n ";

Now the input 22 Carlos will output

Hello 22 (age -1)

Note thm we can rcad several values in a single input statement, just as we can write
several values in a single output statement. Note also thm « is sensitive to type, just
as » is, so we can output the int variable age and the character literal '\n' as weU as
the string variable fi rscname and the string literals "Hello, " and " (age ".

A string read using » is (by default) lerminaLCd by whitespace; that is, it
reads a single word. But sometimes, we want to read more than one word . 111ere
arc of course many ways of doing this. For example, we can read a name consist­
ing of two words like this:

int main()
(

)

cout « "Please enter your first and second names\n";
string fi rst;
Siring second ;
cin » firsl » second; /I read two strings
coul « "He llo, " «first « ' '« seco nd « '\n';

We simply used » twice, once for each name. When we want LO write the names
to output we must insen a space between them.

TRY THIS

Get the "name and age" example to run. Then, modify it to write out the age
in months: read the input in years and multiply (using the · operaLOr) by 12.
Read U1C age into a double to allow for children who can be very proud of
being 5.5 years old rather than just 5.

65

66 CHAPTER 3 • OBJECTS, TYPE S, AND VALUES

3.4 Operations and operators
In addition La specirying what values can be stored in a variable, the type or a
variable detcnnincs what operations we can apply to it and what they mean. For
example:

int count ;
ci n »count;
string name;
d n » name;

int c2 = count+2;
string 52 = name +" Jr. ";

int c3 = co unt-2;
string 53 = name - "Jr. ";

1/ » reads an integer into count

1/ » reads a string inlo name

/I + .. dds integers
/I + appends characters

1/ - subtracts integers
/I error: - isn't defined for strings

By "error" we mean that the compiler will reject a program trying LO subtract
strings. The compiler knows exactly which operations can be applied to each vari­
able and can therefore prevent many mistakes. However, lhe compiler doesn't
know which operations make sense to you for which vaJues, so it will happily ac­
cept legal operations that yield results that may look absurd LO you. For example:

int age = - 100;

It may be obvious to you that you can' t have a negative age (why not?) but no­
body told the compiler, so it 'll produce code for that definition.

Here is a table of useful operators for some common and useful types:

assignment

addition

concatenation

subtraction

multiplication

division

remainder (modulo)

increment by 1

decrement by 1

increment by n

bool

=

char

=

int

=
+

•
I
%

++

+= n

double string

= =
+

+

•
I

++

+= n

3 .4 O PERAT IO NS AND O PE RATOR S

boo! char int double siring

add 10 end +=

decremenl by n - = n - = n
multiply and assign "= "=

divide and assign 1= 1=

remainder and assign %=
read from s into x s » x s » x s » x s » x s » x
wrile x 10 s s « x s«x s « x s« x s « x
equals == == == == ==
not equal != != != != !=
greater than > > > > >

greater than or equal >= >= >= >= >=

less than < < < < <

less than or equal <= <= <= <= <=

A blank square indicates that an operation is not dirccliy available for a lype
(dlOugh there may bc indirect ways of using that operation; see §3.7), We' ll ex­
plain these operations, and more, as we go along. The key points here are lIlal
there are a lot of useful operators and that their meaning tends to be the same for
similar lypeS.

Let 's try an example involving floating·point numbers:

/I simple program 10 exercise operators
int mainO
{

)

coul « "Please e nter a floating-po int valu e : It;

double n ;
ci n » n ;
caul «"n == "« n

«''\on+1 == " « n+1
« ''\othree times n == " « 3* n
« "\n twice n == " « n+n
« "\nn squared == "« n · n
« ''\ohalf of n == " « nf1

«"\nsq uare root of n == " «sqrt(n)
«endl ; II another na me for newline ("end of line")

Obviously, the usual arithmetic operations have their usual notauon and mean­
ing as we know them from primary school. Natura1ly, nOl everythillg we might

.7

.. CHAPTER 3 • O BJE C TS, TYPE S, ANO VAL U ES

want to do to a noating-point number, such as taking iLS square root, is available
as an operaLOr. Many operations are represcmcd as named functions. In this case,
we usc sqrt O from the standard library to gCllhc square roOt of n: sqrl(n). TIle
notation is familiar from math. We'll lISC functions along the way and discuss
them in some dcwil in §4.5 and §B.S .

TRY THIS

Get this little program to run. Then, modify it to read an int rather than a
double. Note that sqrt O is nO[dermed for an int so assign n to a double and
take sqrlO of that. Also, "exercise" some other operations. NOte lhal for ints I
is integer division and % is remainder (moduJo), so that 512 is 2 (and nOt 2.5
or 3) and 5%2 is 1. The definitions of integer · , I, and % guarantee that for
two positive ints a and b we have alb • b + a%b == a .

Strings have rewer operators, bUl as we'll see in Chapter 23, they have plenty or
named operations. However, the opc rdtors they do have can be used conventio n­
ally. For example:

/I read first and second name
int main O
{

)

cout « "Please ente r your first and second names\n" :
string fir st;
string second;
d n » first » second ;
siring name = fir st + ' , + second;
cout « "Hello, "« name« '\n ' ;

/I read Iwo strings
/1 concatenate stri ngs

For strings + means concatenation ; that is, when sl and s2 arc strings, sl +s2 is a
string where the characters rrom sl arc rollowed by the characters rrom s2. For
example, ir s l has the value "Hello" and s2 the value "World" then sl +s2 will
have the value "HelioWorld", Comparison or strings is particularly userul :

II read and compare names
int mainO
{

coul « "Please enter two names\n";
siring first;
string second:
ci n » first » second ; /I read two strings
if (fir st == seco nd) co ut « "that's the same name twice\n";

3.5 A SSICNMENT AND INITIALIZATION

if (first < second)
cout « first«" is alphabetically before " « second «'\n':

if (first > second)
cout « first« " is a lphabetically afte r " «second «'\n ' :

)

Here, we used an if-statement, which will be explained in detail in §4.4.1. 1, to se·
lect actions based on conditions.

3.5 Assignment and initialization
In many ways, me most interesting operator is assignment, represel1led as =. It
gives a variable a new value. For example:

inta=3: /I a starts out with the value 3

a: 3

a = 4: /I a gets the value 4 ("becomes 4")

"' I 4

intb=a; /I b Slarts oul wilh a copy of a's value (that is, 4)

a: 4

b: 4

b = a+5: /I b gets the value a+5 (that is, 9)

a : 4

b : 9

a = a+7; /I a gelS the va lue a+7 (thai is, 11)

a: 11

b : 9

11mt last assignment deserves notice. First or all it clearly shows that = does not
mean equals - clearly, a does n't equal a+7. It means ass ignmelll, that is, to place
a new value in a variable. What is done ror a=a+7 is the rollowing:

I. First, get the value of a ; that's the integer 4.

2. Next, add 7 to that 4, yielding the illlegcr II .

3. Finally, put that II into a.

••

70 CHAPTE R 3 • OBJECTS , TYPE S, AND VALUES

"Ve can also illustrate assignments using strings:

siring a = "alpha"; /I a starts oul with the value ualpha ~

a: I alpha

a = "bela"; /I a gets the value "beta ~ (becomes ~ beta")

a: I beta

siring b = a; 1/ b starts out with a copy of a's value (that is, "bela")

a : bela

b: bela

b = a+"gamman
; II b gets the value a+"gamma" (that is, "bctagamma")

a : bela

b: belagamma

a = a+"delta"; /I a gels the value a+"dclta" (that is, "betadclta")

a : betadelta

b: betagamma

Above, we usc "starts oU(with" and "geLS" to d istinguish twO similar, but logi­
cally distinct, operations:

Initialization (giving a variable its initial value)

Assignment (giving a variable a new value)

These operations arc so similar lhat C++ allows us to usc the same notat ion (the
=) fOT both:

inty = 8;
)(= 9;

string t = "howdy! " ;
s = "G'day";

/I initialize y with 8
/I assign 9 to x

/I initiali ze I with "howdy!~
II assign "G'dayN to s

However, logically assignment and initialization are d ifferent. You can tcllthe two
apart by the type specification (like inl or siring) that always starts an initializa­
tion ; an assignment does not have mal. In principle, an initialization always fi nds

3 .5 ASSIGNMENT AND IN ITI ALIZATI ON

the variable empty. On the other hand, an assigmnent (in principle) must clear
out the old value from the variable before puuing in the new value. You can
think of the variable as a kind of small box and the value as a concTCte thing,
such as a coin, that you put into it. Before initialization, the box is empty, but
after initialization it always holds a coin so that to put a new coin in, you (i.e., the
assignment operator) first have to remove the old one ("destroy the old value") -
and you cannot leave the box empty. Things are not quite this literal in the com­
puter's memory, but it's not a bad way of thinking of what's going on.

3.5.1 An example: delete repeated words
Assignment is needed when we want to put a new value into an object. When
you think of it, it is obvious that assignment is most useful when you do things
many limcs. \lVe need an assignment when we want to do something again with a
different value. Let's have a look at a little program that detects adjacent repeated
words in a sequence of words. Such code is part of most grammar checkers:

inl mainO
{

Siring previous =" "; II previous word; initial ized to Hnot a word"
string curre nt ; /I currenl word
while (cin>>eurrenl) { /I read a stream of words

if (previo us == curre nt) II check if the word is the same as lasl
cout « "repeated wo rd : "« current « '\n' ;

previo us = current;
)

This program is not the most helpful since it doesn't tell where the repeated word
occurred in the text , but it 'U do for now. We will look at this program line by line
starting with

siring Current; /I current word

11lis is the string variable into which we inunediatcly read the current (i.e. , most
recently read) word using

while (cin>>eurre nt)

-Ibis ConSlnlct, called a while-st.1.tement, is interesting i.n its own right, and we'U ex­
ami.ne it further in §4.4.2. 1. '11e while says that t.he statement after (cin»curre nt)
is to be repealed as long as the input operation cin>>eurre nt succeeds, and
cin»current will succeed as long as there are characters to read on the st.andard

71

72 (HAPTER 3 • O BJECTS, TYPES. ANO VAL UES

input. Remember that for a string, » reads whitespace-scparatcd words. You ter­
minate this loop by giving the program an end-oC-input character (usually referred
to as end "file). On a Windows machine, lhat's C trl+Z (Control and Z pressed to­
gether) foUowoo by an Enter (return). On a Unix or Linux machine that 's CLTl+D
(Control and D pressed lOgether).

So, what we do is to read a word into current and men compare it to the pre­
vious word (stored in previo us). U they aTC the same, we say so:

if (previou s == current) II check if the word is the same as last
cout « "repeated word : "« curre nt « '\n ';

111cn we have to get ready to do this again for the next word. We do that by
copying the cune nt word into previous :

previous = current i

This handles all cases provided that we can get started. 'What should this code do
for the first word where we have no previous word to compare? 111is problem is
dealt with by the definition of previo us :

st ring previous =" "; /I previous word; ini tia lized to "not a word"

·nle " " contains only a single character (the space character, the one we get by
hitting the space bar on our keyboard). Tbe input operator » skips whitespace,
so we couldn't possibly read that from inpul. 111crcfore, the first time through
the whil e-statement, the test

if (previous == current)

fail s (as we wam it to).

One way of understanding program now is to "play computer," that is, to fol­
low the program line for line, doing what it specifies. Just draw boxes on a piece
o f paper and write their values into them. Change the values stored as specified
by the program.

TRY THIS

Execute this program yourself using a piece of paper. Use the input "The cat cat
jumped". Even experienced programmers use this technique to visualize the ac­
tions of small sections of code that somehow don't seem completely obvious.

1.6 COMPO SITE AS SIGNMENT OPERATORS

TRY THI S

Get the "repeated word detection program" to run. Test it with the sentence
"She she laughed He He He because what he did did nol look very very
good good". How many repeated words were there? Why? "What is the defi­
nition of word used here? What is the definition of repealed word? (For exam­
ple, is "She she" a repetition?)

3.6 Composite assignment operators
incrementing a variable (that is, adding I to it) is so common in programs that
C++ provides a special syntax for it. For example:

++counler

means

counle r = counle r + 1

lllerc are many other common ways of changing lhe value of a variable based on
its currem value. For example, we mighllike to add 7 to it, to sublract 9, or to mul­
tiply it by 2. SUdl operations are also supported directly by C++. For example:

a += 7;
b-=9;
c 0= 2;

/1 means a = <1+7

/I means b == b-9
/I means c == c·2

In general, for any binary operator oper, a oper= b means a = a oper b (§A.5).
For starters, thal rule gives us operators +=, -=, °= ,1=, and %=. This provides a
pleasantly compact notation that directly reflects our ideas. For example, in Illany
application dOlllains 1= and %= are rderred to as "scaling."

3.6.1 An example: count repeated words
Consider the example detecting repeated adjacent words above. We could im­
prove that by giving an idea of where the repeated word was in the sequence. A
simple variation of that idea simply counts the words and ou tpu ts the count for
the repeated word :

inl mainO
{

73

74

)

C HAPTER 3 • OBJECTS, TYPE S, ANO VA LUES

inl number_oCwords = OJ
string previous = .. "; 1/ nol a word
Siring current;
while (cin»current) {

)

++number_oCwords; /1 increase word count
if (previous == currenl)

coul« "word numbe r n « number_oCwords
«" repeated : "« current « '\n';

previous = current;

We start our word counter at O. Each time we sec a word, we increment that
counter:

111al way, the first word becomes number 1, the next number 2, and so on. We
could have accomplished the same by saying

number_oCwords += 1:

or even

but ++nurnber_oCwords is shorter and exprcsses the idea of incrementing directly.
NOle how similar this program is to the Olle from §3.5.1. O bviously, we juSt

took the program from §3.5.1 and modified it a bit to serve our new purpose.
That's a very common technique: when we need to solve a problem, we look for
a similar problem and use our solution for that with suitable modification . Don't
start from scratch unless you really have to. Using a previous version of a pro­
gram as a base for mod ification often saves a lot of lime, and we benefit from
much of the effort that went into lhe original progr,un.

3.7 Names
We name our variables so that we can remember them and refer to them from
olher parts of a program. What can be a name in C++? In a C++ program, a
name starts with a letter and contains only letters, digits , and underscores. For
example:

3 .7 NAMES

,
number_oC eleme nts
fourier_transfo rm
z2
Polygon

Tne following arc not names:

2,

limeSloSmarkel
Starl menu

II a name must start with a leUer
/I S is not a leiter, digit. or underscore
/I space is not a letter, digit, or underscore

When we say M not names" we mean that a C++ compiler will nOt accept them as
names.

If you read system code or machine-generated code, you might sec names
starting with underscores, such as _foo. ever write those yourself; such names
arc reserved for implementation and system entities. By avoiding leading under­
scores, yOll will never find your names d ashing with some name tJ13t the imple­
mentation generated.

Nallles are case sensitive ; that is, uppercase and lowercase leiters arc distinct,
so x and X arc different names.1l1is liltle program has at least four errors:

#include "std_lib_faci lities. h"

int MainO
(

}

String s = "Coodbye, cru el world ! ";
cOut « S « '\n 'i

It is usually not a good idea to define names that d iffer only in the case of a char·
acter, such as one and O ne; that will not confuse a compiler, but it call easily
confuse a programmer.

TRY THIS

Compile tJle "Goodbye, crucl world!" program and examine the error mes­
sages. Did the compiler rllld all the errors? What did it suggest as the prob­
lems? Did the compiler get confused and diagnose more tJtan four errors?
Remove the errors one by one, Starting with tJle lexically first, and see how
the error messages change (and improve).

75

76 (HAPTER J • OBJECTS, TY P ES , AND VALUES

The C++ language reserves many (about 70) names as "keywords." We list them
in §A.3. 1. You can't usc those to name your variables, types, functions, etc. For
CXillllplc:

int if=7; II error: " if" is a keyword

You can usc names of facilities in the standard library, such as string, but you
shouldn' t. Reuse of such a common name will calise trouble if YOli should ever
wam to lise the standard library :

int string = 7; 1/ this wi l l lead 10 trouble

When you choose names fo r your variables, functions, types, etc" choose mean­
ingful names; that is, choose names that will help people understand)'Qur pro­
gram. Even you will have problems understanding what your program is
supposed to do if you have liucTed it with variables with "casy to type" names
like xl , x2, s3, and p7. Abbreviations and acronyms can confuse people, so usc
them sparingly. "nlCSC acronyms wcre obvious to us when we wrote them, but we
expect you' ll havc trouble with at Icast one;

mtbf
TLA
myw
N8V

"Ve c..xpect that in a few months, we'll also have trouble with at least one.
Short names, such as x and i, arc meaningful when used conventionally ; limt

is, x should be a local variablc or a parameter (sec §4.5 and §8.4) and i should bc
a loop index (see §4.4.2.3).

Don't use overly long names; thcy arc hard to typc, makc lines so long that
thcy don't fit on a screcn , and are hard to read qu ickly. These are probably OK:

partiaCsum
e lement_count
stable_partitio n

111cse are probably too long:

the _ n umbe r_of _ eleme n ts
remainin~free_slots_jn_symboUable

Our "hollse style" is to use underscores to separate words in an identifier, such as
eleme nt_count, rather than alternatives, such as eleme ntCounl and Eleme nt­
Count. We never use names with all capital lelters, such as Al l _CA PITAl_lmERS,

J .8 TYPE S AND OBJECTS

because that 's conventionally reserved for macros (§27.8 and §A. 17.2), which we
avoid . "Ve use an initial capital letter fo r types we define, such as Square and
Graph . "111e C++ language and standard library don't use capitaileueTS, so it's inl
rather than Inl and siring rather than Siring. TIlUS, our convention helps to mini·
mize confusion between our types and the standard ones.

Avoid names that are easy to mistype, misread, or confuse. For example:

Name
foo
f1

names
fOIl
fI

nameS
fI
r;

111e characters 0, 0 , 0 , 1, I, I arc particularly prone to cause trouble.

3.8 Types and objects
TIle notion of type is central to C++ and most other programming languages.
Let's take a closer and slightly more technica1 look at types, specifically at the
types of the objects in which we store alii" data during computation. h 'U save time
in the long nm, and it may save you some confusion.

A l)1Je defines a set of possible values and a SCI of operations (for an object).

An object is some memory that holds a value of a given type.

A ualue is a set of bits in melllory interpreted according to a type.

A variable is a named object.

A dedaral;oll is a statement that gives a name to an object.

A tkjimJioll is a declaration umt sets aside memory for an object.

Infonnally, we think of an object as a box into which we can put values of a given
type. An int box can hold integers, sllch as 7, 42, and -399. A siring box can hold
character string values, sllch as "lnleroJ>erabilily", "tokens : !@#S%A&. ", and
"Old McDonald had a farm ". Graphically, we can think o f it like this:

inl a = 7; ., 7

intb =9; b, 9

char c = 'a ' ; c, ~
double x = 1.2; " I 1.2

string s1 = "Hello, World! "; 51 : I 13 Hello, World!

Siring 52 = "1.2"; s2 : 3 1.2

n

78 CHAPTER 3 • OBJECTS, TYPES , AND VAL U ES

The representation of a string is a bit more complicated than that of an int be­
cause a string keeps track of the number of characters it holds. Note that a
double stores a number whereas a string stores characLCrs. For example, x Slores
the number 1.2, whereas 52 Slores the three characters '1', ' .', and '2' .'llC quotes
for charaCler and string literals are not slared.

Every int is of the saUle size; that is, the compiler sets aside the same fixed
amount of memory for each lnt On a typical desktOp computer, that amount is 4
bytes (32 bits). Similarly, bools, chars, and doubles arc fixed size. You'll typically
find that a desktop computer lISCS a byte (8 bits) for a bool or a char and 8 bytes
for a double. Note that different types of objeclS take up different amounts of
space. In particular, a char takes up less space than an int, and string differs from
double, int, and char in that different strings take up different amounts of space.

The meaning of bits in memory is completely dependent on the type used to
access it. illink of it tltis way: computer memory doesn't know about our types ;
it's just memory. TIle bits of memory gel meaning only when we decide how thm
memory is to be illlerpreted. 111is is similar to what we do every day when we usc
numbers. What docs 12.5 mean? We don't know. It could be 512.5 or 12.5cm or
12.5gallons. Only when we supply the unit docs the Ilotation 12.5 mean anything.

For example, the very same bits of memory that represent the value 120 when
looked upon as an int would be 'x' when looked upon as a char. Iflooked at as a
stri ng, it wouldn't make sense at all and would become a run·time error if we tried
to usc it. We can illustrate this graphically like this, using I and 0 to indicate the
value of bits in memory:

I OOOOOOOO OOOOOOOO OOOOOOOO 01111000 I
~I11is is lhe selting of the bits of an area of memory (a word) that could be read as
an int (120) or as a char ('x ', looking at the rightmost 8 bits only). A bit is a unit
of computer memory that c.'l.n hold the value 0 or I. For the meaning of billmy
numbers, see §A.2. I .l.

3.9 Type safety
Every object is given a type when it is defined. A program - or a part of a pro·
gram - is type-safe when objects arc used only according to the rules for their
type. Unfortunately, there arc ways of doing operations 111m arc not type-safe. For
example, using a variable before it has been initialized is not considered type-safe:

int mainO
{

double x; II we Uforgot to initialize:
If the value of x is undefined

3 .9 TYPE SAFETY

do uble y = X;

double l = 2.0+x;
/I the va lue of y is undefined
/I the meaning of + and the value of z are undefined

An implementation is even allowed to give a hardware error when the uninitiaJiz.cd
X is used. Always initialize your variables! 'n lere arc a few - very few - exceptions
to this rule, such as a variable we inunediatcly use as the target of an input opera­
tion. but aJways to initialize is a good habit that 'U save you a lot of grief.

Complete ty pe safety is the ideal and therefore the general rule for the lan­
guage. Unfortunately, a C++ compiler cannot guarantee complete type safety,
but we can avoid type safety violations through a combination of good coding
practice and run-time checks. TIle ideal is never to usc language features that thc
compiler cannot prove to be safe: static type safety. Unfortunately, that's tOO re­
strictive fo r most interesting uses of progranuning. The obvious fallback, that the
compiler implicitly generates code that checks for type safelY violations and
c..1 tchcs all of them, is beyond C++. 'When we decide to do things that are (type)
unsafe , we must do some checking ourselves. We' ll point out sllch cases, as we
get to them.

TIle ideal of type safety is incredibly import'ant when writing code. 111m's why
we spend time on it this early in the book. Please note the pitfalls and avoid them.

3.9.1 Safe conversions
In §3.4, we saw that we couldn't directly add chars o r compare a double to an
jnt. However, C++ provides a.n indirect way to do both . When needed, a char is
converted to an inl and an inl is converted to a double . Fo r example:

char c= 'x' ;
inl il = c;
inl i2 = 'x ';

Hcre both il and i2 get the value 120, which is the il1leger value of the charaCter
'x' in the most popular 8-bit character set, ASCII. TIlis is a simple and safe way
of getting the numeric representation of a characler. We call this char-to-int can·
version safe because no infonualion is lost ; that is, we can copy the resulting int
back into a char and get the originaJ vaJue:

char c2 = il ;
cout « c« " « il «"« c2« '\n ' ;

TIlis will print

x 120 x

'" (HAPTER] • OBJECTS , TYPES , AND VALUES

In this sense - that a value is always converted to an equal value or (for doubles)
to me best approximation of an equal value - these cOllversions arc safe :

bool to char
bool to int
bool to do uble
char to inl
char to double
int to double

The most useful conversion is int to double because it allows us to mix ints and
doubles in expressions:

double dl = 2.3;
double d2 = dl+2;
if (d1 < O)

11 2 is converted to 2.0 before adding
/I 0 is converted to 0.0 before comparison

error("dl is negative");

For a really large int, we can (for some computers) sufTer a loss o f precision when
converting to double. TIils is a rare problem.

3.9.2 Unsafe conversions
Safe conversions arc usually a boon to the programmer and simplify writing
code. Unfornmatc1y, C++ also allows ror (implicit) unsafe conversions. By Ull ­

safe, we mean thai a value can be implicitly turned into a value of another type
that docs nOt equal the original value. For example:

jnt mainO
{

int a = 20000;
char c = aj
intb= cj
if (a != b)

/I try to squeeze a large in! into a small char

I/ != means ~ not equal "
cout « "oops! :" «a« "!="« b « '\n';

else
co ut « "Wow! We have large characters\n" ;

)

Such conversions are also called "narrowing" conversions, because they put a
value into an object that may be too small ("narrow") to hold it. Unfortunately,
few compilers warn about the unsafe initializmion of the char with an int. Tne

3 .9 TYPE SAFET Y

problem is that an int is typically much larger than a char, so that it ca.l1 (and in
this case docs) hold an int value that cannot be represented as a char. Try it to

see what value b gels on your machine (32 is a common result); beuer still,
experiment. :

int mainO
{

double d =0;
while (cin>>ti) (/I repeat the s!atcmCnlS below

11.15 long as we type in numbers
int i = d; /I try to squeeze a double inlo an int
char c = i; /I try to squeeze an inl into a char
in! i2 = c; /I gellhe integer value o(the character
cout « "d==" « d /I the original double

« " i=="« i /I converted to inl
«" i2==" « i2 /I in t value of char
«" char(" «c« ")\n "; /I the char

)

"n le while·statement that we use to allow many values to be tried will be ex·
plained in §4.4.2. 1.

TRY THI S

Run this program with a variety of inputs. Try small values (e.g., 2 and 3);
try large values Oarger than 127, larger than 1000); try negative values; try
56; try 89; try 128; try non·integer values (e.g. , 56.9 and 56.2). In addition to
showing how conversions from double to int and conversions from int to
char arc done on your machine, this program shows you what character (if
any) your machine will print for a given integer value.

You'll find that many input values produce "unreasonable" results. Basically, we
are trying to put a gallon into a pint pot (about 4 liters into a 500ml glass), All o f
the conversions

double to int
double to char
double to bool
int to char

81

82

int to bool
char to bool

CHAPTER 3 • O BJ ECTS. TYPE S, AND VALUES

arc accepted by the compiler even though they arc unsafe. lllCY aTC unsafe in lhe
sense that the value stored might differ from the value assigned. Why can this be
a problem? Because often we don' t suspect that an unsafe conversion is taking
place. Consider :

double x = 2.7;
II lOIs of code
int y=x; /I Y becomes 2

By the time we define y we may have forgotten that " was a do uble, or we may
have temporarily forgoucn that double-ta-int conversio n truncates (always
rounds down) rather than using lhe convcmiona14/5 rounding. What happens is
pcrfccLly predictable, but lhcrc is nothing in the int y = X; to rem.ind us that infor­
mation (the .1) is thrown away.

Conversions from int to char don't have problems with truncation - neither
int no r char can represent a fraction o f an integer. H owever, a char C;1Il hold only
very small integer values. On a PC , a char is I byte whereas an int is 4 bytes:

char: D
;nt rl :;1---'-'--'

So, we can't put a large number, such as tOOO, into a char without loss of infor­
mation: the value is "narrowed." For example:

int a = 1000;
char b = a; /I b becomes -24 (on some machines)

Not all int values have char equivalents, and the exact range of char val ues de­
pends on the particular implementation. On a PC the range of char values is
[-128: 127]. bm only [0,127] can be lIsed portably because not every computer is
a PC, and d ifferent compUiers have dilTerent ranges for t.heir char values, SUdl as
[0:255].

Why do people accept the problem o f narrowing conversions? "111e major
reason is history: C++ inherited narrowing conversions from its ancestor Ian·
guage, C, so from clay o ne of C++, there existed much code that depended on
narrowing conversions . Also, many such conversions don't actually cause prob­
lems because the values involved happen to be in range, and many programmers
object to compilers '"lelling them what to do." In particular, the problems with un-

CHAPTER 3 DRILL

sare conversions arc orten manageable in small programs and ror experienced
programmers. TIley can be a source or errors in larger programs, though, and a
sign ificant cause or problems ror novice programmers. However, compilers can
wam about narrowing conversions - and many do.

So what should you do ir you think that a conversion might lead to a bad
value? You simply check the value berore assigning as we did in the fi rst example
in th is section. Sec §5.6.4 and §7.5 ror a simplified way or doing such checking.

-./ Drill

After each step or this drill, n m your program to make sure it is really doing what
you expect it to. Keep a list or what mistakes you make so that you can try to
avoid those in the ruture.

I. This drill is to write a program that produces a sim ple ronn letter based
on user input. Begin by typing the code from §3. 1 prompting a user to
enter his or her fi rst name and writing "Hello, firsCname" where
firsCname is the name entered by the user. TIlen modiry your code as
rollows: change the prompt La "Enter the name or the person you want
to write to" and change the ampUl to "Dear first_name,". Don' t rorget
the comma.

2. Add an inrroductory line or two, like "How are you? I am fine. I miss
you." Be sure to indent the first line. Add a rew more lines or your cluX)s­
ing - it's your letter.

3. Now prompt the user ror the name or anmher rriend, and store it in
friend_name. Add a line to your letter: "Have you seen friend_name
latclyr

4. Declare a char variable called friend_sex and initialize its value to O.
Prompt the lIser to enter an m ir the rriend is male and an f ir the rriend is
remale. Assign the value entered to the variable friend_sex. TI1en lise
two if-statements to write the rollowing:

If the rriend is male, write "If you sec friend_name please ask him to call
me."

If the rriend is female, write "Ir you sec friend_name please ask her to

call me."

5. Prompt the user to enter the age or the recipient and assign it to an int
variable age. Have yOllr program write "I hear you just had a birthday
and YOll arc age years a ld." If age is 0 or less or 110 or more, call
error("you're kidding! "I.

83

/ .. (HAPTER 3 • O BJEC TS. TYPES , AND VALU ES

6. Add this to your letter :

Ir your fri end is under 12, write "Next year you will be age+l ."

If your friend is 17, write "Next year you will be able to vote."

If your friend is over 70, write "I hope you arc c l~oying retirement."

Check your program to make sure it responds appropriately to each kind
of value.

7. Add "Yours sincerely," fo llowed by nvo blank lines [or a signature, fo l­
lowed by your name.

Review

I. 'What is meant by the term prompt?
2. 'Which operator do you use to read into a variable?
3. If you want the user to input an integer value into yOU T program for a

variable named number, what arc twO lines of code you could write to
ask the user to do it and to input the value inlO YOUT program?

4. What is \n called and what purpose does it serve?
5. What terminates input into a string?
6. What terminates input into an integer?
7. How would you writc

cout « RHello, ";
cout « firs,-name;
coul « "!\n";

as a single line of code?
8. What is an object?
9. What is a literaJ?

10. What kinds of literals are there?
II. What is a variable?
12. What are typical sizes for a char, an int, and a double?
13. What measurcs do we use for the size of small entities in memory, such

as ints and strings?
14. VVhat is the difference between = and ==?
15. Whal is a definition?
16. What is an initialization and how does it differ from an assignmellt?
17. What is string concatenation and how do you make it work in C++?
18. Which of the fo llowing arc legal names in C++? If a name is not legal,

why not?

ThisJitlle_pig
latest thing
MiniMineMine

This_Us fine
the_S12_method
number

2_For_1_special
_Ihisjs_ok
correct?

CHAPTER J EXE RCISES

19. Give five examples of legal names that you shouldn't usc because they
are likely to cause confusion.

20. What are some good rules for choosing names?
21. What is type safety and why is it important?
22. \¥hy can conversion from double to inl be a bad thing?
23. Define a rule to help decide if a conversion from one type to another is

safe or unsafe.

Terms
assignment
cin
concatenation
conversion
declaration
decrement

Exercises

dermition
increment
initialization
name
narrO\vmg
obj ect

operation
operator
type
type safety
value
variable

1. If you haven't done so already, do the Try this exercises from this cbap­
ter.

2. Write a program in C++ that converts from miles to kilometers. Your
program should have a reasonable prompt fo r the user to enter a number
of miles. Hint: TIlere arc 1.609 kilometers to the mile.

3. Write a program that doesn't do anything, but declares a number of vari·
abies with legal and illegal names (such as int do uble = 0;), so that you
can see how the compiler reacts.

4. Write a program that prompts the user to enter two integer values. Store
these values in inl variables named vall and val2. Write your program to
determine the smallest, largest, SUIll, difference, product, and ratio of
these values and report them to the user.

5. Modify the program above to ask the user to enter floating·point values
and store them in do uble variables. Compare the outputs of the two pro·
grams for some inpu ts of your ch oice. Are the results the same? Should
they be? What's the difference?

6. Write a program that prompts the user to enter three integer values, and
then outputs the values in numerical sequence separated by commas. So,
if the user enters the values 10 4 6, the output should be 4, 6, 10. If twO

values arc the same, they should just be ordered together. So, the input 4
54 should give 4, 4, 5.

7. Do exercise 6, but with three string values . So, if the user enters the val·
ues "Ste inbeck", "Hemingway", "Fitzgerald ", the output should be
"Filzgerald, Hemingway, Sieinbeck".

85

CHAPTE R 3 • O BJECTS , TYPES, AND VALUES

8. Write a program to test an imeger value to determine if it is odd or even.
As always, make sure your output is dear and complete. In other words,
don't juSt output "yes" or "no." Your Output should stand alone, like
"111e value 4 is an even number." Hint : See the remainder (modulo) op­
erator in §3.4.

9. Write a program that converts spelled·out numbers such as "zero" and
"two" into digits, such as 0 and 2. \"'hen the user inputs a number, the
program should print Out the corresponding digil. Do it for the values 0,
I , 2, 3, and 4 and write out "not a number 1 know" if the user enters
something that doesn't correspond, such as "stupid computer! "

10. Write a program that takes an operation followed by two operands and
outputs the resull. For exa.mple:

+ 100 3. 14
• 45

Read the operation into a string called operation and usc an if-statement
to figure out which operation the user wants, for example, if (opera­
tion=="+") . Read the operands into variables of type double . Implement
this for operations called +, - , . , I, plus , minus, Illul, and div with their
obvious meanings.

I I . Write a program that prompts the user to enter some number of pennies
(I-cent coins), nickels (5-cent coins), dimes (lO-cent coins), quarters (25-
cent coins), half dollars (50-cem coins) , and one-da Uar coins (IOO-cent
coins). Query the user separately fo r the number o f each size coin, e.g. ,
"How many pennies do you have?" Then your program shou ld print
out something like this:

You have 23 pennies.

You have 17 nickels.

You have 14 dimes.

You have 7 quarters.

You have 3 half dollars.

The value of all of your coins is 573 cents.
You lUay have to lise your imagination to get the numbers to add up
right-justified, but Il-y; it can be done. Make some improvements: if only
one of a coin is reportcd , make the output grammatically correct, e.g. ,
" 14 dimes" and "1 dime" (not "1 dimes") . Also, repon the sum in dollars
and cenlS, i.e. , $5.73 instead of 573 cents.

CHAPTER J PO STSC RIPT

Postscript

Please don't underestimate the importance of the notion oftypc safety. Types an:
at the center of most notions of correct programs, and some of the mOst effective
techniques for constructing programs rely on the des ign and use of types - as
you'll see in Chapters 6 and 9, Parts II, III, and IV.

87

Computation

"If it doesn't have to produce correct results,
I can make it arbitrarily fast."

- Gerald M. Weinberg

T his chapter presents the basics of computation. In panicular,

we discuss how to compute a value from a set of operands

(rxjJressifm), how to choose among alLemative actions (selection), and

how to repeat a computation for a series of values (iterahan). We

also show how a particular sub-computation can be named and

specified separately (ajimctir.m). Our primary concern is to express

compu tations in ways that lead to correct and well-organized pro­

grams. To help you perfoml more realistic computations, we in­

troduce the vector type to hold sequences of values.

••

..
4.1 Computation

4.2 Objectives and lools

4.3 Expressions
4.3.1 Constant expressions
4.3.2 Operators
4.3.3 Conversio ns

4.4 Statements

4.4.1 Selection
4 .4 .2 Ite ration

4.1 Computation

CH AI)TER 4 • COM PUTATION

4.5 Functions
4.5.1 Why bothe r with fun ctio nsr
4.5.2 Function declaratio ns

4.6 Vector
4.6. 1 Growing a vector
4.6.2 A numeric example
4.6.3 A lelft example

4.7 Language features

From one point of view, all that a program ever does is to compute; I.hat is, it
takes some inputs and produces some output. After all, we call the hardware on
which we run the program a computer. '11is view is accurate and reasonable as
long as we take a broad view of what constitutes input and output:

Code

ILI"_pu_, _....Jr-- (often messy
often lots of code)

I Data I
----{ Output I

111C input can come from a keyboard, from a mouse, from a touch screen, from
[tIes, from o ther input devices, from other programs, from other parts of a pro­
gram_ "Other input devices" is a category that contains most really interesting
input sources: music keyboards, video recorders, nctwork connections, tempera­
HIre sensors, digital camera image sensors, etc. The variety is essentially infinite.

To deal with input, a program usually contains some data, sometimes re­
ferred to as its dahl JJructUreJ or its £Ialr!. For example, a calendar program may
contain lists of holidays in various countries and a list of your appointments.
Some of that data is part of the program from the start; other data is built up as
the prObrranl reads input and collects useful information f!"Om it. For example, the
calendar program will probably build your list of appointments from the input
you give it. For the calendar, the main inputs are the requests to see the months
and days you ask for (probably using mouse clicks) and me appointments you
give it to keep track of (probably by typing information on your keyboard). TIle
output is the display of calendars and appointments, plus the bultons and
prompts for input that the calendar program writes on your screen.

4 .1 COMPUTATION

Input comes from a wide variety of sources. Similarly, output can go to a
wide variety of destinations. Output can be to a screen, to files, to other output
devices, to other programs, and to other parts of a program. Examples of output
devices include network interfaces, music synthesizers, electric motors, light gen­
erators, heaters, etc.

From a progr.unming point of view t.he most import:mt. and interesting cate­
gories arc "to/from another program" and " to/from other parts of a program."
Most of the rest of tlus book could be seen as discussing that last category: how
do we express a program as a set of cooperating parts and how can they share
and exchange data? TIlese are key questions in programming. "Ve can illustrate
that brr.lphically:

Code Code Code
l Input . t- IData l H 110 I- IData l ---®-- I Data l -j Output I

TIle abbreviation /10 stands for "input/output." In this case, the outpu t from one
part of code is the input for the next p~. What such "parts of a progranl" share
is data stored in main memory, on persistent storage devices (such as disks) , or
transmitted over network cOlUlections. By "parts of a program" we mean emilies
SUdl as a function producing a result from a set of input arguments (e.g., a square
root from a noating-point number), a function performing an action on a physical
object (e.g. , a function drawing a line on a screen), or a function modifying some
table witlun tile program (e.g., a function adding a name to a table of cusLOmers).

\oVhen we say "input" and "output" we generally mean information coming
into and out of a compu ter, but as you sec, we can also use the terms for infor­
mation given to or produced by a part of a program. Inputs to a part of a pro­
gram ;Ire often called argumenlJ and outputs from a part of a program are often
called m ulu.

By (omputtllioll we simply mean the act of producing some outputs based on
some inputs, such as producing the result (output) 49 from the argument (input) 7
using the computation (function) square (see §4.5). As a possibly helpful curios·
ity, we note t.hat until the 1950s a computer was dermed as a person who did
computations, such as an accountant, a navigator, or a physicist. Today, we sim­
ply delegate most computations 10 computers (machines) of various forms, of
which the pockel calculator is among the simplest.

91

92 CHAPTER 4 • COMPUTATION

4.2 Objectives and tools
Our job as programmers is lO express computations

Correctly

Simply

Efficiently

Please note the order of those ideals: it doesn't malter how fas t a program is ifit
gives the wrong results. Similarly, a COITeet and efficient program can be so COIll­

plicated that it must be thrown away or completely rewritten 10 produce a new
version (release). Remember, useful programs will always be modifi ed to accom­
modate lIew needs, new hardware, etc. 'Tllereforc a program - and any part of a
program - should be as simple as possible to perfo rm its task. For example, as­
sume that you have written the perfect program for lcaching basic arithmetic to
children in your local school, and t11al its internal structure is a mess. Which lan­
guage did yOlilise to communicate with the children? English? English and Span­
ish? What irI 'd like to use it in Finland? In Kuwait? H ow would you change the
(natural) language used [or cOllllllunication with a child? Ir the intemal structure
of the program is a mess, the logically simple (but in practice almost always very
difficult) operation of changing the natural language lIsed to commlillicate with
users becomes insurmountable. .

Concems about correctness, simplicity, and effi ciency become ours the
minute we stan writing code for others and accept the responsibility to do that
well ; that is, we must accept that responsibility when we decide to become pro·
fessionals. In practical terms, this means that we can't just throw code together
until it appears to work ; we mllst concern ourselves with the structure o f code.
Paradoxically, concerns for structure and "quality of code" arc often the fas test
way of getting something to work . When programming is done well, such con­
cerns minimiz.e the need for the IllOSt frusu·ating part of programming: debug­
ging; that is , good program structure during development can minimiz.e the
number of mistakes made and the time needed to search for such errors and to
remove them.

Our main tool for organ iz.ing a program - and for organiz.ing our thoughts
as we program - is to break up a big computation into many little ones . l 11is
technique comes in two vanat.io ns:

Ab;/mchon: Hide details that we don't need to usc a facility ("implementa­
tion details") behind a convenient and general interface. For example.
rather than considering the details of how to sort a phone book (thick
books have been written abou t how to son), we just call the son algo­
rithm fro m the C++ standard library. All we need to know to son is how
to invoke (call) that algorithm, so we can write sort(b,e) where b and e

4. 2 OBJECTIVES AND TOOLS

refer to the beginning and the end of the phone book, respectively. An­
other example is the way we use computer memory. Direct use of mem­
ory can be quite messy, so we access it through typed and named
variables (§3.2), standard library vectors (§4.6, C hapters 17- 19), maps
(C hapter 21), etc.

"Divitk and (01/(flU7''': Here we take a large problem and divide it into sev­
eral little ones. For example, if we need to build a dictionary, we can sep­
arate that job into three : read the data, sort the data, and outpulthe data.
Each of the resulting problems is significantly smaller than the oribrl nal.

Why docs this help? Nler all, a program built out of parts is likely to be slightly
larger than a program where everything is optimally merged together. The rea­
son is that we are nOI velY good at dealing with large problems. l 11e way we ac­
tually deal with those - in programming and elsewhere - is 10 break them down
into smaller problems, and we keep breaking those into even smaller parts until
we get something simple enough to understand and solve. In tenus of program­
ming, you'll find that a 1000-line program has far more than ten times as many
errors as a 100-line program, so we try to compose the 1000-line program out of
parts with fewer than 100 lines. For large programs, say 10,000,000 lines, apply­
ing abstraction and divide-and-conqller is notjllsl an option, it 's an essential re­
quirement. We simply cannot write and maintain large monolithic programs.
One way of looking at the rest of this book is as a long series of examples of
problems that need to be broken up into smaller parts together with the tools and
techniques needed to do so.

When we consider dividing up a program, we must always cons ider what
tools we have available to express the parts and their COllullunications. A good li­
brary. supplying useful facilities for expressing ideas, can crucially affect the way
we distribute functionality into different parts of a program. We cannot just sit
back and "imagine" how best to partition a program; we must consider what li­
braries we have available to express the parts and their commUnic.ltion. It is early
days yet, but not tOO soon to point OUl that if you can use an existing library,
such as the C++ standard library, you c.ln save yourself a lot of work, not JUSt on
programming but also on testing and documentation, TIle ioslreams save liS

frOIll having to directly deal with tlle hardware's inpuu'olltput ports. TIlls is a first
example of partitioning a program using abstraction. Every new chapter will pro·
vide more examples .

Note the emphasis on stnlcture and organization: YOll don't get good code
just by writing a lot of statements . Why do we mention this now? At this stage
you (or at least many readers) have little idea about what code is, and it will be
months before you are ready to write code upon which other people could de·
pend for their lives or livelihood. We mention it to help you get the emphasis of
your learning right. It is very tempting to dash allead, focusing on the parts of

93

.. CHAPTER 4 • COMP U TATION

programming that - like what is described in Lhe rest of this chapter - arc COll ­

crete and immediately useful and to ignore the "softer," more conceptual pans of
the art of software development. However, good programmers and system de­
signers know (often having learned it the hard way) that concerns abollt struc­
ture lie at the heart of good software and thai ignoring Struclm"C leads to

expensive messes. Without structure, you arc (metaphorically speaking) building
with mud bricks. It can be done, but you 'll never get to the fifth floor (mud
bricks lack the structural strength for that). If you have the ambition to build
something reasonably permanent, you pay atlemion to mallers of code structure
and organization along the way, ralhcr m,m having to come back and learn them
after failures.

4.3 Expressions
TIle most basic building block of programs is an expression. An expression com­
putes a value from a number of operands. TIle simplest expression is simply a lit·
eral value, such as 10, 'a', 3 .14, or "Norah".

Names of variables are also expressions. A variable represents the object of
which it is the name. Consider:

II compute area:
int length = 20;
int width = 40;
inl area = length ·width ;

II a literal integer (used to initialize a variable)

II a multiplication

H ere the literals 20 and 40 are used to initialize the variables length and width .
TIlen, length and width arc multiplied ; that is, we muhiply the valucs found in
length and width. Here, length is simply shorthand for ''Lhe value found in the
object named length ." Consider also

length = 99; II assign 99 to length

H ere, as the left-hand operand of the assignment, le ngth means "the object
named length," so that the assignment expression is read "Pm 99 into the object
named by length ." We distinguish between length used on the left-hand side of
an assignment or an initialization (" the lvalue of length " or "the object named by
length") and length used on the right-hand side of an assignment o r initialization
(" the rvalue o f length ," "the value of lhe object named by length," or just "the
value of length"). In this comext, we find it useful to visualize a variable as a box
labeled by its name:

int :

length : 99

4. 3 EXP RE SS ION S

That is, length is the name of an object of type int containing the value 99. Some­
times (as an lvalue) length refers to the box (object) and sometimes (as an rvalue)
length refers to the value in that box.

We can make more complicated expressions by combining expressions using
operators, such as + and · , in just the way that we arc used to. When needed, we
can use parentheses to group expressions:

int perimeter = (length+width)·2; II add then multiply

Without parentheses, we'd have had to say

which is clumsy, and we might even have made this mistake:

int perimeter = length+width ·2; 1/ add width"*2 to length

~Inis last error is logical and cannOi be found by the compiler. All the compiler
sees is a variable called pe rimete r initializcd by a valid expression. If the result of
lhat expression is nonsense, that 's your problem. You know the mathematical
definition of a perimctcr, but the compiler doesn't.

The usual mathematical rules of operator precedence apply, so length+
width *2 means le ngth+(width*2). Similarly a* b+cld means (a* b)+(cld) and not
a*(b+c)/d. Sec §A.5 for a precedence table.

llle first rule for the use of parentheses is simply "If in doubt, parenthesize,"
but please do ieam enough about expressions so that you are not in doubt about
a* b+cld . Overuse of parentheses, as in (a* b)+(cld), decreases readability.

' .vhy should you care about readability? Because you and possibly others
will read your code, and ugly code slows down reading and comprehension.
Ugly code is 110l just hard to read, it is also much harder to get correct.. Ugly
code often hides logical errors. It is slower to read and makes it harder to con­
vince you rself - and others - that ugly code is correct. Don 't write absurdly
complicated expressions such as

1/ too complicated

and always try to choose meaninbtful names.

4_3.1 Constant expressions
Programs typically usc a lot of constants. For example, a geometry program
might usc pi and an inch·to-centimeter conversion program will use a conversion
factor such as 2.54. Obviously, we want to use meaningful names for those con­
stants (as we did for pi; we didn 't say 3.14159). Similarly, we don't want to
change those constants accidentally. Consequently, C++ offers the notion of a

95

.. (HAPTER 4 • COMPUTATION

symbolic constant, that is , a named object to which you can't give a new value
after it has been initialized. For example:

const do uble pi = 3.14159;
pi = 7; II error: assignment to consl
int v = 2· pilf; /I OK: we just read pi; we don't try to change it

Such constantS are useful for keeping code readable. YOli might have recognized
3.14159 as an approximation to pi if you saw it in some code, but would you have
recognized 299792458? Also, if someone asked yOli to change some code to lise pi
with the precision of 12 digits for your computation, YOll could search fo r 3.14 in
your code, but if someone incautiously had used 2217, you probably wouldn't
find it. It would be much better just to change the definition of pi to usc the morc
appropriate value:

consl do uble pi = 3.14159265359;

Consequently, we prefer not to use li terals (except very obvious ones, such as 0
and 1) in most places in our code. Instead, we use constan15 with descriptive
names. Non·obvious literals in code (o utside consl definitions) are derisively re'
ferred to as mtlgic COILI/anls.

In some places, such as case labels (§4.4.1.3), C++ requires a C(JIIS/anl i!xpra·
sion, that is, an expression with an integer value composed exclusively of con·
stants. For example:

consl inl max = 17; /I a literal is a constant expression
inl val = 19;

max+2
val+2

II a consta nt expression (a canst int plus a literal)
II not a constant expression: it uses a variable

And by the way, 299792458 is one of the fundamental constants of the universe:
the speed of light in vacuum measured in meters per second. If you didn't in·
stantly recognize that, why would you expect not to be confused and slowed
down by other constants embedded in code? Avoid magic constants!

4.3.2 Operators
We just used the simplest operators. However, you will soon need more as you
want to express more complex operations. Most operators are convenlional, so
we 'll just explain them later as needed and YOll u'Ul look up details if and when
you find a need . Here is a list of the most COlllmon operators:

4 .J EXPRE SSIONS

Name

f(a) function call
++Ival pre-increment
-- Ivai pre-decrement

"
no.

-, unary minus
,'b multiply
o/b divide
a%b modulo (remainder)
.. b add
,-b subtract
out«b write b to out
in»b read from in into b
,<b less than
a<=b less than Of equal
o>b greater than
a>=b greater than Of equal

a==b equal
a!=b not equal
a&&b logical and

'lib logical or
Ivai = a assignment
Ivai -= a compound assignment

Commenl

pass a to f as an argument
increment and use the incremented value
decrement and usc the decremented value
result is bool

only for integer types

where oul is an oslream
where in is an islream
result is bool
result is bool
result is bool
result is bool
not to be confused with =
resu lt is bool
result is bool
result is bool
not to be confused with ==
Ivai = Ivai -a; also for I , %, +, -

\ .ye used Ivai (short for "value that can appear all the left-hand side of an assign­
ment") where the operato r modifies an operand. You can find a complete list in
§A.5.

For exam ples of the usc of the logic.'ll operators && (and), II (or), and ! (not),
sec §5.5.1 , §7.7, §7.8.2, and §\O.4.

Note that a<b<c means (a<b)<c and that a<b evaluates to a Boolean value:
Irue or false . So, a<h<c will be equivalent to either Irue<c or fa lse<c. In particu­
lar, a<b<c docs not mean "Is b between a and c?" as many have naively (and not
unreasonably) assumed . lllUs, a<h<c is basica lly a useless cxpression . Don't
wr ite sllch cxpressions with two comparison operations, and be vCly suspicious if
you find such ,In expression in someone else's code - it is Illost likely an error.

An incremeill can be expressed in at least three ways:

++,
a+=l
a=a+1

.7

.. CHAPTER 4 • COMPU TATION

VVhich nOtation should we use? Why? We prefer the first version, ++a, because it
more directly expresses the idea of incrementing. It says what we want to do (in·
crement a) rather than how to do it (add 1 to a and then write the resul! to a). In
general, a way of saying something in a program is better than another if it more
directly expresses an idea . TIle result is morc concise and easier for a reader to
understand. Uwe wro!c a=a+1 , a reader could easily wonder whether we really
lUeant to increment by 1. Maybe wejust mistyped a=b+l , a=a+2, or even a=a-1 ;
with ++a there are far fewer opportunities for such doubts. Plcase note that this is
a logical argument about readability and correctness, not an argument about effi ·
ciency. Contrary to popular belief, modern compilers tend to generate exactly
the same code from a=a+1 as for ++a when a is one of the buill·in types. Simi·
larly, we prefer a *= scale over a = a·scale.

4.3.3 Conversions
We can "mix" different types in expressions. For example, 2.512 is a double di·
vided by an int. \'\That docs this mean? 00 wc do intcger division or floating­
point division? Intcger division throws away tllC remainder; for examplc, 512 is 2.
F1oating-point division is different in that there is no remainder to throwaway;
for example, 5.012.0 is 2.5. It follows that thc most obvious aJlS\ ... ·cr to the question
"Is 2.512 integer division or floating-point division?" is "F1oaling-point, of course;
otherwise we'd lose information." We would prefer the answer 1.25 rather than 1,
and 1.25 is what we gel. ~nle rule (for the typcs we have presented so far) is that

if an opcrator has an operand of type double, we lise floating-point arithmetic
yielding a double result; otherwise, we lise integer arithmetic yielding an int re­
sult. For example:

512 "
2.512 means
'a '+1 means

2 (not 2.5)
2.Sldouble(2), that is, 1.25
int('a ')+1

In other words, if necessary, the compiler converts ("promotcs") int operands to
doubles or char operands to int. Once the result has been calculated, the com­
piler may have to convert it (again) to lise it as an initializer or the right hand of
an assignment. For examplc:

double d = 2.5;
inti=2j

double d2 = dIi ; /I d2 :: 1.25
int i2 = dli j II i2 == 1

4.'1 STATEMENT S

d2 = dIi ;
i2 = dIi ;

/I d2 == 1.25
II i2 == I

Beware that it is easy to forget abollt integer division in an expression that also
contains floating-point operands. Consider the lISllal formula for convening dc­
grees Celsius to degrees Fahrenheit:! = 9/5 · c + 32. We might write

double dc;
cin » dc;
double df = 9/5- dc+32; /I beware!

Unfortunately, but quite logically, this does not represent an accurate tempera­
tllre scale convers ion: the value of 9/5 is 1 ra t.her than the 1.8 we might have
hoped for. 1b gel the code mathematically correct, either 9 or 5 (or both) will
have to be conven ed into a double. For example:

double dc;
cin » dc;
double df = 9.OIS-dc+32; II better

4.4 Statements
An expression computes a value from a set of operands using operators like the
ones mentioned in §4.3. \ '\Thal do we do when we want to produce several val­
ues? When we want to do something many times? When we want 10 choose
among alternatives? When we want to gct input or produce output? In C++, as
in many languages, you usc language constructs called J/a/cmclu to express those
things.

So far, we have seen two kinds of statements: expression statements and dec­
larations. An express ion statemelll is simply an expression followed by a semi­
colon. For example:

a = b;
++b;

'11Ose arc two expression statements. Note that the assignment = is an operator
so that a= b is an expression and we need thc terminating semicolon to make
a=b; a statement. \rVhy do we need those semicolons? The reason is largely tech­
nical. Consider

a = b ++ b; II syntax error: missing semicolons

..

100 (HAPTER 4 • COMPU TATION

Without the semicolon, the compiler doesn't know whether we mean a=b++; b;
or a=b ; ++b; .111is kind of problem is not TCStricted to computer languages; con­
sider the exclamation "'man eating tiger! " ' '''ho is eating whom? Punctuation ex­
ists to eliminate such problems, for example, "man-eating tiger!"

When Slalcmcms follow each mher, the computer executes them in the order
in which they arc written. For example:

int a = 7;
cout « a« '\n ';

H ere lhe declaration, with its initialization, is executed before the output expres­
sion statement.

In general, we want a statement to have some effect. Statements without ef­
feel arc typically useless. For example:

1+2 ; /I do an addition, but don't use the sum
a *b : /I do a mulliplication, but don 't use the product

Such statements withom effects are typically logical errors, and compilers often
wam against them. Thus, expression statements are typically assignments, 110
statements, o r fu nction calls.

' Ne will mentio n one more type of statement: thc "empty statement." Con·
sider the code:

if (x == 5);
{ y = 3; }

111is looks like an error, and it almost certainly is. "nle ; in the first line is not
supposed to be there. But , lIl1fOrlllnately, this is a legal construct in C++. It is
called an cmpty slalcmelll, a statemelll doing nothing. An empty statement before a
semicolon is rarely useful . In this case, it has the unfortunate consequence of al·
lowing what is almost certainly an error to be acceptable to the compiler, so it will
not alert you to the error .md you will have that much more difficulty finding it.

What will happen if this code is run? 111e compiler will test x to sec if it has
the value 5. If this condition is true, the following statement (the empty state­
ment) will be executed, with no effect. 111en the program continues to the next
line, assigning the value J to y (which is what you wantcd to have happen if x
equals 5). If, on the other hand, x docs not have the value 5, the compiler will not
execute the empty statement (still no effect) and will continue as before to assign
the value J to y (which is nOt what you wanted to have happen unless x equals 5).
In other words, the if·statement doesn't matter; y is going to get the value J re·

4.4 STATEM ENTS

gardless. ' Illis is a common error for novice programmers, and it can be difficu lt
10 spot, so walch OUl for it.

' Ille next section is devoted to statements used to alter the order of evalua­
tion to allow us to express more interesting computations than those we get by
just executing statements in the order in which they were written.

4.4.1 Selection
In prob'Tams, as in life, we often have to select among alternatives. In C++, that is
done using either an if-statement or a switch-stateillent.

4 .4 .1 .1 if·statements

TI,e simplest form of seleClion is an if-statement, which seleCIS between two alter­
natives. For example:

inl mainO
{

inl.1 = O;
inl b = 0;
cout « "Please ente r two intege rs\n";
ci n »a» b;

if (a<b) II condition
III st alternative (taken if condition is true):
cout « "max(" «a« ","« b« ") is" « b «"\n ";

else
112nd alternative (taken if cond ition is fa lse):
coul « "max("« a« ","« b «~It) is " «a« "\n";

An if-statement chooses between two alternatives. If its condition is true, the first
statemelll is executed; otherwise, the second statement is. TIlis nouon is simple.
Most basic programming language features are. 1n fact, most basic facilities in a
programming language arc just new notation for things you learned in primary
school - or even before that. For example, you were probably told in kinder·
garten that to cross the street at a traffic light, you had to wait for the light to tum
green: '"If the traffic light is green, gon and "If the traffic light is red, wait." In
C++ that becomes something like

if (t rafficlighl==green) goO;

,.,

102 CHAPTER 4 • COMP U TATI O N

and

if (Iraffi c)ight==red) wail();

So, the basic notion is simple, but it is also easy La use if-slatcmcnts in a toO

simpleminded manner. Consider what's wrong with this program (apart from
leaving out the #include as usual):

/I convert from inches to centimeters or cen timeters to inches

/I a suffix ' i' or 'c' indicates the unit of the input

inl mainO
{

)

consl double em_per_inch = 2.54; /I number of centimeters in an inch
int length = 1, II length in inches or centimeters

char unit = 0;
couk< "Please enle r a length followed bya unit (c or i):\n"i
dn» length » unit ;

if (un it == 'i ')
cout« length « "in == "« cm_per_inch*length « "em\n ";

else
cout« length « "em == " « lengthlcm_per_inch « "in\n";

Actually, this program works roughly as advertised: enter li and)'ou get lin ==
2.S4cm ; enter 2.S4c and you 'll get 2.S4cm == lin. Just try it; it 's good praClice.

The snag is lhat we didn't test for bad input. The program assumes that the
user enters proper input. The condition unit=='i' distinguishes between lhe case
where t.he unit is 'i' and all other cases . llnever looks for a 'e' .

What if the user entered 1Sf (for feet) "just to see what happens"? 111e condi­
lion (unit == ' i') would fail and the program would execute the else part (the sec­
ond altemative), converting from centimeters to inches. Presumably that was not
what we wanted when we entered 'f' .

We must always test our programs with "bad" input, because someone will
eventually - intentionally or accidentally - enter bad input. A program should
behave scnsibly even if its users don't.

Here is an improved version:

II convert from inches to centimeters or centi meters to inches

/I a suffix ' i' or 'c' indicates the unit of the input

/I any other suffix is an error

4 .4 STATEMENTS

int mainO
(

}

const double cm_per_inch = 2.54; II number of centimeters in an inch
int length = 1; II length in inches or centimeters
char unit = ' ' ; II a space is not a unit
eout« "Please enter a length followed by a unit (e or i): \n ";
cin» length » unit;

if (unit == 'i')
eout « length « "in =="« em_perj nch · length« "em\n ";

else if (unit == 'e')
cout « length « "em == " « lengthlem_per_inch « "in\n";

else
coul « "Sorry, I don 't know a unit called '" « unit « "'\n";

We fi rst lest for unit==' i' and then for unit=='c' and if it isn' t (either) we say,
"Sorry." It may look as if we used an "else-if-statement," but there is no such
thing in C++. Instead , we combined twO if-statemems. The general fornl of an if­
statement is

if (exl)/,(~Mi()11) Jlalmuml else Jlalmuml

'11at is, an if followed by an (xprmiall in parentheses followed by a ;101(7n£1I1 fol­
lowed by an else followed by a Jlal(7l1l'n/. What we did was to usc an if-statement
as the else-part of an if-statement:

if (expn:.ssiofl) JlaleTl/m/ else if «(xpres.siall) Jla/(7I/(7I/ else Jta1(7I/(n!

For our program that gives this structure:

if (unit == 'i')
111 sl alternative

else if (unit == 'e')
11 2nd a lternative

else
11 3rd alternative

In this way. we can write arbitrarily complex tests and associate a statement with
each alternative. However, please remember that one of the ideals for code is sim­
plicity, rather than complexity. YOli don't demonstrate your cleverness by writing
the most complex program. Rather, you demonstrate competence by writing lhe
simplest code that docs the job.

103

104 CHAPTER 4 • COMPU TATION

TRY THIS

Use the example above as a model for a program that converts yen, curos,
and pounds into dollars. If you like realism, you can find conversion rates on
the web.

4.4.1.2 switch-statements
Actually, the comparison of unit to 'i' and to 'c' is an example of the most com­
mon form of selection: a selection based on comparison of a value against several
constants. Such selection is so COIlUllOll that C++ provides a special statcmCIll for
it: the switch-statement. We can rewrite our example as

int ma in O
{

)

const double cm_pe rj nch = 2.54; /I number of centimeters in an inch
iot length = 1; II length in inches or centimeters
char unit = 'a' ;
(o ul« "Please e nter a length followed by a unit (c or i): \n ";
dn » length » unit;
switch (unit) (
case 'i' :

caul « length « "in == " « em_perjneh· length « "em\n";
break ;

case 'e' :
eout « length « "em == II « lengthlem_perjnch « "in\n";
break ;

de fault :
cout « "Sorry, I d on' t know a unit called '" « unit « "'\n";
break;

TI1e switch·statement syntax is archaic but still clearer than nested if-statements,
especially when we compare against many constants. The value presented in
parentheses after the switch is compared to a set of constants . Each constant is
presemed as part of a case label. If the value equals the constant in a case label ,
the statement for that case is chosen. Each case is terminated by a break. If the
value doesn' t match any of the case labels, the statement idemified by the default
label is chosen. You don 't have to provide a default, but it is a good idea to do so
unless you are absolutely certain that you have listed evely alternative. If you

4 . 4 STATEMENTS

don't already know, programming will teach you that it 's hard to be absolutely
certain (and right) about anything.

4.4.1.3 Switch technicalities
Here are some technical details abom switch·statements:

1. TIle value on which we switch must be of an integer, char, or enumera­
tion (§9.5) type. In panicular, you cannot switch on a string.

2. 111e values in the case labels must be constant expressions (§4.3.1). In
particular, you cannot lise a variable in a case label.

3. You cannot usc the same valLIe for two case labels.

4. YOll can usc several case labels for a single case.

5. Don't forget to end each case with a break. Unfortunately, the compiler
won't warn you if you forget.

For example:

int mainO
{

/I you can switch on ly on integers, etc.

cout « "Do yo u like fi sh?\n";
string s;
d n » Si

switch (s) (II error: the value must be of integer, char, or el1um type
case "no" :

1/ ...
break ;

case "yes":

)

/I ...
break;

To select based on a string you have to use an if·statement or a map (Chapter 2 1).
A switch-statement generates optimized code for comparing against a set of

constants. For larger sets o f constants, this typically yields more-efficient code
than a collection o f if-statements. However, this means that the case label vaJues
must be constants and distinct. For example:

inl mainO
{

II case labels must be consta nts

/I define al ternatives:
int y= 'y' ; /I this is going to cause trouble

105

'06

)

const char n = 'n' ;
const char m = '1';
cout « "Do you like fishl\n ";
char 3j

cin »a;
switch (a) {
case n :

II . ..
break;

(H APTER 4 • COMPU TATION

case y: 1/ error: variable in case label
II . ..
break;

case m :
II . ..
break;

case 'n ':
II . ..
brea k;

default:

)

II . ..
break;

1/ error: duplicate case label (n's value is 'n ')

O ften you want the same action for a set of values in a switch. II would be te­
dious to rcpeat the aClion so yOll can label a single action by a set o f case labels .
For example:

int main O /I you can label a statement with several case labels
{

coul « "Please enle r a digit\n";
char a;
cin »a;

switch (a) {
case '0' : case '2' : case '4': case '6' : case '8' :

coul « "is eve n\n";
break;

case ', ': case '3' : case '5' : case '7' : case '9' :
cout « "is odd\n";
break ;

4 .4 STATEMEN TS

}

default :

}

cout « "is not a digit\n ";
break;

The most common error with switch-statements is to forget to terminate a case
\vilh a break. For example :

int mainO II e)(ample of bad code (a break is missing)
{

)

eonst do uble cm_perj nch = 2.54; II number of centimeters in an inch
intl ength = 1; II length in inches or centimeters
char unit = 'a ' ;
cout « "Please ente r a length followed by a unit (c or i):\n";
d n » length » unit;

switch (unit) (
case ' i':

cout « le ngth « "in =="« em_pe rj nch"lenglh « "em\n ";
ease 'e ' :

eout « length « "em == " « Ie ngthlcm_pe rj neh « "in\n ";

Unfortu nately, the compiler will accept this, and when you have finished case ' i'
you' ll just "drop through" into case 'c', so that if you enter 2i the program will
output

2in == 5.08cm
2cm == O.787402in

You have been warned!

TRY TH IS

Rewrite your currency convener program from the previous Try this to use
a switch-statement. Add conversions from yuan and kroner. Which version
of the program is easier to write, understand, and modify? Why?

107

108 (HAPTE R 4 • CO MPUTATION

4.4.2 Iteration
We rarely do something only once. 111crcfOl'c, programming languages provide
convenient ways of doing something several times. ll1is is called repetitioll or -
especially when you do something LO a series of clements of a data stnlCtll rc -

ileraJion.

4.4.2.1 while-statements
As an example of iteration, consider the fi rst program ever to nm on a stored­
program computer (the EDSAC). It was written and run by David Wheeler in
lhe computer laboratory in Cambridge U niversity, England, on May 6. 1949, to
calculate and print a simple list of squares like this:

o 0
1 1

2 4
3 9
4 ,.

.. 9604
99 9801

Each line is a number followed by a "tab" chan lClcr ('\1'), followed by the square
of the number. A C++ version looks like this:

/I calculate and print a table of squares 0- 99
int mainO
{

int i = 0; II start from 0
while (i<:100) {

cout« i« '\1'« square(i)« '\n ' ;
++i ; II increment i (that is, i becomes i+ 1)

}

~nlC notation square(i) simply means the square of i. We'll later cxplain how it
gets to mean that (§4.5) .

No, this fi rst modcm prognun wasn't actually writtcn in C++, but the logie
was as is shmvn here:

We start \vi.th o.
We see if we have rcached 100, and if so we are fi nished.

4.4 STATEMENT S

Otherwise, we print the number and its square, separated by a tab ('\1'),
increase the number, and try again.

Clearly, to do this we need

A way to repeat some statement (to lOOP)

A variable to keep track of how many times we have been through the
loop (a loop IXIn'abfe or a collirol varinhle), here the inl called i

An initializer for the loop variable, here 0

A termination criterion, here, that we want to go through the loop 100
times

Something to do each t.ime around the loop (the body of the loop)

"n le language construct we used is called a while-statemem.Just following its dis­
tinguishing keyword, while, it has a condition "on top" followed by its body:

while (i<100)
(

/I the loop condition testing the loop variable i

coul« i « '\1' « square(i) « '\n';
++i ; /I increment the loop variable i

)

111e loop body is a block (delimited by curly braces) that writes out a row of the
table and increments the loop variable, i. We start each pass through the loop by
testing if i<100. If so, we arc nUl yet fin ished and we can execute the loop body. If
\ve have reached the end, that is, if i is 100, we leave the while-statement and exe­
cute what comes next. In this program the end of the program is next, so we
leave the program_

The loop variable for a while-statement must be defined and initialized out­
side (before) the while-statement. If we fail to defme it, the compiler will give us
an elTOr. If we define it, but fail to initialize it, most compilers will warn us, saying
something like "local variable i not set," but would be willing to let us execute the
program if we insisted. Don't insist! Compilers arc almost certainly right when
they warn about uninitialized variables. Uninitialized variables are a cOlllmon
source of errors. In tills case, we wrote

inli=O; /I slart (rom 0

so all is well.
Basically, writing a loop is simple. Getling it right for real-world problems

can be tricky, though. In particular, it can be hard to express the condition cor­
rectly and to initialize all variables so that the loop starts cOITeclly.

'09

110 CHAPTE R 4 • COMPUTATION

TRY THIS

The character 'b ' is char('a'+l), Ie' is char('a'+2), etc. Usc a loop to write out
a table of characters with their corresponding integer values:

a .7
b .8

z 122

4.4.2 .2 Blocks

Note how we grouped the two statements that the while had to execute:

w hile (i<100) (
cout « i « '\1' «square(i) « '\n ' ;
++i ; I/increment i (that is, i becomes i+ l)

)

A sequence of statements delimited by curly braces (and) is called a block or a
com!xJ//lld J/alemelll. A block is a kind o f statement. TIle empty block () is some­
times useful for expressing that nothing is to be done. For example:

if (a<=b) (

)

else (

)

intt= ai
a = bi
b = Ii

/I do nothing

/I swap a and b

4.4.2.3 for-statements

Iterating over a sequence of numbers is so common that C++, like most Olhcr
programming languages, has a special syntax for it. A for-statement is like a
while-statement except that the management of the control variable is concen­
trated at the top where it is easy to see and understand. We could have wriuen
the "first program" like this:

1/ calculate and print a table of squares 0- 99
int main O
{

4.4 STATEMENTS

for (int i = 0; i<100; ++i)
cout « i « '\1'« square(i)« '\n ';

'11ls means "Execute the body with i starting at 0 incrementing i aftcr each exe­
CLition of the body until we reach 100_" A for -statcment is always equivalent to
some while-statement. In this case

for (int i = 0; i<100; ++i)
co ul « i « '\1' « square(i)« '\n ' ;

means

{

int = 0; /I the for-statement initializer
while (i<100) (II the for-statement condition

cout « i « '\t' « square(i) « '\n '; /I the for-statement body
++i; /I the for-statement increment

}

}

Some novices prefer whil e-statements and some novices prefer for -statements.
However, using a for -statement yields more easily understood and more main­
tainable code whenever a loop c<m be defmed as a for-statement with a simple ini­
tializer, condition, and illcrement operation. Use a while-statement only when
that's not the case.

Never modify the loop variable inside the body of a for-statement. That
would violate every reader's reasonable assumption about what a loop is doing.
Consider :

int mainO
{

for (int i = 0; i<100; ++i) (/I for i in the 10: 100) range
caul« i« '\1'« squarc(i)« '\n';
++i ; /I what's going on herer It smells like an error!

}

}

Anyone looking at this loop would reasonably assume that the body would be exe·
cuted 100 times. However, it isn't. The ++i in the body ensures that i is incremented
t\vice each time around the loop so that we get an output only for the 50 even values
of i. If we saw such code, we would assume it to be an error, probably caused by a
sloppy conversion from a while·loop. If you want to increment by 2, say so:

111

112 CHAPTER 4 • COM PUTAT ION

/I calculate and print a table of squares of even numbers in the 10: 1 00) range
int mainO
{

fo r (int i = 0; i<100i i+=2)
coul « i « '\1'« square(i)« '\n'i

Please note that the cleaner, morc explicit version is shorter than the messy olle.
11m's lypical.

TRY THIS

Rewrite the character value exam ple from the previous Try this to use a for·
loop. Then modify your program to also get a table of the integer values for
uppercase letters and digits.

4.5 Functions
In the program above, what was square (i) ? It is a call o f a function. In pan icular,
it is a call or the function " ... Iled square with the arbrumcnt i. A jimctioll is a named
sequence of statements. A fu nction can return a result (also called a return value).
TIle standard library pl"ovidcs a lot of useful functions, such as the square root
function sqrl O that we used in §3.4. However, we write many functions our"
selves. Here is a plausible definition of square :

inl square(inl x) II return the square of x
{

)

l ne first line of this defini tion te.lls us that this is a function (that's what the
parentheses mean), that it is called square , that it takes an inl argument (here,
called xl, and that it returns an inl (tlle type of the result always comes fi rst in a
function declaration); that is, we can use il like this:

inl mainO
{

)

cout« square(2) « '\n'; II print 4
cout« square(10) « '\n'; /I print 100

4 .5 FUN CTI ON S

"Ve don't have to use the result ofa function call (but if we didn' t want the result,
why would we call it ?), but we do have to give a function exactly the arguments
it requires. Consider:

square(2)i
int v1 = squareOi
int v2 = squarei
int \13 = square(1 ,2)i
int v4 = sq uare("lwo");

1/ probably a mistake: unused relurn value
1/ error: argument missing
II error: parentheses missing
II error: too many arguments
II error: wrong type of argument - int expected

Many compilers warn against unused results, and all give errors as indic."1ted.
You might think that a compucer should be smart enough to figure out that by
the string "two" you really meant the integer 2. However, a C++ compiler delib·
erately isn't that smart. It is the compiler's job to do exactly what you tell it to do
after verifying that your code is well fanned according to the definition of C++.
If the compiler guessed about what you meant, it would occasionally guess
wrong, and you - or lhe users of your progra m - would be quite annoyed. You'll
find it hard enough to predict what your code will do without having the COIll ­

piler "help you" by second·guessing you.
TI1efimdioll body is the block (§4.4.2.2) that actually docs the work.

(

return 1t·1t; II return the ~uare of x

For square, the work is trivial: we produce the square of the argument and return
that as ou r result. Saying that in C++ is easier than saying it in English. 11131'S
typical for simple ideas. Nter all, a prob'Tamming language is designed to state
such simple ideas simply and pl·ecisely.

The syntax of ajimch&ll (/ejilliJioll can be described like this:

JyPe idt:lIl!fier (jxlramder-lisJ) jilluJwlI-body

Tnat is, a type (the retum type), followed by an identifier (the naIlle of the func·
tion), fo llowed by a list of parameters in parentheses, followed by the body of the
fLLnction (the statements to be executed). TIle list of arguments required by the
function is called a parameler lisl and its clements arc called pttrameJm (or jonn,i/ tlr­
grmu:lIts). "111e list of parameters can be empty, and if we don't want to retum a re­
SUll we give \loid (meaning "nothing") as the return type. For example:

\loid write_sorryO
(

/I lake no argument; return no value

co ut « "Sorry\n " ;

113

114 CHAPTER 4 • (OMPUTATION

The language-technical aspects o f functions will be examined more closely III

C hapler 8.

4.5.1 Why bother with functions?
We define a function when we want a separate computation with a name because
doing so

Makes the computation logically separate

Makes the program text clearer (by naming the computation)

Makes it possible to lISC the function in more than one place III our
progrnm

Eases testing

We'U sec many examples o f each of those reasons as we go along, and we'll occa­
sionally mention a reason. Note that real-world programs usc thousands of fUlle­
lions, some even hundred of thousands of functions . Obviously, we would never
be able to write o r understand such programs if their parts (e.g., computations)
were not dearly separated and named. Also, you 'll soon find that many functions
are repeatedly lIserul and you'd soon tire o r repeating their definitions. For exam·
pie, you might be happy writing x·x and 7·7 and (x+nO(x+7), ete. rather than
square(x) and square(n and square(x+n , etc. H owever, that's only because
square is a very simple computation. Consider square root (c.'llled sqrl in C++):
you prefer to write sqrl (x) and sqrt(7) and sqrt(x+n , etc. rather than repeating
the (somewhat complicated and many lines long) code ror computing square
root. Even better: you don't have to even look at the computation or square rOOt
because knowing that sqrt(x) gives the square root or x is sufficient.

In §8.5 we will address many runction technicalities, blll ro r now, we'll just
give another example.

Ir we had wanted to make the loop in mainO really simple, we could have
written

void prinCsquare(int v)
{

cout «v« '\I' «v·v« '\n 'i
)

int main O
{

for (int i = OJ i<l00j ++0 prinCsquare(i)i
)

Why didn't we use that version using prinCsquarcO? 1l1at version is not signifi·
cantly simpler than the version using squareO, and note that

4.S FUNCTIONS

prinCsquareO is a rather specialized function that we could not expect to
be able to use later, whereas squareO is an obvious candidate for other
uses

squareO hardly requires documentation, whereas print_squareO obvi­
ously needs explanation

llle underlying reason for both is that print_squareO perfonns two logically sep­
arate actions:

It prints.

It calculates a square.

Programs arc usually easier to write and to understand if each function performs
a single logical action. Basically, the square() version is the better design.

Finally, why did we usc square(i) rather than simply j.j in the first version of
the problem? Well, one of the purposes of functions is to simplify code by sepa­
rating a lit complicated calculations as named functions, a.nd for the 1949 version
of the program there was no hardware that direClly implemented '; multiply."
Consequently, in the 1949 version of the pl'Ogram, i·j was actually a fairly com­
plicated calculation, similar to what you'd do by hand using a piece a paper. Also,
the writer of that original version, David Wheeler, was the inventor of the func­
tion (then called a subroutine) in modem computing, so it seemed appropriate to
usc it here.

TRY THI S

Implement squareO without using the multiplication operator ; that is, do the
x·x by repeated addition (start a variable result at 0 and add x to it x times).
Then run some version of "the first program" using that squareO.

4.5.2 Function declarations
Did yOll notice that all the information needed to call a function was in the first
line of its definition? For example:

int square(int x)

Given dUll, we know enough to say

int x = square(44);

We don 't really need to look at the function body. In real programs, we most
often don't want to look at a function body. Why would we want to look at the

115

116 CHAPTER 4 • COM PUTATION

body of the standard library sqrtO function? We know it calculates the square
fOOL of its argument. '.vhy would we want to sec the body of our squareO fun e­
lion? Of course we might just be curious. But almost all of the time, we a f C just
interested in knowing how to call a fu nction - seeing the definition would j ust be
distracting. Fortunately, C++ provides a way of supplying that information sepa­
rate from the complete function definition. It is called ajill/etia1l dccumllioll:

int square(int)i
do uble sqrt(d ouble)i

II declaration of square
/I declaration of sqrt

Note the terminating semicolons. A semicolon is used in a function declaration
instead of the body used ill the corresponding function defmition:

in t square(int x)
{

II definition of square

return X·Xi

)

So, if you JUSt want to use a function, you simply write - or more commonly
#include - its declaration. 111e function definition can be elsewhere. We'll dis­
cuss where that ;<elsewhere" might be in §B.3 and §S.7. "111is distinction between
declarations and defmitions becomes essential in larger programs where we usc
declarations to keep most o f the code out of sight to allow us to concentrate on a
single part of a program at a time (§4.2).

4.6 Vector
1'0 do just about anything of interest in a program. we need a collection of data to
work 0 11. For example, we might need a list of phone numbers, a list of members
of a football team, a list of courses, a list of books read over the last year, a cata­
log of songs for download, a set of payment options for a car, a list of the weather
forecasts for the next week, a list of prices for a camera in different web stores.
etc. "n 1e poss ibilities arc literally endless and therefo re ubiquitous in programs.
We'll get to see a variety of ways of storing collections of data (a variety of con·
tainers of data ; see C hapters 20 and 2 1). Here we will stan with one of the sim·
plest, and arguably the most useful, ways of sloring data: a vector.

A vecto r is simply a sequence of clements that you can access by an index.
For example, here is a vecto r called v:

sizeO
v: 6 L.:....l--">.J,.

viOl vll] vl21 v13] v(4) viS]
v's clements: 5 7 9 4 6 8

4.6 VECTOR

11lat is, the first clement has index 0, the second index I, and so on. We refer to
an clement by subscripting the name of the vector wit.h the element 's index, so
here t.he value of viOJ is 5, the value of v[l] is 7, and so 011. Indices for a vedor al­
ways start with 0 and increase by 1. 111is should look familiar: the standard li­
brary veclor is simply the C++ standard library's version of an old and
well-known idea. I have drawn the vector so as to emphasize that it "knows its
size" ; that is, a veclor doesn't just store its clements, it also stores its size.

We could make such a vector like this:

veclor<inl> v(6) ; /I vector of 6 ints
viOl = 5 ;

v[l] = 7;
v[2] = 9;
v13] =4;
v14] = 6;
v[5] = 8;

We sec that to make a vector we need to specify the type of the clemellts and t.he
initial number of clements. 11le clement type comes after vecto r in angle brack­
ets « » , here <i nl>, and the initial number of clements comes after the name in
parentheses , here (6) . Here is another example:

vector<slring> philosophe r(4); /I vector of 4 strings
philosopher [0] = "Kant ";
philosopher [11 = "Plato"i
philosopher (2] = "Humc";
philosopher [31 = "Kierkegaard"i

Naturally, a vector will only accept clements of its declared clement type:

philosopherl21 = 99;
v[2] = "Hume";

/I error: trying to assign an int 10 a string
/I error: trying to assign a string to an inl

When we define a vector of a given size, its clements arc given a default value ac­
cording to the clement type. For example:

vector<inl> V(6)i II veclor of 6 ints initialized to 0
vector<string> philosopher(4)i II veclor of 4 strings initialized 10 ··

If you don't like the default, you can specify another. For example:

vector<double> vd(1000,-1.2)i /I vector of 1000 doubles ini tialized to - 1.2

Please note lhat you cannot simply refer to a nonexistent. clemeill of a vector :

117

118 (HAPTER 4 • COMPU TATION

vd[20000] = 4.7; /I run-time error

We will discuss nm-timc errors and subscripting in the next chapter.

4.6.1 Growing a vector
Often, we start a vector empty and grow it to its desired size as \ ... ·c read or COIll­

pute the data we want in it. The key operation here is push_backO, which adds a
new clement to a veclor. The new clement becomes the last element of the
vector. For example :

vector<double> II; 1/ start off empty; that is, II has no elements

v.push_back(2.n;

v.push_back(5.6) ;

v.push_back(7.9);

v: I 0 I
/I add an element with the value 2.7 at end ("the b.lck N

) of v
1/ 'V now has one element and v[0[""",2.7

v l l l ~
1/ add an element with the value 5.6 at end of II
/I v now has two elements and \1[11==5.6

/I add an element with the value 7.9 at end of v
/I v now has three clements and v!21==7.9

Note the syntax for a call of push_backO. It is called a member jill/clioll call;
push_backO is a member function of vector and must be called using this dot
notatio n:

mi!mber:/iuution--mJi:
objcc'-lIame . member-jii1U;tioll ~name (argument-list)

'11e size of a vector can be obtained by a call to another of vector's member
functions: sileO. Initially v.s ileO was 0, and after the third call of push_backO,
v.sileO has become 3. Size makes it easy to loop through all clemellts of a vector.
For example:

fo rCint i=O; i<v.size(); ++i)

cout« "v["« i « "1==" <<v[ij<< '\n';

4 .6 VECTOR

Given the defin ition of v and the push_backOs above, this for-loop will print

vIOl ==2.7

v(11==5.6

v{2J==7.9

If you have programmed before, you will note that a vector is similar to an array
in C and other languages. However, you need not specify the size (length) of a
vector in advance, and you can add as many elements as you like. As we go
along, you'll find that the C++ standard vector has other useful properties.

4.6.2 A numeric example
Let's look at a more realistic example. Often, we have a series of values that we
want to rC<ld into our program so that we can do something with them. The
"something" could be producing a graph of the valucs, calculating the mean and
med ian, finding the largest element, sorting them, combining them with other
data, searching for "interesting" values, comparing them to other data, etc. TIlere
is no limit to the range of computations we might perform on data, but fi rs t we
need to gel it into our computer's memory. Here is the basic technique for getting
an unknown - possibly large - amount o f data into a computer. As a concrete
example, we chose to read in floating-point numbers reprcseming temperatures;

/I read some temperatures into a vector
int mOlinO
{

)

vector<doublc> temps; /I temperatures
double temp;
while (cin» temp) II read

temps. push_back(tcmp); /I put into ve<:Ior
/I . . . do something .

So, what goes 0 11 here? First we declare a vecior to hold the data and a variable
into which we can read each number as it comes from input:

vedorc::double> temps: /I temperatures
double temp:

111is is where the type of input we expect is mentioned. We read and store
doubles.

Next comes the aetllaJ read loop:

119

120 CHAPTER 4 • COMPUTATION

while (ci n» temp) /I read
temps. push_back(temp); /I put into vector

rn le cin»lemp reads a doubl e, and that double is pllshed into the veclor
(placed at the back). We have seen those individual operations before. What 's
new here is that we usc the input operation, cin»lemp, as the condition for a
while·loop. Basically, cin» temp is true if a value was read correctly and false
othen vise, so that while-loop will read all the doubles we give it and stop when
we give it anything else. For example, if you typed

1.23.45.67.89.01

then temps would get the five elements 1.2, 3.4, 5.6, 7.8, 9.0 (in that order, for ex­
ample, temps[O]==1.2). We lIsed the character 'I' to terminate the input - any­
thing that isn't a double can be lIsed_ In §10.6 we d iscllss how to temlinate input
and how to deal with errors in input.

Once we get data into a vector we can easily manipulate it. As an example,
let's calculate the mean and median temperatures:

1/ compute mean and median temperatures
int mai nO
{

vector<double> temps; II temperatures
double temp;
whi le (cin» lemp) /I read

temps. push_back(temp); II put into vector

II compute mean temperature:
double sum = 0;
for (int i = 0; i< temps.size(); ++i) sum += temps[iJ ;
cout« "Average tempe rature: "« sumltemps.sizeO« endl ;

II compute median temperature:
so rt(temps. begin(), temps.end(»; II sort temps

II Nfrom the beginning to the end"
cout « "Median temperature: " « te mps[temps.size()I2]« endl ;

We calcu late the average (the mean) by simply adding all the clements into SUnl,

and then dividing the sum by lhe number of elements (that is, temps.size()):

II compute average temperature:
double sum = 0;

4.6 VECTOR

fo r (int i = 0; k lemps.size() ; H i) sum += tempsl i);
coul « "Average te mperature : " «sum/temps.sizeO« e ndl;

Note how the += operator comes in handy.
' Ib calculate a median (a value chosen so lhat half of the values are lower and

the other half are higher) we need to son the clemeills. Fo r that, we lise the stan­
dard library sort algorithm, sart O:

/I compute median temperature:
sort(temps. begin(),temps.end()); II sort ufrom the beginning to the end"
co ut « "Median temperature: " « tempsltemps.size(12) « e ndl ;

'111e standard librm}' sartO takes twO arguments : the beginning of the sequence
of clements that it is to sort and the end of that sequence. \Ve will explain the
standard libral}' algorithms much later (Chapter 20), but fortunately, a vecto r
"knows" where its beginning and end are, so we don't need to worry about de­
tails : lemps. begin () and temps.end() will do just fine. Note that beginO and
end O are member functions of vecto r, just like sizeO, so we call them for their
vector using dol. Onee the temperatures arc sorted, it 's easy to find the median:
we just pick the middle clement , the one with index temps.size{)12. If you feel
like bcing picky (and if you do, you are starting to think like a progranuner), you
could observe that the value we found may not be a median according to the def­
inition we offered above. Exercise 2 at the end of this chapter is designed to solve
that litlie problem.

4.6.3 A text example
We didn 't present the temperature example because we were particularly inter­
ested in temperatures. Many people - such as meteorologists, agronom.ists , and
oceanographers - are very interested in temperature data and values bascd on it,
Stich as means and medians . However, we arc nol. From a programmer's point of
view, what's interesting about this example is its generality : the vecto r and the
simple operations on it can be used in a huge range of applications. It is fair to
say that whatcver you arc interested in, if you need to analyze data , you 'll use
vector (or a similar data structure; sec C hapter 21). As an example, let's build a
simple dictionary :

II simple dictionary: list of sorted words
int mainO
(

vecto r<string> words;
Siring temp;
while (cin» temp)

words.push_back(temp);
/I read whitespace-separated words
II put into vector

121

122 CH APTER 4 • COMPU TATION

cout « "Number of words : II « words.sizeO «endl;

sort(words.beginO,words .end()) ; 1/ sort " from beginning to end"

fo r (int i = 0; i< words.size() ; ++i)

if (i==O II wo rds(i - 1]!=words[iJ) /I is th is a new word~

coul « wo rds[i} « "\n ";

If we feed some words to this program, it will write !.hem om in order WiUlOli t re­
peating a word. For example, glven

a man a plan panama

it will wnte

a
man
panama
plan

H ow do we stop reading string input? In other words, how do we terminate the
input loop?

while (ci n» temp) II read
wo rds. push_back(lemp); II put into vector

VVhcn we read numbers (in §4.6.2), we just gave some input character that
wasn't a number. We can' t do that here because every (o rd inary) character can
be read into a string. Fortunately, there are characters that arc "not ordinary." As
mcntioned in §3.5. 1, C trl+Z terminales an input stream under Windows and
Clr l+ D does th at under U nix.

Most of tills program is remarkably similar to what we did for lhe tempera­
tures. In fact, we wrote the "dictionary program " by elilting and pasting from the
"temperature program ." ~nle only thing that's new is the tcst

if (i==O II words[i- 1J ! =words[i]) II is this a new word?

If you deleted that tCSt the Output would be

a
a

4 .7 LANGUAGE FEAT U RES

m."
panama
plan

We didn't like the repetition, so we eliminated it using that test. What docs the
test do? It looks to see if the previolls word we printed is different from the one
we are about to print (words[i- l]!=words[i]) and if so, we print that word ; other­
wise, we do not. Obviously, we can' t talk about a previous word when we arc
about to print the first word (i==O), so we first test for that and combine those
two tests using the II (or) operator:

if (i==0 II wordsli- l]!=wordsli]) /I is Ihis a new word?

Note that we can compare strings. ' ""e lise != (not equals) here ; == (equaJs), <
(less than), <= (less than or equal), > (greater than), and >= (greater than or
equal) also work for strings. '11e <, >, etc. operators usc the lIsuaJ lexicographical
ordering, so "Ape" comes before "Apple" and "Chimpanzee" .

TRY THI S

Write a program that "bleeps" out words that you don't like; that is, you
read in words using tin and print them again 0 11 coul. If a word is among a
few you have defined, you write out BLEEP instead of that word. Start with
one "disliked word" such as

string disliked = "Broccoli";

When that works, add a few mOrt.

4.7 Language features
' 11e temperature and dictionary programs used most of the fundamental lan­
guage fealm'es we presented in this chapter: iteration (the for-sLatement and the
while-s tatement), selection (the if-statement), simple arithmctic (the ++ and +=
operators), comparisons and logical operators (the ==, !=, and II operators), vari­
ables, and functions (e.g., mainO, sortO, and sizeO). In addition, we used stan­
dard library facilities, such as vector (a container of elements), cout (an output
stream), and sort O (an aJgorithm).

If you COUIlI , you'U fmd lhat we aClllally achieved quite a lot wilh rather few fc., ­
lUres. TIlal 'S the ideal! E.,ch progra.mm.i.ng language feallire exists lO express a fun­
damental idea, and we <:'1.11 combine them in a huge (really, infin.ite) number of ways

123

124 C H APTE R <I • COM PU TATI O N

to write Llseful programs. TIlis is a key notion: a computer is nOl a gadget with a
rlXed function. Instead it is a madunc that we can program to do an y computation
we can think of, and given that we can attach computers to gadgets thm intcmct
with the world outside the computer, we can in principle gel it to do anything.

~ Drill

Go through this drill step by step. Do not try to speed up by skipping steps. Tcst
each step by elltering at least three pairs of values - more values would be beltel'.

1. ,"Vrilc a program that consists of a whi le-loop that (each time arollnd the
loop) reads in two ints and then prints them. Exit the program when a
terminating 'I' is emered.

2. Change the program to \vrilC out the smaller value is: followed by the
smaller of the numbers and the larger value is: followed by the larger value.

3. Augment the program so that it writes the line th e numbe rs are equal
(o nly) if they are equal.

4. C hange the program so that it uses do ubles instead of ints.
5. C hange the program so that it writes out the numbers are almost equal

after writing out which is the larger and the smaller if the two numbers
differ by less than 1.0/10000000.

6. Now change the body of the loop so that it reads just one do uble each
lime around. Define twO variables to keep track of which is the smallest
and which is the largest val ue you have seen so far. Each time through
the loop write out the value emered. If it 's the smallest so far, write the
smallest so far after the number. If it is the largest so far, write th e largest
so far after the number.

7. Add a unit to each do uble entered ; that is, enter values such as 10cm,
2.5in , 5ft, or 3.33m. Accept the fou r units: em, Ill , in , ft. Assume conver·
sion factors 1m == 100em, l in == 2.54em, Ht == 12in. Read the unit indio
cator into a string.

8. Reject values withom units or with "illegaJ" representations of units, such
as y, yard , meter, km, and gallo ns.

9. Keep track of the sum of values entered (as well as the smallest and the
largest) and the number of values entered . When you see the fina l 'I'
print the smallest, the largest, the number of valucs, and the sum of val­
ues. Note that to keep the sum, you have to decide on a unit to lise for
that sum; use meters.

10. Keep all the values entered (convened into meters) in a vecto r. At the
end, write out those values.

(H AI'TER 4 REVIEW

II. Before writing out the values from the vector, sort them (that'll make
them come Ollt in increasing order).

Review
1. What is a computation?
2. What do we mean by inputs and outputs to a computation? Give examples.
3. What arc the three requirements a programmer should keep in mind

when expressing computations?
4. What docs an expression do?
5. What is the difference between a statement and an expression, as de·

scribed in this chapter?
6. What is an Ivalue? List me operators that require an lvalue. Why do

thcse operators, and not the others, require an lvalue?
7. What is a constant expression?
8. What is a literal?
9. What is a symbolic constant and why do we usc them?

10. What is a magic constant? Give examples.
II . What are some operators that we can use for integers and floating·poim

valucs?
12. What operators can bc used on integers but not on flo.1.ting·point numbers?
13. \.vhat are some operators thaI can be used for strings?
14. When would a programmer prefer a switch·statement to an if·statement?
15. What arc some common problems with switch·statements?
16. What is the function of each part of the header line in a for-loop, and in

what sequence arc mey executed?
17. When should the for·loop be used and when should the while·loop be

used?
18. How do you print the numeric value of a char?
19. Describe what the line char foo(int x) means in a function dermition.
20. When should you define a separate function for part of a program? List

reasons.
21. What can you do to an int that you cannot do to a string?
22. What can you do to a string that you cannot do to an int?
23. \.vhat is the index of the third element of a vector?
24. How do YOLI write a for-loop that prints every clement of a vector?
25. What docs vector<char>alphabet(26); do?
26. Describe what push_backO docs to a vector.
27. What do vector's member functions beginO, end(), and size() do?
28. \.vhat makes vector so popular/useful?
29. How do you sort the elements of a vector?

126

Terms

abstraction
beginO
computauon
conditional sta tement
declaration
dcfmition
divide and conquer
else
endO
expresSIOn

Exercises

fo r-statement
function
if-statement
increment
mput
Iterauon
loop
Ivalue
member function
outpUt

CHAPTER 4 • COMPUTATION

push_backO
repetition
rvaluc
selection
sizeO
sartO
statcmcill
switch-statement
vector
while-statement

l. If you haven't already, do the Try this exercises from this chapter.
2. If we define the median of a sequence as "the number for which exactly

half of the elemenLS o f the sequence come before it and exactly half come
after it," fix the program in §4.6.2 so iliat it always prints out a median.
Hint : A median need not be an clement of the sequence.

3. Read a sequence of do uble vaJues into a vecto r. TItink of each value as
the distance between two cities along a given route. Compute and print
the total distance (the sum of a ll distances). Find and print the smallest
and greatest distance between two neighboring cities. Find and print the
mean distance between two neighboring cities.

4-. Write a program to play a numbers guessing game. TIle user thinks of a
number between 1 and 100 and your program asks questions to figure
out what the number is (e.g. , "Is the number you are thinking of less
than 50?") . Your program should be able to idemify the number after
asking no more than seven questions. Him: Use the < and <= operators
and the if·else construct.

5 . Write a program th at perfonns as a very simple calculator. Your caJcula·
tor sho uld be able to handle the five basic math operations - add , sub·
tract, multiply, d ivide, and modulus (remainder) - on two input values.
Your program should prompt the user to enter th ree arguments: two
do uble values and a character to represent an operation. If the entry ar­
guments are 35.6, 24.1 , and '+', the program output should be "The sum
of 35.6 and 24.1 is 59.7." In C hapter 6 we look at a much marc sophisti­
cated simple calculator.

6. Make a vecto r holding the ten string values "zero" , "one" , ... "nin e" .
Use that in a program that converts a digit to its corresponding spelled­
Ollt value ; e.g. , the input 7 gives the output seve n. Have the same pro-

(HAPTER 4 EXERCI SES

gram, using the same input loop, convert spelled-alit numbers into their
digit form; e.g. , the input seven gives the output 7.

7. Modify the "mini calculator" from exercise 5 to accept (just) single-digit
numbers wriucn as either digits or spelled out.

8. 11lere is an old story that the emperor wanted to thank the inventor of
the game of chess and <Isked the inventor to name his reward. TIle in­
ventor asked for one grain of rice for the first square, 2 for the second, 4
for the third , and so on, doubling for each of the 64 squares. That may
sound modest, but lhere wasn't thai much rice in the empire! Write a
program to calculate how many squares arc required to give the inventor
at least 1000 grains of rice, at least 1,000,000 grains, and at least
1,000,000,000 grains. You'll need a loop, of course, and probably an inl
to keep track of which square you arc at, an int to keep the number of
grains on the current square, and an int to keep track of the grains on all
previous squares. We suggest th at you write out the value of all your Villi­
abies for each iteration of the loop SO lilat you am sec what's going Oil.

9. Try to calculate the number of rice grains lhat the inventor asked for in
exercise 8 above. You 'll find that the number is so large that it won't fit in
an inl or a double. Observe what happens when the number gets too
large to represent as an inl and as a double. What is the largest number
of squares for which you can calculate the exact number of grains (using
an int)? Whal is the largest number of squares for which you can calcu­
late the approximate number of grains (using a double)?

10. Write a program that plays the game "Rock, Paper, Scissors." If you arc
not familiar with the game do some research (e.g. , on the web using
Coogle). Research is a common task for progra.mmers. Use a switch­
statement to solve this exercise. Also, the machine should give random
answers (i.e., select the next rock, paper, or scissors randomly). Real ran­
domness is too hard to provide just now, so just build a vector with a se­
quence of values to be used as "the next value." If you build the vector
into the program, it will aJways play the same game, so maybe you
should let the user enter some values. Try variations to make it less easy
for lhe user to guess whieh move lhe machine will make next.

I I. Create a program to find all the prime numbers between 1 and 100. One
way to do this is to write a function that will check if a number is prime
(i.e., see if lhe number can be divided by a prime number smaller lhan it·
self) using a vector of primes in order (so that if the vecto, is called
primes, primes[Ol==2, primes[11==3, primes[21==5, etc.) . Then write a
loop thal goes from I to 100, cheeks each number to see if it is a prime,
and stores each prime found in a vector. Write another loop that lists the
primes you found. You might cheek your resull by comparing your
vector of prime numbers with primes. Consider 2 the first prime.

128 CHAPTER 4 • COMPU TATION

12. Modify the program dcscribed in the previous exercisc to take an input
value max and then find all prime numbers from 1 to max.

13. Create a program to find all the prime numbers bctween 1 and 100.
There is a classic method for doing this, called the "Sieve of Eratos·
thenes ." If you don 't know that method, get on the web and look it up.
Write your program using this method.

14. Modify the program described in the previous exercise to t.'lke an input
value max and then find all prime numbers from 1 to max.

15. Write a program that takes an input value n and then finds the first n

pnmes.
16. In the drill, you wrote a program that, given a series of numbers, found

the max and min of that series. llle number that appears the most times
in a sequence is callcd thc mode. Create a program that finds thc modc of
a set of positive integers.

17. Write a progranl that finds thc min, max, and mode of a sequence of
strings.

18. Write a program to solve quadratic equations. A quadratic equation is of
the form

ax2+bx+c=O

If you don't know t.he quadratic fonnula for solving such an expression,
do some research. Remember, researching how to solve a problem is
often necessary before a programmer can teach the computer how to
solve it. Use doubl es for thc uscr inputs for a, b, and c. Since there are
twO solutions to a quadratic equation, Output both x1 and x2.

19. Write a program where you first enter a set of name·and·value pairs,
such as Joe 17 and Barbara 22 . For each pair, add the name to a veclor
called names and the numbcr to a vector called scores (in corresponding
positions, so that if names[7]=="Joe" then scores[7]==18). l cnninate
input by the line No more (" more" will make the attempt to read anotller
integer fail). Check that each name is unique and terminate with an crror
message if a name is entered twice. Write a u[all the (namc,score) pairs,
one per line.

20. Modify the program from exercise 19 so that when you cntcr a nall1e,
the program will output the corresponding score or "name not found".

21. Modify the program from exercise 19 so lhat when you enter an integer,
lhe program will Output all the names Wilh lhal score or "score nol
found".

C HAPTER" PO STSCR IPT

Postscript
From a philosophical point of view, you can now do everything that can be done
using a computc r - the rest is details I Among other things, this shows the value
of "details" and the importance of practical skills, because clearly you have barely
started as a programmcr. But we are serious. The tools pl"esented in this chapter
do allow you to express every computation: you have as many variables (includ­
ing vectors and strings) as you want, you have arithmetic, comparisons, and you
have selection and iteration. Every computation can be expressed using those
primitives. YOLI have tc. ... t and numeric input and output, and every input or out­
put can be expressed as tCXt (even graphics). You can even organize your compu­
tations as sets of named functions. What is left for you to do is "just" to learn to
write good programs, t.hal is, to write programs that arc correct, maintainable,
and reasonably efficient Important.ly, you must. try to learn to do so Wit.ll a rea­
sonable amount of effort.

Errors

"I realized that from now on a large part
of my life would be spent fmding and

correcting my own mistakes."

-Maurice Wilkes, 1949

I n this chapler, we discuss correctness of programs, errors, and

error handling. If you are a genuine novice, you'll find the dis­

cussion a bit abstract at times and painfully detailed at other

limes. Can error handling really be this important? It is, and

you 'll learn that one way or another before you can write pro­

grams that others are willing (0 use. \¥113l we are crying to do is

to show you what "thinking like a programmer" is about. It com­

bines fairly abstract strategy with painstaking analysis of details

and alternatives.

131

132

5.1 Introduction

5.2 Sources of e rrors

5.3 Compile-time e rrors
5.3.1 Syntax e rrors
5.3.2 Type errors
S.l.) Non-errors

5.4 Link-lime e rrors

5.5 Run-time errors

5.5.1 The caller de~ls with e rrors
5.5.2 The c~lIee deals with e rrors
5.S.) Error reporting

5.6 Exceptions
5.6. t Bad arguments
5.6.2 Rilnge errors
5.6.3 Bad input
5.6.4 N'lfrowing errors

5.1 Introduction

CHAPTER 5 • ERRORS

5.7 logic e rrors

5.8 Estimation

5.9 Debugging
5.9.1 Practical debug advice

5.10 Pre- and post-conditio ns

S. 10.1 Posi-conditions

5.11 Testing

We have refcrred to errors repeatedly in the previous chapters, and - having
done me drills and some exercises - you have some idea why. Errors arc simply
unavoidable when you develop a program, yet lhe Hnal program IIlUSt be free of
errors, or at least free of errors that we consider unacceptable for it.

There are many ways of classifying errors. For example:

CmnjJl"/e-time emm: Errors found by the compiler. We c.1n further classify
compile-time errors based on which language rules they violate, for
cxample:

Syntax errors

Type errors

Link-time errorJ: Errors found by the linker when it is trying to combine
object files into an executable program.

Rllll-tim~ error;: Errors found by checks in a ru nning program. We can
fUlther classify run-time errors as

Errors detected by lhe computer (hardware andlor operating system)

Errors detcCled by a library (e.g., the standard Jibrmy)

Errors detected by user code

Logic mTm: Errors found by the programmer looking for the causes of er­
roncous results.

5. 1 I N TROO UCTIO N

It is tempting to say that our job as programmers is to eliminate an errors. 111at is
of course the ideal, but often that's not feasible. In fact , for real-world programs it
can be hard to know exaclly what "all errors" means. If we kicked Ollt the power
cord from your computer while it executed your program, would that be an error
that you were supposed to handle? In many cases, the answer is "Obviously not,"
but what if we were talking about a medical monitoring program o r the control
program for a telephone switch? In those cases , a lIser could reasonably expect
thai somellling in the system of which your program was a part will do some·
thing sensible even if your computer lost power or a cosmic ray damaged the
memory holding your program. The key question becomes: "ls my program
supposed to detect that errorr Urness we specifically say otherwise, we will as­
sume that your program

1. Should produce the desired results for all legal inputs

2_ Should give reasonable error messages for all illegal inputs

3. Need not WOlTY about misbehaving hardware

4. Need nOt won-y aboUl misbehaving system software

5_ Is allowed to tertninate after fmding an error

Essentially all programs fo r which assumptions 3 , 4, or 5 do not hold can be con­
sidered advanced and beyond the scope o f this book. However, assumptions 1
and 2 arc included in lIle defmition of basic professionalism, and professionalism
is one of our goals. Even if we don't meet that ideal 100% of the time, it must be
the ideal.

,"Vhen we write programs, errors are natural and unavoidable; the question
is: how do we deal willl them? Qur guess is lIlat avoiding, fmding, and correcting
errors takes 90010 or more of the effort when developing serious software. For
safety-critical programs, the effort can be greater stilL You can do much better for
sUlali prob'Tams; on the other hand, you can easily do worse if you're sloppy_

BasicaJly, we offer three approaches to producing acceptable software:

O rganize software to minimize errors.

Eliminate most of the errors we made through debugging and testing.

Make sure the remaining errors arc not serious.

None of these approaches can completely eliminate errors by itself; we have to
usc all lhree.

Experience matters immensely when it comes to producing reliable pro·
grams, that is, programs that can be relied on to do whatlhey are supposed to do
with an acceptable error rate. Please don't forget that the ideal is that our pro­
grams always do the right thing. We are usually able only to approximate that
ideal, but that 's no excuse ror not trying very hard.

133

134 CHAPTER 5 • ERRORS

5.2 Sources of errors
Here arc some sources of errors:

FfJcr sjxcificatiQn: If we are not specific about what a pmgram should do,
we arc unlikely to adequately examine the "dark corners" and make sure
that all cases arc handled (i.e., that every input gives a correct answer or
an adequate error message).

InlOmplete progralllJ: During devclopmcnt, there arc obviously cases that
we haven't yet taken care of. That's unavoidable. , .vhat we must aim fo r
is to know when we have handled all cases .

UlII:xjxded arguments: Functions take arguments . If a function is given an
argumem we don't handle, we have a problem. An example is calling the
standard library square root function with - 1.2: sqrt(-1.2). Si nce sqrtO
o f a double returns a double, there is no possible correct return value.
§5.5.3 discusses tltis kind or problem.

Unexpectcd input: Programs typically read data (rrom a keyboard. rrom
files , rrom GU ls, rrom network connections, etc.). A program makes
many assumptions about such input, ror example, that the user will
input a nu mber. What ir the user inputs "aw, simi up!" rather than the
expected integer? §5.6.3 and §10.6 discuss this kind or problem.

Uncxj){!c/cti stale: Most programs keep a 101 or data ("state") arollnd ror lise
by different parts or the system. Exrullples arc address lists, phone direc­
tories, and vectors or temperature readings. \"'hat ir such data is incom·
plete or wrong? The various parls or the program must still manage.
§26.3.5 discusses this kind or problem.

Logi(((1 errrJ1"J : That is, code that simply doesn' t do what it was supposed
to do; we'll just have to find and fix such problems. §6.6 and §6.9 give
examples or find ing such problems.

This list has a practical usc. We can use it as a checklist when we afC considering
how rar we have come with a progrrun . No program is complete umil we have
considered all or these potential sources or errors. In ract, it is prudent to keep
them ill mind rrom the very start or a project, because it is most unlikely that a
progrrun that is just thrown together witham thought about errors can have its
errors round and removed without a serious rewrite.

5.3 Compile-time errors
When you arc writing progr-J.ms, your compiler is your fi rst line or ddense
against errors. nerore generating code, the compiler rulalyzes code to detect synwx
errors ruld type errors. Only if it finds that the program completely conrorms to

5 .3 COMPi lE · TIME ERRORS

the language specific.1.tion will it allow you LO proceed. Many of the errors that the
compiler fi nds are simply "silly errors" c.1.used by mistyping or incomplete edits of
the source code. Others result from flaws in our understanding of the way parts of
our program interact. To a beginner, the compiler often seems pett}', but as you
leam to use the language facilities - and especially the type system - LO directly
express your ideas, you'll come to appreciate the compiler's abilit}' to detect prob·
lems that would otllerwise have caused you hours of tedious searching for bugs.

As an example, we will look at some calls of this simple function:

int area(inllength, int width); II calculate area of a rectangle

5.3.1 Syntax errors
What if we were to c."1ll areaO like this:

int sl = area(7;
int sl = area(7)
Int s3 = area(n;
int 54 = area('n;

1/ error:) missing
II error: ; missing
II error: Int is not a type
II error: non-terminated character (' missing)

Each of those lines has a syntax error; that is, they ate not well formed according
LO the C++ grammar, so the compiler will reject them. Unfortunately, syn tax er­
rors are not always easy to teport in a way that you, the programmer, find easy to
understand. TImt's because the compiler may have to read a bit funhet titan the
elTOr to be sure that there really is an error. The effect of this is that even though
symax errors tend to be completely trivial (you'll o ften find it hard to believe you
have made such a mistake once you find it), Lhe reporting is of len oyplic and oc­
casionally rcrers to a line further on in the program. So, for syntax errors, if you
don't see anytlung wrong with the line the compiler points 10, also look at previ­
ous lines in the program.

Note that tile compiler has no idea what you are trying to do, so it cannot re­
pon errors in lerms of you r intent, only in ten us o f what you did . For example,
given the eITOr in tile declaration of 53 above, a compiler is unlikely to say

"You misspelled int ; don't capitalize the i."

Rather, it' ll say sometlling like

"syntax error: nussing ' ; ' before identifier 's3' "

" 's3' missing storage-class or type identifiers"

"' Int' nussi.ng storage-class or type idemifiers"

Such messages tend to be cryptic, until yOll get used to them, and to use a vocab­
ulary that can be hard to penetrate. Different compilers can give very different-

115

136 (H APTER 5 • ERROR S

looking error messages for the same code. Fortunately, you SOOI1 gel used to read­
ing such stuff. After all, a quick look at those cryptic lines can be read as

"There was a syntax error before 53,
and it had something to do with the type of Int or 53."

G iven thal, it 's not rocket science to find the problem.

TRY THIS

Try to compile those examples and sec how the compiler responds.

5.3.2 Type errors
Once you have removed syntax errors, the compiler will start reporting type er­
rors; that is, it will report mismatches between the types you declared (or forgot
to declare) for your variables , functions, etc. and the types of values or expres­
sions you assign to them, pass as function arguments, etc. For example:

inl xO = arena(7); /I error: undeclared function
inl xl = area(7); II error: wrong number of arguments
int x2 = area("seven",2); II error: lsI argumenl has a wrong Iype

Let's consider these errors.

I . Fo r arena(7), we misspelled area as arena , so the compiler thinks we
want to call a function called arena. (\'\That else could it "think"? 11mt's
what we said.) Assuming there is no function called arena() , you 'll get an
error message complaining about an undeclared function. If there is a
function called arena, and if that function accepts 7 as an argument, you
have a worse problem: the progrnm will compile but do something you
didn't expect it to (that 's a logical error; see §S.?).

2. For area(7), the compiler detects the wrong number of arguments. In
C++, every function caU must provide lhe expected number of argu­
ments, of the right types, and in the right order. When the type system is
used appropriately, this can be a powerful tool for avoiding run' lime er­
rors (see § 14.1).

3. For area("seven",2), you might hope that the computer would look at
"seven" and figure out that you meant the integer 7. It won't. If a func­
tion needs an integer, you can't give it a string. C++ docs support some
implicit type conversions (see §3.9) but not string to int. TIle compiler
docs not try to guess what you meant. \-Vltat would you have expected
for area(" Hovellane" ,2), area("7,2"), and area("siebe n", "zwei")?

5.4 LINK -TIME ERRORS

111ese arc just a rew examples. There arc many more errors that the compiler will
find ror you.

TRY TH IS

Try to compile those examples and sec how the compiler responds. Try
thinking or a rew more errors you rself, and try those.

5.3.3 Non-errors
As yO Li work with the compiler, you'll wish that it was smart enough to figure OLit
what YO Li meant; that is, you'd like some or the errors it reports not to be errors.
11l<Il'S natural. More surprisingly, as you gain experience, you' ll begin to wish
that the compiler would reject more code, rather than less. Consider:

int x4 = area(10,-7) ; II OK: but what is a rectangle with a width of minus 7?
int x5 = area(10.7,9.3); IIOK : but calls area(1O,9)
char x6 = area(1oo, 9999); II OK, but truncates the resu It

For 11:4 we get no error message rrom the compiler. From the compiler's point or
view, area(10,-7) is fine: area() asks ror two integers and you gave them to it; no­
body said lhat those arguments had to be positive.

For 11:5, a good compiler will wam about the truncation or the doubles 10.7
and 9.3 into the ints 10 and 9 (see §3.9.2) However, the (ancient) language rules
state that yOll can implicitly convert a double to an int, so the compiler is not al­
lowed to reject the call arca(10.7,9.3).

111e initialization or 11:6 suffers rrom a variant of the sa.me problem as the call
area(10.7,9.3). 111e int retumed by area(100,9999), probably 999900, will be as­
signed to a char. -m e most likely result is ror x6 to gel the "truncated" value -36.
Again, a good compiler will give you a warning even though the (ancient) lan­
guage rules prevent it rrom rejecting the code.

As you gain experience, you'll leam how to get the most out or the com­
piler's ability to detect errors and to dodge its known weaknesses. However,
don't get overconfident : "my program compiled" doesn't mean thal it will nin.

Even ir it docs run, it typically gives wrong results at first until you find the flaws
in your logic.

5.4 Link-time errors
A program consists o r several separately compiled parts, called trallslali(TIl III/its.
Every runction in a program must be declared with exactly the same type in

137

138 CHAPTER 5 • ERROR S

every translation unit in which it is used. We usc header files to ensure lhat ; sec
§B.3. Every function must also be defined exactly once in a program. If either of
lhese rules is violated, the linker will give an error. We discuss how to avoid link­
lime errors in §B .3. For now, here is an example of a program that might give a
typical linker error:

inl area(int le ngth , int width); II calcu late area of a recTangle

int mainO
(

int ;II: = a rea(2,3);
)

Unless we somehow have de[med area() in another source fil e and linked the
code generated from that source fil e to this code, the linker will complain that it
didn't find a definition of area() .

lne definition of areaO must have exactly the same types (both the Tetllm

type and the argument type) as we used in OliT fil e, that is:

int area(inl x, inl y) {' • . . . O,} /I "our" areaO

Functions with the same name but different types will no t match and will be
ignored :

double area(double x, double y) {r .. . -'} /I not "our" areaO

inl area(int x, int y, char unit) { /* .. . *' } /I not "our" areaO

Note that a misspelled function name doesn't usually give a linker error. How­
ever, the compiler gives an error immediately when it sees a call to an undeclared
function. That's good: compile-time errors are found earlier than link-tunc errors
and are typically easier to fix .

The linkage rules for functions , as stated above, also hold for all other enti­
ties o f a program, such as variables and types: there has to be exact..l y one defini ­
Llon of an entity with a given name, but there can be many declarations, and all
have to agree exact..l y on its type.

5.5 Run-time errors
If your program has no co mpile-time errors and no link-tunc errors, it ' ll lUll .

This is where the fun really starts. When you write the program you are able to

5.5 RU N. TIME ERRORS

detect errors, but it is not always easy to know what LO do with an error once you
catch it at run time. Consider:

int area(int length , int width)
{

/I calculate area of a rectangle

return length*width ;
}

int framed_area(int x, int y)
{

II calculate area within frame

return area(x-2,y-2);
}

inl mainO
{

intx= - l ;
inty =2;
intz=4;
/I ..
int areal = area(x,y);
int areal = framed_area(l,z);
int area3 = framed_area(y,z);
double ratio = double(areal)/area); /I convert to double to gel

/I floating·point division

We lIsed the vru;ables x, y, z (r,uher than using the values direcuy as arguments) to
make the problems less obvious to the human reader and harder for the compiler
to detect. However, these calls lead to negative values, representing areas, being as·
signed to areal and areal. Should we accept such erroneous results, which violate
most notions of math and physics? If not, who should detect the errors: the caller
of areaO or the function itself? And how should sllch errors be reponed?

Before answering those questions, look at the calculation of the ratio in the
code above. It looks innocent enough. Did you notice somet.hing wrong with it?
If not, look again: area3 will be 0, so that double(areal)/area3 divides by zero.
' 111is leads to a hardware-detected error that temlinates the program with some
cryptic message relating to hardware. This is ule kind of error that you - or your
users - will have to deal with if you don't detect and deal sensibly with run·time
elTOrs. Most people have low tolerance for such "hardware violations" because to
anyone not intimately familiar with the program aU the information provided is
"Something went wrong somewhere!" That's insufficient for any constructive ac­
tion, so we feci angry and would like to yeU at whoever supplied the program.

139

140 (HAPTER 5 • ERR O RS

$0, let's tackle the problem of argument errors Wilh areaO. We have tWO ob­
vious ah'cmauves:

a. Let lhe caBer of areaO deal with bad arguments.

b. Let areaO (the called functio n) deal with bad argu ments.

5.5.1 The caller deals with errors
Let 's try lhe first alternative (" Let the lIser beware! ") first. That's the one we'd
have to choose if area() was a function in a library where we couldn' t modify it.
For better or worse, this is the most common answer.

Protecting the caU of area(x,y) in mainO is rdat..ivcly easy:

if (,,<=0) error("non-positive x"),
if (y< =O) error(" non-positive ylt) ;
int areal = area(x,y);

Really, the only question is what to do if we find an error. Here, we have called a
function cuorO which we will assume will do something sensible. In fact, in
std_lib_facilities. h we supply an errorO function that by default terminates the
program with a system error message plus the string we passed as an argument
to errorO. If you prefer to write out your own error message or take other ac­
tions, you catch runtime3uor (§5.6.2, §7.3 , §7.8, §B.2. 1). "This suffices for most
student programs and is an example of a style that can be used for more sophisti­
cated error handling.

If we didn't need separate error messages about each argument, we would
simplify:

if (x<=O II y<=O) error(" non-positive area() argument");
int areal = area(x,y);

To complete protecting areaO from bad arguments, we have to deal with the calls
through framed _areaO. We could write :

if (z<=2)
error("non-posilive 2nd areaO argument called by framed_areaO");

int area2 = framed_area(l ,z) ;
if (y<=211 z<=2)

error(" non-positive areaO argument called by framed_areaO");
int areaJ = framed_area(y,z);

"Ibis is messy, but there is also something fundamentally wrong. We could write
this only by kllowing exactly how framed_areaO Llscd areaO. We had to know
that framed_areaO subtracted 2 from each argument. We shouldn't have to know
such delails! \"'hat if someone modified framed_areaO to use 1 instead of 2?

5.5 RUN-T IM E ERRORS

Someone doing that would have to look at every call of framed_areaO and modify
the error-checking code correspondingly. Such code is called "briule" bec. ... use it
breaks easily. This is also an example of a "magic constam" (§4.3 .1). We could
make the code less brittle by giving the vaJue subtracted by framed_areaO a nam e:

canst int frame_width = 2;
int framed_area(int x, int y) /I calculate area within frame
(

retu rn area(x- frame _ widt h, y- f rame_ width);

11mt name could be used by code calling frame_areaO:

if (l -frame_width<=O II z-frame_width<=O)
error("non-positive 2nd areaO argument ca lled by framed_area()");

int area2 = framed_area(l ,z);
if (y-frame_widlh<=O II z-frame_widlh<=O)

error(" non -posilive area() argument called by framed_areaO") ;
inl areal = framed _area(y,z);

Look at that code! Are you sure it is correct? Do you find it pretty? Is it easy to
read? AcmaJly, we find it ugly (and therefore error-prone). We have more thanlrc­
bled the size of the code and exposed an implementation deta il of frame_areaO.
·nlere has to be a beller way!

Look at the originaJ eode:

int areal = framed_area(l,z);
inl areal = framed_area(y,z);

It may be wrong, but at least we can sec what it is supposed to do. We can keep
this code if we pllt the check inside framed_areaO.

5.5.2 The callee deals with errors
C hecking for vaJid arguments within framed_areaO is easy, and errorO can still
be used to report a pmblcm:

inl framed_areaOnt x, int yl /I calculate area within frame
(

)

canst int frame_width = 2;
if (x-frame_width<=O II y- frame_width<--o)

error(" non-positive areaO argument called by framed_areaO");
retu rn a rea(x- f ram e_ width, y- f rame_ width);

,.,

142 CHAPTER 5 • ERRORS

Tbis is rather nice, and we no longer have to write a test for each caU of
framc_areaO. For a useful function that we call 500 times in a large program, that
can be a huge advantage. Furthermore, if anything to do with the error handling
changes, we only have lO modify the code in one place.

Note something interesting: we almost unconsciously slid from the "caller
must check the arguments" approach to the "function must check its own af/:,'-u­
mcnts" approach (also called "the callec checks" because a called fu nction is often
called "a callec") . One benefit of the latter approach is that the argument-checking
code is in one place. We don't have to search the whole program for calls. Further­
more, that one place is exactly where the arguments arc to be used, so we have all
the infonnalion needed easily available to do the check.

Let's apply this solution to areaO:

int area(int length, int width)
{

II calcul ate area of a rectangle

)

if (length<=O II width <=0) error(" non -positive areaO argument");
return length · width ;

T his will catch all errors in calls to areaO, so we no longer need to check in
framed_areaO. We might want to, though, to get a better - more specific - error
message.

Checking arguments in the fu nction seems so simple, so why don't people
do that always? Inattention to error handling is one answer, sloppiness is anOlher,
but there arc also respectable reasons:

1# can't modjJj thejimctioll dejinition: The fu nction is in a library that for
some reason can't be changed . Maybe it's used by others who don 't
share your notions o f what constitutes good error handling. Maybe it's
owned by someone else and you don't have the source code. Maybe it 's
in a library where new vers ions come regu la.rly so that if you made a
change, you'd have to change it again for each new release of the library.

17/£ CIliled jimc/i(m doe.m't know what to do i1l cllJe tf t:mJr: l11is is typically the
case fo r library functions. The library writer can detect the error, but
only you know what is to be done when an elTor OCCllrs .

17u: called jilllc/i(m doeSII't kllfJW where it WIlJ called from: W hen you get an
error message, it tells you that something is wrong, but nOl how lhe exe­
cuting program got to that point. Sometimes, you want an error message
to be more specific.

ItrJomulIlce: For a small function the cost of a check can be more than the
cost of calculating the result. For example, that 's the case with areaO,
where the check also more than doubles the size of the function (that is,

5.5 RUN -TIME ERR O RS

the number of machine instr uctions that need lO be executed , nOt just
the length of the source code). For some programs , that can be critical,
especially if the same information is checked repeatedly as functions call
each other, passing information along more or less und langed.

So what should you do? Check your arguments in a fu nction unless you have a
good reason not to.

After examining a few related topics, we'll return to the question of how to
deal with bad arguments in §5.9.

5.5.3 Error reporting
Let'S consider a slightly different question: once you have checked a set of argu­
mentS and found an error, what should you do? Somctimes you can retu rn an
"crror value." For example:

/I ask user for a yes-or-no answer;
II return 'b' to indicaw a bad answer (i.e., not res or no)
char ask_user(slring question)
{

)

co ut « question « "1 (yes or no)\n";
string answer = " ";
dn »answer;
if (answer =="y" II answer=="yes") return 'y' ;
if (answer ==" n" II answer==" no") return 'n 'j
rel urn 'b'; /I 'b' for ~bad arlswer~

/I ca(culate area of a rectangle;
/I return - 1 to indicate a bad argument
inl area(inllenglh , int width)
{

)

if (lenglh<=O II width <=0) return - 1;
return lenglh ·width ;

-l1mt way, we can have the called function do the detailed checking, while lelting
each callcr hand le the error as desired. l11is approach seems like it could work,
but it has a cou ple of problems that make it unusable in many cases:

Now bmh the called fu nction and all callers must lest. The caller has
only a simple test to do but must still write that leSt and decide what to

do if it fails.

143

'44

(

CHAPTER 5 • ERRORS

A caller can forget to test. That can lead to unpredictable behavior fur­
ther along in the program.

Many functions do IlO t have an "'extra" return value thai they Gill usc to
indicate an error. For example, a function that reads an integer from
inpu t (such as, dll 's operator ») can obviously return any int value, so
there is no int that it could return to indicate failure.

TIle second case above - a caller forgetting to test - can easily lead to surprises .
For example:

int f(i nt x, inl y, int z)
(

}

int areal = area(x,y);
if (area1 <=0) error(" non-positive area");
int areal = framed_area(l,z):
int arca3 = framed_area(y,z);
double ratio = double(areal)/area3;
II ...

Do YOli sec the errors? 111is kind of error is hard to find bCu'lUse there is no ob­
violls "wrong code" to look at : the error is the absence of a test.

TRY THI S

Test this program with a variety of vaJues. Prim out the values of areal ,
areal, areal, and ratio. Insert more tests until aJl errors are caught. H ow do
you know that you caught all errors? This is not a triek question; in this par­
ticular e.'(ample you can give a vaJid argument for having caught all errors.

There is another solution that deals Wilh that problem: using exceptions.

5.6 Exceptions
Like most modern programming languages, C++ provides a mechanism to help
deal with errors: exceptions. 111e fundamental idea is 10 separate detection of illl
error (which should be done in a called funct ion) from lhe handling of an error
(which shou ld be done in the calling function) while ensuring that a detected
error cannot be ignored ; that is, exceptions provide a mechanism that allows liS

to combine the best of the various approaches to error handling we have ex­
plored so far. Nothing makes error handling easy, but exceptio ns make it easier.

S.6 EXCEPTIONS

llle basic idea is that if a function finds an error that it cannm handle, it does
110t return normally; instead, it throws an exception indic.'lting what weill wrong.
Any elil'ect or indirect « Iller can catch the exception, that is, specify what to do if
the called code lIsed th row. A function expresses interest in exceptions by using a
try·block (as described in the following subsections) listing the kinds of excep·
tions it wants to handle in the catch·parts of the try-block. If no caller catches an
exception, the program tenninates .

We'll come back to exceptions much later (C hapter 19) to see how to use
them in slightly more advanced ways.

5.6.1 Bad arguments
Here is a version of areaO using exceptions:

class Bad_area { }; 1/ a type specifica ll y for reporling errors from areaO

1/ calculate area of a rectangle;
1/1hrowa Bad_area exceplion in case of a bad argument
int arca(int le ngth, int width)
(

}

if (le ngth<=O II width <=0) throw Bad_area() i
return le ngth -width ;

lllat is, if the arguments arc OK, we return ule area as always ; if not, we get Ollt
of areaO using ule throw, hoping that some catch will provide an appropriate re·
spollSe. Bad_area is a new type we defme with no mher purpose than to provide
something unique to throw from area() so that some catch can recognize it as the
kind of exception thrown by areaO. User·defined types (classes and enumeration)
will be discussed in Chapter 9. The notation Bad_areaO means "Make an object
of type Bad_area," so throw Bad_areaO means "Make an object of type Bad_area
and throw it."

We C.'lll now write

int mainO
try {

int x= -l i
int y=2;
int :Z:= 4;
1/ . . .
inl area1 = area(x,Y)i
int area2 = framed_a rea(l ,:Z:)i
int areal = framed_a rea(y,z)i
double ratio = area1/areali

145

146 C HAPTER 5 • ERRORS

catch (Bad_area) {
cout « "Oops! bad arguments to area()\n";

)

First note that this handles all caHs to areaO, both the one in mainO and the two
through framed_areaO. Second, note how the handling of the error is cleanly sep­
arated from the detection of the co"or: mainO knows nothing about which func­
tion did a throw Bad_areaO, and areaO knows nothing about which function (if
any) carcs to catch the Bad_area exceptions it throws. '11is separation is espe­
cially important in large programs written using many libraries. In slIch pro­
grams, nobody can "'just deal with an error by putting some code where it 's
needed ,'" because nobody would wam to modify code in both the applicmion and
in all of the libraries.

5.6.2 Range errors
Most real-world code deals with collections of data ; that is, it uses all kinds of tao

bles, lists, etc. of data elements to do a job. In the context of C++, we often refer
to "collections of daLa" as am/ail/as. TIle most common and usefu l standard li­
brary container is the vector we imroduced in §4.6. A vector holds a number of
elements, and we can determine that number by calling the vector's sizeO mem­
ber function. What happens if we try to use an element with an index (subscript)
that isn't in the valid range [O:v.sizeO)? The general notation [Iow:high) means
indices from low to high-l , that is, including low but not high:

low: h igh:

,---,----;r--.I . . . 'I ---'----'----'1::::)
Before answering that question, we should pose another question and answer it:

"'Why would you do that?" After all, you know that a subscript for v should
be in the range [O,v.sizeO), so just be sure that's so!

As it happens, that's easy to say but sometimes hard to do. Consider this plausi­
ble program:

vector<inl> v; /I a vector ints
int i;
while (ci n» i) v.push_back(i);
for (int i = 0; i<=v.sizeO; ++i)

/I get values
/I print values

co ut « "vl " « i « "I == " « vlil« e ndl ;

Do you sec the error? Please try to spot it before reading Oil. It 's not an uncom­
mon error. We have made such errors ourselves - especially late at night when

5. 6 EXCEPTION S

we were tired. Errors are always more common when you are tired or rushed.
We use 0 and sizeO to try to make sure that i is always in range when we do v{i].

Unfortunately, we made a mistake. Look at the for· loop: t.he termination
condition is i<=v.sizeO ra ther than the correCl i<v.sizeO. This has the unfortunate
consequence that if we read in five integers we' ll try to write out six. We try to
read v(5], which is o ne beyond the end of the vector. ~111 is kind of error is so
cOlllmon and "famousn that it has several names: it is an example of an gffb)'-ont!
erro'i a range error because the index (subscript) wasn't in the rallge required by
the vector, and a OOU1IlU error because the index was not wit.hin the limit,s (bounds)
of the vector.

Here is a simpler version that produces the SallIe elTect:

vector<inl> v (5);

inl x = v(51;

However, we doubt that you 'd have considered that realistic and worth serious
attention.

So what actually happens when we make such a range eiTOr? 11,e subscript
operation of vector knows the size of the vector, so it can check (and the vector
we arc using does ; sec §4.6 and §19.4). If that check fail s, the subscript operation
throws an exception o f type oueoe range. So. if the olT-by-one code above had
been part o f a program that caught exceptions, we would at least have gotten a
decent error message:

int main O
try {

vector<inl> v;
int X;

II a vector inls

while (cin» x) v.push_back(x);
for (int i = 0; i<=v.size(); ++i)

II set values
II prinl values

cout « "vl" «i «") == n «v[i) «endl ;
} catch (o ut_oCrange_e rro r) {

cen « "Oo ps! Range enor\n";
retu rn 1;

} catch (". J (/I calch all Olher exceptions

)

cerr « "Exception: something went wrong\n";
return 2;

Note that a range enol' is really a special case of the argument elTors we discussed
in §5.5.2. We didn' t trust ourselves to consistently check the range of vector in­
dices, so we told vedor's subscript operation to do it for us. For the reasons wc

147

148 (HAPTER 5 • ERROR S

QUtiillC, vector's subscript function (called vector : :operator[J) rcpons finding an
error by throwing an exception. \'\!hat clse could it do? lL has no idea what we
would like to happen in case of a range error. The author of vector CQuldn't even
know what programs his or her code would be part of.

5.6.3 Bad input
We'll postpone the detailed discussion of what to do with bad input umi] §1O.6.
However, once bad input is detected , it is dealt with using the same techniques
and language features as argument errors and range errors. Here, we'll just show
how you can tell if your input operations succeeded. Consider reading a floating­
point number:

double d = 0;
dn»d;

We can test if the last input operation succeeded by testing dn :

if (cin) (

/I all is wel l, and we can try reading again
)

e lse {
/I the last read didn't succeed, so we take some other action

}

~nlerc are several possible reasons for that input operation's failure. ~111C one that
should cOlleem yOll riglll now is that therc wasn' t a double for » to read.

During the carly stages of dcvelopmcnt, we oftcn want to indicate that wc
have found an error but aren't yet ready to do anything particularly clever about
it ; we JUSt want to report the error and terminate the program. Later, maybe,
we'U come baek and do somcthing more appropriate. For example:

double some_functionO
{

)

double d = 0;
ein» d;
if (!ein) e rror("couldn 't read a double in 'some_fun ction O' ");
/I do something useful

The string passed to errorO can thcn be printed as a help to debugging or as a
message to the user. How can we write errorO so as to be useful in a lot of pro-

5. 6 EX CEI' Tl ON $

grams? It can't return a value because we wouldn't know what to do with that
value; instead errorO is supposed to tenninate the program after getting iLS mes­
sage written. In addition, we might want to take some minor action before exit­
ing, such as keeping a window alive long enough for us to read the mcssage.
"lnat's '1Il obvious job for an exception (sec §7.3).

TIle standard library defines a few exceptions, such as thc out_oe range
thrown by vector. It also supplies runtime_error which is pretty ideal for our
needs because it holds a string that can be used by an error handler. So, we can
write our simple e rrorO like this:

void error(string 5)

(

throw runlime_error(s);

When we want to deal with runtime_error we simply catch it. For simple pro­
grams, c'-ltching runtime_error in main O is ideal:

int main O
try {

1/ our program
return 0; I/O indica tes success

)
catch (runtime_error& e) (

)

cerr « "runtime error: n « e.whatO« '\n ' ;
keep_window_openO;
return 1; 1/ 1 ind ica tes fail ure

l11e c..LlI e. whalO extracts the error message from the runtime_error. The & in

catch(runlime_error& e) {

is an indicator that we want to "pass the exception by reference." For now, please
treat this as simply an irrelevam technicality. In §8.5.4- 6, we explain what it
means 10 pass something by reference.

Note that we used cerr rather than cout for our error output: cerr is exactly
like cout except that it is meant for error output. By default both cerr and cout
write to tlle screen, but cerr isn't optimized so it is more resilient to errors, and on
some operating systems it can be d iverted to a different target, such as a file .
Using cerr also has the simple effect of documenting that what we write relates to
errors. Consequently, we usc (err for error messages.

,.9

150 CH APTER 5 • ERRORS

A5 it happens, o u,-oCrange is nm a runlime_error, SO catching runtime_error
does not deal with the out_oe range errors that we might gel from misuse of
vectors and other standard library container types . However, both ouCoC range
and runlime_e rro r arc "exceptions," SO we c.'tn catch exception to deal with bOlh:

int mainO
try {

/I our program
retum 0; /I 0 indicates success

)
catch (exception& e) {

cerr « "error: n «e.whal()« '\n ' ;
keep_window_openO;
return 1; II , ind icates failure

catch (. ..) (

)

cerr « "Oops: unknown exception!\n " ;
keep_window_open();
return 2; 112 indicates fail ure

"Vc added catch(. ..) to handle exceptions of any type whatsoever.
Dealing with exceptions of both type out_oerange and type runlime_error

through a single type exception, said to be a common base (supertype) of both, is
a most useful and general technique that we will explore in C hapters 13- 16.

Note again that the return value from main O is passed to "the system" that
invoked the program. Some systems (such as Unix) often use that value, whereas
others (such as Windows) typically ignore il. A zero indic."l tcs successful com ple­
tion and a nonzero return value from main() indic."ltes some SOrt of failure.

\¥hen you use errorO, you' ll often wish to pass tWO pieces of informmion
alo ng to dcscribe the problem. In that case, just concatenate the strings describing
those two pieces of information. 111is is so common thm we provide a second
version of errorO for that:

void error(string s1, Siring 52)
(

throw runtime_error(sl +s2);
)

This s imple eITor handling will do for a while , until our needs increase signifi­
cantly and our sophistication as designers and programmers increases corre­
spondingly. Note that we can usc errorO independemly of how many fu nction

5.6 EXCEPTIONS

calls wc have done on thc way to thc crror: errorO will find its way to the nearest
catch or runtime_e rror, typically thc onc in mainO. For examples or the use or ex­
ceptions and e rror() , sec §7.3 and §7.7. Ir you don't catch an exccption, you'll get
a dcrau lt system error (an !;uncaught exception" error).

TRY THI S

To sec what an uncaught exception error looks like, run a small program that
uses e rrorO without catching any exceptions.

5.6.4 Narrowing errors
In §3.9.2 we saw a nasty kind or error: when we assign a value that's "too large
to fit " to a variable, it is implicitly truncated. For example:

int x=2.9;
char c = 1066;

Here x will get the value 2 ratller than 2.9, because x is an int and ints don't have
values that arc fractions or an integcr, just whole integers (obviously). Similarly, ir
wc lise the common ASCII character set, c will get the value 42 (representing tJ1C

character 0), rather than 1066, because there is no char with the value 1066 in that
character set.

In §3.9.2 we saw how we could protect ourselves against such narrowing by
testing. Given exceptions (and templates ; see §19.3) we can write a runction that
tests and throws a runtime_e rror exception if an assigmnent or initialization
would lead to a changed value. For example :

int xl = narrow_cast<inl>(2.9); Illhrows
int x2 = narrow_cast<in l>(2.0); /I OK
char c1 = narrow_cast<char>(l066); /I throws
char c2 = narrow_cast<char>(85); /I OK

The < .. . > brackets arc the same as are used for vector<int>. Thcy are used
when we need to speciry a type, rather than a vallie, to express an idea. TIley are
called lem/)IIl/e arguments. We can use narrow_cast when we need to convert a
value and we arc not sure "ir it will fi t" ; it is defined in std_lib_faci lilies .h and un­
plemcntcd using errorO. ~rne word cast meaus "type conversion" and indicates
tile operation's role in dealing with something that's broken (like a caSt ou a bro­
ken leg). Note tlmt a cast doesn't changc its operand; it produces a new value cor­
responding to its operand or the required type.

151

152 CHA PTER 5 • ERRORS

5.7 Logic errors
Once we have removed the initial compiler and linker errors, the program runs.
Typically, what happens next is that no Outpu t is produced or th at the output that
the program produces is just wrong. TIlis can occur for a number of reasons.
Maybe your understanding o f the underlying prOb'l'am logic is nawcd ; maybe
you didn't write what you thought you wrote; or maybe you made some "silly
error" in one o f your control sta tements, or whatever. Logic errors are lIsually
the most difficu lt to find and eliminate, because at this stage the computer docs
what you asked it to. Your job now is to figure Ollt why that wasn 't really what
you meant. Basically, a computer is a very fast moron. It docs exactly what YOli
tell it to do, and that can be most humbling.

Let us try to illustrate this with a simple example. Consider this code for
find ing the lowest, highest, and average temperature values in a set of dat.a :

int mainO
(

vector<do uble> temps;

do uble temp = 0;
do uble sum = 0;
double high_temp = 0;
do uble low_temp = 0;

/I temperatures

while (ci n» temp) II read and put into temps
temps. push_backUemp);

fo r (int i = 0; k temi>s.size O; H i)
(

)

if(tempsli j > high_temp) high_temp = tempsl ij;
ir(temps[i] <: low_temp) low_temp = tempslil;
sum += temps[i] ; II compute sum

cout « "High tempe rature: " « high_temp« endl ;
cout « "Low tempe rature : " « low_temp « endl ;

/I find high
/I find low

cout « "Ave rage tempe rature : " « sum/temps.sizeO « e ndl ;
)

We tested this program by entering the hourly temperature values from the
weather center in Lubbock, Texas, for February 16, 2004 (Texas sti ll uses
Fahrenheit) :

,

5.7 lOGIC ERR ORS

- 16.5, -23.2, - 24.0, - 25.7,
7.5, 12.6, 23.8, 25.3,

40.3, 42.6, 39.7, 35 .4,

' n le output was

High temperature: 42.6
low temperature: -26.1
Average tempe rature: 9.3

- 26.1, - 18.6,
28.0, 34.8,
12.6, 6.5,

- 9.7,
36.7,
-3 .7,

-2.4,
41 .5,

-14.3

A naive programmer would eonelude that the program works juSt fmc. An irre·
sponsible programmer would ship it to a customer. It would be pnldent to leSt it
again with another set of data . 11us time usc the temperatures from July 23, 2004:

76.5,
88.5,

110.2,

73.5,
91.7,

103.6,

71.0,
95.9,
94.9,

73.6,
99.2,
91.7,

111is time, the output was

High temperature : 112.4
Low tempcrature: 0.0
Average temperature: 89.2

70.1,
98.2,
88.4,

73.5,
100.6,
85.2,

n.6,
106.3,
85.4,

85.3,
112.4,
87.7

Oops, something is not quite right. Hard frost (O.O°F is about -lS°C) in Lubbock
inJuly would mean lhe end of the world! Did you spot the error? Si.nce low_temp
was initialized at 0.0, it would remain 0.0 unless one of the temperatures in the
data was below zero.

TRY THIS

Get this program to run. Check that our input really does produce that out­
put. Try to "break" the program (i.e., get it to give wrong results) by giving it
oUlcr input seLS. What is the least amount of input you can give it to get it to
fail?

Unfortunately, there are more errors in this program. \tVhat would happen if all
of the temperalllrcs were below zero? The iIutialization for high_temp has the
equivalent problem to low_temp: high_temp will remain at 0.0 unless there is a
higher temperature in the data. ntis program wouldn't work for the South Pole
in winter either.

153

154 CHAPTER 5 • ERR ORS

~Inesc errors are fairly typical ; they will n Ot cause any errors when you com­
pile the program or cause wrong results for "reasonable" inputs_ However, we
forgot to think about what we should consider "reasonable." Here is an improved
program:

int mainO
{

)

do uble temp = 0;
do uble sum = OJ
do uble high_te mp = - 1000;
do uble low_te mp = 1000;
inl no_oCtemps = 0;

/I initialize to impossibly low
/I initialize to "impossibly high~

whil e (ci n» temp) { II read temp

)

++no_of_temps; II CQunt temperatures
sum += temp; II compute sum
if (lemp > high_temp) high_temp = tempi
if (temp < low_temp) low_temp = tempi

1/ find high
/I find low

co ut « " High tempe rature: " « high_temp« e ndl ;
co ut « "Low te mpe rature: " « low_temp « e ndl ;
co ut « "Average temperature : " « sumlno_oC remps« endl;

Does it work? How would you be certain ? How would you precisely define
"work"? Where did we get the values 1000 and - 1000? Remember that we
wam cd about "magic constants" (§5.5. 1). Having 1000 and - 1000 as literal values
in the middle of the progrnm is bad style, but arc tbe values also wrong? AI'e
there places whcre the temperatures go below - 1000°F (-573°C)? Are there
places where the temperatures go above IOOO°F (538°C)?

TRY THIS

Look it up. Check some information sources to pick good vaJues for the
min_te mp (the "minimum temperature") and max_temp (the "maximum
temperature") constants for our program. Those values will determine the
limits of usefulness of our program.

,

5.8 ESTIMAT ION

5.8 Estimation
Imagine you bave written a program that docs a simple calculation, say, comput·
ing lhe area of a hexagon. You run il and it gives the area -34.56. You juSt know
that's wrong. Why? Because no shape has a negative area. So, you fix thaI bug
(whatever il was) and get 21.65685. Is that right? That 's harder to say because
we don't usually keep the fonnu la for the area of a hexagon i.n our heads. vVhat
we mUSt do befo re making fools of ourselves by delivering a program that pro­
d uces ridiculous results is just to check that the answer is plausible. In this case,
that's easy. A hexagon is much like a square, vVe scribble our regular hexagon on
a piece of paper and eyeball it to be about the size of a 3-by-3 square. Such a
square has the area 9. Bummer, our 21.65685 can' t be right! So we work over
our program again and get 9.65685, Now, that just might be right !

-nte general poim here has nothing to do with hexagons, -nle poi.nt is that
unless we have some idea of what a correct answer will be like - even ever so ap­
proximately - we don't have a clue whether our result is reasonable, Always ask
yourself this question:

1. Is this answer to this particular problem plausible?

You should also ask the more general (and often far harder) question:

2. How would I recognize a plausible result?

Here, we are not asking, ';VVhat's the exact answer?" or '; ''''hat's the correct an­
swer?" -nmt's what we arc writing the program to tell us. All we want is to know
that the answer is not ridiculous, Only when we know that we have a plausible
answer docs it make sense to proceed with further work.

Estima/ioll is a noble art that combines common sense and some very simple
arithmetic applied to a few facts, Some people arc good at doing estimates in their
heads, but we prefer scribbles "on the back of an envelope" because we find we
get confused less often that way. What we call estimation here is an informal set
of techniques that arc sometimes (humorously) called guess/ill/ali(nI because they
combine a bit of guessing with a bit of calculation.

TRY TH IS

Our hexagon was regular with 2cm sides. Did we get that answer right? Just
do the "back of the envelope" calculation, Take a picce a papcr and scribble
on it. Don't feel that's below you. Many famous scientists have bcen greatly
admired for their ability to come up with an approximate answer using a
pencil and the back of an envelope (or a napkin), TIlls is an ability - a simple
habit, really - that can save us a lot of tinlC and confusion,

155

156

(

C HAPTER 5 • ERR ORS

Often, making an estimate involves coming up with estimates of data that arc
needed for a proper calculation, but that we don't yet have. Imagine you have to

test a program that estimates driving times between cities. Is a driving time of 15
hours and 33 minutes plausible for New York City to Denver? From London to
Nice? Why or why not? \¥hat data do you have lO "guess" to answer these ques­
tions? Often, a quick web search can be most helpful. For example, 2000 miles is
not a bad guess on the road distance from New York City to Denver, and it
would be hard (and illegal) to maintain an average speed of 130m/hr, so 15 hours
is not plausible (15*130 is just a bit less man 2000). You can check: we overesti­
mated both the distance and the average speed, but for a check of plausibility we
don't have to be exactly right; \ve just have to guess well enough.

TRY THIS

Estimate those driving times. Also, estimate the corresponding flight times
(using ordinary commercial air traveJ). Then, try to verify your estimates by
using appropriate sources, such as maps and timetables. We'd use online
sources.

5.9 Debugging
When you have wriuen (drafted?) a program, it 'll have errors. Small programs
do occasionally compile and run correctly the first time you try. But if that hap­
pens for anything but a completely trivial program, you should at first be very,
very suspicious. If it really did run correctly the first time, go tell your friends
and celebrate - because this won't happen every year.

So, when you have written some code, you have to find and remove the er­
rors. TImt process is usually called debuggillg and the errors bUI!J. Thc term bllg is
often claimed to have originated from a hardware fa ilure caused by insects in the
electronics in the days when computers were racks of vacuum tubes and relays
filling rooms. Several people have been credited with the discovery and the appli­
cation of the word bllg to errors in software. ~nle most famous of those is Grace
Murray Hopper, the inventor of the COBOL programming hmguage (§22.2.2.2).
Whoever invented the term more than 50 years ago, bllg is evocative and ubiqui­
tous. The activity of deliberately searching for errors and removing them is
called debllgging.

Debugging works roughly like this:

I. Gel the program to compile.

2. Get t.he program t.o link.

3. Get the program to do what. it is supposed to do.

5. 9 DEBUGGING

Basicall y, we go through tins sequence again and again: hundreds of times, thou­
sands of limes, again and again for years for really large programs. Each time
something doesn't work we have to find what caused the problem and ft,'\(it. I
consider debugging the most tedious and time-wasting aspect of programming
and will go to great lengths during design and programming to minimize the
amou nt of time spent hunting for bugs. Others find that hunt thrilling and the
essence of programming - it can be as addictive as any video game and keep a
prOb'l'ammer glued to the terminal for days and nights (I can vouch for that from
personal experience also).

Here is how 1101 to debug:

while (l he program doesn't appear to work) { /I pseudo code
Randomly look through the program fo r something that " loo ks odd"
Change it to look better

Why do we bother to mention this? It 's obviously a poor algorithm with lillie
guaralllee of success . Unfortunately, that description is only a slight caricature of
what many people find themselves doing late at night when feeling particularly
lost and clueless, having tried "everything eise,"

l11e key question in debugging is

/-Iuw /./J01l11i J III/uw / I/,e program actually work£(J com:ctly'

If you can't answer that question, you arc in for a long and tedious debug ses·
sian, and most likely your users are in for some frustration. We keep retuming to
this point because anything that helps answer that question minimizes debugging
and helps produce correct and maintainable programs. Basically, we'd like to de­
sign ollr programs so that bugs have nowhere to hide. That's typically toO much
to ask fo r, but we aim to structure programs to minimize the chance of error and
m,l.. ... imize the chance of finding the errors that do creep in.

5.9.1 Practical debug advice
Start thinking about debugging before you write the first line of code. Once you
have a 101 of code written it's tOO late to try to simplify debugging.

Decide how to report errors: "Usc e rrorO and catch exception in mainO" will
be your default answer in lhis book.

Make the program easy to TC.'1d so thal you have a chance of spotting the bugs:

Commelll YOllr code welL 111at doesn't simply mean "Add a 101 of com­
ments." YOli don't say in English what is belter said in code. Rather, yOli
say in the comments - as clearly and briefly as yOll can - what can't be
said c1eaJ'ly in code:

157

158

111c name o f the program

111c purpose of the program

"Vho wrote this code and when

Version numbers

(HAPTER 5 • ERRORS

What complicated code fragments arc supposed to do

What the general design ideas arc

How the source code is org-<lIlizcd

What assumptions arc made abo ut inputs

What parts of the code afC still missing and what cases a f C still nOt
handled

Usc meaningful names.

"n lat doesn' t simply mean "Usc long names,n

Usc a consistent layout of code.

Your IDE tries to help, but it can 't do everything and you arc the
one responsible.

"nlC style used in this book is a reasonable slarling point.

Break code into small functions, cadl expressing a logical action.

Try to avoid functions lo nger than a page or two ; most functions
will be much sho n eI'.

Avoid complicated code sequences.

Try to avoid ncstcd loops, ncsted if-statemcnts, complicated condi­
tions, etc. Unfortunately, you sometimes need those, but remember
that complicated code is where bugs can most easily hide.

Use library facili ties rathcr than your own code when you ca n.

A library is likely to be betler thought out and beuer tested than
what you could produce as an alternative while busi ly solving your
main problem.

lllis is prett), abstract just now, but we'll show you exrunplc after example as we
go along.

Get the program to compile. Obviously, your compiler is your best belp here.
hs error mcssages arc usually hclpful - even if wc always wish for better ones -
and , unlcss you arc a rcal expert, assume that the compiler is always light ; if you
arc a real expert, this book wasn't written for you. Occasionally, you will feci that

5.9 DEBUGGING

lhe rules the compiler enforces are stupid and unnecessary (they rarely arc) and
that lhinb'5 could and ought to be simple., (indeed, but they are not). However, as
they say, "a poor craftsman curses his tools." A good craftsman knows the
strengths and weaknesses of his tools and adjusts his work accordingly. Here are
some conunon compile-time errors:

Is every string literal tenninated?

cout « "He llo,« name« '\n' ;

Is every character literal terminated?

cout « "He llo, " « name« '\n;

Is evelY block tenninated?

in! f(i n! a)

{

/, oops!

/I oops!

if (a>{I) { ' - do something -, else { ' - do something else . ' }

/I oops!

Is every set of parentheses matched?

if (a<=O /I oops!

x = fly);

~nle compiler generally reports tllis kind of error "late"; it doesn't know
you meant to type a closing parenthesis after the O.

Is every name declared?

Did you include needed headers (for now, #include "stdJ ib_facili·
ties. h")?

Is every name declared before it 's uscd?

Did you spcll all names con'celly?

int count ; , • ... -, ++Counl ; /I oops!
char Ch i , • ... -, Cin»c; /I double oops!

Did you lenninate each cxpression statement with a semicolon?

x = sqrt(y)+2

z = x+3;

/I oops!

We present more examples in this chapter's drills. Also, keep in mind t.he classifi­
cat.ion of errors from §5.2.

After t.he program compiles and Ii.nks, ncxt comes what. is typically the hardest
part: figuring am why the program doesn't do what it 's supposed to. You look at
the output and uy to figure out how your code could have produced that.. Actually,

159

160 CHAPTER 5 • ERROR S

flCSl you o ften look at a blank screen (or window), wondering how your probrram
could have failed to produce any output. A common [mit problem with a Windows
console mode program is lhat the console window disappears before YOLL have had
a chance to see the output (if any). One solution is to call keep_window_openO
from our Sld_lib_facilities. h at the end of mainO, 111CI1 the program will ask fo r
input before exiting and you can look aI the output produced before giving it the
input that willlcl it dose the window.

When looking for a bug. carefully follow the code stalemem by statement
from the last poinl that you afC sure it was correct. Pretend you're the computer
executing the program. Docs the outpUt match your expectations? or course not,
or you wouldn't be debugging.

Often, when you don 't see the problem, the reason is that you "seen
what you expect to sec rather than what you wrote. Consider:

for (int i = 0; i<=mall ; ++j) {

for (inl i=O; O<mall ; ++i);

/I oops! (twice)

/I print the elements of v

coul « "vl"« i « "1==="« v[i l« '\n ' ;

1l1is last example came from a real program written by experienced pro·
grammers (we expect it was wTinen very late some night).

Often when you do not sec the problem, tile reason is that there is too
much code being executed between the point where the program pro·
duced the last good output and tile next output (or lack of output). Most
programming environments provide a way to execute ("step through")
the statements of a program one by one. Eventually, you'll learn to usc
such facilities, but for simple problems and simple programs, you can
just temporarily put in a few extra output statements (using cerr) to help
you see what's going on. For example:

inl my_fcl (int a, double d)
{

}

inl res = 0;
ce rr « "my_fcU " «a« ","« d « ")\0 ";

1/ . .. misbehaving code here.

cerr « "my_felO re lurns"« res« '\n' ;
rei urn res;

Insert statements thal check invariants (that is, conditions tl13t should aI·
ways hold ; sec §9.4.3) in sections of code suspected of harboring bugs.
For example:

in! my_complicated_funclion(inl a, inl b, inl c)
1/ the arguments are positive and a < b < c

5 . 10 PRE - AND POST-CONDITIONS

if (! (ka && a<b && b<c)) /I ! means ~not · and && means ~and·

error("bad arguments for mcf");
1/ .. .

If that does n' t have any cffect, insert invariillns in sections of code nOi
suspected o f harboring bugs; if yO Ll can't find a bug, you are almost cer­
tainly looking in the wrong place.

A statemell1 that states (asserts) an invariant is called an (lSJCrliQlI (or j ust an (mer/).

Interestingly enougll, there an:: Illillly effective ways of programming. Differell1
people successfu lly usc dramatically different techniques. Many differences in de­
bugging technique come from differences in the kinds of programs people work
on ; others seem to have to do with differences in the ways people think. To the best
of our knowledge, there is no one best way to debug. O ne thing should always be
remembered, though: messy code can easily harbor bugs. By keeping your code as
simple, logic. l, and well formatted as possible, you decrease your dcbug time.

5.10 Pre- and post-conditions
Now, let us rctum to the question of how to deal with bad arguments to a func­
lion. ' 11e call of a function is basically the best point to think abOllt COlTect code
and to catch errors: this is where a logically separatc computation starts (and
cnds on the rctu1ll). Look at what we d id in thc piece of advice abovc:

int my_complicated_funclion (int a , int b, int c)
II the arguments are positive and a < b < c
{

)

if (!(Cka && a<b && b<c» /I! means "not" and && means "and"
enor("bad arguments for mef") ;

1/ . . .

First, we statcd (ill a comment) what the function rcquired of its arguments, and
th en we checked that this requiremcm held (throwing an exception if it did not).

' 1tis is a good basic strategy. A requircment of a function upon its argument
is often callcd a pre-colldlium: it must be true fo r the function to perform its action
correctly. -nle question is JUSt what to do if the pre-condition is violated (doesn 't
hold). We basically have two choices :

I. Ignore it (hopc/assume lhal ail callers givc corrcct a rgumcnts).

2. C hcck it (and I'cport the e rro l' somehow).

,.,

'.2 (HAPTER 5 • ERR ORS

Looking at it this way, argument types arc just a way of having the compiler
check the simplest pre-conditions for us and report them at compile lime. For
example:

int x = my_compl icated_funct io n{1, 2, "horsefealhers");

Here, the compiler will catch that the requircmcill ("pre-condition") thaI the third
argument be an integer was violated. Basically, what we arc talking about here is
what to do with the requirements/pre-conditions that the compiler can't check.

Our suggestion is to always document pre-conditions in comments (so that a
caner can sec what a function expects). A function with no comments docu­
mented will be assumed to bandle every possible argument value. BUl should we
believe that callers read those comments and follow the rules? Sometimcs wc
havc to, but thc "chcck the arguments in the callce" rule could be statcd '·Let a
function check its pre-conditions." We should do that whencver we don't sec a
reason not to. The reasons mOSt often given for not checking pre-conditions arc:

Nobody would give bad arguments.

It would slow down my code.

It is too complicated to check.

111e first reason can be reasonable onl y when we happen to know "who"
calls a function - and in real-world code that can be very hard to know.

TIle second reason is valid far less often lilan people think and shou ld most
often be ignored as an example of "premaw re optimization." You can always re­
move checks if they really turn out to be a burden. You cannot easily gain the
correctness they ensure or get back the nights ' sleep you lost looking ror bugs
those tests could have caught.

111e lilird reason is the serious one. It is easy (once you arc an expericnced
programmer) to find examples where checking a pre-condition would take signif­
iC<U1t1y more work than executing the function. An example is a lookup in a dic­
tionary: a pre-condition is that the dictionary entries arc sorted - and verifying
that a dictionary is sorted " ... n be far more expensive than a lookup. Sometimes. it
can also be difficult to express a pre-condition in code and to be sure that you ex­
pressed it COITCCtly. However, whcn you write a function, always consider if you
can write a quick check of thc pre-conditions, and do so unless you have a good
reason not to.

Writing pre-conditions (even as comments) also has a significant benefit for
the quality of your programs: it forces you to think abOLlt what a function re­
quires. If you can't state that simply and prccisely in a couplc of commcnt lines,
you probably haven't thought hard enough about what you arc doing. Experi­
ence shows that writing those pre-condition comments and lile pre-condition tests
helps you avoid many des ign mistakes. We did mention that we hated debug-

5. 10 PRE- AN D POST-CON D IT IO NS

ging; explicitly stating pre-conditions helps in avoiding design errors as well as
catching usage errors early. Writing

int my_compli cated_function(int a, int b, int c)
/I the arguments are positive and a < b < c
{

if (!(O<a && a<b && b<c» /I! mea ns ~not " and && means ~ atld"

error(" bad arguments for met");
/I.

saves you time and grier compared with the apparenuy simpler

int my_complicated_function (int a, int b, inl c)
(

1/ . .
)

5.10.1 Post-conditions
Stating pre·conditions helps us im prove our design and catch usage errors early.
Can this idea or explicitly stating requirements be used elsewhere? Yes, one more
place immediately springs to mind: the return value! After all, we typic.:-.1ly have
to state what a ru nClion returns; that is, ir we return a value rrom a rUilction we
arc ahvays making a promise about the return value (how else would a caller
know what to expect?). Let 's look at our area rUilction (rrom §5.6.1) again:

II calculate are.l of a rectangle;
/I throw a Bad_area exception in case of a bad argument
int area(int length, inl width)
{

)

if (length<=O II width <=0) throw Bad_area();
return length · width ;

It checks its pre-condition, but it doesn' t state it in Ule comment (that may be OK
ror such a short runction) and it assumes that the compu tation is correct (fiat 's
probably OK ro r such a trivial compu ullion). However, we cou ld be a bit more
explicit:

inl area(int length , int width)
/I C.l1culate area of a rectangle;
/I pre·conditions: length and width are positive

,.3

'64 CHAPTER 5 • ERR O RS

II post-condition: returns a posi tive value that is the area
(

}

if (lenglh<=O II width <=0) enor("area() pre-condition");
int a = length -width ;
if (a<=O) erro r(nareaO post-condition");
return a;

We couldn't check the complete post-condition, but we checked the part that said
that it should be positive.

TRY THI S

FUld a pair of vaJucs so that the pre-condition of this version of area holds,
but the post-condition doesn't.

Pre- and post-conditions provide basic sanity checks in code. As such they arc
closely connected to the notion o f invariants (§9.4.3), corrccmcss (§4.2, §S.2),
and testing (Chapter 26).

5.11 Testing
How do we know when to stop debugging? Well, we keep debugging until we
have found all the bugs - o r a t least we try to. Ho .. \' do we know that we have
found the last bug? We don't.. "The last bug" is a programmers' joke: there is no
such creature; we never find "the last bug" in a large program. By the time we
might have, we arc busy modifying the program for some new usc.

In addition to debugging we need a systematic way to search for errors. 111is
is called les/il/gand we'll get back to that in §7.3, the exercises in Chapter 10. and
in Chapter 26. Basically, testing is executing a program with a large and system­
atically selected set of inputs and comparing the results to what was expected . A
run with a given set of inputs is ca lled a lesl case. Realistic programs can require
millions of test cases. Basically, systematic testing cannot be done by humans typ­
ing in one test after another, so we'll have to wait a few chapters before we have
the tools necessary to properly approach testing. However, in the meantime, re·
member that we have to approach testing with the attitude that finding enol'S is
good . Cons ider:

Attitude 1: I'm smarter than any program! I' ll break that @*$%" code!

Atti tude 2: I polished this code fo r two weeks. It 's perfect!

C HAP TE R 5 DR i l l

Who do you think will find more errors? Of course, the very best is an experi­
enced person with a bit of "'attitude 1" who coolly, calmly, patiently. and system­
atically works through the possible fail ings of the program. Good testers arc
worth their weight in gold .

We try to be systematic in choosillg our test cases and always try hOlh cor­
feCt and incorrect inputs. §7.3 gives the first example of this .

..; Drill

Below arc 25 code fragments. Eaeh is meant to be inserted into this "scaffolding":

#incl ude "sld_lib_facililies. h"

int mai nO
try {

)

<<your code here»
keep_window_o penO;
return 0;

catch (exce ption& e) (

)

cerr « "error: n « e. whatO« '\n ' ;
keep_window_openO:
return 1;

catch (. ..) (

)

cerr « "Oops: unknown exceptio n!\n";
keep_window_open() ;
return 2;

E.1.ch has zero or more errors. Your task is to fi nd and remove all errors in each
program. \¥hell you bave removed those bugs, the resulting program will com·
pile, run, and write "Success!n Even if you think you have spotted an error, you
still need to enter the (original, unimproved) program fragment and test it ; you
may have guessed wrong about what the error is, or there may be more errors in
a fragment than you spotted . Also, one purpose of this drill is to give you a feel
for how your compiler reacts to d ifferent kinds of errors. Do not enter the scaf­
folding 25 times - that's a job for cut and paste or some similar "mechanical"
technique. Do not fix problems by sim ply deleting a statement; repair them by
changing, adding, or deleting a few characters.

'.5

1'66

1.
2.
3.
4.
5.
6.
7.
B.
9.

10.
II.
12.
13.
14.
15.
16.
17.
l B.
19.
20.
2 1.
22 .
23 .
2;~.

25.

Cout« "Success!\n";
coul « "S uccess!\n;
cout « "Success" « !\n"
cout « success« endl;

(HAPTER 5 • ERROR S

string res = 7; vector<int> v(10); v(51 = res ; coul « "Success!\n";
vector<int> v(10); v(5) = 7; if (v(5) !=7) CQut« "Success!\n";
if (cond) caul « "S uccess!\n "; else cout« "Fail! \n";
bool c = false; if (e) coul« "Success!\n"; else cout « "Fa il!\n ";
siring s = "ape"; boo c = "fool "<s; if (e) coul« "S uccess!\n ";
string s = "ape"; if (5=="fool") coul« "S uccess!\n";
string s = nape"; if (s=="fool ") coul < "Success!\n";
string s = "ape"; if (s+"fool ") coul < "Success!\n";
veclor<char> v(5); for (int i=O; O<v.size(); ++i); coul« "Success!\n";
vector<char:> v(5); for (int i=O; k=v.size(); ++il ; co ut « "Success!\n";
siring s = "Success!\n "; ror (int i::O; k6; ++i) cout « sri];
ir (true) Ihen coul« "Success!\n"; else coul« "Fail!\n";
int x = 2000; char c = x; if (c==2000) cout « "Success !\n";
siring s = "Success!\n"; for (int i::O; k 10; ++i) co ut « stil i
vector vIS); for (int i=O; k=v.size(); ++i) ; coul « "S uccess!\n";
inl i=O; inl j = 9; while (kl0) ++j ; if (j<i) coul« "Success!\n";
inl x = 2; double d = 51(x-2); if (d==2·x+O.5) coul « "S uccess!\n";
slring<char> s = "Success!\n"; fo r (int i::O; i<=10; ++i) coul « sr i];
inl i=O; while (i<10) ++j; if (j<i) cout « "S uccess!\n";
inl x = 4; double d = 51(x-2); if (d=2*x+O.5) coul « "S uccess!\n";
cin« "Success!\n";

Review

1. Name four major types of errors and briefly define each one.
2. ""hat kinds of errors can we ignore in student programs?
3. What guarantees should every completed project ofTer?
4. List three approaches we can take to eliminate errors in programs and

proouce acceptable software.
5. Why do we hate debugging?
6. What is a syntax error? Give fi ve examples.
7. What is a type error? Give five examples.
8. What is a linker error? Give three examples.
9. What is a logic error? Give three examples.

lO. List four potential sources of program errors discussed in the text.
11. How do you know if a resu lt is plausible? What techniques do yOll have

to answer such questions?
12. Compare and contrast having the caller of a function handle a run·time

error vs. the called function's handling the run·time error.
13. Why is using exceptions a belter idea than returning an "error value"?

(HAPTER 5 EXERCI SES

14. How do you test if an input operation succeeded?
15. Describe the process of how exceptions are thrown and caught.
16. Why, with a vecio r called v, is v[v.size()] a range error? What would be

the result of callin g tills?
17. Defme prNoluii/ioll and POSI-amdilioll; give an example (that is not the

areaO function from tllis chapter), preferably a computation that requires
a loop.

IS. When would you 1101 test a pre-condition?
19. When would you lIoltest a post-condition?
20. What are the steps in debugging a program?
2 1. Why docs commenting help when debuggin g?
22. How docs testing differ from debugging?

Terms
argument error
assertion
calch
compile-time error
container
debugging
error

Exercises

exception
invariant
link-time error
logic error
post-condition
pre-condition
range error

requirement
run-time error
syntax error
testing
throw

type error

I . If you haven't already, do the Try this exercises from this chapter.
2. TIle following program takes in a temperature value in Celsius and con­

verts it to Kelvin. This code has many errors in it. Find the errors, list
them, and correct the code_

double ctok(double c)

(

int k = c + 273.15;
return int

int mainO

double c = 0;

1/ converts Celsi us to Kelvin

1/ declare input variable

tin » d; 1/ retrieve teml>Cfature to input variable

double k = ctok{" c"); 1/ convert temperature
Coul « k « endl ; 1/ print out temperature

167

168 CH A PTER 5 • ERRO RS

3. Absolute zero is the lowest temperature that can be reached ; it is - 273.lSoC,
or OK. The above program, even when corrected, wi.1l produce erroneous
results when given a temperature below this. Pl.ace a check in the main pnr
gram that will produce an error if a temperature is given below - 273.1S°C.

4. Do exercise 3 again, but this time handle the error inside ctok() .
S. Add to the program so that it can also convert from Kelvin lO Celsius.
6. Write a program that converts from Celsius to Fahrenheit and from

Fahrenheit to Celsius (fomlUla in § 4.3.3). Use estimation (§5.8) to sec if
yOUT results are plausible.

7. Quadratic equations arc of the fonn

a_x'! +b· x+ c = 0

To solve these, one uses the quadratic fomlUla:

2a

There is a problem though: if b2- 4 llC is less than zero, then it will faiL
Write a program t.hat can calculate x for a quadratic equation. Create a
function that prints out the rOOts of a quadratic equation, given a, h, "
and have it throw an exception if bl - 4ac is less than zero. Have the main
function of the program call the function, and catch the exception if there
is an error. YVhen lhe prog.-am detects an equation with no real roots,
have it print out a message. How do you know that your results arc piau·
sible? Can you check that they are correct?

8. Write a program that reads a series of numbers and stores them in a
vector<int>. After the user inputs all the numbers he or she wishes to,
ask how many of the numbers the user wants to sum. For an answer .N,
print the sum of the fi rs t N elements of the vector. For example:

"Please enter some numbers (press 'I' at prompt to SLOp):"

122313 2415

"Please elller how many of lhe numbers you wish to sum, starting
from the fi rst:"

J

"TIle sum of the firs t 3 numbers: 12, 23, and 13 is 48."

Handle all inputs. For example, make sure to give an error message if the
user asks for a SUUl of more numbers than there arc in the vector.

C HAPTER 5 POSTSCRIPT

9. Modify the program from exercise 6 to write OUl an error if the result
cannot be represented as an in!.

10. Modify the program from exercise 8 to usc doubl e instead of into Also,
make a vector of doubles containing the X-I differences between adja­
cent values ,md write out that vector of differences_

11 . Write a program that writes out the fU'sl so many values of the Fibonacci
series , that is, t.he serics that St.art.S with 1 1 2358 1321 34. 111c next
nu mber of the SCI;es is the sum of the twO p" cvious oncs. Find the largcst
Fibonacci number that fi ts in an int.

12. Implement a little guessing game called (for somc obscure reason) <'Bulls
and Cows." ' 11e program has a vector of four integers in the range 0 to 9
and it is the user's task to discover those numbers by repeated guesses .
Say the number to be guessed is 1234 and the user guesses 1359; the re­
sponse should be " I bull and I cow" because the user gOl one digit (I)
right and in the right position (a bull) and one digit (3) right but in the
wrong position (a cow). TIle guessing continucs until the user gets four
bulls, that is, has the four digits correct and in the correct ordcr.

13. ~111e program is a bit tedious because the answcr is hard-coded into thc
program. Make a vcrsion where the user can play repeatedly (without
stopping and restarting the program) and each game has a new set of
four digits. You can get four random digits by calling the random num­
ber generd.tor randinl(10) from Sld_lib_facililies.h four times. You will
note that if you run that program repeatedly, it will pick the same se·
quence of four digits each time you start the program. To avoid that, ask
the user to enter a number (any number) and call srand(n) where n is the
number the user entered before e'llling randint(10). Such an n is called a
Jeet~ and different seeds give different sequences of random numbers.

14. Read (day-of-the-week,value) pairs from standard input. For example:

Tuesday 23 Friday 56 Tuesday -3 ThurSday 99

Collect all thc values fo r each day of the week in a vector<int>. Write out
the values of the seven day-of-the-week vectors. Print out the sum of the
values in each vector. Ignore illegal days of the week, such as Funday, but
accept conunon synonyms such as Mon and monday. Write out the num­
ber of rejected values.

Postscript
Do you think we overemphasize errors? As novice programmers we would have
thought so. TIle obvious and natural reaction is "It simply can't be that bad!"
Well, it is that bad_ Many of the world's best brains have been astounded and

169

CHAPTER 5 • ERRORS

confounded by the difficulty of writing correct programs. In our experience,
good mathematicians are the people most likely to underestimate the problem of
bugs, but we all quickly exceed our natural capacity for writing progratns that
arc correct the first time. You have been warned! Fortunately, after 50 years 01" so,
we have a lot of experience in organizing code to minimize problems, and tech­
niques to find the bugs that we - despite our best efforts - inevitably leave in Ollr
programs as we first write thelll. The techniques and examples in this chapter arc
a good start.

~!. .

r 6

Writi ng a Program

"Progranuning is understanding."

-Kristen Nygaard

W riting a program involves gradually refining your ideas

of what you want to do and how you wam to express it.

In this chapter and the next, we will develop a program from a

fU'st vague idea through stages o f analysis, design, implementa­

tion, testing, redesign and fe-implementation. Our aim is to give

you some idea of the kind of thinking that goes on when you de­

velop a piece of code. In the process , we d iscuss program o rgani­

zation, user-defined types , and input processing.

171

172

6.1 A problem

6.2 Thinking about the problem

6.2.1 Stages of development
6.2.2 Strategy

6.3 Back to the calculator!
6.3.1 First attempt
6.3.2 Tokens
6.3.3 Implementing tokens
6.3.4 Using tokens
6.3.5 Back to the drawing board

6.4 Grammars

'04 .1 A detour : English grammar
6.4.2 Writing ill grammar

6.1 A problem

(H A PTE R 6 • W RITIN G A "ROG RA M

6.5 Turning a grammar into code

6.5. 1 Impleme nting grammar rules
6.5.2 b pressions
6.5.3 Te rms
6.5.4 Primary expressio ns

6.6 Trying the fir st ve rsion

6.7 Trying the second ve rsion

6.8 To ken streams

6.8.1 Implementing Token_stream
6.S.2 R("ading toke ns
6.B,3 Reading numbers

6.9 Progra m structure

Writing a program starts with a problem; thal is, you have a problem th .. t you'd
like a program to help solve. Understanding that problem is key to a good pro·
gram. After all, a program that solves the wrong problem is likely to be of little
usc to you, however elegant it may be. TIlere arc happy accidcnts when a pro·
gram just happens to be useful for someth ing for which it was never intended,
but let's not rely on such rare luck. What we want is a program that simply and
cleanly solves the problem we decided to solve.

At this slage, what \,,'ould be a good program to look at? A program that

Illustrates design and programming techniques

Gives us a chance to explore the kinds of decisions that a programmer
must make and the considerations that go into sudl decisions

Doesn't require tOO many new programming language constnlcts

Is complicated enough to require thought about its design

Allows for many variations in its solution

Solves an easily understood problem

Solves a problem that 's worth solving

Has a solution that is small enough to completely present and com·
pletely comprehend

We chose "Get the computcr to do ordinary arithmetic on expressions wc type
in"; that is, we wallt to writc a simple calculator. Such programs arc clcal'ly usc·
fu l; every desktop computer comes ""lth such a program, and you call even buy
computers specially built to run nothing but such programs: pocket calculatOrs.

6.2 THINKING ABOUT THE PROBLEM

For example, if you enter

2+3.1· 4

lhe program should respond

14.4

Unfonumucly, such a calculator program does n't give us anything we don't al­
ready have available o n our computer, but that would be tOO much to ask from a
fi rst program.

6.2 Thinking about the problem
So how do we start? Basically, think a bit about the problem and how to solve it.
"irst think about what the program should do and how you'd like to interact
with it. Later, you can think about how the program could be written to do that.
Ti-y writing down a brief sketch of an idea for a solution, and see what's wrong
with that first idea. Maybe discuss the problem and how to solve it with a fri end.
Trying l"O explain something to a friend is a marvelous way of figuring out what's
wrong with ideas, even belter than writing lhem down; paper (or a compu ter)
doesn' t talk back at you and challenge your assumptions . Ideally, design isn' t a
lonely activity.

Unfortunately, there isn't a general strategy for problem solving that works
for all people and all problems. Thcre arc whole books that claim 10 help YOll be
better at problem solving and another huge branch of literature that deals with
program design . We won't go there. I.nslead, we' ll present a page's wonh of sug·
gestions for a general strategy for the kind of smaller problems an individual
might face . After that, we' ll quickly proceed to try a lit these sugges tions on our
tiny calculator problem.

When readi ng our discussion o f lhe calculator program, we recommend that
YOll adopt a more than usually skeptical at titude. Fo r realism, we evolve our pro·
b"l7llll through a series of versions, presenting the reasoning that leads 10 each vcr·
sia n along the way. Obviollsly, much of that reasoning must be incomplete or
even fa ulty, or we would finish the chapter early. As we go along, we provide ex·
amples of the kinds of concerns and reasoning that designers and progra.nullers
deal with all the time. We don't reach a version o f the program that we arc happy
with untillhe end of the next chapter.

Please keep in mind that for this chaptcr and the next, the way we get to the
rmal vcrsion of tbe program - the joumey through partial solutions, ideas, and mis­
takes - is aI least as important as that [mal version and more important than lhe lan­
guagc.tcclmical details \\-"e encounter along the way (we will get back to those later).

173

174 CHAPTER 6 • WRITING A PR O GR AM

6.2.1 Stages of development
Here is a bit of terminology for program development. As YOli work all a prob­
lem you repeatedly go through lhese stages:

Andysis: Figure out what should be done and write a description of your
(current) understanding of thal. Such a description is called a sd 0/ re­
quirements or a Jpecjfico.tioll. We will not go into details about how slich re­
quirements arc developed and written down. 'ntat's beyo nd the scope of
this book, but it becomes increasingly important as the size o f problems
IIlcrcascs.

Design: Create an overall SllUcturc for the system, deciding which parts
the implementation should have and how those parts should communi­
cate. As part of the design consider which tools - such as libraries - can
help you Structure the program.

Implementation: Write the code, debug it, and tcst that it actually docs
what it is supposed to do.

6.2.2 Strategy
Here are some suggestions that - when applied thoughtfully and with imagina­
tion - help with many programming projects:

What is the problem to be solved? The first thing to do is to try to be
specifi c abolll what you are trying to accomplish. TIllS typically involves
constm cting a description of the problem or - if someone else gave you
sueh a statement - trying to figure out what it really means. At lhis point
you should take the user 's point of view (not the programmer/imple­
menter's view); that is, you should ask questions abOlll what the pro­
gram should do, not about how it is going to do it. Ask: "\¥hat can this
program do for me?" and "H ow would I like to interact with this pro·
gram?" Remember, most o f us have lots o f experience as users of com­
puters on which to draw.

Is the problem statement clear? For real problems, it never is. Even
fo r a student exercise, it can be hard to be sufficienlly precise and
specific. So we try to clarify it. It would he a pity if we solved the
wrong problem. Another pitfall is to ask for too much. When we lly

to figure out what we want, we easily get too greedy/ambitious. It is
almost always belter to ask for less to make a program easier to spec­
ify, easier to understand , easier to use, and (hopefully) casier to im­
plement. Once it works, we can always build a fancier "version 2.0"
based on Oll r experience.

6.2 TH I NKING ABOUT THE PROBLEM

Docs the problem seem manageable, given the lime, skills, and tools
available? There is IitLle point ill starting a project L1lat you couldn 't
possibly complete. If there isn't su fficient lime to implement (includ·
ing testing) a program that docs all that is required, it is usually wise
not to start. Instead, acquire more resources (especially more time)
or (best of all) modify the requirements to simplify your task.

lly breaking the program into manageable parts. Even the smallest pro­
gram for solving a real problem is large enough to be subdivided.

Do you know of any tools, libraries, etc. L1mt might help? Tlle answer
is almost always yes. Even at the earliest stage ofleaming to program,
you have parts of the C++ standard library. Later, you'll know large
parts of that standard library and how to find marc. You 'll have
graphics and CUI libraries, a matrix library, etc. Once you have
gained a little experience, you will be able to find thousands of li­
braries by simple web searches. Remember: There is little value in
reinventing the wheel when you arc building software for real usc.
When learning to program it is a dilTerent matter; then, reinventing
tile wheel to sec how that is done is often a good idea. Any time you
save by using a good library can be spent on other pans of your
problem, or on rest. How do you know that a library is appropriate
for your task and of sufficient quality? ~l1lat 'S a hard problem. Part of
the solution is to ask colleagues, to ask in discussion groups, and to
try small examples before committing to use a library_

Look for parts of a solution that CRn be separately described (and po­
tentially used in several places in a pmgram o r even in other pro­
grams). To find such pans requires experience. so we provide many
exmnples throughout this book. We have already used vector, string,
and iostreams (ci n and cout). Tlus chapter gives the first complete
examples of design, implementation, and use of program pans pro­
vided as user-defined £)'pes (To ken and Token_stream). Chapters 8
and 13- 15 present many more examples lOgelher Wilh their design
rationales. For now, consider an analogy: If we were to design a car,
we would start by identifying parts, such as wheels, engine. scats,
door handles, etc., on which we could work separately before assem­
bling the complete c.'lr. There arc tcns of thousands of such parts of a
modem c."lr. A real·world program is no dilTerent in that respect, ex'
cept of course that the partS are code. We , ... ·ould not try to build a car
directly out of raw materials, such as iron, plastics, and wood. Nor
would we try to build a major program di rectly out of Gust) the ex­
pressions, statemenlS, and types provided by the language. Designing

175

176 (HAPTER 6 • W RI TING A PROG RAM

and implementing such parts is a major theme of this book and of
soft\'vare development in general ; see user-defined types (Chapler 9),
class hierarchies (Chapler 14), and generic types (Chapler 20).

Build a small, limited version o f the program lhat solves a key part of the
problem. When we start, we rarely know the problem well . We of len
think we do (don' t we know what a calculator prObrralll is?), but we
don't. Only a combination of thinking about the problem (analysis) and
experimentation (design and implementation) gives us the solid under­
standing that we need to wrile a good program. So, we build a smail ,
limited version

To bring out problems in our understanding, ideas, and tools.

To see if details of the problem statement need changing 10 make the
problem manageable. It is rare to find that we had anticipated every­
thing when we analyzed the problem and made the initial design.
We should take advantage of the feedback that writing cooe and
testing give us.

Sometimes, such a limited initial version aimed at experimentation is
called a prototype. If (as is likely) our first vers ion doesn't work or is so
ugly and awkward that we don' t want to work with it, we throw it away
and make another limited version based on our experience. Repeat until
we find a version that we arc happy with. Do not proceed with a mess;
messes just grow with time.

Build a full-scale solution, ideally by using parts of the initial version.
The ideal is to grow a program from working parts rather than writing
all the code at once. TIle alternative is to hope that by some mil"acle an
untested idea \vill work and do what we want.

6.3 Back to the calculator!
How do we want to illleract with the calculator? '1mt's easy: we know how to
usc cin and cout, but graphical user interfaces (G UIs) are not explained lIntil
C hapter 16, so we'll stick to the keyboard and a console window. Given expres­
sions as input from the keyboard, we evaluate them and write out the resul ting
value to the screen. For example :

Expression: 2+2
Result : 4
Expression: 2+2-3
Result : 8
Expression: 2+3-2515
Result: 0

6.3 BACK TO TH E CALCU LATOR!

·nIe expressions, c.g., 2+2 and 2+r3, should be entered by the user; the rest is pm­
duced by the program. We dIose to OUiput "Expression: " to prompt lhc user. \¥e
could have chosen "Please enter an expression followed by a newline" but that
seemed verbose and poinDess. On D1e other hand a pleasanDy shon prompt, sud1
as >, seemed tOO cryptic. Sketching out such examples of usc carly on is important.
TIley provide a very practical definition of what the program should minimally do.
When discussing design and analysis, such examples of usc are c,111OO use ctl.JeJ.

When faced with DIe cakulator problem for the first time, most people come
up with a first idea like this for the main logic of lhe program:

read_a_line
calculate
write_result

/I do the work

111is kind of "scribbles" d carly isn 'l code ; it's called psetuw calk. We tend to usc it
in the early stages of design when we arc not yCt ccrtain cxactly what our nota­
tion means. For example, is "calculatc" a function call? If so, what would be its
arguments? It is simply tOO early to answer such questions.

6.3.1 First attempt
At this point, wc are not really ready to write lhe calculator program. We simply
haven't thought hard enough, but thinking is hard work and - likc most pro­
grammers - we arc anxious to writc some code. So let's take a chance, write a
simple calculator, and sec where it leads us. 111e first idea is something like

#include "stdJib_fadlities. h"

inl mainO
(

coul« "Please enter expression (we can handle + and -): It;
int Ivai = 0;
int rval ;
char op;
inl res;
d n» lval>>op>>rval ;

if (op=='+')
res = Ivai + rval ;

else if (op=='-')
res = lval - rval;

II read something like 1 +)

/I addi tion

/I subtract ion

coul « "Result : "« res« '\n ';
keep_window_openO;

178 CHAPTER 6 • W RITI NG A PROGRAM

return 0;
)

11lat is, read a pair of values separated by an operator, such as 2+2, compute the
result (in this case 4), and pr int the resulting value. We chose the variable names
Ivai for left-hand value and rval for right.lland value.

'Illis (sort of) works! So what if this program isn't quite complete? It fecls
great to gel something running! Maybe this programming and computer science
stuff is easier than the rumors say. WcU, maybe, but let's not gel too c.micd away
by an early success. Let's

1. C lean up the code a bit

2. Add multiplication and division (e.g. , rJ)

3. Add the ability to handle mOTC than one operand (e.g., 1+2+3)

In particular, we know that we should always check that our input is reasonable
(in our hurry, we "forgot") and that testing a value against many constants is best
done by a switch-statement rather than an if-statement.

lllC "chaining" of operations, such as 1+2+3+4, we will h,mdlc by adding the
values as they are read; that is, we start with 1, see +2 and add 2 to 1 (getting an in­
tenllediate result 3), see +3 and add that 3 to our intenllediatc resuh (3), and so on.
After a few false starts and after cOlTecnng a few synta.:x and logic errors, we get:

#include "std_lib_faeiliti es. h"

int main O
{

cout « "Please ente r expression (we can handle +, - , . , and /): ";
int Ivai = 0;
int rval;
char o p;
ein» lval; /I read leftmost operand
if (!ein) e rror(" no first o pe rand ");
while (ei n>>op) (/I read operator and right-hand operand repeatedly

ein» rval;
if (lein) error(" no second o pe rand ") ;
swilch(o p) {
case '+ ' :

Ivai += rval; /I add : Ivai ", Ivai + rval
break;

case '- ' :
Ival-= , val; /I subtract: Ivai = Iva i - rval
break;

6.3 BA CK TO THE CALCULATOR !

}

case ' . ' :
Ivai "= rval ; 1/ multiply: Ivai = Ivai ' rval
break ;

case 'f:
Ivai 1= rval; /1 divide: Ivai = Ivai I rval
break ;

default : 1/ not another operator: print result

}

cout « "Result : "« Ival « '\n ';
keep_window_open O;
return 0;

error{"bad expression");

lllis isn't bad, but then we try 1+2·3 and see that the result is 9 and not the 7 our
arithmetic teachers told us was the right answer. Similarly, 1-r3 gives -3 ralher
than the -5 we expected. We are doing the operations in the wrong order: 1+2·3
is caJculated as (1 +2)"3 rather t.han as t.he conventionaJ 1+(2"3) . Similarly, 1-2·3 is
calculated as (1-2)·3 rat.her than as the convemional 1- (2"3) . Bummer! We m.ight
consider the convention that "multiplication binds tighter than addition" as a silly
old convention, but hundreds o f years of convention will not disappear just to
simplify our programming.

6.3.2 Tokens
$0 (somehow), we have LO '"' look ahead" on the line LO see if t.here is a " (or a I) . If
so, we have LO (somehow) adjust the evaJuation order from the simple and obvi­
ous left -ta-right order. Unfortunately, trying to barge ahead here, we immediately
hit a couple of snags:

I. Vle don't actually require an expression to be on one line. 1;or example:

+
2

works perfectly with our code so far.

2. How do we search for a " (or a I) among digi ts and plusses on several
input lines?

3. How do we remember where a " was?

4. How do we handle evaJuation that's not strictly left·to·right (e.g., 1+2·3)?

Having decided to be super-optimists, we'll solve problems 1-3 first and not
worry about 4 until la ter.

180 CHAPTER 6 • WRITI NG A I'ROGRAM

Also, we' ll ask around for help. Surely someone will know a convenlional
way of rcading "stuff," such as numbers and operators, from input and storing it
in a way that lets us look at it in convenient ways. The conventional and very
usefu l allswcr is "tokcnize": first input characters arc read and assembled into
IORellJ, so if you type in

45+11 .517

the program should produce a list of tokens representing

45
+
11.5

I
7

A token is a sequence of characters thaI represenLS something we consider a unit,
such as a number or an operator. 11mt's the way a C++ compiler deals with its
source. Actually, "LOkcnizing" in some form or anomer is the way most analysis
o f text starts. Fo llowing the example of C++ expression, we sec the need for
three kinds of tokens:

Floating-point-literals: as defined by C++, e.g., 3.14, O.274e2, and 42

Operators: e.g., +, - , . , I, %

Parentheses: (,)

TIle nonling-point-literals look as if they may become a problem: reading 12
seems much easier than reading 12.3e-3, but calculators do tend to do noaling­
point arithmetic. Similarly, wc suspcct that we'll have to accept parenth eses to
have our c.llculator dcemed useful.

How do we represent such tokens in our program? We could try to keep
track of where each tokcn startcd (and cnded), but that gets messy (cspecially if
we allow expressions to span line boundaries) . Also, if we keep a number as a
string of characters, we later havc to figu rc out what its value is; that is, if we sec
42 and store the characters 4 and 2 somewhere, we thcn later have to figu re out
thalthose characters represent the numerical value 42 (i.e., 4-10+2). "The obvious
- and conventional - solution is to represent cach token as a (kind,vallle) pair.
TIle kind tells liS if a token is a number, an operator, or a parcmhesis. For a nUIll ­

ber, and in th is example only for a number, we lise its numerical valuc as its wlue.
So how do we express the idea of a (kilul,w/ue) pair in code? We define a type

Toke n to represent tokens. Why? Remember why we lise types: they hold the
data we need and give us uscful operations on that data. For example, ints hold
inlegers and give us addition, subtraction, muhiplication, division , and remain-

6.] BACK TO THE CA LCULATOR !

der, whereas strings hold sequences o r characters and give us concatcnation and
subscripting. The C++ language and its standard library givc us many types
such as char. inl, doubl e, siring, vector, and oslream, but not a Token type. In
ract, there is a huge number or types - thOllsands or tens or thousands - that we
would like to have, but the languagc and its standard library do not supply them.
Among our ravorite types that arc not suppo rted are Matrix (sec C hapter 24),
Oate (sec Chapter 9), and infinite precision integers (try searching the web ror
MBignum"). Ir YOll lhink about it ror a second, you' ll rcalize that a languagc can·
not supply tens or thousands or types: who would defi ne theEll , who would im·
plement them, how would you find thcm, and how thick would the manual have
to bc? Like most modcrn languagcs, C++ escapcs that problcm by letting us de­
fine our own types (u.ser-liejilled type;) when we need them.

6.3.3 Implementing tokens
What should a token look like in our program? In other words, what would wc
like our Token type to be? A Token must be able to represent operators, such as +
and - , and numeric values, such as 42 and 3.14. -nlC obvious implementation is
something that can represent what "kind" a token is and hold thc numeric value
ror tokens that have onc:

Token:

kind :
value :

plus

Token:

kind :
value :

number
3.14

-n lcrc arc many ways that this idea could bc reprcsentcd in C++ codc. Hcre is
the simplest that we round userul:

class Token {
public:

/I a very simple user-defined type

char kind ;
double value;

},

A Token is a type Oike int or char), so it can bc used to define variables and hold
val ues. It has twO parts (called mcmhn:s): kind and value. The kc)"vord class
means "user·dcfined lypcn; it indicatcs that a type with z.cro or more members is
being dcrmed. ' 11e fi rst member, kind, is a character, char, so that it conveniently
can hold '+' and '. ' to represent + and *. We can use it to make types like this :

Token I ;
t.kind = '+';
Token 12;

/II is a Token
/I t represents a +
II t2 is another Token

181

182 CHAPTER 6 • WRITING A PRO G RAM

12.kind = '8' ; /I we use the digit 8 as (he ~ k ind" for numbers
12. value = 3.14:

We lise the member access notation, obftd_lUllfle . memlxr_'lIllJle, (0 access a mem­
ber. YOll can read I.kind as "I's kind" and 12.value as "t2's value ." We can copy
Tokens just as we can copy inls:

Toke n II = I; /I copy ini(ialization
if (lI .kind != I..kind) erro r(" impossible!"):
t = t2; /I assignment
coul « I.value; /I wi ll prim 3. 14

Given To ken, we can represent the expression (1.5+4)-11 using seven tokens like
this:

I 'I' I
1.5 4 1'·'1 "'1

'8' '8' '8'
11

Note that for simple tokens, such as +, we don't need the value, so we don't use
its value member. We needed a character to mean "number" and picked '8' just
because '8' obviously isn't an operator or a punctuation character. Using '8' to
mean "number" is a bit cryptic, but it'll do for now.

To ken is an example of a C++ user-defined lype. A user·defined type can
have member fu nctions (operations) as well as data members. 111el"e ca n be
many reasons fo r defining member functions. Here, we'll just provide two Jllem·
ber functions to give us a more convenient way of initializing Toke ns:

class Token (
public:

char kind ; /I what kind of token
double value: /I for numbers: a value
Token(char chI II make a Token from a char

:kind (ch), value(O) {}
Token(char ch, do uble val) II make a Token from a char and a double

:kind(ch), valu e(val) {}
) ;

~nlese two member funClions are o f a special kind called (Olu/nll/Orl. ~nley have
the same name as their type and are lIsed to iniliaJize ("conslnlct") Toke n objecLS.
For example:

Toke n 11 ('+'): II initialize II so thalll .kind = '+'
Toke n t2('8',11 .5); /I initial ize t2 so that t2.kind = '8' and t2.value = 11 .5

6 .3 BACK TO THE CALCULATOR!

In the first constructor, :kind (ch), value(O) means "Initialize kind 10 ch and set
value to 0." In the second constructor, : kind(ch), value(val) means "Initialize kind
to ch and set value to vat." In both cases, nothing more needs to be done to con·
struct the Token , so the body of the function is empty: { }. The special initializer
syntax (a mt:mm.,,- illitialiur list) starting with a colon is used only in constructors.

Note that a constructor docs not return a value. No return lype is requ ired
(or allowed) for a constmctor. For more abolll constructors, sec §9.4.2 and §9.7.

6.3.4 Using tokens
So, maybe now we can complete our calculator! However, maybe a small aillount
of planning ahead would be worthwhile. How would we use Tokens in the calcu­
lator? 'We can read out input into a vector of Tokens:

Token geC tokenO; /I read a token from cin

veclor<Token> 10k; /I we'll put (he tokens here

int mainO
{

while (ein) (

)

/I . ..
}

Token I = geCloken() ;
lok.push_back(I);

Now we can read an expression first and evaluate later. For example, for 11 -12,
we gel

'8'

1"'1
'8'

11 12

We can look at that to find the multiplication and its operands. Having done that,
we can easily perform the multiplication because the numbers II and 12 are
stored as nU llleric values and not as strings.

Now let's look at more complex expressions. Given 1+2-3, 10k will contain
five Tokens:

1 1'·'1
'8'
2 1'·'1

'8' '8'
]

183

184 C HAPTER 6 • WRITING A PROGRAM

Now we could fmd the multiply operation by a simple loop:

for (i nt i = 0; i<tok .sizeO; ++i) {
if (lok[i].kind==' ·') (/I we found a multiply!

double d = lokli-l1.value· tok[i+l1.valuc;
II now what?

)

Yes, but now what? What do we do with that product d? How do we decide in
which order to evaluate the sub-expressions? Well, + comes before · so we can't
juSt evaluate from [cft to right. We could try right-la-left evaluation! That would
work for 1+r3 but not for 1"2+3. Wo rse still, cons ider 1+2"3+4. This example
has to be evaluated "inside OUl ": 1+(2*3)+4. And how will we handle parentheses,
as we eventually will have to do? We seem to have hit a dead end. We need to

back off, stOp progrnnuning for a while, and think about how we read and un­
ders tand an input string and evaluate it as an arithmetic expression.

So, this fIrst emhusiastic attempt to solve the problem (writing a caJculator) ran
alit of steam. 111m's not unconmlOn for li rSl tries, and it serves the imponant role
of helping us understand the problem. tn this case, it even gave us the useful notion
of a token, which itself is an example of the notion of a (1/(lmc,w/ue) pair that we will
encoumer again and again. However, we must always make sure that such rela­
tively thoughtless and unplanned "coding" doesn't steal too much time_ We should
do vely little progranuning before we have done at least a bit of analysis (under­
standing the problem) and design (deciding on an overall structure of a solution)_

TRY THIS

On tlle other hand, why shouldn't we be able to fmd a simple solution to this
problem? It doesn' t seem to be all that difficult. If nothing clse, trying would
give us a better appreciation of tlle problem and the eventual solution. Con­
sider what you might do right away. For example, look at the input 12.5+2 .
We could to kenize that, decide that the expression was simple, and compute
the answer. That may be a bit messy, btl[straightforward, so maybe we
could proceed in this direction and fmd something that's good enough! Con­
sider what to do if we found both a + and a • in tlle line 2+3· 4? lllalloo can
be handled by "brute force." H ow would we deal with a complica.ted expres­
sion , such as 1+2·314%5+(6-7·(8))? And how would we deal with errors,
such as 2+-3 and 2&3? Consider this for a while, maybe doodling a bit on a
piece o f paper trying to outline possible solutions and interesting or impor­
tant input expressions.

6.3 BACK TO THE CALC ULATOR!

6.3.5 Back to the drawing board
Now, we will look at the problcm again and try not to dash ahead with another
h,llr·baked solution. One thing that we did discover was that having the program
(calculator) evaluate only a singlc expression was tedious. We would like to be
able to compute several expressions in a single invocation of our program; that is,
our pseudo code grows to

while (noC finished) (
read_a_line
calculate
write_result

)

II do the work

Clearly this is a complication, but when we think about how we usc caiculaLOrs ,
we realize that doing several calculations is very common. Could we let the user
invoke our program several times to do several calculations? We could, but pro­
gram Startup is unronunately (and unreasonably) slow on many modern operat­
ing systems, so we'd better not rely on that.

As we look at this pseudo code, our early attempts at solutions, and our ex­
amples or use, several questions - some with telllative answers - arise:

I. Ir we type in 45+517, how do we find the individual parts 45, +, 5, I, and 7
in the input? (rokenize!)

2. What tcnninates an input expression? A newline, or course! (Always be
suspicious or "of course": "of course" is not a reason.)

3. How do we represelll 45+517 as data so that we can evaluate it? Before
doing the addition we must somehow turn the characters 4 and 5 into
the integer value 45 (i.e. , 4· 10+5). (So tokenizing is part of the solution.)

4. How do we make sure that 45+517 is evaluated as 45+(517) and not as
(45+5)n?

5. What 's the value of 517? About .71, but that 's not an integer. Based on
experience with calculators, we know that people would expect a
noating-poilll result. Should we also allow noating-poilll inputs? Sure!

6. Can we have variables? For example, could we write

v=7

m=9

Good idea, bUllet's wait until later. Let's first get the basics working.

Possibly the most important decision here is the answer to question 6. In
§7.8, you'll sec Ihal if we had said yes we'd have almost doubled the size or the

185

.86 (HAPTER 6 • WRITING A " ROGRAM

initial projecl. That would have m OTC than doubled the time needed LO gel the ini­
lial version running. OUT guess is that if yOlI really arc a novice, it would have at

least quadrupled the effon needed and most likely pushed the project beyond
your patience. It is most important to avoid "(eature creep" early in a projecl. in­
stead, always first build a simple version, implementing the essential features
o nly. O nce you have something funning, you call gel morc ambitious. It is far
easier to build a program in stages man all at o nce. Saying yes to questio n 6
would have had yet another bad effect: it would have made it hard to resist the
temptation to add further "neat features" along the line. How about adding the
usual mathematical functions? How about adding loops? Once we stan adding
"neat rcaturcs" it is hard to stop.

From a programmer's point or view, questions 1,3, and 4 are the most both­
ersome. T hey are also related, because once we have round a 45 or a +, wha! do
we do with lhem? That is, how do we store them in our program? Obviously, to­
kenizing is pan or the solution, but only pan.

W hat would an experienced programmer do? When we arc raced with a
tricky technical qucstion, there orten is a standard answer. We know that people
have been writing calculator programs ror at least as long as there have been
computers taking symbolic input rrom a keyboard. TIlal is at least ror 50 years.
TIlere has to be a standard answer! In SUdl a silUation, the experienced program­
mer consults colleagues ancUor the literature. It would be silly to barge on, hop­
ing to beat 50 years or experience in a moming.

6.4 Grammars
111ere is a standard answer to the question or how to make sense o r expressions:
fi rst input characters are read and assembled into tokens (as we discovered). So ir
you lype in

45+11 .517

the program should produce a list or tokens representing

45

+
11.5
I
7

A token is a sequence or characters that represents something we consider a unit,
sLich as a number or an operator.

6.4 G RAMMA RS

After tokens have been produced, the program must ensure that complete
expressions are understood correctly. For example, we know that 45+11 .517

means 45+(1 1.517) and not (45+11.5)17, but how do we teach the program that
useful mle (division "binds tighter" than addition)? TIle standard answer is that
we write a grall/lllar defining the syntax of our input and then write a program
that implements the mles of that grammar. For example:

/I a simple expression grammar:

Expression:
Term
Expression It+" Term
Expression "- " Te rm

Term:
Primary
Term "." Primary
Term "/" Primary
Term "%" Primary

Primary:
Number
"(" Expression ")"

Number:
floati ng-point-lite ral

/1 addition
/I subtraction

/I multiplication
/I division
/I remainder (modulo)

/I grouping

Illis is a set of simple rules. The last rule is read '''A Number is a floating-paint­
lite ral." "n le next-to-Iast rule says , "A Primary is a Number o r '(' followed by an
Expression followed by 'l'." TIle mles for Expression and Term are similar ; each
is defined in terms of one of the mles that follow.

As seen in §6.3.2, our tokens - as borrowed from the C++ defmilion - arc

floating-poi nt-literal (as dermed by C++, e.g., 3.14, O.274e2, or 42)

+, - , . , /, % (the operators)

(,) (the parentheses)

From ollr first tentative pseudo code to this approach using tokens and a gram­
mar is actually a huge conceptual jump. It 's the kind of jump we hope for but
rarel y manage without help. TIlis is what experience, the literature, and Mentors
arc for.

At first glance, a grammar probably looks like complete nonsense. Techn.ical
notation often docs. However, please keep in mind that it is a general and elegant
(as YOli will evelllually appreciate) notation for something you have been able to
do since middle school (or earlier). You have no problem calculating 1-r3 and

187

'88 CHAPTER 6 • W RIT ING A PROGRAM

1+2-3 and 3"2+412. Il seems hardwired in your brain. However, could you ex·
plain how you do it? Could you explain it well enough for someone who had
never seen conventional arithmetic to grasp? Could you do so for every combi­
nalion of operators and operands? To articu late an explanation in sufficient detail
and precisely enollgh for a computer to understand, we need a nOlation - and a
granuTIar is a most powerful and conventional tool for thal.

How do you read a grammar? Basically, given some input. you start with the
"lOp ru le," Expression, and search through the niles to find a match for the 10-
kens as they arc read. Reading a stream of tokens according to a grammar is
called parsing. and a program that does that is often called a parser or a S)'1I1ax (lJIa­
Iyur. Our parser reads the tokens from left to right, JUSt like we type them and
read thelll. Let 's try something really simple: Is 2 an expression?

I. An Expressio n must be a Term or end with a Term. That Term must be a
Primary 0 1" end with a Primary. ~nlat Primary must start with a (0 1" be a
Numbe r. Obviollsly, 2 is not a (, but a floaling-po ini-lile ral. which is a
Number, which is a Primary.

2. That Primary (the Numbe r 2) isn·t preceded by a I . ., o r %, so it is a
complete Term (rather than the end of a I, . , or % expression).

3. That Term (the Primary 2) isn't preceded by a + or - , so it is a complete
Expressio n (nuller than the end of a + or - expression).

So yes, according to OUI" grammar, 2 is an expression. We can illustrate the pro·
gression through the grammar like this:

Parsing the number 2

Expression:
Tern}
Expression "+" -'em}
Expression "-" Tenn

Term:
Primary
Term ... " Primary
Term "f" Primary
Term "%" Primary

Primary,
Number
"(" Expression ~) "

Number:
fioating·poi.lll·literal

ExTon
lenll

t
Primary

t
Number

1
f1oating·point·literal

t
2

6.4 GRAMMARS

l11is represents the path we rollowed through the definitions. Retracing ollr path,
we can say that 2 is an Expression because 2 is a floating-poi nt-literal , which is a
Numbe r, which is a Primary, which is a Term, which is an Expression .

Let's uy something a bit more complicated: Is 2+3 an Expression? Nam rally,
much or the reasoning is the same as ror 2:

I. An Expression must be a Term or end with a Term, which must be a
Primary or end with a Primary, and a Primary must start with a (or be a
Numbe r. Obviously 2 is not a (, but it is a floating-poi nt-literal, which is
a Number, which is a Primary.

2. 11mt Primary (the Number 2) isn't preceded by a I , . , or 0/.;., so it is a com­
plete Term (rather than the end or a I, . , or % expression).

3 . ~nlat Term (t.he Primary 2) is rollowed by a +, so it is the end or the first
part or an Express ion and we must look ror the Term arter the +. In ex­
actly the same way as we round that 2 was a Term, we find that 3 is a
Term. Since 3 is not rollowed by a + or a - it is a complete Term (rather
than the first part or a + or - Expression). 111erdore, 2+3 matches the
Expression + Term mle and is an Expression .

Again, we can illustrate this reasoning graphical! y (again leaving out tlle floating­
poi nt-literal to Number mle to simpliry):

Parsing the expression 2 + 3
Expression

Expressioll : Expression T,=
t Expression "+~ Tern}

Expression u_~ l erm Term Tern}
Term: I I Primary Pri='Y Pri='Y

Term " .~ Primary

I I Tenn ~ /" Primary
Term "<Ifo" Primary

Prirllary: Number Number
Number

1 1
"(" Expression ")"

Number:
flooting-poim-literaJ

2 + 3

"nlis represents tlle path we rollowed through the definitions. Retracing our path,
we can say that 2+3 is an Expression because 2 is a leon which is an Expression, 3
is a Term, and an Expression rollowed by + rollowcd by a Term is an Expression.

189

190 CHAPTER (, • W RITI NG A PROGRAM

"111C real rcason we are interested in granunars is that they can solve our
problem of how to correctly parse expressions with bOlh + and . , so let 's try
45+11.5*7. However, ';playing computer" following the rules in detail as we did
above is tediolls, so let's skip some of tJ1C intermediate steps lhal we have already
gone through for 2 and 2+3. Obviously, 45, 11.5, and 7 arc all floating- point­
literals which arc Numbers, which arc Primarys, so we can ignore all niles below
Primary. So we gel:

1. 45 is an Ex pression foUowcd by a +, so we look for a Term 10 fini sh the
Expressio n+ Term nile.

2. 11 .5 is a Te rm followed by . , so we look for a Primary to finish lhe Term·
Prima ry n ile.

3. 7 is Primary, so 11 .5*7 is a Term according to the Term· Primary nile.
Now we can sec that 45+11.5 -7 is an Expression according to the
Expression;rerm rule. In particular, it is an Expressio n that first docs the
multiplication 11.5·7 and then the addition 45+11 .5·7, jllst as if we had
written 45+(11 .5·7).

Again, we can illustrate this reasoning graphically (again leaving out the floating­
poinl·lile ral lO Number mle 10 simplify):

Parsing the expression 45 + 11.5 * 7

Expression:
T,=
Expression "+" Term
Expression .. -" Term

Term:
Primary
Term ... ~ Primary
Term .. ". Primary
Term "qio" Primary

Primary:
Number
"(" Expression ")"

Number:
f1oating-point-literal

Expression

I T,=
J",
I

Number

I
45

Expression

Ternl

t
llrimary

I
Number

I
+ 11 ~

Primary

I
Number

I
• 1

Again, this represents the path we rollowed t.hrough the definitions. Note how the
Term· Primary nile ensures that 11 .5 is multiplied by 7 father than added to 45.

b.4 G RAMMAR S

You may find this logic hard to follow at first, but many humans do read
grammars, and simple gr<ulullars arc not hard to understand . However, we were
not really trying to teach YOIl to understand 2+2 or 45+11 .5+7. Obviously, you
knew that already. We were trying to find a way for the computer to "under­
stand n 45+11 .5*7 and all the other complicated expressions you might give it to

evaluate_ Actually, complicated grammars are not fit for humans to read, but
computers are good at it. TIley follow such grammar rules quickly and correctly
with the greatest of case. Following precise rules is exactly what computers arc
good a t.

6.4.1 A detour: English grammar
If you have never before worked with grammars, we expect that your head is
now spinning. In fact, it may be spinning even if you have seen a grammar be­
fore, but t.'lke a look at the following grammar for a very small subset of English:

Sentence :
Noun Verb /I e.g., C++ rules
Sentence Conjunction Sentence /I e.g., Birds fly but fi sh swi m

Conjunction :
"and"
"or"
"but"

Noun:
"birds"
"fi sh"
"C++"

Verb:
"rules"
" fly"
"swim"

A sentence is built from parts of speech (c_g_, nouns, verbs, and cOI~unctions) . A
sentence can be parsed according to these rules to determine which words arc
nou ns, verbs, etc. This simple grammar also includes semantiC<llly meaningless
sel1lences sllch as "C++ fl y and birds rules," but fixing that is a different maHer
belonging in a far more advanced book.

Many have been taught/shown such rules in middle school or in foreign Ian·
guage class (e.g., English classes). 1llese grammar niles arc very fundamental. In
fact, there are serious neurological arguments for such rules being hardwired into
our brains!

191

192 CHAPTER 6 • WRITING A PROG RAM

Now look at a parsing tree as we used above for expressions, but lIsed here
for simple English:

Parsing a simple English sentence

Sentence :
Noun Verb Sentence

Sentence Conjunction Semence

I I I Conjunction : .""'-
"or" Sentence Conjunction Sentence
"but"

Il Il Noun:
'"birds" Noull V,,,, Noun Verb
"rlllh"

1 1 1 1
"c++"

Verb:
Mrolcs"
" fiy"

'" birds" "ny" "bul~ ~ fish " "swim"

~swimn

11,is is nm all that complicated . If YOll had trouble with §6A then please go back
and fe- read it from the beginning; it may make more sense the second lime
through !

6.4.2 Writing a grammar
How did we pick those expression grammar fules? "Experience" is the honest
answer. ~nle way we do it is simply the way people usually write expression
grammars. However, writing a simple grammar is pretty straigllt forward : we
need to know how to

1. Distinguish a rule from a token

2. Put one rule after another (Jeqllencill~

3. Express alternalive patterns (af/emu/ion)

4. Express a repeating pattem (repeti/ion)

5. Recognize the gramma r rule LO start with

6.5 TURN ING A GRAMMAR INTO CODE

Different textbooks and different parser systems usc different notational conven­
tions and different terminology. For example, some call LOkens lennill,llJ and rules
T!Q1l-tennvUlLs or pnxJuchoTlS. We simply put tokens in (double) quotes and Slart with
the first rule. Alternatives arc put on separate lines. For example:

list:
"{" Seque nce "}"

Sequence:
Element
Element " ," Sequence

Element:
"A"
"8"

So a Seque nce is either an Element or an Element followed by a Sequence using
a comma for separation. An Element is either lhe letter A or lhe letter 8. A list is
a Sequ ence in "curly brackel.S." We can generale lhese lists (how?):

{ A }

{ B }
{ A,B }
{A,A,A,A,8 }

However, these arc not lisl.S (why not?) :

{}

A

{ A,A,A,A,8
{A,A,C,A,8 }
{ A B e}
{A,A,A,A,8 , }

~nlis sequence rule is not one you learned in kindergarten or have hardwired
into your brain, bUl it is still not rocket science. See §7.4 and §7.8.1 for examples
of how we work with a grammar to express syntactic ideas.

6.5 Turning a grammar into code
-nlere arc many ways of gelling a computer 10 follow a grammar. We'll use the
simplest aile : we simply wrile one function for each grammar rule and lise o ur
type Toke n to represent tokens. A program that implements a grammar is of len
called a /J<1I"SeY.

193

194 C HAPTER 6 • WRITING A PROGRAM

6.5.1 Implementing grammar rules
To implement OUT calculator, we need four functions: one to read tokens plus one
for eadl rule in OUT gnunmar:

geUokenO

expression()

fermO

primaryO

II read characters and compose tokens
/I uses ci n
/I deal with + and -
/I calls leTmO and get_IokenO
II deal with' , I, and %
/I ca lls primaryO and geuokenO
/I deal with numbers and parentheses
1/ ca l ls expressionO and get_tokenO

Note: Each function deals wilh a specifi c part of an expression and leaves every­
thing clse to mher functions; this radically simplifies each function. TIlis is mllch
like a group of humans dealing with problems by letting each person h:mdlc
problems in his or her own specialty, handing aJl other problems over to
colleagues.

What should these functions actually do? Each runction should call other
grammar runctions according to the grammar rule it is implementing and
ge'-lokenO where a token is required in a rule. For example, when primary()
tries to rollow the (Expression) rule, it must call

geUokenO
expressionO

/I to deal with (and)
/I to deal with Expression

What should such parsing functions return? How about the answer we really
wanted? For example, ror 2+3, ex pressionO could return 5. After all, the inrorma·
tion is all there. That's what we'll try! Doing so will save us rrom am;wcling one
or the hardest questions rrom our list: "How do I represent 45+517 as data so that
I can evaluate it?" Instead or storing a reprcsenlation or 45+517 in memOI)', we
simply evaluate it as we read it rrom input. '11is little idea is reaJly a major break·
through! It will keep the program at a quarter or the size it would have been had
we had expressionO return something complicated ror later evaluation . We just
saved ourselves about 80% or the work.

The "odd man out" is geCtoken () : because it deals with tokens, not exprcs·
sions, it c.·m 't return the value or a sub·expression. For example, + and (arc not
expressions. So, it must return a Token. We conclude that we want

/I functions to match the grammar rules:
Token get_tokenO II read characters and compose tokens

6.5 TURNING A GRAMMAR INTO CODE

double expressionO /I deal with + and -
do uble le rmO 1/ deal with' , /, and %

double primaryO 1/ deal with numbers and parentheses

6.5.2 Expressions
Let 's first write expression (). '11e grammar looks like this:

Expression :
Term
Exp ression '+' Term
Expression ,_ , Term

Since this is our first attempt to turn a set of grammar rules into code, we'll pro·
ceed through a couple of false starts. '1lat's the way it usually goes with new
techniques, and we learn useful things along the way. In particular, a novice pro­
grammer can learn a lot from looking at the dramatically different behavior o f
similar pieces of code. Reading code is a useful skill to cultivate.

6.5.2.1 Ex pressions: first try
Looking at the Expression '+' Term rule, we try first calling ex pressio nO , then
looking fo r + (and -) and then termO:

double cxpressionO
{

}

double left = expressionO;
Token I = geUoken() ;
switch (I . kind) {
case '+':

return lefl + te rmO;

case '-':
return left - lerm O;

derault:
return left ;

}

// read and evaluate an Expression
/1 get the next token
/1 see which kind of token il is

/1 read and evaluate a Term,
II then do an add

II read and eval uate a Term,
II then do a subtraction

1/ relurn the value of the Expression

ltlooks good. h is almost a trivial transcripuon of the grammar. It is quite simple,
really: first read an Expression and then see if it is followed by a + or a - , and if it
is , read the Te rm.

195

196 CHA PTER (, • W RI TING A PROGRAM

Unfortunately, lhat doesn't really make sense. How do we know where the ex­
pression ends so umt we can look for a + or a - ? Remember, our program reads left
to right and can 't peck ahead to sec if a + is coming. In fact, this expressionO will
never get beyond its first line: expressionO starts by calling expression() which
starts by calling expressionO and so on "forever." il1is is called an i,!finite recursioll
and will in fact lcnninatc after a short while when the computer rtms out of mem­
ory to hold the "ncvcr-cnding" sequence of calls of expressionO. Tnc term reamion
is used to describe what. happens when a function calls itself. Not a ll recursions arc
infinit e, and recursion is a vcry useful programming technique (sec §8.5.8).

6.5.2.2 Expressions: second try
So what do we do? Every Term is an Expressio n, but not every Expressio n is a
Term; that is, we could start looking for a Te rm and look for a full Exp ressio n
only if we found a + or a - . For example :

double expressio nO
{

)

double left = lermO;
Token t = geUokenO;
switch (t.kind) (
case '+' :

return left + expressionO;

b ' ''.if I(
case '- ' :

return left - exp ressionO;
,fC'd'

de fault :
return left;

)

/I read and evaluate a Term
/I gct the next token
/I see which kind of token that is

/I read and evaluate an Expression,
/! then do an add

/I read and evaluate an Expression,
/I then do a subtraction

/! return the value of the Term

111is aCluaJly - more or less - works. We have tried it in the fini shed program
and it parses every correct express ion we throw at it (and no illegal ones). It even
correclly evaluates most expressions. For example, 1+2 is rcad as a Term (with
lllC value I) followed by + followcd by an Expression (which happens to bc a
Term will) thc vaJue 2) and gives the answer 3. Similarly, 1+2+3 gives 6. We could
go on fo r quite a long time about what works, but to make a long story short:
How abo ut 1-2-3? This expressionO will read the 1 as a Term, then proceed to
read 2-3 as an Expression (consisting o f thc Term 2 followed by the Expression
3). It will then subtract the value of 2-3 from 1. In Olher words, it will evaluate
1-(2-3). 111e vaJue of 1- (2-3) is 2 (positive two). However, we were taught (in
primary school or even earlier) that 1-2-3 means (1-2)-3 and thcrcfo rc has thc
value -4 (ncgative four).

6.5 TURNING A GRAMMAR I N TO CODE

So we got a very nice program that just didn't do the right thing. '11at's dan­
gerous. It is especially dangerous because it gives the right answer in many cases.
"or example, 1+2+3 gives lhe right answer (6) bec.lUse 1+(2+3) equals (1+2)+3.
\<\That fundamentally, from a programming point of view, did we do wrong? We
should always ask oursc!ves t.h is question when we have found an error. That
way we might avoid making the same mistake again, and again, and again.

Fundamentally, wejust looked at the code and guessed. 111a1 'S rarely good
enough! We have to understand what our code is doing and we have to be able
to explain why it docs the right thing.

Analyzing ollr errors is often also the best way to find a correct solution.
What we did here was to define expressionO to first look for a Term and then, if
that Term is followed by a + or a - , look for an Expression . ~n1is really imple­
ments a slighliy different grammar:

Expression :
Term
Term '+' Expression
Term '-' Expression

II addition
Ilsubtraciion

'11e difference from our desired grammar is exacliy that we wanted 1-2-3 to be
the Expression 1-2 followed by - followed by the Term 3, but what we got here
was the Term 1 followed by - followed by the Expression 2-3; that is, we wanted
1- 2-3 to mean (1-2)-3 hut we got 1-(2-3).

Yes, debugging can be ted ious, tricky, and time-consuming, but in this case
we arc really working through rules you learned in primary school and learned
to avoid without too much t.rouble. 111e snag is that we have to teach the rules t.o
a computer - and a computer is a far slower learner than you arc.

Note that we could have defined 1-2-3 to mean 1-(2-3) rather t.han (1-2)-3
and avoided this discussion altogether. Often, the trickiest. programming prob­
lems come when we must match conventional rules that were esmblished by and
for humans long before we started using computers.

6.5.2.3 Express ions: third time lucky
So, what. now? Look again at the grammar (the correct grammar in §6.5.2): any
Expression starts with a Term and such a Term can be followed by a + or a - . So,
we have to look for a Term, sec if it is followed by a + or a - , and keep doing that
umiltbere arc no more plusses or minuses. For example:

double expressionO
{

double left = termO;
Token t = geUoken();

II read and evaluate a Term

II get the next token

197

198

)

(HAPTE R 6 • W RITING A PROGRAM

while (I.kind=='+' IIl.kind=='-') (I/look for a + or a -
if (I.kind == '+ ')

)

left += termO; /I evaluate Te rm and add
else

left -= termO:
t = geUoken Oj

II eva[uale Term and subtract

return leH; 1/ finally: no more + or - ; return the answer

TIlis is a bit messier: we had to introduce a loop to keep looking for plusscs and
minuses. We also gOI a bit repetitive: we test for + and - twice and twice call
geuokcnO. Because it obscures the logic of the code, let 's just get rid of tbe du­
plication of the test for + and - :

double expressionO
{

)

double left = termO;
Token t = geuoken()j
while(true) (

)

5witch(t .kind) (
case '+':

left += termO:
t = geuoken();
break;

case '- ' :
left -= termO;
t = geUoken()j
break;

default :
return left;

)

II read and evaluate a Term
/1 get the next token

/I evaluate Term and add

/I evaluate Term and subtract

II finally: no more + or - ; return the answer

NOle that - except ror the loop - this is actuall y rather similar to our first u-y
(§6.5.3 .1). What we have done is to remove the mention or expressionO within
expressionO and replace it with a loop. In other words, we trallslated the
Expression in the grammar niles ror Expression into a loop looking ror a Term
followed by a + or a - .

6.5.3 Terms

The grammar nile ror Term is very similar to the Expression nile:

6.5 TURN ING A GRAMMAR INTO CODE

Term :
Primary
Term ,. , Primary
Term '/' Primary
Term '%' Primary

Consequcnt.ly, thc code should bc very similar also. Here is a first try:

double lermO
{

double lefl = primary() ;
Token t = geUokenO;
while(lrue) {

switch (t.kind) {
case '.' :

left .= primaryO;
1= gel_tokenO;
break;

case 'I' :
left 1= primary() ;
1= gel_token() ;
break;

case '0(0 ' :

left %= primary();
1= geUoken O;
break;

default :
return left;

)

Unfortunately, this doesn't compile: the remainder operation (%) is not defined
for floating-point numbers. The compiler kindly tells us so. When we answered
question 4 above - "Should we also allow floating-point inputs?" - with a confi­
dent "Sure!" we actually hadn't thought the issue through and fell victim to
fia/llre creep. That ahvays happens ! So what do we do about it? We could at run­
time check that bOlh operands of % are integers and give an elTOr if they are not.
Or we could simply leave % out of our calculator. Let's take the simplest choice
for now. Wc can always add % later ; see §7.5.

After we eliminate t.he % case, the function works: tenns arc correcLiy parsed
and evaluated. However, an experienced progranmlcr will notice an undesirable
detail that makes termO unacceptable. What would happen if you cntered 210? You
can't divide by zero. If you try, the computer hardware \vill detect it and lemlinate

199

200 (HAPTER 6 • WRITING A PROGRAM

your program with a somewhat unhelpful error message. An inexperienced pro­
grammer will discover this the hard way. So, we'd better check and give a decem
error message:

double termO
{

)

double left = primaryO;
To ken t = get_token();
while(tru e) {

)

switch (t.kind) {
case I. ' :

left -= primaryO;
t = get_to kenO;
break;

case 'f' :
{ double d = primaryO;

if (d == 0) e rro r("d ivide by ze ro ") ;
lefl /= d ;
t = geUokenO;
break;

d efault :
return lefl ;

)

Why did we put lhe statements handling I into a block? l1le compiler insists. If
you want to define and initialize variables within a swi tch-statement, YOli must
place them inside a block.

6.5.4 Primary expressions
The grammar rule for primary expressions is also simple:

Primary:
Number

'(' Expression ')'

lllC code that implements it is a bit messy because there arc morc opportunities
for syntax errors :

6.6 TRYING THE FIRS T VERSION

double primaryO
(

)

Token I = geClokenO;
swilch (I.kind) (
case '(' : 1/ handle '(' expression 'I'

{ double d = expressionO;
1= gel_IokenO:

)

if (I .kind != ')') erro r("')' expected "):
relurn d;

case '8'; /1 we use '8' to represent a number
/1 return the number's va lue relurn I.value:

defaull :
error{" primaryexpected");

)

Bas ically there is nothing new compared to express ionO and te rm() . We use the
same language primitives, the same way of dealing with Tokens, and the same
programming techniques.

6.6 Trying the first version
To run these calculator functions, \\!C need to implement geClokenO and provide
a mainO. TIle mainO is trivial: we just keep calling expressionO and printing Out

its result:

int mainO
try {

)

while (cin)
cout « expression()« '\n ' ;

keep_wi ndow_ope nO;

catch (exception& e) (

)

cerr « e.whatO« endl:
keep_window_open 0;
return 1;

catch C .•) {
cerr « "exception \n";
keep_window_open 0:
return 2;

201

2')2 CHAPTER 6 • WRITING A PROGRAM

TIle error handling is the usual ';boilcrplate" (§5.6.3). Let us postpone the de­
scription of the implementation of geClokenO to §6.8 and test this firs t version of
the calculator.

TRY THIS

This first version of the calculator program (including gel_fokenO) is avail­
able as file calculatorOO.cpp. Get it to run and try it OUL

Unsurprisingly, this first version of the caJcuiator doesn't work quite as we ex·
pecled. So we shrug and ask, "Why not?" or rather, "So, why docs it work the
way it docs?" and "' '''hat docs it do?" Type a 2 fo llowed by a newline. No re­
sponse. Try another newline to see if it's asleep. Still no response. Type a 3 fol­
lowed by a newline. No response! Type a 4 followed by a newline. It answers 2!
Now the screen looks like this:

2

3
4
2

1ft.
We carry on by typing 5+6+7. The program responds with a 5, so that the screen
looks like this:

2

3
4
2
5+6+7
5

Unless you have programmed before, you arc most likely very puzzled! In fact,
even an experienced programmer might be p uzzled. ,.vhat's going on here? At
lhis point, you try to get out of the program. How do you do this? We "forgot" to
program an exit command, but an error will cause the program to exit, so YOLi
type an x and the program prints Bad token and exits . Finally, something worked
as planned !

However, we forgot to distinguish between input and output on the screen.
Before we try to solve the main puzzle, let's just fix the output to better see what
we are doing. Adding an = to indic..te Output will do for now:

6 . 6 TRY ING THE FIR ST VERS ION

while (cin) caul «"= " « expressionO « '\n' ; 1/ version I

Now, entering the exact sequence of characters as before, we get

2

3

•
=2
5+6+7
= 5 ,
Bad loken

Strange! Try to figure out what the program did. We tried another few examples,
but let's just look at t.his.'11is is a puzzle:

Why didn 't the program respond after t.he first 2 and 3 and t.he newlincs?

Why did the program respond with 2, rather than 4, after we entered 4?

Why did the program answer 5, rdther than 18, after 5+6~?

"
111erc arc many possible ways of proceeding from such mysterious results. We'll
examine some of those in the next chapter, but here, let's JUSt think. Could the
program be doing bad aritpmetie? That's most unlikely; the value of 4 isn't 2,
and the val ue of 5?47 f~ 18' Utlher than 5. Consider what happens when we
enter 1 234+56+78+9101112 followed by a newline. We get

1234+56+7 8+9101112
= 1

=. =. =.
= 10

Huh? No 2 or 3. Why 4 and not 9 (that is, 4+5)? Why 6 and not 13 (that is, 6+7)?
Look carefully: the program is outputting every third token! Maybe the program
"cats" some of our input without evaluating it? It docs. Consider expressionO:

double expression()
{

double left = termOi
Token t = geUoken();
while(lrue) {

switeh(t .kind) {

II read and evaluate a Term
1/ get the next token

203

}

}

case '+' :

leU += lermO;
1= geUokenO;
break;

case '-' :
left -= lermO;
1= gel_IokenO;
break;

deraull :
relurn lefl;

}

C H APTER 6 • wRITING A PROGRAM

II evaluate Term and add

/I evaluate Term and sublract

/I finally: no more + Of -; return the answer

When the Token relumed by geClokenO is not a '+ ' or a '- ' we just return. We
don't use t.hat token and we don't store it anywhere ror any Olher runction to usc
later. That's nOl sman. ~lhrowillg away input without even detennining what it is
can't be a good idea. A quick look shows that lermO has exactly the same prob­
lem. '1mt explains why our calculator ate twO tokens ror each that it used.

Let us modify expressionO so thal it doesn' t "cat" tokens. \>Vhere would we
put that next token (I) when the program doesn' t need it? We could think or
many elaborate schemes, but let's jump to the obvious answer ("obvious" once
you sec it): that token is going to be used by some other function that is reading
tokens rrom the input, so let's put the token back into the input stream so that it
can be read again by some other runction! Actually, you can put characters back
into an istream, but that's not really what we want. We want to deal with tokens,
nOt mess with characters. What we want is an input stream that deals with to­
kens and that yOll can put an already read token baek into.

So, assume that we have a stream or tokens - a "Token_slream" - called 15. As­
sume rurther that a Token_stream has a member function gelO that relllms the next
token and a member runction pUlback(t) that puts a token t back i.nto the sueam.
We'll implement that Token_slream in §G.B as soon as we have had a look at how it
needs to be used. Given Token_stream, we can rewrite expressionO so lhat it puts a
token that it docs not use back into the Token_stream:

double expressionO
{

double lefl = te rmO;
Token I = ts.getO;

while(true) (
switch(t.kind) {

/I read and evaluate a Term
/I get the next Token from the Token stream

6.6 TRYIN G HIE FIR ST VE RSION

}

case '+' :

left += term O; /I evaluate Term and add
t = Is.geIO;
break ;

case '- ' :
left -= le rmO;
1= Is.gelC);
break ;

default :

/I evaluate Term and subtract

Is.pulback(l); II put I back into the token stream
relurn left ; /I finally: no more + or -; return the answer

}

In addition, we must make the same change to fe rm O:

do uble lermO
(

double left = primary();
Token I = Is.geIO; /I get the next Token from the Token stream

while(tru e) {
switch (I. kind) {
case ' . ':

left "= primary() ;
1= ts.geIO;
break ;

case 'f:
{ double d = primary() ;

jf (d == 0) e rror("divide by ze ro");
left 1= d ;
1= Is.get() ;
break;

default :

}

ts .pulback(t); /I put t back into the Token stream
return Jefl ;

205

206 C H AP TE R 6 • W RITI NG A PROGRAM

For Oll f last parser function, primaryO, we need just to change geCloken() to
ts.get() ; primaryO lIses every token it reads.

6.7 Trying the second version
So, we arc ready to test our second version. Type 2 followed by a newline. No re­
sponse. Try another newline to see if it 's asleep. Still no response. Type a 3 fol­
lowed by a newline and it answers 2. Try 2+2 followed by a newline and it
answers 3. Now yOUT screen looks like this:

2

3
=2
2+2

=3

Hm m. Maybe o ur introduction o f putbac kO and its lise III expressionO and
fermO didn't flx the problem. Let's try another test:

2342+3 r3
=2
=3 =,
=5

Yes! ~fbcsc arc correct answers! But the last answer (6) is missing. We still have a
token-look-ahead problem. However, lhis lime the problem is not that Ollr code
"cats" characters, but that it doesn't get any output ror an expression mllil we
enter the rollowing expression. 111e result or an expression isn't priuted immedi­
ately; the output is postponed until the program has seen the first token or the
next express ion. Unrortunately, the program doesn't see that token until we hit
Rerum after the next express ion. The prob'l'am isn't really wrong; it is just a bit
slow responding.

How can we fix this? One obvious solution is to require a "prim command."
So, let's accept a semicolon arler an expression to terminate it and trigger output.
And while we are at it, lei's add an "exit command" to allow ror gracdul exit.
The character q (for "quit") would do nicely ror an exit command. In mainO, we
have

while (cin) CQul « "=" «expressionO « '\n'; /I version 1

6 .8 TOKEN STREAM S

\oVc can change that to the messier but more useful

double val = 0;
while (cin) (

Token I = Is.gel() ;

if (I. kind == 'q') break;
if (I. kind == ';')

lI 'q' for Nquil""
II '; ' for Nprint nO\.vN

cout« "="« val « '\n ' ;

}

else
Is.putback(l);

val = expressionO;

Now the calculator is actually usable. For example, we get

2-,
=2
2+3;
=5
3+4-5;
=23
q

At this point we have a good initial version of the calculator. It 's not quite what
we really wa.nted, but we have a program that we can lise as the base for making
a more acceptable version. Importantly, we can now correct problems and add
features one by one while maintaining i..working progra.m as we go along.

6.8 Token streams
Before further improving our calculator, let us show t.be implememation of
Token_stream. After ail, nothing - nothing at all - works until we get correct input.
Vile implemented Token_stream ftrst of all but didn' t want too much of a digression
from the problcms or c.a1culation before we had shown a minimal solution.

Input for our calculator is a sequence of tokens, just as we showed for
{1.5+4)-11 above (§6.5. 1). vVhat we need is something that reads characters rrom
the standard input, cin , and prescnts lhe program with the next token when it
asks for it. In addition, we saw that we - that is, our c.a1culalor program - Orlen
read a token too many, so that we must be able to put it back for later usc. This is
typical and fundamental; when you see 1.5+4 reading strictly left to right, how

207

C HAPTER b • W RITI NG A PROG RAM

could you know that lhe number 1.5 had been completely read without reading
the +? Until we sec the + we might be on our way to reading 1.55555. So, we
need a "stream" that produces a token when we ask for one llsing getO and
where we can put a token back into the stream using putbackO. Everything we
usc in C++ has a type, so we have to start by defining the type Token_stream.

You probably nOliccd the public: in the definition of Token above. ~n1erc , it
had no apparent reason. For Token_stream, we need it and must explain its func­
tion. A C++ user-defined type often consists of twO pans: the public interface (la­
beled "public:") and the implementation details {labeled "private:") . " le idea is to
separate what a user of a type needs for convcniellt usc from thc dctails that wc
need in order to implement the type, but that we'd rather not have users mcss with :

class Token_Slrearn {
public :

II user interface
private:

II implementation details
/I (not directly accessible to users ofToken_strcaml

},

O bviously, users and implementers arc oftcn just us "playing diffcren, rolcs," but
making the distinction between the (public) interface meant fo r users and the
(private) implementation details used only by the implementer is a powerful tool
for structuring code. 111C public intcrfacc should contain (only) what a uscr
needs, which is typically a set of functions, including constmctors to initializc ob­
jects . TIle private implementation contains what is necessary to implement those
public functions, typically data and functions dealing with messy details thai the
users need not know about aJld shouldn't directly usc.

Let 's elaborate the Token_stream type a bit. What docs a user w;mt from it?
Obviously, we want get() and putbackO functions - tllat 's why we invented the
notion of a token stream. TI1C Token_stream is to make Tokens out of characters
that it reads fo r input, so we need to be able to make a Token_stream ilnd to de­
fme it to read from ci n. TIlUS, tlle simplest Token_stream looks like tllis:

class Token_stream (
public :

Token_stream() i
Token getO;
void putback(Token I) ;

private:
/I implementation details

},

/I make a Token_stream that reads from cin
/I get a Token
/I put a Token back

6.8 TOKEN STREAM S

TIlat's all a user needs to use a Token_stream. Experienced programmers will
wonder why cin is the only possible source o f characters, but we decided to take
our input from the keyboard. We'll revisit that decision in a Chapter 7 exercise.

Why do we usc the "verbose" name putbackO rather than the logically suffi·
cient put()? We wanted to emphasize the asymm etry between gel() and pulback() ;
this is an input stream, not somel.hing that you can also usc for general output.
Also, islream has a putbackO fu nction: consistency in naming is a useful property
of a system. It helps people remember and helps people avoid errors.

We can 1I0W make a Token_shearn and use it :

Token_stream ts;
Token t = ts .get();
11_ ..
ts.putback(l);

/I a Token_stream called Is

/I get next Token from Is

/I put the Token t back into ts

That's all we need to write the rest of the calculator.

6.B.1 Implementing Token_stream
Now, we nccd LO implement those lhrcc Token_stream fu nctions. How do we repre­
sent a Token_stream? That is, what data do we need to store in a Token_stream for
it to do its job? V\.'c! need space for ,my token we put back into the Token_stream. 1b
simplifY, let's say we c.l.1l put back at most one token at a lime. 1113t happens LO be
sufficient for our program (and for many, many similar programs). TImt way, we
just need space foJ' one Token and an indic.'l.tor of whether that space is fu ll OJ'
empty:

class Token_stream (
public:

Token_stream();
Token get();

/I make a Token_stream that reads from d n
/I gct a Token (gel() is defined elsewhere)

void putback(Token t);
private :

/I put a Teten back

bool full ; II is there a Token in the buffer?
Token buffer; II here is where we keep a Token put back using putbackO

);

Now we can define (" writcn
) the three member fu nctions. 111e consuuctor and

putback() are easy, because they do so little, so we will defi ne tllOse firs t.

209

111C constrllCl'Or just sets full to indicme that the buffer i.s empty:
,wrt, ,[.,.IJ. -{ S ('

Token_slream::Token_streamO ,"1 I a .k V--..--t
:full (false), buffel(O) /I no Token in buffe r

210

{

}

CHAPTER 6 • WRITING A PROGRAM

VVhen we define a member of a class outside the class definition itself, we have to
mention which class we mean the member to be a member of. We use the notation

for thal. In this case, we define Token_stream 's constructor. A constructor is a
member with the same name as its class .

Why would we define a member outside its class? TIle main answer is clar­
ity: the class definition (primarily) stales what the class call do. Member function
definitions arc implementations that specify how things arc done. We prefer to

put them "elsewhere" where they don't d istract. Our ideal is to have every logical
entity in a program fit on a screen. C lass defmitions typically do that if the mem­
ber function definitions arc placed elsewhere, bUl 11m if they are placed within the
class definition ("in-class") .

We initialize the class members in a member itliualizer list (§6.3.3); full (false)
sels a Token_stream's member full to false and buffer(O) initializes the member
buffer with a "dummy token" we invented just for that purpose. ~nle definition
of Token (§6Jjj) says that every Token must be initialized, so we couldn 't just ig­
nore Token_stream: : buffer.

TIle putbackO member function puts its argument back into the Token_stream's
buffer:

vo id Toke n_stream : : putback(Toke n t)
{

buffer = I; /I copy ! !o buffer
full = true ; /I buffer is now full

}

The keyword void (meaning "nolhing") is used to indicate that putbackO doesn't
retum a value. If we wanted to make SUfe that we didn't try to LIse putbackO twice
without readitlg what we put back itl between (using getO), we could add a test:

void Token_stream: :putback(Toke n t)
(

if (full) e rror(" putbackO into a full buffer");
buffe r = I; /I copy! !o buffer
full = tru e; II buffer is now full

}

The lest of full checks the precondition "111ere is no "Ibken in the butTer."

6 .8 TO KEN STREAMS

6.8.2 Reading tokens
All the real work is done by getO. If there isn't already a To ken in Toke n_stream::
buffe r, get() must read dmfactcrs from ci n and compose them imo Tokens:

Token Toke n_stream: :getO

}

{
if (full) { II do we already have a Token ready?

/I remove Token from buffer
full=false;
return buffe r;

char ch i
cin » chi /I note that » skips whitcspace (space, newline, lab, etc.)

switch (ch) {
case '; ':
case 'q' :

/I for Nprint'"
/I for ~quil"

case '(' : case ')': case '+' : case '- ' : case '. ': case 'f : case "Yo':
return To ken(ch); /I let each character represent itself

case ' .' :
case '0' : case '1': case '2' : case '3' : case '4' :
case '5' : case '6': case "': case '8' : case '9':
{cin.putback(ch); /I put digi t back into the input stream

do uble val;
cin »val;
re turn Token('8',val);

}

default :
e rro r(" Bad to ke n");

}

/I read a floating-point number
/I let '8' represent ~a number"

Let'S examine getO in detail. .. i rst we check if we already have a To ke n in the
buffer. If so, we can j ust retum that:

if (full) { /I do we already have a Token readyr
/I remove Token from buffer
full=false;
return buffe r;

}

211

212 CHAPTER 6 • WR ITIN G A PROCRAM

Only if full is false (that is, there is no token in the buffer) do we need to Illess
with characters. In that case, we read a character and deal with it appropriately.
We look for parentheses, operators, and numbers. Any other character gelS us
the call of cn orO lhat tcnninatcs the program:

default :
e rror(" Bad toke n ");

lllC c n o rO function is described in §5.6.3 and we make it available in Sld_lib_fa­
cililies .h.

We had to decide how to represent the different kinds o f Tokens; that is, we
had to choose values for the member kind. For simplicity and case of debugging.
we decided to let the kind o f a Token be the parentheses and operators thelll­
selves. This leads to extremely simple processing of parentheses and operators:

case ' (': case ')': case '+': case '- ' : case ' .': case 'I':
return Token (ch); I/let each character represent itself

To be ho nest, we had forgotten ';' fo r "print" and 'q ' for hquit" in our first ver­
sion. \rVe didn 't add them umil we needed them for our second solution.

6.8.3 Reading numbers
Now we just have to deal with numbers. 1113t's acrually n ot that easy. How do
we really find the value of 123? Well, that 's 100+20+3, but how about 12.34, and
should we accept scientific notation, such as 12.34e5? We could spend hours or
days to gel this right, but fortunately, we don't bave la. Input streams know wha!
C++ literals look like and how to tum them into values of type double. All we
have to do is to fi gure OUI how to tell dn to do that for us inside gel() :

case '. ' :
case '0' : case '1' : case '2': case 'J ' : case '4': case '5': case '6' : case '7' :
case '8' : case '9' :

(cin _putback(ch); 1/ put digit back inlO Ihe input stream
double val;
d n » val;
re turn Token('8',val) ;

)

1/ read a floating-point number
I/let '8 ' represent "a number"

We - somewhat arbitrarily - chose '8 ' to represent "a number" in a Token .
How do we know that a number is coming? Well, if we guess from experi­

ence o r look in a C++ reference (e.g., Appendix A), we find that a numeric literal
must start with a digit or . (the decimal point). So, we test for that. Next, we want

6.9 PROG RAM STR UCTURE

to let dn read the number. but we have already read the fi rst character (a digit or
dOl), so just letLing d n loose on the rest will give a wrong result. We could try to
combine the value of the first character with the value of "the rest" as read by
d n ; for example, if someone typed 123, we would get 1 and d n would read 23
and we'd have to add 100 to 23. Yuck! And that's a trivial case. Fortu nately (and
not by accident), d n works much like Toke n_stream in that you can put a char·
acter back into it. So instead of doing any messy aritlunetic, we just put the initial
character back into d n and then let d n read tile whole number.

Please note bow we again and again avoid doing complicated work and in·
stead fi nd simpler solutions - often relying on library facil ities. l 1lat's the essence
of prot,'1"amming: the continu ing search for simplicity. Sometimes that's - somc­
whm face tiously - expressed as "Good programmers are lazy." In that sense (and
only in that sense), we should be "lazy"; why write a lot of code if we can find a
way of wri ting far less?

6.9 Program structure
Sometimes, the proverb says , it 's hard to sec the forest for tile U"ecs. Similarly, it is
easy to lose sight of a program when looking a t a ll iLS fu nctions , e1asses, etc. So,
let's have a look at the program with its details omitted:

class To ken { I" ... "I};

class To ken_stream {' " ... "'};

Toke n_stream : : To ke n_streamO : full (fa lse), buffe r(O) {I" . . . "/ }

void Token_stream :: putback(Token t) { ' " ... "/}

Token To ken_stream : :getO {' " ... "'}

Token_stream Is;
double expression ();

/I provides getO and pu!backO
/I declara~n so that primaryO can ca ll expressionO

do uble primaryO {' " .. . "/ }
double le rmO { ' * ... */ }

do uble ex pressio nO { ' * ... */ }

/I deal with numbers and parentheses
/I deal with· , /, and %
/I deal with + and -

inl mainO {/- ... -/ } /I main loop and deal wilh errors

111e order o f the declaralions is importill1l. You cannot use a name before it has
been declared, so ts must be declared before ts.gc10 uses it, and e rrorO must be

213

214 CHAPTE R 6 • WRITING A PROGRAM

declared before the parser functions because they al1 use il. 111(rc is an interest­
ing loop in the ca ll graph: expression O calls te rm() which calls primaryO which
calls expression O.

We can represent !.hat graphica11y Oeaving Ollt calls to errorO - Cvcl)'onc calls
errorO) :

lllis means that we can't JUSt define those three functions: there is no order that al­
lows us to define every function before it is used . We need at least one declaration
that isn' t also a definition. We chose to declare ("forward declare") expressionO.

But does this work? It docs, for some definition o f Mwork." It compiles, runs,
correctly eval uates expressions, and gives decent error messages. But docs it
work in a way that we like? The UI1SlI llHising answer is "Not rea lly." We tried the
first version in §6.6 and removed a serious bug. lllis second version (§6.7) is not
much belleI'. BUl that 's fine (and expected). It is good enough for its main pur­
pose, which is to be something that we can use to verify our basic ideas and get
feedback from. As such, it is a success, but try it: it' U (still) drive you nuts!

TRY THIS

Get the calculator as presented above to run, see what it does, and try to fig­
ure out why it works as it docs.

(HAPTER 6 REV I EW

~ Drill

~nlis drill involves a series of modifications of a buggy program to tum it from
something useless into something reasonably useful.

I . Take the ca.iculaLQr from the file calculalor02buggy.epp. Get it to com­
pile. You need to find and fix a few bugs. TIlOse bugs are not in the text
in the book.

2. Change the clmracter used as the exit command from q to x.
3. Change the character used as the print command from ; to =.
4. Add a grecting line in main () :

"Welcome to our simple calculator.
Please enter expressions usi ng floating-point numbers ."

5. Improve that greeting by mentioning which operators are available and
how to print and exit.

6. Find the three logic errors deviously inserted in calculator02buggy.cpp
and remove them so that the calculator produces correct results.

Review

l. What do we mean by "Programming is understanding"?
2. TIle chapter details the creation of a calculator program. Write a short

analysis of what the calculator should be able to do.
3. How do you break a problem lip into smaller manageable parlS?
4. Why is creating a small, limited version of a program a good idea?
5. Why is feature creep a bad idea?
6. What arc the three mai.n phases of software development?
7. What is a "lise case"?
8. What is the purpose of testing?
9. According to the omline in the chapter, describe lhe difference between a

Term, an Expression, a Number, and a Primary.
10. In the chapter, an input was broken do\.vn intO ilS component Terms, Ex-

pressions, Primarys, and Numbers. Do this for (17+4)/(5- 1).

II . Why does the program not have a function called numberO?
12. What is a token?
13. What is a grammar? A grammar mle?
14. What is a class? What do we usc classes for?
15. ''''hat is a constructor?
16. In the expression function, why is the default for the switch-statement to

"put back" the token?

215

I 216 (HAPTER 6 • WRITING A PROGRAM

17. What is "look-ahead"?
18. What docs putbackO do and why is it useful?
19. Why is the remainder (modulus) operation , %, difficult to implement in

the term O?
20. What do we lISC the two data members of the Token class for?
2 1. \-Vhy do we (sometimes) split a class's members into private and publi c

members?
22. What happens in the Token_stream class when there is a token in the

buffer and the getO function is called?
23. vVhy wcre the '; ' and 'q ' characters added to the switch-statement iIllhc

getO function o f the Token_stream class?
24. When should we start testing OUf program?
25. What is a "user-defmed type"? Why would we want one?
26. What is the interface to a C++ "user-defined type"?
27. Why do we want to rely a ll libraries of code?

Terms

analysis
class
class mcmbcr
data mcmbcr
desib"l
dividc by zero

Exercises

grammar
implcmcntation
intcrracc
mcmbcr runctio ll
pru·scr
private

prototype
pscudo codc
public
symax analyzer
token
use case

l. If you haven't already, do the Try this exercises from this chaptcr.
2. Add the ability to use {) as well as () in the program, so that {(4+5)* 6} I

(3+4) will be a valid expression.
3. Add a ractorial operator: use a suffix 1 operator to represelll "ractorial ."

For cxample, the expression 71 means 7 * 6·5 · 4 · 3·2 *1. Make 1 bind
tighter than · and /; that is, 7*8 1 means 7·(8!) rather than (7*8)!' Begin
by modifying the grammar to account fo r a higher-level operator. To
agree with the standard mathematical definition of raCtorial, lct O! cvalu­
alet0 1.

4 . Define a class Name_va lue that holds a smng and a value. Give it a con­
structor (a bit like To ke n). Rework exercise 19 in Chapter 4 to use a
vector<Name_value> instead of two vecto rs.

5. Add the article th e to the "English" graJIilllar in §6.4.1 , so that it can de­
scribe sentences such as "The birds fly but the fish swim ."

CHAPTER 6 EXERCISES

6. Write a program that checks if a sentence is correct according to !.he
"English" grammar in §6.4. 1. Assume that every sentence is tenninated
by a rull SLOp (.) surrounded by whitespace. For example, birds fl y but
the fish swim . is a sentence, but birds fl y but the fi sh swim (tenninating
dot missing) and birds fly bur the fi sh swim. (no space before dOL) are
not. For each sentence entered, the program should simply respond
"OK" or '"'not OK." Hint : Don't bother with tokens ; just read into a
string using » .

7. Write a grammar ror logical expressions. A logical expression is much
like an arithmetic expression except that the operators are ! (not), -
(complement), & (and), I (or), and " (exclusive or). ! and - are prefix
unary operators. A " binds tighter than a I (just as • binds tighter !.han +)
so that xly"z means xl(y"z) rather than (xly)"z . "nle & operator binds
tighter than " so that x"y&z means x"(y&z).

8. Redo the "Bulls and Cows" game rmm exercise 12 in Chapter 5 to usc
rour leuers rather lhan four digits.

9. Write a program that reads digits and composes them into integers. For
example, 123 is read as !.he cilaraclers 1, 2, and 3. The program should
output "123 is 1 hundred and 2 le ns and 3 ones". TIle number should be
output as an int value. Handle numbers with one, two, three, or rour
digits. Hint: To get the integer value 5 of the character '5' subtract '0',
that is, '5'- '0'==5.

10. A pcmlUlalion is an ordered subset or a set. For example, say you wanted
to pick a combination to a vault. 1"ere are 60 possible numbers, and you
need three different numbers ror the combination. TIlere are 1-\60,3) per·
mutations ror the combination, where Pis defined by !.he rormula

a!
P (a ,b) = (a-b)!'

where ! is used as a suffix ractorial operator. For example, 41 is 4*3*2*1.
Combinations are similar to pennutations, except that the order or the
objects doesn't matter. For example, ir you were making a '"'banana splitn

sundae and wished to use three different flavors of ice cream out or five
lhal you had, you wouldn't care ir you used a scoop or vanilla at the be·
ginning or the end ; you would still have used vanilla. The rormula ror
combinations is:

C(a,b) = P (a i b).
b!

217

218 C HAPTER 6 • WRITING A PROGRAM

Design a program that asks users for two numbers, asks them whether
they want to calculate permutations or combinations, and prints out the
result. This will have several parts. Do an analysis of the above require­
ments. Write exacLly what the program will have to do. -n1CI1 , go into
the design phase. Write pseudo code for the program, and break it into
sub-components. This program should have error checking. Make sure
that aJl erroneous inputs will generate good error messages.

Postscript
Making sense of input is one of the fundamental programming activities. Every
program somehow faces that problem. Making sense of somethi ng directly pro­
duced by a human is among the hardest problems . For example, many aspects of
voice recognition arc still a research problem. Simple variations of this problem,
such as our calculator, cope by using a grammar lO define the inpul.

',L
,.-- 7

Completi ng a Program

"It ain't over till the fat lady sings."

-Opera proverb

W riting a program involves gradually refming your ideas

of what you want to do and how you want to express il.

In Chapter 6, we produced the initial working version of a calcu­

lator program. Here, we' ll ferme it. Completing the program -

that is, making it fit for users and maintaincrs - involves improv­

ing the user interface, doing some serious work on error han­

dling, adding a few useful features, and restructuring the code for

ease of understanding and modification.

'"

22.

7.1 Introduction

7.2 Input and output

7.3 Error handling

7." Negative numbers

7.S Remainder : %

7.6 Cleaning up the code
7.6.1 Symbolic constants
7.6.2 Use of functions
7.6.3 Code layout
7.6.4 Commenting

7.1 Introduction

C HAPTER 7 • COMPL ETI NG A PR O GRAM

7.7 Recovering from errors

7.8 Va riables
7.8.1 Variables and definilions
7.8.2 Introducing names
7.8.3 Predefined names
7.8.4 Ate we the re yeU

When your program fi rst starts running "reasonably," you 're probably about
halfway finished. Fo r a large program or a program that could do harm if it mis­
behaved, you will be nowhere near halfway finished. Once the program "basi·
cally works," the real fun begins! That's when we have enough working code to
experiment with ideas.

In this chaptcr, we will guide you through the considerations a professional
programmer might have trying to improve the calculator from Chapter 6. Note
that the questions asked about the program and the isslles considered here are far
more interesting than the calculator ilSelf. What we do is to give an example of
how real programs evolve under the pressure of requirements and constraints
and of how a programmer can gradually improve code.

7.2 Input and output
If yO Ll look back to the beginning of C hapter 6, you'll find that we decided to

prompt the user with

Expression :

and to rqxm back answers with

Result:

In the heat of getting the prOb'Ta.m to run, we forgot all about that. 111m's pretty
typical. We can't think of everything all the time, so when we StOp to reOect, we
find that we have forgo tten something.

For some programming tasks, the initial requirements cannot be changed.
That 's usually too rigid a policy and leads to programs that arc unnecessarily
poor solutions to the problems that they arc written to solve. So, let's consider

7, 2 INPUT AND O UTPUT

what we would do, assuming that we can change tile specification of what exactly
the progr.un should do. 00 we really want the program to write Expression : and
Result :? How would we know? Just "thinking" rarely helps. We have 10 try and
sce what works bcsl.

2+3; S·7; 2+9;

currellll), givcs

=5
= 35
= 11

If we added Expression : and Result :, we'd get

Expression: 2+3; 5*7; 2+9;
Result : 5
Expression: Result : 35
Expression: Result : 11

Expression :

We arc sure that some people will like onc sty le and others will like the other. In
such cases, we can consider giving people a choice, but for this simple ca..lculator

.. that would be overkill, so wc must decide. We think that writing Expression : and
Result : is a bit too "beavyn and distracting. Using those, the actual expressions
and results are ani), a minor part of what appears on the screen, and since ex­
pressions and results are what mattcrs, nothing should distract from them. On
the other hand, unless we somehow separate what the user types from what the
computer OutpuLS , the result can be confusing. During initial debugging, we
added = as a result indicator. We would also like a shon "prompt" to ind icate that
the program wants input. TIle > character is of len used as a prompt:

> 2+3;
=5
> 5°7;
=35

>

l 11is looks llIuch beuer, and we can get it by a minor change to the main loop of
main() :

double val = 0;
whi le (dn) (

cout « "> "; /I print prompt

221

222

Token t = ts.get();
if (t.kind == 'q 'l break ;
if (t.kind == '; ')

(HAPTE R 7 • COMPLE TI NG A PR OG RAM

coul « "= " «val « '\n ' ; /I print result

}

else
Is.putback(l) ;

val = expression();

Unfortunately, the result of putting severaJ expressions on a line is still messy:

> 2+3; 5°7; 2+9:

=s
> =35
>= 11
>

' 11C basic problem is that we didn't think of multiple expressions on a linc when
we started out (at least we pretended not to). YVhat we want is

> 2+3; 5"7; 2+9;

=s
=35
= 11

>

This looks right, but unforlunaLCly mere is no really obvious way of achieving il.
We first looked at mainO. Is there a way to write out > only if it is not immedi­
ately followed by a =? We cannot know! We need to write > before the get(), but
we do not know if gel() actually reads new characters o r simply gives us a Token
from characters that it had already read from the keyboard. In other words, we
would have to mess with Token_stream to make this final improvement.

For now, we decide that what we have is good enough. If we find that we
have to modify Token_stream, we'll revisit this decision . However, it is unwise to
make major structural changes to gain a minor advantage, and we havcn't yct
thoroughly tcsted the calculalOr.

7.3 Error handling
TIle first thing to do once yOll have a program that "basically works" is to try to
break it ; that is, we try to feed it input in the hope of getting it to misbehave. We
say "hope" because the challenge here is to find as many errors as possible, so

7.3 ERROR HAND LIN G

that you can fix them before anybody else finds them. If you go into this exercise
with the attitude that '" my program works and I don't make errors!" you won't
find many bugs and you'll feci bad when you do find one. You'd be playing head
games with yourseln The right auitude when tesling is "I'll break it ! I'm smarter
than any program - even my own!" So, we feed the calculator a mix of correct
and incorrect expressions. For cxample:

1+2+3+4+5+6+7+8
1- 2- 3-4
!+2

. "
(1+3;
(1+);
1-2fJ%4+5-6;

0;
1+;
+1

1++;
110
1/0;
1++2;
-2;
-2 · .. ·
1 ijl~~78901 23456;
'a ' ;
q
1+q
1+2 ; q

TR Y THI S

Feed a few such "problematic" expressions to the calculator and try to figure
out in how many ways you can get it to misbehave. Can you get it to crash,
that is, to get it past our error handling and give a machine error? We don't
think you c."ln. Can you get it to exit without a usdul error message? You
can.

Technically, this is known as telting. ' 111ere are people who do this - break pro­
grams - for a living. 'lesting is a very important part of software development
and can actually be fun. Chapter 26 exanlines tesling in some detail. One big

223

224 CHAPTER 7 • COMPLET ING A PROGRAM

question is: "Can we lest the program systematically, so thm we find all of the eT­
rors?" "Illerc is no general answer to this qucstion; that is, there is no answer that
holds for all programs. However, you can do rather well for lUany prOb'Tams
when you approach testing seriously. You try to create test cases systcmaticaJly,
and just in case your strategy [01' selecting tests isn't complete, you do some "'un­
reasonable" tests, such as

Mary had a little lamb
srtvrqliewcbet7rewaewre-wqcntrretewru 754389652743nvcqnwq;
!@#$%,.'\&"O- :;

Once, when testing compilers, I got inLO the habit of feeding email reporting COIll ­

piler errors straight to the compiler - mail headers, user's explanation, and all.
l1ml wasn't "sensible" because "nobody would do that." However, a program
ideally catches all errors , not just the sensible ones, and soon that compiler was
very resilient against "strange input."

The fi rst really annoying thing we noticed when testing the calculator was
that the window closed immediately after inpu ts such as

+1 ;
()

!+2

A lillie thought (or some tracing of the progTam's execution) shows that the prob­
lem is that the window is closed immediately after the error message has been
written. This happens because our mechanism for keeping a window alive was to
wait for you to enter a dmracter. However, in all three cases above, the program
detected an error before it had read all o f the characters, so that there was a char­
acter left on the input line. 111e program can't tell such "leftover" characters fro m
a character entered in response to the Ente r a character to close window prompt.
That "leftover" character then closed the window.

We could deal with that by modifying mainO (sec §5.6.3):

catch (runtime_error& e) (
ce r, « e. what()« endl ;
/I keep_windmv_opcnO:

}

cout « "Please ente r th e characte r - to close the window\n ";
char ch i
while(ci n » ch) II keep reading until we find a -

if (ch== '-') re turn I ;
re turn 1;

7. 3 ERR OR HANDLING

Basically, we replaced keep_window_openO with our own code. Note that we
still have our problem ir a - happens to be the next character to be read after an
error. bUl that 's rather unlikely.

When we encountered this problem we wrote a version or keep_win ­
dow_ope nO that takes a string as its argument and closes the window only when
you enter that string arter getting the prompt, so a simpler solution is:

catch (runtime_error& e) {
cerr « e. whatO« e ndl ;
keep_window_ope n(tI_tl) ;
return 1;

Now examples such as

. 1
11_

()

will cause the calculator to give the proper error mcssages, then say

Please ente. - - to exit

and not exit until you enter the string - .
The calculator takes input rrom the keyboard. That makes testing tedious:

each time we make an improvement, we have to type in a lOt or test cases (yet
again!) 10 make sure we haven't broken anything. II would be much beller ir we
could store our test cases somewhere and run them with a single conunand. Some
operating systems (notably Uni.x) make it lrivialto get cin LO read rrom a rde with­
out modir)'ing the program, ,md similarly to divelt the output rrom coul to a file. Ir
that 's not convenient, we must modify the program to usc a (ile (see Chapler 10).

Now consider:

1+2; q

and

1+2 q

We wou ld like both to print the resu lt (3) and then exit the program. Curiously
enough,

t+2 q

225

226 CHAPTER 7 • CO MPLETIN G A PROGRAM

docs that, but the apparently cleaner

1+2; q

cl iciLS a Primary expcCled error. Where would we look for this e rror? Ll main{)
where ; and q are handled , of course. We added those "print" and "quit" CO Ill ­

mands rather quickly to get the calculator to work (§6.G). Now we arc paying for
that hastc. Consider again:

double val = OJ
while (dn) {

cout « ">";
Token t = ts.geIO;
if (t.kind == 'q 'l break ;
if (I. kind == '; ')

coul « "= " « val « '\n ' ;
else

ts.putback(t);
val = expression j);

If we find a semicolon, we straightaway proceed to call expressionO without
checking for q . 111c first thing that expression does is to look for a primaryO, and
now it finds q . 111c letter q isn' t a primary so we gel our er ror message. So, we
should test for q after testing ror a semicolon. W hile we were at it, we rclt thc
necd to simplify thc logic a bit, so the completc mainO reads:

inl mainO
try
{

}

while (cin) {

}

coul « "> ";
Token I = IS. gel();
while (I.kind == ';') 1=ls.gel(); Ileal ';'
if (I .kind == 'q ') {

keep_window_openO;
relurn 0;

}

Is.pulback(t);
coul« "= " « expressionO« endl ;

keep_window _open();
return 0;

7.4 NEGATIVE NU MBERS

catch (exception& e) {
cerr « e. whatO« endl ;
keep_window_o pe n("-");
return 1;

catch (..•) {
cerr « "exceptio n \n";
keep_window_o pen("-")i
return 2;

111is makes for reasonably robust elTor handling. So we can start considering
what else we can do to improve the calculator.

7.4 Negative numbers
If you tested the calculator, you found that it couldn't handle negative numbers
elegamly. For example, this is an error:

-,/2

We have to write

10-')/2 ..
11mt's not acceptable.

Finding such problems during late debugging and testing is common. Only
now do we have the opportunity to sec what our design really docs and get the
feedb<lck that allows us to refine our ideas. When planning a project, it is wise to
try to preserve time and flexibility to benefit from the lessons we leam here. All
too often, "release 1.0" is shipped without needed refinements because <l tight
schedule or a rigid project management strategy prevents "late" changes to the
specification ; "late" addition of "features" is especially dreaded . In reality, when a
program is good enough for simple use by its designers bu t not yet ready to ship,
it isn't "late" in the devc10pmeill sequence; it's the earliest time when we can ben­
efi t from solid experience with the program. A realistic schedu le takes that into
account.

In this c.'l.se, we basically need to modify the granunar to allow unary minus.
"nlC si mplest change seems to be in Primary. We have

Primary:
Number
"(" Expression ")"

227

228

and we need something like

Primary:
Number
"(" Expression tI)"

"- " Primary
"+" Primary

CHAPTER 7 • COMP LETI NG A PROGRAM

We added unary plus because that's what C++ docs. When we have lInary
minus, someone always tries unary plus and it 's easier juSt to implement that
than to explain why it is useless . TIle code that implements Primary becomes

double primaryO
{

Token t = ts.gel();
switch (I. kind) {
case '(' : II handle '(' expression ')'

{

double d = expression();
t = ts .getO;
if (t.kind != 'I') e rror(''')' expected");
return d;

)

case '8' :
return I.value;

case '-' :
return - primary();

case '+':
return primaryO;

/I we usc '8 ' to represent a number
/I return the number's value

default :
error{tlprimaryexpected");

)

11131 '5 so simple that it actually worked the first time.

7.5 Remainder: %
When we first analyzed the ideals [or a calculator, we wanted the remainder
(modulo) operator: %. However, it is not defined [or fl oating-point numbers, so
we backed ofT. Now we can consider it again. It should be simple:

7 .5 REM A INDER : %

I. We add % as a Token.

2. We convert the doubles to ints so that we can usc "I" all those ints.

Here is the added code in term() :

case '''I,,':
double d = term();
int il = int(left);
int i2 = int(d);
return il%i2;

"n 1e int(d) is an explicit nota.lion for turning the double into an int by truncating
(that is, by throwing away whatever was after the decimal point). Unfortunately,
it's redu ndant (sec §3.9.2), but we prefer to indicate that we know a conversion is
happening, that is, that we didn't just accidellla1ly and implicitly convert a dou·
bl e to an into This works in that we now get the correct results for integer
operands. For example:

>2%3;
= 0
>3%2;
=1
>5%3;
=2 ..

How should we handle operands that are not integers? What should be the resu lt
of

> 6.7%3.3;

~111erc is no really good answer, so we'll prohibit the lise of % on a floating·point
argument . We check if the floating·point operands have fractional parts and give
an error message if they do. Here is the resulting term ():

double termO
(

double left = primaryO;
To ken t = ts.get();

while(true) {
switch (I .kind) {

II gel the next token from Token_stream

229

230

}

}

CHAPTER 7 • COMPLETING A PROGRAM

case I ",,: r. '...., ',
leU .= lefmO;
1= Is.get()i
break ;

case 't :
(double d = term();

if (d == 0) e rror{"divide by zero") ;
left 1= d ;

}

t = Is.get() ;
break;

case '0)/0 ':
(double d =,!erm();

int i1 = int(left);
if (it != left) error ("Iefl-hand operand of % not int ");
int i2 = inl (d);
if (i2 != d) error (" right-hand operand of % not int ");
if (i2 == 0) error("%: divide by zero");
left = il %i2;
t = ts .getO;
break;

}

default :
ts.putback(t);
re lurn le ft i

}

II put! back into the Token_stream

What we do here is to usc != to check if lhe d ouble to int conversion changed
the value. If not, a ll is well and we can use %.

TIle problem of ensuring inl operands for % is a variant of the narrowing
problem (§3.9.2 and §5.6.4), so we could solve it using narrow_cast :

case '0/0' :

}

int il = narrow3 ast<inl>(left);
int i2 = narrow_cast<inl>(le rm());

A1 (i2 == 0) e rror("% : divide by zero");
left = il 0/0 i2 ;
1= ts .geIO;
break ;

7. 6 ClEANING U P THE CO DE

That's certainly shorter, and arguably dearer, but it doesn't give quite as good
elTor messages.

7.6 Cleaning up the code
""e have made several changes to the code. ~nley are, we think, all improve­
ments. but the code is beginning to look a bit messy. Now is a good time to re­
view the code to sec if we can make it clearer and shorter, add and improve
comments, etc. In other words, we arc nm finished with the program until we
have it in a state suitable for someone else to take over maintenance. Except for
the almost tolal absence of comments, the calculator code really isn 't that bad,
but let's do a bit of cleanup.

7.6.1 Symbolic constants
Looking back, we find the usc of '8' to indicate a Token containing a numeric
value odd. It doesn't really mailer what value is used to i.ndicate a number Token
as long as the value is distinct from all other values indicating different kind of
Tokens. However, the code looks a bit odd and we had to keep reminding our­
selves in comments:

case '8' :
return t.value;

case '- ' :
return - primary() ;

•

/I we use '8 ' 10 represent a number
/I return the number's value

-10 be honcst, we also made a few mistakes, typing '0' rather than '8', because we
forgot which value we had chosen to use. In other words, using '8' directly in the
code m.anipulating Tokens was sloppy, hard to remember, and error-prone; '8' is one
of U10se "magic constants" we warned against in §4.3. 1. \,yhat we should have done
was to introduce a symbolic name for the constant we used to represent Ilumber:

const char number = '8'; /1 \.kind==numbcr means that 1 is a number Token

TIle consl modifier simply tells lhe compiler that we arc defining a number that
is not supposed to change: number='O' would cause the compiler to give an error
message. Civen that definition or number, we don't have to use '8' expliciliy any­
more. -n le code fragment from primary above now becomes:

case number:
return t.value;

case '-' :
return - primary() ;

/I return the number's value

231

C HAPTER 7 • COMPLETIN G A PROGRAM

This requires no commem. We should not say in comments what can be clearly
and directly said in code. Repeated commeills explaining something are often an
indication that tile code should be improved.

Similarly, the code in Token_stream : :getO that recognizes numbers becomes

case ' .' :
case '0': case '1 ': case '2' : case '3' : case '4' :
case '5' : case '6': case '7': case '8' : case '9':

dn.putbackq; /I put digit back into the input stream
double val; , ~
dn» val ; /I read a floating-point number
return Token(number, val);

We could consider symbolic names for all tokens, but that seems overkill. After
all, ' (' and '+' arc about as obvious a notation for (and + as anyone could come
up with. Looking through the tokens, only ';' for "print" (or "terminate expres·
sion") and 'q ' for "quit" seem arbitrary. \Vhy not 'p' and 'e' ? In a larger pro­
gram, it is only a matter of time before such obscure and arbitrary notation
becomes a cause of a problem, so we introduce

const char quit = 'q ';
const char print = ' ;';

lIt.kind==quit means that t is a quit Token
II t.kind==print means that t is a print Token

Now we can write mainO's loop like this :

whil e (dn) {
coul « "> ";
Token t = ts.gel();

)

while (I. kind == print) t=ls.getO;
if (I.kind == quit) {

keep_window_opcnO;
return 0;

)

ts. putback(t);
coul« "= " «expressionO « endl;

Introducing symbolic names for "prim" and "quit" makes the code easier to read.
In addition, it doesn't encourage someone reading mainO to make assumptions
about how "print" and "quit " arc represeilled on input. For example, it should
come as no surprise if we decide to change the represemation of "quit" to 'e' (for
"exit"). That would now require no change in mainO.

7.6 CLEANING UP THE CO DE

Now the strings "> " and "= " stand out. Why do we have these "magical" lit­
erals in the code? How would a new programmer reading mainO guess their pur­
pose? Maybe we should add a comment ? Adding a comment might be a good
idea, but introducing a symbolic name is more effective:

canst string prompt = "> "i

ca nst string res ult = "= "i /I used 10 indicate that what fo llows is a resul t

Shou ld we want to change lhe prompt or tile result indicator, we can JUSt modify
those consts. 111e loop now reads

while (ci n) {

}

coul « prom pi ;
Token I = Is.getO;
while (I. kind ==print) f=fs,gel();
if (I . kind == quit) {

kcep_window_ope n();
return OJ

ts.putback(t);
cout « result «expressionO« endl ;

7.6.2 Us. of fU l1jlions
TI1C functions \\-·c usc should reflect the Slmcture of our program, and the names
of the functions should identify the logically separate pans of ollr code. Basically,
our program so far is rather good in this respect: cxpressionO, termO, and
primaryO directly reflect our understanding of the expression grammar, and gelO
handles the input and token recognition. Looking at mainO, though, we notice
that it docs two logically separate things:

1. mainO provides general "scaffolding": start the program, end the pro­
gram, and handle "fatal " errors.

2. main() handles the c..1.1culation loop.

Ideally, a function performs a single logical action (§4.5.1). Having mainO per­
form both of these actions obscures the stmcture of the program. TIle obvious
solution is to separate out lhc e .. l.lculation loop in a separate function calculaleO:

void calculateO
(

II expression eva luation loop

233

234 C HAPTER 7 • C OMP LETI NG A P RO GRAM

while (eio) (
cout « prompt;
Token t = ts.get();
while (t.kind == prinO I=ts.get() ;
if (I.kind == quit) re turn ;
Is .putback(l);

II first discard all "prints"
II quit

cout « result «cxpressionO« endl ;
}

int main()
try (

}

calculale() ;
keep_window_openO;
return 0;

catch (runtimc_crror& e) {

}

cerr « e.whal ()« e ndl ;
keep_window_opcn("- -");
return 1;

catch (, ..) (

}

eerr « "exception \nil ;
keep_window_open("-");
return 2;

II cope with Windows console mode

TIlis rcnccts the structure much morc directly and is therefore eas ier to under­
stand.

7.6.3 Code layout
Looking through the code ror ugly code, we find

switch (ch) {
case 'q ' : case ';': case '%': case 'I': case 'I': case '+' : case '_': case I.': case '/':

relurn Token(ch) ; /I lei each character represent itself

This wasn't tOO bad bcfo~ we added 'q ', ';', and '%', but now it 's beginning to

become obscure. Code that is hard to read is where bugs can more easily hide.
And yes, a potential bug lurks here! Using one line per case and adding a couple
of comments help. So, Toke n_stream's getO becomes

7.6 CLEANIN G UP THE CODE

Token Toke n_stream: :getO

{

}

/I read characters from cin and compose a Token

if (fu ll) { /I check if we already have a Token ready
full=false;
return buffe r;

}

char Chi
cin » Chi /I notc that » skips whitespace (space, newline, tab, etc.)

switch (ch) {
case quit :
case print :
case '(' :
case ')' :
case '+' :
case '- ' :
case ' .':
case 'f :
case '%':

return Token(ch);
case ' .' :

/I let each cha racter represent itself
II a floa ting-point-literal can start with a dot

case '0' : case '1' : case '2' : case '3' : case '4':
case '5': case '6' : case '7': case '8' : case '9': II numeric literal

cin .putback(ch); /I put digi t back into the input stream
double val ;
cin » val ; II read a floa ting-point number
return Token(number,val);

de fault :
e rror(" Bad token");

We could of course have PUt each digit case on a separate linc also, but that
didn't seem to buy us any clarity. Also, doing so would prevent getO from being
viewed in its entirety on a screen at once. Our ideal is for each function to fit on
the screen: one obviolls place for a bug to hide is i.n the code that we can't sec be­
calise it 's ofT the screen horizontally or vertically. Code layout mallers.

Note also that we chan ged the plain 'q ' to the symbolic name quit. This im­
proves readability and abo guarantees a compile-time error if we should make
t.he mistake of choosing a value for quit that clashes wit.h another token name.

2J5

236 (HAPTER 7 • COMPLETING A PROGRAM

When we dean up code. we might accidentally imrodtiCC errors. Always
retest the program after cleanup. Belter still, do a bit of testing after each set of
minor improvements so that if something weill wrong you ca.n still remember ex­
actly what you d id. Remember: Tcst early and often.

7.6.4 Commenting
\ oVc added a few comments as we went along. Good comments are an imponant
pan of writing code. We tend to forgel about comments in the heat of program­
ming. Wllcn yOll go back to the code to clean it up is an excellent time to look at
each part of the program to sec if the comments yOll originally wrote arc

1. Still valid (YOLI might have changed lhe code since you wrolC the comment)

2. Adequate for a reader (they usually arc nOll

3. Not so verbose that th ey distract from the code

~Io emphasize that last concern : what is best said in code should be said ill code.
Avoid comments that repeat an action that 's perfectly clear 10 someone who
knows the programming language. For example:

x = b+c; II add band c and assign the result to x

You'll find sLich comments in this book, but only when we are trying to explain
the use of a language fea ture that might not yet be familiar to you .

Comments are for things that code expresses poorly. An example is intent:
code says what it docs, not what it was intended to do (§5.g. t). Look at the cal­
culator code. ~111cre is something missing: the functio ns show how we process ex­
pressions and tokens. but there is no indication (except the code) what we meant
expressions and tokens to be. TIle grammar is a good candidate for something to
put in comments or into some documentation of the c.,lcu!ator.

'" Simple calculator

Revision history:

Revised by Bjarne Slroustrup May 2007
Revised by Bjarne Stroustrup August 2006
Revised by Bjarne Stroustrup August 2004
Originally written by Bjarne Stroustrup

(bsGlcs.lamu .edu) Spring 2004.

This program implements a basic expression calculator.
Input from cin; output to coul.

7.6 ClEANING UP THE CO DE

' /

The grammar (or input is:

Statement:

Print:

Quit:

Expression
Print

Quit

q

Expression:

Term:

Term
Expression + Term
Expression - Term

Primary
Term' Primary
Term I Primary

Term "/" Primary
Primary:

Number
(Expression)

- Primary
+ Primary
Number:

floating-poi nt-literal

Input comes from cin through the Token_stream ca l led Is.

Here we used the block commelll, which Slan s with a '* and cominues until a */.
In a real program, the revision history would comain indications of what correc­
tions and improvements were made.

Note that the comments arc not the code. In fact , this grammar simpl ifies a
bit : compare the mle for Statement with what really happens (c.g., have a peek at
the code in the following section). TIle comment fails to explain the loop in
calculateO that allows liS to do several calculations in a single mn of the pro­
gram. We'll return to that problem in §7.8.1.

237

C HAPTE R 7 • COMPLETING A PRO G RAM

7.7 Recovering from errors
Why do we exit when we find an error? T hat seemed simple and obvious at the
time, bm why? Couldn 't wejust write an error message and carry on? After all,
we often make little typing errors and such an error doesn't mean that we have
decided not to do a calculation. So lct's try to recover rrom an error. l liat basi·
cally means that we have to catch exceptions and cominue arter we have cleaned
up any messes that were lcrt behind.

Until now, all errors have beell represented as exceptions and handlcd by
main O. Ir we want tD recover rrom elTors, cal eulaleO must catch exceptions and
u-y to clean up the mess before trying to evaluate the next expressio n:

vo id calculateO
{

while (ein)
Iry {

co ul « prompti
Token t = Is.get() ;
while (t.kind == print) t=ts,gelOi
if (I- kind == quit) return ;
Is. putback(l) i

II fi rst discard a ll Hprints"
/I quil

co ut « res ult « expressio nO «endl ;

}

}

calch (exception& e) {

}

cerr « e.whatO« e ndl ;
dean_up_messO;

/I write error ml.'SS3ge

\ oVe simply made the while-loop's block into a try·block that writes an error mes·
sage and d eans up the mess. Once that 's done. we carry on as always.

\<\That would "clean up the mess" entail? Basically, getting ready to compute
again arter an error has been handled means making sure that all our data is in a
good and predictable state. In the calculator, the only data we keep oUlSide an in·
dividual runction is the Toke n_stream. So what we nccd to do is to ensure that
we don't have tokens related to the aborted calculation sitting around to conruse
the next calculation. For example,

will calise an error, and 2*3; 4+5 will be Icrt in the To ken_stream's bufTer arter the
second + has triggered an exception. We have lWO choices:

7. 7 RECOV ERING FROM ERR ORS

I. Purge all tokens from the Token_stream.

2. Purge all tokens from the current calculation from thc Token_stream.

lllC first choice discards all (including 4+5:), whereas the second choice just dis·
cards 2*3: , leaving 4+5 to be evaluated. Either could be a reasonable choice and
either could surprise a user. As it happens, both arc about equally simple to im·
plement. We chose the second altemauve because it simplifies testing.

So we need to read input until we find a semicolon . This seems simple. We
have gelO to do our reading for us so we can write a clean_up_messO like this:

void clean_up_messO /I naive
{

while (true) { /I skip until we find a prinl
Token t = Is.geIO;
if (I, kind == print) return :

}

}

Unfortunately, that doesn't work all that well. \-Vhy not? Consider this input :

l @z; 1+3:

"1l1e @ gets us into the catch·clause for the while ·loop. Then, we call clean_up_
mess() to find the next semicolon. 111en, cl ean_up_messO calls getO and reads
the z. "1l1at gives another error (because z is not a token) and we find ourselves
in mai nO's catch(.. ,) handler, and the program exits. Oops! We don't get a
chance to evaluate 1+3. Back to the drawing board!

'ATe could try more elaborate trys and catches, but basically we arc heading
into an even bigger mess. Errors arc hard to handle, and errors during error han·
dling arc even worse than other errors. So, let's try to devise some way to flush
characters Out of a Token_stream that couldn't possibly throw an exception. The
only way of getting input into our calculator is getO, and that can - as wc just
discovered the hard way - throw an exception. So we need a new operation. The
obvious place to put that is in Token_stream :

class Token_stream {
publ ic :

Token_strearn();
Token get():
void putback(Token I) :

void ignore(char c):

/I make a Token_slream that reads from cin
/I get a Token
/I put a Token back
II discard cl1<1ractcrs up to and including a c

239

CH APTER 7 • COMPLETING A PROGRAM

private:
booS full ; II is there a Token in the buffer?
Token buffer; /I here is where we keep a Token put back using putbackO

);

~l11is ignoreO function needs to be a member of Token_stream because it needs
to look at Token_stream's buffer. We chose to make "the thing to look for" an ar­
gument to ignoreO - after all, the Token_stream doesn't have to know what the
calculator considers a good character to lise for error recovery. We decided that
argu ment should be a character because we don't want to risk composing Tokens
- we saw what happened when we tried that. So we get

void Token_stream : :ignore(char c)
/I c represents the kind of Token

{

/I first look in buffer:
if (full && c==buffer.kind) {

full = false;
return;

full = false ;

/I now search input:
char ch = 0;
while (cin>xh)

if (eh==e) return ;

111is code first looks at the buffer. If there is a e there, we arc fin ished after dis­
carding that e; otherwise, we need to read characters from cin until we find a e.

We can now write clean_up_messO rather simply:

void clean_up_messO
{

ts. ignore(print);

Dealing with errors is always tricky. It requires much experimentation and test­
ing because it is extremely hard LO imagine what errors can occur. Trying to
make a program foolproof is always a very technical activity; amateurs typically
don't care. Qyality error handling is one mark of a professional.

7.8 VARIABLES

7.8 Variables
Having worked on style and error handling, we can return to looking for im­
provemcnts in thc calculator functionality. We now have a program that works
quite well ; how can we improve it? '11e first wish list for the calculator included
variables. Having va riables gives us better ways of expressing longer calcula­
tions. Simila rly, for scientific calculations, we'd like built-in named values, such as
j>i and e , just as we have on scientific calculators.

Adding variables and constants is a major extension to the calculatOr. It will
touch most parts of the code. This is the kind of extension that we should not
embark a ll without good reason and sufficient lime. Here, we add variables and
constants because it gives us a chance to look over the code again and try a lit
some more programming techniques.

7.8.1 Variables and definitions
Obviously, the key to both variables and built-in constants is for the c.-uculator
program to keep (IUlIll£,l/{IJue) pairs so that we can access the value given the
name. We can define a Variab le like this:

class Variable {
public:

} ;

string name;
double value;
Variable (string n, double v) :name(n), value(v) ()

We will use the name member LO identify a Variable and the value member to
SLOre the val ue corresponding to that name. TIle constnlctor is supplied simply
for notational convenience.

How Colll we store Variables so that we can search for a Variable with a given
name string to find its value or to give it a new value? Looking back over the
programming tools we have encO Lintered so far, we find only one good answer : a
vector of Variables:

vector<Variable> var_table;

We can put as many Variables as we like into the vector var_table and search for
a given name by looking at the vector clements one after another. We can write a
get_valu eO function that looks for a given name string and returns its correspon­
ding value :

241

242 C HAPTER 7 • COMPL ETI NG A PROG RAM

double get_value(shing 5)

{

II return the value of the Variable named s

for (int i = 0; kvaUable .size(); Hi)
if (va,_lable[iJ.name == 5) return var_table[il .valuei

error("gel : undefined variable ". 5);

TIle code really is quite simple: go through every Variable in var_tabl e (starting
with lhe first element and continuing until the last) and see if its name matches
the argumcm string s. If that is the case, return its value .

Similarly, we can define a seCvalue() function 10 give a Variable a new value :

void scCvalue(slring s , double d)
/I set the Variable named s to d

{

)

for (int i = 0; iaaUable.size() ; ++i)

if (vauableliJ .name == s) (
var_lablel il.valu e = d ;
return ;

)

error(n set: undefined variable ". 5);

We can now read and wri te "variables" represented as Variables in var_lable.
How do we gel a new Variable into var_lable? What docs a user or our calculator
have to write to define a new variable and later to get its value? We could con·
sider C++'s notation

double va, = 7.2;

lllat would work, but all variables in this calculator hold double values, so say·
ing "double" would be redundant. Could we makc do with

var = 7.2;

Possibly, but then we would be unable to tcllthc differcllcc between the declara­
tion or a new va!'iablc and a spelling mistake:

var1 = 7.2;
varl = 3.2;

II define a new variable ca lled varl
/I define a new variable called var2

7.8 VARIAULES

Oops! C learly, we meant var2 = 3.2; but we didn't say so (except in the com­
ment). We could live with this, but we'll follow the tradition in languages, such as
C++, that distinguish declarations (with initializations) from assignments. We
cou ld usc doubl e, but for a calculator we'd like something short, so - drawing
on another old tradition - we choose the keyword let:

let var = 7.2;

rnle grammar would be

Calculation:
Statement
Print
Q uit
Calculation Statement

Statement:
Declaration
Expression

Declaration:
"let" Name "=" Ex pression

Calculation is the new top production (nile) of the grammar. It expresses the loop
(in calculate(») that allows us to do several calculations in a run of the calculator

, program. It relics on the Statement production to handle expressions and decla­
rations. "Ve c.ln handle a statement like this:

double slatementO
{

)

Token t = ts.getO;
switch (I. kind) (
case lei:

return declarationO;
default:

ts. pulback(t) ;
return expression();

)

Vlc can now lise slalement () instead of expression() in calculate() :

243

244 (HAPTER 7 • COMP LETI NG A PROGRAM

void calculateO
{

while (dn)
try (

cout« prompt;
Token I = ts.gel();
while (I.kind == print) 1=ls.get() ;
if (I. kind == quit) return ;
ts .pulback(t);

II first discard all h prjnts~

II quit

cout« result « statementO« endl;
}

catch (c)(ceplion& e) {

}

cerr « e.whatO« endl;
clean_up_messO:

1/ write error message

We now have to wr ite d eclaration() . \-Vhat should it do? It should make slIre that
what comes after a let is a Nam e followed by a = followed by an Expression .
That's what our grammar says. What should it do with the name? \P\'c should
add a Variable with that name string and the value of the expression to OUI"

veclor<Variable> called var_table. Once that's done we can retrieve the value
using get_valueO and change it using set_valueO. However, berore writing this,
we have to decide what should happen ir we defmc a variable twice. For example :

letv1=7;
letv1=8;

We chose to consider such a redefinition an error. lyPically. it is simply a spelling
mistake. Instead oh..,har we wrote, we probably meam

letv1= 7;
le tv2=8;

There arc logically two pans to defming a Variable with the name var with the
value val :

1. Check whether there already is a Variable called var in var_table.

2. Add (var,val) to vaUable .

We have no use rar uninitialized variables. We defined the runctions is_declaredO
and define_nameO to represent those (wo 10gic.1.lly separate opera tions:

7.6 VA RI A BLES

bool is_declared(string var)

{

)

/I is var already in vau.1ble?

fo r (int i = 0; i<vauable.sizeO; ++i)
if (var_table[i). name == var) re lurn I.rue;

return false;

do uble define_name(slring var, double val)
/I add (va r,va l) 10 vt1uable

)

if (is_declared(var» eHo r(var," declared twice");
var _table. push _back(Va riable(va r, val» ;
return val;

Adding a new Variable to a vector<Variabl e> IS easy ; that 's what vector's
push_backO member rUllction does:

var _table . pu s h_back(Variable(var, val);

'11C Va riable(var,val) makes the appropriate Variable and push_backO then adds
that Variable to the end or var_table . Given that, and assuming that we can han­
dle lei and name tokens, deciaration O is straightforward to write:

double deciarationO
II assume we have seen Hlet""
/I handle; name .: expression
/I declare a va riable ca lled "namc"" with the ini tial value "cxprcssionH

To ken I = ts.get() ;
if (I.kind != name) erro r ("name ex pected in declaratio n");
string var_name = I. name;

Toke n tl = ts.gel();
if (tl.kind != '=') error("= missing in declaration of ", var_name);

double d = expressio n();
define_name(var_name,d);
return d ;

245

, .. C H APTE R 7 • COM P LETING A PROGRAM

Note that we returned the value stored in lhe new variable. "1l1at's useful when
the initializing expression is nontrivial. For example:

let v = d!(t2-tl);

111is declaration will define v and also prim its value. Additionally, priming the
value of a declared variable simplifi es the code in calculateO because every state­
menlO returns a value. General rules tend to keep corle simple, whereas special
cases tend to lead to complications.

This mechanism for keeping track of Variables is what is orten called a JYmbol
table and could be radically simplified by the lise of a standard library map ; sec
§2 1.6. I.

7.8.2 Introducing names
ll1is is all very good, but unfortunately, it doesn't quite work. By now, that
shouldn't come as a surprise. Our first cut never - well, hardly ever - works.
Here, we haven't even finished the program - it doesn't yet compile. We have 110

'=' token , but that's easily handled by adding a case to Toke n_stream : :get()
(§7.6.3). But how do we represent let and name as tokens? Obviously, we need to
modify get() to recognize these tokens. How? Here is one way:

const char name = 'a ';
const char le t = 'L' ;

/I name token
/I declaration token

const string declkey = "let "; /I declaration keyword

Token Token_stream: :get{)
{

)

if (full) { full=false; return buffer; }
char Chi
dn » Ch i
switch (ch) {

/I as before
default:

)

if (isalpha(ch)) (
dn.putback(ch);
Siring s;

)

cin>>s;
if (s == declkeYl return Token(lel) ; /I declaration keyword
return Token(name,s);

e rror(" Bad token ") ;

7. 8 VAl(lABlES

Note first or all Ule call isalpha(ch). lllis call answers ule question "Is ch a letter?" ;
isalphaO is pari or the standard library that we get rrom stdJ ib_faci li ties. h. For
more character classification rUllclions, see §1 1.6. 111e 10glc ror recognizing
names is the same as that ror recognizing numbers: find a first character or the
right kind (here. a letter), then put it back using putbackO and read in the whole
n:tllle uSll1g » .

Unronunatc1y, ulis doesn't compile; we have no Token Ulat can hold a string,
so the compiler rejects Token(name,s) . Fortunately, that's easily fixed by adding
that possibility to the definition or Token :

stru cl Token {

} ;

char kind ;
double value;
string name;
Token(ehar eh) :kind(eh), value(O) { }
Token(char eh, double val) :kind(eh), value(val) { }
Token(ehar eh, string n) :kind(eh), name(n) { }

We chose 'L' as the representation or the let token and the string lei as our key­
word. Obviously, it would be trivial to change that keyword to double , var, #, or
wbatever by cbanging the string declkey that we compare s to.

Now we try the program again. Ir you type this, you'll see that it all works:

lel)(=3.4;
lei y =2j

)(+ Y * 2j

However, this doesn't vmrk:

lel)(= 3.4 j

lei y = 2;
)(+y·2;

What's the difference between those twO examples? Have a look to see what
happens.

The problem is that we were sloppy with our definition or Name. We even
"rorgot" to define our Name production in the grammar (§7.8.~. What charac­
ters can be pari or a name? Letters? Certainly. Digits? Certainly, as long as they
arc not the starting character. Underscores? Eh? 111e + character? Well? Eh?
Look at the code again. After the initial letter we read into a string using » . 'That
accepts every character until it sees whitespace. So, ror example,)(+y*2; is a single
name - even the trailing semicolon is read as part or lhe name. Thal's unin·
tended and unacceptable.

247

248 CHAPTER 7 • COM P LETING A PROGRAM

What must we do instead? First we must specify precisely what we want a
name to be and then we must modify getO to do that. Here is a workable specifi­
cation of a name: a sequence of Icuers and digits starting with a \ctter. Given this
definition,

a
ab
a1
Z12
asdsddsfdfdasfdsa434RTHTDl2345dfdsa8fsd888fadsf

arc names and

as'
a car

arc not. Except for leaving Ollt the underscore, this is C++'s rule. "Vc GUl imple­
ment that in the default case of get() :

d efault :
if (isalpha(ch» {

siring s;

)

s += chi
while (cin .gel(ch) && (isalpha(ch) II isdigit(ch))) s+=ch;
cin.putback(ch);
if (s == dedkey) return TokenUet); /1 decla ration keyword
return Token (name,s);

erro r(" Bad to ken ") ;

Instead of reading directly imo the Siring s, we read characters and put those into
s as long as they are letters or digits. The s+=ch statement adds (appends) the
character ch to the end of the string s. TIle curious statement

while (dn.gel(ch) && (isalpha(ch) II isdigil(ch» s+=ch;

reads a character into ch (using cin's member function gelO) and checks if it is a
letter or a digit. If so, it adds ch to s and reads again. TIle get() member function
works just like » except that it doesn't by default skip whitespacc.

7.8 VARIAB LES

7.8.3 Predefined names
Now that we have names, we can easily predefine a few common ones. For ex­
ample, if we imagine that our calculator will be used for scientific calculations,
we'd want pi and e. Where in the code would we define t.hose? In mainO before
the call of calculateO or in calculatcO before the loop. We'll put them in mainO
because those definitions rcally aren 't part of any calculation:

int mainO
try (

II predefine names:
define_name("pi" ,3.1415926535);
define_name("e n ,2.7182818284);

)

calculaleO;

keep_window_open();
return 0;

catch (exception& e) (

)

cerr « e .what() « endl ;
keep_window_open(II-");
return 1;

catch (...) (

)

cerr « "exception \n ";
keep_window_open("--") ;
return 2;

7.8.4 Are we there yet?

II cope with Windows console mode

Not really. We have made so many changes that we need to test everything
again, d ean up the code, and review the comments. Also, we could do more def·
initions. For example, we "forgot'" to provide an assignment operator (see exer·
cise 2), and if we have an assignment we might want to distinguish between
variables and constants (exercise 3).

Initially, we backed off from having named variables in our calculator. Looking
back over the code that implements lhem, we may have twO possible reactions:

I. Implementing variables wasn't all that bad; it took only about three
dozen lines of code.

249

254) (HAPTER 7 • COMPLETING A PR OGRAM

2. Implementing variables was a major extension. It touched just about
every fu nction and added a completely new concept to the calculator. It
increased the size of the calculator by 451)/0 and we haven't even imple­
mented assignm ent!

In the context of a first program of significant complexity, the second reaction is
the correct one. More generally, it 's the right reaction to any suggestion that adds
something like 50% to a program in terms of both size and complexity. When
that has to be done, it is more like writing a new program based on a previolls
one than anything clse, and it should be treated that way. In particular, if you can
build a program in stages as we did with the calculator, and test it at each stage,
you are far beller o ff doing so than trying to do the whole program all at once.

~ Drill

1. Starting from the me calculatorOBbuggy.cpp, get the calculator to compile.
2. Go through the entire program and add appropriate comments.
3. As you commented, you found errors (deviously inserted especially for

you to find). F"tx them; they are not. in the text of the book.
4. Testing: prepare a set o f inpUls and usc them to test the calculator. Is

your list pretty complete? What should you look for? Include negative
values, 0, very small, very large, and "silly" inputs.

5. Do lhe testing and rL'(any bugs that you missed when you commented.
6. Add a predermed name k meaning 1000.
7. Give the user a square root function sqrl (), for example, sqrl (2+6.7). Nat­

urally, the value of sqrl(x) is the square root of x; for example, sqrl (9) is
3. Use t..he standard library sqrtO function that is available through the
header sld_lib_faci lities.h. Remember to update the comments, includ­
ing the grammar.

8. Catch attempts to take the square root of a negative number and PI;nt an
appropnate error message.

9. Allow the user to usc pow(x,i) to mean "Multiply x with itself i times" ;
for example, pow(2.5,3) is 2.5·2.5-2.5. Require i to be an integer using
the technique we used for %.

10. C hange the "declaration keyword" from lei to N.
II. C hange lhe "quit keyword" from q to exit. That will involve defining a

string for "quit" just as we did for "let" in §7.8.2.

Review

I. \\That is the purpose of working on lhe program after the first version
works? Give a list of reasons.

CHAPTER 7 EXERCISES

2. Why docs "1+2; q" typed into the calculator not quit after it receives an
cr!"Or?

3. Why did we choose to makc a constant character ca.lled number?
4. We split mai nO into two separate functions. What docs the new function

do and why did we split main() ?
5. Why do wc split code into multiple functions? State principles.
6. VVhat is t.he purpose of commenting and how should it be done?
7. ,.vhat docs narrow_cast do?
8. What is the usc of symbolic cOl1Sm.nts?
9. Why do we care aboUl codc layout?

10. How do we handle % (remainder) of floating-point numbers?
II. VVhat docs is_deciared O do and how does it work?
12. In.e input reprcsentation for let is marc than onc character. How is it ac­

cepted as a single tokcn in the modified code?
13. What are mc rules for what names can and cannot be in the calculator

program?
14. Why is it a good idea to build a program incrcmentally?
15. \lVhen do YOll start to test?
16. VVhen do you retest?
17. How do yOll dccidc what should be a separate function?
18. What is .. he lise of symbolic constants?
19. Why do you add colillllCnts?
20. What should be in comments and what should not?
2 1. When do we considcr a program finished?

Terms
codc layoul
commenung
error hlll1dling
feature creep

Exercises

maintenance
recovcry
revision history

I. Allow underscores in the calculator's names.

scaffolding
symbolic constam
testing

2. Providc an assignment opcrator, =, so that you can change me value of a
variable after YOll introduce it using let.

3. Providc namcd constants that yOll really can 't change the valuc of. H int :
You havc to add a mcmber to Variable that distinguishes bctween con­
stants and variables and chcck for it in seevalueO. If yOll want to Ict the
lIscr dcfmc constants (rather than just having pi and e dcfined as con­
stants), you' ll have to add a notation to Ict thc uscr exprcss that, for ex·
ample, const pi = 3.14; .

251

CHAPTER 7 • COM PL ETING A PROGRAM

4. The geCvalueO, seCvalueO, is_deciaredO, and declare_nameO func­
tions all operate on the global variable var_table. Define a elass called
SymboUable with a member va' _lable of type veclor<Variable> and
member functions gelO, selO, is_deciared O, and deciareO. Rewrite the
c.:-uculator to usc a variable of type SymboUable.

5. Modify Toke n_slream: :gelO to retum Token(print) when it sees a new­
line. "Otis implies looking for whitespace characters and treating newline
('\n') specially. You might find the standard library function isspace(ch),
which retums true if ch is a whitespace character, useful.

6. Pa rt of what every program should do is to provide some way of helping
its user. Have the calculator print out some instmctions for how to use
the calculator if the user presses the H key.

7. C hange t.he q and h commands to be quit and help, respectively.
8. "Ine grammar in §7.6.4 is incomplete (we did wam you against overre­

liance on comments); it. docs not define sequences of sta t.ements, SUell as
4+4; 5-6; and it docs not incorporate the grammar changes outIined in
§7.8. Fix that grammar. Also add whatever yOll feci is needed to tIlat
conunent as tIle fi rst comment of the calculator program and its overall
comment.

9. De[me a class Table that contains a vector<Variable> and provides mem­
ber functions getO, scI(), and deciareO. Replace the var_lable in the cal­
culator witII a Table called symboUable.

10. Suggest tIuee improvements (not mentioned in tIlis chapter) to the calcll­
lator. Implement one of them.

11. Modify tIle calculator to operate on ints (only); give errors for overflow
and underflow.

12. Implement an assignment operator, so that we can change the value of a
variable after its initialization. Discuss why that can be useful and how it
can be a source of problems.

13. Revisit novo programs you wrote for the exercises in C hapter 4 0 " 5.
Clean up that code according to tIle rules outlined in tllis chapter. See if
you find any bugs in lhe process.

Postscript

As it happens, we have now seen a simple example of how a compiler works.
The calculator analyzes input broken down into tokens and understood accord-
ing to a grammar. That's exactly what a compiler docs. Aft.er analyzing its Ol!J-Put 1 y .J \

a compiler then produces a representation (object code) lhat we can later execute.
"111e calculalor immediaLCly executes the expressions it has analyzed ; programs
doing tlmt are called interpreters rather lhan compilers.

'. c.J- .

r- 8

Techn ical ities:
Functions, etc.

"No amount of genius can overcome
obsession with detail."

- Traditional

I n this chapter and the next, we change our focus from pro­

gramming to OUf main tool for programming: the C++ pro­

gmJ1uning language. \OVe prescllllanguagc-technic.1.I demils to give

a slightly broader view of C++'s bas ic facilities and to provide a

more systematic view of those facilities. These chapters aJso act as

a review of many of the progranuning notions prcsclllcd so far

and provide an opponuniry to explore Ollf tool without adding

new programming techniques 01' concepts.

254 CHAPTER 8 • TECHNI CA LI TIES: FUN CTIONS, ETC.

8.1 Technicalities

8.2 Declarations and definitions
8.2.1 Kinds of declarations
8.2.2 Variable iIInd conslant declarillions
8.2.1 Def.ull! initialiution

8.5.4 Pass-by-(onsl' r('ference
8.5.5 Pass· by-re fe rence
B.S.6 Pass· by-value vs. pass·by-re ' ere"ce
B.s.7 Argume nt checking and

conversion
8.5.8 FUndion cil ll implementatio n

8.3 Header files

8.4 Scope

8.6 Order of evaluation

8.5 Function call and return

8.6.1 hpression evaluatio n
8.6.2 Global initiilliUo1ion

8.5.1 Declaring arguments and return
type

8.7 Namespaces

8.S.2 Returning a value
8.5.1 Pass·by-value

8.1 Technicalities

8.7.1 using declarations and using
directives

Given a cboice, we'd mllch rather talk about programming tJum about program­
ming language features ; that is, we consider how to express ideas as code far
more interesting than lh e technical details of the programming language that we
use to express those ideas. 10 pick an analogy from nalLtral languages: we'd
much rather discuss the ideas in a good novel and the way those ideas arc ex­
pressed than study the grammar and vocabulary of English. What matters are
ideas and how those ideas can be expressed in code, not the individual language
featurcs_

However, we don't always have a choice. When YOLI start programming,
your programming language is a foreign language for which you need to look at
"grammar and vocabulary." "n lis is what we will do in this chapter and the nc.xt,
but please don't forget:

Qu r primary study is programming.

Qur output is programs/systcms.

A programming language is (only) a tool.

Keeping this in mind appears to be amazingly difficult . Many programmers come
to care passionately about apparently minor details of language syntax and se­
mantics. In particular, tOO many get the mistaken belief that the way things are
done in their first programming language is "the one trtle way." Please don't fall
into that trap. C++ is in many ways a very nice language, but it is not perfect ;
neither is any other programming language.

Most design and programming concepts arc universal, and many sLich COIl­

cepts arc widely supported by popular programming languages. "l113t means that
the fundamental ideas and techniques we Icam in a good programming course
carry over from lanb'l.lage to language_ TIley can be applied - with varying de-

8 .2 D EClARATI O NS AND D EFINITIONS

l:,tTCCS o f ease - in all ianguagcs. The language technicalities, however, are specific
to a given language. Fortunately, programming languages do not develop in a
vacuum, so much of what you learn here will have reasonably obvious coumer­
parts in other languages. In particular, C++ belongs to a group of languages that
also includes C (C hapter 27), Java, and C*, so quite a few technicalities are
shared with those languages.

Note that when we are discussing language-technical issues , we deliberately
usc nondcscriptive names, such as f, g, X, and y. We do that to emphasize the
technical nature of such examples, to keep those examples very short, and to try
to avoid confusing you by mixing language tecllllicalities and genuine program
logic. When you see no ndescriptive names (such as should never be used in real
code), please focus on the language·technical aspects of the code. Technical ex·
amples typically contain code that simply illustrates language rules. If you com­
piled and ran them, you'd get many "variable not used" warnings, and few such
technical program fragments would do rulything sensible.

Please note llmt what we \\'Tite here is nOt a complete description of C++'s
syntax and semaillics - not even for the facilities \ve describe. The ISO C++ strul­
dard is 756 pages of dense technical language and The C++ Programming Langflagr
by Stroustrup is 1000+ pages of text aimed at experienced programmers. We do
not uy to compete with those in completeness and comprehensiveness ; we COIll ­

pete with them in comprehensibility and value for time spent reading.

8.2 Declarations and definitions
A (lee/amlioll is a statement that introduces a name into a scope (§8.4)

specifying a type fo r what is nruned (e.g. , a variable or a function)

optionally, specifying an inilializer (e.g. , rul initializer value or a fu nction
body)

For exrunple :

inl a = 7;
co nsl double cd = 8.7;
double sqrl (da uble);

veclor<To ke n> v;

/I an int variable
/I a double-prl'Cision floating-poinl constant
II a function taking a double argument
/I and returning a double result
/I a vector--of-Tokens variable

Before a name can be used in a C++ program, it mUSt be declared. Consider:

inl mainO
{

caul « f(i) « '\0' ;

255

CHAPTER 8 • TEC HNICALITIES; FUNCTIONS, ETC.

The compiler will give at least three "undeclared identifier" errors for this: cout,
f, and i arc not declared anywhere in this program fragmem. We can get coul de­
clared by including the header std_lib_facililies.h,which contains iLS declaration:

#include "std_lib_facililies.h "

int mainO
{

coul « f(i)« '\n';
)

/I we find the declaration of cout in here

Now, we get only two "undefined" errors. As you write real-word programs,
you'll find that most declarations arc fou nd in headers. 111at's where we define
interfaces to useful facilities defll1ed "elsewhere." Basically, a declaration defines
how something can be used; it defincs the interface of a function, variable, or
class. Please note one obvious but invisible advantage of this use of declarations :
we didn' t have to look at the details of how co ut and iLS « operators were de­
fined ; we just #included their declarations. We didn't even have to look at their
declarations; from textbooks, manuals, code examples, or other sources, we just
know how coul is supposed to be used. 111e compiler reads the declarations in
the header that it needs to "understand" our code.

However, we still have to declare r and i. We could do that like this:

#include "std_lib_fadlities. h"

inl f(int);

inl mainO
{

// declaration of f

/I we find the declaration of cout in here

int i = 7; /1 declaration of i
coul « f(i)« '\n' i

)

~nlis will compile because every name has been declared, but it will not link
(§2.4) because we have not defined ro; that is, nowhere bave we specified what
fO actually docs.

A declaration that (also) fully specifics the entity declared is called a eldinifioll.
For example:

inl a= 7i
veClor<double> Vi

double sq rl (double d) {r .. . -I)

8.2 DECLARATIO NS AND DEFINITIONS

Every definition is (by definition ©) also a declaration, but only some declara­
(ions arc also definitions. Here are some examples of declarations that are not
definitions; each must bc matched by a definition elsewhere in the code:

double sqrl(double);
extern inl a;

// no fu nction body here
/, "extern plus no initializer" means Hnol definitionH

When we contrast definitions and declarations, we follow convention and use
deilnmh()11J 10 mean "declarations that are not definitions" even though that 's
slighlly sloppy terminology.

A definition specifics exactly what a name refcrs to. In particular, a defmition
of a variable sets aside memory for that variable. Consequently, you can't define
something twice. For example:

double sqrl(double d) (' * ... */} /I definition
double sqrl(double d) (/* ... */ } /I error: double definition

int a; /I definition
int a; /I error: double defi nition

In contrast, a declaration that isn't also a defmition simply tells how you can use
a name; it is just an interface and doesn't allocate memory or specify a function
body. Consequently, you can declare something as often as you like as long as
you do so consistently:

inl x=7;
extern int x;
extern int x;

do uble sqrt(double);

/I definition
/I declaration
/I another declaration

double sqrt(double d) (' * ... */)
double sqrl(double);

/I declaration
/I definition
/I another declaration of sqrt

double sqrt(double)i /I yet another declaration of sqrt

int sqrt(double); /I error: inconsistent declarations of sqrt

Why is that last declaration an error? necause there cannot be tWO funct ions
called sqrt taking an argument of type double and returning difTerent types (int
and double).

TIle extern keyword used in lhe second declaration of x simply states that
lhis declaration of x isn't a defmition. It is rarely useful. We recommend lllat you
don't usc it, but you 'll see it in other people's code, especially code that uses too
many global variables (see §8.4 and §8.6.2).

257

258 C HAPTER 8 • TECHNICALITIES: FUN CTION S, ETC.

Declarations: Definitions:
,=-=:.::c,.:""---:-:--:-:--:c--, I d ouble sqrl(double d) ~ ~ouble sqrt(double d)

~ ~ II calculate the I d o uble sqrt<do uble d) II square root of d

)

extern int Xi ~
~==. ==~L _ r-;"'-x= -7; ----,

extern ml Xi r-- .
Why docs C++ orrer both declarations and definitions? 111C declaration/def­

inition distincuon reflects the fundamental distinction between what we need LO

usc something (an interface) and what we need for that something to do what it is
supposed to (an implementation). For a variable, a declaration supplies the type
but only the definition supplies the object (the memory). For a function, a decla­
ration again provides the type (argument types plus return type) but only the def·
inition supplies the function body (the executable statements). Note that function
bodies are stored in memory as part of the progrnm, so it is fair to say that fun c­
tion and variable definitions consume memory, whereas declarations don't.

The declaralionldefinition distinction a1lows us to separate a program into
many parts that can be compiled separately. TIle declarations allow each part of a
program to maintain a view of the rest of Lhe progrnm without bothering with
the definitio ns in other parts. As all declarations (including the one definition)
must be consistent, the use of names in the whole program will be consistent.
We' ll discuss that further in §B.3. H ere, we'll just remind you of the expression
parser from Chapter 6 : expressionO calls termO whicl} calls primaryO which c.tlls
expressio nO. Since every name in a C++ program has to be declared before it is
used, there is no way we could just define those three functions:

double expression();

double primaryO
{

)

1/ .
expressionO;
1/ ..

do uble te rmO
{

1/.

/I jusl a dcclaralion, nol a defini l ion

8.2 DECLARATION S AND DEFIN ITIONS

pr imaryO ;
1/ ..

double expression()
(

1/ ...
lerm();
1/ .

\ ,Ve can order those four functions any way we like; there will always be one call
(0 a function defined below it. Somewhere, we need a '; fo rward" declaration.
111ercfore, we declared expressionO before the definition of primaryO and all is
well. Such cyclic calling pauerns are very conunon.

\"'hy docs a name have to be declared before it is used? Couldn't we just re·
quire the language implementation to read the program Gust as we do) and find
lhe definition to sec how a fu nClion must be called? We could, but that would
lead to "interesting" technical problems, so we decided against that. 111e C++
definition requires declaration before usc (except for class members; see §9.4.4).
After all, this is already the convention for ordinary (non.program) writing: when
you read a textbook , you expect the author to define tenninology before using it ;
otherwise, you have to guess or go to the index all the lime. The "declaration be­
fore usc" mle simplifies reading for both humans and compilers. In a program,
there is a second reason that "declare before usc" is important. In a program of
thousands of lines (maybe hundred of thousands of lines), most of the functions
we want to call will be defined «elsewhere." 111ai "elsewhere" is often a place we
don't really want to know about. Having to know the declarations only of what
we usc saves liS (and the compiler) from looking through huge amounts of pro­
gram text.

8.2.1 Kinds of declarations
-nlere arc many kinds of entities that a programmer can define in C++. ~r"e
most mteresllng arc

Variables

Constants

Functions (sec §S.5)

Namcspaccs (sec §S.7)

Types (classes and enumerations; see Chapter 9)

Templates (sec Chapter 19)

25.

260 C HAPTER 8 • TE C H NICALITIE S: FU NC TI O N S, ETC.

8.2.2 Variable and constant declarations
' n lC declaration o f a variable or a constant specifics a name, a type, and option·
ally an initializcr. For example:

int aj
double d = 7;
veclor<in t> vi(10) ;

II no initializcr
II initializer using the = syntax

/I initializer using the 0 syntax

You can fmd the complete grammar in The C++ Fmgmmmillg Ul1lgUIl{f by SlrOUSlnlP

or in the ISO C++ standard.
Constants have the same declaration syntax as variables. TIley difTer in hav­

ing const as part of their type and requiring an initializer:

const inl x = 7;
const inl x2(9);
const int Yi

/I initia li zer using the = syntax
/I initial izer lIsing the 0 syntax
II efror: no initializer

111e reason for requiring an initializer for a const is obvious: how could a consl
be a constant if it didn't have a value? It is almost always a good idea to initialize
variables also; an uninitialized variable is a recipe for obscure bugs. For example:

void f(int 2:)

(

}

int Xi /I uninitialized
1/ . . . no ass ignment to x here ,
X = 7; /I give x a value
1/ . . .

111is looks innocent enough, bu t what if the firs t . . included a lise of x? For
example:

void f(int z)

(

}

int Xi 1/ un initialized
/I . .. no assignment to x here.
if (z>x) (

/I . ..
}

1/ . . .
x = 7i /I give x a value
1/ . ..

8 .3 HEADER FILES

Because x is uninitialized, executing z>x would be undefined behavior. TIle eom­
p<1I;son z>x could brive different results on different machines and different results
in different nlllS of the program on the same machine. In principle, z>x might
cause the program to terminate with a hardware error, but most orten that doesn't
happen. Instead we get unpredictable results.

Naturally, we wouldn't do somethi.ng like that deliberately, but if we don't
consistemly initialize variables it will eventually happen by mistake. Remember,
most <;silly mistakes" (such as using an uninitialized variable before it has been
assigned to) happen when you arc busy or tired. Compilers try to warn, but in
complicated code - where such errors arc most likely to occur - compilers arc
110t smart enough co catch all such errors. TIlerc afe people who arc nOt in the
habit of initializing their variables, often because they learned to program in lan­
bruages that didn't allow or encourage consistenl initialization ; so you'll sec exam­
ples in other people's code. Please just don't add to the problem by forgetling to
initialize the variables you define yoursel f.

8.2.3 Default initialization
You might have noticed that we often don't provide an initializer for strings,
... ectors, etc. 1-o r example:

... ector<string> v;
string s;
while (ci n>>s) push_back(s);

-nlis is not an exception to the nile that variables must be initialized before usc.
What is going on here is that we have defined string and vector to be initialized
with a default value whenever we don't supply one explicitly. -n lUS, v is empty (it
has no elements) and s is the empty sU'ing ("tI) before we reach the loop. The
mechanism fo r guaranteeing default initialization is called a cUjiwil cons/ruc/Qr, see
§9.7.3.

Unfortunately, the langtIage doesn't allow us to make such bruarantees for
built-in t)'pes. A global variable is default initialized to 0, but you should mini­
mize the usc of global va1ues. -nle most usdul variables, local variables and class
members, arc uninitializcd unless you provide ail initialize .. (or a default eOIl­
structor). You have been warned!

8.3 Header files
How do we manage o Li r declarations and definitions? After all, they havc to bc
consistent, and in real-world programs there can be tens of thousands of declara­
tions; programs with hundreds of thousands of declarations arc not rarc. Typi­
cally, whell we write a program, mOst of the definitioll5 we Lise are not written by

261

2'2 CHAPTER 8 • TECHNICALITIE S; FUNCTIONS, ET C.

us. For example, the implementations of coul and sqrt() were '\!Tiucn by someone
else many years ago. We juSt usc them.

"nlC key to managing declarations of facilities defined "'elsewhere" in C++ is
the header. Basically, a header is a collection of declarations, I ypically defined in a
file, so a header is also called a heal/.er file. Such headers arc then #induded in our
source files. For example, we might decide to improve the organization of the
source code for our calculaLOf (Chapters 6 and 7) by separating ou t the token
management. \OVe could define a header file token .h containing declarations
needed to usc Token and Toke n_stream:

to ken.h:

II declarations:
class Token { 1* ... O/ };
class Token_stream { r . .. */ };

lo ken .cpp: / cal," laIO~ #include "token .h"
Ildefinitions:
void Token_stream: : putback(Token t) #include "token.h"

(/1 uses:

buffer = t; ...
full = true; Token_stream ts ;

) ...
Token t = ts.get();
ts. pulback(t) ;
.. .

'11e declarations o f Token and Token_st ream are in the header toke n.h. ' 11eir
dcflllitions are in token.cpp . '11e .h suffIx is the most common for C++ headers,
and the .cpp suffIx is the Illost common for C++ source files. Actually, the C++
language doesn 't care about file suffLXes, but some compilers and IllOSt program
development environments illsist, so please usc this convention for yOllr source
code.

In principle, #include "file.h" simply copies the declarations from fil e. h into
your file at the point of the #indude. For example, we could write a header f. h:

/I f. h
int f(int);

and include it in our file f.cpp :

8.3 HEADER FI LES

/I f.cpp
#include "f_ h"
int g(int i)
{

return W);

)

When compiling I.cpp the compiler would do the #include and compile

int f(i n!);
int g(int i)
{

return Hil ;

Since #includes logically happen before anything else a compiler docs , handling
#i ncludes is pan of what is called preprowsillg (§A.17).

10 ease consistency checking, we #include a header both in source ftIes that
use its declarations and in source fLIes that provide defini tions for those declara­
tions. 111at way, the compiler catches errors as soon as possible. For example,
imagine that the implementer of Token_stream: : putback() made mistakes:

Token Token_stream: : putback(Toke n t)
{

bu ffer. push _ back(t) ;
return t;

)

This looks innocent enough. ro ftunately, the compiler catches the mistakes be­
cause it sees the (#included) declaration of Token_shearn : :putbackO. Compar­
ing that declaration with our defmition, the compiler finds that putbackO should
not return a Token and that buffer is a Token , rather than a vector<Token>, so
we can't use push_backO. Such mistakes occur when we work on our code 1.0 im­
prove it, but don't quite get a change consistent throughout a program.

Similarly, consider these mistakes :

Token t = ts.gett() ;
II ...
tS. l>utback();

1/ error: no member gell

1/ error: argument missing

111e compiler would immediately give errors; the header token .h gives it all the
infonnation it needs for checking.

263

264 (HAPTER 8 • TECHNICALITIE S: FUN CT IONS, ETC.

Our std_lib_facililies .h header contains declarations for me standard library
facilities we lISC, slich as caut, vector, and sqrt() , together with a couple of simple
u tility fUllct io ns, slIch as errorO, that are not part ofthe standard library. In §12.8
we show how to lISC the standard library headers directly.

A header will typically be included in Immy source mes. TImt means that a
header should only contain declarations that can be d uplicated in several files (such
as function declarations, class definitions, and definitions of numeric conslll. ll ts).

8.4 Scope
A scope is a region of program text. A name is declared in a scope and is valid (is
"in scope") from the point of its declaration umilthc end of I,hc scope in which it
was declared. For example:

void fO
{

gO; II error: gO isn't (yet) in scope
}

void gO
{

fO; /I OK: f() is in scope
}

void hO
{

}

inlx=y;
inty=x;
gO;

/I error: y isn't (yet) in scope
/I OK: x is in scope
/I O K: gO is in scope

Names in a scope can be seen from within scopes nested within it. For example,
the call of fO is within the scope of gO which is "nested" in the global scope. 11le
glo bal scope is the scope that 's nOl ncstcd in any Olher. 111C rule that a name
must be declared be fore it can be used still holds, so fO cannot call gO.

There are several kinds o f scopes that we use to control where our names
can be used:

TIle global JCOjJe: the a rea of text outside any other scope

A IIflllll!JpaU JlojJe: a named scope nested in the global scope or in another
namcspace ; see §8.7

A ,laJJ JrojJe: the area of text within a class; see §9.2

8. 4 SCO PE

A local scope: betwecn { . .. } braces of a block or in a function argument
lisl

A J/a/t11lt!11 / Jloj)(: e.g. , in a for-statement

rn l C main pUll)Ose of a scope is to keep names local , so that they won't interfere
with namcs declarcd elsewhere. For example :

void f(inl xl /I f is global; x is local to f
{

int z = x+7i liz is local
)

inl g(int x) /I g is global; x is local 10 g
{

int r = x+2; /I f is local
return 2*f;

)

Or graphicaUy:

Global scope:

fD
gD

Here f() 's " is difTerent from gO's x. 'nlCY don't "clash" because they arc not in
the same scope: fO's " is local to f and gO's " is local to g. 1'\\'0 incompatible dec­
larations in the same scope are often referred to as a claJlI.. Similarly, the f deHned
and used within gO is (obviously) not the function fO.

Here is a logically equivalent but more realistic example of the lise of local
scope:

int max(int a, inl b)
{

return (a>=b) ? a : b;
)

inl abs(int a)
{

return (.1<0) 1-.1 : ai
)

/I max is global; a and b are local

II not max()'s a

2.5

266 C H APTER 8 • TE C HN ICALITIES: FUNC TIONS , ETC.

You find maxO and absO in the standard library, so you don't have to write them
yourself. TIle ?: construct is called an ant/llne/ic if or a cQnditiolla! exprt!S1ioll. '11C
value of (a>=b)la:b is a if a>=b and b Olhcrwisc. A conditional expression saves
us from wriLing long-winded code like this:

int max(inl a , int b)
(

}

int Ill ;
if (a>=b)

m=a;
else

m=b;
return m;

/I max is global; a and b arc local

/I m is loca l

So, with the noticeable exception o f the global scope, a scope keeps names local.
For most purposes, locality is good, so keep names as local as possible. When I
declare my variables, functions, etc. within functions, classes, namcspacc, Ctc. ,

they won't interfere with yours. Remember: real programs have Inilll)' thousands
of named entities. To keep sueh programs manageable, most names have to be
local.

Here is a larger technical example illustrating how names b'O a lit or scope at
the end or statements and blocks (including function bodies):

/Ina r, i, or v here
class My_vector {

vector<int> Vi

public:
intlargeslO
(

II v is in class scope

int r = 0; /I r is local (sma llest nonnegative inl)

}

for (int i = 0; i<v.size(); ++i)

r = max(r,abs(v[iJ)); II i is in the for's statement scope
/I no i here
re turn r;

II no r here
};
II no v here

int Xi

int y;
II global variable - avoid those where you can

8.4 SCOPE

int fO
{

int Xi

X = 7;
{

}

II local variable
lIthe local x

intx =y;
++x ;

II local X initialized by global y

lIthe X from the previous line

++X; II the x from the first I ine of f()
relurn I;

Whenever you can, avoid such complicated nesting and hiding_ Remember:
"Keep it simple!"

111e larger the scope or a name is, the longer and more descriptive its name
should be: I , y, and f are horrible as global names. TIle main reason that yOll
don -t want global variables in your program is that it is hard to know which runc­
lions modiry them. In large programs, it is basically impossible to know which
rUllctions modiry a global variable. Imagine that you arc trying to debug a pro­
gram and you find that a global variable has an unexpected value. Who gave it
that value? \Vhy? What runctions write to that value? How would you know?
111e runction that wrote a bad vallie to that variable may be in a source file yOll
have never seen! A good program will have only very few (say, one or lWO), ir
any, global variables . For example, the calculator in Chapters 6 and 7 had two
global variables: the token stream, Is, and the symbol table, names.

Note that most C++ constructs that define scopes nest:

Functions within classes: member runelions (sec §9.4.2)

class C (
public :

void fO ;

void gO
{

II a member function can be defined wi thin its class

/I . ..
}

/I . ..
} ;

void C::fO
{

1/ . ..
}

II a member definition can be outside its class

This is the most common and userul case.

267

268 CHAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.

C lasses wiLhin classes: member classes (also called nested classes)

class C {
public:

};

struct M {

II .
} ;

1/ • ••

This tends LO be useful only in complicated classes; remember that the
ideal is to keep classes small and simple.

Classes within functions: local classes

void fO
{

}

class L (

II .
);

1/ . ..

Avoid this; if you fcdthe need for a local class, yOUT fu nction is probably
far too long.

Functions within functions: local fu nctions (also c.'dled nested functions)

void fO
{

void gO /I illegal
{

/I ...

II . ..

Illis is not legal in C++; don't do il. The compiler will reject it.

Blocks within functions and mher blocks: nested blocks

void f(inl .. , inl y)

{

if (oy) {

}

e lse {

1/ . ..

II.
{

8. 5 FUN CTION CAll AND RET URN

II .
}

1/ ..•

Nested blocks are unavoidable, but be suspicious of complicated nesting:
it can easily hide errors.

C++ also provides a language feature , namespaee, exclusively for expressing
scoping; see §8.7.

Note OUT consistent indentation to indic."1te nesting. Without consistent in­
dentation, nested constructs become unreadable. For example:

II dangerously ugly cooe
strue! X {
void Wnt x) {

strue! Y {

int fO { return 1i } int m j }i

int m i

m=x i Y m 2j

return f(m 2.fOJi }

int m i void g(int m) {

if (m) fCm+2)i else (
g(m +2)i)}

XU () void m30 {
}

void mainO (
X a j a.f(2);}

};

Hard-to-read code usually hides bugs. When you use an IDE, it tries to automat­
ically make your code properly indented (according to some definition of ;;prop­
erlyn), and there exist "code beautifiersn that will reformat a source code file fo r
you (often alTering you a cllOicc of fo rmats). However, the ultimate responsibility
fo r you r code being rcadable rests with you.

8.5 Function call and return
Functions are the way we represent actions and computations. Whenever we
wam to do something that is worthy of a name, we write a fu nction. The C++
language gives us operators (such as + and .) with which we can produce new
values from operands in expressions, and statements (such as for and if) with

2"

270 (H APTE R 8 • TECHNICALITIES ; FUN CTI ONS, ETC.

which we can control Lhc order of execution. To organize code made Ollt of these
primitives, we have functions .

To do its job, a function usually needs arguments, and many functions rctum
a resull. ~ntis section focllses on how arguments are specified and passed.

8.5.1 Declaring arguments and return type
Functions arc what we lISC in C++ to name and rcprcsem computalions and ac­
tions. A function declaration consists of a rctum type followed by the name of the
function followed by a list o f fo mml arguments in parentheses. For example:

do uble fcl(inl a, double d); II declaration of fel (no body)
double fcl(i nl a, double d) { re turn a "d ; } II defini tion of fel

A definition contains the function body (the StalCmcnts to be executed by a call),
whereas a declaration that isn't a definition just has a semicolon. Formal argu­
ments are often called parallldm. U you don't want a function to take arguments,
just leave out the formal arguments. For example:

inl currc nC powerOi /I current_power doesn 't lake an argument

If you don't want to return a value from a function , give void as its return type.
For example:

void increase_power(int level); /I increase..power doesn't return a value

Here, void means "doesn't return a value" or "return nothing."
You can name a parameter or not as it suits you in both declarations and def·

initions. For example :

/I search for s in vs;
II vs[hintl might be a good place 10 start the search
/I return the index of a match; - 1 indicates Nnol found~
int my_find (veClor<string> vs, string s, int hint);

int my_find (vector<string>, string, int) ;

II naming arguments

/I not naming arguments

In declarations, formal argument names are not logically necessary, just very usc·
ful for writing good comments. From a compiler's point of view, the second dec·
laration of my_iindO is JUSt as good as the first: it has all the information
necessary to caU my_find O.

U sually, we name all the arguments in the definition. For example:

8 .5 FU NCTION CAll AND RET U RN

int my_find (vector<slring> vs, string s, int hint)
/I search fo r s in vs starting at hint
{

if (hint<O II vs .sizeO<=hint) hint = 0;
for (int i = hint; kvs .size O; ++i) II search starting from hint

if (vs[il==s) return i;
if (o<hint) { II if we didn' t find s search before hi nt

for (int i = 0; khint ; ++i)
if (vslil==s) return i;

return-l ;
}

rille hint complicates the code quite a bit, but the hint was provided under the as·
sumption that users could usc it to good effect by knowing rougWy where in the
vector a string will be found. However, imagine that we had used my_find O for a
while and then discovered that calle rs rarely used hint well, so that it actually
hurt performancc. Now we don't need hint anymore, but there is lo ts of code
"out there" that ca lls my_findO with a hint . We don't want to rewri te that code
(or can't because it is someone else's code), so we don't want to change the decla­
ration (s) of my_findO . Instead , we just don 't use the last argument. Since we
don't usc it we can leave it unnamed :

int my_find(vector<string> vs, string s, int)
{

for (int i = 0; i<vs.size() ; Hi)
if (vs(;]==5) re turn i;

return -1 ;

/I 3 rd argument unused

You can find the complete grammar fo r function defi nitions in nle C++ I+ogram­
millg Lallgufl{f by Slrousrrup or in the ISO C++ standard.

8.5.2 Returning a value
V.'e return a value from a function using a return statement :

T fO II fO returns aT
{

}

v V;

/I.
return v;

Tx=f();

271

CHAPTER 8 • TEC HNICALITIES : FUNCTIONS , ETC.

Here, the value returned is exactly the value we would have gotten by initializing
a variable of type T by a value of type V:

VVi

II ...
T t(V)i /I initial ize t with v

11mt is, value return is a form of initialization. A fu nction declared to return a
value must return a value. In particular, it is an error to "fall through the end of
the fUllction":

double my_a bs(int x)
(

/I warning: buggy code

if (x < O)
return -Xi

else if (x > 0)

relurn Xi

} II error: no value returned if x is 0

Actually, the compiler probably won't notice that we "forgot" the case x==O. In
principle it could, but few compilers arc that smart. For complicated functions, it
ca.n be impossible for a compiler to know whether or not you return a value, so
be careful. Here, "being careful" means to make real ly sure that you have a re­
turn statement or an errorO for every possible way out of the function.

For historica.l reasons, mainO is a special case. Falling lhrough the boltOm of
mainO is equivalent to returning the value 0, meaning "successful completion" of
the program.

In a function that docs not return a value, we can usc return without a value
to cause a return from the function. For exalllple:

void print_until_s(consl vcctor<slring> v, canst string quit)
(

)

for (int i=O ; i<v.sile(); •• i) (
if (vliJ==quit) return ;
coul « vli] « '\n'i

)

As yOll ca.1l see, it is acceptable to "drop through the bottom" of a void fUllclion.
~nlis is equivalent to a return ; .

8.5 FUNCTIO N CALL A N D RET U RN

8.5.3 Pass·by·valu.
~n1e simplest way of passing an argument to a function is to give li1e function a
copy of the value you lise as the argument. An argument of a function fO is a
local variable in fO li1at's initialized each time fO is called. For example:

/I pass-by-valuc {give the function J copy of the value passed)
int f(int xl
{

x=x+1;
return X;

/I give the local x a new value

int mainO
(

)

intxx=O;
cout « f(xx) «endl ;
cout « xx « endl;

int yy = 7;

cout « f(yy)« endl ;
cout « yy« endl ;

/I write:
II write: 0; f() doesn't change xx

/I write: B
I/write: 7; f() doesn't change yy

Since a copy is passed, the x=x+ 1 in fO docs nm change the values xx ,md yy passed
in the two calls. We ca.11 illustrate a pass-by-valuc argument passing like this :

xx : "
l ~ call: 0 I Copy the value I 0

yy : "
2'" call: I 7 I Copy the value I 7

Pass-by-value is pretty straightforward and its cost is the cost of copying li1e value.

8.5.4 Pass-by-const-reference
Pass-by-value is simple, straightforward, and efficient when we pass small values,
such as an int, a double, or a Token (§6.3.2). But what if a valuc is large, SUci1 as
an image (often, several million bits), a large table of values (say, thousands or in­
tegers), or a long string (say, hundreds o r characters)? 111en, copying can be

273

274 CHAPTER 8 • TEC HNICALI TIE S: FUN CTI ONS, ETC.

costly. We should not be obsessed by cost, blll doing unnecessary work can be
embarrassing because it is an indication that we didn't directly express o ur idea
of what we wamed. Fo r example, we could write a function to print out a vector
of floating-point numbers like this:

void prinl(veclor<double> v) /I pasS-by-villue; appropriate?
{

)

cout« "{ ";
for (int i = 0; kv.size() ; ++i) (

cout« \I[i];

if (i! =v.sizeO- l) cout« ", ";
)

co ut «" }\n lt
;

We could lise this printO for vectors o f all sizes. For example:

void f(int x)
{

)

vector<double> vdl(10); /I small vector
veclor<double> vd2(1000000); II large vector
veclor<double> vd3(x); /I vector of some unknown size
II . . . fill vd l , vd2, vd3 with values .. .
prinl(vdl);
print(vd2);
prinl(vdJ)i

~111is codc works, but the first call of printO has to copy ten doubles (probably 80
bytes), the second call has lO copy a million doubles (probably 8 megabytes). and
we don't know how much the third call has to copy. The question we mUSt ask
ourselves here is: "\\Thy are we copying anything at all?" We just wanted to print
the vectors, not to make copies of their elements. Obviously, there has to be a
way for liS to pass a variable to a function without copying it. As an analogy, if
you were given the task to make a list of books in a library, the librarians
wouldn't ship you a copy of the library building and all its contents; they would
send you lhe address of the library, so that YOll could go and look al the books.
So, we need a way of giving our printO function "the address" of the vector to
printO rather than the copy of the veclor. Such an "address" is called a rrfer~1Ia
and is used like tlus:

8 .5 FUNC TION CAL L AND RET U RN

void prin1(eonsl veclor<double>& v)
(

eoul « "{ ";
or (inl i = 0: i<v.size(): ++i) (

coul « vO]:

/I pass-by-const-reference

if (i!=v.sizeO-l) coul « ", ";

coul « " }\n" ;

)

'11e & means "referencen and the consl is there to stop printO modifying its ar­
gument by accident. Apart from the change to the argument declaration , all is the
same as before; the only change is that instead of operating on a copy, print()
now refers back to the argument through the reference. NOle the phrase "refer
back"; such arb'U meI1ts arc called references because they "refern to objecLS de­
fined elsewhere. We can call this prinlO exactJy as before:

void f(int x)
(

veclor<double> vdl (10); /I small vector
veelor<double> vd2(1000000); !! Iarge vector
veClor<double> vd3(x); /I vector of some unknown size
/I ... fill vdl , vd2, vd3 with values .. .
print(vd1);
print(vd2);
print(vd3);

We can illustrate that graphically:

v:
'--------'~

Refcr to vd2 in 2,01 call

vd2:

Refer to vd1 in 1 ~ call

vd1 :

A const reference has the useful property that we Co:'l.Il 't accidemally modify the
object passed. For example, if we made a silly error and tried to assign to an cle­
ment from .. vi thin prinl(), the compiler would catch it:

275

27. C HAPTER 8 • TECHNI CA LITIE S: FUNCT IONS , ETC.

void prinl (consl vector<double>& v)
{

II pass-by-const-reference

II . ..
vii] =7;
II . ..

II error: v is a const (is nOl mutable)

)

Pass-by-const-rcfcrcncc is a useful and popular mechanism. Consider again the
my_find O function (§B.S.l) tbat searches for a string in a vector of strings. Pass­
by-value could be unnecessarily cosLly:

int my_find (vecto r<slring> vs, string S)i /I pass-by-value: copy

If the vecto r contained thousands of strings, you might notice the time spent
even on a fast computer. So, we could improve my_findO by making it take its ar­
guments by const reference:

II pass-by-const-reference: no copy, rcad-only access
int my_find(const vcdor<string.>& vs, const slring& S) i

8.5.5 Pass-by-reference
But what if we did want a function to modify its argumcnts? Sometimes, that 's a
perfectly reasonable thing to wish for. For example, wc might want an init() func­
tio n thal assigned values to vector clements:

void in il(veclo r<double>& v)
{

/I pass-by· reference

fo r (int i = 0; i<v.s ize(); ++i) vii] = i;
)

void g(int x)
{

)

veclo r<d ouble> vd1 (10);
vector<double> vd2(1000000);
veclor<d o uble> vd3(x);

init(vd1);
init(vd2);
init(vd3);

/I small vector
II large vector
II vector of some unknown size

6 .5 FUNCTION CAll ANO RETUR N

Here, we wanted init() to modify the argument vector, so we did not copy (did
not use pass-by-value) nor declare thc reference const (did not usc pass-by-const­
value), but simply passcd a "plain reference" to the vector.

Let us cons ider references from a more technical point of view. A refercnce is
a construct that allows a user to declare a new name for an object. For example,
inl& is a reference to an int, so we can write

int i = 7i

int& r = ii
r = 9i
i = 10i

II r is a reference to i
II i becomes 9

, ~rl - -,,0--,

coul « r «"« i« '\n ' i II wri te: 10 10

lllat is, any usc of r is really a use of i.
References can be useful as shorthand. 1-"Or example, we might have a

veclor< vector<double> > Vi II vector of vector of double

and we need to refer to some element v[f(x)][g(y)J several times. Clearly, vlf(x)][g(yll
is a complicated expression that we don't want to repeat more often than we have
to. If we JUSt need its value, we could write

double val = v[r(x)JIg(y)J; II val is the value of vli(xll [g(yl)

and usc val repeatedly. But what if we need to both re:.d from v[f(x)JIg(y)) and
write to v(f(x)J[g(y))? TIlen, a reference comes in handy:

double& var = v(f(xlllg(yl]i II var is a reference to v[f(x)1Ig1y)1

Now we can read and write v(f(x)](g(y)] through var. For example:

var = varl2+sqrt(var)i

·111is key property of references, that a reference can be a convenient shorthand
fo r some object, is what makes them useful as arguments. For example:

/I pass-by-refcrence (let the function refer back to the variable passed)
inl f(inl& x)
{

x= x+l i
return Xi

277

278 (HAP TER 8 • TE CH N ICALITI ES : FU NCTIONS, ET C.

int main()
(

intxx=O;
/I write: I coul« f(xx)« endl;

coul« xx « e ndl ; /I write: I; fO changed the value of xx

int yy = 7;
/I write: 8 cout« f(yy)« end!;

cout « yy« end l; /I write: 8; fO changed the value of yy
)

We can illustrate a pass·by-rcfcrence argu ment passing like this:

x: ' " call (x refe.rs 10 xx)
xx :

o

2nd c:t11 (x refers 10 yy)

yy:
7

Compare this LO the similar example in §8.5.3.
Pass-by-refcrcncc is clearly a very powerful mechanis m: we C:"1n have a fu nction

operate directly on any object to whidl we pass a reference. For example, swapping
tWO values is an immensely important operation in many algOlilhms, SUdl as son­
ing. Using references, we can wnte a function that swaps doubles like this:

void swap(double& d1 , double& d2)
(

double temp = d1 ;
d1 = d2;

II COP)' dl 's value to temp
II copy d2 's value 10 d2

d2 = temp; /I copy d 1 's old value to d2
)

int main()
(

)

double x = 1;
double y = 2;
cout « "x == "« x« " y== "« y« '\n 'i
swap(x,y);
cout « "x== " «x«" y==" «y« '\n ' ;

/I write: X== I y==2

II write: x==2 Y== 1

6 .5 FUNCTION CAll AND RETURN

111e standard library provides a swapO for every type that you can copy, so you
don't have to write swapO yourself for each type.

8.5.6 Pass·by.value vs. pass·by-referenee
\"'hen should you usc pass-by-value, pass-by-rcfercnce, ,md pass-by-const-reference?
Consider [lrSt a teclUlical example:

void f(i nt a, int& r, eonst int& erl
I

++a; II change the local a
++r; /I change the object referred to by r
++er; /I error: cr is const

}

If you want to change the value of the object passed, you must use a non-const
reference: pass-by-value gives you a copy and pass-by-const-referencc prevents
you from changing the value of the object passed. So we can try

void g(int a, int& r, ca nst int& crl
I

}

++a;
++r;
in t x = cr;

inl mai nO
I

)

inl x = 0;
int y=O;
inl z=O;

g(x,y, zl;
gI1,2,3) ;
gI1,y,3);

/I change the local a
/I change the object referred to by r
/I read the object referred to by cr

/I x==O; y== 1; z==O

/I error: reference argument r needs a va riable to refer to
/I OK: since cr is const we can pass a literal

So, if you want to change the value of an object passed by reference, you have to
pass an object. Technically, the integer literal 2 is just a value (an rvalue), rather
than an object holding a value_ What you need for gO's argument r is an lvalue,
that is, something that could appear on the left-hand side of an assignment.

Note that a const reference doesn't need an lvalue. It can perform conver­
sions exactly as initialization or pass-by-value. Basically, what happens in that last
call, g(1,y,3) , is that the compiler sets aside an int for gO's argument Cf to refer to:

279

280 CHAPTER 8 • TECHNICALITIES: FUNC TIONS, ETC.

g(1,),,3); /I means: inl _compiler....generated = 3; g(1 ,y,_compi ler-&eneraled)

SUdl a compiler-generated object is called a temporary object or just a IClII/Xffat)'.

Our rule of thumb is:

I . Use pass·by-value to pass very small objects.

2. Use pass-by-consi-referellcc to pass large objects that you don' t need to
modify.

3. Return a result rather than modifying an object through a reference
argument.

4. Use pass-by-rcferencc only when you have to.

Illese rules lead to the simplest, least error-prone, and most effi cient code. By
"very small " we mean one or twO ints, one or twO doubles, or something like
that. If we see an argument passed by non-const-reference, we must assume that
the called function will modify that argument.

11mt third rule reflects that you have a dloice when you want to usc a func·
tion to change the value of a variable. Consider:

int incr1(inl a) { return a+1; }
void incr2(inl& a) (++a;)

II return the new value as the result
II modify object passed as reference

inlx=7;
x = incr1(x);
incr2(x);

II pretty obvious
II pretty obscure

Why do we ever usc non-consl-reference arguments? O ccasionally, they are es­
sential

For manipulating containers (e.g., vector)

For functions that change several objects (we can have o nly one return
value)

For example:

void larger(vector<in1>& v1 , veclor<in1>& v2)

{

}

II make each element in vi the larger of Ihe corresponding
II elements in vl and v2;
II similarly, make each elemenl of v2 the smaller

if (v1.sizeO!=v2.sizeO error(" larger(): different sizes") ;
for (int i=O; i<v1 .sizeO; ++i)

if (vl[i]<v2[i])
swap(v1 [i] ,v2[i]);

8.5 FUNCTION CALL AND RETURN

void fO
{

vector<int> VJI:;
vector<int> vy ;
1/ read vx and vy from input
larger(vx,vy);
/I ...

Using pass-by-rcferenee arguments is the only reasonable choice for a function
like largerO.

It is usually best to avoid functions that modify several objects. In theory,
there arc always altematives, sLich as returning a class object holding several val­
ues. However, there arc a lot of programs "OLlt there" expressed in terms of func­
tions that modify Olle or more argu ments, so you arc likely to encounter them.
For example, in Fortran - the major programming language used for numerical
calculation for abOLlt 50 years - all arguments are passed by reference. M any nu­
mel;c programmers copy Fortran designs and call functions written in Fo nran.
Such code often uses pass-by-rcfercnce or pass-by-const-reference.

If we usc a reference simply to avoid copying, we use a const reference. Con­
sequently, when we see a non-const-reference argument, we assume that the
function changes the value of its argument; that is, when we see a pass-by-non­
const-reference we assume that not only can that function modify the argument
passed, but that it will , so that we have to look extra carefull y at the call to make
sure that it docs what we expect it to.

8.5 .7 Argument checking and conversion
Passing an argument is the initialization of the function's formal argument with
the actual argument specified in the call. Consider:

void f(T Xl;
fry);
T x=y; II initialize x wi th y (sec §8.2.2)

TIle call f<y) is legal whenever the initialization T x=y; is, and when it is legal both
x's get the sam e value. For example:

void {(double);

void g(int y)

{

fry);
double x(y);

)

281

282 CHAPTER 8 • TECHNICALITIES: f U NCTI O N S, ET C.

Note that to initialize J{ with y, we have to convert an int to a do uble. ~nlC same
happens in the call of fO. TIle double value received by fO is the same as the one
stored in x.

Conversions arc often useful, but occasionally they give surprising results
(see §3.9.2). Consequently, we have to be careful with them. Passing a double as
an argument to a function that requires an int is rarely a good idea:

void ff(int);

void gg(double xl
{

ff(x); /I how would you know i(this makes sense?
)

If you really mean to truncate a double value to an int, say so cxplici Lly:

void ggg(double xl
{

int xl = x; 1/ truncate x

)

int x2 = int(x);

H(xl);

ff(x2)i

(f(x);

ff(int(x));
/I truncate x

11m! way, the next programmer to look at this code can sec that yOll thought
about the problem.

8.5.8 Function call implementation
But how docs a computer really do a function call? 111c expression (), lermO, and
I>rimaryO functions from Chapters 6 and 7 a~ perfcct for illusU"aling this cxccpt
for one detail: they don't take any arguments, so we can 't use them to explain
bow arguments are passed. But wait! They 1IIusl take some input; if they d idn't,
they couldn 't do anything useful. They do take an implicit argument : they usc a
Token_stream called Is to get their input ; Is is a global variable. That's a bit
sneaky. We can improve these functions by letting them take a Token_slream&
argument. Here they are with a Token_slream& parameter added and everything
lhat doesn't conccm function call implementation removed.

8 .5 FU NCTION CAll AND RET U RN

First, ex pressio nO is completely straightfonvard; it has one argument (Is)
and twO local variables (left and I):

double expressio n(loke n_slream& Is)
(

)

do uble left = lerm (ls)j
Token I = IS. gel OJ
1/ . ..

Second. lermO is much like expressionO, except that it has an additional local
variable (d) that it uses to hold the result of a divisor for 'I' :

do ubl e term(Token_slream& Is)
(

double left = primary(ls)j
Toke n t = ts.gelOi
1/ •••

1/ . ..

case 'f :

do uble d = primary(ls)j
/I.

111ird, primaryO is much like le rmO except that it doesn't have a local variable
leU:

double primary(Token_stream& IS)
{

Token I = Is. gel OJ
swilch (t.kind) (
case ' (':

)

(double d = expressio n(ls)j
/I . ..

)

1/ . ..

Now they don't usc any "sneaky global variables" and are perfect for our illus­
tration: they have an argument, they have local variables, and they call each

283

284 CHAPTE R 8 • TECH NICALI TIES; FUNC TI ONS, ETC.

other. You may w anllO take the opportunity LO rdresh your memory of what the
complete expression() , telmO, and primary() looks like, but the salient features as
rar as function call is conccm ed are presented here.

When a function is caJlcd , the language implementation sets aside a data
StruCtUTC containing a copy of all its parameters and local variables . For example,
when ex pressionO is fi rs t called , the compiler ensures that a structure like this is
created:

Call o f expression() : ~t''-;, ____ --I
I.ft
t

Implementation
stuff

· nlC "implementatio n Stuff'" varies from implementation to implememation, but
that 's basically the informatio n that the fu nction needs to rctum LO its caller and
to rctum a value to its caller. Such a data structure is called a jill/dion adivation
rea.ml, and each funcuon has ilS own detailed layout o f ilS activation record . Note
that from the implementation 's point of view, a parameter is just another local
variable.

So far, so good , and now ex press ionO caUs term (), so the compiler ensures
that an activation record for lhis call of te rmO is generated :

Call of expressio nO:

Call o f te rmO:

IS

lef'
t

Implementation
. ruff
IS

left
t

d

Implementation
stuff

Din:Clioll of
Slack growlh

Note that termO has an extra variable d that needs to be stored , so we set aside
space for that in the call even though the code may never get arollnd to using it.
111at's OK. For reasonable functions (such as every functio n we directly or incH­
recdy use in th is book), the run-time COSt of laying down a function activ:llio n
record doesn't depcnd on how big it is. The local variable d will be initialiled
only if we exeeUie its case 'r .

Now termO calls primaryO and we get

8 .5 FUNCTION CAll AND RET U RN

Call o r expression() : Is

left
I

Implementation
stufT

Call or termO: Is

left
I
d

Implementation
stuff

G ill or primaryO : I.

I

d

Implementation
stufT

Oireoion or
Slack growth

111is is staning to get a bit repetitive, but now primaryO Gllls expression() :

Can or expressionO:

G.,11 or lermO:

Call or primary() :

Call or expressio n()

ts
left
I

Implementation
stuff

ts
left
I

d

hnWementation
stu

ts
I

d

Implementation
stufT

IS

left
I

ImWementation
.tu

Direction or
stack b'l'Owth

2.5

2. 6 C HAPTER 8 • TECHNICALITIE S: f U NC TI O NS, ETC.

So this call of expressionO geLS its own activation record, different from the fi rst
c.-til of expression(). llmt's good or else we'd be in a terrible mess, since left and t
will be different in the twO calls. A function that directly or (as here) indirectly
calls itself is called rmmiue. As yOll sec, recursive functions follow naturally from
the implementation technique we usc for function call and rerum (and vice versa).

So, each time we call a function the .sineR. rf acliuaJio1/ records, usually just called
the l lndf, grows with one record . Conversely, when the function returns, jts
record is no longer used. For example, when that last call of ex pression() returns
to primaryO, the Slack will revert to this:

Call of express ion()

Call o f te rmO

Call of primaryO

Is

left

I

Implementation
stulT

Is

left
I

d
Implementation
stulT

Is

I

d
Implementa tion
stuff

Direction of
stack growth

And when that call of primary() retums to term O, we gel back to

Call o f expression()

Call of te rm()

Is

left

I

Implementation
stulT

Is

left

I

d
Implementation
stuff

Direction of
stack b"l'owth

8.6 OROER OF EVALUATION

And so on. The stack, also called the call Jtadi., is a data structure that grows and
shrinks at one end according to the nile: first in, first out.

Please remember that the details of how a call stack is implemented and used
vary from C++ implementation to C++ implementation, but the basics arc as
outlined here. Do you need to know how function calls arc implemented to lise
them? Of course not; you have done well enough before this implementation
subsection, but many programmers like to know and many usc phrases like
"activation record'"' and "call stack,'" so it 's better to know what they mean.

8.6 Order of evaluation
'nle evaluation of a program - also called the execution of a program - proceeds
through the statements according to the language rules. When this "thread of ex·
eClllion" reaches the defin.ition of a variable, the variable is constructed ; that is,
memory is set aside for the object and the object is initialized. \V"hen the variable
goes out of scope, the variable is destroyed ; thai is, the object it refers to is in
principle removed and the compiler can lise its memory for something clse. For
example:

string program_name = "silly";
veclor<string> V;

void fO
{

/I v is global

string S; /I sis local 10 f

}

while (ci n» s && s!="quiltl) (

}

II .

Siring stripped; /I stripped is local to the loop
Siring noeletters;
for (int i=O; k s. size() ; ++i) /I i has statement scope

if (isalpha(s{iJ))
stripped += s[i];

else
noUetters += sri] ;

v.p ush_ back(sl ripped);
II ...

Global variables, such as program_name and v, arc in.i tialized before the frrst stt1te·
ment of mainO is cxecUled. TIley "live" until the program tenninalCS, ,md then
they are destroyed. TIley are constructed in the order in which they are defmed

287

288 (HAPTER 8 • TECHNICALITIES: FUN CTIONS, ETC.

(that is, program_name before v) and destroyed in the reverse order (that is, 'tI be­
fore program_name).

\\'hen someone calls fO, first s is constructed ; that is, s is initialized to the
empty string. It will Jive until we return from roo

Each time we enler the block that is the body of the while-loop, stripped and
noeletters arc constructed. Since stripped is defined before noUellers, Slripped
is conSlnlctcd before noUeUers. TIley live until the end of the loop, where they
arc destroyed in the reverse order of construction (that is , noUeu ers before
stripped) before the condition is reevaluated. So, if ten strings arc seen before we
cncoumer the string quit, stripped and noeletters will each be CQIlSlnlClCd and
destroyed ten times.

Each lime we reach lhe for-loop, i is constlucted. Each time we exit the for·
loop, i is destroyed before we reach the v.push_back(stripped); statement.

Please l10te that compilers (and linkers) arc clever beasts and they arc 011·
lowed to - and do - optimize code as long as lhe results arc equivalent to what
we have described here. In particular, compilers arc clever at not allocating and
deallocaling melllory more often than is really necessary.

8.6.1 Expression evaluation
111e order of evaluation of sub·expressions is governed by rules designed to
please an optimizcr rather than to make life simple for the progranuner. 11ml's
unfortunate, but you should avoid complicated expressions anY'..,ay, and there is
a simple rule that can kecp you out of trouble: if you change the value of a vari·
able in an expression, don't read or wTite it ovice in that same expression. For
example:

v(i] = ++i;
v(Hij = i ;
int x = ++i + ++i;
cout « ++i« ' t « i « '\ra t;
(Hi,Hi);

/I don't: undefined order of evaluation
/I don't: undefined order of evaluation
/I don't: undefined order of evaluation
II don't: undefined order of evaluation
/I don'l: undefined order of evaluation

Unfortunately, not all compilers warn if you write such bad code; it 's bad be·
caLIse you can' t rely on the results being the same if you move your code to an·
other computer, usc a different compiler, or usc a different optimizer selling.
Compilers really differ for such code;just don't do it.

Note in particular that = (assigmllem) is considered just another operator in
an expression, so there is no guarantee that the left·hand side of an assignment is
evaluated before the right·hand side. "lltat's why VIHil = i is undefined.

8.6.2 Global initialization
Global variables (and namespacc variables ; sec §S.7) in a single translation unit
arc initializ.ed in the order in which they appear. For example:

8 .6 O RDER OF EVALUATION

/I file fl.epp
inlx1=1 ;
int y1 = x1+2; /I Y 1 becomes 3

111is initialization logically takes plaee "before the code in mainO is exeeuled."
Using a global variable in anything but the most limited circumstances is usu­

ally not a good idea. We have mentioned the problem of the progranuner having
no really elTective way of knowing which pans of a large program read and/or
write a global variable (§8.4l. Another problem is lhat the order of initialization of
global variables in dilTerenttranslation units is not defined. For example:

/I file f2.epp
extern int y1 ;
inl y2 = y1+2 ; /I y2 becomes 2 or 5

Such code is to be avoided for several reasons: it uses global variables , it gives lhe
global variables short names , and it uses complicated initialization of the global
variables. If the globals in rue f1 .cpp arc initialized before the globals in f2 .cpp, y2
will be initialized to 5 (as a prob'Tammer might naively and reasonably expect).
However, if the gJobais in file f2 .cpp are initialized before the globals in f1 .cpp, y2
will be initialized to 2 (because the memory used for global variables is initialized
to 0 before complicated initialization is attempted). Avoid such code, and be very
suspicious when you see global variables with nontrivial initializers; consider any
initializer that isn't a constant expression complicated.

BUl what do YOLI do if you really need a global variable (or constant) with a
complicated initializer? A plausible example would be that we wanted a default
value for a Dale type we were providing fOT a library supporting business trans­
actions:

consl Dale defauICdale(1970, 1,1); II the default date is 1.1rlUary 1, 1970

How would we know that defaulCdale was never used before it was initialized?
Basically, we ca n't know, so we shou ldn 't write that definition. llle technique
that we usc most often is to call a function that retums the value. For example:

consl Dale default_daleO
(

return Dale(1970,1,1);

/I return the default Dale

lllis constructs the Dale every time we call default_daleO. rIltat is often fine, but
if defau ll_dateO is called often and it is expensive to construct Dale , we'd like to
construct the Dale once only. That is done like this:

289

290 C HAPTER 8 • TECHNICALITIES: FUNCTIONS, ETC.

const Oate& default_dateO
{

)

slatic consl Dale dd (1970,1,1);
return dd ;

/I initial ize dd first time we gel here

A sialic local variable is initialized (constructed) only the first time its fUllction is
called. Note that we returned a reference to eliminale unnecessary copying and,
in particular, we returned a const reference to prevent the called function from
accidentally changing lhc value. TIle arguments about how to pass an argument
(§8.5.6) also apply to returning values.

8.7 Namespaces
We lise blocks LO organize code within a function (§8.4). \ Vc usc classes to organ­
ize functions, data, and types imo a type (Chapler 9). A function and a class both
do t,,:o things for liS :

Thcy allow LIS to define a number of "emities" without worrying that
their names clash with other names in our program.

They give us a name to refer to what we have defined.

\<\That we lack so far is something to organize classes, funct ions, data, and types
into an identifiable and named pan of a program without defining a type. 'Ille
language mechanism for such grouping of declarations is a 1/(lllleJj)(lce. For exam·
pic, we might like to provide a graphics library with classes called Color, Shape,
Line , Function, and Text (sec Chapter 13):

namespace Graph_lib {

)

struct Color (/* ... *'};
struct Shape {/* ... *' }i

strucl Line: Shape (/* ... *'};
strucl Function : Shape U* ... */};

strucl Text: Shape {/* ... *'};

1/ ..
inl gui_mainO (/* ... *'}

Most likely somebody else in lhe world has used those names, but now lhat
doesn't matter. You might define something called Text, but our Text doesn't in­
terfere. Graph_lib : :Text is one o f our classes and your Text is not.. We have a
problem only if you have a class or a namespace called Graph_lib with Text as its

8 .7 NAMESPACE S

member. Graph_lib is a sliglllly ugly name; we chose it because the "pretty and
obvious" name Graphics had a greater chance of already being used somewhere.

Let 's say thm your Text was part of a text manipulation library. '11e same
logic that made us put our graphics facilities into namespace Graph_lib should
make you put your text manipulation facilities into a namespace called some­
thing like TextLib :

namespace TextLib (
class Text (' - .. . • , };
classGlyph{ ' · ... · ,);
class Line { ' - . .. -I};
/I ...

}

Had we both used the global namespace, we could have been in real trouble.
Someone tI)'ing to use both our libraries would have had really bad name clashes
for Text and line. Worse, if we both had users for our libraries we would not
have been able to change our names, such as Line and Text , to avoid clashes. 'vVe
avoided that problem by lIsing namespaces; that is, our Text is GraphJib: :Text
and yours is TextLib: :Text . A name composed of a namespace name (or a class
name) and a member name combined by :: is called a }illly qualified /lame.

8.7.1 using declarations and using directives
Writing fully qualified names can be tedious. For example, the facilities of the
C++ standard library are defined in nrullespace std and can be used like lhis:

#include<string>
#include-<iostream>

int mainO
(

std : :string name;

/I gel the siring library
/I get the ioslream libra ry

sid : :cout « "Please enter your first name\n";
sid : :cin » name;
sid : : caul « "Hello, " « name « '\n';

}

Having seen the standard library string and cout lhousands of limes, we don 't
really want to have to refer to them by their "proper" fu lly qualified names
std : :string and std : :cout all the tUne. A solmion is to say that ;;by string, I mean
sid : :string," "by cout, I mean std : :coul," ctc.:

292

using std : :slring;
using sid : :co ul ;
1/ .. .

CH APTER 8 • TE CH N ICA LITIES: FUNCTI ONS, ETC.

1/ string means std::slring
II cout means std::cout

That construct is called a using declaration; it is the progranuning equivalent to
lIsing plain "Greg" to refer to Greg Hansen, when there are no other Cregs in the
room.

Sometimes, we prefer an even stronger "shorthand" for the usc of namcs
from a namcspacc: "If you don't fmd a declaration for a name in this scope, look
in std." The way to say that is to usc a using directive:

using namespace s id ; II make names from sid directly accessible

So we get this common slyle :

#include<string>
#include<ioslream>
using namespace Sid ;

inl main()
{

string name;

1/ get the Siri ng library
/I get the iosl ream library
/I make names from sid directly acc~sib le

co ul « "Please enler your first name\n";
dn » name;
coul « "Hello, "« name« '\n ' ;

)

111e d n is sid : :dn , lhe siring is sid: :slring, elC. As long as you usc SldJib_fad l.
ilies.h, you don't need to worry about standard headers and the sid namesp"ce.

It is usually a good idea to avoid using directives for any namespace except
for a namespace, such as Sid, thai's extremely well known in an application area.
TIle problem with ovemse of using directives is that you lose track of which
names come from where, so that YOLl again start to get name clashes. Explicit
qualification with namespace names and using declarations doesn't suffer from
that problem. So, putting a namespace directive in a header me (so that users
can't avoid it) is a very bad habit. However, to simplify our initial code we did
place a using directive for sid in sld_lib_fadlilies.h . '1mt allowed LIS to write

#include "SldJib_fadlilies.h"

inl main O
{

CHAPTE R 8 DR il l

string name;
co ut « "Please enter your first name\n";
d n » nam e;
cout « "He llo, " « name« '\n';

\Ve promise never LO do that for any namespaec except std .

...; Drill

I. Create three flies: my.h, my.cpp, and use .cpp . The header me my.h
contains

extern int foo;
void prinUooO;
void prinl(inl) ;

TIle source code me my.cpp #includes my.h and stdJi b_fadlities .h , de·
fines prinCfooO to print the value of foo using cout , and print(int i) LO
print the value of i using coul.

~111e source code fil e use .cpp #includes my.h, defines main () to set
the value of foo to 7 and print it using print_fooO, and to print the value
of 99 using printO. Note that use.cpp does not #include Sld_lib_fadli .
ties. h as it doesn' t d irectly use any of those facilities.

Gel these fil es compiled and lUn. On Windows, you need to have
both use.cpp and my.cpp in a project and lise { char cc; dn»cc;) in
use.cpp to be able to see your output.

2. Write three functions swap_v(int,inl) , swap3(int&,int&), and swap_cr(consl
int&, consl inl&). Each should have the body

(int tempi temp = a, a=b ; b=tempi)

where a and b are tlle names of the arguments.
Try calling each swap like this

intx =7;
int y =9i

swap_l(x,y}; II replace r by II, r, or cr
swap_l(7,9);
const int ex = 7;
const int cy = 9;
swap_l (cx ,cy);
swap_l(7.7,9.9);

293

C H APTER 8 • TECHNICALITIES : FUNCTIONS, ETC.

double dll = 7.7;
double dy = 9.9;
swap_l(dll,dY)j
swap_l{dll,dY)j

Which calls compiled, and why? After each swap that compiled, print
the value of the arguments after the caU to see if they were actually
swapped. If you arc surprised by a result, consult §a.6.

3. Write a program using a single me containing three namespaces X, Y, and
Z so that the following MainO works conectly:

inl MainO
{

}

X::vat= 7i
X::ptinl() j /I prinl X's var
using namespace Vi

vat = 9;
ptinl() j /I prinl V's var
(using Z: :var j

using Z: :ptint j
vat=ll j
print (); /I print Z'S var

}

print()j
X: :print()j

/I print V's var
/I print X's var

Each namespace needs to define a variable called var and a function
called prinlO that outputS the appropriate var using cout.

Review
I . What is the differencc between a declaration and a definition?
2. How do we syntactically distingu ish between a function declaration and

a function definition?
3. How do we syntactically distinguish between a variable declaration and

a variable definition?
4. \"'h)' can't you use the functions in the calculator program from Chapter G

without declaring them first?
5. Is int aj a definition or just a declaration?
6. Why is it a good idea to initiaJize variables as they are declared?
7. vVhat " 'm a function declaration consist or?

C HAPTER 8 TERMS

8. What good docs indentation do?
9. \"'hat arc header fil es used for?

10. \"'hat is the scope of a declaration?
II . What kinds of scope arc there? Give an example of each.
12. What is the difference ben"een a class scope and local scope?
13. \Vhy should a programmer minimize the number of global variables?
14. What is the difference between pass·by-value and pass-by·reference?
15. What is the difference between pass-by-reference and pass-by-consl­

reference?
16. What is a swap()?
17. Would you ever define a function with a veclo r<do uble>-by-value pa­

rameter?
18. Give an example of undefined order of evaluation . Why can undefined

order of evaluation be a problem?
19. What do x&&y and "liy, respectively, mean?
20. Which of the following is standard-confornling C++: fu nctions within

functions, functions within classes, classes within classes, classes within
functions?

21 . What goes into an activation record?
22. What is a call stack and why do we need one?
23. \¥hat is the purpose of a namespace?
24. How does a namespace differ from a class?
25. \¥hat is a using declaration?
26. \¥hy should you avoid using directives in a header?
27. \¥hat is namespace sId?

Terms
activation record
argu ment
argument passmg
call stack
class scope
consl
declaration
definition
extern
fonvard declaration
function

function definition
global scope
header fil e
initializer
local scope
namespace
namespace scope
nested block
parameter
pass-by-co nsl-reference
pass-by-rcfercnce

pass-by-value
recursion
return
return value
scope
statement scope
teclmicalities
undeclared identifier
using declaration
using directive

CHAPTER 8 • TEC H NICA LITI ES: FUNC TI ONS , ETC.

Exercises
I. Modify the calculator program from Chapter 7 to make the input stream

an explicit parameter (as shown in §8.5.8). Also give the Token_stream
constructor and isfream& parameter so that when we figure out how to
make our own istreams (e.g. , attached to fil es), we can usc the calculator
for those.

2. Write a function printO that prints a vector of ints to cout. Give it twO ar­
guments: a string for "labeling" the output and a vector.

3. Create a vector of Hbonacci numbers and print them using the function
from exercise 2. 10 create the vector, write a function, fibonacci (x,y,v, n),
where integers x and y are ints, v is an empty vector<int>, and n is lhe
number of clements to put into v; vlO) will be x and v (1) will be y. A
Fibonacci number is one that is part of a sequence where each clemelll is
the sum of the twO previous olles. For example, starting with I and 2, we
get I, 2, 3, 6, 9, 15, 24, Your fibonacciO function should make such
a series starting with its x and y arguments.

4. An inl can hold integers only up to a maximum number. Find an ap­
proximation of that ma.ximum number by using fibonacciO.

5. Write two functions that reverse lhe order of clements in a vector<int>.
For example, 1, 3, 5, 7, 9 becomes 9, 7, 5, 3, I. The first reverse function
should produce a new vector with me reversed sequence, leaving its orig­
inal vector unchanged. TIle other reverse function should reverse the cl­
ements of its vector without using any orner vectors (hint : swap).

6. Write versions of the functions from exercise 5, but with a vector<string>.
7. Read five names into a vector<string> name, then prompt the user for the

ages of the people named and store the ages in a vector<double> age. ~Illen
print out the five (name[i],agelil) pairs. Son me names (sorl(name.beginO,
name.end(») and print out the (nameliJ,age[il) pairs. "Ille tricky part here
is to get the age vector in the correct order to match the sorted name
vector. Hint: Before sorting age, t.'lke a copy and use thm to make a copy of
age in me right order after sorting age. 111el1, do that exercise again but al­
lowing an arbitrary number of naIlles.

8. Write a simple function rand intO that produces a pseudo-random number
in the range [O:MAXINT) . Hint : Knuth, The Art f!!Compuler Programming,
Volume 2.

9. Write a function that - using randintO from the previous exercise - COIU­

putes a pseudo-random integer in the range [a:b): rand_in_range(int a,
inl b). Note: TIus function is very useful ror writing simple games.

10. Write a function that given two vector<double>s price and weight com­
putes a value (an "'index") that is the sum or all pricelWweightliJ . Note
that we must have weight.sizeO<=price.size() .

C HAPTER 8 PO ST SC RIPT

11. Write a function man'O that relUrns the largest element of a vecto r
argument.

12. Write a function that finds the smallest and the largest elemelll of a
vecto r argument and also computes the mean and the median. Do not
use global variables. Either return a slruct containing the results or pass
them back through reference arguments. Which of the two ways of re­
turning several result values do you prefer and why?

13. Improve prinC unliLs() from §8.5.2. Test it. What makes a good set of
test cases? Give reasons. ~nlen , write a prinC until_ssO that prints until it
sees a second occurrence of its quit argument.

14. Write a function that takes a veclor<slring> argument and returns a
vcctor<inl> containing the number of characters in each slIing. Also fmd
the longest and the shorlest Siring and the lexicographically first and last
Siring. How many separate functions would you usc for these Lasks?
Why?

15. Can we declare a non-reference function argument consl (e.g. , void
((consl in!) ;)? What might that mean? Why might we wam to do that?
Why don't people do that often? Try it; write a couple of small programs
to see what works.

Postscri"t
We could have put much of this chapter (and much of the next) into an appen­
di.'(. However, you'll need most of the facilit ies described here in Part 11 of this
book. You' l! also encounter most of the problems that these facilities were in­
vented to help solve very soon. Most simple programming projects that you
might undertake will require you to solve such problems. So, to save time and
minimize confusion, a somewhat systematic approach is called for, rather than a
series of "random" visits to manuals and appendices.

2.7

Technicalities:
Classes, etc.

"Remember, things take time."

-Piet Hein

I n this chapler, we keep our focus on OUT main tool for pro­

gramming: the C++ programming language. We present lan­

guage technicalities, mostly related to user-defined types, that is,

to classes and enumerations. Much of the presentation of lan­

guage featu res takes the fo rm o f the gradual improvement of a

Date type. That way, we also get a chance to demo nstrate some

useful class des ign techniques.

299

300 CHAPTER 9 • TECHNI CA LITIE S: ClASSES, ETC.

9.1 User·defined types

9.2 Classes and members

9.3 Inle rface and implementation

9.4 Evolving a class
9.4.1 shuct and functions
9.4.2 Member functions ilnd

constructors
9.4.3 Keep d("lails private
9.4.4 Defining member functions
9.4.5 Referring 10 the current object
9.4.6 Reporting errors

9.1 User-defined types

9.5 Enumerations

9.6 Operator overloading

9.7 Class interfaces
9.7.1 Argument types
9.7.2 Copying
9.7.3 Defaul t constructors
9.7.4 consl member fun ctions
9.7.5 Members and " helper functions"

9.B The Dale class

111C C++ language provides you with some built-in types, such as char, in I, and
double (§A.8). A type is called built-in if the compiler knows how to represent
objects of the type and which operations can be done o n it (such as + and -) with­
out being told by declarations supplied by a programmer in source code.

Types that arc not built-in arc called wer-dqined typa (UDTs). TIley can be
standard library types - available to all C++ programmers as part of every ISO
Standard C++ implementation - such as Siring, vecto r, and ostream (Chapter
10), or types that we build for ourselves, such as Toke n and Token_stream (§6.S
and §6.6). ru soon as we get the necessary technicalities under our bell, we' ll
build graphics types such as Shape, line, and Text (Chapter 13). TIle standard li­
brary types arc as much a part of the language as the built-in types, but we still
consider them user·defined because they arc bu ilt from the sallle prim..itives and
with the same techniques as the types we built ourselves; the standard library
builders have no special privileges or facil ities that you don't have. Like the built­
in types, most uscr-defUled types provide operations. For example, vector has II
and sizeO (§4.6.1, §B.4.8), ostream has « , To ke n_stream has getO (§li.8), and
Shape has add(Poin t) and seCcolorO (§14.2).

Why do we build typcs? The compiler docs not know all the types we might
like to lise ill our programs. It couldn't, because there are fa r too many useful
types - no language designer or compiler implementer could know them all. We
invent new ones every day. Why? What are types good for? Typcs are good for
directly representing ideas in code. When we write code, the ideal is to represent
ollr ideas directly in our code so that we, our colleagues, and the compiler can
understand what we wrote. When we want to do integer arithmetic, int is a great
help ; when we want to manipulate text, string is a great help; when we want to
manipulate calculator input, To ken and Token_stream are a great help. TIle help
comes in twO forms:

9. 2 (LASSES AND MEMBE RS

Repre~71latioTl : A type "knows" how to represent the data needed in an
object.

Ojx mli01u: A type "knows" what operations can be applied to objects.

Many ideas follow this patlern: "something" has data to represent its current
value - sometimes called the cun"Cnt Jlale - and a set of operations that can be
applied. "nlink of a computer fil e, a web page, a toaster, a CD player, a coffee
cup, a car engine, a cell phone, a telephone directory; all can be characterized by
some data and al1 have a more or less fIXed set of standard operations that you
mn perform. In each case, the result of the operation depends on the data - the
"currellt state" - of an object.

So, we wam to represent such an "idea" or "concept" in code as a data SlruC~
ture plus a set of functions. The question is: "Exactly how?" This chapter pres­
ents the technicalities of the basic ways of doing that in C++.

C++ provides (wo kinds or user-defined types: classes and enumerations.
111C class is by rar the most general and important, so we first roclls on classes. A
class directly rcpresents a concept in a program. A c/'lJJ is a (user-defined) type
that specifics how objects or its type are represented, how those objects can be
created , how they arc used, and how they can be destroyed (see §17.5). If you
think or something as a separate entity, it is likely that you should define a class
to represent that "thing" in your program. Examples are vector, matrix, input
stream, string, FFT (rast Fourier transronn), valve controller, robot arm, device
driver, picture on screen, dialog box, graph, window, temperature reading, and
clock.

In C++ (as in most modern languages), a class is the key building block ror
large programs - and very useful ror small ones as well, as we saw ror our calcu­
lator (Chaptcrs 6 and 7).

9.2 Classes and members
A class is a user-defined type. It is composed or built-in types, other user-defined
types, and runctions. The parts used to define the class are called memberJ. A class
has zero or more members. For example:

class X (
public:

int nli 1/ data member
int mf(int v) (int o ld = m i m=Vi return old ;)

);

1/ fu nction member

Members can be of various types. Most are eilher data members, which define
the represemation or an object or the class, or runction members, which provide

""

302 CHAPTER 9 • TECHNICALITIES: CLA SSE S, ETC.

operations on such objects. We access members using the objcd.membt'r notation.
For example:

X va,;
var.m = 7;
int x = var.mr(9)i

/I var is a variable of type X
/I assign to var's data member m
1/ call var's member function mf()

You call read var.m as var's m. Most people pronoullce it "vaf dOl m" or ""ar's m,"
The type of a member determines what operations we can do on it. We call read
and wnte an int member, call a function member, Ctc.

9.3 Interface and implementation
Usually, we think of a class as having an interface plus an implementation. 111c
interface is the part of the class's declaration that its users access direcliy. '11C im­
plementation is that part of the class's declaratio n that its users access only indio
rectly through the interface. The public interface is identified by the label public:
and lhe implementation by the label private :. You can think of a class declaration
like this:

class X { II this class's name is X
public:

/I publ ic members:
/I - the interf,lce 10 users (accessible by ali)
/I functions
/I typt.'S
II d<lta (often best kept private)

private:
/I private members:
/I - the implementation details (used by members of this class only)
II functions
/I types
/I data

} ;

C lass members arc private by default ; lhal is,

class X (

};

means

int mf(int);
II .

9 .3 IN TERFA CE AND IM PLEMENTATION

class X {
private :

);

so thai

X x;

int mf(int) ;
1/ . ..

int y = x.mfO;
II variable)[of Iype X
1/ error: mf is private (i.e., inaccessible)

A user cannot d irectly refer to a private member. Instead, we have to go through
a public function that can usc it. For example:

class X (
int m;
int mf(int);

public :
int f(int i) { m=i; return mf(i); }

);

x x;

inl y = x.f(2);

We usc the distinction between private and public to represent the important dis­
tinction between an interface (the user 's view o f the class) and implementation
details (the implementer's view of the class). We explain that and give loIS o f ex­
amples as we go along. Here we'll just mention that for something that 's just
data, this distinction doesn't make sense. So, lhere is a useful simplified notation
for a class that has no private implememation details. A struet is a class where
members arc public by default :

struct X {
int m;
1/ . ..

) ;

means

class X (
public :

) ;

int m ;
1/ ..

303

304 CHAPTE R 9 • TE CH NICA LITI ES ; CLASS ES, ETC.

stru cts arc primarily used for data structures where the members can take any
value ; that is, we can 't define any meaningful invariam (§9.4 .3) .

9.4 Evolving a class
Let 's illustrate the language facilities supporting classes and the basic techniques
for using them by showing how - and why - we might evolve a simple data
structure illlo a class with private implementation details and supporting opera­
tions. We usc the apparently trivial problem of how to represent a date (such as
Augusl14, 1954) in a program. TIle need for dmes in many programs is obvious
(commcrciai lransaclions, weather dma, calendar programs, work records, invcn­
LOry management, etc.). TIle only qucstion is how we might represent them.

9.4.1 struct and functions
How would we represent a date? When asked , most people answer, " \I\'ell, how
about the year, the month , and the day of the mo nth?" "n mt's nOt the only an·
swer and not always the best answer, but it 's good enough for our uses, so that's
what we'll do. Our first attempt is a simple struct :

/I simp le Date (100 sim ple?)

sltuet Date {

) ;

int y;
int m ;
int d ;

/I year

/I month in }'ear

/I day of month

Date today; /I a Date variable (a named object)

A Date object, such as today, will simply be three ints:

Date :

~ I >;»5 .. 12 I
d .

"nlcre is no "magien relying on hidden data stHlCtures anywhere related to a
Date - and that will be the case for every version of Date in this chapter.

So, we now have Dates; what can we do with them? We can do everything in
the sense that we can access the members of today (and any other Date) and read
and write them as we like. The snag is that nothing is really convenient. Just
about anything that we want to do with a Date has to be written in tenns of reads
and writes of those members. For example :

9.4 EVOLVING A CLASS

/I set today to December 24, 2005
loday.y = 2005;
loday. m = 24;
loday. d = 12;

111is is tedious and eITOr·pronc. Did you spOt the crror? Everything that's te·
dious is error·pronc! For examplc, does this make sense?

Date Xi

x.y =-3;
x.rn = 13;

x.d = 32i

Probably not, and nobody would write that - or would they? How about

Dale y;
y.y = 2000;
y.m = 2;
y.d = 29;

Was year 2000 a leap year? Are you sure?
What we do then is to provide some helper runctions to do the most com­

mon operations ror us. That way, we don't have to repeat the same code over
and over again and we won't make, find , and fix the same mistakes over and
over ag<tin. For just about every type, initializat.ion and assignment are among the
most common operations. For Date, increasing the value of the Date is another
common operation, so we write:

/I helper funct ions:

void init_day(Date& dd, int y, int m, inl d)
{

II check that (y,m,d) is a valid date
II if it is, use il to initialize dd

void add_day(Oate& dd, inl n)
{

II increase dd by n days
)

We can now try to lise Dale:

305

(I-lAPTER 9 • TE CH NICA LITIE S: CLA SS ES, ETC.

void fO
(

}

Dale loday,
iniCday(today, 12, 24, 2005),
add_day(loday,1) ,

II oops! (no day 2005 in year 12)

Hrst we note the usefulness of such "operations" - here implemented as helper
fu nctions. Checking that a date is valid is sufficiently difficult and tedious that if
we didn't write a checking function once and for all, we'd skip the check occa·
sionally and get buggy programs. VYhenever we derme a type, we want some op·
erations for it. Exactly how many operations we want and of which kind will
vary. Exactly how we provide them (as functions, member functions, or opera·
tors) will also vary. but whenever we decide to provide a type, we ask ourselves,
""\Vhich operations would we like for this type?"

9.4.2 Member functions and constructors
We provided an initialization function for Dales, one that provided an important
check on the valid ity of Dates. However, checking functions arc of litlie use if we
fa il to usc them. For example, assume that we have defined the output operator
« for a Date (§9.8):

void iO
(

}

Date today,
1/ . ..
coul « today « '\n ',
1/ . ..
in iC dayUoday,2008 ,3,30);
/I . ..
Date tomorrow;
tomorrow.y = today.y ;
tomorrow. III = loday.lll;
tomorrow.d = today.d+ 1,
cout« tomorrow « '\n ';

/I use today

/I add 1 to today
/I use tomorrow

Here. we "forgot" to immediately initialize today and "someone" used it before
we gOt around to calling inil_dayO. "Someone else" decided that it was a waste of
time to call add_dayO - or maybe hadn't heard of il - and constructed tomorrow
by hand. As it happens, this is bad code - very bad code. Sometimes, probably
most o f the lime, it works, but small changes lead to serious errors. For example,
writing out an uninitialized Date will produce garbage output, and incrementing

9.4 EVOLV tNG A C LASS

a day by simply adding 1 to its member d is a time bomb: when today is the last
day of the mamh the increment yields an invalid date. The worst aspect of this
'·very bad code" is thaI it doesn't look bad .

111is kind of thinking leads 10 a demand for an initialization function thaI
can 't be forgotten and for operations that arc less likely to be overlooked. Ille
basic tool for that is lIIemtxr/imdions, that is, functions declared as members of the
class within the class body. For example:

/I si mple Date
II guarantee initial ization with constructor
/I provide some notational convenience
struc! Dale (

);

int y, m, d ;
Dale(inl y, int m, int d) ;
void add_day(int n);

/I year, month, day
/I check for valid date and initialize
/I increase the Date by n dilYs

A member funct ion with the same name as its class is special. It is called a
collJlmelor and will be used for initialization ("construction") of objects of the class.
It is an error - caught by the compiler ~ to forge t to initialize a class that has a
constructor that requires an argument, and there is a special convenient syntax
for doing such initialization:

Date my_birthday; /I error: my_birthday not initial ized
Date loday(12,24,2007); /I oops! run-ti me crror
Date lasl (2000, 12, 31); /I OK (colloquial style)
Date chrislmas = Date(1976,12,24); /I also OK (verbose style)

11le attempt to declare my_birlhday fails because we didn't specify the required
initial value. -n1e attempt to declare today will pass the compiler, but the check­
ing code in the constructor wiII catch the illcbral date at run time (12124/2007 -
there is no day 2007 of the 24th month of year 12).

'Ille definition of last provides tbe initial value - the arguments required by
Date's constniClor - in parentheses immediately after the name of the variable.
111at's Ihe most common style of initialization of variables of a class that has a
constructor requiring arguments. We can also use the more verbose style where
wc explicitly create an object (here, Dale(1976,12,24») and thcll usc that 10 initial·
ize the variable using the = initializer syntax . Unless you actually like typing,
you'll soon tire o f that.

We can now try to usc our ncwly defmed variables:

lasl.add_day(l);
add_day(2); /I crror: what date?

307

308 CHAPTER 9 • TEC HNI CALI TI ES: CLASSES, ETC.

Notc that the member funClion add_dayO is called for a particular Date using the
dot member-access notation. We'll show how to define member functions in §9.4.4.

9.4.3 Keep details private
We still have a problem: What if someone forgets to usc the member function
add_dayO ? What if someone decides to change the mOlll.h directly? After all, we
"forgot" to provide a facility for that :

Date birlhday(l960, 12,31):
++birlhday.d ;

Dale today(1970,2,J);
today.m = 14;

/I De<:ember 31, 1960
1/ ouch! invalid dale

/I ouch! invalid dale

As long as we leave the representation of Date accessible 10 everybody, some­
body will - by accident or design - mess it up i that is, someone will do some­
thing that produces an invalid value. In lhis case, we created a Date with a value
that doesn 't correspond to a day on the calendar. Such invalid objects are time
bombs; il is JUSl a mauer o f time before someone innocenlly lIses the invalid
value and gets a lun-time elTor or - usually worse - produces a bad result.

Such concerns lead us to conclude that lhe representation of Date should be
inaccessible to users except through the public member functions that we supply.
Here is a first cut:

/I simple Date (control access)
class Date (

int y. m, d i /I year, month, day
p ublic:

Date(inl y. int m, inl d); /I check for valid date and initialize
void add_day(inl n); /I increase the Date by n days
int month() { return mi }
int dayO (relurn d i)
int year() (re turn Yi)

) ;

We can usc it like this:

Dale birlhday(1970, 12, 30);
birthday. m = 14i
caul « birlhday. monlh O «endl ;

II OK
II error: Date::m is private
II we provided a way to read m

9.4 EVOLV ING A CLASS

~nle notion of a "valid Date" is an important special case of the idea of a valid
value. We try to design our types so that values are guaranteed to be valid : that
is, we hide the representation , provide a constructor that creates only valid ob­
jects, and design all member functions to expect valid values and leave only valid
values behind when they retum. 111e value of an object is often called its slale, so
the idea of a valid value is often referred to as a valid slale of an object.

111e alternative is for us to check for validity every time we usc an object, o r
juSt hope that nobody left an invalid value lying around. Experience shows that
"hoping" can lead to "pretty good" programs. However, producing "pretty good"
programs that occasionaHy produce erroneous results and occasionally crash is
no way to win friends and respect as a professional. We prefer to write code that
can ue demonstrated to be correct.

A mle for what constitutes a valid value is called an illlKU1anl. ~n'e invariant
for Dale ("'A Date must represent a day in the past, present, or future") is unusu­
ally hard to state precisely: remember leap years, the Georgian calendar, time
zones, etc. However, for simple realistic uses of Oates we can do it. For example,
if we arc analyzing intemet logs, we need nOI be bmbered with the Georgian,Ju­
lian, or Mayan calendars. If we can't think of a good invariant, we are probably
dealing with plain data. If so, lise a struct.

9.4.4 Defining member functions
So far, we have looked at Dale from the point of view of all interface designer
and a user. But sooner or later, we have to implement those member functions.
First, here is a subset of the Date class reorganized to suit the common style of
providing the public interface lirst:

/I simple Date (some people prefer implementation details last)
class Date {
publi c:

Date(inl y, int m, int d); II constructor: check for valid date and initialize
void add_day(int n); II increase Ihe Dale by n days
int month ();
II . ..

private :
int y, m, d; II year, month, day

);

People put the public interface lirst because the interface is what most people arc
interested in. In principle, a user need not look at the implementation details. In
reality, we are typic. ... lIy curious and have a quick look to sec if the implementation

309

310 (H APTER 9 • TECHNICALIT IES: C LASSES , ETC.

looks reasonable and if the implementer used sollle technique that we could learn
from. However, unless we arc the impicmcntcrs, we do lend to spend much more
time with lhe public interface. The compiler doesn't care about the order of class
members; it takes the declarations in any order you care to prcscl1llhcm.

'-\Then we defIne a member outside its class, we need to say which class it is a
member of. We do that using the das.s_'ltlllle:: memlxr_,ulIne nOl'ation:

Date : :Oate(i nt yy, int mm, inl dd) I/constructor
:y(yy), m(mm), d (dd) 1/ note: member initial izers

(

}

void Date : :add_day(int nl
(

/I . . .
}

int monlhO /I oops: we forgot Date: :
(

return m j /I not the member function, can ', access III
}

The :y(yy), m(mm), d(dd) nOlation is how we initialize members. We could have
written

Date: : Date(int yy, int mm, int dd)
(

}

y = yy;
m = mm;
d = dd ;

/I constructor

but then we would in principle first have default initialized the members and then
assigned values to them. We would then also open the possibility of accidentally
using a member before it was initialized. TIle :y(yy), m(mm), d (dd) notation
more directly expresses our intent. TIle distinction is exactly the same as the one
between

int x;
/I . .
x = 2;

/I first define the variable x

II later assign to x

9.4 EVOLVING A CLASS

and

int x=2; II define and immediately inilial ize with 2

For consistency, it is even possible to express that last initialization using the
"arb"LIt11ent"!parcnthesis notation:

int x(2); /I initialize x with 2
Date sunday(2004,8,29); /I initialize sunday with (2004,8,29)

vVe can also derine member functions right in the class defmirion:

II simple Date (some people prefer implementation detail s last)
class Dale (
public:

Dale(int yy, int mm, int dd)
:y(yy), m(mm), d(dd)

{

/I . .
}

void add_day(int nl
{

/I ...
}

int monthO { return m; }

II .. .
private:

int y, m, d; II year, month, day
} ;

, 11e first thing we notice is that the class declaration became larger and "messier."
In this example, the code for the constructor and add_dayO could be a dozen or
more lines each. This makes the class declaration several times larger and makes
it harder to rind the interface among the implementation details. Consequenti)"
we don't dcrine large functions within a class declaration.

However, look at the derinition of month O. 11mt's slraightfor,vard and
shorter tlmn the version that places Date: :monthO out of the class declaration.
For sllch short, simple functions, we might consider \-\!Titing the definition right in
the class declaration.

311

312 CHAPTER 9 • TECHNICALITIES: CLASSES , ETC.

Note that monthO can refer to m even though m is defined after (below)
month() . A member can refer to another member of its class independently of
where in the class that Olhcr member is declared. The mle that a name must be
declared before it is lIsed is relaxed within the limited scope of a class.

Writing the definition of a member funcuon within the class definition has
twO effects:

The fu nction will be il/lil/ed; that is, the compiler will try to generate code
fo r a call to the iulinc function without using a function caillo gel to that
code. 111is can be a significant pcrfonnancc advantage for functions,
slIch as monthO, lhal hardly do anything bUl are used a lot.

All uses of the class will have to be recompiled whenever we make a
change to the body of an inlined function. If the function body is out o f
the class declaration, recompilation of users is needed only when the
class declaration is itsclf changed. Not recompiling when the body is
changed can be a huge advantage in large programs.

"nlc obvious rule of thumb is: Don't put member function bodies in t.he class
declaration unless you know that you need the pcrfonnance boost from inlining
tiny functions. Large functions, say fi ve lines of code, don't benefit from inlining.
We rarcly inline a function that consists of more than one o r twO expressions.

9.4.5 Referring to the current object
Cons ider a simple usc of t.he Date class so far:

class Date (
II . ..
int monthO (return m; }
II.

private:
int y, m, d ; II year, month, day

) ;

void f(Date d1 , Date d2)
(

cout« d1 .monlh O« ' , « d2.monthO« '\n ' ;
)

How docs Date: :month O know to print Out d1 .m in the first call and d2.m in the
second? Look again at Date:: month O; its declaration specifics no function argu­
ment! How docs Date:: monthO know for which object it was called? A class
member function, such as Dale : :month (), has an implicit argument. which it uses

9.4 EVOLVI NG A CLA SS

to identify the object for wruch it is called. So in the first cail , m correctly refers to
dl .m and in the second call it refers to d2. m. See §17.10 for more uses of this im·
plicit argument.

9.4.6 Reporting errors
' '''hat do we do when we find an invalid date? \"'here in the code do we look for
invalid dates? From §5.6, we know that the answer to the first question is
"llu·ow an exception," and the obvious place to look is where we first construct a
Dale . If we don't create invalid Dales and also write our member functions cor·
rectly, we will never have a Date with an invalid value. So, we'll prevent users
from ever creating a Date with an invalid state:

/I simple Date (prevcnt inva lid dates)
class Date {
public:

class Invalid { }; /I to be used as exception
Date (int y, int m, int d);
II . ..

II check for valid date and initialize

private :
int y, m, d ;
bool checkO;

/I yea r, month , day
II return truc if date is va lid

} ;

We put the testing of validity into a separate checkO funClion because checki.ng
for validity is logically distinct from initialization and because we might want to
have several constructors. As you can sec, we can have private functions as well
as private data:

Date : :Dale(int yy, int mm, int dd)
: y(yy), m(mm), d (dd)

{
if (!check()) throw InvalidO;

}

/I ini tialize data members

II check for validity

bool Dale ::checkO II return true if date is val id
{

if (m<l II 12<m) return false ;
II . ..

Given that defmition of Date, we can write:

313

314 C HAPTER 9 • TECHNICALITIES: ClASSES , ETC.

void fCi n t x, int y)

try (

)

Date dxy(2004,x,y);
coul « dxy« '\n ' ;
d xy.add_day(2);

calch(Date :: Invalid) (
error("invalid date n);

)

1/ see §9.8 (or J declaration of «

II errorO defined in §5 .6.3

We now know that « and add_dateO will have a valid Date on which to operate.
Before completing the evolution of our Dale class in §9.7, we'll take a detour

to describe a couple of gcncrallanguagc facilities that we'll need lO do that well:
enumerations and operator overloading.

9.5 Enumerations
An e num (an ClI/llIeTalion) is a very simple user-defined type, specifying its set of
values (its clllmeralfm) as symbolic constants. FOT example:

co urn Month (
jao=l , feb, mar, apr, may, jun, jul , aug. sep, oct, nov, dec

);

"IllC "body" of an enumeration is simply a list or its enumerators. You can give a
specific value ror an enumerator, as we did ror jan here, or leave it to the com­
piler to pick a suitable value. Ir you leave it to the compiler to pick, it 'U give each
enumerator the value or the previous enumerator plus one. '1ms, our definition
or Monlh gave the months consecutive values starling with 1. We could equiva­
lently have wriuen

c num Month {

);

jan=l , fe b=2, mar=3, apr=4, may=5, jun=6,
ju l=7, aug=8, sep=9, ocl=10, nov=11, dec=12

However, that's tedious and opens the opporlunity ror errors. In ract, we made
twO typing errors before getting this latest version right; it is better to let tile com·
piler do simple, rcpetitive "mechanical" things. ·n le compiler is bettcr at such
tasks than we arc, and it doesn't get bored .

Ir we don't initialize the first cnumerator, tllC count starts with O. For example:

9 .5 ENUMERATIONS

enum Day {
monday, tuesday, wednesday, thursday, friday, saturday, sunday

);

Here monday==O and sunday==6. In practice, staning with 0 is often a good
choice.

Vile c..,n lise our Month like lills:

Month m = feb;
m =7;
int n = m j

Month mm = Month (7)j

/I error: can't assign an int to a Month
/I OK: we can get (he numeric value of a Month
/I convert int to Mon(h (unchecked)

Note that a Month is a separate type. It has an implicit conversion to int , but
there is no implicit conversion from int to Month . This makes sense because
every Month has an equivalent integer value, but most ints do not have a Month
equivalent. For example, we really do want this initialization to fail:

Month bad = 9999; /I error: can't convert an int to a Month

If you insist on lIsing the Month (9999) notation, on your head be it! In many
cases, C++ will not try to stop a pmgra mmer from doing something potentially
silly when the programmer explicitly insists; after all, the programmer might ac·
tually know better.

Unfonunately, we cannot definc a conStructor for an enumeration to check
in.i tializer values, but it is trivial to write a simple checking function:

Month inuo_month(int x)
{

if (x<jan II dec<x) error{ tl bad month");
return Month(x);

Given lilat , we can write

void f(int m)
(

)

Month mm = inC to_month(m);
II ...

\<Vhat do we lise enumerations for? Basically, an cnumeration is usefu l whencver
we need a set of related named integer constants. That happens all tile timc when

315

31. C H APTER 9 • TECHNICA LITI ES: ClA SS ES , ETC.

we try to represent sets of alternatives (up, down ; yes, no, maybe ; on , off ; n, ne,
e, se, 5, SW, w, nw) or distinctive values (red, blue, green , yellow, maroon, crim­
son, black).

Note that an enumerator is /lot in the scope of its enumeration type; it is in
the sallle scope as the name of its enumeration type. For example:

c num Traffic_sign { red, yellow, green};
int var = red ; /I nOte: nOt Trafflc_sign::red

TIlis can cause problems. Imagine the potcmial for confusion if you have short
popular names, such as red, on , ne, and dec, as global names. For example, does
ne mean "nonheast" or "not equal "? Docs dec mean "decimal" or "Oecember"?
1ltis is the kind of problem we warned against in §3.7, and we can easily get such
problems if we define an cnum with short, conveniem enumerator names in the
global scope. In fact, we immediately get this problem when we try to usc our
Month enumeratio n together with iostreams because there is a "manipulator"
called dec for "decimal" (sec §11.2. 1). To avoid such problems, we often prefer to
define enumerations in more limiLCd scopes, such as within a class. ~nlat also al­
lows us to be explicit about what an enumerator value refers to, such as
Month : :jan and Color : :red . We present the technique for doing that in §9.7. 1. If
we absolutely need global names, we try to minimize the chance of name clashes
by using longer nmIles, by using unusual names (or unusual spellings), and by
capita lization. However, our prefen'ed solution is to make names as local as is
reasonable.

9.6 Operator overloading
You can define almost all C++ operators for class o r enumeration operands.
That's o ften called opera/Qr QUa'/oadillg. We usc it when we want to provide con­
vemional notation for a type we design. For example:

en urn Month {
Jan=1, Feb, Mar, Apr, May, Jun , Jul, Aug, Sep, OCI, Nov, Dec

);

Month operator++(Month& m)
{

)

m = (m==Dec) 1 Jan : Monlh (m+1);
re turn m ;

II prefix increment operator

1/ "wrap around"

9 .6 OPERATOR OVERLOADING

~nle ? : constmct is an "arithmetic if": m becomes Jan if (m==Oec) and
Month (m+l) otherwise. It is a reasonably elegant way of expressing lhe fact that
months "wrap around" after December. TIle Month type can now be used like
this:

Month m = sepi
++m; /I m becomes Dcl
++m;
++m;
++m;

/I m becomes Nov
/I m becomes Dec
/I m becomes Jan (~wrap around")

You might not think Lhat incrementing a Month is common enough to warrant a
special operator. '11at may be so, but how about an outpUl operator? We can de­
fine one like this:

vector<string> month_lbl ;

oSlream& operator« (ostream& os, Month m)
{

ret urn os « month_tbl[m] i
)

~nlis assumes that month_fb i has been initialized somewhere so that (for exam­
ple) month_tbl[MarJ is "March" or some other suitable name for that month ; see
§1O.11.3.

You can define just about any operator provided by C++ for your own
types, but only existing operators, such as +, - , . , /, %, [I, 0, 'II, !, &, <, <=, >, and
>=. You cannot defme your own operators; you might like to have " or $= as op­
erators in your program, but C++ won' t let you. You caJl define operators only
wil.h their conventional number of operands; for example, you can defme unary
- , bUI not unary <= (less Lhan or equal), and binary +, but nOI binary ! (not). Ba­
sically, the language allows yOll to use the existing syntax for the types yOll de­
fine , but not to extend that syntax.

An overloaded operator must have at least one user-defined type as operand:

int operator+(int,int); /I error: you can't overload built-in +
Vector operator+(const Vector&, const Vector &); /I OK
Vector operator+=(const Vector&, inl); /I OK

It is generally a good idea not to define operators for a type unless you are really
certain limt it makes a big posil.ive change to your code. Also, define operaLOrs

317

318 CHA PTER 9 • TECHNI CALITIE S: ClA SS ES, ET C.

only with their conventional meaning: + should be addition, binary · multiplica­
tion, [J access, () call, etc. This is just advice, not a language rule, but it is good
advice: conventional lise of operators, slich as + for addition. can significantly
help us understand a program. After all, such lISC is the result of hundreds of
years of experience with mathematical notation. Conversely, obscure operators
and unconventional use of operators can be a significant distraction and a SOUTce

of errors. We will not elaborate on this point. Instead, in the following chapters.
we will simply lise operator overloading in a few places where we consider it
appropriate.

Note that lhe most interesting operators to overload aren't +, - , . , and I as
people often assume, but =, ==, !=, <, n, and O.

9.7 Class interfaces
We have argued that the public interface and the implementation parts of a class
should be separated . As long as we leave open the possibility of using structs for
lypeS that are "plain old data," few professionals would disagree. However, how
do we design a good interface? \rVhat distinguishes a good public intcrface from a
mess? Part of that answer can be given only by example, but there arc a few gen­
eral principles that we can list and which are given some support in C++:

Keep interfaccs complete.

Keep interfaces minimal.

Provide constructors.

Support copying (or prohibit it) (see §14.2.4).

Use types to provide good argument checking.

Identify nonmodifying member functions (see §9.7.4).

Free all resources in the destructor (see §17.5).

See also §5.5 (how to detect and report nm·time errors).
111e first two principles can be summarized as "Keep the interface as small as

possible, but no smaller." We want our interface to be small because a small inter­
face is easy to learn and easy to remember, and the implementer doesn't waste a
lot of time implementing unnecessary and rarely used facilities. A small interface
also means that when something is wrong, there are o nly a few functions to
check to find the problem. On average, the more public member functions , the
harder it is to find bugs - and please don't get us started on the complexities of
debugging classes with public data. But of course, we want a complete interface;
otherwise, it wou ld be useless. We couldn 't use an interface that didn't allow liS

to do all we really needed .
Let's look at the other - less abstract and more directly supported - ideals.

9.7 CLASS INTERFAC ES

9.7.1 Argument types
''''hcn we defincd the conStlUCLOr for Date in §9.4.3, wc uscd threc ints as thc ar·
b'umcnlS. 1nat caused somc problcms :

Date dl(4,5,2005);
Dale d2(2005,4,5);

/I oops: year 4, day 2005
/I April 5 or May 4?

111C first problem (an illegal day of !.he month) is easily dealt with by a test in the
constnlctor. However, the second (a month vs. day-of-the-mon!.h confusion) can 't
be caught by code written by the user. lllc second problem is simply that the
convemions fo r writing month and day-in-month differ; for example, 4/5 is
April 5 in the United StalCs and May 4 in England. Sincc wc can't calculate our
way out of this, wc must do somcthing clse. TIle obvious solution is to use thc
t)1)C system:

II simple Dale (use Monlh type)
class Date (
public :

enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oel, nov, dec

};

Dale(int y, Month m, int d); /I check for valid date and initiali ze
1/ . .

private :
int y; /I year

} ;

Month m;
inl d ; /I day

Whcn we use a Month type, the compiler will catch us if we swap month and
day, and using an enumcration as the Month type also gives us symbolic names
to use. It is lIsually easier LO read a.nd write symbolic names than to play around
with numbcrs, a.nd therefore less error-prone:

Dale dxl (l998, 4, 3); /I error: 2nd argument not a Month
Dale dx2(1998, 4, Date:: mar) ; /I error: 2nd argument not a Month
Date dx2(4, Date :: mar, 1998); /loops: run-ti me error: day 1998
Date dx2(Dale: : mar, 4, 1998); /I error: 2nd argument not a Month
Date dx3(1998, Date: : mar, 30); /I OK

319

320 CH APTE R 9 • TE C H NICALITIES: (LASSES. ET C.

This takes care of most "accidents." Note the usc of the qualifi cation of the cnLl­
mcralor mar with the class name Date : Date:: mar. This is the way we say thaI
it 's Date 's mar. \<\'c don't say Date.mar because Dale isn't an object (it 's a type)
and mar isn' t a data member (it 's an enumcraLOr - a symbolic constant). Usc ::
after a class name (or a namespace name; §S.7) and. (dOL) arLC .. an object name.

When we have a choice, we calch errors at compile time ralher than at Iun

time. \OVc prefer for lhe compiler to find the error rather than for us to uy to fig­
ure Qut exactly where in the code a problem occurred. Also, errors caught a l

compile time don't require checking code to be written and executed.
Thinking like that, could we calch the swap or the day or the momh and the

year also? We could, but the solution is not as simple or as elegant as ror Month ;
arter all, mere was a year 4 and you might wam to represent it. Even ir we re­
stricted ou rselves to modern times there would probably be too many relevant
years ror us LO list them all in an enumeration_

Probably the best we could do (witham kllowing quite a lot about the in­
tended usc or Dale) would be something like this:

class Yea r { /I year in lmi n:max) range
static const int min = 1800;
static const int max = 2200;

public:
class Invalid { };
Year(int x) : y(x) { if (x<min II maxo) throw In ... alid O;)
int yearO { return Yi }

private:
int Yi

} ;

class Date {
public :

e num Month {
jan=1, fe b. mar. apr, may. jun, jul. aug. sep, oct. no dec

};

Date(Year y. Month m. int d)i

II ...
pri vate :

};

Year Yi
Month m;
int d ; II day

II check for v"lid date ;md init ialize

9 . 7 ClASS INTERFAC ES

Now we get

Date dx1(Year(1998), 4, 3);
Date dx2(Year(1998), 4, Date: :mar);
Dale dx2(4, Date: : mar, Year(l998));
Dale dx2(Dale: :mar, 4, Year(1998));
Dale dx3(Year(1998), Dale: :mar, 30);

II error: 2nd argument not a M onth
/I error: 2nd argument not a Month

/I error: 1 st argument nOI a Year
II error: 2nd argument not a Month
II OK

-n l is wcird and unlikely crror would still not bc caught until run time:

Dale dx2(Year(4), Date: : mar, 1998); /I run-t ime error: Year:: lnvalid

Is the extra work and notation to get years checked worthwhile? Naturally, that
depends on the constraints on the kind of problem you are solving using Dale,
but in this case we doubt it and won't use class Year as we go along.

vVhen we program, we always have to ask oursclves what is good enough
for a given application. Wc usually don't havc the luxury of being ablc to scarch
"forever" for the pcrfect sol ution aftcr we have already fou nd onc that is good
enough. Search further, and we might even come up with something that's so
elaboratc that it is worse than thc simple early solution. This is onc meaning of
the saying ""nle best is the enemy of the good" (Voltaire).

Notc the lise of static canst in the definitions of min and max . 111is is the
way we define symbolic constants of integer types within classes. For a class
member, we use slatic to make sure that there is just one copy of the value in the
program, rather than one per object of the class.

9.7.2 Copying
vVe always have to create objects; that is, wc must aJways consider initialization
and constructors. Arguably they arc thc most important members of a class: to
write them, you have to decide what it takes to initialize an object and what it
means for a value 10 be valid (what is the invariant?).J uSI thinking about initial­
ization will help you avoid errors.

-n lC next thing 10 consider is of len: Can we copy our objects? And if so, how
do we copy them?

For Date o r Month. the answer is that we obviously want to copy objccts of
thatlypc and that the mcaning of mfrY is trivial: just copy all of the members. Ac·
tually, this is the default casc. So as long as you don't say anything else, the com­
piler will do exactly that. For example, if YOll copy a Month as an initializer or
right·hand side of an assignment, all its members arc copied :

Date holiday(1978, Date : :jul, 4);
Date d2 = holiday;
Date d3 = Date(1978, Date: :jul, 4);

/I initialization

321

322 CHAPTER 9 • TECHNICALITIES: CLA SSES, ET C.

holiday = Oate(1978, Date: :dec, 24);
d3 = holiday;

II assignment

This will all work as expected. TIle Oale(1978, Datc : :dec, 24) notation makes the
appropriate unnamed Date object, which you can then use appropriately. For
example:

cout« Dale(1978, Date: :d ec, 24);

111is is a usc of a constructor that acts much as a literal for a class type. It often
comes in as a handy alternative to first defining a variable or const and then
usmg It once.

What if we don't wam the default meaning of copying? We can either define
our own (sec §18.2) or make the copy constructor and copy assignment private
('co §14.2.4).

9.7.3 Default constructors
Ullinitializcd variables can be a seriOliS source of errors. 1'0 counter that problem,
we have the notion of a constructor to guarantee that every object of a class is ini­
tialized. For example, we declared the COllstnlctor Date: :Date(int,Monlh ,int) to
ensure that every Dale is properly initialized. In the case of Dale, that means that
the programmer must supply three arguments of the right types. For example:

Date d1 ;
Date d2(1998);
Date d3(l ,2,3,4);
Date d4(1,"jan",2);
Date d5(I,Date: :jan,2);
Date d6 = d5;

II error: no inilia lizer
/I error: too few arguments
/I error: too many arguments
/I error: wrong argument type
/I OK: usc the three-argument constructor
/I OK: usc the copy constructor

Note that even though we defined a constructor for Dale, we can still copy Oates.
Many classes have a good notion o f a default value ; that is, there is an obvi·

ous answer to the question "What value should it have if 1 didn 't give it an ini·
tializer?" For example:

siring sl;
veclof<string> v1;
veclo r<slring> v2(10);

/I default value: the empty string ••
/I default value: the empty vector; no elements
/I vector of 10 default strings

This looks reasonable. It evcn works the way thc comments indicate. ~l1lat is
achieved by giving vector and string default amsh-uclorJ that implicitly provide the
desired initialization.

9 . 7 CL A SS INTERFACES

For a type T, TO is the notation for the defaull value, as defmed by the default
constmcLOr, so we could write

string sl = string() ;
veclor<string> v1 = veclor<string>O;

/I default value: Ihe empty string ·"
II default value:

veclor<siring> v2(10,string()) ;
II the empty vector; no elements
II vector of 10 default strings

However, we prefer the equivalent and colloquial

string sl ;
vector<string> v1 ;
vector<string> v2(10);

/I default value: the empty string , .
II default value: the empty vector; no elements
/I vector of 10 default strings

l:Or buill-in types, such as int and double, the defaull constructor notation means
0, so intO is a complicated way of saying 0, and doubleO a long-winded way of
saying 0_0.

Beware of a nasty syntax problem with the () notation for initializers :

siring s1(" lke");
string s2();

II string initial ized to " Ike~

II function laking no argumenl returni ng a string

Using a default constructor is not just a matter of looks. Imagine that we could
have an uninilializcd string or vector.

string s;
far (int i=O, ks.sizeO, ++i) /I oops: loop an undefined number of limes

taupper(s[i]); II oops: modify the contents of a random memory location

veclar<string> v;
v.push_back(" bad"); II oops: write to random address

If the values of s and v were genuinely undefined, s and v would have no notion
of how many elements they contained or (using the common implementation
techniques; sec §17.5) where those elements were supposed to be stored. -nle re­
sults would be usc of random addresses - and that can lead to the worst kind of
errors. Basically. with out a constructor, we c..1.nnot establish an invariant - we
c..1.nnOI ensure that the values in those variables arc valid (§9.4.3). We must insist
that stich variables are initialized. We could insist on an initializer and then write :

string sl = "";
veclar<slring> v1(O);
veclar<slring> v2(10, "") ; /I vector of 1 0 empty strings

323

32. CHAPTER 9 • TECHNI CA LI TI ES ; CLASSES, ET C

But we don't think that's particularly pretty. For siring, '''' is rather obvious for
"empty string." For vector, 0 isn't tOO obscure for "empty vectOr." However, for
many Iypes, it is not easy to find a reasonable notation for a default value. For
many types, it is ben eT to define a conslm clOr that gives meaning to the creation
of an object without an explicit initializer. Such a constructor takes no arguments
and is called a (UjilUll C01lslnlClar.

TIlere isn' t an obvious default value fo r dates. That's why we didn' t define a
default constructor for Dale so far, but let's provide one Gust to show we can):

class Date (
public :

II .
DateO;
II .

private :

) ;

int Yi
Month m;
int d ;

/I default construdor

We have to pick a default date. The fi rst day of the 21st century might be a rca­
sonable choice:

Date:: DateO
:y(2001), m(Date:: jan), d(l)

If \\Ie didn 't like (0 build the default value right into the constructor code, \\Ie

could lise a constant (or a variable). To avoid a global variable and its associated
initialization problems, we use the technique rrom §8.6.2:

Dale& defaulCdateO
(

}

static Date dd(200l,Date: :jan, 1);

return dd ;

We used stat ic (0 get a variable (dd) that is created only once, rather than each
time de fault_dateO is called , and initialized the fi rst time defau lt_dateO is called.
Given default_dateO, it is trivialLO define a default constructor ror Date:

9 .7 CLA SS INTER FACES

Dale:: DaleO
: y(default_dateO. yea rO),
m(defauIL dateO.monlh O),
d(d efaull_daleO. day(»

Note that the default constructor does not need to check its value; the construc­
tor for default_date already did that. Given this default Dale constructor, we can
now have vectors of Oates:

vector<Dale> birlhdays(10);

Without the default constnlctor, we would have had to be explicit:

veclo r<Date> bi rthdays(l O,defau IL dateO) ;

9.7.4 const member functions
Some variables are meant to be changed - that 's why we call them "variables" -
blll some arc not ; that is, we have "variables" representing itnmutable values.
~l1lOse. we typically call 1Ql/.JttmtJ or just consts. Consider:

void some_funct ion(Date& d, const Date& starL oC te rm)
{

)

int a = d.dayO;
int b = starL oUcrm.day();
d .add_day(J);
starLor_te rm.add_day(J);

/10K
/I should be OK (why?)
/I fine
/I error

Here we intend d to be mmable, but starLoClerm to be immutable; it is nOl ac­
ceptable for some3unction() to change starLoCterm. How would the compiler
know that? It knows because we told it by declaring starLoCterm consl. So far,
so good , but then why is it OK to read the day of starLoUerm using day()? As
the definition of Dale stands so far, slarL oCterm.dayO is an error because the
compiler docs not know that dayO doesn't change its Date. We never told it, so
the compiler assumes that dayO may modify its Dale and reports an error.

\Ale can deal with this problem by classifying operations on a class as modify­
ing and nonmodirying. TIlal 'S a pretty fundamental distinction that helps us un­
derstand a class, but it also has a very practical importance: operations that do
not modify the object can be invoked for const objects. For example:

325

326 CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.

class Dale (
public:

1/ . ..
jnt dayO const;
Month month() co nst ;
jnt yea r() const;

void add_day(int n);
void add_mo nth(int n);
void add_year(int n)i

private :
jnt Yi /I year

II const member: can', modify the object
II const member: can', modi fy the object
II const member: can', modify the object

/I non-const member: can modify the object
/I non-const member: can modify the object
/I nan-const member: can modify the object

M o nth m j

jnt d ; /I day of month
);

Dale d (2000. Date: :jan, 20);
const Date cd(2001, Date: :feb, 21);

coul « d.dayO« 11 _ "« cd .day()« e ndl ; /10K
d .add_day(l); /I OK
cd .add_day(l); II error: cd is a const

We usc co nst right after the argument list in a member rUllclion declaration to in­
dicate that the member function can be called for a const object. Once we have
declared a member function const, the compiler holds us to our promise not to
modify the object. For example:

int Oate:: dayO const
(

++d; II error: attempt to change obiect from canst member function
ret urn d;

)

Naturally, we don' t usually try to "cheat" in this way. What the compiler pro­
vides for the class implementer is primarily protection against accident , which is
panicularly useful for more complex code.

9.7_5 Members and Il helper fun ctions"
'Whcn we design our interfaces to be minimal (though complete), we have to
Icave out 100s of operations that arc merely useful. A function that can be simply.
elcgamly, and efficiently implemented as a freestanding function (lhat is. as a

9 ,7 CLASS INTERFAC ES

nonmcmber function) should be implemcnted outside the class. That way, a bug
in that function cannot directly corrupt tllC data in a class object. Not accessing
the rcprcsemation is important because the usuaJ debug technique is "round up
thc usual SUSPCCIS

n
; that is, when sometlljng goes wrong with a class, we first

look at the functions that directly acccss thc rcpresentation: one of those almost
certainly did it. If there are a dozcn sllch functions we will be much happier than
if there were 50.

Fifty functions for a Date class! You must wonder if we arc kidding. We are
110t: a few years ago I surveyed a number of cOllul1ercially used Date libraries
and fo und them fu ll o f functions like nexCSundayO, nexL workdayO, etc. Fifty is
nOt an unreasonable number fo r a class designed fo r the convenience of the users
ralher than for case of comprehension, implementation, and maintenance.

Note also that if the representation changes, only the functions that directly
access the rcprcscntation need to be rewritten. 111at's another strong practical
rcason for keeping imcrfaccs minimal. In our Date example, we might decide
that an integer representing the number of days since J anuary 1, 1900, is a much
better representalion for our uses than (year,monlh ,day). Only the member fu nc­
tions would have to be changed.

Hcre are some examples of helper jillutj(ms:

Date nexCS unday(consf Date& d)
{

)

II access d using d.day(), d .monthO, and d.yearO
II make new Date to return

Dale nexLweekday(co nsl Dale& d) (I- . . . -I)

boolleapyear(int y) (r . , -I)

boot operator==(const Dale& a, canst Dale& b)
{

return a. yearO==b. yearO
&& a.monlh ()==b.month()
&& a_dayO==b_dayO;

boot operalor!=(consf Date& a, const Date& b)
{

return !(a==b) ;
)

327

32. CHAPTER 9 • TECHNICALITIES: CLASSES, ETC.

Helper functions arc aJsa called amveniena jimetians, auxiliary fiwetiolls, and many
other things. TIle distinction between these functions and other nonmember
functions is logical; that is, "helper function" is a design concept, not a program­
ming language concept 'The helper functions often take arguments of the classes
that they are helpers of. TIlere are exceptions, though: note leapyear() . Often, we
use namcspaccs to identify a group of helper functions; see §8.7:

namespace Chro no {

)

class Date (10 ... 01} ;

bool is_date(int y, Dale : :Mo nth m, int d)i II true for valid date
Date nexCSunday(const Date& d) (r .. . o/ }

Date nexl_weekday(const Date& d) { / • . .. O,}

boolleapyear(int y) { ' " ... "/ } /I see exercise 10
bool operalor==(const Date& a, consl Dale& b) U· ... */}
II . .

Note the == and != functions. TIley are typical helpers. For many classes, == and
!= make obvious sense, but since they don't make sense for all classes, the com­
piler can't write them for you the way it writes the copy constructor and copy
asslg11mem.

Note also that we introduced a helper function is_dateO. l1mt function re­
places Date:: checkO because checking whether a date is valid is largely inde­
pendent of the representation of a Date . For example, we don't need to know
how Date objects are represented to know that "January 30, 2008" is a valid date
and ~February 30, 2008" is not. "111ere still may be aspects of a date that might
depend on t.he representation (e.g. , can we represent '1anuary 30, l066"?), but (if
necessary) Date 's constructor can lake care of that.

9.8 The Date class
So, let's just put it all together and see what that Date class might look like when
we combine all of the ideas/concerns. Where a function's body is just a ... com·
mem, the actual implementation is tricky (please don 't try to write those just yet).
Fim we place the declarations in a header Chrono. h :

/I file Chrono.h

namespace Chrono (

class Date (

9.8 THE DATE CLASS

public:
enum Month (

jan=l , feb, mar, apr, may, jun, ju l, aug, se p, oct, nov, dec
);

class Invalid {}; /I to throw as exception

Date(int y, Month m, int d); II check for valid date and initialize
DateO; II default constructor
/I the deiault copy operations are fine

I/nonmodifying operations:
int dayO ca nst { return d;)
Month monthO canst { return m i }

in t yearO canst { return Yi }

/I modifying operations:
void add_day(int n);
void add_month(int n);
void add_year(int n)i

private:

);

int y;
Month m;
inl d;

bool is_date(inl y, Date: :Month m, int d);

boolleapyear(int y); /I true if y is a leap year

/I true for valid date

bool ope rator==(co nst Dale& a, canst Dale& b);
bool operator!=(consl Dale& a, consl Dale& b);

ostream& operator«(ostream& as, canst Date& d)i

islream& operator»(istream& is, Oate& dd);

) /I Chrono

"lllC dcfinitions go into Chrono.cpp:

329

330 CHAPTER 9 • TE CHNICA LITIE S: CLA SS ES, ETC.

/I Chrono.cpp

namespace Chrono {

1/ member function definitions:

Oate:: Date (inl yy, Mo nth mm, int dd)
: y(yy), m (mm), d (dd)

{

if (! is_date(yy,mm,dd» throw Invalid ()i
}

Date& default_dateO
(

}

static Date dd(2001 ,Date : :jan,1); II start of 21 51 century
return dd ;

Date:: DaleO

{

}

: y(d efau 11_ d ate O. year()) ,
m(d efault_date().mo nth(),
d (defaull_ dateO .dayOl

void Date :: add_day(in! n)
(

1/.

void Date : :add_month(int n)
{

1/ . ..
}

void Date : :add_year(inl nl
{

if (m==feb && d==29 && lIeapyear(y+n» { /I bcWM€ of leap years!
m = mar; 1/ usc March 1 instead of February 29
d = 1;

}

y+=nj

9.8 THE DATE CLASS

/I helper functions:

bool is_dalc(inl y, Dale::Month m, int d)
(

II assume that y is valid

if (d<=O) return false; II d must be positive

int days_in_month = 31; II most months have 31 days

switch (m) {
case Date: :feb : li the length of February varies

daysjn_month = (leapyear(y» 129:28;
break;

case Date : :apr: case Date: :jun : case Dale: :sep: case Date:: nov :
days_in_monlh = 30; lithe rest have 30 days
break;

)

if (daysj n_month<d) return fal se;

return true;
}

bool leapyear(inl y)
(

II see exercise 10
)

bool ope rator==(const Dale& a, const Date& b)
(

)

return a.yea rO==b.yearO
&& a.month O==b.monthO
&& a.day()==b.dayO;

bool operator!=(const Date& a, const Datc& b)
(

return I(a==b);
}

ostream& operator«(ostream& os, consl Date& d)
(

331

JJ2 CHAPTER 9 • TECHNICALITIES: CLA SS ES , ETC.

)

return os« '(' « d .yearO
« ', ' « d .month ()
« ' ,' « d .dayO« 'I' ;

istream& o perator» (islream& is, Datc& dd)
{

int y, m, d ;
char chl, ch2, ch3, c h4;
is» chl » y » ch2» m » chJ » d » ch4i
if (! is) return is;
if (chl !='(' II ch2 !=', ' II ch3!=' ,' II c h4!=')') (

is. clear(ios_base:: failbit) ;
re turn is;

)

return is;

cnum Day (

II oops: format error
II set the fai l bit

sunday, monday, tuesday, wednesday, thursday, friday, saturday
) ;

Day day_o C week(con st Date& d)
{

/I .

Date ncxCSunday(const Oate& d)
{

/I ...

Date ncxl_weekday(const Date& d)
{

1/ . ..
)

} /I Chrono

Thc fUIlClions implementing » and « for Date will be explained in detail in
§ 1O.7 and 10.8.

(H AI' TER 9 TE RMS

~ Drill

1l1is d rill simply involves geuing the sequence of versions of Date to work . Fo r
each version define a Date called today initialized lo J une 25, 1978. Then, define
a Date called tomo rrow and give it a value by copying today into it and increas­
ing its day by one using add_dayO. Finally, output today and tomorrow using a
« defined as in §9.8.

Your check for a valid date may be very simple. However, don't accept a
month that is nOt in the {1,12] range or day of the month that is not in the [1,3 1]
range. Test each version with at least one invalid date (e.g., 2004, 13, - 5).

I. 'nle version from §9.4.1
2. ' Ille version from §9.4.2
3. 'n le version from §9.4.3
4. 111e version from §9.7. 1
5. The version from §9.7.4

Review

I. \¥hat are the two parts of a class, as described in the chapter?
2. What is the d ifference between the interface and the implementation in a

class?
3. What arc the limitations and problems of the original Date struct that is

created in the chaptcr?
4. Why is a constructor used for the Dale type instead of an iniCdayO

function?
5. ' ","hat is an invariant? Give examples.
6. When should functions be put in the class defini tion, and when should

they be defined outside the class? \-Vhy?
7. When should operator overloading be used i.n a program? Give a list o f

operators that you might want to overload (each with a reason).
8. Why should the public interface to a class be as small as possible?
9. What docs adding const to a member fUllction do?

10. W hy arc "helper functions" best placed outside the class definition?

Terms

built-in types
class
co nsl
construclOr
deslJUctor
enum

enumcration
enumerator
helper fUllction
implementation
inlini.ng
interface

invariant
representation
struct
structure
user-defUled types
valid state

CHAPTE R 9 • TECHNICAllTI ES: CLASSES, ETC.

Exercises
1. List sets of plausible operations for the cxamplcs of rcal-world objects in

§9.1 (such as toaster).
2. Design and implement a Name_pairs class holding (name,age) pairs where

name is a string and age is a doubl e. Represent lhat as a vector<5tring>
(called name) and a vector<double> (called age) member. Provide illl
input operation read_namesO that reads a series of names. Provide a
read_agesO operation that prompts the user for an agc for eacll nillnc.
Provide a printO operation that prints alit the (namel il,age(il) pairs (onc
per line) in the order delemlined by the name vector. Provide a sarlO op­
eration that sons the name vector in alphabetical ordcr and reorganizes
the age vector to match. Implemcnt all "operations" as member functions.
"ICst thc class (of course: test early and often).

3. Rcplace Name_pair : :printO with a (global) operator« and define ==
and != for Name_pairs.

4. Look at the headache-inducing last example of §8.4. Indent it properly
and explain the meillling of each construct. Note that the example doesn't
do anything meaningful; it is pure obfuscation.

5. 1l1is exercise and the next few require you to design and implement a
Book class, such as you can imagine as part of software for a library.
Class Book should have members for the ISBN, title, author, and copy­
right date. Also store data on whether or not the book is checked out.
Create functions for returning those data values. Create functions for
chccking a book in and out. Do sinlple validation of data entered into a
Book; for cxample, accept ISBNs only of the foml n-n-n-x where n is an
integer and x is a digit or a letter.

6. Add operators for the Book class. Have the == operator c1leck whether
the ISBN numbers are the same for t\'vo books. Have != also compare
the ISBN numbers. Have a « print out tlle title author, and ISBN on
separate lines.

7. Create an enumerated type for the Book class called Genre. Have the
types be fiction, nonfiction, periodical, biography, children. Give each
book a Genre and make appropriate changes to the Book constmctor
and member functions.

8. Create a Patron class for tlle library. TIle class will have a user's name, li­
brary card number, and library fees (if owed). Have functions that access
these methods, as well as a function to set thc fcc of the user. Have a
helper method that returns a Boolean (bool) depending on whether or
not the user owes a fcc.

9. Create a Library class. Include vectors of Books and Patrons. Include a
stru ct called Transaction . Have it include a Book, a Patron , and a Dale

CHAPTER 9 EX ERCISES

from the chapter. Make a veClor of Transactions. Create functions to add
books to the library, add patrons to the library, and check Olll books.
Whenever a user checks out a book, have the library make sure that
both the user and the book arc in the library. If they aren' t, report an
error. Then check to make sure that the user owes no fees . If the uscr
docs, report an error. If not, create a Transact ion, and place it in the vec­
tor of Transactio ns. Also create a method that will return a vector that
contains the names of all Patrons who owe fees.

10. Implement leapyearO from §9.8.
I I . Design and implement a set of useful helper function for the Date class

with functions such as next_workdayO (assume that any day that is not a
Saturday or a Sunday is a workday) and week_oCyearO (assume lhal
week I is the week wit.hJanuary 1 in it and that the first day of a week is
a Sunday)_

12. Change the representation of a Date to be the number of days since
January I , 1970 (kJlOwn as day 0), represented as a long, and re­
implement t.he funClions from §9.8. Be sure to reject dates outside the
range we can represent. that way (feel free to reject days before day 0, i.e.,
no negative days).

13. Design and implement a rational number class, Rational. A rational
number has two parts: a numerator and a denominator, for example, 5/6
(fi ve~sixths , also known as approximately .83333). Look up the defini­
tion if you need to. Provide assignment, addition, subtraction, multiplica­
tion, division, and equality operators. Also, provide a conversion to
double. Why would people want to usc a Rational class?

14. Design and implement a Money class for calculalions involving dollars
and ccnts where arithmetic has to be accurate to the last cent using the
4/5 rounding rule (.5 of a cem rounds up; anything less than .5 rounds
down). Represent a monetary amount as a number of cents in a long,
but input and output as dollars and cents , e.g., $123.45. Do not worry
about amounts thai don't fit into a long.

15. Refine the Money class by adding a currency (given as a constmctor ar­
gument). Accept a floating-point initializer as long as it can be exactly
represented as a long. Don't accept illegal operations. For example,
Money·Money doesn't make sense, and USD1 .23+DKKS_OO makes sense
only if you provide a conversion table defining the conversion factor be­
tween U.S. dollars (USD) and Danish kroner (DKK).

16. Give an example of a calculation where a Rational gives a mathemati­
cally better result than Money.

17. Give an example of a calculation where a Rational gives a mathemati­
cally better result than double.

335

CHAPTER 9 • TE CH NICALITIE S: CLA SSES , ETC.

Postscript
There is a lot to user-defined types, much more than we have presented here.
User·defined types, especially classes, are the heart of C++ a.nd the key to many
of the most effective design techniques. Most of the rest of the book is about the
design and use of classcs. A class - or a set of classes - is the mechanism through
which we represent our concepts in code. Here we primarily introduced the
language·technical aspects of classes; elsewhere we focus on how to elegantly ex·
press useful ideas as classes.

Part II
Input and Output

\ 1.

'-'0

Input and Output Streams

"Science is what we have learned about
how to keep from fooling ourselves."

-Richard P. feynman

I n this chapter and the next, we presem the C++ standard

library facilities for handling input and output from a variety

of sources: I/O streams. We show how to read and write files,

how to deal with errors, how to deal with formancd input, and

how to provide and usc I/O operators for user-defined types.

ll1is chapter focuses on the basic model: how to read and write

individual values, and how to open, read, and write whole files.

The final example illustrates the kinds of considerations that go

into a larger piece of code. 111e next chapter addresses details.

339

340 C HAPTER 10 • INPUT AND OUTPUT STREAMS

10.1 Input and output

10.2 The 110 stream model

10.3 Files

10.4 Opening a file

10.5 Reading and writing a file

10.6 110 error handling

10.7 Reading a single value
10.7.1 Breaking the problem into

manageable parts

10.8 User-defined oulpul operators

10.9 User-de fined input ope rators

10.10 A sta ndard inpulloop

10.11 Reading a structured file

10.11 .1 In-me mo ry re presentation
10.11 .2 Reillding slruclured values
10.11 .3 Changing representations

10.7.2 Separating dialog from function

10.1 Input and output
Without data, computing is pointless. We need to get data into Ollr progr.un La do
intercsting computations and we need to get the results out again. In §4.1 , we men­
tioned the bewildering variety of data sources and targets for output. If we don't
watch out, \ve'll end up writing prognuns that can receive input only from a specific
source and deliver output only to a specific output device. That may be acceptable
(and sometimes even necessary) for specialized applications, such as a digital cam­
era or a sensor for an engine fuel it~ector, but for more common tasks, we need a
way to separate the way our program reads and '>vIites [rom the actual input and
output devices used. If we had to dit'ecuy address eadl kind of device, we'd have to
change our program each litne a new screen or disk came on the market, or limit
our users to ule screens and disks we happen to like. llmt would be absurd.

Most modern operating systems separate the detailed handling o f lIO de­
vices into device drivers and then access the device drivers thro ugh an 110 Ii·
brary that makes I/O fromlto different sources appear as similar as possible.
Generally, the device drivers arc deep in the operating system where most users
don' t sec them, and the I/O library provides an abstraction ofl /O so that the pro­
grammer doesn' t have to think about devices and device drivers:

Da ta source:

Input device Device driver Input library

Our program

Data destination:

Output library H Device driver H Output device

10 .2 THE I/ O STREAM MODEl

When a model like tlus is used, all input and all output can be seen as streams of
bytes (characters) handled by the input/output library. Our job as programmers
of an application then becomes

1. 1b set up 110 streams to the appropriate data sources and destinations

2. To read and write fromlto those StreanlS

11le details of how our characters arc actually transmitted to/from the devices arc
dealt with by the 110 library and the device drivers. In this chapter and the next,
we' lI see how I/O consisting of streams of formatted data is done using lhe C++
standard library.

From the programmer's point of view there arc many different kinds of input
and output. One classification is

Streams of (many) data items (usually to/from files, network connec­
tions, recording devices, or display devices)

Interactions with a user at a keyboard

Interactions with a user through a graphical imerfacc (outputting objects,
receiving mouse clicks, etc.)

~11 1is classification isn 't the only classification possible, and the distinction be­
tween the three kinds of 1/0 isn't as clear as it might appear. For example, if a
stream of output characters happens to be an HTI1' document aimed at a
browser, the result looks remarkably like user interaction and can comain graph­
ical clements. Conversely, the results of interactions with a G UI (graphical user
imerface) may be presellled to a program as a sequence of characters. However,
this classification fi ts our tools: the fi rst twO kinds of 110 arc provided by the
C++ standard library 110 streams and supported rather directly by most operat­
ing systems. We have been using the iostream library since Chapter I and will
focus on that for this and the next chapter. The graphical output and graphical
user interactions are served by a variety of different libraries, and we will focus
onlhat kind of 110 in Chapters 12 to 16.

10.2 The I/O stream model
TIle C++ standard library provides the type istream to deal with streams of
input and the type ostream to deal with streams of output. We have used the
standard islream called cin and the standard oslream called cout, so we know
the basics of how to usc this part of the standard library (usually called the
iostream librmy).

An ostream

Turns values of various types into character sequences

Sends those characters "somewhere" (such as to a console, a file , the
main memory, or another computer)

341

342 CHAPTER 10 • INPUT AND O UTP UT STREAM S

We can represent an ostream graphically like this:

Values of various types Character sequences

;';Somewhere"
(12,34) osloeam

Buffer

TIle buffer is a data stnlcturc that the ostream uses intcmally to store the data you
give it while conUllUnicaling with the operating system. If you notice a "delay" be­
tween your writing to an oslream and the characters appearing at their destination,
it 's usually because they arc still in the bulTer. Buffering is imJXlrtant for pcrfonn.
ance, and perfomuUlcc is important if you deal with large alllOunts of data.

An istream

Tums character sequences into values of various types

Gets those characters from somewhere (such as a console, a fil e, the
main memory, or another computer)

We can represent an istream brraphicaUy like this:

Values of various typcs Charactcr sequences

"Somewherc"
(12,34) istream

Buffer

As with an ostream, an istream uses a buffer to conununicatc with thc operating
systcm. "Vil.h an istream, the buffering can be quite visible to the user. When you
usc an istream that is anached to a keyboard, what you type is left in the buffer
until you hit Enter (return/ newline) and you can usc the erasc (Backspacc) kcy
" to changc your mind" (until you hit Enter).

10 .3 FIl.ES

One of the m~or uses of output is to produce data for humans to read .
111ink o f email messages, scholarly articles, web pages, billing records, business
reports, contact lists, tables of contents, equipment status readouts, etc. There­
fore, oslreams provide many features for fOfll13tting text to suit various tastes.
Similarly, much input is wTitten by humans or is fonnatled to make it easy for
humans to read it. Therefore, istJeams provide features for reading the kind of
output produced by oslreams. "\'e'll discuss fonnatling in §ll .2 and how to read
non-character input in §11.3.2. Most of the complexity related to input has to do
with how to handle errors. To be able to give more realistic examples, we'll start
by discussing how the iostream model relates to mes of data.

10.3 Files
"Ve typically have much more data than can fit in the main memory of our COIll­

puter, so we store most of it on disks or other large-capacity storage devices. Such
devices also have the desirable property that data doesn't disappear when the
power is turned ofT - the data is persistent. At the most basic level, a file is simply
a sequence of bytes numbered from 0 upward:

0: I: 2:

I 1:::=::::::::::::,-1 -'--'--'
A fi le has a forma t; that is, it has a set of rules that determine what the bytes
mean. For example, if we have a text file , the first 4 bytes wiJ[be the first four
characters. On the other hand, if we have a file that uses a binary representation
of integers, those very same fi rst 4 bytes will be taken to be the (binary) represen­
tation of the first integer (see § 11 .3 .2). ~nle format serves the same role for fi les
on disk as types serve for objects in main memory. We can make sense of the bits
in a file if (and only if) we know its fo rmat (see §11.2-3).

For a file, an ostream converts objects in main memory into streams of bytes
and writes them to disk. An islream does the opposite; that is, it takes a Stream of
bytes from d isk and composes objects from them:

E Disk ~ <: 110 system > ---
Flies iostreams
(sequences of byees)

Main
memory

Objects
(o r various types)

Most of the time, we assume that these "bytes on disk" arc in fact characters in
our usual character set. That is not always so, but we C.'lIl get an awfully long way

343

344 CHAPTER 10 • INPUT AND OUTPUT STREAMS

with thal assumption, and other representations afC not that hard to deal with.
We also talk as if all rues were on disks (that is, on rotating magnetic storage).
Again, that's not always so (think of fl ash memory), but at this level of program­
ming the actual storage makes no difference. TImt's one of the beauties of the file
and stream abstractions.

To read a file , we must

I . Know its name

2. Open it (for reading)

3. Read in the characters

4. Close it (though lim is typically done implicitly)

To write a file , we must

1. Name it

2. Open it (for writing) or create a new rlle o f that name

3. Write Out OUf objects

4. Close it (though that is typically done implicitly)

We already know the basics of reading and writing because an ostream attached
to a fLl e behaves exacliy as cout for what we have done so far, and an istream at­
tached LO a me behaves exactly as cin for what we have done so far. We'll present
operations that can only be done for ftles later (§ 11.3.3), blll for now we'll j ust
see how to open ftles and then concentrate on operations and techniques that
apply to all ostreams and all istreams.

10.4 Opening a file
If you want to read from a file or write to a file you have to open a stream specif·
ically for that file. An ifstream is an islream for reading from a fil e, an o(stream is
an ostream for writing to a file, and an (stream is an ioslream that can be used
for both reading and writing. Before a file stream can be used it mUSt be attached
to a fil e. For example:

coul « "Please ente r input (ile name: It;
string name;
cin » name;
ifsh eam ist(name ,c_str()); 1/ ist is an input stream for the file named name
if (!ist) erro r("can 't o pe n input fil e ",name);

Defining an ifs tream with a name string opens the file o f that name for reading.
~nle function c_str() is a member of string that produces a low·level C·style string

10.4 OPENING A FilE

(rom a C++ string. Such C -style strings arc required by many system interfaces.
l11e test o(!isl checks that the me was properly opened. After that, we can read
(rom the file exactly as we would (rom any otller istream. For example, assuming
that the input operator, » , was defined for a type Point , we could write

vecto r<Poi nt> po ints;
Po inl p ;
while (isl» p) points. push_back(p);

Output to Hies is handled in a similar (ashion by of streams. For example:

cout « "Please enter name of oulput rile: ";
string o name;
d n » oname;
of sire am ost(oname .c_str()); Ilost is an output Siream for a file named name
if (!ost) e rror(" can't o pe n o utput fil e " ,oname);

Defining an of stream with a name string opens the file with that name (or writ·
ing. "nle test o(! ost checks that the file was properly opened. After that, we can
wlite to lhe fi le exactly as we would to any other ostream. For example:

fo r (int i=O; i<points.size(); ++i)
ost « '('« po inlsfil.x « ', ' « points(i).y « ")\n ";

When a file stream goes out o(scope its associated me is closed. ''''hen a file is
closed its associated buffer is "flushed n

; that is, the characters from the buffer are
written to the file .

It is usually best to open Hies early in a program before any serious computa­
tion has taken place. After all, it is a waste to do a lot o(work just to fmd that we
c.1..n' t complete it because we don't have anY' ... here to write our results.

Opening the me implicitly as part of lhe creation of an ostream or an istream
and relying on the scope of the stream to take care o f closing the me is the ideal.
For example:

void fiI U rom_fil e(vector<Po inl>& points, string& name)
(

ifstream isl(name .c_str()); /I open (j Ie for rcad ing
if (!ist) e rro r("can't open input fil e " ,name) ;
II . .. usc isl ...
Illhe file is implicitly closed when we leave the function

)

345

C HAPTER 10 • INPUT AND OUTPUT ST REAMS

You can also perform explicit open () and close() operations (§B.7. I). However.
relying on scope minimizes the chances of someone trying to usc a file stream be­
fore it has been aU.ached to a stream or after it was closed. For example:

ifslream ifs;
/I . . .
ifs » foo;
/I . .
ifs.open(name.ios_base:: in);
/I . ..
ifs.close();
/I . . .
ifs» bar:
/I . .

/I won'l succeed: no file openl.xl for ifs

/I open file named name for reading

II close file

/I won'l succeed: ifs' file was closed

In real·world code the problems wou ld typically be much harder to spot. Fortu·
nately, you can', open a file stream a second lime withom first closing it. Fo r
example:

fstream fs;
fs.open("foo", ios_base : :in);
/I close() missing
fs.open("foo ", ios_base: :oul):
if (fs) error(" impossible"):

/I open for input

/I won'l succeed: ifs is a lready open

Don't forget to test a stream after opening it.
Why would you usc openO or closeO explicitly? Well, occasionally the life­

time of a connection to a file isn't conveniently limited by a scope so you have to.
But that's rare enou gh for us not to have to worry about it here. More 10 the
paim, you'll find such usc in code written by people using styles from languages
and libraries that don't have the scopcd idiom used by ioslreams (and the rest of
the C++ standard library).

As we'll sec in Chapter 11, there is much more to files, but for now we know
enough to usc them as a data source and a destination for data. 111al'lI allow us
to write programs that would be unrealistic if we assumed that a user had to di­
rectly type in all the inpul. From a progranuner's point of view, a great advantage
of a file is that you can repeatedly read it during debugging until your progran1
works correctly.

10.5 Reading and writing a file
Consider how you might read a set of results of some measurements from a file
and represent them in memory. This might be the temperature readings from a
weather station:

10.5 READING AND WR ITING A FILE

o 60.7
1 60.6
2 60.3
3 59.22

"n lis dma fLle contains a sequence of (hour of day,lempermure) pairs. '11e hours
are numbered 0 to 2J and the temperatures are in Fahrenheit. No funher fomlatling
is assumed; that is, the file docs not contain any special header information (such as
where the reading was taken), units for the vaiues, punctuation (such as parenthe·
ses around each pair of values), or termination indic.."llor. This is the simplcst case.

We could represent a temperature reading by a Reading type:

slrucl Reading { /I a temperature reading
int hour; /I hour after midnight 10:231
double temperature ; /I in Fahrenheit
Reading(int h, double t) ;hour(h), temperatu re(t) { }

);

Given that, we could read like this:

vector<Reading> temps; /I store the readings here
inl hour;
double tempe rature;
while (ist » hour » tempe rature) {

if (hour < 0 1123 <hour) erro r(" hour out of range");
temps. push_back(Reading(hour,temperature» ;

111is is a typical input loop. TIle istream called ist could be an input fil e stream
(irstrcam) as shown in the previous section, (an alias fo r) the standard input
strcam (d n), or ally other kind of istream. For code like this, it doesn't maner ex·
actly from where the istream gets its data. All that our program cares about is
that ist is an istream and that the data has the expected fonnat. The next section
addresses the interesting question of how to detect errors in the input data and
what wc c.."ln do after detecting a fonnal error.

Writing to a file is Llsually simpler than reading from one. Again, once a
stream is initialized we don't have to know exacdy what kind of stream it is. In
particular, we can use the output me stream (of stream) from the section above
just like any other ostrea m. For example, we might want to output the read ings
with ead l pair of values in parenthescs:

fo r (int i=O; k temps.size() ; ++i)
ost « '(' « temps[iJ .hour « ','« te mpslil .temperature « ")\n";

347

348 CHAPTER 10 • INP UT AND OUTP UT STREAMS

The resulting program would then be reading the original temperature rcading
me and producing a new me with the data in (hour,tcmperature) formal.

Because the fil e streams automatically close their mes when they go Ollt of
scope, the complete program becomes

#include "sld_lib_facilities.h "

slruel Reading (1/ a ternl)eraturc reading
int hour; 1/ hour after midnight [0:231
double temperature ; II in Fahrenheit
Reading(inl h, double I) :hour(h), temperature(t) (}

} ;

int main O
(

)

cout« "Please enter input file name: ";
siring name;
dn » name;
ifstream ist(name.cstrO); /1 isl rcads from the file named "name"
if (!ist) e rror("can 't open input fil e " ,name)i

cout« "Please enler name of output file: " ;
cin» name;
of stream OSl(name.cstr()), Ilost wri tes to a file named "name"
if (!osl) error("can't open output fife " ,name);

vector<Reading> temps, II store the readings here
int hour ,
double temperature;
while (ist » hour » temperature) {

if (hour < 0 1123 <hour) error(" hour out of range") ,
temps. pu sh _back(Rcadi n g(hou r, tem pe ralu re» ;

for (int i=O; k temps.sizcO; ++i)

osl« '(' « tempslil .hour« ','
«tempslil.temperature« ")\n" ;

1 0.6 1/0 error handling
When dealing with input we must expecl crrors and deal with them. What kind
or errors? And how? Errors occur because humans make mistakes (misundcr-

10 .6 1/0 ERROR H ANDLING

standing instructions, mistyping, letting the cat walk on the keyboard , etc.), be·
cause fil es fail to meet specifications, because we (as programmers) have the
wrong expectations. etc. The possibilities for input errors are limitless t However,
an istream reduces all to four possible cases, called the Jlream slate:

Stream states

goodO

eof()

failO

badO

The operations succeeded.

We hit end of input (Nend of file·).

Something unexpected happened.

Something unexpected and serious happened.

Unfortunately, the distinction between fail O and badO is not precisely defined
and subject to varying opinions among progranuners defining I/O operations for
new types. However, the basic idea is simple: If an input operation encounters a
simple fonnat error, it lets the stream fail() , assuming that yOll (the lIser of our
input operation) might be able to recover. If, o n the olher hand , something really
nasty, such as a bad disk read, happens , the input operation lets the stream go
badO, assuming that there is nothing much YOll " 'm do except to abandon the at·
tempt to get data from that stream. lllis leaves us with this general logic:

inti = O;
cin » i;
if (!cin) (I/we get here (only) if an input oper.llion f.liled

if (cin .bad()) error(" cin is bad"); /I stream corrupted: ICI 's get out of hcre!
if (cin .eofOl (

1/ no more input
/I this is often how we want a sequence of input operations to end

)

if (cin.fail()) (1/ stream encountered something unexpected
cin .clear() ; II make ready for more input
II somehow recover

)

TIle !cin can be read as "dn is not good" or "Something went wrong with cin"
or "~nle state of cin is not goodO." It is the opposite of "The operation suc·
ceeded." Note the cin .clearO where we handle faH O. "When a stream has failed ,
we might be able to recover. To try to recover, we explicitly take lhe stream out of
the failO Slate, so that we can look at characters from it again ; clearO docs that -
after cin .clearO the state of cin is good{) .

34.

35() C HAPTER 10 • INP UT AND OUTPUT ST RE AMS

Here is an example of how we might use the stream state. Consider how to
read a sequence of integers that may be terminated by the character · or an "end
of file" (Clrl+Z on Wmdows, Orl+D on Unix) imo a vector. For example:

1 23 4 5*

1l1is could be done using a function like this:

void fill_vector(istream& isl. vedor<int>& v, char te rminator)

)

/I read integers from is! into v until we reach eofO or terminator

inl i=O;
while (isl» i) v.push_back(j);
if (ist.eof()) return; II fine: we found the end of file

if (ist.bad (» crror("isl is bad ") ; /I stream corrupted; let's get out of here!
if (ist.fail(» (/I clean up the mess as best we can and report the problem

ist .clear(); II clear stream slate,
/! so that we can look for terminator

char C;
isl» c; /I read a character, hopefull y terminator
if (c!= le rminalor) (/I unexpected character

ist. unget(); /I put that character back
iSl.clear(ios_base:: failbil) ; /I set the state to failO

)

)

Note that when we didn't Hnd the temunator, we still returned. After all. we may
have collected some data and the caller of fill_vectorO may be able to recover from
a fail(). Since we cleared the state to be able to examine the character, we have to
set the stream stale back to fail () . We do that with iSloclear(ios_base: :failbit). Note
this potentially confusing use of clear() : clear() with an al"j;>'l.Ullent actually sets the
iostream state flags (bits) mentioned and (only) clears flags l10t mentioned. By set·
ting the state to fail (), we indicate that we encountered a format el1-ar, rather than
something more serious. We put the character back into ist using ungel() ; the
caller of fill_veclor() might have a usc for it. TIle ungetO function is a sha ner vcr·
sion of putbackO that relics on lhe stream remembering which character it last
produced, so that you don't have to mention it.

If you called fill _vectorO and wam to know what terminated the read, you
a m test for faiiO and eofO. You could also calch the runlime_error exception
thrown by crrorO, but it is understood that getting more data from islream in the

10.6 110 ERROR HANDLING

badO state is unlikely. Most callers won't bother. TIlis implies that in almost an
cases the only thing we want to do if we encounter badO is to throw an excep­
tion. 'lb make life easier, we can tell an istream to do that for us:

/I make ist throw if it goes bad
ist. except ions(ist .except io nsOlios_base: : badbit);

'11e notation may seem odd, but the effect is simply that from that statement on­
ward, ist will throw the standard library exception ios_base: :failure if it goes
badO. We need to execute t.hat exceplions() call only once in a program. TIml'll
allow us to simplify all input loops by ignoring bad() :

void fill_vector(islream& isl, veclor<inl>& v, char terminator)

{

/I read integers from ist into v until we reach eafO or terminator

inti=O;
while (ist» i) v.push_back(i);
if (ist.eof()) return ; II fine: we found the end of file

II not goodO and nOI bad{) and nOI eafO, is! must be fail O
ist.clearO; II dear stream state
char c;
ist»c; /I read a character, hopefully terminator

if (c != terminator) (II ouch: not the terminator, so we must fail
ist.unget() ; II maybe my caller can use that character
ist.dear(ios_base: : fai lbit); /I set the state to {ai 10

' 11e ios_base that appears here and lhere is the part of an iostream that holds
constants such as bad bit, exceptions such as failure , and other useful stuff. You
refer 10 them using the : : operalor, for example, ios_base: :badbit (see §10.6 and
§B.7.2). We don't plan to go into the iostream library in that mudl detail; it could
take a whole course to explain all of iostreams. For example, iostreams can han­
dle different character sets, implement different buffering strategies , and also can­
lain facilities for fonnalling monetary amounts in various languages ; we once
had a bug report relating to the formatting of Ukrainian currency. You can read
up all whatever bits you need to know about if you need 10j sec The C++ Pr0-
gramming Language by Strousmlp, and Langer, Standard C++ IOStreams and LomieJ.

You can test an ostream for exactly tile same states as an islream : good (),
fail() , eofO, and bad () . However, for the kinds of program s we write here, errors

351

352 C HAPTER 10 • INPUT AND OUTP U T STREAMS

arc much rarer for outpullhan for input, so we don't do it as o ften. For programs
where output devices have a morc significant chance of being unavailable, filled ,
or broken, we would test after each output operation just as we test after each
input opcralion .

10.7 Reading a single value
So, we know how to read a series of values ending willI the end of fil e or a termi­
nator. We'll show mOTC examples as we go along, hut let's just have a look at the
evcr popular idea of repeatedly asking for a value until an acceptable one is en­
tered. 111is example will allow us to examine several common design choices.
We' ll discuss these ahematives through a series of altcmativc solutions to the
simple problem of "how to get an acceptable value from the USeT.

n We stan with
an unpleasantly messy obvious "first try" and proceed through a series of im­
proved versions. Our fundamental assumption is that we arc dealing with inter­
active input where a human is typing input and reading the messages from the
program. Let's ask for an integer in the range Ito 10 (inclusive):

cout « "Please enter an integer in the range 1 to 10 (inclusive) :\n";
intn=O;
while (ci n» n) { II read

if (1 <=n & & n<=10) break; II check range
cout « "Sorry"

« n « " is not in th e 11 :10J range; please try again\n";

l1lis is pretty ugly, but it "son of works." If you don't like using the break (§A.6),
you can combine the reading and the range checking:

cout « "Please enter an integer in the range 1 to 10 (inclusive) :\n ";
int n = 0;
while (cin» n && !(1<=n && n<=10» II read and check range

cout « "Sorry "
« n «" is not in the [1 :101 range; please Iry again\n";

However, that's just a cosmetic change. Why docs it only "son of work"? It
works if the user carefully enters integers. If the user is a poor typist and hilS t

raUler Ulan 6 (t is just below 6 on most keyboards) , the program will leave the
loop without changing the value of n, so that n will have an out-of-range value.
We wouldn't call that quality code. A joker (or a diligent tcster) might also send
an "end of file" from the keyboard (Ctrl+Z on a Windows machinc and Ctrl+D
on a Unix machine). Again, we'd leave the loop with n out of range. In other
words, to gel a robust read we have to deal with three problems:

10.7 READING A SINGLE VAlUE

I. TIle user typing an out·of·range value

2. Getting no value (end of fil e)

3. "Ille user typing something of the wrong type (here, not an integer)

' \That do we want to do in those three cases? l1lat's often the question when
writing a program: what do we really want? Here, for each of those three errors,
we have three ahematives:

I . Handle the problem in the code doing the read.

2. TIu"Ow an exception to let someone clse handle the problem (potentially
terminating the program).

3. Ignore the problem.

As it happens, those arc three very common altematives for dealing with an error
condition. "nlllS, this is a good example of the kind of thinking we have to do
about errors.

It is tempting to say that the third altemalive, ignoring the problem, is always
unacceptable, but that would be patronizing. If I'm writing a trivial program for
my own usc, I can do whatever I like, including forgetting about error checking
with potential nasty results. However, for a program that I might want to usc for
more than a few hours after I l't'fote it, I would probably be foo lish to leave such
errors, and if I want to share that program with anyone, I should not leave such
holes in the error checking in the code. Please note that we deliberately usc the
first·pcrson singular here; "we" would be misleading. We do not consider alter­
native 3 acceptable even when just two people are involved.

TIle choice between altematives I and 2 is genuine; that is, in a given pro·
gram there can be good reasons to choose either way. First we note that in most
programs there is no local and elegant way to deal with no input from a user sit·
ting at the keyboard: after the input stream is closed, there isn' t much point in
asking the user to enter a number. We could reopen d n (using d n.dearO), but
the user is unlikely to have closed that stream by accident (how would you hit
Clrl+Z by accident?). If the program wants an integer and finds "end of fit e,n the
part of the program trying to read the integer must usually give lip and hope that
some other part of the program can cope; that is, our code requesting input from
the user mUSt throw an exception. TIlis implies that the choice is not between
throwing exceptions and handling problems locally, but a choice of which prob·
lems (if any) we should handle locally.

10.7.1 Breaking the problem into manageable parts
Let's try handling both an out-of·range input and an input of the wrong type
locally:

co ut « "Please enter an integer in the range 1 to 10 (inclusive):\n";
intn = O;

353

354 (HAPTER 10 • INPUT AND OUTPUT ST REAM S

while (true) {
dn » n;
if (cin) { II we gal an integer; now check it

if (1<=n && n<=10) break;
coul « "Sorry"

« n « " is not in the 11:10] range ; please try again\n";
)

else if (ein .rail ()) (
cin .dear() ;

II we found something that wasn't an integer

II set the stale back to goodO;

)

e lse (

)

II we wanl to look at the characters
cout « "Sorry, that was not a numbe r; please try again\n ";
char ch i
while (ci n» ch && ! isdigil(ch)) ; /llhrow away non·digits
if (!cin) error(nno input ") ; II we didn't find a digit: give up
cin.unget() ; 1/ put the digi t back, so that we can read the number

enor(ltno input "); /I eof or bad: give up

/I if we get here n is in I I : 1 OJ

This is messy, and rather long-winded. In facl , it is so messy mal we could not
recommend t.hat people write such cooe each time they needed an integcr from a
user. On the other hand, we do need to deal with the potential errors because
people do make them, so what can we do? TIle reason that the code is messy is
that code dealing with several different concems is all mixed together:

Reading values

Prompting the user for input

Writing error messages

Skipping past "bad" input characters

Testing the input against a range

TIle way to make cooe clearer is often to separate logically distinct concems into
separate Functions . For example, we can separate out Ille cooe for recovering after
seeing a ';bad" (i.e., unexpected) character:

void skip_to_intO
(

if (cin.fai l(» (/I we found something that wasn't an integer
cin.dearO; /I we'd like to look at the characters
char eh;

10 .7 READ ING A SINGLE VA LU E

while (ci n»ch)(II throwaway non-digits
if (isdigit(ch)) {

cin .ungetO; II put the digit back,
II so that we can re.ld the number

relurn ;
}

}

erro r("no input "); /I eof or bad: give up

Given the skip_IojnlO "utility function," we can write

co ut « "Please enter an integer in the range 1 10 10 (inclusive):\n";
inln =O;
while (tru e) {

if (ci n» n) { /I we gOI an integer; now check it
if (1<=n && n<=10) b rea k;
coul « "Sorry " « n

«" is no l in th e (1:10J range; please Iryagain\n ";
)

else (
coul « "Sorry, that was not a number; please try again\n" ;
skip_Io_inIO;

)

II if we get here n is in 11:101

Illis code is beuer, but it is still tOO loug and tOO messy to usc Illany times in a
program. We'd never get it consistently right, except aftcr (too) much testing.

What operation would we really like to have? One plausible answer is "a
function that reads an in I, any int, and ,morner tlmt reads an int of a given range":

int geUnlO; II read an int from cin
int gcUnt(intlow, int high); /I read an int in Ilow:highl from cin

If we had those, we would at least be able to use them simply and correctly. TIley
arc not that hard to write:

inl geUntO
{

int n = O;
while (tru e) {

355

356

}

C HAPTER 10 • INPU T AND OU T PUT STR EAM S

if (cin » n) return n ;
cout « ~ Sorry, tha t was not a numbe r; please try agai n\n ";
skip_lojnl();

Basically, geUnlO stubbornly keeps reading lIntil it finds some digits lhat it can
interpret as an imeger. If we wam to get out of geUnln, we must supply an inte­
ger or end of fil e (and end of fLl e will cause geU IlIO LO throw an exception).

Using that general geU IlI(), we can write the range-checking SCUIlI() :

int geUnt(int low, int high)
(

}

coul « ~ Please enler an integer in the range"
« low «" to " « high « " (incl usive) :\n ";

while (true) (

}

int n = geU nt() ;
if (Iow<=n && n<=high) relurn n ;
coul « "Sorry "

« n « " is not in the [" « low« ':'« high
«"I range; please try again\n";

"Illis geU IlIO is as stubborn as the other. It keeps gelling ints rrom the non-range
gel_intO until the int it gets is in the expected range.

We ""tn now reliably read integers like this:

inl n = geUnt(1,10);
cout « "n: "« n « endl ;

int m = geUnt(2,300);
cout « "m: " « m « endl ;

Don't rorget to catch exceptions somewhere, lhough, ir you want decent error
messages ror the (probably rare) case when geUnl O really couldn 't read a num­
ber ror us.

10.7.2 Separating dialog from function
~nle geUntO runcuons still mix up reading wlth writing messages to the user. '1mt's
probably good enough ror a sim ple program, but in a large program we might want
to vary the messages written to the user. We might wam to call geUnlO like th is:

10.8 USER-DEFINED OUTPUT OPERATORS

int strength = getj nt(l , 10, "ente r strength", "Not in range, try again");
cout « "strength : "« strength « endl;

int altitude = geUnt(O,50000,
"Please enter altitude in fee t",
"Not in range, please try again");

cout « "altitude : " « altitude « " f above sea level\n";

We cou ld implement that like this :

int geUnt(int low, int high, canst slring& greeting, canst slring& sorry)
(

ca ul « greeting « ": [" « low « I: I « high « "J\n ";

while (t rue) (
int n = geUnt();
if (low<=n && n<=high) return n j

coul « sorry « ": [" « Iow « ' :' « high « "J\n ";
)

It is hard to compose arbitrary messages, so we "stylized" the messages. l1mt's
often acceptable, and composing really Oexible messages, such as arc needed to
support many natural hUlguages (e.g., Arabic, Bengali, Chinese, Danish. English,
and French), is not a task for a novice.

Note that our solution is still incomplete: the get_inl O without a range sti ll
"blabbers." -nle deeper point here is that "utility functions" that we use in many
pans of a program shouldn't have messages "hardwired" into them. Further, li­
brary functions that arc meant for usc in many programs shou ldn't write to the
user at all - after all, the library writer may not even k.now that the program in
which the library runs is used on a machine with ;I human \vutching. That's one
reason that our e rro rO function doesn't just write an error message (§5.6.3); in
general, we wouldn 't know where to write.

10.8 User-defined output operators
Defin ing the output operator, « , for a given type is typically trivial -nle main
design problem is that different people might prefer I.he Olltput to look difTereIll,
so it is hard to agree on a single fonnal.. However, even if no single omput fo rmat
is good enough for all uses, it is often a good idea to define « for a user-defined
type. -n lat way, we can at least trivially write out objects of the type during de­
bugging and early development. Later, wc might provide a more sophisticated «
that allows a user to provide formatting infonnation. Also, if we wa.nt Olltput that

357

358 C HAPTER 10 • INP UT AND OUTPUT STR EAMS

looks d ifferent from what a « provides, we can simply bypass the « and write
OUI the individual parts of the lIser-defmed type the way we happen to like them
in ollr applicatio n.

Here is a simple output operator for Dale from §9.8 that simply prints the
year, month, and day comma-separated in parentheses:

oslream& o pe rator«(oslream& os, const Date& d)
{

return os« '(' « d.yearO
« I,' « d.monthO
« ',' « d.dayO« ')';

}

nlis will prim August 30, 2004, as (2004,8,30) , This simple list-of-elemellts repre­
sCnLalion is what we tend to lISC for types willl a few members unless we have a
better idea or more specific needs.

In §9.6, we mention that a user-defined operator is handled by calling its
function. Here we can sec an exam ple of how that's done. Given the definition of
« for Date, the meaning o f

cout « dl ;

where d1 is a Date is the call

operator«(cout,d 1);

Note how o perator«O takes an oslream& as its first argument and returns it
again as its return value. That's the way the output stream is passed along so that
you can "chain" output operations. For example, we could output two dates like
this:

coul « d1 « d2 ;

"nlis will be handled by first resolving the first « and after that the second « :

coul « dl « d2; /I means operator«(cout,d l)« d2 ;
/I means operator«(operator«(cout,d 1),d2);

That is, first output dl to cout and then output d2 to the output stream that is the
result of the first omput operation. In fact, we can use any of those three variants
to write OUi dl and d2. We know which one is easier to read, though.

10. 10 A STANDARD INPUT lOOP

10.9 User-defined input operators
Defining the input operator, » , for a given type and input fonnat is basicaUy an
exercise in error handling. It can therefore be quite tlicky.

Here is a simple input operator for the Date from §9.8 that will read dates as
written by the operator « defined above:

istream& operator»(islream& is, Date& dd)
{

int y, m, d ;
char ch1, ch2, ch3, ch4;
is» chl »y» ch2» m »ch3» d » ch4;
if (! is) return is;
if (chl! ='(' II ch2!=', ' 11 ch3!=' ,' II ch4!=')') (/loops: forma t error

is. clear(ios_base: :failbit);
return is;

)

dd = Dale(y, Date: :Monlh (m),d); II update del
return is;

~l1lls » will read items like (2004,8,20) and try to make a Date out of those three
integers. As ever, input is harder to deal with than output. TIIere is simply more
that can - and of len docs - go wrong with input than with output.

If this » does n't find something in the (inleger , illleger , integer) format, it will
leave the stream in a not-good state (fail , eof, or bad) and leave the target Dale
unchanged. TIle clear() member function is used to set the state of the islream.
Obviously, ios_base:: failbit puts the stream into the failO state. Leaving the tar­
get Dale unchanged in case of a failure to read is the ideal; it tends to lead to
cleaner code. TIle ideal is for an operator»O not to consume (throwaway) any
characters that it didn 't lise, but that 's tOO difficult in this case: we might have
read lots of characters before we c.'lught a fannat error. As an example, consider
(2~, 8, 3D}. Only when we see the fmal } do we know that we have a fomlal
error on Ollr hands and we cannot in general rely on putting back many charac­
ters. One character ungelO is all that's universally guaranteed. If this
operator» O reads an invalid Date, such as (2004,8,32) , Date 's constructor will
throw an exception, which will get us out of this operator»() .

1 0.1 0 A standard input loop
In §1O.5, we saw how we could read and write fil es. However, that was before we
looked more carefully at errors (§1O.6), so the input loop simply assumed that we

359

360 (HAPTER 10 • INPUT AND OUTPUT STR EAM S

could read a file from its beginning until cnd of file. That can be a reasonable as­
sumption, because we often apply separate checks to cnsure thal a file is valid.
However, we often want to check ollr reads as we go along. Here is a general
strategy, assuming that ist is an istream:

My_lype var;
while (i51»1Ia,) (/I read unt il end of file

)

/I maybe check that var is valid
/I do something with var

/I we can rarely recover from bad; don', try unless you rea lly have 10:

if (ist.bad(» error(lt bad input stream");
if (ist.fail ()) (

/I was it an acceptable terminator?
)

/I carryon: we found end of file

1l1al is, we read a sequence of values into variables and when we can 't read any
morc values, we check the stream Slale to sec why. As in §IO.6, we call improve
this a bit by Ictting thc istream throw an exception of type failure if it goes bad .
111at saves LIS the bother of checking for it all the time:

/I somewhere: make is! throw an exception if it goes bad:
ist. except ions(ist .except ionsOlios_base: : bad bit);

We could also decide to designate a character as a terminator:

My_type var;
while (ist»var) { /I read lIntil end of file

II maybe check that var is va lid
/I do somethi ng with var

)

if (ist .fail()) { II use 'I' as terminator andlor separator
ist.clea r();
char ch i
if (!(ist»ch && ch=='I'» error(" bad termination of input");

)

/I carryon: we found end of file or a terminator

If we don 't want to accept a terminator - that is, to accept only end of fil e as the
end ; we simply delete the tcst before the call of errorO. Howevcr, tcnn inalOrs arc
very useful when you read files with nested constructs, slich as a file of monthly

10. 11 READIN G A STRUCTURED FI LE

readings containing daily readings, containing hourly readulgs, etc., so we'll keep
considering the possibility of a tenuinating character.

Unfortunately, that code is still a bit messy. In particular, it is tedious to re·
peat the terminator test if we read a lot of fil es. We could write a function to deal
with that :

/I somewhere: make isllhrow if il goes bad:
ist. exce ptions(ist .exce ptionsOlios_ base: : bad bit);

void end_oUoop(istream& ist, char term, const slring& message)
(

if (ist.fail ()) { II use term as lerminalor aneVor separalor
ist.ciear();
char Chi
if (isl»ch && ch==term) return ; 1/ all is fine
error(message);

)

111is reduces the input loop to

My_type var;
while (isl»var) { 1/ read unlil end of file

1/ maybe check that var is valid

1/ do something with var
)

end_oUoop(ist, 'I', "bad termination of file") ; I/Iesl if we can continue

1/ carryon: we found end of file or a terminator

"Inc end_oUoopO docs nothulg unless the stream is in the faii O state. We con­
sider that sunple enough and general enough for many purposes.

10.11 Reading a structured file
Let 'S try to usc th is "standard loopn for a concrete example. As usual, we'll use the
example to illustrate widely applicable design and programming leclmiques . As­
sume that you have a file of temperature rcadulgs that has been structured like this :

A file holds years (of months of readings).

A year starts with { year followed by an integer giving the ~ar, such
as 1900, and ends with).

361

362 C HAPTER 10 • INP U T AN O OUTPUT STR EAMS

A year holds months (of days of readings).

A month starts with { month followed by a three-letter month name,
such as jan , and ends with }.

A reading holds a lime and a temperature.

A reading starts with a (followed by day of the month. hour of the
day, and lcmperaLUre and ends with a).

For example:

{ year 1990 }
{year 1991 (month jun })
(year 1992 { month jan (1061.5)} {month feb (11 64) (2 2 65.2)})
{year 2000

(month feb (1168) (2 3 66.66) (10 67.2)}
{month dec (1515 -9 .2) (15 14 -8.8) (14 0 -2) }

This formal is somewhat peculiar. File formalS often arc. 111crc is a move toward
more regular and hierarchically structured flles (such as HTML and XML files)
in the industry, but the reality is stilllhat we can rarely control the input format
offered by the files we need to read. 111e files arc the way they are, and we JUSt
have to read them. If a format is too awful or files contain too many errors, we
can write a fonnat conversion program to produce a fomlat that suits our main
program better. On the other hand , we can typically choose the in·memolY rep­
resentation of data to suit our needs, and we can often pick output formats to suit
needs and tastes.

So, let's assume that we have been given the temperature reading fonnat
above and have to live with it. Fortunately, it has self·idelllifying components.
such as years and months (a bit like HTML or XML). On the other hand , the
format of individual readings is somewhat unhelpful. For example, there is no in·
formation mat could help us if someone flipped a day·of·the·molllh value with an
hour of day or if someone produced a fil e with temperatures in Celsius and the
program expected them in Fahrenheit or vice versa. We JUSt have to cope.

10.11 .1 In-memory representat ion
How should we represent mis data in memory? "n le obvious first choice is three
classes, Year, Month , and Reading, to exactly match the input. Year and Month
arc obviously useful when manipu lating the data ; we want to compare tempera·
tures of different years, calculate monthly averages, compare different months of
a yea r, compare the same month of different years, match up temperature read·
ings with sunshine records and humidity readings, etc. Basically, Year and Month

10.11 READI NG A STR UC TURED FILE

match the way we think aboLit temperatures and weather in general: Month
holds a month's worth of information and Year holds a year's worth of infonna­
tion. But what about Reading? TImt's a low-level notion matching some picce of
hardware (a sensor). 111e data of a Reading (day of month, hour of day, tempera­
ture) is "odd" and makes sense only within a Month. It is also unStructured : we
have no promise that readings come in day-of-the-molllh or hour-of-the-day
order. Basically, whenever we want to do anything of interest with the readings
we have to SOrt them.

For representing the temperature dala in memory, we make these assumptions:

If we have any readings for a month, then we tend to have lots of read­
ings for that month.

If wc have any read ings for a day, then we tend to have lots of readings
for that day.

\Vhen that's thc case, it makes sense to represent a Year as a vcctor of 12 Months,
a Month as a vector of about 30 Days, and a Day as 24 tcmperatures (one per
hour). lllat's simple and easy to manipulate for a wide variety of uses. So, Day,
Month, and Year are simple dala structures, cach with a constructor. Since we
plan to create Months and Days as part of a Year bcfore we know what tempera­
lUre readings we have, we need to have a notion of "nOl a reading" for an hour of
a day for which we havcn' t (yet) read data.

canst int noCa_reading = - 7m; !!less than absolute zero

Similarly, we noticed that we often had a month WilhoUl data, so we introduced
the notion "not a month" to represent that directly, rather than having to scarcll
through alllhe days to be sure that no data ~ as lurking somewhere:

canst int noCa_month = -1;

TIle tl lree key classes then become

stru ct Day {
vector<double> hour;
oay(); /I initialize hours 10 "not a reading"

);

Day: :oay()
: hour(24)

{

for (int i = 0; i<hour.size(); ++i) hour[i1=noca_reading;

363

CHAPTER 10 • INPUT AND OUTP U T STRE AMS

stru ct Month { 1/ a month of temperature readings
int mo nth ; 1/ [0 :11[January is 0
vector<Oay> day; 11 [1 :31[one vector of readings per day
Mo nth O 1/ at most 3 1 days in a month (daylOI wasled)

:mo nth (no t_a_monlh), day(32) {}
) ;

stru ct Yea r (1/ a year of temperature readings, organized by month
int year; 1/ positive == A.D.
vector<Month> mo nth ; 1/10:11[January is 0
Year() :month (12) {} 1/12 months in a year

) ;

Each class is basic.-uly a simple vector of "parLS,n and Month and Year have an
identifying member month and year, respectively.

There are several "magic constants" here (for example, 24, 32, and 12). We
try to avoid such litera] constants in code. These arc pretty fundamental (the
number of months in a year rarely changes) and will not be used in the rest of the
code. However, we left them in the eode primarily so that we could remind you
of the problem with "magic eonstantsn; symbolic constants arc almost always
preferable (§7.6.1). Using 32 for the number of days in a month definitely re'
quires explanation; 32 is obviously "magic" here.

10.11 .2 Reading structured va lues
TIle Reading class will be used only for reading input and is even simpler:

stru et Reading (
int day;
int hour;
double tempe rature;

) ;

istream& operator»(istrea m& is, Reading& r)
/I read a temperature reading from is into r
1/ format: (3 4 9.7)
/I check format, but don 't bother with dala validity
{

char chl ;
if (is»chl && chl !='(') (II could it be a Reading?

is.ungel() ;

10. 11 READING A STRUC TURED FILE

}

}

is.clear(ios_base : :failbit) ;
return is;

char ch2;
int d ;
int h;
double I ;
is » d » h » t »ch2;
if (! is II ch2!=')') error(tlbad reading");
r.day = di
r.hour = h;
r.temperature = t i
return is;

/I messed-up reading

Basically, we check if the fomml begins plausibly, and if it doesn't we set the fil e
state to fail O and return. This allows us to try to read the informatio n in some
other way. On the other hand, if we find the format wrong after having read
some data so that there is no real chance o f recovering, we bail out with errorO.

rn 1e Month input operation is much the same, except that it has to read an ar­
bitrary number of Readings rather than a fixed set of values (as Reading's » did):

islream& operatol'»(istream& is, Month& m)
/I read a month from is into m
/I fo rmat : I month feb . . . }
{

char ch = 0;
if (is» ch && ch!='{') (

is. ungeIO;
is. clear(ios_base: :fai lbi l); /I we fai led to rcad a Month
return is ;

string month_marker;
string mm;
is » month_marker » mm:
if (!is II month_marker!="month n) error(" bad start of month "):
m.month = month_to_int(mm):

Reading r;

365

366

}

int duplicates = 0;
int invalids = 0;
while (is» r) {

if (is_valid (r)) {

C H APTE R 10 • INPU T AND OUTPUT STREAMS

if (m .day(r.day] .hour(r.hour] != nOI_a_reading)
++duplicates ;

}

}

else

m.day[r.day]. ho ur[r. ho ur] = "temperature;

++invalids;

if (invalids) e rror(" invalid readings in month" ,invalids);
if (duplicates) e rror(lI duplicale readings in mo nth", duplicates);
end_oCloop(is, '} ', "bad end of month");
return is;

We'll gel back to month_tojntO later; it convertS the symbolic notation for a
month, such as jun, to a number in the [0: 11] range. NoLC the usc o f end_ofJoop()
from §1O.1O to check fo r the terminator. We keep coum of invalid and duplicate
Readings; someone might be interested .

Month 's » does a quick check that a Reading is plausible before storing it:

ca nst int implausible_min = -200;
const int implaus ible_max = 200;

bo ol is_valid(const Reading& r)

/I a rough test
{

}

if (r.day<111 31<r.day) re turn false;
if (r.hour<O II 23<r.hour) return false;
if (r.temperature<implausible_minll implausible_max<r.temperature)

re turn fal se;
re turn true;

Finally, we can read Years. Year's » is similar to Month's » :

istream& operator»(istream& is, Year& y)

/I read a year from is into y
/I format: (year 1972 .. .)
{

10. 11 READIN G A STR UCTURED FILE

char chi
is» Chi
if (ch!='{ ') (

)

is. unget();
is.ciear(ios : : failbit) ;
return is;

siring year_marker;
int yy;
is» year_marker » yy;
if (!is II yea r_marker! ="year") error(" bad start of year");
y.year = yy;

while (lrue) (
Month m; /I get a clean In each time around
if(!(is» m» break;
y. monthlm.month l = m j

)

e nd_ofJoop(is, '}', "bad end of year");
return is;

We would have preferred "boringiy similar" to just "similar," but there is a signif~

icant d ifference. Have a look at the read loop. Did you expect something like the
following?

Month m;
while (is» m)

y.monlh[m.monlhl = m;

You probably shou ld have, because that's the way we have written all the read
loops so far. ~nlat 's actually what we first wrote, and it 's '\ovrong. The problem is
that ope rator» (istream& is, Month& m) doesn't assign a brand·new value to m;
it simply adds data from Readings to m. l1ms, the repeated is» m would have
kept adding 1'0 our one and only m. Oops! Each new month would have gotten aU
the readings from all previous months of that year. vVe need a brand-new, clean
Month to read into each time we do is>>m. The easiest way to do that was to put
the definition of m inside the loop so that it would be initialized e.1ch time around.
The alternatives would have been for opcralor» (istream& is, Month& m) to as­
sign an empty month to m before reading into it, or for the loop to do lhat:

367

368 CHAI)TE R 10 • INPU T AND OUT PUT STREAM S

Month m ;
while (is» m) (

y. month(m .month] = m ;
m = Month(); I/"reinitialize" m

}

Let 's try to usc it:

1/ open an input file:
cout « "Please enter input file name\n";
string name;
dn » name;
ifs lream ifs(name,c_slr(»;
if (!irs) e rror(" can'l o pe n input fil e" ,name) ;

ifs.exce ptions(ifs.exceplions()lios_base: : badbit); /I throw for b.ldO

/I open an output file:
co ut « "Please e ntcr output fil e name\n";
dn » name;
of sire am ofs(name.c_str()) :
if (lo£s) error(" ca n" o pen o utput f ile" ,name);

II read an arbitrary number of years:
vecto r<Year> ySj

while(t rue) {
Year Yi /I get a freshl y initialized Year each time around
if (!(ifs» y» b reak;
ys .push_back(y);

}

co ut « "read "« ys .sizeO« n years of readings\n";

for (inl i = 0; kys .size(); ++i) prinCyear(ofs,ys[iJ) i

We leave prinl_yearO as an exercise.

10.11 .3 Changing representations
"to gel Month's » to work, we need to provide a way or reading symbolic repre­
sentations o r the month. loor symmetry, we'll provide a matching write using a sym­
bolic representation. TIle tedious way would be to write an if-statement convcn:

if (s=="jan")
m = 1;

10. 11 READI NG A ST RUCT U RE D FlU

else if (s==" feb")
m =2;

~nlis is not just tedious; it also builds the names of the months into the code. It
would be better to have those in a table somewhere so that the main program
could stay unchanged even if we had to change the symbolic representation. We
decided to represent the input representation as a veclo r<slring> plus an initial­
ization rUllction and a lookup runction:

void iniU npuU bl(vector<slring>& Ibl)
/I initialize vector of input representations
(

Ibl . pu sh _ back(" jan");
I bl . pu sh_back("feb");
Ibl . pu sh_back(" mar");
Ibl . pu sh_back(" apr");
Ibl . pu sh_ back(" may") ;
Ibl .push_back("jun");
Ibl . pu sh_ back(" j ul ");
Ibl .push_back(IIaug");
Ibl . pu sh _ back(II sep ");
Ibl . push _ back(" ocl");
Ibl . pu sh_ back(" nov") ;
Ibl . push _ back(" dec");

inl mo nlh_lojnl(slring s)
/I is s the name of a month? If ~ return its index 10: I I I otherwise-l
(

)

for (inl i=O; i<12; H i) if (mo nlhj npu U bHi]==s) return i;
relurn - l ;

In case you wonder: tbe C++ standard library docs provide a simpler way to do
this. See §21.6.1 for a map<slring, int>.

When we wam to produce output, we have the opposite problem. \¥e have
an int representing a Illonth and would like a symbolic representation to be
printed . Our solution is fundamentally similar, but instC<ld or using a table to go
rrom siring to inl, we use one to go rrom inl to string:

vectoT<slring> month_prin U bl ; 1/ mont h_prinuhIIOI=="January-

3.'

37. C H AI'TER 10 • INPUT A ND OU TP U T STREAM S

void ini C prinUbl{veclor<slring>& fbi)
/I initialize vector of output representations
{

)

tbl . p ush_back(" Jan ua ry");
fbi. p ush_back(" February");
Ibl .push_back(" March");
tbl .push_back(It April ");
tbl .push_backC" May") ;
thl .push_backC"June ");
tbl . p ush_ back(" lui y");
tbl . push_ back(" August");
tbl . push _ back(" Septem ber M);

tbl. pus h_ back(" October");
tbl.pus h_back("November");
tbl. pus h _ back(" December");

string inUo_month(int i)
/I months [0: I I I
{

if (kO 11 12<=i) error(tl bad month index");
return month-p,inUbl{iJ ;

For this to work, we need to call the initialization functions somewhere, such as at
lhe beginning o f main O:

/I first ini tialize representation tables:
init_prinUbl(monlh_prinUbl);
iniUnpuClbICmonthj nput_tbl);

So, did you actually read all of that code and the explanations? Or did your eyes
glaze over and skip to the end? Remember that lhe easiest way of learning to write
good code is to read a lot of code. Believe it or not , the techniques we used for this
example are simple, but not trivial to discover without help. Reading data is fun­
damentaJ. Writing loops correctly (initializing every variable lISed con ectiy) is fun­
damental. Converting between representations is fundamental. That is, you will
learn to do such things. 111e only questions are whether you'll learn to do them
well and whether you learn the basic techniques before losing tOO much sleep.

C HAPTER 10 REVIEW

.../' Drill

l. Stall a program to work with points, discusscd in § IO.4. Begin by defin­
ing the data type Point that has two coordinate members x and y.

2. Using the code and discussion in §10.4, prompt the user to input seven
(x,}) pairs. As the data is entered, store it in a vector of Poin ls called
original_points.

3. Print the data in original_points to see what it looks like.
4. Open an of Sire am and autpUl each point to a me named mydata.lxl. On

\.vindows, we suggest the . Ixt suffIX to make il easier 10 look al the data
with an ordinary tCXt editor (such as WordPad).

5. C lose the of sir cam and then open an ifstream for mydata. txt. Read the
data from mydata. txt and store it in a new vector called processed_points.

6. Prim the data clements from both vectors.
7. Compare the twO vectors and print Something's wrong! if the number

of clements or the values of clements differ.

Review

I. When dealing with input and output, how is the variety of devices dealt
with in most modem computers?

2. \.vhat, fundamentally, does an istream do?
3 . What, fundamentally, docs an oslream do?
4. \.vhat, fundamentally, is a me?
5. \.vhat is a me format?
6. Name fou r different types of devices that can require 110 for a program.
7. What arc the four steps for reading a ftle?
8. What arc the four steps fo r writing a ftle?
9. Name and define the four stream states.

10. Discuss how the follO\ving input problems can be resolved:

u. TIle user typing an out-of-range value
b. Gelling no value (end o f me)
c. TIle user typing something of the wrong type

11. In what way is input usually harder than Output?
12. In what \vay is output usually harder than input?
13. Why do we (often) want to separate input and output from computation?
14 . \.vhat are the two most common uses o f the islream member function

d ear()?
15_ What arc the usual function declarations for « and » for a user-defined

type X?

371

Terms

badO
buffer
clearO
closeO
device driver
eofO
failO
filc

Exercises

(HAPTER 10 • INPUT AND OUTPUT STREAMS

goodO
ifslream
input device
Lllput operator
ioslream
islream
of sire am
openO

oslream
output device
output operator
so"Cam state
structured file
tenumator
ungelO

1. Write a program that produces the sum of all the numbers in a file of
whites pace-separated integers.

2. Write a program that creates a me of data in the form of the temperature
Reading type defined in §10.5. Ell the me with at least 50 temperature
readings. Call this program store_temps.cpp and the file it creates
raw_temps.txt .

3. Write a program that reads the dala from raw_temps. lxt created in
exercise 2 into a vector and then calculates the mean and median tcm­
peratures in your data set. Calilhis program temp_stats.cpp.

4. Modify the store_temps.cpp program from exercise 2 to include a tem­
perature suflix c for Celsius or f for Fahrenheit temperatures. 111en mod­
ify the temp_slats.cpp program to test each temperature, convening the
Celsius readings to Fahrenheit before pUlling them into the vector.

5. Write the function prin,-yearO mentioned in §1O.11.2.
6. Defme a Romanj nt class for holding Roman numerals (as ints) with a

« and » . Provide Roman_inl with an as_intO member that retu01s the
int value, so that if r is a Roman_inl, we can write co ul « "Roman" « r
« " equals" « r.as_intO« '\n' ;.

7. Make a version of the calculator from Chapter 7 that accepts Roman nu­
merals rather than the usual Arabic oncs, for e.xample, XXI + ClV == CXXV.

8. Write a program that accepts two fue names and produccs a new file that
is the contents of the first file followed by the contents of the second; that
is, the program concatenates the two files.

9. Write a program that takes two fues containing sorted whitcspacc-scparated
words and merges them, preserving order.

10. Add a command from x to the calculator from Chapter 7 that makes it
take input from a fue x. Add a COllU11and to y to the. calculator that makes
it write its output (both standard output and error output) to fi le y. Write
a collection of test cases based on ideas from §7.3 and usc lhal to test the
calculator. Discuss how you would use these commands for testing.

CHAI)TER 10 POSTSCRIPT

11. Write a program that produces the sum of all the whitespace-separ;ued
integers in a text fil e. For example, "bears: 17 elephants 9 end" should
output 26.

12. Write a program that given a me name and a word outputs each line that
contains that word together with the line number. I-Unt: getlineO.

Postscript

Much of computing involves moving lots of data from one place to another, for
example, copying text from a me to a screen or moving music from a computer
onto an M P3 player. Often, some transfonnarion of lhe data is needed on the way.
TIle iostrcam library is a way of handling many such tasks where the data can be
seen as a sequence (a stream) of values. Input and output can be a surprisingly
large part of common programming tasks. 111is is partly because we (or our pro­
grams) need a lot of data and partly because the point where data enters a system
is a place where lots of errors can happen. So, we must try to keep our 110 simple
and try to minimize the chances that bad data "slips through" into our system.

373

'el-

f" 11

Customizing
Input and Output

"Keep it simple:
as simple as possible,

but no simpler."

-Albert Einstein

I n this chapter, we CQllccmrate on how to adapt the general

iOSlream framework prescmcd in Chapter 10 to specific needs

and tastes. This involves a lot of messy details dictated by human

sensibilities to what they read and also practical constraints on

the uses of files. The final example shows the des ign of an input

stream for which you can specify the set of separators.

375

37' C HAPTER 11 • CUSTOM IZING IN P U T ANO OU TP UT

11 .1 Regularity and irregularity

11.2 Output formatting
11 .2.1 Inleger o utput
11 .2.2 Inleger input
11 .2.3 Floaling-poinloutput
11.2.4 Precision
11 .2.5 Fie lds

11 .3 File opening and positioning
11 .3.1 File open modes
11.3.2 Binary files
11 .3.3 Positioning in files

11 .4 String streams

11 .5 Line-oriented input

11.6 Charade r classification

11 .7 Using nonstandard separators

11 .8 And there is so much more

11.1 Regularity and irregularity
The iostrcam library - the input/output part of the ISO C++ standard library -
provides a unified and extensible framework for input and output of lext. By
"text" we mean JUSt about anything that can be represented as a sequence of
characters. 111U5, when we talk about input and Output we call consider the ime­
ger 1234 as text because we can write it using the four characters 1, 2, 3, and 4_

So far, we have treated all input sources as equivalenl. Somctimes, that's not
enough. For example, files differ from other input sources (such as communica­
tions connections) in that we can address individual bytes . Sinularly, we worked
on the assumption that the type of an objcct completely detenllincd the layout of
iLS input and output. "That's not quite right and wouldn 't be sufficient. For exam­
ple, we often want to specify the number of digits used to represent a floa ting­
point number on output (iLS precision). 111is chapter presenLS a number of ways
in which we can tailor input and output to our needs.

As programmers, we prefer regularity; treating all in-memory objects uni­
fonnl y, treating all input sources equivalently, and imposing a single standard on
the way to represent objects entering and exiting the system give the cleanest,
simplest, most maintainable, and often the most efficiem code. However, OUI' 1'1'0-
grams exist to serve humans, and humans have strong preferences. Thus, as pro­
granuners we must strive for a balance between program complexity and
accommodation of users' personal tastes .

11.2 Output formatting
People care a lot about apparently nunor details of the outpUt they have to read.
For example, to a physicist 1.25 (rounded to two digits after the dot) can be vel)'
different fmm 1.24670477, and to an aecountam (1.25) can be legally different

11 .2 OUTPUT FORMATT ING

from (1.2467) and totally d ifferent from 1.25 (in financia.l documents, parentheses
arc sometimes used to indicate losses, that is, negative vaJues). As programmers,
we aim at making our output as clear and as close as possible to the expectations
of the "consumers" of our program. Output streams (ostreams) provide a variety
of ways for fonnauing the Outplll of built-in types. For user-defmed types, it is up
to the programmer to define suitable « operations.

TIlere seems to be an infinite number of details, refi nements, and options for
output and qu ite a fe w for input. Examples are the character used for the decimaJ
point (usually dot or comma), the way to output monetary vaJues, a way to rep­
resent true as the word tru e (or vrai or sandt) rather than the number 1 when
output, ways to deal with non-ASCII character sets (such as Unicode), and a way
to limit the number of characters read into a string. These facilities tend to be un'
interesting until you need them, so we' ll leave their description to manuals and
speciaJized works such as Langer, Standard C++ lOS/reams at/ll Lomks; C hapter 21
and Appendix 0 of 171.(: C++ Programming Language by Stroustrup; and §22 and
§27 of the ISO C + + standard . Here we'll prescot the most frequently useful fea­
tU fes and a few general concepts.

11.2.1 Integer output
Integer values can be output as octaJ (the base-S number system), decimal (our
lISUaJ base-IO number system), and hexadecimal (the base-l 6 number system). lf
you don't know about these systems, read §A.1.2.l before proceeding here. Most
output uses decimaJ. HexadecimaJ is popular for oucputting hardware-related in­
fomlatioll. -nle reason is that a hexadecimal d igit exactly represents a 4-bit vaJue.
"Ilms, two hexadecimal digits can be used to present the value of an S-bit byte,
four hexadecimal d igits give the value of 2 bytes (that's often a half word), and
eight hexadecimal digits c...n present the vaJue of 4 bytes (that's often the size of a
word or a register). When C++'s ancestor C was fi rst designed (in the 1970s),
octal was popular for representing bit pattents, but now it 's rarely used.

We can specify the OLi tput (decimal) value 1234 to be decimal, hexadecimaJ
(often called "hex"), and octaJ:

coul « 1234 « "\((decimal)\n"
« hex« 1234 « "\t(hexadecimal)\n"
« oct « 1234 « "\((octal)\n";

"Ille '\I' character is "tab" (shon fo r "tabulation character"). This prints

1234 (decimal)
4d2 (hexadecimal)
2322 (octal)

377

378 CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT

The notations « hex and «oct do not output values. Instead , « hex informs
the stream that any further imeger values should be displayed in hexadecimal
and « oel informs the stream that any further integer values should be dis­
played in octal. For example:

coul « 1234« '\1' « hex « 1234 « '\1' « oct « 1234 « '\n';
coul « 1234 « '\n '; lithe oclal base is still in effect

1234 4d2 2322
2322 /I integers wi ll conl inue to show as octa l until changed

Note that the last Outpul is OCtal ; that is, oct , hex, and dec (for decimal) persist
("'stick," "arc sticky") - they apply to every imegcr value output umil we tell the
stream otherwise. Tenns such as hex and oct that arc used to change the behav­
ior of a SlJ'cam arc called /f/aniplllaJoYJ.

TRY TH IS

Output your birth year in decimal, hexadecimal, and octal form. Label each
value. Line up your output in columns using the tab character. Now output
your age.

Seeing values of a base different from 10 can often be confusing. For example, un­
less we tell you otherwise, you'll assume that 11 represents the (decimal) number
II , rather than 9 (11 in octal) or 17 (11 in hexadecimal). To alleviate such problems,
we can ask the oslream to show the base of each imeger primed. For example:

co ul « 1234 « '\1' « hex « 1234 « '\t' «oct« 1234 « '\n' i
cout« showbase« dec; /I show bases
co ut « 1234 « '\1' « hex « 1234 « '\1'« oct « 1234 « '\n'i

111is prints

1234 4d2 2322
1234 Ox4d2 02322

So, decimal numbers have no preflX, octal numbers have the preflX 0, and hexa­
decimal values have the preflX Ox (or OX). This is cxactly the notation for integer
literals in C++ source code. For example:

11.2 O U TPUT FO RMATTING

coul « 1234 « '\1' « Ox4d2« '\1' « 02322« '\n ';

In decimal form, this will prim

1234 1234 1234

As you might have noticed, showbase pcrsislS, just likc oel and hex. l11c manip·
ulator noshowbase rcverscs the action of showbase, reverting to thc default,
which shows each numbcr without its base.

In summary, thc integcr Olltput manipulators arc:

Inleger oulpul manipulalions

od

dec

he<

showbase

noshowbase

use base-a (octal) notation

use base-l 0 (decimal) nalalion

use base-16 (hexadecimal) notation

prefix 0 for octal and 0)(for hexadeci mal

don't use prefixes

11.2.2 Integer inpul
By dcfau lt, » assumes that numbcrs use thc decimal notation, but you can tell it
to read hexadccimal or octal integers:

inl a ;

inl b ;
inl C;
inl d ;
cin »a» hex » b » ocl » c» d j
co ul « a« '\1' « b « '\1' «c« '\1' « d « '\n';

If you type in

1234 4d2 2322 2322

this will prim

1234 1234 1234 1234

Note that this implies that Oel, dec, and hex "stick" for inpm, just as they do for
output.

379

CHAPTER II • CUSTOM IZ ING INPU T AND OUTPUT

TRY THIS

Complete the code fragment above to make it into a program. Try the sug­
gested input; then type in

1234 1234 1234 1234

Explain the results. Try other inputs to see what happens.

You can get » to accept and correctly interpret the 0 and Ox prefixes. To do that,
you "unsct" all tlle defaults. For example:

cin .unsetf(ios : :dec); /I don'l assume decimal (so that Ox can mean hex)
cin.unsetf(ios: :oct); II don't assume octal (so that 12 can mean twelve)
cin .unsetf(ios: : hex); II dan', assume hexadecimal (so that 12 can mean twelve)

'1le stream member function unselfO clears the flag (or flags) given as argument.
Now, if yO Li write

ci n »a» b» c » d ;

and clller

1234 Ox4d2 02322 02322

you gCl

1234 1234 1234 1234

11 .2.3 Floating-point output
If you deal directly with hardware, you'll need hexadecimal (or possibly octal)
notation. Similarly, if you deal with scientific computation, you must deal with
the fannalling of floating-point values. TIley arc h,mdled using ioslream manipu­
lators in a l11aJ1I1er very si..m.i.lar to that of decimal values. For example:

coul « 1234.56789« "\I\I(general)\n" II , ,\, to line up columns
« fixed« 1234.56789« "\I(fixed)\n"
«scientific « 1234.56789« "\I(scie ntific)\n";

This prints

11 .2 OUTPUT FO RMATTING

1234.57
1234.567890
1.234568e+003

(general)
(fixed)
(scientifi c)

The manipulators fixed and scie ntific are used to select floating·point formats.
Curiously. the standard library doesn't have a general manipuialOr to give the
default format. However, we ean define o ne, as we did in std~ lib_facilities.h .

"111is does require knowledge of the inner workings of the ioslream library:

inline ios_base& general(ios_base& b) /I to complement fixed and scientific
/I clear all floating-point format flags

(

b .self(ios_base: : fmHlags(O). ios_base : : floalfield)i
re turn bi

)

Now, we c:m write

co ut « 1234.56789 « '\1'
«fixed « 1234.56789 « '\I '
«scientific« 1234.56789« '\n ' ;

co ul « 1234.56789« '\n ' i
cout « general « 1234.56789« '\1'

« fixed « 1234.56789 « '\t '
«scientific « 1234.56789« '\n' i

' 1,is prints

II flo.lting format "sticks"
/I warning: general isn't standard

1234.57 1234.567890 1.234568e+003
1.234568e+003 /I scientific manipulator "sticks~

1.234568e+003 1234.57 1234.567890

In summalY, the bas ic floating-point output-fOnnalung manipulators are:

Floating-point formats

fixed

scientific

general

usc fixed-point notation

usc mantissa and exponent notation; the mantissa is always in the 11 :10)
range; that is, there is a single nonzero digit before Ihe decimal point

choose fixed or scientific to give the numerically most accura1e
representation, within Ihe precision of general. The general format is
1he default, but to explici tly set it you need a definition of general() .

381

382 CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT

11.2.4 Precision
By default, a floating.point value is primed using six lotal digits using the ge ne ral
format. The most appropriate formal is chosen and the number is rounded to
give the best approximation that can be printed using only six digits (the default
precisio n for the ge neral form). For example :

1234.567 prints as 1234.S7

1.2345678 prints as 1.23457

The rounding rule is the usual 415 rule: 0 to 4 round down and 5 to 9 round up.
Note thal floacing-point fannauing applies only to floating-point numbers, so

1234567 prims as 1234567 (because it's an integer)

1234567.0 prints as 1.23457e+OO6

In the latler case, the oslream determines that 1234567.0 (.;"l llnO(be printed using
the fixed fonnat using only six digits and switches to scienlific formallO preserve
the most accurate representation. Basically the general format chooses between
scientific and fixed fonnats lO present the user with the most accurate represen­
tation of a floating-point value within the precision of the general format , which
defaults at SL" total digits.

TRYTHIS

Write some code LO print the number 1234567.89 three times, flrst using
general, then fixed , then scientifi c. Which output fonn presents the user
with the most accurate representation? Explain why.

A programmer can set the precision using the manipulalOr setprecision() .
For example:

cou l « 1234.56789« '\('
« fixed «1234.56789 « '\I '
« scien tific « 1234.56789 « '\n' i

eou l « general « setprecision(5)
« 1234.56789« '\1'
« fixed « 1234.56789 « '\t'
« scientific « 1234.56789« '\n ';

cout « general « selprecision(8)
« 1234.56789« '\1'
« fixed « 1234.56789« '\1'
« scienlific « 1234_56789« '\n ';

11 .2 OUTPUT FORMATTING

111is prints (note the rounding)

1234.57 1234.567890 1.234568e+OO3
1234.61234.56789 1.23457e+OO3
1234.5679 1234.56789000 1.23456789e+OO3

~nle precision is dcfined as:

Floating·point precision

general

scientific

fixed

precision is the 10lai number of digils

precision is the number of digits after the decimal point

precision is the number of digits after the decimal point

Use the default (general fonnat with precision 6) unless thcre is a rcason not to.

TIle usual reason nOl to is "Because we need greater accuracy of the output."

11.2.5 Fields
Using scientifi c and flXcd formats , a programmer can control exactly how much
spacc a valuc takes up on outpul. That's dearly useful for printing tables, etc.
111C cquivalent mechanism for il1leger valucs is called.fie/ds. You can specify ex­
actly how maIly character positions an integer vaJue or string value \vill occupy
using the "set field widtll" manipulator setw() . For eXillnple:

co ut « 123456 /I no field used
« '1'« setw(4)« 123456« 'I' 1/123456 doesn't fit in a 4-char field
«setw(8)« 123456« 'I' 1/ set fi eld width 10 8
«123456« "!\n"; 1/ field sizes don't stick

~nlis prints

12345611234561 12345611234561

Note first the twO spaces before the third occurrence of 123456. 111a\'s what we
would expect for a six-digit number in an eight-character ficld . However, 123456
did not get truncated to fit into to a fou r-character ficld . \oVhy IlOl? 112341 or 134561
might be considered plausible outputs for the four-character ficld. However, that
would have completely changed the vaJue printed without any warning to the
poor reader that something had gone wrong. 1ne ostream doesn't do that ; in­
stead it breaks the output fonnat. Bad formaning is almost always prefcrable to
"'bad output data." in lhe most common uses of fields (such as printing out a
table), lhe "overflow" is visually very noticcable, so t.hat it can be corrected.

383

384 CHAPTER 11 • CUSTOMIZING INP UT AND OUTPUT

Fields can also be used for £1oaling-point numbers and strings. For example:

co ut « 12345 «'1'« setw(4) « 11345 « 'I'
«setw(8) « 12345« 'I' « 12345 « "!\n";

co ul « 1234.5 «'1'« setw(4)« 1234.5« 'I'
«setw(8) « 1234.5« '1' « 1234.5« "1\11";

co ut « "asdfg" « '1'« selw(4) « "asdfg" « 'I'
«setw(S) « "asdfg" « '1' « "asdfg" « "1\0";

This prints

1234511 23451 123451123451

' 234.51' 234.51 1234.511234 .51
asdfslasdfgl asdfglasdfgl

Note that the field width >;doesn't stick,'" In all three cases, the first and the last
values are printed in the default "as many characters as it takes" fOnJl a l. In other
words, unless you set the field width immediately before an output operation, the
notion of " field " is not used.

TRY THIS

Make a simple table including the last name, frrst name, telephone number,
and email address for yourself and at least five of your friends. Experiment
,vith different field \vidths until you are satisfied that the table is well presented.

11.3 File opening and positioning
As seen from C++, a file is an abstraction of what the operating system provides. As
described in §1O.3, a file is simply a sequence of bytes numbered rrom 0 upward :

0: I: 2:

L.......L...L....I.I ~::::::::::::::::.LI --'-L....L-.J

111e question is how we access those bytes. Using iostreams, this is largely deter·
mined when we open a file and associate a stream with it. The properties of a
Stream determine what operations we can perfonn after opening the me, and their
meaning. 111e simplest example or this is that if we open an islream ror a me, we
C<l.n read from the file, whereas ir we open a me with an ostream, we call write to it.

II .) FILE OPENING AND POSITIONING

11 .3.1 File open modes
YOll can open a file in one of several modes. By default, an ifstream opens its file
for reading and an of stream opens its file for writing. 111at takes care of most
common needs. However, you can choose between several alternatives:

Filestream open modes

ios_base: :app

ios_base: :ate

ios_base: :binary

ios_base: :in

ios_base: :out

ios_base : :Irunc

append (i.e., add to the end of the file)

Hat end~ (open and seek to end)

binary mode - beware of system-specific behavior

for reading

for writing

truncate fi le to O-Iength

A file mode is optionally specified after the name of the file. For example:

of sire am ofl (namcl)j /I defaults to ios_base::out
ifstream if1 (name2}j /I defaults to ios_base::in

of sire am ofs(name, ios_base: :app)i II of streams are by default oul
fstream fs(" myfile", ios_base: : inlios_base: :oul) j II both in and out

The I in that last example is the "bitwise or" operator (§A.5.5) that can be used to
combine modes as shown. "n le app option is popular for writing log files where
you always add to the end.

In each case, the exact efTect of opening a fi le may depend on the opcnlting
system, and if an operating system cannot honor a request to open a file in a cer­
tain way, the result will be a stream that is not in the goodO state:

if (!fs) /I oops: we couldn't open thai file thaI way

llle most common reason for a failure to open a me for reading is that the fil e
doesn't exist (at least not with the name we used):

ifstream ifs(" redungs");
if (!ifs) II error: c..1n't open "readings" for reading

In this case, we guess lhat a spelling error might be the problem.

385

386 CHAPTER 11 • CUSTOMIZING INPUT AND OU TP UT

Note that typically, an operating system will create a new fi le if you try to
open a nonexistent file for outPUL, but (fortunately) not if you ul ' to open a nOIl­
existent file for input:

o f stream ofs("no-s uch. file ");
o f sire am ifs("no-fil e·of·this· nam e ") i

/I create new file ca l led no-such-file
/I error: iis wi ll be nOI be goodO

11 .3.2 Binary fil es
In memory, we can represent the number 123 as an integer value or as a slring
value. For example:

int n = 123;
string s = "123";

In the first case, 123 is stored as a (binary) number in an amoulll of memory that
is the same as for all other ints (4 bytes, that is, 32 bits, on a PC). Had we chosen
the value 12345 instead, the same 4 bytes would have been used. In the second
case, 123 is SLQred as a string of three characters . Had we chosen the string value
"12345" it would have used five characters (plus the fixed overhead for managing
a string). We could illustrate this like this (using the ordinary decimal and char­
acter representation, rather than the bi.nary representation actually used within
the computer):

123 as characters: 1 12131' I I I' I' II I
12345 as characters: 1 121314151' 1' 1 I I

123 as binary: 123 I I
12345 as binary: 12345 I I

When we usc a character representation. we must use some character to repre­
sent the end of a number in memory. just as we do on paper: 123456 is one nUIll­
ber and 123 456 are nvo numbers. On "paper," we use the space character to

represent. the end o f the number. In memory. we could do the same:

123456 " ,hmc<m' l ' I 2 131 4 I 51 ' I I' I
123<156" ,hmc<"" 1' 12131 141SI' 1 I

"nle distinctio n between storing rlXed-sized binary representation (e.g., an int)
and variable-sized character string representation (e.g., a siring) also occurs in
fil es. By default, ioslreams deal with character representations; that is, an islream
reads a sequence of characters and tums it into an object of lhe desired type. An

11 .3 FILE OPENING ANO POSITIONING

ostream takes an object of a specified type and trans fonns it into a sequence of
characters which it writes ali t. However, it is possible to request istream and
oslream to simply copy bytes to and from fi les. 'l113t's called bliltlry /10 and is re­
quested by opening a me with the mode ios_base: : binary. H ere is an example
that reads and writes binary files o f integers. 1l1e key lines that specificaJly deal
with "binary" arc explained below:

int mainO
(

}

/I open an istream for binary input from a fi le:
caul « "Please enler input fil e name\n";
Siring name:
ti n » name;
ifslream ifs(name. c_slr() ,ios_base: :binary); /I note: stream mode

II ~binaryN tclls the stream nOI to Iry anything clever with the bytes
if (! ifs) erro r("can't open input fil e n, name) ;

/I open an ostream for bi nary output 10 a file:
cout « "Please enle r output fil e name\n":
ti n » name:
of sire am ofs(name ,c_strO,ios_base : : binary): II nole: stream mode

/I "binary" tells the stream not 10 try anything clever with the bytes
if (l o fs) error("ca n'l o pen o utput fil e ",name):

veclor<int> Vi

/I re.,d from binary file:
int ii
wh ile (ifs. read (as _bytes(i) ,sizeof(i nt)))

v.push_back(i):

/I ... do something with v .

II wrilC to binary file:
for(inl i=O : i<v.size() ; ++i)

ofs. wrj le(as_ bytes(vi ill, sizeof(int) :
return 0;

/I note: reading bytes

/I note: wri ting bytes

\-Ve open the files using ios_base: : binary as the stream mode:

ifslream ifs(name.c_slr(), ios_base: : binary);

of stream ofs(name.c_slrO, ios_base : :binary);

387

388 C HAPTER 11 • CU STO M IZING I NP UT AND OU TP U T

In both cases, we chose the trickier, but often more compact, binary representa­
tion. When we move from character-oriented 110 to binary I/O we give up our
usual » and « operators. Those operators specifically turn values into charac­
ter sequences using the default conventions (e.g., the string "asdf" Ulrns into the
characters a, 5, d , f and the imcgcr 123 turns into the characters 1, 2, 3). If we
wanted thal, we wouldn't need to say binary - the default would suffice. We usc
binary only if we (or someone else) thought that we somehow could do bener
than the default. We usc binary LO tell the stream not to try anything clever with
the bytes.

What "cleverness" might we do to an inl? TIle obvious is to store a 4-bytc inl
in 4 bytes; that is, we can look at the represcntation of the int in memory (a se­
quence of 4 bytes) and transfer those bytes to the file_ Later, we can read those
bytes back the same way and reassemble the int :

ifs. read (as_bytes (i), sizeof(int)
ofs. wri te(as_bytes(v[i» ,sizeof(i nt»

/I note: reading bytes
I/Ilote: writing bytes

The ostream writeO and the istream readO bOlh take an address (supplied here
by as_by teO) and a number of bytes (charaClers) which we obtained by using the
operaLOr sizeof. l11at address should refer to the first byte of memory holding
the value we want to read or write. For example, if we had an int with the value
1234, we would get the 4 bytes (using hexadecimal notation) 00, 00, 04, d2:

as bytes(i)

i : 00 00 .. d2

The as_bytesO function is needed to get the address of the first byte of an objecl's
representation. It can - using language facilities yet to be explained (§17.8 and
§ 19.3) - be defined like this:

template<class T>
char* as_bytes(T& i)
(

II treat a T as a sequence of bytes

void* add r = &i; /I get the address of the fi rst byte
II of memory used to store the object

return static_casl<char*>(addr); Illreal that memory as bytes

The (unsafe) type conversion using static_cast is necessary to get to the "raw
bytes" of a variable. The notion of addresses will be explored in some detail in
Chapters 17 and 18. Here, we just show how to treat any object in memory as a
sequence of bytes for the usc of readO and writeO.

I 1.3 FIL E OPENING AND POSrT10NING

~Illis binary 110 is messy, somewhat complic. ... ted, and error·prone. However,
as programmers we don't always have the freedom to choose file formals , so oc­
cas ionally we must lise binary I/O simply because that 's the format someone
chose for the files we need 1"0 read or wrile. Altematively, there may be a good
logical reason for choosing a non-character representation. A typical example is
an image or a SOllnd file , for which there is no reasonable character representa­
tion : a phmob>T<lph or a piece of music is basically just a bag of bits.

' Ille character 1/0 provided by default by the ioslream library is portable,
hu man readable, and reasonably supported by the type system. Use it when you
have a choice and don' t mess with binary 110 unless you really have to.

11 .3.3 Positioning in files
Whenever you call, just read and write mes from the beginning to the end.
' Ilmt's the easiest and least error-prone way. Many times, when you feel that you
have to make a change to a file, the better solution is to produce a new fil e COIl­

taining the change.
However, if you must, you can use positioning to select a specific place in a file

for reading or writing. Basically, evely file that is open for reading has a "read/get
positionn and evely fLle that is open for writing has a "write/put position":

I\Jt position: 2 G CI position:

0: I:

A filc:

-nlis c. ... n be used like this:

fs trea m fs(name.c_str()); II open for input and output
if (! fs) e rro r("can 't open ",name);

fs .seekg(5); /I move reading position (g for "gen to 5 (the 6th character)
char ch;
fs»chi /I re.ld and increment reading position
cout « "character 6 is"« ch « '(' « int(ch)« ")\n";

fs.see kp(1) ; /I move writing position (p for "pun to 1
fS« 'Y'i 1/ write and increment writing position

Please be careful : there is next to no run-time error checking when you use posi­
tioning. In particular, it is undcfmcd what happens if you try 10 seek (using
seckgO or see kp()) beyond the end of a file, and operating systems really do dif­
fer in what happens then.

389

390 CHAPTER 11 • CUSTOMIZ ING INPUT AND OUTPUT

11.4 String streams
You can usc a string as the source of an istream or lhe target for an oslream. An
istream that reads from a string is called an istrings lream and an ostream that
stores characters written to it in a string is called an oslringstream. For example,
an istringst ream is useful for extracting numeric values from a siring:

double stUo_double(st ring 5)
1/ if possible, convert cha racters in s to floati ng.point value

{

iSlringstream isIs);
double d;

/I make a stream so that we can read (rom s

is » d ;
if (!is) error("double format error: ",5);

return d ;
)

double dl = slr_to_doublc("12.4");
double d2 = str_to_double("1.34e-3") ;

/I testing

double dJ = str_lo_double(tl twelve point three"); /I will call error()

If we try to read beyond the end of a stringstream's string, me stringstream will
go into eofO state. This means that we can use "thc usual input loop" for a
stringstream; a string stream really is a kind of istream.

Conversely, an ostringstream can be usefu l for formatting output for a sys­
tem that requires a simple string argument, such as a CUI system (see § 16.5).
For example:

void my_code(string labe l, Te mperature temp)
{

)

II .
oslringstream os; /I stream for composing a message
os « setw(8) « label « ": "

« fixed «setprecision (5) « temp.temp « temp.unit ;
someobjecl.d isplay{Poi nt(l 00, 1 (0), os. st rO. c_str(»;
II ...

"I11e strO member function o f osltingstream retums me string composed by out­
put operations to an ostringstream. The c_strO is a member function of siring
that retums a C-style string as required by many system interfaces .

TIle stringstreams are generally used whcn we want 10 separate actual 1/0
from process ing. For example, a st ring argument fo r str_to_doubleO will usually
o ribrinale in a fil e (e.g., a web log) or from a keyboard. Similarly, the message we

11 .5 LIN E-ORIENTED INPUT

composed in my_codeO will eventually end up wriuen to an area of a screen. For
example, in § 11.7, we use a stringstream LO filter undesirable characters out of
our input. Thus, stringstreams can be seen as a mechanism for tailoring 110 to
special needs and tastes.

A simple usc of an ostream is to construct strings by concatenation. For
example:

int seq_no = gel_nexCnumber() ;
ostringstream name;
name« "myfile" «seq_no ;
oislrea m logH le(name. sh O.c_sl rO);

II get the number of a log fi Ie

lIe.g., m)'filel7
II e.g., open myfilc17

Usually, we initialize an istringstream with a string and then read the characters
from I.hat string using input operations. Conversely, we typically initialize an
oSlringslream 1.0 the empty string and then fill it using output operations. '11cre
is a more direct way of accessing characters in a stringstream that is sometimes
useful: ss.slrO returns a copy of 5S' S string, and ss.str(s) sets in ss's string to a
copy of s. § 11.7 shows an example where 5s.slr(s) is essential.

11.5 line-oriented input
A » operator reads into objects of a given type according to that type's standard
formal. For example, when reading i.nto an int , » will read until it encounters
something that 's not a digit, and when reading into a siring, » will read until il.
encOllnters whilespace. -nle standard library istream library also provides facili­
ties for reading individual dIameters and whole lines. Consider:

string name;
dn» name; II input: Dennis Ritchie
cout « name « '\n' ; II output: Dennis

' Vhat if we wanted to read everything on that line at once and decide how to for­
mat it later? ' 1mt could be done using the function getlineO. Fo r example:

string name;
getline(dn,name);
coul « name« '\n ' ;

II input: Dennis Ritchie
II output: Dennis Ritchie

Now we have tbe whole line. Why would we waill that? A good answer wou ld
be <-Because we want to do something that can't be done by » ." Often, the an­
swer is a poor one: "Bec.1use the user typed a whole line." If that's the best you
can think of, stick to » , because once yOll have the line entered, YOll usually
have 1.0 parse it somehow. For example:

391

392 C HAPTER 11 • CUSTOMIZ ING INP UT AND OUTPUT

string firsCnamej
string second_name;
stringstream ss(name)i
ss» firsCname j
ss»second_namej

/I input Dennis

/I input Ritchie

Reading directly into firsCname and second_name would have been simpler.
One conmlOn reason for wanting to read a whole Jine is that the definition of

whitcspacc isn 't always appropriate. Sometimes, we wanl to consider a newline
as different from other whitespace characters. For example, a text communica­
tion with a game might consider a line a semence, rather than relying on conven­
tional punctuation:

go left until you see a picture on the wall to your right
remove th e picture and open the door behind it. take th e bag from there

In that case, we'd first read a whole line and then extract individual words from thaI.

string command;
get Ii n e(cin, command); /I read the line

stri ngstream ss(com mand)i
vector<string> words;
string s;
while (ss»s) words.push_back(s); II extract the individual words

On the Olher hand, had we had a choice, we would most likely have preferred to
rely on some proper punctuation rather than a line break.

11.6 Character classification
Usually, we read integers, floating-point numbers , words, etc. as defined by for­
mat conventions. However, we can - and sometimes must - go down a level of
abstraction and read individual characters . That 's more work, but when we read
individual characters, we have full control over what we are doing. Consider wk­
enizing an expression (§7.8.2). For example, we want 1+4-x<=y/z· s to be sepa­
rated into the eleven tokens

1+4 -x<=y / z·S

Wc could usc » to read the numbers, but trying to rcad the identifiers as strings
would cause x<=y to be read as one string (since < and = arc not whitespace char-

11.f> (f-IARACTER CLASS IFICATION

actcrs) and z* to be read as one suing (since * isn' t a whitespace character either).
Instead. we could write

char ch;
while (ci n.get(ch» {

if (isspace(ch» (II if ch is whitcspacc
II do nothing (i.c., sk ip whitespacel

}

if (isdigit(ch» {
II read a number

clse if (isalpha(ch)) (
II read an identifier

}

else {
II deal wi th operators

}

The islream: :gelO function reads a single character into its argument. It docs not
skip whitespace. Like » , getO returns a reference to its istream so that we can
test its state.

When we read individual characters, we usually want to classify them: Is tills
character a digit? Is this character uppercase? And so forth. There is a set of stan­
dard libra!"y functions for that:

Character classification

isspace(c)

isalpha(c)

isdigit(c)

isxdigit(c)

isupper(c)

islower(c)

isalnum(c)

iscnt,l(c)

ispunct(c)

isprint(c)

isgraph(c)

Is c whitcspace (" , '\I ', '\n', etc.)?

Is c a letter ('a' . .'z ', 'A' .. 'l ') (note: not '_')?

Is c a decimal digit ('O' . .'9')?

Is c a hexadecimal digit (decimal digit or 'a ' . .'f ' or 'A' . .'f')?

Is c an uppercase letterf

Is c a lowercase letter!

Is c a letter or a decimal digit?

Is c a control character (ASCIl 0 . .31 and 12l)?

Is c not a letter, digit, whilespace, or invisi ble control character?

Is c printable (ASCII ' ' . .'-'J?

Is c isalphaOlisdigitOlispunclO (note: not space)?

393

394 C H APTER 11 • CU STOMIZIN G IN P UT AND OUTP UT

Note the way that classifications can be combined using the "or" operator (I). For
example, isalnum(c) means isalpha(c)lisdigit(c) ; that is, "Is c either a letter or a
digit?"

In addition, the standard library provides two useful functions for getting rid
of case differences :

Character case

toupper(c)

tolower(c)

c or e's uppercase equivalent

c or CiS lowercase equivalent

'111CSC arc useful when YOLI want to ignore case differences. For example, in input
from a user Rig ht, right, and rigHT mostlikcly mean lhc same thing (rigHT most
likely being the result of an unfortunate hit on the Caps Lock key). After apply­
ing tolowerO to each character in each of those strings, we get right for each. We
ca.1l do that fo r an arbitrary string:

void tolower(string& s)
{

/I put s into lower case

for (int i=O; ks. lengthO; ++i) s[i] = tolower(s[iJ);

V\'e use pass-by-rererence (§8.5.5) to aClllally change the string. Had we wanted
to keep the old string we could have written a runction to make a lowercase copy.
Prerer tolowerO to toupperO because that works belter ror text in some natural
languages, sllch as German, where nOl every lowercase character has an upper­
c"lse equivalent.

11.7 Using nonstandard separators
~nlis section provides a semi·realistic example or the use or iostreams to solve a
real problem. VV-hen we read strings , words are by derault separated by white­
space. Unrortunately, istream doesn't ofTer a facility for us to define what charac­
ters make up whitespace or in some other way directly change how » reads a
string. So, what do we do if we need another definition of whitespace? Consider
the example rrom §4.6.3 where we read in "words" and compared them. 1110se
words were whitcspace-separated, so if we read

As planned , the guests arrived; th en,

We would get the "words"

11. 7 US ING NONSTAN DARD SE PA RATORS

As
planned,
the
guests
arrived;
then,

TIlis is not what we'd find in a dictionary: "planned," and "anived ;" are not words.
TIley arc words plus distracting and irrelevam punctuation charncters. For most
purposes we must treat punctuation just like whitespacc. How might we get rid of
such punctuation? \o\'e could read charncters, remove the punctuation characters -
or rum them into whitcsp:1ce - and then read the "cleaned-up" input again:

siring linc;
gelline(ci n,line); II read inlo line
for (int i=O; i<iine.sizeO; ++i) /I replace each puncluation character

by a space
switch(line[i)) (
case 'i' : case '.' : case ', ' : case 'l ' : case '1' :

line[i) =' ';

stringslream ss(line) ;
veclor<string> VS;

string word ;
while (ss» word)

vs. push_back(word);

/I make an iSircam ss reading from linc

/I rcad words withoul puncluation characters

Using that to read the line we gCt the desired

As
planned
th e
guests
arrived
then

Unfortunately, the code above is messy and rather special-purpose. What would
we do if we had another definition of punctuation? Let'S provide a more general
ru1(1 lIseful way of removing unwanted characters from an input stream. What
would that be? What would we like our user code to look like? How about

395

3% (HAPTE R 11 • CUSTOMIZ ING I N PUT AN D OUTPUT

ps.whilespace(" j :,. ") ; /I treat semicolon, colon. comma, and dot as,iICSp.1CC
string word;
while (ps»word) vs.push_back(wordl j

How would we deflne a stream that would work like ps? The basic idea is to read
words from an ordinary input stream and then treat the user-specified "white­
space" characters as whitespacc; that is, we do not give "whitcspacc" characters
to the user, we just lise them to separate words. For example,

as. not

should be the two words

as
nol

We can define a class to do that for us. It must gel characters from all istream and
have a » opcraLOr that works just like iSlream's except that we can tell it which
characters it should consider La be whitcspacc. For simplicity, we will not provide
a way of treati ng existing whitcspacc characters (space, newline, etc.) as non­
whitespacc; we'll just allow a uscr to speciry additional "whitcspacen characters_
Nor will wc provide a way to completely remove the designated charactcrs rrom
thc strcam; as berore, we will just tum them into whitespacc_ Let's call that class
Punet_stream:

class PuncLstream (II like an islream, but the user can add to
II the sct of whi tespace characters

public:
Punet_stream<istream& is)

: source{is), sensitive(true) { }

void whitespace(const string& s)
{white = s; }

II make s the whitcspace set

void add_white(ehar c) { white += c; } II add to the whitcspace set
bool is_whitespaee(ehar eli II is c in the whitespacc sct?

void case_sensitive(bool b) {sensitive = b; }
bool is_ease_sensitiveO { return sensitivej }

Punct_stream& operator»(string& s);
ol'erator boolO;

11. 7 U SING NO NSTA N DARD S EPARATORS

private:

} ;

iSlrea m& so urce;
istringstream buffe r;
siring white;
bool sensitive;

/I character source
/I we let buffer do our formtl ll ing
II characters considered "whitespace"
/I is the stream case-sensitive?

rnle basic idea is - just as in the example above - to read a line at a time from
the iSlream, convert "whitespace" characters into spaces, and then use the
slringslream to do fo rmatting. In addition to dealing with user-defined white­
space. we have given Punet_strea m a related facility: if we ask it to , using
case_sensitiveO, it can convert case-sensitive input into non-case-sensitive inpul.
For example, if we ask, we can get a PUllct_stream to read

Man biles dog!

m,"
bites
dog

Punecstream's constructor takes the istream to be used as a character source
and gives it the local name source. TIle constructor also defaults the stream to
the usual case-sensitive behavior. We can make a Punet_stream that reads from
cin regarding semicolon, colon, and dot as whilcspace, and that turns all charac­
ters into lower case:

Punet_stream ps(cin)i
ps,whilespace("; :_");
ps, case_se nsil ive(false);

/I ps reads from ci n
/I semicolon, colon, and dot are also whitespace
II not case-sensi tive

O bviollsly, the most interesting operation is the input operator » . It is also by
far the IllOSt difficult 10 define, O ur general strategy is to read a whole line from
the istream into a string (called line). We then convert all of "our" whitespace
characters to the space character (' '). That done, we put the line into the
istringslream G.'d led buffe r. Now we can usc the usual whitespace-separating »
to read from burrer. The code looks a bit more complicated than this bec."1usc we
simply try reading from the buffe r and try to fill it only when we find it cmpty:

Puncl_stream& Punet_stream: :operator» (string& s)
{

397

3 ..

)

(HAPTER 11 • CUSTOMIZING IN PUT AND OUTPUT

while (!(buffer>>s» (/I try 10 read from buffer

)

if <buffer.badO II !source.gaodO> return - this;
buffe r.clearO;

string line:
gelline(source, line): II get a line from source

/I do character replacement as needed:
for (int i =0; kline .size(); ++i)

if (is_whilespace(line[ij))
line[iJ= ' ' ;

else if (!sensitive)
1110 space

line[i) = lolowe r(lineIi J); /I to lower case

buffer.str(lin e); II put SIring into slrC3m

return - this;

Let's consider this bit by bie Consider first the somewhat unusual

while (!(buffer»s» {

If there arc characters in the istringstream called buffer the read buffer»s will
work, and s will receive a "whitcspacc"-scparatcd word ; then there is nothing
morc to do. '1-131 will happen as long as there are characters in buffer for us to
read . However, when buffer» s fails - that is, if !(buffer»s) - we lTlust replen­
ish buffer from source. Note that the buffer»s read is in a loop ; after we have
tried to replenished buffer, we need to try another read, so we get

whi le (!(bufier»s)) (/I try to read from buffer

)

if (buffer.badO II !source .good Ol return · this;
buffer.dearO;

/I replenish buffer

If buffer is badO or the source has a problem, we give up; othenvise, we clear
buffer and try again. We need to clear buffer because we get into that "replenish
loop" o nly if a read failed, typically because we hit eoru for buffer ; that is, there
were no more characters in buffer for us to read. Dealing with stream state is al­
ways messy and it is often the sou rce of subtle errors thai require tedious debug­
ging. Fo rtunately the rest of the replenish loop is pretty straightforward:

11 .7 USING NONS TA NDA RD SEPA RATORS

string line ;
getline(source, linc); /I get a line from sou rce

/I do character replacement as needed :
fo r (int i =0 ; i<line .sizeO; ++il

if (is_whitespace(line[iJ))
line[iJ= ' ' ; /I to space

else if (!sensitive)
line[il = tolower(line[iJ); II to lower case

buffer.str(line) ; /I put string into stream

'Ne rcad a line into buffer. Then we look at each character of that line to sec if we
need to change it. The is_whitespaceO function is a member of PuncCstream,
which we'U define later. TIle tolowerO function is a standard library function
doing the obvious, such as turning A into a (sec §1 1.6).

Once we have a properly processed line, we need to gel it intO our istring­
stream. 111at's what buffer.str(line) does; it ean be read as "Set the stringstream
buffer's string LO line ."

Note that we "forgot" to ICSt the state of source after reading from it using
getlineO. We don't need to because we will eventually reach the !source.good O
test at Lhe tOp of the loop.

As ever, we rcturn a reference to the stream itself, *'his, as the result of » ;
see §17.1O.

Testing for whitespace is easy; we just compare a character to each character
of the string that holds our whitespace set:

bool Punct_stream: :is_whitespace(char c)
(

)

for (int i = 0; i<white.size() ; ++i) if (c==white[iJ) return true;
re turn false ;

Remember that we left the istringstream to deal with the uSLIal whitespace char·
acters (e.g. , newline and space) in the usual way, so we don't need to do anything
special about those.

This leaves o ne mysterious function:

Pun CCSlream: :operator boolO
(

return !(source .fail() 11 source .bad()) && source .good O;

399

400 CHAPTER 11 • CU STOMIZING INP UT AND OU TP U T

TIle conventional lise of an istrcam is to lCSllhc result of » . For example:

while (ps»s) {'- .. . -' }

That means that we need a way of looking a t the result of ps>>s as a Boolean
value. TIle result of ps»s is a PuncCstream , so we need a way of implicitly LUm­
ing a PuncCstream into a bool. "l1tat's what PuncCslream 's operator boolO docs.
A member function called operator boolO dcfmes a conversion to bool . In partic­
ular, it returns true if the operation on the PuncCstream succeeded.

Now we can write our program.

int main O

(

)

II given text input, produce a sorted list of all words in that text
II ignore punctuation and case differences
II eliminate dupl icates from the output

PuncCSlream ps(cin);
ps .whites pace(" ; :, .?!()\"{}<>I&$@#"ioll-I-"); /I nOle \" means " in string
ps. case _sensit ive(false) ;

cout « "please e nter words\n" ;
veclor<string> vs;
string word;
while (ps»wordl vs. push_back(wordl; /I read words

sort(vs.begi nO,vs.endO) ; II sorl in lex icographical order
for (int i=O; i<vs.size(); ++i) /I write dictionary

if (i==O II vs(iJ!=vsl i- 1J) cout « vsliJ «endl ;

1l1is will produce a properly sorted list of words from input. The (cs(

if (i==O II vs[i] !=vs[i-l J)

will suppress d uplicates. Feed this program the input

There are only two kinds of languages: languages that people complain
abo ut, and languages that people don' t use.

and it will outpul

and ...
complain

11 .8 AND THERE IS SO MUC H MORE

don' t
la nguages
of
only
people
that
th ere
Iwo
us.

Why did we get don' t and not dont ? We len the single quote out of the white ­
spaceO c."1I1.

Caution: Punet_stream behaves like an istream in many important and useful
ways, but it isn't really an istream. For example, we can't ask for its state using rd­
state() , eofO isn't defined, and we didn't bother providing a » t.hat reads integers.
Importantly, we caIUlOt pass a Punet_stream to a function expecting an istream.
Could we defi ne a Punetj stream tllat really is an istream? We could, but we don't
yet have the programming experience, the design concepts, and the language facil­
ities required to pull ofT that SlUm (if you - much later - want to return LO this
problem, you have to look up stream buITers in an expen-Ievcl guide or manual).

Did you find PuncCslrea m easy to read? Did you find the explanations easy
LO follow? Do you think you could have written it yoursclP If you were a genuine
novice a few days ago, the honest answer is likely to be "No, no, no!" or even
""NO, no! Nooo!! - Are you crazy?" \Ve understand - and the answer to the last
question/outburst is "No, atlcast we think not." TIle purpose of the example is

-Ib show a somewhat realistic problem and solution

1b show what can be achieved with relatively modest means

1b provide an easy-to-use solution LO an apparently easy problem

To illustrate the distinction between the interface and the implementation

1"0 become a progra.mmer, you need to read code, and not j ust carefully polished
solutions to educational problems. This is an example. In another few days or
weeks, this will become easy for you to read, and YOll will be looking at ways to
improve the solution.

One way to think of this example is as equivalent to a teacher having dropped
some genuine English slang into an English-for-beginners course to give a bit or
color and enliven the proceedings.

11.8 And there is so much more
"11le details of I/O seem infinite. TIley probably are, since they arc limited only by
hu man inventiveness and capriciousness. For example, we have not considered

.. "

40' CHAPTER 11 • CUS TO MIZING IN PUT AN D OU TP UT

the complexity implied by naturaJlanguages. What is written as 12.35 in English
will be conventionally rcprcsclllcd as 12,35 in most Olher European languages.
Naturally, the C++ standard library provides facili ties for dealing with that and
many Olher natural-language-specific aspects of 1/0 . How do you write Chinese
characters? How do you compare strings written using MaJayaJalll characters?
111erc arc answers, but th ey are far beyond the scope of tills hook. If you need to
know, look in more specialized or advanced books (such as Langer, Slll1uUml C++
IOStreanu mm Lomles, and Stroustrup, 'flte C++ Programming Lal1guage) and in li­
brary and system documentation. Look for locale; that 's the tenn usually applied
to facilities fo r dealing with nalural languagc differences.

AnOlher source of complexity is buffering: the standard library ioslreams
rely on a concept called streambuf. For advanced work - whether for perfonn·
ance or functionality - with iostreams these istreambufs are unavoidable. If YO LI
feel the need to define your own ioslreams or to lUne iostreams to new data
sourceS/sinks, see C hapter 2 1 of 7M C++ Programming umguage by Stroustrup or
your system documentation .

When using C++, you may also encounter the C standard printfO/scanfO
family of I/O functions . If you do, look them up in §27.6, §B. I 0.2 , or in the excel·
lent C textbook by KeOlighan and Ritchie ('The C Programming Language) or one of
the innumerable sources on the web. Each language has its own 1/0 facilities;
they all vary, most arc quirky, but most reflect (in var ious odd ways) the same
fu ndamental concepts that we have presented in Chapters 10 and II.

111e standard library 1/0 facilities arc summarized in Appendix B.
TIle related topic of graphical user interfaces (G UIs) is described in Chap·

ters 12- 16.

~ Drill
1. Stan a program called Tesco uipul. cpp. Declare an integer birth_year

and assign it the year yOll were ba m .
2. Output your birth_year in decimal, hexadecimal , and octal fonn .
3. Label each value with the name of the base used .
4. Did you line up your output in columns using the tab character? If not,

doil.
5. Now output your age.
6. Was there a problem? What happened ? Fix your output to decimal .
7. Go back to 2 and cause your output to show the base for each output.
8. T ry reading as octal, hexadecimal, etc.:

cin » a >>ocl >> b » hex » c» d ;
cout « a « '\1'« b « '\1'« c « '\1 '« d « '\n' ;

Run this code with the input

CHAPTER!! TE RM S

1234 1234 12341234

Explain U1C results.
9. Writc somc code to print ule number 1234567.89 three times, fIrst using

general , then fixed , then scientific forms. Which output form presents
the user with ule most accurate representation? Explain why.

10. Make a simple table including last name, fIrst name, telephone number,
and email address for yourself and at least five of your friends. Expcri·
ment with different field widths until you arc satisfied that the table is
weU presented .

Review

1. Why is 110 tricky for a programmer?
2. What docs the notation « hex do?
3. What arc hexadecimal numbers used for in computer science? "Vhy?
4. Name some of the options you may want to implement for formatting in·

teger output.
5. \tVhat is a manipulator?
6. What is the prefix for decimal? For octal? For hexadecimal?
7. 'What is Ule default output fonnal for floating·point values?
8. What is a field?
9. Explain what setprecision() and setw() do.

10. What is the purpose of file open modes?
II. Which of the following manipulatOrs does not ;<stick": hex , scientific,

setprecision , showbase , setw?
12. What is the difference between character 110 and binary I/O?
13. Cive an example of when it would probably be beneficial to use a binalY

file instead of a text file.
14 . Give twO examples where a slringstream can be useful.
15. What is a file position?
16. What happens if you position a me position beyond lhe end of file?
17. When would you prefer line·oriented input to type·specific input?
18. What docs isalnum(c) do?

Te rms

binary
character c1assific.'uion
decimal
file positioning
fixed
general

hexadecimal
irregularity
line·oriented input
manipulator
nonstandard separator
noshowbase

OCtal

output fonnatting
regularity
scientific
setprecision
showbase

403

CHAPTER 11 • CUSTOMIZING INPUT AND OUTPUT

Exercises
1. Write a program that reads a text me and converts its input to all lower

case, producing a new file.
2. Write a program that removes all vowels from a file ("disellwowcls"). For

example, Once upon a time! becomes nc pn tm!. Surprisingly of tell, the
result is still readable; try it on your friends.

3. Write a program called mult U nput. cpp that prompts the user to enter
several integers in any combination of octal, decimal , or hexadecimal,
using thc 0 and Ox base suffixes; interprets the numbers correctly; and
converts them to decimal fonn. 'Tllen your program should Output the
values in properly spaced columns like this:

0,.
0123

'5

hexadecimal converts to
octal converts to
decimal converts to

.,
83

'5

decimal
decimal
decimal

4. Write a program that reads strings and for each string outputs the char­
acter classification of each character, as defined by the character classifi­
calion functions preseilted in § 11.6. Note that a character c.1n have
several classifications (e.g. , x is bOlh a letter and an alphanumeric).

5. \,yri te a program that replaces punctuation with whitespace. For exam­
ple, ,. - don' t use th e as-if rule." becomes " dont use the asif rule ".

6. Modify the program from the previous exercise so that it replaces don' t
with do not, can' t with cannot, etc.; leaves hyphens within words intact
(so that we get " do not use the as-if rule "); and converts all characters
to lower case.

7. Use the program from the previous exercise to make a dictionary (as an
alternative to the approach in § 11.7). Run the result on a multi·page text
file , look at the result, and see if you can improve the program to make a
better dictionary.

8. Split the binary 110 program from §11.3.2 into two: one program that
convens an ordinary text file imo binary and Olle program that reads bi­
nary and converts it to text. Test these programs by comparing a text file
with what you get by converting it to binary and back.

9. Write a function vector<string> spl it(const slri ng& s) that returns a
vector or whitespace-separated substrings rrom the argument s.

10. Write a function vector<string> spli((co nst string& s, canst slring& w)

that returns a vector or whitcspace-separated substrings rrom the argu­
ment s, where whitespace is defined as "ordinary whitcspace" pillS the
characters in w .

11. Reverse lhe order of characlers in a lext ftle. For example, asdfghjkl be­
comes Ikjhgfdsa. Hint: "file open modes."

C HAPTER 1 1 POSTSCRIPT

12. Reverse the order of words (defined as whitespace-separated strings) in a
file. For example, Norwegian Blue parrot becomes parrot Blue Norwegian.
You arc allowed to assume that all the strings from the file will fit into
memory at once.

13. Write a program that reads a text file and writes out how many charac­
ters of each character classification (§11.6) arc in the me.

14. Write a program that reads a file of whitespace·separated numbers and
outputs a fil e of numbers using: scientific format and precision 8 in four
fields of20 characters per line.

15. Write a program to read a file of whites pace-separated numbers and out­
put them in order (lowest value first), one value per line. Write a value
only once, and if it occurs more than once write the count of its occur­
rences on its line. For example, "75573 11 75" should give

3
5 3
7 2

117

Postscript

Input and output are messy becallse our human tastes and conventions have not
followed simple-to-stale rules and straightforward mathematical laws_ As program­
mers, we arc rarely in a position to dictate that our users depart from their prefer­
ences, and when we are, we should typically be less arrogant than to think that we
can provide a simple altemative to conventions built up over time_ Consequently,
we must expect, accept, and adapt to a certain messiness of input and output while
still trying to keep our programs as simple as possible - bUl no simpler.

4.15

1-.

r 12

A Display Model

"The world was black and white then.
[It] didn't turn color

until sometime in the 193 Os."

- Calvin's dad

T his dlaptcr presents a display model (the output part of GU I),

giving examples of use and fundamental notions such as

so'CCn coordinates, lines, and color. line, Li nes, Polygons, Axis, and

Text arc examples of Shapes. A Shape is an object in memory that

we can display and manipulate on a screen. 111c next twO chapters

\vill explore these classes further, with C hapter 13 focllsing on their

implementation and Chapter 14 0 11 design issues.

407

408

12.1 Why graphicsl

12.2 A. display mode l

12.3 A. first example

12.4 Using a GUllibra ry

12.5 Coordinates

12.6 Shapes

12.1 Why graphics?

(HAPTER 12 • A DISPLAY MODE L

12.7 Using Shape primitives
12.7.1 Graphics heilde rs and main
11.7.2 A.n almost blank window
12.7.3 A.xis
12.7.4 Graphing a fun ction
12.7.5 Polygons
12.7.6 Rectangles
12.7.7 Fill
12.7.8 Text
12.7.9 Images
12.7. 10 And much more

12.8 Getting th is to run

12.8.1 Soulce files

Why do we spend four chapters on graphics and one on GU ls (graphical user
interfaces)? After all , this is a book about programming. not a graphics book.
There is a huge number of interesting software topics that we don't disclIss, and
we can at best scratch the surface on the topic of graphics . So, "\>\Thy graphics?"
Basically, graphics is a subject that allows us to explore several important areas or
sortware design, programming, and programming language racilities:

Graphics are Uk:}U1. '111ere is much more to progranuning than graphics
and much more to sortware than code manipulated through a CU I.
However, in many areas good graphics arc either essential or very im·
portant. For example, we wouldn 't dream or studying scientific comput·
ing, data analysis, or JUSt about any quantitative subject without the
ability to graph data. C hapter 15 gives simple (but general) racilities ror
graphing data.

Graphics arejim. There arc rew areas or computing where the efTect or a
piece or code is as immediately obvious and - when finally rree or bugs
- as pleasing. We'd be tempted to play with graphics even if it wasn't
useful!

Graphics jJ1vvide lots 0/ il/terestillg cQ(ie to read. Pan of learning to program is
to read lots or code to get a recl ror what good code is like. Similarly, the
way to become a good writer of English involves reading a lot of books,
articles, and quality newspapers. Because or the direct correspondence
between what we sec on the screen and what we write in our programs,
simple graphics code is more re<lclable than most kinds or code of similar
complexity. 111is chapter will prove that you call read graphics code arter
a rew minutes or introduction; C hapler 13 will demollstrate how yOll c.'l.1l

write it arter another couple or hours.

12.2 A D ISPL AY MODel

Cm/)/dcs art a ferlile J(jUf(£ rf design eXflmples. It is actually hard to design and
implement a good graphics and CUI library. Graphics arc a very rich
source of concrete and practical examples o f dcsign decisions and dcsign
techniqucs. Some of the most useful techniques for designing classes, de­
signing functions, separating so ft ware i1llo layers (of abstraction), and
constructing libraries can be illustrated with a relatively small amount of
graphics and G U I code.

Gmpflics prouule a good 1i,lnxillcli()1/ 10 wlllli is commcJII/y calkd objecl-orienled pro­
grmnmillgmullhe lallgJlagefialurtJ Ihal support il. Despite rumors to the con­
trary, objcct-oriented programming wasn't invented to be able to do
graphics (see C hapter 22), bu t it was soon applied to that, and graphics
provide some of the Illost accessible examples of object-oriented designs.

Some rf" Ihe key graphics (Qntepls are lIQlllriuial. So they arc worlh teaching,
ralher than leaving it to your own initiative (and patience) to seck out in·
formation. If we d id not show how graphics and CUI were done, you
might consider them "mabric," thus violating one o f the fundamental
aims of this book.

12.2 A display model
111e iostream library is oriented toward reading and writing streams of characters
as thcy might appear in a list of numeric values or a book. The only direct sup­
ports for the notion o f graphical position arc the newline and tab characters. YOli

can embed notions o f color and two·d i.mensional positions, etc., in a one­
d imensional stream of characters. That's what layout (ty pesetting, "markup")
languages such as TraIT, Tex, Word , l-rrrP, and XM L (and their associated
graphic.."ll packages) do. For example :

<hr.>
<h2>
Organization
<lh2>
This list is organized in three paris:

<lub

Proposals<lb>, numbered EPddd, ... <I1i>
lssues<lb>, numbered Elddd, ... <I1i>
di>Suggestions<lb>, numbered ESddd, ... <I1i>

<p>We try to ...
<p>

111is is a piece of HTM L specifying a header « h2> ... <lh2» a list « ub ...
<lub) wilh list items « il> ... <iiI>) and a paragraph « p» . We left out most o f

410 C HAPTER 12 • A DIS PLAY MODEL

the acmal tcxt because it is irrelevam here. lne poim is that you can express lay­
out notions in plain text, but the connection between the characters written and
what appears on the screen is indirect, governed by a program that interprets
those "markup" commands. Such techniques arc fundamcntaHy simple and im­
mensely useful (j USt abou t everything you read has been produced using them),
bUl tllCY also have their limitations.

In this chapter and the next [our, we present an altcmativc: a notion of graph­
ics and of graphical user interfaces that is direcuy aimed at a computer screen.
The fundamental concepts arc inherently graphical (and two-dimensional,
adapted to the rectangular area of a computer screen), such as coordinates, lines,
rectangles, and cireles. TIle aim from a progranmung point of view is a direct cor­
respondence between the objects in memory and the images on the screen.

The basic model is as follows: ""e compose objccts with basic objects provided
by a graplucs system, such as lines . We "attach" thesc graphics objects to a \vindow
object, representing our physic.-u screen. A program that wc can think of as the dis­
play itself, as "a display engine," as "our graplucs library," as "the CUI library," or
even Qmmorously) as "the small gnome writing on the back of the screen" then
takes the objects wc have added to our window and draws them on the screen:

Circle
Display
engme

attachO draw()

"Wmdow"

Square
allachO

111e "display engine" d raws lines on the screen, places strings o f text o n the
screen , colors areas of the screen, etc. For simplicity, we'll use the phrase "ou r
CU I library" or even "the system" for the display engine even though Ollr CU I
library docs much more than j ust drawing the objects. In the same way that our
code lets the G U I library do mOst of the work for us, the CU I library delegates
much of its work to the operating system.

12.3 A first example
Our job is to define classes from which we can make objects that we want to see
o n the screen . For example, we might want to draw a graph as a series of con­
nected lines. Here is a small program prescilling a very simple version of that:

12 .3 A FIR ST EXA MPL E

#indude "Simple_window.h"
#ind ude "Craph .h"

int mainO
(

/I get access to our window library
II get access to our graphics libr.lry faci lities

using namespace Craph_lib ; /I our graphics facili ties are in GraphJib

}

Po int 11(100,100); /I to become top left corner of window

Simple_window win (II ,600,400, "Canvas"); II make a simple window

Polygon poly;

pol y.add (Po int(JOO,200»;
pol y.add (Point(J50,100»;
poly.add (Po int(400,200));

poly.scCcolo r(Color: :rcd);

win .attach (poly) ;

win .waiCfo r_butto n();

II make a shape (a polygon)

/I add a point
/I add another point
II add a third point

/I adjust properties of poly

/I connect poly to the window

/I give control to the display engine

When we nm this program, the screen looks something like this:

411

412 CHAPTER 12 • A DISPLAY MODEl

Let's go through the program line by line to sec what was done. First we include
the headers for our graphics interface libraries:

#include "Simplc_window.h" II get access to our window library
#include "G raph .h " /1 gel access to our graphics library faciJilies

Then, in main O, we start by telling the compiler that Ollf graphics facilities arc to
be found in Graph_lib :

using namespace Graph_lib; 1/ our graphics facilities are in GraphJib

Then, we dc[mc a poim that we will usc as the [OP left corner of our window:

Point 11(100,100); /I to become top left corner of window

Next, we create a WiJldow on the screen :

Simple_window win(tl,600,400, "Ca nvas"); II make a simple window

We use a class representing a window in our Graph_lib iIllcrfacc library c.'tlled
Simple_window. The name orlhis particular Simple_window is win ; that is, win
is a variable o r class Simple_window. The initializer list ror win star ts with the
point. to be used as the top Icrt corner, tI, rollowed by 600 and 400. ~nose are the
width and height, respectively, o r the window, as displayed on the screen, meas~

ured in pixels. We'll explain in more detail later, but the main point here is that
we specify a rectanglc by giving its width and height. The string Ca nvas is lIsed
to label the window. Ir you look, you can sec the word Canvas in the top lert cor­
ner of the window's rrame.

On our screen, the window appeared in a position chosen by the GU lli·
brary. In §13.7.2 , we' ll show how to choose a particular position, but ror now,
we'll just take what our library picks; that 's orten just right anyway.

Next, we put an object in lile window:

Polygon poly;

poly.add (Point(JOO,200»;
poly.add (Poi nt(35O, 1 00»;
poly.add (PoinI(4OO,200»;

1/ make a shape (a polygon)

1/ add a poi nt
1/ add another point
1/ add a third point

We define a polygon, poly, and then add points to it. In our graphics library, a
Polygo n starts empty and we can add as many points to it as we like. Since we
added three points, we get a triangle. A point is simply a pair or values giving the
x and y (horizontal and verticaJ) coord inates within a window.

12.3 A FIR ST EXAMPLE

JUSt to show oIT, we then color the lines of our polygon red:

poly.scCcolor(Colo r: :red); II adjust properties of pol y

Finally, we auach poly to our window, win :

win .allach(poly); II connect poly to thc window

If t.he program wasn't. so fast, you would notice that so far nothing had happened to

the SQ"CCn: nOlhing at all. vVe created a \v1.ndow (an object of class Simple_window,
to be precise), created a polygon (called poly), painted that polygon red (Color : :
red), and auached it to the window (called win), but we have not yet asked for lhat
window to be displayed on the screen. TIlat's done by the final line of the program:

win .waiCfo r _butto n(); II give control to Ihe display engine

"10 get a CUI system to display objects on the screen, you have to give control to
"the system." Our wail_for_hullonO docs t.hat, and it also waits fo r you to
"press" ("dick") the "Next" button of Ollr Simple_window before proceeding.
"n lis gives you a chance to look at the window before the program fmishcs and
the window disappears. When you press the bulton, the program terminates,
dosing the window.

In isolation, our window looks like this:

You 'll notice that we "cheated" a bit. Where did that button labeled "Next" come
from? We buill it into our Simple_window class. In Chapter 16, we'll move from

413

.,. CHAPTER 12 • A DISPLAY MODEL

Simple_window to "plain" Window, which has no potentially SPUriOLI S facilities
built in, and show how we can write our own code to comrol interaction wit.h a
window.

For the next three chapters, we'll simply usc that "Next" buna n to move
from one "display" to the next when we want to display infonnation in stages
("frame by frame").

You arc so used to the operating system putting a frame around each window
that YOli might not have noticed it specifically. However, the pictures in .. his and
the following chapters wcre produced on a Microsoft Windows system, so you
gel lhe usual three buttons on the lOp right "for free." This can be useful: if your
program gets in a real mess (as it surely will sometimes during debugging), you
can kill it by hitting the x bunon. When you run your program o n another sys·
telll, a different frame will be added to fit that system's conventions. Our only
contribution to the frame is the label (here, Canvas).

12.4 Using a CUI library
In this book, we will not usc the operating system's graphical and G U I (graphi­
cal user interface) facilities directly. Doing so would limit our programs to run on
a single operating system and would also fo rce us to deal directly with a lot of
messy details. As with text I/O, we'll usc a library to smooth over operating sys­
tem differences, I/O device variations, etc. and to simplify ollr code. Unfortu­
nately, C++ does nOI provide a standard GUI library the way it provides the
standard stream 1/0 library, so we usc one of the IllallY available C++ GUlli­
braries. So as not to lie YOll directly into aile o f those GUI libraries, and 1'0 save
you from hitting the full complexity of a G U I library all at o nce, we usc a set of
simple interface classes that can be implemented in a couple o f hundred lines of
code for just about any G U I library.

111e G U I toolkit that we arc us ing (indirectly for now) is called FLTK (Fast
Light Tool Kit, pronounced "full tick") from w, ... w.f1tk.org. Our code is portable
wherever FLTK is used (Windows, Unix, Mac, Linux, etc.). Our imerface classes
can also be re-implemented using other toolkits, so code using them is potentially
even more portable.

TIle programming model presented by our interface classes is far simpler
than what conunoll toolkits afTer, For example, our complete graphics and G U I
interface library is about 600 lines of C++ code, whereas the extremely terse
FLTK documentation is 370 pages_ You can download lhat from www_fltk.org,
but we don't recommend you do that just yet. You can do without that level of
detail for a while. TIle general ideas presented in C hapters 12- 16 can be used
with any popular G U I toolkit. We will of course explain how our interface
classes map to FLTK so that you will (eventually) see how you can lise that (and
similar toolkits) di.'cctly, if necessary.

12 .5 CO O RDINATE S

We can illustrme the partS of our "graphics world" like this:

l Our code I
~

l Our interface library I

" A l7'phics/GUI library
(here FLTK)

"-
The operating system

Our screen I
(e.g., Windows or Linux)

Our intcrface classes ptovide a simple and user-extensible basic notion of twO­
dimensional shapes with limited support for the usc of color. To drive that, we
present a simple notion of G U I based on "callback" functions triggered by the
use of user-defined buttons, etc. on the screen (Chapter 16).

12.5 Coordinates
A computer screen is a rectangular area composed of pixels. A pixel is a tiny spot
that can be given some color. Ille most common way of modeling a screen in a
program is as a rectangle of pixels. Each pixel is idemified by an x (horizontal) co­
ordinate and a)' (vertical) coordinate . 111e x coordinates start with 0, indicating
the leftmost pixel, and increase (tOward the right) to the rightmost pixeL The),
coordinates Start with 0, indicating the topmost pixel, and increase (toward the
bottom) to the lowest pixel:

0,°1----------200,0 __

50,50

0,100

I
100,200

41 5

" 6 C HAPTER 12 • A DISPLAY MODEl

Please note that y coordinates "grow downward." Mathematicians, in particular,
fi nd this odd, but screens (and windows) come in many sizes, and the top lert
point is about all that they have in common.

TIle number of pixels available depends on the screen: I024-by-768, 1280-by-
1024, 1450-by-l050, and 1600-by-1200 are CDIlUTIon screen sizcs.

In the co ntext of interacting with a computer using a screen, a window is a
rectangular region of the screen devoted to some specifi c purpose and controlled
by a program. A window is addressed exactly as a screen. BasicaJly, we sec a win­
dow as a small screen. For example. when we said

Simple_window win(tI,600,400, "Canvas");

we requested a rectangular area 600 pixels wide and 400 pixels high that we can
address 0-599 (left to right) and 0-399 (top to bottom). loe area of a window that
you can draw on is commonly referred to as a ((11/f)(l$. TIle 600-by400 area refers to
"lhe inside" of the window. that is, the area inside the system-provided frame; it
docs not include the space the system uses for the title bar, quit butlon, etc.

12.6 Shapes
Our basic toolbox for drawing on the screen consists of about a dozen classes:

Window (Lin. slyl.) (Color)

(Poinl)

Une Lines Pol on Axis Rectan Ie •
An arrow indicates that the class pointing can be used where the class pointed to
is required. For example, a Polygon can be used where a Shape is required ; that
is, a Polygon is a kind o f Shape.

We will start out presenting and using

Simple_window, Window

Shape, Text, Polygon , Line , Lines, Reclangle, Funclion, etc.

Color, Line_slyle, Point

Axis

12 . 7 US ING SHAPE PRIMITIVES

Later (Chapter 16), we'll add CUI (user interaction) classes:

Bullon, In_box, Menu, etc.

We could easily add many more classes (for some definition of ';easy"), such as

Spline, Grid , Block_chart, Pie_chart, etc.

However, defining or describing a complete CUI framework with all it:s facilities
is beyond the scope of this book.

12.7 Using Shape primitives
In this section , we will walk you through some of the primitive facilities of our
graphics library: Simple_window, Window, Shape , Ted , Polygon, line , lines,
Rectangle, Color, line_style, Point, Axis. TIle aim is to give you a broad view of
what you can do with those facilities, but nO{ yet a detailed understanding of any
of those classes. In the next chapters, we explore the design of each.

We will now walk through a simple program, explaining the code line by line
and showing the effect of each on the screen. When you rUIl the program you 'll
see how the image changes as we add shapes to the window and modify existing
shapes. Basically, we are "animating" the progress through the code by looking at
the program as it is executed.

12.7.1 Graphics headers and main
First, we include the header fil es derming Ollr interface to the graphics and CUI
facilities:

0'

#include "Window.h" /I a plain window
#incl ude "Graph.h"

#incl ude "Simple_window.h"
#include "Graph .h"

/I if we wanllhal "Nexl" bullon

As yOll probably guessed, Window.h contains the facilities related to windows
and Graph .h the facilities related LO drawing shapes (including text) into win­
dows. 'Illese facili ties are defined in the Graph_lib namespace. To simplify nota­
tion we lise a namespace directive to make the names from Graph_lib directly
available in Ollr program:

using namespace G raph~lib ;

417

418 (HAPTER 12 • A DI SPLAY MOD EL

As usual, mainO contains the code we want to execute (d irectly or indirectly) and
deals with exceptions:

inl ma in 0
t.y
(

1/ ... here is our code .

)

catch(eJeception& e) (

)

1/ some error reporting
return 1;

catch(. ..) (
/I some more error reporting
return 2;

)

12.7.2 An almost blank window
We will not d iscuss error handling here (sec Chapter 5, in particular, §5.6.3), but
go straight to the graphics within mai n() :

Point 11(100,100); /I top left corner of our window

Simple_window win (tJ,600,400, "Canvas ") ;
/I screen coordinate tl for top left corner
/I window size(600"400}
/I title: Canvas

win . waiUor_button(); /I display!

Tltis creates a Simple_window, lhal is, a window with a "Next" bunon, and dis­
plays it on the screen. Obviously. we need to have #included the header
Simple_window.h rather than Window.h to get Simple_window. Here we are
specifie about where on the screen the window should go: its LOp left comer goes
at Poinf(1oo, 1(0). 111at's ncar, but not tOO near, the tOp left comer of the screen.
Obviously, Point is a class with a conStructor that takes a pair of integers and in­
terprets them as an (x,}) coordinate pair. We could have written

Simple_window win(Poinl(l 00, 100),600,400, "Canvas");

12.7 US ING SHAP E PRI MITIVES

However, we want to lise the point (100,100) several times so it is mo re conven­
ient to give it a symbolic name. 111e 600 is the width and 400 is the height o f lhe
window, and Canvas is the label we want put on the frame of the window.

To actually get the window drawn on the screen, we have to give control to
the GUI system. We do this by calling win .wail_ror_buttonO and the result is:

In the background of ollr window, we see a laptop screen (somewhat cleaned up
for the occasion). For people who arc curious about irrelevant details, we can tell
you that I lOok the photo standing ncar the Picasso library in Antibes looking
across the bay to Nice. -111e black console window partially hidden behind is the
one nmning Ollr prOb'TIllll. Having a console window is somewhat ugly and un­
necessary. but it has the advantage of giving us an effective way of k.illing o ur
window if a partially debugged program gets into an infmite loop and refuses to
go away. If you look carefull y, YOll' lI notice that we have the Microsoft C++ COIll ­

piler nmning, but you could just as well have lIsed some other compiler (such as
Borland or GNU).

Fo r the rest of the presentation we will eliminate the distractions around Ollr
window and just show that window by itself:

41.

420 CHAPTER 12 • A DI SPLAY MODEl

·nlC actual size of the window (in inches) depends on the resolution of your
screen. Some screens have bigger pixels than other screens .

12.7.3 Axis
An almost blank window isn't very interesting, so we'd better add some infonna­
lion. What would we like to display? Just to remind you that graphics is nOt all
fun and games, we will Slart with something serious and somewhat complicated:
an axis. A graph without a.xes is usually a disgrace. You just don"t know what the
data rcprescills Wilholll axes. Maybe you explained it all in some accompanying
text, but it is far safer to add axes; people often don' t read the explanation and
often a nice graphical representation gelS separated from its original comext. So,
a graph needs a.xes:

"xis xa(Axis : :x, Point(20,300), 280, 10, "x axis ") ;
II an Axis is a kind of Shape
II Axis: :x means horizontal
II starting at (20,300)
11280 pixels long
1110 "notches"
Illabcl the axis "x axis"

1/ make an Axis

win.altach(xa); II attach xa to the window, win
win.seUabel("Canvas #2") ;
win .waiCfor_button() ;

II relabel the window
II display!

12. 7 USIN G SHAP E PRIMIT IVES

~nle sequence of aClions is: make the a.xis object, add it to the window, and fi·
nally display it :

'yVe can see that an Axis: :x is a borizomalline. We see the required number of
"notches" (10) and the label "x axis." Usually, the label will explain what the axis
and the notches represent. Naturally, we chose to place the x axis somewhere
ncar the bOllom of the window. In real life, we'd represent the heighl and width
by symbolic constants so that we could refer to "just above the bottom" as somc·
thing like y_max-bottom_margin rathcr than by a "magic constant," such as 300
(§4.3. 1, §15.6.2).

To help idclllify our output wc relabelcd thc screen to Canvas #2 using
Window's member function seUabelO.

Now, let's add a J axis :

Axis ya(Axis : :y, Point(20,300), 280, 10, "y axis") ;
ya.seCcolor(Color: :cyan); /I choose a color
ya .label.scL color(Color: :dark_red); /I choose a color for the text
win .allach(ya);
win .setJabel(" Canvas *3");
win .waiU01_buttonO; II display!

Just to show ofT some fac ilities, we colored our J axis cyan and our label dark red.

421

422 CHAPTER 12 • A DISPI.AY MODEL

,,'"

We don't actually think thal it is a good idea to usc different colors for x and y
axes. \<\'c just wanted to show you how yOll C<'lll set the color of a shape :md of in­
dividual clements of a shape. Using lots of color is not necessarily a good idea. In
pallicuiar, novices tend to usc color with morc enthusiasm than taSle.

12.7.4 Graphing a function
What next? We now have a window with axes, so it seems a good idea to graph
a function. We make a shape rcprcscming a sine function and attach it:

Funct io n s ine(sin ,O, l00,Poinl (20,150), 1000,50,50); 1/ sine curve
/I plot sinO in the range [0: I 00) with (0,0) al (2 0, 150)
/I using 1000 points; sca le x v.llues '50, scale y values -50

win .atlach(sine) ;
win .seClabel(" Canvas #4 ");

win. wai'-fo r _ bu 110 n ();

Here, the fun elio n named sine will draw a sine curve using the standard library
runction sinO to generate values . We cxplain dctails about how to graph func­
tions in §15.3. For now, JUSt notc t.hat to graph a runction wc havc to say whcre it
starts (a Point) and ror what set or input valucs we want to sec it (a range), and
we need to givc somc inrormation about how to squecle that infornlalion into
our window (s<:"1Iing):

12.7 USIN G SHAPE PRIMITIVES

. ..,

Notc how the curvc simply stops when it hits the edge or the window. Points
drawn outside our window recta.ngle arc simply ignored by the G U I system and
never secil .

12.7.5 Polygons
A graphed runction is an example or data presentation. Wc'lI sce much more or
that in C hapter 15. However, we can also draw differcnt kinds or objects in a
window: geometric shapes . We use geometric shapes ror graphical illustrations,
to indicate user interaction elements (such as bUllons), and generally to make Ollr
presentations morc interesting. A Polygon is characterized by a sequence o r
points, which the Polygon class connects by lines. TIle first line connects the first
point to the second, the second line connects the second point to the third , and
the last line COlU1CCts the last po int to the first:

sine.seCcolor(Color: : blue);

Polygon poly;
pol y .add(Poi nt(300, 200» ;
poly.add(Point(350,100»;
poly.add(Poinl(400,200»;

poly.sec color(Color: :red);

II we changed our mind about sine's color

II a polygon; a Polygon is a kind of Shape
/I three points make a triangle

423

424

poly.set_style(Line_style: : dash);
win.attach(po ly);
win .seClabe l(" Canvas #5");
win .waiC foT_button();

C HAPTER 12 • A DI SPLAY MODEl

111is time we change the color of the sine curve (sin e) just to show how. ~IltCIl ,

we add a triangle, just as in our first example from §12.3, as an example of a
polygon. Again, we set a color, and finally, we set a style. TIle lines of a Polygon
have a "style." By default that is solid, but we can also make those lines dashed,
dOlled, etc. as needed (sec § 13.5). We get

\

t . ""

12.7 .6 Rectangles
A screen is a rccHmglc, a window is a rectangle, and a piece of paper is a rectan­
gle. In fact, an awful lot of the shapes in our modern world arc rccuUlglcs (or at
least rectangles with rounded corners). ~nlcre is a reason for this: a rectangle is
the simplest shape LO deal with. Fo r example, it 's easy 1'0 describe (LOp lerl corner
plus width plus height, or top lefl corner plus bottom right corner, or whalever),
it 's easy to lell whelher a poim is inside a rectangle or olltside it, and it 's easy 10

get hardware to draw a rectangle of pixels fast.
So, most higher· level graphics libraries deal beller with rectangles than with

other closed shapes. Consequently, we provide Rectangle as a class separate from
the Polygon class. A Rectangle is characterized by its lOp left corner plus a width
and height:

12.7 U SING SH AP E PR IMITIVES

Rectangle r(Poinl(200,200), 100, SO); II top left corner, width, height
win .attach(r);
win .seUabel("Canvas #6");
wi n. wail_for_button();

From lhal, we gel

,,..

Please nOle lhat making a polyline with rour points in the right places is nOl
enough LO make a Rectangle. It is easy to make a Closed_polyli ne that looks like
a Rectangle on the screen (you can even make an Open_polyline that looks juSt
like a Rectangle); ror example:

Closed_polyline poly_rect;
poly_,ect.add(Point(l00,SO»;
poly_,ect .add(Poi nl(l00,SO»;
poly _ rect .add(Poi nI(200, 1 00»;
poly -,eel .add(Poi nl(l 00, 1 00));

42>

426 C HAPTER 12 • A DI SPLAY MOD El

....

In fact, the image on the screen of such a poly_reet is a rectangle. However. the
poly _reet object in memory is nOt a Rectangle and it docs not "'know" anyth ing
about rectangles. ~nlC simplest way to prove that is to add another point:

pol y _recl.add{Poinl(SO, 75»;

No rectangle has five points:

....

It is imponalll for our reasoning abOllt our code lha! :l Rectangle doesn 't just
happen to look like a rectangle on the screen; it maintains the fundamental guar-

12.7 US IN G S HAPE PRIMITIVE S

"Iltees of a rectangle (as we know them from geometry). We write code that de­
pends o n a Rectangle really being a rectangle on the screen and staying that way.

12.7.7 Fill
\o\'c have been drawing our shapes as outlines. We can also "fill" a rectangle with
color:

r.scefill_color(Colot : : ye llow); /I color the inside of the rectangle
pol y.seestylc(lin c_stylc(lin e_style: : dash ,4» ;
poly _reet. seest yle (li ne_sl yle(li ne_style : : dash,2»);
win .setJabel(II Canvas #7") ;
win .wait_for _button Oi

We also decided lhat we didn't like lhe line style of Ollr triangle (poly), so we set
its line style to "fa t (thickness fo ur times normal) dashed." Similarly, we changed
the style of poly_reet (now no longer looking like a rectangle):

, ...

If you look carefully at poly_tcel , you 'll sec that the outline is printed on tOp of
the fill.

It is possible to fill any closed shape (sec §13.9). Rectangles arc just special in
how easy (and fast) they arc to rul

12.7.8 Text
Finally, 110 system for drawing is complete WilhoUl a simple way of writing text -
dr.:lwing each charncter as a set of lines just doesn't cut it. \.ye label the window itself,
and a.xcs can have labels, but we can also place text anywhere using a Text object:

427

428 CHAPTER 12 • A DISPLAY MODEL

Text t(Point(150,15O), "Hello, graphical world ! ");
win .atlach(l);
win .setJabel{"Canvas #8");
win.wail_for_button () ;

....

Fro m the primitive graphics elements you see in this window, you can build dis­
plays of just abOllt any complexity and subtlety. For now, just notc a peculiarity
of the code in this chapter: there arc no loops , no selection statements , and all
data was "hardwired" in. The output was JUSt composed o f primitives in the
simplest possible way. O nce we stan composing these primitives using data and
algOlithms, things will stan to gel interest.ing.

We have seen how we can control the color of text: the label of an Axis
(§ 12.7.3) is sim ply a Text object. In addition, we can choose a font and SCI the size
of the characters:

t .seCfont (Font : : times_bold) ;
t .seUonCsize(20);
win.set_labe l("Canvas #9");

win .wail_for_button O;

Vic enlarged the characters of lhe Text string Hello, graphical world! to point size
20 and chose the Times font in bold:

12 . 7 US ING SHAP E PRIMITIVES

12.7.9 Images
\.vc can also load images from files:

Image ii(Point(100,50), "image .jpg") ;
win .allach (ii);
win.seClabel("Canvas #10 ") ;
win . wai Uor _bu lIonO;

1/400·2 12-pixel jpg

As it happens, the file called image .jps is a photo or two planes breaking the
sound barrier:

. ""

429

·'" CHAPTER 12 • A DISPLAY MO DE L

That phoLO is relatively large and we placed it right on tOp of our text and
sha pes . So, LO clean up Ollr window a bit, let liS move it a bit out of the way:

ii.move(100,200);
win .set_labeH"Canvas #11 ") ;
win .waiC fof_button()j

. ""

Note how the pans of the photo that d idn't fit in the window arc simply not rep­
resented. What would have appeared outside the window is "clipped" away.

12.7 .10 And much more
And here, without further CQIlUllCnt , is som e more code:

Circle c(Point(100,200),SO);
Ellipse e (Point(100,200), 75,25);
e,seccolor(Color: :dark_,ed)i
Ma rk m(Poinl(l00,200),' x');

oSlringslream OSS ;
ass« "screen size : " « ,c max()« '''''« y_maxO

« "; window size : "« win .x_maxO« 11."« win .y_max()j
Text sizcs(Point(l 00,20) ,ass .sh O) i

Image cal(PoinI(225,225), "snow_cpp.gif")i
cal.set_mas k(Point(4{I ,4{1) ,200,150) i

II 320"240-pixel gi f
II display center p<lrt of image

12 .8 GETTING TH IS TO RU N

win .attach (c);
win.altach (m);
win.attach (e);

wi n .attach(sizes);
win .attach(cal);
win .set_label ("Canvas #12");
win . waiCfor_button ();

Can you guess what this code docs? Is it obvious?

...... "'01_"'V

....

111e connection between the code and what appears on the screen is direct. If
you don' t yet see how that code caused mat Output, it soon will become clear.
Note the way we used a stringslream (§11.4) to fonnat the text object displaying
sizes.

12.8 Getting this to run
We have seen how to make a window and how to draw various shapes in it. In
the following chapters, we'll sec bow mose Shape classes are defined and show
marc ways of using them.

Getting this program to run requires morc than the programs we have pre­
sented so far. In addition to our code in mainO, we need to get the interface library
code compiled and linked to our code, and finally, nothing will nm unless the FLTK
library (or whatever GUI system we usc) is installed and con'ectly linked to ours.

431

432 CHAPTER 12 • A DI SPL AY MODEL

One way of looking at the program is that it has four distinct p<lrts:

O ur program code (ma inO, etc.)

OUf interface library (Window, Shape, Polygon, etc.)

l1)c FLTK library

TIle C++ standard library

Indirectly, we also lISC the opera ting system. Leaving out the O S and the stan­
dard library, we can illustrate the o rganization of our graphics code like this:

Po inl.h :

sltucl Point { . .. };

Graph .h:

/I graphing interface:
strucl Shape { ... };

FLTK headers

Window.h:

/I window interface:
class Window { ... };

GUl.h :

FLTK code

window.cpp:
/I CUI interface:
struct In_box { ... };

Window code

Simplc_window.h :

/I window interface:
class Simple_window { ... };

chapte r1 2.cpp:

#include "Graph.h "
#include "Simple_window.h "
int mainO { . .. }

Appendix D explains how to get all of tllls to work togctllcr.

12.8.1 Source fil es
Our graphics and G VI interface library consists of just fivc header files and tlll'eC
code files:

CHAPTER 12 REVI EW

Headers:

Point .h

Window.h

Simple_window.h

Graph .h

GUth

Code files:

Window.cpp

Graph .cpp

GUtcpp

Until Chapter 16, you can ignore the GU I files .

..;' Drill

111e drill is the graphical equivalent LO the "Hello, World !" program. Its purpose
is to get you acquainted with the simplest graphical output tools.

l. Get an empty Simple_window with the size 600 by 400 and a label My
window compiled, linked, and run. Note that you have to link the FLTK
library as described in Appendix 0 ; #include Graph .h, Window.h, and
GUth in your code; and include Graph.cpp and Window.cpp in your
project.

2. Now add the examples from §12.7 one by one, testing between each
added subsection example.

3. Go through and make one minor change (e.g., in color, in location, or in
number of points) to eacll of the subsection examples.

Review

1. Why do we usc graphics?
2. When do we try not to use graphics?
3. Why is graphics interesting for a programmer?
4. VVhat is a window?
5. In which namespace do we keep our graphics i.nterface classes (our graphics

library)?
6. vVhat header files do you need to do basic graphics using our graphics

library?

433

4"
7.
8.
9.

10.
II.

12.
13.
14.
15.
16.

17.

18.

Terms

C H APTER 12 • A DI SPL AY MODEL

What is the simplest window to use?
What is the minimal window?
What's a window label?
How do youlabcl a window?
H ow do screen coordinates work? Window coordinates? Mathematical
coordinatcs?
'What arc examples of simplc "shapes" that we can display?
What command auaches a shape to a window?
Which basic shape would yOll Lise to draw a hexagon?
H ow do you write text somewhere in a window?
How would YOli put a photo of your best friend in a window (using a
program you wrote yourself)?
You made a Window object, but nothing appears on yOUT screen. What
arc some possible reasons for that?
You have made a shape, but it doesn't appear in the window. What arc
some possible reasons for that?

color
coordinates
display

graphics
CUI
CUI library
HTTP

JPEC
line style
sofnvare layer
window
XML

fill color
FLTK

Exercises

linage

We recommend that you use Simple_window for these exercises.

1. Draw a rectangle as a Rectangle and as a Polygon. Make the lines of the
Polygon red and the lines of the Rectangle blue.

2 . Draw a 100-by-30 Reclangle and place the text "Howd y!" inside it.
3. Draw your initials 150 pixels high. Use a thick line. Draw eadl initial in

a different color.
4. Draw a checkers board: B-by-B alternating white and red squares.
5. Draw a red L/4-inch frame around a rectangle that is three-quarters the

height o f your screen and two-thirds lhe width.
6. 'VVhat happens when you draw a Shape that doesn 't fit inside its win­

dow? 'VVhat happens when you draw a Window that doesn't fit on your
screen? Write nvo programs that illustrate these two phenomena.

7. Draw a nvo-dimensional house seen from the fron t, the way a child
would: with a door, nvo windows, and a roof with a chimney. Feel free to
add details; maybe have "'smoke" come out of the chimney.

C HAPTER 12 POSTSC RIPT

8. Draw the O lympic five rings. If you can't remember the colors, look
them up.

9. Display an image on the screen, e.g., a pholO of a friend. Labelt.he image
both with a tide on the .. vindow and with a caption in the window.

10. Draw the fil e diagram from §12.8.
II . Draw a series of regular polygons, one ins ide the other. The innermost

should be an equilateral triangle, enclosed by a square, enclosed by a
pentagon, etc. For the mathematical ly adept only: leI all the poi nts of
each N-polygon tOucll sides of the (N+ 1)-polygon.

12. A superellipse is a two-dimensional shape defined by the equation

I~I' + Iii" = I; m,1l> O.

Look up JIII)(:rrUi~ on the web to get a better idea of what such shapes look
like. Write a program that draws "starlike" pattenlS by colUlccting POUlts on
a supercUipsc. Take a, b, m, n, and N as arguments. Select N POUlts on the
supcrcllipse defined by a, b, m, and n. Make the points equally spaced for
some defmition of ;;e<Jual." Connect each of mose N points to one or more
other POUlts (if you like you can make me number of points COlUlcct to an­
other argument or just usc N- 1, i.e., all me orner poUlts).

13. Find a way to add color to the supcrellipse shapes from the previous ex­
ercise. Make some lines one color and other lines anomer color or other
colors.

Postscript

' 1le ideal fo r program design is to have our concepts direcliy rcpresellted as enti­
ties in our program. So, we often represent ideas by classes, real-world entities by
objects of classes, and actions and computations by funcliOllS. Graphics is a do­
main where this idea has an obvious application. We have concepts, such as cir­
cles and polygons, and we represent them in our program as class Circle and
class Polygon. Where graphics is unusual is mat when writing a graphics pro­
gram, we also have the opportunity to sec objects of those classes on the screen;
that is, the state of our program is directly represcnted for us to observe - in
most applications we arc not that lucky. TIlis direct correspo ndence between
ideas, code, and output is what makes graphics programmulg so attractive.
Please do remember, though , that graphics arc just illustrations of the general
idea of lISUlg classes to directly represent concepts in code. That idea is fa r more
general and usdul : just about anything we can think of can be represented in
code as a class, an object of a class, or a set of classes.

435

1-

'- 13

Graphics Classes

"A language that doesn't
change the way you think

isn't worth learning."

-Traditional

C harter 12 gave an idea of what we could do in terms of graph­

ics using a set of simple interface classes, and how we can do

it. This cilapler prcsems llu111Y of the classes offered. 111C focus here

is on the design, usc, <md implementation of individual interface

classes such as Point, Color, Polygon, and O pen_polyline and

their uses. The following chapter will present ideas for designing

sets of related classes and will also present more implementation

techniques.

437

438

13.1 Overview of graphics classes

13.2 Point and Line

13.3 Lines

13.4 Color

13.5 Line_style

13.6 O pen_polylin e

13.7 Closed_polyline

13.8 Polygon

13.9 Rectangle

CHAPTER 13 • GRAP HI CS CLA SS ES

13.10 Managing unnamed objects

13.11 Text

13.12 Circle

13.13 Ellipse

13.14 Marked_polyline

13.15 Marks

13.1 6 Mark

13.17 Images

13.1 Overview of graphics classes
Graphics and G U I libraries provide lots of facilities. By "lots" we mean hundreds
o f classes, o ft en With dozens of functions applying to each. Reading a description,
manual, or documentation is a bit like looking at an old-fashioned botany lext­
book listing details o f thousands of plants organized according to obscu re class i­
fying trai ts. It is daunting! It c.'m also be exciting - looking at the fac ilities of a
modem graphics/GUllibrary can make you feel like a child in a candy store, but
it C'111 be hard to figure out where to start and whal is really good for Y0lt.

One purpose of our interface library is to reduce the shock delivered by the
complexity of a full-blown graphics/CU I library. We preselll just two dozen
classes with hardly any operations. Yet they allow you to produce useful graphi­
cal OlitpUt. A closely related goal is to imroduce key graphics and CU I concepts
through those classes. Already, you can write programs displaying results as sim­
ple graphics. After this chapter, your range of graphics programs will have in­
creased to exceed most people's initial requirements. After Chapler 14, you'll
understand most o f the design techniques and ideas involved so that you can
deepen your understanding and extend your range of graphical expression as
needed . You can do so either by add ing to the fac ilities described here or by
adopung another C++ graphics/C U I library.

'n te key interface classes are:

Graphics interrace classes

Color

Line_style

Point

used for lines, text, and fill ing shapes

used to draw lines

used to express locations on a screen and within a Window

13 . 1 OVERVIEW OF GRAPH ICS CLASSES

Graphics inte rface classes (continued)

Line

Open_polyline

Closed_polyline

Polygon

Te.:t

lines

Rectangle

Circle

Ellipse

f unction

A.:is

Mark

Marks

Marked_polyline

Image

a line segment as we sec it on Ihe screen, defined by its two end
Points

a sequence of connected line segments defined by a sequence
of Po ints

like an O pen_polyline, except that a line segment connects thc
last Point to the first

a Closed...,polyline where no two line segments intersect

a string of characters

a set of line segments defined by pairs of Po ints

a common shape optimized for quick and convenient display

a circle defined by a center and a radius

an ellipse defined by a center and two axes

a function of one variable graphed in a range

a labeled axis

a point marked by a character (such as .: or 0)

a sequence of points indicated by marks (such as .: and 0)

an O pen_polyline with its points indicated by marks

the contents of an image file

Chaptcr 15 examines Function and Axis. Chapter 16 presents the main CUI in·
tcrface classes:

GU I interface classes

Window

Simple_window

Bullon

Menu

an area of Ihe screen in which we display our graphics objects

a window with a ·Next" bulton

a rectangle, usually labeled, in a window that we can press to
run one of our functions

a box, usually labeled, in a window into which a user can type a
Siring

a box, usually labeled, in a window into which our program can
write a Siring

a vector of Buttons

43.

440 CHAPTER 13 • GRAPHICS ClASSES

TIle source code is organized into files like this:

Graphics interface source fil es

Poinl.h Point

Graph .h

Window.h

Simple_window.h

GUI.h

all other graphics interface classes

Window

Simple_window

Button and the other CUI classes

definitions of functions from Graph.h

definitions of functions from Window.h

definitions of functions from GUl.h

Graph.cpp

Window.ccp

GUl.cpp

In addition to the graphics classes , we present a class that happens to be useful
for holding collections for Shapes or Widgets:

A containe r of Shapes o r Widgets

a vector with an interface that makes it convenient for holding

unnamed elements

When yOll read the fo llowing sections, pIcase don't move too fast. 111cre is litlie
that isn 't pretty obvious, but the purpose of this chapter isn' t just to show you
some pretty pictures - you see prettier pictures on your computer screen or tele­
vision every day. TIle main points of this chapter arc

To show the correspondence between code and the pictures produced.

To get you used to reading code and thinking about how it works.

To get you to think about the design of code - in particular to think
about how to represent concepts as classes in code. Why do those classes
look the way they do? How else could they have looked? We made
many, many design decisions, most of which could reasonably have been
made differently, in some cases radically differently.

So please don't nlsh . U you do, you' ll miss something important and you might
then fi nd the exercises unnecessarily hard.

13.2 Point and Line
~nle most basic part of any graphic system is the point. To define tmin! is to define
how we organize our geometric space. Here, we usc a conventional, computer-

13.2 POIN T AN D LI N E

oricntcd layout of two·dimensional points defined by (x,y) integer coordinates. As
described in § 12.5, x coordinates go from 0 (representing the left·hand side of the
screen) to max_xO (representing the right·hand side of the screen); y coordinates
go from 0 (representing the tOp of the screen) to max_yO (representing the botmm
of the screen).

As defined in Point.h , Point is simply a pair of ints (the coordinates):

slrucl Point (
int x, y;
Point(int xx, int yy) : x(xx), y(yy) ()
Poinl() :x(O), y(O) { }

) ;

bool operator==(Point a, Point b) { return a.x==b.x && a.y==b.y; }
bool operator!=(Point a, Point b) { return !(a==b);)

In Graph.h, we find Shape, which we describe in detail in Chapter 14, and Line :

strucl Line : Shape (
line(Poinl pl , Point p2);

} ;

/I a Line is a Shape defined by two Points
1/ construel a Line from Iwo Points

A Line is a kind of Shape. 111at's what " : Shape" means. Shape is called a base
d(lJS for Line or simply a baJe of Line . Basically, Shape provides the facilities
needed to make the definition of Line simple. Once we have a feci for the partie·
ular shapcs, such as Line and Open_polyline, we'll explain what that implies
(Chapter 14).

A line is defmed by two Points. Leaving out the "scaITolding" (#indudes,
etc. as described in § 12.3), we can create lines and cause them to be drawn like
this :

1/ draw two lines

Simple_window winl (Poinl(l00.l00),600,400. "two lines");

Line horizontal(Point(100,l00),Point(200,l00»; 1/ make a horizontal line
Line verlical(Point(l50,50).Point(l50,l50»; II make a verlical line

winl .atlach (horizontal) ; 1/ attach the lines to the window
winl .allach(vertical) ;

/I display!

441

442 (HAPTER J3 • GRAPHIC S ClA SS ES

Executing that, we gel

As a user imcrfacc designed for simplicity, line works quite well. YOli don't need
LO be Einstein to guess that

line verlical(PoinI(150,SO),Point(150,15O»;

creales a (vertical) line from (150,50) to (150,150). "nlcrc arc, of cou rse. imple­
mentation details, but yOll don't have to know those to make lines. 111C imple­
mentation o f line's constructor is correspondingly simple:

line:: line(Point pl , Point p2) /I construct a line from IwO points
{

)

add(pl);
add (p2);

1/ add pIta this shape
/I add p2 to this shape

That is, it simply "adds" twO points. Adds LO what? And how docs a line get
drawn in a window? 111e answer lies in the Shape class. As we'll describe in
C hapter 14, Shape can hold points defining lines, knows how to draw lines de"
fined b)' pairs of Points, and providcs a function add() lhal allows an object to
add to its Shape. TIle ke)' point (sic!) here is that defining Line is trivial. Most of
lhe implemcntation work is do nc by "the system" so that we can conCClllratc o n
writing simple classes thal arc easy to usc.

13 .3 LIN ES

From now on we'll leave Out the definition of the Simple_window and the
calls of allachO. l 110se arc just more "scaffolding" that we need for a complete
program but that adds little to lhe discussion of specific Shapes.

13.3 Lines
As it tums OUl, we rarely draw just one line. We tend to th ink in terms of objects
cons isting of many lines, such as triangles, polygons, paths , mazes, grids. bar
graphs, mathematical functions, graphs of data, etc. One of lhe simplest such
"composite graphical object classes" is lines :

slrucllines : Shape { /I related lines
void drawJinesO consl;
void add(Poinl pl , Poinl p2) ; /I add a line defined by two poinls

);

A lines object is simply a colleClion of lines, each defined by a pair of Poinls. Fo r
example, had we considered the two lines from the line examplc in §13.2 as part
of , 1 single graphical object, we could have defined them like this:

lines x;
x.add(Poinl(lOO,loo), Poinl (20Q,100» ;
x.add (Point(15O,5O), Poinl (15O,15O»;

/I first line: horizontal
/I second line: verlical

lllis brives output 11m! is indistinguishable (to the last pixel) from the line version:

+

443

444 CHAPTER 13 • GRA PH ICS CLASSES

111C only way we can tell that this is a different window is that we labeled them
differently.

TIle difference between a set of Lin e objects and a set of lines in a lines ob·
ject is completely one of our view of what's going on. By using Lines, we have ex·
pressed our opinion that the two lines belong lOgemC!' and should be
manipulated together. For example, we can change the color of all lines lhal arc
part of a Lin es object with a single command. On lhe Olher band, we can give
lines that are individual line objects different colors. As a more realistic example,
consider how to dermc a grid. A grid consists of a number of evenly spaced hori·
zontal and vertica1lines. H owever, we think of a grid as one "thing," so we define
those lines as part of a Lines object, which we call grid:

inl x_size = win3.x_maxO;
int y_size = win3.y_maxO;
int x-8rid = 80;

/I get the size of our wi ndow

int Y-8rid = 40 ;

lines grid ;
fo r (inl x=x-8rid ; x<x_size; x+=x-8rid)

grid .add(Point(x,O),Point(x,y_size»;
for (inl y = y...,grid ; y<y_size; y+=Y-8rid)

grid .add(Poi nt(O, y), Poi nt (x_size, y»;

/I vertical line

/I horizontal line

Note how we get the dimension of our window using x_maxO and y _max(). 111is
is also the first example where we are writing code that computcs which objects
we want to display. It would have been unbearably tedious to define this grid by
defining one named variable for each grid line. From thal code, we get

13.4 COLOR

Let'S reLUrn (0 the design of lines. How are the mcmber functions of class
lines implemcnted? lines provides juSt twO operations. The addO function sim­
ply adds a Iinc defined by a pair of points to thc set of lines to bc displayed:

void lines : :add(Point pl , Point p2)
(

Shape:: add(pl);
Shape: :add(p2);

Yes, the Shape:: qualification is needed because Olhcrwise the compilcr would
see add(pl) as an (illegal) attempt to call lines' add O rathcr than Shape 's add O.

-nlC drawJinesO function draws thc lincs defined using addO:

void lines : : draw~linesO const
(

if (colorO,visibililyO)
for (int i=l ; i<number_oCpointsO; i+=2)

fUi ne(poi nt(i- l). x, point (i~ 1). y,poi n I (i), x ,pain t (i), y) ;
)

That is. lines : :d rawJi nesO takes two points at a time (starting wiul points 0 and
I) and draws the line bctween them using ule underlying library's line-drawing
fUllction (fl_drawO). Visibility is a property of U1C lines' Color object (§13.4), so
we have to chcck Ulat the lines arc meant to be visible before drawing them.

As we cxplain in C hapter 14, draw_Jines() is called by "thc system." "Ve don't
need to check that the number of points is even - lines' add O can add only pairs
or poims. -n lc runctions numbcr_oCpointsO and point () are defined in class
Shape (§ 14.2) and have uleir obvious meaning. These two runctions provide
rCild-only access to a Shape's points. -nle member runction draw_linesO is de·
fined tD be canst (sec §9.7.4) because it docsn't modiry lhe shape.

We didn't supply lines with a constructor because the model or starting out
with no points and then addOing points as needed is more flexible than any con·
stnlctor could be. We could have provided constructors ror simple cases (such as
1, 2, and 3 lines) or ror an arbitrary number or lines, but there didn't seem to bc
a real need. Ir in doubt, don't add runctionality. You can always add to a design if
need is demonstrated, but you can rarely removc racilities from code lhat has
round its way into usc.

13.4 Color
Color is the type we usc to represent color. We can use Color like this:

grid .set_color(Color: :red);

445

446 C HAPTER 1 3 • GRAPHI CS C LA SSES

111is colors the lines dcrmcd in grid red so that we get

Color defines the notion of a color and gives symbolic names to a few of the
morc conunon colors:

slrucl Color {
enum Colof_type (

);

red=FL_REO,
blue=Fl_BLUE.
green=FL_GREEN,
yellow=Fl_YEllOW,
white=FL_WHITE,
black=FL_BLACK,
magenta=FL_MAGENTA,
cyan=Fl_CYAN,
dark_red=FL_DARK_RED,
dark...gree n=Fl_DARK_GREEN,
da rk_ycllow=Fl_DARK_YELLOW,
dark_blue=Fl_DARK_BLUE,
dark_m age nta=Fl_OARK_MAGENTA,
dark_cyan=Fl_DARK_CYAN

e num Transparency { invisible = 0, visiblc=255 };

Color(ColoUype ee) :c(FI_Color(cc)), v(visible) ()

13.4 COL OR

Color(ColoUype cc, Transparency vv) : c(FI_Color(cc» , v(vv) {}
Color(inl cc) :c(FI_Color(cc», v(visible) ()
ColorCTransparency vv) : c(FI_ Color()), v(vv) { } /I default color

int as_intO co nsl { return Ci)

char visibililyO canst { return Vi }
void set_visibilityCTransparency vv) {v=vv;}

private :
char Vi /I invisible and visible for now
FI_Color Cj

) ;

~nle purpose or Color is

To hide the implementation's notion o r color, FLTK's FI_Color type

1'0 give the color constants a scope

To provide a simple version or transparency (visible and invisible)

You c.."ln pick colors

From the list or named colors, ror example, Color : :dark_blue.

By picking from a small Mpalelte" or colors that most screens display well
by specirying a value in the range 0-255; ror example, Color(99) is a
dark green. For a code example, see §13.9.

By picking a value in the ReB (red, green, blue) system, which we will
nOt explain here. Look it up ir you need it. In particular, a search ror
"ReB color" on the wcb gives many sources, such as www. hypcrsolu­
tiolls.orglrgh.hwll and ww,v.piu.edul-nisglcis/web/cgilrgb.html. See also
exercises 13 and 14.

Note the usc or constructors to allow Colors to be o·cated cither rrom the
Color_type or rrom a plain into The member c is ini tialized by each constructor.
You could argue that c is too short and too obscure a name to use, but since it is
lIsed only within the small scope or Color and not intended ror general use, that's
probably OK. We made the member c private to protect it rrom direct use rrom
our lIsers. loo r Ollr representation or the data member c we lise the FLTK type
FI_Color lhat we don't really want to expose to our users. However, looking at a
color as an int representing its ReB (or other) value is very common, so we sup­
plied as_intO ror that. Note that asjntO is a canst member because it doesn't ac­
tually change the Color object that it is used ror.

TIle transparency is represented by the member v which can hold the values
Transparency: :vis ible and Transparency: :invisible, with their obvious meaning.
It may surprise you that an "invisible color" can be useful, but it can be most use~
ful to have part or a composite shape invisible.

447

C H APTER 13 • GRAP H ICS ClASS ES

13.5 Line_style
When we draw several lines in a window, we can distingu ish them by co lor, by
style, or by bOlh. A line style is me pattern used to outline the line. \Ve can use
line_style like mis:

grid .set_style(line_style : :dot);

lllis d isplays the lines in grid as a sequence of dots rather than a solid line:

~nlat "minned out" me grid a bit, making it more discreet. By adjusting the width
(thickness) we can adjust the grid lines to suit our taste and needs.

TIle line_style type looks like mis:

stru clline_style {
e num line_style_lype {

solid=Fl_SOllD,
dash=Fl_DASH,

} ;

dot=Fl _DOT,
dashdot=Fl _DAS HDOT,
dashdoldot=Fl_DASHDOTDOT,

/I
1/

/I
1/
/I

line_slyle(line_slyle_type ss) :s(ss), w (O) {)

line_style(line_style_type lSi, int ww) :s(1sl), w (ww) {}
line_style (inl ss) :s(ss), w (O) { }

13 .5 UNCSTYLE

int widthO const { return Wi }

int styleO const (return S j }

private :
int s;
int W j

} ;

"nle programming tedmiqucs fo r defming li ne_style are exactly the same as the
oncs we used for Color. Here, we hide the fact that FI.;T'K uscs plain ints to repre­
sent line styles. Why is somcthing like that worth hiding? Because it is exactly sllch
a detail that might change as a Library evolves. TIle next FLTK release might vcry
well have a FU inestyle type, or we might rctarget our interface classcs to SOUlC

otller C U I library. In either case, we wouldn't like to have our code and ou r uscrs'
code littered with plain ints tllat wc just happened to know represent line styles.

Most of the time, we don't worry about Style at all; we juSt rely on the de­
fault (default width and solid lines). This default line width is defined by the COIl­

structors in the cases where we don 't specify one explicitly. Setting defaults is one
of the things tllat constructors arc good for, and good defaults can significantly
help users of a class_

Note that Line_style has two "components": the style proper (e_g_, lise dashed
or solid lines) and width (the thickness of the line used). TIle width is measured in
integers_ TIle default width is 1. We can requcst a fat dashed line like tills:

grid . seCstyle(Li n e_styl e(li ne_style : : dash ,2») ;

449

450 C HAPTER 13 • G RAPHICS CL ASS ES

Note that color and style apply to alIlincs of a shape. That is one of the advan­
tages of grouping many lines into a single graphics object, such as a lines,
Open_polyline, or Polygon . If we wam to comrolthc color or style for lines sep­
arately, we must define them as separate lines. Fo r example:

horizontal.sel_color(Color:: red);
vertical.scl_color(Color: : green);

This gives us

13.6 Open_polyline
An Open_polyline is a shape that is composed of a series of connected line seg­
ments defined by a series of points. fbly is the Creek word for "many," and jJO/)'lille
is a fairly conventional name for a shape composed of many lines. For example:

Open_polyline opl ;
opl.add(Point{l00,l00»;
opl.add(Poinl (150,200»;
opl.add(Poinl (250,250» ;
opl.add(Poinl (JOO,200));

rnlis draws lhc shape lhal you gel by COIUlCCting thc points:

Uasically, an O pen_polyline is a fancy word for what we encountered in kindcr­
ganen playing "Connect the Dots."

C lass O pen_polyline is defined like this:

stru cl O pe n_polyline : Shape { /I open sequence of lines
void add(poinl p) {Shape: :add (p);)

) ;

Yes, lImt 's the complete definition. TIlere is literally nothing to Open_polyline ex­
cept its name and what it inherits from Shape . Open_polyline's add O function is
there simply to allow the users of an Open_polyline to acccss the addO from Shape
(tbat is, Shape : :addO). \r\'e don't even need to define a draw_linesO because Shape
by default interprets the Poinls add Oed as a sequence of connected lincs.

13.7 Closed_polyline
A Closed_polyline is just like an O pe n_polyline, except that we also draw a line
from the last point to the first. For example, we could usc the same points we
used for the O lJe n_polyline in §13.6 for a Closed_polyline :

Closed_polyline cpl ;
cpl.add(Point(100,l 00» ;
clJl.add(Poi nl(15O ,200));
cpl .add(Point(25O,25O)) ;
cpl.add(Poi nl(300 ,200)) ;

451

452 CHAPTER 13 • GRAPHICS ClASS ES

111c result is (o f course) identical to th at of §13.6 except [or that final closing line:

TIle definition o f Closed_polyline is

strUt t Closed_polyline: Open_polyline (/I closed sequence of l ines
void draw_lin esO consl;

};

void Closed_polyline: : draw_lin esO consl
(

}

Open_polyline: :draw_lin esO; /1 first dr(lw the "open polyline part"
IIthcn draw closing line:
if (colorO.visibility())

fUi ne(poi nt(n umber _oCpoints()-l). '"
poi nt(n umber _ oCpoi nts()-l). y,
point(O) .x,
point(O).y);

Closed_polyline needs its own draw_linesO to draw that closing line connecting
the last point to lhc first. Fortunately, we only have to do the little detail where
Closed_polyline differs from what Shape olTers. 111at'5 important and is somc­
times called "programmillg by diffcrcnce." We need to program only what's dif­
fercm about our derived class (herc, Closed_polyline) compared to what a base
class Olcre, Open_polyline) a lTers.

So how do we draw that dosing line? ' <\fe use the FLTK line-dnlwing fu nction
fUincO. It Lakes fou r inis rcpresenting two points. So, here thc undcrlying b'1 phics
libllllY is again used. otC, howcver, that - as in every other casc - the mcntion of

13 .8 POLYGON

FLTK is kept \\~thin the implementation of our class rather than being exposed to
our users . No user code needs to mention fUineO or to know about interfaces
where points appear implicit..ly as integer pairs. If we wanted to, we could replace
FLTK \,~th another GUI library \\'ilh vel)' litt..le impact on our users' code.

13.8 Polygon
A Polygon is very similar to a C1osed~polyline . "n le only difference is that for
Polygo ns we don't allow lines to cross. For example, the Closed_polyline above
is a polygon, but we can add another point:

cpl .add (Pain I (1 00,250» i

111e result is

According to classical definitions, this Closed_polyline is not a polygon. How do
we define Polygon so that we correctly capture the relationship to Closed-Jloly·
line without violating the rules of geometry? The presentation above contains a
strong hint. A Polygon is a Closed_polyline where lines do not cross. Alterna­
tively, we could emphasize the way a shape is built out of points and say that a
Polygon is a Closed_polyline where we cannot add a Point that defines a linc
segmem that imersects one of the existing lilles of the Polygon.

Given that idea, we define Polygon like this :

slrucl Polygon : Closed_polyline (II closed sequence of non intersecting lines
void add(Point p);
void draw_linesO const;

) ;

453

454

void Polygon : :add(Point p)
(

CHAPTER 13 • GRAPH ICS ClASSES

/I check that the new l ine doesn't intersect existi ng l ines
Shape::add (p);

}

Here we inherit Closed_polyline's dcfmition of draw_linesO, thus saving a fair bit
of work and avoiding duplication of code. Un[onunatcly, we have to check each
add(). That yields an inefficient (order N-squarcd) albroritlUll - defining a Polygon
\\~lh N points requires N"(N'-1)12 call of inlerseCiO. In effect, we have made lhe as­
sumption thm Polygon class will be used for polygons of a low number of points.
For cXilll1plc, creating a Polygon with 24 Points involves 24-(24-1)12 == 276 c.,tlls
of inte rseclO. "n lat's probably acceptable, but if we wanted a polygon with 2000
points it would cost liS about 2,000,000 c.:11Is, and we might look for a better algo­
rithm, which might require a modified imerface.

Anyway, we can create a polygon like t..his:

Polygon poly;
poly.add(Poinl(l00,l00»;
poly.add(Poinl(150,200»;
poly.add(Poinl(250,250»;
poly.add(PoinI(300,200»;

Obviously, t..his creates a Polygon t.hat (t.o t.he last. pixel) is identical to our original
Closed_polyline :

13.9 RECTANGLE

Ensuring t.hat a Polygo n rcally represents a polygon turned out to bc surprisingly
messy. TI1C chcck for intcrscction that we left out of Polygon: :add O is arguably
the most complicated in the whole graphics library. If you are iIllcrested in fiddly
coordinate manipulation of geometry, have a look at the codc. And even then wc
are not. done. Consider trying to make a Polygon with only t\\l0 Points. We'd bct­
ter protect against that:

void Polygon: :drawJinesO const
{

)

if (number_oCpointsO < 3) error(" less than 3 points in a Polygon");
Closed_polyline:: draw_linesOi

TIle trouble is t.hat Polygon's invariant "the points represent a polygon" can't. be
verified until all points have been defmed ; thal is, we are nOt - as strongly rec·
ommcnded - establishing Polygon's invariant in its constructor. Placing the "at
1C<lst three points" check in Polygon :: draw_linesO is a fairly disreputable trick.
See also exercise 18.

13.9 Rectangle
'11e most common shape on a screen is a rectangle. The reasons for that are
partly cultural (most of our doors, windows, pictures, walls, bookcases, pages,
etc. arc also rectangu lar) and partly technical (keeping a coordinate witllin rectan­
gular space is simpler than for any other shaped space). Anyway, rectangles arc
so common that G UI systems suppOrt them directly rather than treating them
simply as polygons lImt happen to have four comers and right angles.

slruct Rectangle: Shape (
Rectangle (Point xy, int hh, int WW)i

Rectangle (Point x, Point y)i

void draw_linesO const;

int hcightO const { return hi }
int widfhO const { relurn Wi }

private:
inl h;
inl w;

);

/I height
II width

455

456 CHAPTER 13 • GRAPHI CS CL ASS ES

We can specify a rectangle by two points (top left and botlom right) or by one
point (top Icft) and a width and a hcighL The conSlnlctors c.'m be defmed like t.his:

Rectangle: : Rectangle<Point xl', int WW, int hh)
: w(ww), h(hh)

{

if (h<=O II w<=O)
error(lt Bad rectangle: no n·positive side "):

add(xy);
)

Rectangle : :Rectangle(Po int x, Point y)

:w(y.x-x,x), h(y.y-x.y)
{

if (h<=O II w<=O)
e rro r("8ad rectangle : non-positive width or height ") ;

add(x);
)

Each constructor initializes the members h and w appropriately (using lhe Olem"
ber initialization syntax ; see §9.4.4) and stores away the top left corner paim in
the Rectangle's base Shape (using addO). In addition , it docs a simple sanity
check: we don't really want Recta ngles with negative width or height.

One of the reasons that some graphicsJG U I SySLCllls U"eat rectangles as special
is that the algori thm for determining which pixels arc inside a rectangle is far sim­
pler - and therefore far faster - than for other shapes, such as Po lygo ns and
Circles. Consequently, the notion of "fIll color" - that is, the color of the space in­
side lhe rectangle - is more commonly used for rectangles lhan for other shapes.
We can set the fill color in a constructor 0 1' by the operation seCfilCcolorO (pro­
vided by Shape LOgelher wilh the other services related to color):

Rectangle reetoo(PoinI(15O, 100),200, 100);
Rectangle reet11 (Point(5O,5O),Po int(25O, 150));
Rectangle reet1 2(Point(5O,15O),Point(250,25O)) ;
Rectangle reet21 (Point(250,5O),2oo, 100);
Rectangle rect22(Point(25O, 150),200, 100);

rectoo. scCfill_ colo r(Colo r: : yellow);
rcct11 .scCfill_colo r(Colo r: : blu e);
reet12.scCfill_colo r(Colo r:: red);
rcct21 .scCfill3 0Io r(Colo r: :grcc n);

~ntis produces

II juS! below reell1
/I juS! to the right of rect 11
/I just below rect21

1 j.9 RECTAN GL E

\Vhcn you don 't havc a fill color, the rectanglc is transparelll; that 's how you can
see a corner of the yellow reetOO.

We can move shapes around in a window (§14.2.3). For eXillllple:

rect11.move(400,O); /I to the right of rect21
rcct11 .seCfiICcolor(Colo r: : while);
win12.scUabel(" rectangles 2");

111is produces

457

'58 CHAPTER 13 • GRA PH ICS CLAS SES

Note how only part of the while recl11 fiLS in the window. What doesn't fit is
"clipped"; thal is, it is not shown anywhere on the screen.

Note also how shapes are placed one on top of another. ~111is is done J USt like
you would put sheets of paper on a table. 111C first one yOli put will be onlhc bOl­

tom. OUf Window (§E.3) provides a simple way of reordering shapes. YOll c.1.11 tell

a window to put a shape on tOp (using Window: :put_on_to pO). For example:

win12.pul_on_lop(re clOO);
win12.seClabel{"rectangles 3");

111is produces

NOle that we t.:1.11 sec the lines that make up the rectangles even though we have
fill ed (all but one of) them. Jr.-ve don't like those outlines, we can remove them:

rectOO,seCcolor(Color: : invisible);
rect11 .sel_colo r(Color: : invisible);
rect1 2.set_colo r(Color:: invisible);
rect21.sel_colo r(Color: : invisible);
rect22.seCcolo r(Color: : invisible) ;

We get

13 . 10 MANAGING U NNAMED O BJECTS

Note that with bOlh fill color and line color set lO invisible, rect22 ca.n no longer
be seen.

Because it has to deal with both line color and fill color, Rectangle's
draw_lincsO is a bit messy:

void Rectangle: :drawJinesO consl
{

}

if (fill_colo rO. visibility()) (1/ fill

}

fI_ color(£ill_ colo rO .as_in to);
fUectf(poin t (0). x, point(O). y, w, h);

if (color().visibilily()) (II lines on lop of fill
fI_ eolor(colorO .asj nIO);
f1_rect(poi nl(O).x, poi nI(O). y, w, h);

}

As you em sec, FLTK provides functions for drawing rectangle flll (ft rceUO) and
rectangle oullines (fUectO). By default, we draw both (wim the lines/outline on tOp).

13.10 Managing unnamed objects
So faJ', we have named all our graphicli objects. When we want lots of objects,
this becomes infeasible. As an example, let us draw a simple color chart of the
256 colors in FLTK's paleue; that is, let's make 256 colored squares and draw

459

C HAPTER 13 • GRAI)HI (S (LA SSE S

them in a 16-by- 16 matrix that shows how colors with similar color valucs relate.
First, here is thc result:

Naming those 256 squares would not only be tedious, it would be silly. TIle obvi­
ous "name" of the top left square is its location in the matrix (0,0), and any Olher
square is similarly identified ("named") by a coordinatc pair (i,j). ,"Vhat we need
for this example is the equivalent of a matrix of objects. We thought of using a
vectof<Rectangle>, but that tumcd out to be not quite flexible enough. For eXaIn­
pic, it can be useful to have a collection of unllaIned objects (clements) that arc not
all of the same type. We discuss that flexibility issue in § 14.3. Here, we'll just pres­
ellt our solution: a vector type that can hold named and unnamed objects:

template<class T> class Vector_ref (
public :

} ;

II ...
void push_back(T&);
void push_back(P);

II add a named object
II add an unnamed object

T& operator[J(int i) ; II subscripting: read and write access
canst T& operatorlJ(i nt i) canst;

inl sizeO canst;

TIle way you usc it is very much like a standard library vector :

Vector_rekReclangle> rect ;

13. 10 MANAGIN G U NNAMED OBJE CTS

Rectangle x (Poin I (1 00,2(0), Poinl(200 ,3(0» ;
reCl.push_back(x)i II add named

recl.push_back(new Reciangle(Point(50,60), Point(80,90))); /I add unnamed

for (in I i=O; krect.size(); ++i) recl[i) .move(10,10); /I usc rcct

vVe expbin the new operator in Chapter 17, and the implementation of Vector_ref
is presented in Appendix E. For now, it is suffi cient to know that we can lise it to
hold unnamed objects. Operator new is followed by the naille of a type (here, Rec­
tangle) optionally followed by an initializer list (here, (Poinl(50,60), Poinl(80,90))).
Experienced programmers will be relieved to hear that we did not introduce a
memory leak in this example.

Given Rectangle and Vector_ref, we can play with colors. Fo r example, we
can write a simple color chart of the 256 colors shown above:

Vector_ref<Rectangle> vr;

for (int i = 0; k16; ++i)
for (inl j = 0; j<16i ++j) {

vr. pu sh_back(n ew Rectangle(Poi nl(i *20,; *20) ,20,20»;
vrl yr. size()-l J .seUiII_ color{i *16+;);
wi n20 .attach(vr[yr. sizeO- 11);

We make a Veclor_ref of256 Rectangles, organized grdphically in the Window as
an 8-by-S matrix. We give the Rectangles the colors 0, 1, 2, 3, 4, and so on. After
each Rectangle is created, we attach it to the window, so that it will be displayed:

.. ,

462 (HA PTE R 13 • GRAPHICS C LASSES

13.11 Text
Obviously, we WanllO be able to add text to our displays . For example, we might
want to label our "oddn Closed_polyline from §13.8:

Te,,' t(Point(200,200), "A closed polyline that isn't a polygon") ;
l.set_color(Color:: blue);

We get

Basically, a Text object defines a line of text starting at a Point. TIle Point will be
the bottom left corner of the text. TIle rcason for restricting the string to be a sin­
gle linc is to ensure portability across systems. Don't try lO put in a newline char­
acter; it Illay or Illay not be represemed as a newline i.n yOllr window. String
streams (§11.4) arc useful for composing strings for display in Text objects (exam­
ples in §12.7.7 and §12.7.8), Text is defined like this:

strucl Text : Shape {
lithe point is the bottom left of the fi rst letter
Texl (Point x, const string& s)

: lab(s), (nt(fUonl()), fnl_sz(f1_size())
(add (x); }

void drawJin esO const;

13. 11 TEXT

void seUabel(const string& s) (lab = s;)
string labelO co nst { relurn lab; }

void seUonl (Font 0 { fnt = f; }
Font fonlO consl (relurn Font(fnt); }

void seUonCsize(int s) { fn,-sz = s; }
inl fonCsizeO const { return fnt_5z; }

private :
string lab; !! Iabel
Font fnl ;
int fnl_sz;

};

Text has its own draw_lin esO because only the Text class knows how its string is
stored:

void Text: :draw_linesO consl
{

fC draw(la b. c_strO ,poin I (0). x, point(O). y);

}

rnlC color of the characters is detcnnincd exaclly like lhe lines in shapes composed
of lines (snell as Open_polyline and Circle), so you can choose a color using
set_colorO and see what color is currcnlly used by calarO. The character size and
fant are handled analogously. There is a small number of predefined fonts:

class Font { /I character (a nt
public :

enum FonUype {
helvelica=FL_HELVfTICA,
helvelica_bald=Fl_HELVnICA_BOlD,
helvetica_i1alic=Fl_HELVfTICA_ITALlC,
helvetica_boldj talic=Fl_HElVnICA_BOLD_ITAlI C,
courier=Fl_CO URIER,
courier_bold=FL_COURIER_BOLD,
cou rie r _ital ic=Fl_ CO U R IER_ITA LI C,
courie r _bold_italic=Fl_ CO U RI ER_ B OLD_ITA LI C,
timcs=Fl_TIMES,
times _bold=FL_ TI MES _BOLD,
times _italic=Fl_ TIM ES_IT All C,

.. ,

... CHA PTER 13 • G RAPHI CS ClASSES

Ii mes _ bold j lali c=Fl_ TIMES _BOLO _IT All C,
symbol=FL_SYMBOl,

);

screen=FL_SCREEN,
screen_bold=FL_SCREEN_BOLD,
zapC dingbats=Fl _ZAPF _DINGBATS

Font(FonUype to : f(fO {}
Font(inl to :f(ff) {}

int as_intO consl { return fi }
private:

int f ;
) ;

111c Sl yle or class definition lIsed to defme Font is the srune as we used t'O defi ne
Color (§13.4) and line_style (§ 13.5),

13.12 Circle
J ust to show that the world isn't completely rectangular, we provide class Circle
and class Ellipse. A Circle is defmcd by a center and a radius:

struel Circle : Shape (
Circle<Point p, int rr); /I cenler and rad ius

void draw_linesO co nsl;

Point cente rO consl ;
int radiusO const { return ' ; }
void seCradius(int rr) (r=u; }

private:
int ' j

) ;

We can usc Circle like this:

Circle c l (Poinl (100,200),SO);
Circle c2(Poinl (150,200),100);
Circle cJ(Poinl (200,200),150);

13.12 C IRCL E

This produces three circles of different sizes aligned with their centers in a hori·
zontalline:

"n le main pcculiarity o f Circle's implementation is t.hat the point stored is nOt the
center, but thc top left comer of the square bounding lhe circle. We could have
stored either but chose the one FLll<. uses for its optimized circle·drawing routine.
"n l<l t way, Ci rcle provides another example of how a class can be used to present a
different (and supposedly nicer) view of a conccptlhan its implementation:

Circle: :Ci rcle(Poinl p, int rr)
: r(rr)

{

/I center and rad ius

add (Point(p.x- r,p. y- r» ; II slore lOp left corner
)

Point Circle: :cenlerO const
{

return Point(point(O).x+r, point(O).y+r);

void Circle: :draw_linesO canst
{

if (COIOfO.visibilily())
ftarc(poin I (0). x, poi nI(O). y, r+ r, r+r,0,360);

)

465

... CHAPTER 13 • G RAPHI CS CLASS ES

NOle the lise of fI_arcO to draw the circle. ·fbe initial twO arguments specify the
top left corner, ule next twO arguments specify the width and the height of the
smallest rectangle that encloses the circle, and the final two arguments specify the
beginning and end angle to be drawn. A circle is drawn by going the full 360 de­
grees, but we can also usc fCarc() to write parts of a circle (and parts of an el­
lipse); sec exercise 1.

13.13 Ellipse
An ellipse is similar to Ci rcle but is defined with both a major and a minor axis,
instead o f a rad ius ; that is, to define an ellipse, we give the center 's coordinates,
the distance from the cenler to a point on the x axis, and the distance from the
center to a poilll on the)' axis:

strucl Ellipse : Shape {
Ellipse(Point p, int w, inl h); 1/ center, max and min di~tance from center

void draw_lines{) co nsl:

Point cenle r{) consl:
Poi nt focusl {) conSl:
Point focus20 consl;

void seCmajor(inl ww) { w=ww;)

int majorO const { return W; }

void seCminor(int hh) { h=hh :)
int minorO const { return h; }

private:

} ;

int Wi

int h ;

We can usc Ellipse like this:

Ellipse el (Poin t(200,200),5O,SO);
Ellipse e2(Poi nt(200,200),100,5O);
Ellipse eJ(Poin t(200,200), 100, 150):

~Iltis gives LIS three ellipses with a common center but different-sized axes:

13 . 13 ELLIPSE

Note that an Ellipse with majo r()==minor() looks exactly like a circlc.
Another popular view of an ellipse specifics two foci plus a sum of distances

from a point to the foci. Given an Ellipse, we can compute a focus. For example:

Point Ellipse: :focus1() const
(

ret u rn Point(center().x+sqrt(double(w· w - h • h)) ,cente r(). y);
)

Why is a Circle not an Ellipse? Geometrically, every circle is an ellipse, but nOt
every ellipse is a circle. In particular, a circle is an ellipse where the twO foci arc
equal. Imagine that we defined our Circle to be an Ellipse. We could do that at
the cost of needing an extra value in its representation (a circle is defined by a
point and a radius; an ellipse needs a center and a pair of axes). We don't like
space overhead where we don't need it, but the primary reason for our Ci rcle not
being an Ellipse is that we couldn't define it so without somehow disabling
se'-majorO and se,-minor(). After all, it would not be a circle (as a mathemati­
cian would recognize it) if we could use seCmajorO to get major()! =minorO - at
least it would no longer be a circle after we had done that. We can't have an ob·
ject that is of one type sometimes (i.e. , when major()!=minorO) and another type
some mher time (i.e., when major()==minor(»). \>Vhat we can have is an object
(an Ellipse) thaI can look like a circle sometimes. A Ci rcle , on the mher hand,
never morphs into an ellipse with (' ... ·0 unequal a.xes.

46'

.68 CHAPTER 13 • GRAPHI CS CLA SSES

When we design classes, we have to be careful nOt to be too clever and not to
be deceived by OLir "intuition" into defining classes that don't make sense as
classes in our code. Conversely, we have to take care thaI our classes represent
some coherent concept and are not just a collection of data and function mem­
bers.Just throwing code together without thinking about what ideas/concepts we
arc representing is "hacking" and leads to code that we can't explain and that mh­
ers can 't maintain. If you don't feci altruistic, remember that "others" might be
you in a few months' time. Such code is also harder to debug.

13.14 Marked_polyline
We orten want to "label" poinLS on a graph. One way of displaying a gntph is as
an open polyline, so what we need is an open polyline wilh "marks" at lhe
points. A Marked_polyline docs lhat. For example :

Marked_polyline mpl("l234");
mpl.add (Point(100,100));
mpl .add (Point(150,200));
mpl .add (Point(250,250));
mpl .add(Point(300,200» ;

"nlis produccs

TI1C definition of Marked_polyline is

13 . 15 MARKS

struct Marked_polyline : Open_polyline (
Marked_polyline(const string& m) :mark(m) { }
void draw_linesO const ;

private :
siring mark;

};

By deriving from Open_polyline, we get the handling of Points "for free" ; all we
have to do is to deal with the marks. In particular, draw)inesO becomes

void Marked_polyline: :draw_linesO consl
(

Open_polyline: :draw_linesO;
for (int i=O; knumber_oCpointsO; Hi)

draw_mark(point(i),mark[i%mark .sizeOJ):

,11e call Open_polyline: :draw_linesO takes care of the lines, so we just have to
deal with the "marks." We supply the marks as a string of characters and use
them in order: the mark[i%mark.sizeOl selects the character to be used next by
cycling through the characters supplied when the Marked_polyline was created.
111e % is the modulo (remainder) operator. lbis draw_linesO uses a li ttle helper
function draw_markO to actually output a letter at a g1ven pouu:

void draw_mark(Point xy, char c)
(

}

static consl int dx = 4;
stali c consl inl dy = 4:

string m(l,c);
rI_ draw(m. c st rO ,xy. x- dx,xy. y+dy) ;

11le dx. and dy constants arc lIsed to center the letter over the point. "n le string m
is constructed to contain the single character c.

13.15 Marks
Sometimes, we want to display marks \vithOlH lines connecting them. We provide
the class Marks for that. Fo r example, we can mark the four points we have used
for our various examples without connecting them with lines:

...

470

Marks PP("X")i
pp .add (Point(l00, lOO»;
pp .add (Poi nI(150,200»;
pp .add (Poi nl(250 ,250»;
pp .add (Point(300,200»;

111is produces

•

C HAPTER 13 • GRAP HI C S CLASS ES

•

•

One obvious lISC of Marks is to display data that represents discrete events so that
drawing connecting lines would be inappropriate. An example would be (height,
weight) data for a group of people.

A Marks is simply a Marked_polyline wilh the lines invisible :

struct Marks: Marked_polyline (

);

Marks(consl siring& m) :Marked_polyline<m)
(

seCcolor(Color(Color:: invisible»;
)

13.16 Mark
A Point is simply a location in a Window. It is not something we draw or some­
thing we can sec. If we wam to mark a single Point so that we can sec it, we can

13 . 16 MARK

indicate it by a pair orIines as in § 13.2 or by using Marks.llmt's a bit verbose, so
we have a simple version of Marks that is initialized by a point aJld a character.
Fo r example. we could mark the celllers of OLlr circles from § 13. 12 Iike this:

Mark ml (Poin I(100,200), '. ');
Mark m2(Poinl (150,200), 'y') ;
Mark m3(Po inl (200,200),'z');
cl .set_color(Color:: blue);
c2.set_color(Color :: red);
cl.set_color(Colo r: : green);

• ,

A Mark is simply a Marks wilh its initial (and typical only) point given immediately:

shu cl Mark : Marks (

);

Mark(Point . y, char c) : Marks(string(1,c»
(

add (xy);
)

l11c string(l ,c) is a constnlCtor for string, initializing the string to contain the sin­
gle character c.

471

CH APTER 13 • GRAPHI CS CLASSES

All Mark provides is a conveniem notation for creati.ng a Marks object with a
single point marked with a single character. Is Mark worth our effort to define it?
Or is it juSt "spurious complication and confusion"? TIlere is no clear, logical an­
swer. vVe went back and forth on this question, but in the end decided that it was
useful for users and the effon to define it was minimal.

Why use a character as a "mark"? We could have used any small shape, but
characters provide a useful and simple set of marks. It is often useful to be able to

use a variety of "marks" to distinguish different sets of points. Characters such as
x, 0 , +, and · are pleasamly symmetric around a cemer.

13.1 7 Images
The average personal computer holds thousands of images in filcs and can access
millions more over the web. Naturally, we want to display some of those images
in even quite simple programs. For example, here is an image (rita_p.llh .gif) of
the projected path of the Hurricane Rita as it approached the Texas Gulf Coast:

H Sult d 004nd. 73 .. ph
o Su""~d wInd'lIII "'Ph

POI ' I .. O-v ,-3 Tro<'
Potential D-V_ Tr •• ~
HIIfTk W.t.h

1). 1 7 IMA G ES

We can selCCt part of that image and add a photo of Rita as seen from space
(rita.jpg):

Image rila(Point(O,O), "rita.jpg");
Image path (PoinI(O,O)," rita_path.gifll);
pa th .seCmask(Point(SO,250),600,400); /I select I ikely landfall

win .attach(path);
win .altach{rita);

TIle seCmaskO operation selects a sub-picture of an image to be displayed. Here,
we selected a (600,400)-pixe\ image from rita_path.gif (loaded as path) with its
top lefllllost point at path's point (50,600). SeieCling only pmt of an image for dis­
play is so common that we chose to support it directly.

Shapes a rc laid down in the order they are attached, like pieces of paper on a
desk, so we got path "on the bottom" simply by attaching it before rita .

Images c.m be encoded in a bewildering variety of formats. Here we deal
with only twO oftbe most common,JPEC and G IF:

struct Suffix {
enum Encoding (none, jpg, gif);

l;

474 C HAPTER 13 • GRA PHI CS ClA SS ES

In our graphics imcrfacc library, wt: represent an image in memory as an objeCl
of class Image:

strucllmage : Shape {
Image(Point xy, string file_name, Suffix: : Encoding e = Suffix: : none) j
- lmageO { delete Pi }
void draw_linesO const;
void seCmask(Point "y, inl ww, inl hh)

{ w=ww; h=hh; cx=xy.x; cY=XY.Yi }
private :

);

int w,h; /I define "masking box ~ within image relative to
1/ position (ex,cy)

int u,eYi
fUmage· Pi
Text fn ;

111C Image constructor tries to open a rLle with the name given to it. Then it tries
to create a picture using the encoding specified as an optional argument or (morc
often) as a file suffix. If the image cannot be displayed (e.g., because the file wasn't
found), the Image displays a Bad_image . The definition of Bad_image looks like
this:

struct 8adj mage : FUmage (
8ad_image(int h, int w) : FUmage(h,w,O) { }
void draw(int x,int y, int, int, int, int) (draw_empty(x,y) ; }

);

The handling o f images within a graphics library is quite complicated, but the
main complexity of OUT graphics interface class Image is in the file handling in
the constructor:

1/ somewhat overelaborate constructor
/I because errors related to image files can be such a pain to debug
Image: : lmage(Point xy, string s, Suffix : :Encoding e)

:w(O), h(O), fn (xy, "")
(

add(xy);

if (!can_open(s» (/I can we open s?
fn .set_label("cannot open \""+s+ '\" ') ;

13 .17 IMAGE S

)

p = new Bad_image(30,20); II the ""error image"
return ;

)

if (e == SUffi K: :none) e = gel_e ncoding(s) ;

switch(e) (II check if it is a known encoding
case SuffiK: : jpg:

p = new FU PEG_lmage(s .c_str(»;
break;

case SUffiK: :gif:
p = new FI_GIF _Image(s.cslr(»;
break;

default : /I unsupported image encoding
fn. seIJabel("unsupporled fil e Iype \''''+s+'\''');
p = new Badj mage(30,20); li the "error image"

We use the suffix to pick the kind of object we create to hold the image (a
FU PEG_lmage or a FI_GIF _Image). We create that implementation object using
new and assign it to a pointer. lbis is an implementation detail (see Chapter 17
for a discussion of operator new and pointers) related to the organization of
FI..:TK and is of no fundamemal importance here.

Now, we JUSt have to implement can_openO to test if we can open a named
file for reading:

boo! can_open(consl string& s)

(

)

II check if a file named s exists and can be opened for reading

ifstream ff(s.cstr(»;
return H;

Opening a me and then closing it again is a fairly clumsy, bUl effective, way of
portably separating errors 1·e1ated to "can't open the fil e" from errors related to
the format of the data in the file.

YOli can look up the gecencodingO function, if you like. It simply looks for a
suffix and looks up that suffIX in a table of Iul0wn suffIxes. 1l1at lookup table is a
standard library map (sec Chapter 18).

475

47. CHAPTER 13 • GRAPHICS ClASSES

~ Drill
1. Make an 800-by-1000 Simple_window.
2. PlIl an B-by-8 grid on the leftmost 800-by-BOO part of thal window (so

that each square is 100 by 100).
3. Make the eight squares on the diagonal starting from the top lert corner

red (use Rectangle).
4. Find a 200-by-200-pixcJ image (jPEG or GIF) and place three copies of

it on the grid (each image covering [our squares). If you can't find an
image that is exacLly 200 by 200, use seCmaskO to pick a 200-by-200 sec­
tion of a larger image. Don't obscure the fed squares.

5. Add a lOO-by-lOO image. Have it move around from square to square
when you click the "Nextlt button. Just put wail_fo r_buttonO in a loop
with some code that picks a new square for your image.

Review

I. Why don't we "just" lISC a commercial or open-source graphics library
directly?

2. Abollt how many classes from our graphics interface library do you need
to do simple graphic output?

3. What are the header fLI es needed to use the graphics interface library?
4. \oVhat classes define closed shapes?
5. Why don't we just usc line for every shape?
6. What do the arguments to Po int indicate?
7. Whal are lhe components o f line_style?
8. What arc the components o f Color?
9. \oVhat is RBG?

10. \oVhat are the differences between two lines and a lines containing twO
lines?

11 . \oVhat properties can yOll set for every Shape?
12. How many sides does a Closed_polyline defined by five Points have?
13. \oVhat do you see if YOll define a Shape but don't attach it to a Window?
14. How does a Rectangle differ from a Po lygon with four Po ints (com ers)?
15. H ow docs a Polygon differ from a Closed~polyline?

16. What's on tOp: fill or outline?
17. Why didn't we bother defining a Triangle class (after all, we did define

Rectangle) ?
18. How do you move a Shape to another place in a Window?
19. H ow do you label a Shape with a line of text?
20. 'What properties can yOll set for a text string in a Text?

ClM PTER !J EXE RCISE S

2 1. What is a fO Ill and why do we care?
22. \.vhat is Vector_ref for and how do we usc it?
23. What is the difference between a Circle and an Ellipse?
24. W hat happens if you try to display an Image given a me name that doesn't

refer to a rtle containing an image?
25. How do you display part of an image?

Terms

closed shape
color
ellipse
fill
font
font size
G IF

Exercises

Lmage
image encoding
invisible
JPEG
line
line style
open shape

point
polygon
polyline
ULUlamed object
Vector_ref
visible

For each "defme a class" exercise, display a couple of objects o f the class to dem­
onstrate that they work.

I . Define a class Are, which d raws a part of an ellipse. Hint : fl_arcO.
2. Draw a box with rounded comers. Defi ne a class Box, consisting of four

lines and four arcs.
3. Define a class Arrow, which draws a line with an arrowhead.
4 . Define functions nO, sO, eO, wO, centerO, neO, seO, swO, and nwO. Each

takes a Rectangle argument and returns a Point. These functions define
"connection points" on and i.n the rec[angle. For example, nw(r) is the
northwcst (top left) corner of a Recta nge called r.

5. Define the functions from exercise 4 for a Ci rcle and an Ellipse. Place the
connection points on or outside the shape bm not outside the bounding
rectangle.

6. Write a program that draws a class diagram like the one in §12.6. It will
simplify matters if you start by defining a Box class that is a rectangle
with a text label.

7. Make an RGB color chart (e.g. , see www.lnelceillraJ.comJrgb·color­
chan.hunl).

8. Define a class Hexagon (a hexagon is a regular six·sided polygon). Usc
the center and the distance from the cemer 10 a com er point as conSlnLC'
tor arguments.

9. Tile a part of a window with Hexagons (usc at least eight hexagons).

477

I
478 CHAPTER 13 • GRAPHICS CLASSES

10. Defi ne a class Regular_polygon. Usc the center, the number of sides
(> 2), and the distance from the center to a corner as construclOr argu­
ments.

11. Draw a 300-by-200-pixcl ellipse. Draw a 400-pixel-long x axis and a 300-
pixel-longy axis through the center of the ellipse. Mark the foci. Mark a
point on the eUipse that is not on one of the axes. Draw the two lines
from the foci to the point.

12. Draw a circle. Move a mark around on the circle (let it move a bit each
time you hit the "Next" button).

13. Draw lhc color matrix from §13.10, but without lines around each color.
14. Define a right triangle class. Make an octagonal shape Olll of eight right

triangles o f different colors.
15. "Tile" a window with small right triangles.
16. Do the previous exercise, but with hexagons.
17. Do lhc previous exercise, but using hexagons of a few different colors.
18. Define a class Poly that represents a polygon but checks that its points

really do make a polygon in its constructor. Hint : You 'll have to supply
the points to the constructor.

19. Define a class Star. One parameter should be the number of points.
Draw a few stars with differing numbers of points, differing line colors,
and differing fill colors.

Postscript
C hapter 12 showed how to be a user of classes . TItis chapter moves us one level
up the "food chain" o f programmers: here we become tool builders in addition to
being tool users.

\t
"-· 14

Graphics Class Design

"Functional, durable, beautiful."

-Vitruvius

T he purpose of the graphics chapters is dual: we walll to

provide useful tools for displaying infomlalion. but we also

usc the family of graphical inte rface classes to illustrate general

design and implementation techniques. In particular, this chapter

presents some ideas of interface design and the notion of inheri­

tance. AJong the way, we have to take a slight detou r to examine

the language features that most directly suppon object-oriented

programming: class derivation, virtual fu nctions, and access con­

trol. We don 't believe that design can be disclissed in isolation

fro lll lISC and implemcmation, so our discussion of design is

rather concrete. Maybe you'd beuer think of this chapter as

"Graphics C lass Design and Lllplcmcntation,"

14.1 Design principles
14.1.1 Types
14.1.2 Operations
14.1.3 Na.ming
14.1.4 Muta.bility

14.2 Shape
14.2.1 An abstra.ct class
14.2.2 Access control
14.2.3 Dra.wing shapes
14.2.4 Copying ;lnd mutability

14.1 Design principles

C HAPTER 14 • G RAPHI CS CLASS DESIGN

14.3 Base and derived classes
14.3.1 Objectla.yout
14.3.2 Deriving cl.lsses and de fining

virtua.l functions
14.3.3 Overriding
14.3.4 Access
14.3.5 Pure virtua.l functions

14.4 Benefits of object·oriented
programming

"Vhat arc the design principles for our graphics interface classcs? First: What
kind of question is that? What arc "design principles" and why do wc need to
look at those instead of gening on with the serious business of producing ncat
pictures?

14.1.1 Types
Craphics is an example of an application domain. So, what we arc looking at
here is an example of how to prcsent a set of fundamental application concepts
and facilities to programmers (like us). If the concepts arc presented confusingly,
inconsistently, incompletely, or in other ways poorly represented in our code, the
difficulty of producing graphicru output is increased. We want our graphics
classes to minimize the effort of a programmer uying to leam and to usc them.

Ou r ideal of program design is to represent the concepts of the applicat ion
domain directly in code. TIl.H way, if you understand the applicmion domain,
you understand the code and vice versa. For example:

Window - a window as presented by the operating system

Line - a line as you sec it on the screen

Point - a coordinate point

Color - as you see it on the screen

Shape - what's common for all shapes in our graphics/CUI view of the
wol'ld

TIle last example, Shape, is different from the rest in that it is a generalization, a
pu rel)' abstract notion. We never see just a shape on the screen : we see a particu­
lar shape, such as a line or a hexagon. You'll find that renectcd in the definition of
our types: try to make a Shape variable and the compiler will SlOp you.

14 . 1 DE SIG N PRINCIPLE S

The sct of our graphics imerfacc classes is a library; the classes are meant to
be used together and in combination. They arc meant to be used as examples to
follow when you define classes to represent other I,'l'aphieal shapes and as build­
ing blocks for such classes. We are not just defining a set of unrelated classes, so
we can't make design decisions for each class in isolation. Together, our classes
preselll a view of how to do graphics. We must ensure that this view is reason­
ably elegant and coherent. Civen the size of our library and the enormity of the
domain of graphical applications, we cannot hope for completeness. Instead, we
aim for simplicity and extensibility.

In fact , no class library directly models all aspects of its application domain.
"n mt's not only impossible; it is also pointless. Consider writing a library for dis­
playing geographical information. Do you want to show vegetation? National,
state, and other political boundaries? Road systems? Railroads? Rivers? High­
light social and economic data? Seasonal variations in temperature and humid­
ity? 'Wind patterns in the atmosphere above? Airline routes? Mark the locations
of schools? The locations of fast- food "restaurants"? Local beauty spots? "All of
IImt t" may be a good answer for a comprehensive geographical application, but it
is not an answer for a single display. It may be an answer for a library supporting
such geographical applications, but it is unlikely that such a library could also
cover other graphical applications such as freehand drawing, editing photo­
graphic images, scientifi c visualization, and aircraft control displays .

So, as ever, we have to decide what's important to us. In this case, we have to
decide which kind of graphics/C U I we want to do well. Trying to do everything
is a recipe for failure. A good library directly and cleanly models its application
domain from a particular perspective, emphasizes some aspects of the applica­
tion, and deemphasizes olhers.

111C classes we provide here arc designed for simple graphics and simple
graphical user interfaces. They are primarily aimcd at users who need to present
data and graphical output from numeridscientifidengineering applications. You
can build youI' own classes "on top or' ours. If that is not enough, we c."(pose suffi­
cient FLTK details in our implementation for you to get an idea of how to use lhat
(or a similar "full-blown" graphiCS/CUI library) directly, should you so desire.
However, if you decide to go that route, wait until you have absorbed Chapters 17
and 18. TI10se chapters contain infonnation abOllt pointers and memory manage­
ment tllal YOll need for successfu l direct use of most graphics/CUI librru;es.

O ne key decision is to provide a lot of "little" classes with few operations.
}or example, we provide Open_polyline, Closed_polyline, Polygon, Reclangle,
Marked_polyline, Marks, and Mark where we could have provided a single class
(possibly called "polyline") with a lot of arguments and operations that allowed us
to specify whicll kind of polyline an object was and possibly even mutate a polyline
from one kind to another. TIle extreme of this kind of thinking would be to pro­
vide every kind of shape as pall of a single class Shape. We think that using many

481

482 C HAPTER 14 • GRAP H ICS ClASS D ESIGN

small classes most closely and most usefully models our domain of graphics. A sin­
glc class providing "everything" would leave the user messing with data and op­
tions without a framework to help understanding, debugging, and perfonnancc.

14.1.2 Operations
We provide a minimum of operations as part o f each class. OUT ideal is the min i­
ma] interface that allows us to do what we want. VVherc we want greater cOllven­
ience, we can always provide it in the foml of added nOlUllcmbcr functions or yel
anOlher class .

vVe want lile interfaces of our classes to show a common style. For CXrull p]C,

all functions performing similar operations in different classes have the same
name, take arguments of the same types, and where possible require those argu­
ments in the same order. Consider the conSlm cLOrs: if a shape requires a localion,
il takes a Point as its firs t argument:

line In (Poi nl(l 00,200), Poinl(300 ,400));
Mark m(PoinI(100,200), 'x') ; II display a single point as an HX"

Circle e(Point(200,200),250);

All functions that deal with points usc class Point to represent them. That would
seem obvious, but many libra ries exhibit a mixture of styles. For example, imag­
ine a function for dra\ving a line. We could usc one of two styles:

void draw_line(Poinl pl, Point p2);
void draw-' ine(int xl , inl yl, int xl, int y2);

II from pI to p2 (our slyle)
II from (xl ,yl) 10 (x2 ,),2)

We could even allow both, but for cons is leney, improved type checking, and im­
proved readability we usc the first Style exclusively. Using Point consistently also
saves us from confusion between coordina te pairs and the other common pair of
integers: width and height. For example, consider:

draw_reetangle(Poinl (l00,200), 300, 400);
draw_rectangle (100,200,300,400);

/I our style
/I alternative

-Inc first call draws a rectangle with a point, width, and height. 11l:'lt's rea­
sonably easy to guess, but how about the second call? Is that a rectangle defined
by points (100,200) and (300,400)? A rectangle defined by a point (100,200), a
width 300, and a height 400? Something complClcly different (though plausible
to someone)? Using the Point type consistently avoids sllch confusion.

Incidentally, if a function requires a width and a heighl, they are always pre­
sented in that order (jUSt as we always give an x coordinate before a y coordi­
nate). Gelling such little deta ils consislem makes a surprisingly large difference to
the case of usc and the avoidance of mn-time errors.

14 . 1 D ESIGN PRI NC IPL ES

Logically identical operations have the same name. For example, every func·
tion that adds points, lines, etc. to any kind of shape is called add() , and any fUll c,
tion that draws lines is called draw_linesO. Such uniformity helps us remember
(by offering fewer details to remember) and helps us when we design new classes
("just do the usual ") . Sometimes, it even allows us to write code that works for
Illany different types, bec.'lIse the operations on those types have an identical pat·
tem. Such code is called gt!1/tmc: sec C hapters 19- 21.

14.1.3 Naming
Logically d ifferent operations have different names. Again, that would seem ob·
vious, but consider: why do we "attach" a Shape to a Window, but "add" a Line
to a Shape? In both cases, we "put something into something," so shouldn't that
similari ty be reflected by a common name? No. "Inc similarity hides a funda·
mental difference. Consider:

Open_polyline opl ;
opl.add(Point(100,100»;
opl. add(Poi nl(150 ,200»;
opl.add(Poi nl(25O ,150»;

Here, we copy three points into opl. The shape opl docs not c.,re about "our"
points after a call to addO; it keeps its own copies. In fact, we rarely keep copies
of the points - we leave that to the shape. On the other hand, consider:

win.aUach(opl);

Hel'e, we creale a connection between the window win and our shape opl ; win
docs not make a copy of opl - it keeps a reference to opl . So, it is our responsi·
bility to keep opl valid as long as win uses it. That is, we must not exit opl 's
scope while win is using opl . We can update op1 and the next time win comes lO

draw opl our changes will appear all the screen. We can illustrate the d ifference
between atfachO a.nd addO graphically:

Open_polyline:

(180,180)
(150,l8I)
(250,250)

Window:

483

... C HAPTER 14 • GRAPHI CS C LASS DESIGN

Basically, add() uses pass·by·valuc (copies) and attachO uses pass-by-rcfcrcncc
(shares a single object). We could have chosen to copy graphical objects into
Windows. However, that would have given a different programming model,
which we would have indicated by using addO rather than attachO. As it is, we
just "'attach" a graphics object to a Window. TIml has important implicatio ns. For
example, we can ' I create an object, attach it, allow me object to be destroyed, and
expect the resulting program to work:

vo id HSimple_window& w)

{

Rectangle r(Poi nt(100,200),SO,30);
w.attach (r);

} /I oops, the lifetime of r ends here

int ma inO
{

)

Simple_window win(Point(l00, 100),600,400, "M y window");
1/ . . .
f(win): /I asking for trouble
1/ . . .
win.wai l_for_bu llo nO;

By the time we have exited from f () and reached waiC fo T_bultonO, there is no r
for the win to refer to and display. In Chapter 17, we'll show how to create objects
within a function and have them survive after the return from the function. Until
then, we must avoid aHaching objects that don' t survive until the call o f
wait_foT_bullonO. We have Vecto r_ref (§13.1O, §E.4) to help with that.

NOle that had we declared fO to take its Window as a co nst referellce argu­
ment (as recommended in §8.5.6), the compiler would have prevented our mis­
take : we can' t attach(r) to a ca nst Window because attachO needs to make a
change to the Window to record the Window's interest in r.

14.1.4 Mutability
When we design a class, "Who can modify the data (representation)?'" and
"How?" are key questions that we must answer. We try to ensure that modifica­
tion to the state of an object is done only by its own class. llle public/private dis­
tinction is key to this, but we'll show exam ples where a more flexible/subtle
mechanism (pro tected) is employed. This implies that we can't just give a class a
data member, say a string called label; we mUSt also consider if it should be pos­
sible to modify it after construction, and if so, how. We must also decide if code

14 .2 SH APE

other than our class's member functions need LO read the value of label, and if so,
how. For example:

stru el Circle (
II ...

private :
int r; 1/ radius

);

Circle c(Point(100,200),SO);
c.r = -9; 1/ OK? No - compi le-time error: Circle: :r is private

As you might have noticed in Chapter 13, we decided to prevent direct ac·
cess LO most data members. Not exposing the data directly gives us the opportu·
nity to check against "silly" values, such as a Circle with a negative radius. For
simplicity of implementation, we take only limited advantage of this opportunity,
so do be careful with your values. TIle decision not LO consisl'emly and com·
pletely check reflects a desire to keep the code shoTt for presentation and the
knowledge tlm if a user (you, us) supplies "silly" values the result is simply a
mcssed·up image on the screen and not corruption of precious data.

We treat the screen (seen as a set of Windows) purely as an output device.
We can display new objects and remove old ones, but we never ask "the system"
for information that we don't (or couldn't) know ourselves from the data struc·
tures we have built up representing our images.

14.2 Shape
Class Shape represents the general notion of some!.hing that can appear in a
Window on a screen:

h is the notion that tics our graphical objects to our Window abstraction,
which in lurn provides the connection to the operating system and the
physic.-u screen.

It is tlle class t.hat deals with color and the style used to draw lines. 1b do
that it holds a Lin e_style and a Color (for lines and for rill).

It can hold a sequence of Points and has a basic notion of how to draw
them.

Experienced designers will recognize that a class doing !.hree things probably has
problems with generality. However, here, we need something far simpler !.han !.he
most general solution.

"5

... (HAPTER 14 • GRAPHICS CLASS DES IGN

We'll first present the complete class and then discuss its details:

class Shape (1/ deals wi th color and style and holds s,equence of lines
public:

void drawO const; 1/ deal with color and draw lines
virtual void mOlle(int dx, int dy); /I move the shape +=dx: and +=dy

void scCcolo r(Color col);
Color colarO canst;

void secstyle(Line_style Sly);
Line_style SlylcO consl;

void scCfill_color(Color col);
Color fill_calorO const;

Point point(int i) const; /I read-only access to points
int number_oCpointsO consl;

virtual -Shape() ()
protected:

Shape();
virtual void drawJines() const;
void add(Point pl;
void sc,,"-point(int i, Point pl;

II draw the appropriate lines
II add p to points
/I points[i]=p;

private :

);

veclor<Point> points;
Color leolor;
line_style Is;
Color feolor;

/I not used by all shapes
/I color for lines and characters

/I fi l l color

Shape(const Shape&); /I prevent copying
Shape& operator=(const Shape&);

This is a relatively complex class designed to support a wide variety o f graphics
classes and to represent the general concept o f a shape on the screen. However, it
still has only four data members and 15 functions. Furthermore, those functions
arc all close to trivial so that we can COnCenlnHC on dcsign issues. For the rest of
this section we will go through the mcmbers onc by one and explain thcir role in
the design.

14 .2 SHAP E

14.2.1 An abstract class
Consider fi rst Shape 's constructor:

protected:
Shape();

l lle constmctor is pro tecled. TImt means that it can only be used direct.ly rrom
classes derived rrom Shape (using the :Shape notation). In other words, Shape
can only be used as a base ror classes, such as line and O pen_polyline . TIle pur­
pose or thm "prolecled: " is to ensure that we don't make Shape objects d irectly.
For c..xample:

Shape ss ; II error: cannot construct Shape

Shape is designed to be a base class only. In this case, nothing particularly nasty
would happen ir we allowed people to create Shape objects direct.ly, but by limit­
ing usc, we keep open the possibility or modifications to Shape lhat would render
it unsuitable ror d irect usc. Also, by prohibiting the direct creation or Shape ob­
jects, we direet.ly model the idea that we cannot have/sec a general shape, only par­
ticular shapes, such as Circle and Closed_polyline. lbin.k about it! \¥hat docs a
shape look like? The only reasonable response is the counter question "\¥hat
shape?" TIle notion or a shape that we represent by Shape is an abstract concept.
"n l;lt 's an important and rrequent.ly userul design notion, so we don't want to
compromise it in our program. Allowing users to directly create Shape objects
would do violence to our ideal or classes as direct representations or concepts.
l l le constructor is defined like this:

Shape:: Shape ()

{

}

: Icolor(fI_color(»,
Is(O),

fcolor(Color: : invis ible)

II default color (or lines and characters
II de(ault style
/I no fill

It is a default constructor, so it sets the members to their default. Here again, the
underlying library used ror implementation, FLTK, "shines through." However,
FLTK's notions or color and style are not mentioned directly by the uses. l l ley
arc only part or the implementation or our Shape, Color, and line_slyle classes.
"n le veclor<Poinls> deraults to an empty vector.

A class is abstract ir it c..1.n be used only as a base class. "n le mher - more cam­
mon - way or achieving that is called a pure virluaJfimctioll; see § 14.3.5. A class

48'

... (HAPTER 14 • GRAPHI CS C LASS DESIGN

that can be used to create objectS - that is, the opposite of an abstract class - is
called a CQIlCr(ie class. Note that abstrrul and concrete are simply lcdmical words fo r
an everyday distinction. We might go to the SLOre to buy a camera. However, we
can't just ask for a camera and takc it home. VVhat brand of camera? Which par­
ticular model camera? TIle word camera is a generalization; it refers to an abstract
notion. An Olympus E-3 refers to a specifi c kind of camera, which we (in ex­
change for a large amount of cash) might acquire a particular instance of: a par­
ticu lar camera with a unique serial number. So, "camera"' is much like an abstract
(base) class; "Olympus E-3" is Illuch like a concrete (derived) class, and the ac­
lual camera in my hand (if I bought it) would be much like an object.

1ne declaration

vi rtual-ShapeO { }

defines a virtual desouctor. We won't use lhal for now, so we leave lhe explana­
lion to §17.5.2, where we show a usc.

14.2.2 Access control
C lass Shape declares al1 data members private:

private:
vector<Point> points;
Color Icolor;
line_style Is;
Colo r fco lor;

Since lhe data members or Shape are declared private, we need to provide access
runctions. 111ere are several possible styles for doing this. We chose one that we
consider simple, convenient, and readable. If we have a member representing a
property X, we provide a pair o f functions X() and seCXO for reading and wriling,
respectively. For example:

void Shape: :set_colo r(Color col)
(

leolo r = col;

)

Color Shape: : colo rO canst
(

retu rn Icolo r;
)

14 .2 SHAPE

"me main inconvenience of this style is that you can't give the member variable
the same name as its readout function. As ever, we chose the most convenient
names for the functions because they are part of the public interface. It matters
far less what we call our private variables. Note the way we use const to indicatc
thatlhe readout functions do not modify their Shape (§9.7.4).

Shape keeps a vector of Points, called points, that a Shape maintains in sup­
port of its derived classes. We provide the function addO for adding Points to
points:

void Shape: :add (Point p)
(

poin ts. pu sh _ back(p);

II protected

Naturally, points start out empty. We decided to provide Shape with a complete
functional intcrface rather than giving uscrs - even member functions of classes
derived from Shape - direct access to data members. To some, providing a func­
tional interface is a no-brainer, because they feel that making any member of a
class public is bad design. rib others, our design seems overly restrictive because
we don' t allow direct write access to the members to all members of derived
classes.

A shape derived from Shape, such as Circle and Polygo n, knows what its
points mean. rille base class Shape does not "understand" the poi.nts ; it only
stores them. '1lerefore, the derived classes nced control over how points are
added. For example :

Ci rcle and Rectangle do not allow a user to add points ; that just wouldn't
make sense. What would be a rectangle with an extra point? (§12.7.6)

lines allows only pairs of points to be added (and nOl an individual
point ; §13.3).

Open_polyline and Marks allow any number of points to be added.

Polygon allows a point to be added only by an addO that checks for
intersections (§13.8).

We made addO protected (that is, accessible from a derived class only) to ensure
that derived classes takc control over how points arc added. Had addO been
public (everybody can add points) or private (only Shape can add points), this
close match of functionality to our idea of shapes would not have been possible.

Similarly, we made sel_poinlO protected. In general, only a derived class can
know what a point means and whether it can be changed withollt violating an in·
varianl. For example, if we have a Regular_hexagon class defined as a set of six
points, changingjust a single point would make the resulting figure "not a regular

489

490 CHAI'TER 14 • GRAPHI CS CLASS DES IGN

hexagon." On the other hand, if we changed one of the points of a rectangle, the
result would still be a rectangle. In fact, we didn't fmd a need for seCpointsO in
our example classes and code, so seCpoinlO is there, just to ensure that the rule
that we can read and set every attribute of a Shape holds. For example, if we
wanted a Mutable_rectangle, we could derive it from Rectangle and provide op­
erations to change the points.

We made the vector of Points, points, private to protect it against undesired
modification. To make it useful, we also need to provide access to it:

void Shape: !sel_point(int i, Point p)
{

po intsli l = p;
)

Point Shape::poinl(inl i) const
{

re turn points[i]i
)

int Shape: :number_oCpoints() eonst
{

return points.sizeO;
)

/I not used; not necessary so far

Ll derived class member functions , these functions arc lIsed like this:

void lines: :draw_lin esO consl
/I draw lines connecting pairs of points

for (inl i=l ; knumber_oC poinls(); i+=2)
fU ine(po inl(i - 1). x, poi nt(i -1). y, point(i) .x, poi nt(i). y);

You might worry about allt.hosc uivial access functions. Are they not inefficient? Do
they slow down the program? Do they increase Lhe size of the program? No, Lhey
will all be compiled away ("inlined") by the compiler. Calling number_oCpoints()
will take lip exactly as many bytes of memory and execute exactJy as Illany insU"uc·
Lions as calling points.size() directly.

TIlese access control considerations and decisions are important. \o\'c could
have provided this c1ose·lo·minimal version of Shape :

slruel Shape (/I closc· to·mi nimal defi nition - too simple ~ not U5(.'£i

Shape() ;
void draw() eonsl ; /I deal wi th color and call drawJines

14 .2 SHAP E

virtual void drawJinesO canst; II draw the appropriate lines
virt ual void move(int dx, int dy); /I move the shape +=dx and +=dy

);

veclor<Point> points;
Color leolor;
Line_style Is ;
Color feolor;

/I not used by all shapes

What value did we add by those extra 12 member functions and t'o'>O lines of access
specifications (private: and protected:)? The basic answer is that protecting the rep­
resentation ensures that it doesn't change in ways unanticipated by a class designcr
so that we can write better classes with less e£T0I1. TIlis is the argument about "in­
variants" (§9.4.3). Here, ,ve'lJ point out such advantages as we derme classes derived
from Shape. One simple example is that earlier versions of Shape used

FI_Color Ieolor;
intlinc_style;

~nlis lumed alit to be too limiting (an int line style doesn't elegantly SUppOil line
width, and FI_Color doesn't accommodale invisible) and led to some messy code.
Had these two variables been public and used in a user's code, we could have im­
proved our interface library only at the cost of breaking that code (because it
mentioned the names line_color and line_style).

In addition, the access functions often provide notational convenience. For
example, s.add(p) is easier to read and write than s. points. push_baek(p).

14.2.3 Drawing shapes
We have now described almost all but the real heart of class Shape :

void drawO canst ; /I deal wi th color and call drawJ ines
virtual void draw_linesO canst ; /I draw the lines appropriately

Shape 's most basic job is to draw shapes. We could not remove all other fun c­
tionaJity from Shape and leave it with no data of its own without doing major
conceptual harm (sec § 14.4); drawing is Shape's essential business. It does so
using FLTK and lhe operating system's basic machinery, but from a user's point
of view, it provides jllst two functions :

drawO applies style and color and then calls drawJin esO.

dr.aw_linesO puts pixels on the screen.

~nle drawO function doesn't usc any noveltcchniqlles. It simply caJls FLTK func­
tions to set the color and style to what is specified in lhe Shape, calls drawJinesO

491

492 (HAPTER 14 • GRAPHICS ClASS DESIGN

to do lhe actual drawing on the screen, and then tries to restore the color and
shape to what they WCfe before the call:

void Shape : :drawO consl
{

I/there is no good portable way of retrieving the current style
fI_color(lcolor.asjnt()); 1/ set color
fUinc_stylc(ls .stylcO,ls. width()); II set style
drawJ in es();
fI _color(oldc);
fUin c_slyle(O);

/I reset color (to previous)
/I reset line style to default

Unfortunately, FLTK doesn't provide a way of obtaining the current slyle, so the
style is just set to a default. That's the kind of compromise we sometimes have to
accept as the cost of simplicity and portability. We didn't think it worthwhile to
try to implement that facility in our interface library.

Note that Shape::drawO doesn't handle fill color or the visibility of lincs.
Those arc handled by the individual draw_lin eO functions that have a bener idc..'l
of bow to interpret them. In principle, all color and style handling could be dele­
gated to the individual draw_lineO functions , but that would be quite repetitive.

Now consider how we might handle draw_linesO. If you think about it for a
bit, you' ll realize that it would be hard for a Shape function to draw all that needs
to be drawn for every kind of shape. To do so would rcquirc that every last pixel
of each shape should somehow be SLQred in the Shape object. If we kept the
vecior<Point> model, we'd have to store an awfu l lot of points. Worse, "the
screen" (that is, the graphics hardware) already docs that - and docs it belter.

To avoid that extra work and extra storage, Shape takes another approach: it
gives each Shape (that is, each class derived from Shape) a chance to define what
it means to draw it. A Text, Rectangle , or Ci rcl e class may each have a clever way
of drawing itself. In fact, most such classes do. After all, such classes "know" ex·
actly what they are supposed to represent. For example, a Ci rcle is defmed by a
point and a radius , rather than, say, a lot of line segments. Generating the re'
quired bits for a Circle from the point and radius if and when needed isn't really
all that hard or expensive. So Circle defines its own draw_lincsO whiclt we want
to call instead of Shape's draw_linesO. TItat's what the virtual in the declaration
of Shape : :draw_lincsO means:

shuet Shape (
II . ..

14 . 2 SHAPE

virlual void drawJinesO consl; /I let each derived class define its
II own draw_linesO if it so chooses

1/ . .
} ;

slrue! Circle : Shape {
/I . ..
void draw_linesO consl: II"ovcrride~ Shape::drawJinesO
/I ...

} ;

So, Shape's drawJinesO must somehow invoke one of Circle's functions if the
Shape is a Circle and one of Reclangle's functions if the Shape is a Reclangle.
111at 's what the word virlual in the drawJinesO declaralion ensures: if a class de·
rived from Shape has derliled its OW11 drawJinesO (with the same type as Shape's
drawJinesO), that drawJinesO will be called rather than Shape's draw_linesO.
Chapter 13 shows how that's done for Ted, Circle, Closed_polyline, etc. Defining
a funct ion in a derived class so that it can be used through the interfaces provided
by a base is c.-uled ovenidillg.

Note that despite its centrill role in Shape, draw_linesO is protected ; it is not

meant to be called by "the gcneraluser" - that 's what drawO is for - but simply
as an "implementation detail" used by drawO and the classes derived from
Shape.

~nllS co mpletes our display model from §12.2. The system that drives the
screen knows about Window. Window knows about Shape and can call Shape's
draw{) . Finally. drawO invokes the draw_linesO for the particular kind of shape.
A call of gui_mainO in ou r user code starts the display engine.

drawJ inesO

drawJinesO

s

Circle
draw_linesO

s

drawO
drawO

,----------,

drawO

Wmdow

aliachO

Our code
Make obj«:ts
Atlach objects

Display
engme

493

494 CHAPTER 14 • GRAPHICS CLASS DE SIGN

What gui_mainO? So far, we haven't actually seen gui_rnain O in Ollf code. lnstead
we usc wail_for_bullon(), which invokes the display engine in a more simple­
minded manner.

Shape's moveO fu nction simply moves every poim stored rcl:uivc to the cu r­
rcnt IX'sition:

void Shape : :move(int dx, int dy)
{

/I move the shal>C +=dx and +=dy

}

for (int i = 0; i<points.s izeO; ++i) {

poinls[i].X+=dx;
points[il .y+=dy;

}

Like draw_linesO, moveO is virtual because a derived class may have data that
needs to be moved and that Shape docs not know aboul. "or example, sec Axis
(§12.7.3 and §15.4).

The move() function is not logically necessary for Shape; we just provided it
for convenience and to provide another example of a virtual function. EvelY kind
of Shape that has points that it didn't store in its Shape must dcfinc its own
move() .

14.2.4 Copying and mutability
TI1C Shape class dcclarcd thc copy constructor and thc copy assigruncnt opcralor
pnvatc:

private:
Shape(co nst Shape&); /I prevent copying
Shape& operator=(const Shape&)i

~lllC cffcct is that on.ly mcmbers of Shape can copy objects of Shape using the de­
fault copy operations. That is a common idiom for preventing accidcntal copy­
ing. For example:

void my_fcl (const Open_polylinc& op, const Circlc& c)
{

Open_polyline op2 = 0Pi /I error: Shape'S copy constructor is private
vector<Shape> Vi

v.push_back(c); /I error: Shape's copy constructor is private

14 . 2 SH APE

1/ . ..
op = op2; /I error: Shape's assignment is private

}

BUI copying is useful in so many places! Just look at that push_baek(); without
copying, it is hard even to usc vectors (push_backO puts a ropy of its argument into
its vector). Why would anyone make trouble for programmers by preventing copy­
ing? You prohibit the default copy operations for a type if they are likely 10 cause
trouble. As a prime example of "trouble," look at my_feU). We cannot copy a Circle
into a Shape-sized element "slot" in v; a Circle has a J<ldius but Shape docs not so
sizeof(Shape)<sizeof(Circle). lf that v.push_back(e) were allowed, the Circle would
be "sliced" and any future use of the resulting Shape element would most likely
lead to a crash; the Circle operations would assume a radius member (r) th."lt hadn't
been copied:

Shape: points
line_color
Is

Ci rcle : .--:-::-- , points
line_color
Is

,

'11e copy construction of op2 and the assignment lO Op suffer from exactly the
same problem. Consider :

Marked_polyline mp("x");
Circle c(p,10);
my_fct(mp,e); /I the Open-POlyline argument refers to a Markectpolyline

Now the copy operations of the Open_polyline would "slice" mp's string mem­
ber mark away.

Basically, class hierarchies plus pass-by-reference and default copying do nOt
mi." . \\Then you design a class that is meant 10 be a base class in a hierarchy, dis­
able its copy constructor and copy assigrunelll as was done for Shape.

Slicing (yes, that's really a technical ternt) is not the only reason to prevent
copying. There a,'e quite a few concepts that arc best represented withoul copy
operations. Remember that lhe graphics system has to remember where a Shape
is stored to display it 10 the screen. 111at's why we "attach" Shapes to a Window,
rather than copy. "111e Window would know nOlhing about a copy, so a copy
would in a very real sense not be as good as its original.

495

4% CHAPTER 14 • GRAPHICS CLASS D ESI G N

If we want to copy objects of types where the default copy operations have
been disabled, we can write an explicit function to do the job. Such a copy fune­
lion is often called doneO. Obviously, you can write a done() only if the fune­
lions for reading members are sufficient for expressing what is needed to

construct a copy, but that is the case for all Shapes.

14.3 Base and derived classes
Let'S take a more technical vicw or base and derived classes; that is, Jet us for this
section (only) change the focus of disclission from programming, application de­
sign, and graphics to programming language features. When designing our
graphics interface library, we relied on three key language mechanisms:

Den'va/ian: a way to build one class from another so that the new class
can be used in place of the original. For example, Circle is derived from
Shape, or in other words, "a Circle is a kind of Shape" or "Shape is a
base of Circle." The derived class (here, Circle) gets all of the members
of its base (here, Shape) in addition to its own. This is often called inheri­
tallce because the derived class "inherits" all of the members of its base.
In some contexts, a derived class is called a subdllJJ and a base class is
called a superc!ass.

VirtuaijilllcliollS: the ability to define a function in a base class and have a
function of the same name and type in a derived class called when a user
calls the base class funClion. For example, when Window Ct'1lls draw_linesO
for a Circle, it is the Circle's drawJinesO that is executed, rather than
Shape's own drawJinesO. TIus is often Ct'l.lIed nlll-tlmc poljmOlphisllI, CIytUlIIlIC
dispatch, or nm-tilll£ dispatdl because the function called is determined at nm
time based all the type of the object used.

Primite OJu/ protected members: We kept the implementation details of our
classes private to protect them from direct usc that could complicate
maintenance. TIlat's often called cllwpsuialioll.

TIle usc of inheritance, run-Urne polymorphism, and encapsulation is the most COIll­

man defmilioll of object-oricnled programming. TI1US, C++ directly supports object­
orie11led programming in addition to other programming styles. For example, in
C hapters 20-21 , we'll see how C++ supports generic programming. C++ bor­
rowed - with explicit acknowledgments - its key mechanisms from Simula67, tlle
first language to directly support object-oriented programming (sec Chapter 22).

TIlat was a lot of technical terminology! But what docs it all mean? And how
docs it actually work on our computers? Let 's first draw a simple diagram of our
graphics intcrface classes showing their inhclitance relationships:

14 .] BASE AND DE RIVED CLA SSES

Shape

Circle Ellipse Text Line

Open....j)Olyline Lines

~ =::k:::ed7='=t:i:::n~e Closed....polyline

Polygon

"m e arrows point rrom a derived class to its base. Such diagrams help visualize
class relations hips and orten decorate the blackboards or programmers. Com­
pared to commercial rrameworks this is a tiny "class hierarchy" with only 16
classes, and only in the case or Open_polyline's many descendants is the hierar­
chy more than one deep. Clearly the common base (Shape) is the most impor­
tant class here, even though it represents an abstract concept so that we never
directly make a shape.

14.3.1 Object layout
How are objects laid out in meillOlY? As we saw in §9.4. 1, members or a class de­
fine the layout or objects: data members are stored one arter another in mernaI)'.
When inheritance is used, the data members or a derived class are simply added
arter those or a base. For example:

Shape: points
line_color
I.

Ci rcle : points
line_color
Is

r

A Circle has the data members or a Shape (arter all, it is a kind or Shape) and can
be used as a Shape. In addition, Circle has "its ownn data member r placed after
the inherited data members .

497

' 98 (HAPTER 14 • GRAPHICS ClASS DESIGN

To handle a virtual function caU, we need (and have) one more piece of data
in a Shape object: something to tell which function is really invoked when we call
Shape's draw_linesO. The way that is usually done is to add the .lddrcss of a
table of functions. This table is usually referred to as the vtbl (fol' '-virlual table"
or "virtual function table") and its address is o f len called the vptr (for "vinual
pointer") . We discuss pointers in Chapters 17- 18; here, they act like references .
A given implementation may use different names for vtbl and vplr. Addi ng the
vptr and the vtbls to the picture we get

Open_polyline: points Shape:dr;nwJines()
Open_polyline's vtbl : line_color / c.)

Is
vpl

Circle :
~ Shape:move()

points Ci rcle 's vlbl: f../ ()
line_color

~ Is ~ Cirde:draw_llnesO vpl

• (...)

Since draw_linesO is the fIrst vinual function, it gets the first slot in the vtbl, fo l­
lowed by that of move(), lhe second virtual function. A class can havc as lllaJl)' vir­
tual functions as you want it lO have; its vtbl will be as large as needed (one slot per
vinual function). Now when we call x.drawJines(), ule compiler generates a call to
the function found in lhe draw_linesO slot in lhe vtbl for x. Basic.....ny. the code just
follows the arrows on lhe d iagram. So if " is a Circle, Ci rde::d raw_linesO will be
called. If x is of a type, say Open_polyline, that uses the vtbl exactly as Shape de­
fined it, Shape::draw_linesO will be called. Similarly, Circle d idn't define its own
moveO so x.moveO will call Shape::moveO if x is a Ci rcle. Basically, code gener­
a ted for a virtual function call simply finds the vplr, uses that to get to the right
vtbl, and calls the appropriate function there. The cost is about twO memory ac­
cesses plus the COSt of an ordinary function call. Ths is simple and fast.

Shape is an abstract class so you can 't actually have an object that 's just a
Shape, but an O pe n_po lyline will have exactly the same layoUl as a "plain shapc"
since it doesn't add a data member or define a virtual function . TIlere is j ust one
vlbl for each class with a virtual function , not one for eadl object, so the vtbls tend
nm to add significantly to a program's object code size.

Note that we didn't draw any non·virtual functions in this picture. We didn 't
need to because there is nothing special about the way such functions arc called
and they don't increase the size of objects of their type.

Defin ing a function o f the same name and type as a virtual function from a
base class (such as Ci rcle: :draw_lin esO) so that the function from the derived
class is put into the vlbl instead of the version from the base is called Qverriding.
For example, Ci rcl e: :d raw_linesO overrides Shape: :d rawJinesO.

14 .3 BA SE AND DERIVED ClA SS ES

Why are we telling you about vtbls and memory layout? Do you need to
know about that to use object-oriented programming? No. However, many peo­
ple strongly prefer to know how things are implemented (we are among those),
and when people don't understand something, myths spring up. vVe have met
people who were terrified of vinual functions "because they were expensive."
Why? How expensive? Compared to what? Where would the cost matter? We
explain the implementation model for vinual functions so that you won't have
such fears. If you need a vinual function call (to select among alternatives at run
time) you can' t code the functionality to be any raster or to use less memory
using other language rea lures. You can see that ror yourself.

14.3.2 Deriving classes and defining virtual functions
\o\'e speciry that a class is to be a derived class by mentioning a base arter the class
name. For example:

struct Ci rcle : Shape {/ • ... -/);

By default, lhe members or a struct arc public (§9.3), and that will include public
members or a base. We could equivalently have said

class Circle : public Shape { public: /- ... -/ };

These twO declarations or Circle are completely equivalelll, but you can have
many long and rruitless discussions with people about which is belter. We arc or
the opinion lhat time can be spent more productively on other topics.

Beware or rorgetting public when you need it. For example:

class Ci rcle: Shape { public: r ... -/}; /I probably a mistake

111is would make Shape a private base or Circle, making Shape's public runc·
tions inaccess ible ror a Circle . That's unlikely to be what you meant. A good
compiler will wam about this likely error. There are uses ror private base classes,
but those are beyond the scope or this book.

A virtual runction must be declared virtual in its class declaration, but ir you
place the runction definition outside the class, the keyword virtual is neither re'
quired nor allowed out there. FOI" example:

struct Shape {
II ...

);

virtual void draw_linesO consl;
vi,tual void move();
II ...

'99

500 CHAPTER 14 • GRAPHI CS Cl ASS DESIGN

virtual void Shape: :draw_linesO const {/- . .. -'}
vo id Shape : : moveO { / - .. . -'}

14.3.3 Overriding

1/ error
/10K

When YOll want to oven-ide a virtual function , you must lise exactly the same
name and type as in the base class. 1-or example:

struct Circle: Shape {

);

void drawJines(i nl) const;
void drawlinesO const;
void drawJines();
II . ..

/I probably a mistake (int argument?)
/I probably a mistake (misspelled name?)
/I probably a mistilke (const missingrJ

Here, the compiler will sec Llwcc functions that arc independent of Shape::
draw_linesO (because they have a different name or a different type) and won't
override it. A good compiler will warn about thcse likely mistakes. TIlerc is noth­
ing you can or must say in an overriding function to ensure that it actually over­
rides a base class function.

The drawJinesO example is reaJ and can therefore be hard to follow ill all
details, so here is a purely technical example that illustrates overriding:

slrucl 8 {

);

virlual void fO consl { coul« "8 :: f H;}

void gO const { coul « "8::g "; }

struct 0 : 8 {

/I not virtual

void fO canst { cout« "O: :f H; }

void gO {coul « "O::g "; }
II overrides B::f

) ;

struct DO : 0 {
voidf() {cout«"OO::f "; } II doesn't override D::f (not const)

void gO canst { cout« "OO::g "; }
);

Here, we have a small class hierarchy with (just) one virtual function fO. \Ve can
try using it. In particular, we can try to caJl fO and the non-virtual gO, which is a
function that doesn't know what type of object it had to deal with exceptlhat it is
a B (or something derived from B):

14 .3 BASE AND DERIVED CLASSES

void call(const B& b)

{

)

/I a D is J kind of e, so ca lin can accept a D
/I a DO is a kind of 0 and a 0 is a kind of S, so call{) can accept a DO

b.fO;
b .gO;

int ma inO
{

)

B b ;
Dd;
DOdd;

call(b);
call(d);
call(dd);

b.f() ;
b.g() ;

d .fO;
d .gO;

dd .fO;
dd .gO;

You'll get

B:: f B: :g D : : f B: :g O: : f B: :g B:: f B::g D:: f O::g DO : : f DD ::g

When you understand why, you'll know the mechanics of inheri tance and virtual
fu nctions.

14.3.4 Access
C++ provides a simple model o f access to members of a class. A member of a
class can be

P,ilXlle: If a member is private, its name can be used only by members of
the class in whicll it is declared.

501

502 C HAPTER 14 • GRAPHICS ClASS DESIGN

Protected: If a member is protected , its name can be used only by mem­
bers of the class in which it is declared and members of classes derived
from that.

Public: If a member is public, it!! name can be used by all functions.

Or graphically:

AU users

IDerived class's members I

IC lass's own members I

.... j " ,

• ••• "1

l Private members I

A base can also be private, protected , or public:

If a base of class 0 is private, its public and protected member names
can be used only by members of D.

If a base of class 0 is protected, its public and protected member names
can be used only by members or O and members of classes derived from O.

If a base is public, its name can be used by all functions.

111csc definitions ignore the concept of <;fricnd " and a few minor details, which
arc beyond the scope of this book. If you want to become a language lawyer you
need to study Stroustrup, 1k Design alld £Wlu/ion qfC++ and Tltt C++ Program­
millg Lallguau, and the 2003 ISO C++ standard. \ <\Te don 't recommend becoming
a language lawyer (someone knowing every liule detail of the language defini·
tion); being a progrnmmcT (a software developer, an engineer, a user, whatever
you prefer to call someone who actually uses the language) is much more fun
and typically much morc useful to socicty.

14.3.5 Pure virtual fun ctions
An abstract class is a class that can be used only as a base class. We use abstract
classes to represent concepts that are abstract ; that is, we use abstract classes for
concepts that are generalizations of colllmon characteristics of related emities.
lllick books of philosophy have bcen writtcn trying to precisely define flbstmc/ COII­

at)! (or abj!rac/ioll or genera/iullio1l or ...). Howevcr you dcfmc it philosophically, the
notion of an abstract concept is immensely useful. E.xamples are "animal" (as op-

14 .3 BAS E AN D D ERI VED CLAS SES

posed to any particular kind of animal), "device driver" (as oppose to the d river
for any particular kind of device), and "publication" (as opposed to any particular
kind of book or magazine). In programs, abstract classes usually define interfaces
to groups of related classes (class hiemrcliieJ).

In § 14.2. 1, we saw how to make a class abstract by declaring its constmctor
pro ted ed. There is another - and much more common - way of making a class
abstract: state that one or more of its virtual functions needs to be overridden in
a derived class. For example:

class B { /I abstract base class
public:

);

virtua l void fO =0 ; /I pure virtua l function
virtual void gO =0;

B h i II error: B is abstract

"The curious =0 notation says that the virtual functions B: :fO and B: :gO are
"pure"; that is, they must be ovelTiddcn in some derived class. Since B has pure
virtual functions, we cannot create an object of class B. Overriding the pure vir­
tual functions solves this "problem":

class 01 : public B {
public:

) ;

void fOi
void gO;

01 dl ; /10K

Note that unlcss all pure virtual fu nctions arc overridden, the resulting class is
still abstract:

class 02 : public B {
publi c:

);

void ro;
/I no gO

D2 d2; /I error: 0 2 is (sti II) abstract

503

C HAPTER 14 • GRA PHI CS C LASS DESIGN

class D3 : public 0 2 {
pu bli c:

void gO;
);

0 3 d3; /I ok

Classes with pure virtual functions tend to be pure interfaces; that is, they tend to
have no data members (the data members will be in the derived classes) and con'
sequently have no constructors (if there arc no data members to initialize, a con'
structor is unlikely to be needed),

14.4 Benefits of object-oriented programming
'Nhen we say that Ci rcle is derived from Shape, or that Ci rcle is a kind of Shape,
we do so to obtain (either or bOlh)

II/terface il/hen'lallCe: A function expecting a Shape (usually as a reference
argument) can accept a Circle (and can usc a Ci rcle through the interface
provided by Shape) ,

Implemenlatio1l il/hen'lallce: When we define Circle and its member fun c­
tions , we can take advantage of the facilities (SUcil as data and member
functions) offered by Shape,

A design that docs not provide interface inheritance (that is, a design for which
an object of a derived class crumot be used as an object of its public base class) is
a poor and error'prone design. For example, we might define a class called
Neve r_do_lhis with Shape as its public base. 111en we could override Shape: :
drawO with a function that didn't draw the shape, but instead moved its center
100 pixels to the left. That "desib'll" is fata lly flawed because even though
Neve r_do_lhis provides the interface of a Shape, its implementation does not
maintain the semantics (meaning, behavior) required of a Shape. Never do that!

Interface inheritance gets its name because its benefits come from code using
the interface provided by a base class ("an interface"; here, Shape) and not hav,
ing to know about the derived classes ("implementations" ; here, classes derived
from Shape),

Implementation inheritance gets its name because the benefits come from the
simplification in the implementation of derived classes (e,g" Circle) provided by
the facilities offered by the base class (here, Shape),

Note that our graphics design critically depends on interface inheritance: the
"graphics engine" calls Shape: :drawO which in tum calls Shape 's virtual function
draw_linesO to do the real work of putting images on t.he screen. Neither the
"graphics engine" nor indeed class Shape kllOWS whicll kinds of shapes exist. In
particular, our "graphics engine" (FLTK plus the operating system's graphics facil-

C H APTER 14 DRill

ities) was written and compiled years before our graphics classes! We juSt define
particular shapes and attachO them to Windows as Shal>es (Window::attachO
takes a Shape& argument ; see §E.3). Furthennore, since class Shape doesn't know
abOLn your graphics classes, you don't need to recompile Shape each time you de·
fine a new graphics interface class.

In other words, we can add new Shapes to a program without modifying
existing code. This is a holy grail of software design/development/maintenance:
extension of a system without mod ifying it. There are limits to which changes we
can make without modifying existing classes (e.g., Shape offers a rather limited
range of services), and the technique doesn't apply well to all programming prob·
lems (sec, for example, C hapters 17- 19 where we define vector; inheritance has
little to o fTer for that). However, interface inheritance is one of the most powerful
techniqucs for designing and implementing systems that are robust in the face of
change.

Similarly, implementation inheritance has much to offcr, but it is no panacea.
By placing useful services in Shape, we save ourselvcs the bother of repeating
work over and over again ill the derived elasses. That can be most significant in
rea1·world code. However, it comes at the cost that any change to the interface of
Shape or any change to the layout of the data members of Shape necess itates a
recompilation of all derived classes and their users. For a widely used library,
such .. ecompilation can be simply infeasible. Naturally, there arc ways of gai.ning
most of the benefi ts while avoid ing most of the problems ; sec § 14.3.5 .

..(Drill

Unfo rtunately, we can't constmct a drill fo r the understanding of genera1 design
principles, so here we focus on the language features that support object·oriented
programming.

1. Define a class 81 with a virtual function vfO and a non-virtua1 function
fO. Define both of these functions within class 81 . lmplemem each func·
tion to output its name (e.g. "81::vfO"). Make the runctions public.
Make a 81 object and caU each function.

2. Derive a class 01 rrom 81 and override vfO. Make a 01 object and call
vfO and fO for it.

3. Defi ne a reference to 81 (a 81&) and initia1ize that to the 01 object you
just defined. Call vf() and f() ror that reference.

4. Now define a function called f() for 01 and repeat 1-3. Explain the results.
5. Add a pure virtuaJ runction called pvfO to 81 and try to repeat 1-4. Ex­

plain the result.
6. Define a class 02 derived rrom 01 and override pvfO in 02. Make an ob·

ject or class 02 and invoke fO, vfO, and pvfO for it.

505

CHAPTER 14 • GRAPHICS CLASS DE SIG N

7. Define a class 82 with a pure virtual function pvf() . Define a class 021
with a string data member and a member function that overrides pvfO ;
021: : pvfO should output the value of the string. Define a class 022 that
is just like 021 except that its data member is an int. Define a function fO
that takes a 82& argument and calls pvfO for its argumem. Call fO with a
021 and a 022 .

Review

1. What is an application domain?
2. 'What are ideals for naming?
3. What C.'lll we name?
4. What services does a Shape offer?
5. How docs an abstract class diITer from a class that is not abstract ?
6. How can you make a class abstract?
7. vVhat is comrolled by access comrol?
8. Wlmt good can it do to make a data member private?
9. What is a virtual function and how does it differ from a non-virtual

function?
10. What is a base class?
11 . What makes a class derived?
12. What do we mean by object layout?
13. \,yhat can you do to make a class easier to lest?
14. What is an inheritance diagram?
IS. What is the difference between a protected member and a private one?
16. W hatlllembers of a class can be accessed from a class derived from it?
17. How docs a pure virtual function d iffer from other vinual functions?
18. Why would you make a member function virtual?
19. Why would you make a virtual member function pure?
20. What docs overriding mean?
2 1. How docs interface inheritance differ from implementation inheritance?
22. What is object-oriented programming?

Terms

abstract class
access comrol
base class
derived class
dispatch
encapsulation
inheritance

mutability
object layoUl
object·oriented
polymorphism
private
protected
public

pure virtual function
subclass
superdass
virtual function
virtual function call
virtual function table

CHAPTER 14 EXERCISES

Exercises
1. Define two c1asscs Smiley and Frowny, which are both derived from class

Ci rcle and have two eyes and a mouth. Next, derive c1asscs from Smiley
and Frowny, which add an appropriate hat to each.

2. Try to copy a Shape. What happens?
3. Define an abstract class and try to define an object of that lype. What

happens?
4. Define a class Immobile_Circle , which is just like Circle blll can't be

moved.
5. Define a Striped_rectangle where instead of fill , the rectangle is "fill ed"

by drawing one·pixcl·wide horizontal lines across the inside of the reClan'
gle (say, draw every second line like that). You may have to play with the
width of lines and the line spacing to get a pattern you like.

6. Define a Striped_ci rcle using the technique from Striped_rectangle.
7. Define a Striped_closed_polyline usi.ng the technique from Striped_rec­

tangle (this requires some algorithmic inventiveness).
8. Define a class Octagon to be a regular octagon. Write a tcst that exer'

cises all of its functions (as defmed by you or inherited from Shape).
9. Define a Group to be a container of Shapes with suitable operations ap·

plied to the various members of the Group. Him: Vector_ref. Use a
Group to define a checkers (draughts) board where pieces can be moved
under program control.

10. Dcfme a class Pseudo_window that looks as much like a Window as you
can make it without heroic efforts. It should have rounded corners, a
label, and comrol icons. Maybe you could add some fake "coments,"
such as an image. It need not actually do anything. It is acceptable (and
indeed recomm ended) to have it appear within a Simple_window.

II. Define a Binary_tree class derived from Shape. Give the number of lev·
els as a parameter (levels==O means no nodes, leve ls==l means one
node, levels==2 means one top node with two sub·nodes, levels==]
means one top node with two sub·nodes each with tvvo sub·nodes, etc.).
Let a node be represented by a small circle. Connect the nodes by lines
(as is conventional). P.S. In computer science, trees grow downward from
a top node (amusingly, but logically, often c.L1led the root).

12. Modify Binary_tree to draw iLS nodes using a vinuaJ function. Then , de·
rive a new class from Binary_tree that overrides Lllat vinual function to

lise a different representation for a node (e.g., a uiangle).
13. Modify Binary_tree to take a paranleter (or parameters) to indicate what

kind or line to use to COlUlect the nodes (e.g. , an arrow pointing dO\vn or
a red arrow pointing up). Note how this exercise and the last use twO al·
ternative ways of making a class hierarchy more nexible and useful.

51"

S08 C H APTER 14 • GRAPHI CS CLA SS DESIGN

14. Add an operation to Binary_tree that adds text to a node. You may have
to modify the design of Binary_lree to implement this elegantly. Choose
a way to identify a node; for example, you might give a string "Irrlr" for
navigating left, right, right, left, and right down a binary tree (the root
node would match both an initial I and an initial r).

15. Most class hierarchies have nothing to do with graphics. Define a class
Iterator with a pure virtual fUllction Rexi O that returns a double . Now
derive Vector_iterator and lisUterator from Iterator so that next() for a
Vector_iterator yields a pointer to the next element of a vector<double>
and lisUterator does the same fo r a list<double>. You initializc a Vec­
tor_iterator with a vector<double> and the first call of nexiO yields a
poillter to its first element, if any. If there is no next clement, retum O.
Test this by using a function void print(lterator&) to print the clements of
a vector<double> and a list<double>.

16. Defme a class Controller with four virtual functions onO, offO, seUevel(int),
and showO. Derive at least t\vo classes from Controller. One should be a
simple tCSt class where showO prints out whether the class is set to on or off
and what is the current level. The second derived class should somehow
control the line color of a Shape; the exact meaning of "level" is up to you.
Try to fmd a third "tiling" to control with such a Controller class.

17. The exceptions defined in the C++ standard library, such as exception,
runtime_exception , and oULoCrange (§5.6.3), arc organized into a class
hierarchy (with a useful virtual function whatO retuming a string suppos·
edly explaining what went wrong). Search your information sources for
the C++ standard exception class hierarchy and draw a class hierarchy
diagram of it.

Postscript
The ideal for software is not to build a single program 11m does everything. The
ideal is to build a lot of classes that closely reflect our concepts and that work to·
gether to allow us to build our applications elegantly, with minimal effort (rela·
tive to tile complexity of ollr task), with adequate perfomla.nce, and with
confidence that the results pnxiuced arc correct. Such programs are comprehen·
sible and maintainable in a way that code that was simply thrown together to get
a particular job done as quickly as possible is not. Classes, encapsulation (as sup·
ported by private and protected), inheritance (as supported by class derivation),
and run-timc polymorphism (as supported by virtual functions) are among Ollr
most powerful tools for structuring systems.

' ct..

,. 15

Graphing Functions
and Data

"The best is the enemy of the good."

-Voltaire

I f you are in any empirical field, you need to graph data. If you

are in any field that uses math to model phenomena, you need

1O graph functions. This chapter discusses basic mechanisms for

such graphics. As usual, we show the usc of the mcdlanisms and

also discuss their design. The key examples arc graphing a func­

tion of one argument and displaying values read from a fLie.

509

510 CHAPTE R 15 • GRAPHING FUNCTIONS AND DATA

15.1 Introductio n

15.2 Graphing simple functions

15.3 Function
15.3.1 Default a rgume nts
15.3.2 More elamples

15.4 Axis

15.1 Introduction

15.5 Approximation

15.6 Graphing data
15.6.1 Read ingafile
\5.6.2 C("nerallayoul
15.6.3 Scaling dala
15.6.4 Building the graph

Compared to the professional software systems you' ll usc if slich visualization be­
comes your main occu pation, the facilities presented here are primitive. Our pri­
mary aim is nOl elegance of ompu t, but understanding of how such graphical
output can be produced and of the programming techniques used. You' ll find the
design techniques, programming techniques, and basic mathematical tools pre­
sented here of longer-term value than the graphics facilitics prescntcd. 111crcforc,
plcase don 't skim too quickly over the codc fragments - they contain marc of in­
terest than just the shapes they computc and draw.

15.2 Graphing simple functions
Let's start. Let's look at examples of what we can draw and what codc it takes to

draw them. In particular, look at the graphics interface classes uscd. Here, firs t,
are a parabola, a horizontal line, and a sloping line:

IS .2 GRAPHI NG SIMPL E FUNCTIONS

Actually, sincc tltis chaptcr is about graphing functions, that horizontal linc isn't
just a horizontallinc ; it is what wc gct from graphing thc function

double one(double) { return 1; }

TIlis is about thc simplest function we could think of: il is a function of onc argu­
ment that for evcry argument returns 1. Since we don 't need that argumcnt to
compute thc result, we need not name it. For cvery x passed as an argument to
oneO we get the y value 1; that is, tile line is defined by (x,y)==(x,l) for all x.

Like all beginning mathematical arguments, this is somewhat trivial and
pedantic, so let's look at a slightly more complicated function:

double slope(double xl { return xI2 ;)

lbis is the function tlml generated the sloping line. For every x, we gel the y value
xI2. In otller words, (x,yl==b:,xI2). The point where tile two lines cross is (2,1).

Now we can try something marc interesting, the square function that seems
to reappear regularly in this book:

double square(double xl { return x·x; }

If you remember your high school geometry (and even if you don't), this defines
a parabola with its lowest point at (0,0) and symmetric on the) ' axis_ In other
words. (x,y)==(x,x·xl . So, the lowest point where the parabola touches the slop­
ing line is (0,0).

Here is the code that drew tllOse three functions:

const int xmax = 600;
const int ymax = 400;

II window size

const int x_o rig = xmaxl2; /I position of (0,0) is center of window
const int y_orig = ymaxl2;
canst Point o rig(x_o rig,y_orig);

canst int r_min = - 10;
ca nst int r_max = 11 ;

/I range [- 10:11)

canst int n_points = 400; /I number of points used in range

canst int x_scale = 30; /I scaling factors
canst int y_sca le = 30;

Simple_window win (Point(l00, 100),xmax,ymax , "Function graphing");

511

512 C H APTER 15 • G RAPHING FUNCTION S AND DATA

Function s(one,,_min , r_max,orig,R_poinls ,x_scale,y_scale);
Fu net ion s2(slope, r _m in, r _max, orig. " _poi nts,x_scale, y _seal e) ;
Fu net ion s3(sq uare,r _mi n, r _max,orig, " _poi nts,x_scale, y _scale);

win .attach(s);
win .attach(s2);

win .attach(sJ);
win .waiCfor _buttonO;

First, we define a bunch of constants so that we won't have to liuer our code with
"magic numbers," Then, we make a window, define the funcoons, attach thelll to
the window, and finall y give contral lO the graphics system to do the actual drawing.

All of this is repetition and "boilerplate" except for the definitions of the three
Functions, 5, 52, and 53:

Function s(one,,_min,,_max,orig,"_points,x_scale,y_scale);
Fu n cl ion 52(s10 pe, r _mi n, r _max,orig, n_poi nts,x_scale, y _scale) ;
Fu n cl ion s3(sq uare, r _mi n, r _max,orig, n_points,x_sca Ie, y _scale) ;

Each Function specifics how its first argument (a function of one double arh'1.l ·
mcnt returning a double) is to be drawn in a window. The second and third ar·
guments give the range of x (the argument to the function to be graphed). TIle
fourth argument (here, orig) tells the Function where the origin (0,0) is to be 10·
cated within the window.

If you think that the many arguments arc confusing, we agree. Our ideal is to
have as few arguments as possible, because having many arguments confuses
and provides opportunities for bugs. However, here we need them. We'll explain
the last three arguments later (§15.3). First, however, let 's label our graphs:

15.2 G RAPHING SIMPLE FUNCTIONS

We always try to make our graphs self-explanatory. People don't always read the
surrounding text and good diagrams get moved around, so that the surrounding
text is "Iose" Anything we put in as part of the picture itself is most likely to be
noticed and - if reasonable - most likely to help the reader understand what we
arc displaying. Here, we simply put a label on each graph. The code for "label­
ing" was three Text objects (sec §13.11):

Texl ts(Point(l00,y_orig-40),lone");
Text ts2(Point(I00,y_orig+y_origl2-20), 1IxJ211) ;
Text tsJ(Point(x_orig- l00,20), " .11 • .11");

win.seUabel("Function graphing: label functions ");
win. wait_fa r _ bu llanO;

From now on in this chapter, we'll omit the repetitive code for attaching shapes to
the window, labeling the window, and waiting for the user to hit "Next."

However, that picture is still not acceptable. We noticed that xJ2 touched .11 • .11

at (0,0) and that one crosses xJ2 at (2,1) but that 's far too subtle; we need axes to
give the reader an unsubtle clue about what's going on:

111e code for the axcs was twO Axis objects (§ 15.4):

const int xlength = xmax-40; /I make the axis a bit smaller than the window
const int ylenglh = ymax-40;

Axis x(Axis : :x,Point(20,y_orig), xlength , xlengthlx_scaJe, "one notch == 1");
Axis y(Axis: :y,Point(x_orig, ylength+20),

ylength, ylengthly_scale, "one notch == 1 ");

513

514 CHAPTER 15 • GRAPHING FUNCTIONS AND DATA

Using xlength/x_scale as the number of notches ensures that a notch represents
the values 1, 2,3, etc. Having the axes cross at (0,0) is conventional. If you preFer
them along the len and boltom edges as is conventional for the display of dam
(sec §15.6), you can of course do that instead. Another way of distinguishing the
a.xes from the data is to usc color:

x.sel_co lor(Color :: red) ;
y.sel_color(Color:: red);

And we gel

111is is acceptable, though for aesthetic reasons, we'd probably want a bit of
empty space at the lOp to match what we have a l the bouom and sides. It might
also be a better idea LO pllsh the label fo r the x axis further LO the left. ''''e left
mesc blemishes, so that we could mention them - there arc always more aes·
thelie details that we can work on. One part of a pl'Ogrammcr's art is to know
when to stop and use the time saved on something better (such as lean ting new
techniqucs or sleep). Remember: "The best is the enemy of the good."

15.3 Function
TIle Function graphics interface class is defined like this:

struct Functio n : Shape {
II the function parameters are not stored

15.3 FUNCTION

Function(Fct f, double fl , double f2, Point orig,
int count = 100, double xscale = 25, double yscaJe = 25);

) ;

Function is a Shape with a constructor that generates a lot of line segments and
stores them in its Shape part. TIlose line segments approximate the values of
function f. "n le values of f are calculated counl times for values equally spaced in
the Ifl: r2) range:

Function : :Fun ction(Fct f, double rl , double r2, Point xy,
int count, double xscale, double yscale)

/I graph fIx) for x in 1r1 :r2) using count line segments with (0,0) displayed at xy
/I x coordinates are scaled by xscale and y coordinates sca led by yscalc
{

)

if (r2-rl <=0) error(" bad graphing range");
if (count <=0) e rror(" non-positive graphing count ");
double dist = (r2 - rl)/count;
double r = rl;
for (int i = 0; kcount; ++i) {

add (Point(xy.x+inl (r"xscale),xy_y-int(f(r)·yscale»);
r += dis.;

)

TIle xscale and yscale values are used to scale the x coord inates and the y coordi­
nates , respectively. We typically need to scale our values to make them fit appro­
priately into a drawing area of a window.

Note that a Function object doesn't store the values given to its cons tructor,
so we can 't later ask a function where its origin is, redraw it with different scaling,
etc. All it does is 10 store points (in its Shape) and draw itself on the screen. If wc
wamed the flexibility to change a Function after constnlction, we would have to
store the values we wanted to dumge (see exercise 2).

15.3.1 Default arguments
Note the way the Function constructor arguments xscale and yscale were given
initializers in t.he declaration. Such initializers arc called de/lIltl (lrgumellts and their
values are used if a caller doesn't supply values. For example:

Function stone, r_min, r_max,orig, n_points, x_scale, y_scale) ;
Function s2(slope, r_min , r_max, orig, n_points, x_scale); /I no yscale
Function s3(square, r_min, ,_max, orig, n_points); /I no xscale, no yscale
Function s4(sqrt, orig, r_min, r_max); /I no count, no xscalc, no yscale

515

516 CHAPTER 15 • G RAPHING FUNC T IONS AND DATA

This is equivalent to

Function s(one, ,_min , ,_max, orig, "_points, x_scale, y_scale);
Function s2(slope, ,_min , ,_max,orig, " _points, x_scale, 25);
Function s3(square, ,_min , ,_max, orig, "_points, 25, 25) ;
Function s4(sqrt. orig, , _min , ' _max, 100, 25, 25) ;

Default arguments are used as an alternative to providing several overloaded
functions. Instead of defining one constructor with three default argu ments, we
could have defined four constnlClors:

struct Function : Shape (/I alternative, not using default arguments

);

Function(Fct f, double rl, double f2 , Point orig,
int count, double "scale, double yscale);

/1 default scale of y:
Function{Fct f, double rl , double r2, Point orig,

int caunt, double xscale);
/I default scale of x and y:
Function(Fct f, double rl , double r2, Point orig, int count) ;
/I default count and default sca le of x or y:
Function(Fct f, double rl , double r2, Point orig) ;

It would have been more work to define four constructors, and with the four­
constructor version, the nature of the default is hidden in the constructor defini ­
tions rather than being obvious from the declaration. Defa ult arguments arc
rrequently used for constructors but can be useful fo r all kinds of runelions. You
can only define derauh arguments ror trailing arguments. For example:

shu ct Function : Shape {
Funetion(Fct f, double rl, double r2, Point orig,

int count = 100, double xseale, double yscale); II error
) ;

lr an argu ment has a default argument, all subsequent arguments must also have
one:

slruet Function: Shape {
Funclion(Fct f, double rl, double r2, Point orig,

int count = 100, double xscale=25, double yscale=25);
);

Sometimes, picking good derault arguments is easy. Examples o r that arc the de­
rault for string (the empty string) and the default for vector (the empty vector).

15,3 FU NCTION

In other cases, such as Function , choosing a default is less easy; we found the
ones IVe used afcer a bit of c.'<perimemation and a failed attempt. Remember, you
don't have to provide default arguments, and if you find it hard to provide one,
just leave it to your user to specify that argument.

15.3.2 More examples
\-\'e added a couple more functions, a simple cosine (cos) from the standard Ii·
brary, and - just to show how we can compose functions - a sloping cosine that
follows the 'KI2 slope:

do uble slopin&-cos(double x) { return cos(x)+slope(x); }

Here is the result:

TIle code is

Function s4(cos,r_min, r_max,orig,400,20,20);
s4.scCcolo r(Colo r:: blue);
Function s5(sloping...cos, r_min, r_max,orig,400,20,20) ;
x. label.move(-160,O);
x. no tches.seccolor(Color :: dark_red);

In addition to adding those twO functions, we also moved the x a.xis's label and
Gust to show how) slightly changed the color of its notches,

Hnally, we graph a log, an exponential, a sine, and a cosine:

517

518 (HAPTER 15 • GRAPHING FUNCTIONS AND DATA

Fu netion f1 (log,O.OOOOO1 , f _max,orig,200,30 ,30);
Function f2(sin ,,_min,,_max,orig,200,30,30);
f2 .seCcolor(Color: : blue);
fu nclion £J(COS,, _mi n.r _max,orig,200 ,30,30);
Fu nclion f4(exp.' _min, r _max ,orig,200,30,30) i

II logO logarithm, base e
/I sinO

/I cosO
1/ expO exponential cAx

Since 10g(0) is undefined (mathematically, minus infinity), we started the range
for log al a small positive number. The result is

Rather than labeling those functions we used color.
Standard mathematical functions, such as cosO, sin O, and sqrlO, arc declared

in the standard library header <cmath>. Sec §24.8 and §B.9.2 for lists of the SUIIl ­

dard mathematical functions.

15.4 Axis
We usc A)(is wherever we present data (e.g., §15.6.4) because a graph without in­
formation that allows us to understand its scale is most often suspect. An Axis
consists of a line, a number of ';notches" on that line, and a text label. The Axis
constructor computes the a..xis line and (optionally) the lines used as notches on
that line :

s lruct Axis: Shape {
enum Orientation (x, y, z };
Axis(Orientation d , Point xy, int length ,

int number_oCnotches=O, siring label = "");

15.4 AXIS

);

void draw_linesO const;
void move(int dx, int dy);
void set_eolor(Color e);

Text label ;
Lines notches;

TIle label and notches objects are left public so that a user can manipulate them.
For example, you can give the notches a different color from the line and moveO
the labe l to a more convenient location. Axis is an example of an object com·
posed of several semi·independent objects .

The Axis constructor places the lines and adds the "notches" if num­
bef_oCnolehes is greater than zero :

Axis: :Axis(Orientation d, Point xy, inllength , int n, string lab)
: labeI(Point(O,O), lab)

if (length<O) error("bad axis length");
switch (dH
case Axis: :x:

Shape: :add(xy); /I axis line
Shape:: add(Point(xy.x+length, xy.y));

)

if (1<n) { /I add notches
int dist = length/n j
int x = xy.x+dist;
for (int i = 0; i<n; ++i) (

notch es. add(Point(x, xy. y), Point(x, xy. y-5» ;
x += dist;

)

)

label . move(length/3, xy. y+ 20);
break;

/I put the label under the line

ease Axis: :y:

(Shape : :add(xy); II a y axis goes up
Shape: : add(Point(xy.x,xy. y- Iength»;

if (1<n) (/I add notches
int dist = le ngth/n j
int y = xy.y-dist;

519

520

}

}

C HAPTER 15 • GRAPHING FUNCTIONS AND DATA

for (int i = 0; k ni ++i) {
notches.add(Point(xy.x,y), Point(xy.x+S,y»;
y -= disl ;

}

la be l. move(xy." - 1 0 ,.y. y-Ie ngth- l 0);
break;

/I put the label at top

caseAx is : :z:
e rror("z axis not impleme nted ");

}

Compared to much real-world code, tills constructor is very simple, but please have
a good look at it because it isn 't quite bivinl and it illustrates a few useful techniques.
Note how we store the line in the Shape pan of lhe Axis (using Shape: :addO) but
the notches arc stored in a separate object (notches). 11ml way, we c.:m manipulate
the line and the notches independently; for example, we c.m give each its own color.
Similarly, a label is placed in a fixed position relative to its axes, but since it is a 5Cp,,1.­

rate object, we can always move it to a better spot. "'~ lise the enullleration O rien­
tation to provide a convenient and non-error-prone nota.oon for lIsers.

Since an Ax is has three parts, we must supply functions for when we want to

manipu late an Axis as a whole. For example :

void Axis: :draw_linesO const
{

Shape: :d raw_Jines()i
notches. drawO i II the notches may have a different color from the line
label.drawOi II the label may have a different color from the line

}

We lise draw() rather than drawJ inesO for notches and label to be able to usc
the color stored in them. ' 11e line is stored in the Axis :: Shape itself and uses the
color stored there.

We can set the color of the line, the notches, and the label individually, but sty­
listically it's lIsually better not to, so we provide a fU llction to set all three to the same:

void Axis: :sc,-color(Colo r c)
{

}

Shape: :sel_color(c)i
notches .set_ colo r(c) ;
label. seC color(c);

15.5 APPROXIMATION

Similarly, Axis::move() moves all the parts of the Axis together:

void Axis: :move(i nt dx, int dy)
{

)

Shape : :move(dx,dy) ;
notches.move(dx,dy);
label.move(dx,dy);

15.5 Approximation
Here we give another small example of graphing a function: we "animaten the
calculation of an exponential function. The purpose is to help you get a feel for
mathematical functions (if you haven't already), to show the way graphics can be
used to illustrate computations, to give you some code to read, and finally to
warn about a conunon problem with computations.

One way of computing an exponential function is La compute the series

(" == 1 + x+ .rl2! + xll3! + .0/4! + ...

111e more terms of this sequence we calculate, Ihe more precise our value of ("
becomes; that is, the more tenns we calculate, Ihe more digits of the result will be
mat.hematically correct. What we will do is La compute this sequence and graph
the result after each ternl. The exclamation point here is used wilh the common
mat.hematieal meaning: fact.orial ; that. is, we graph these functions in order:

ex pO(x) = 0 /I no terms
ex p1 (x) = 1 /I one term
exp2(x) = 1+x /I two terms; pow(x, t)lfac(l)::.=x

ex p3(x) = 1+x+pow(x,2)1fac (2)
exp4(x) = 1+x+pow(x,2)1fac(2)+pow(x,3)/fac(3)
exp5(x) = 1+x+pow(x,2)1fac(2)+pow(x,3)1fac(3)+pow(x,4)/fac(4)

Each function is a slightly better approximation of tf than the one before it. Here,
pow(x,n) is tlle standard library function that returns x". There is no factoria l
function in the standard library, so we must define our own:

inl fac(inl n)
{

/I factorial(n); nl

inl r = 1;
while (n>1) {

r·=n;
--n;

521

522 CH A PTER 15 • GRAPHIN G FU NCTIONS AND DATA

return f ;

For an alternative implementation of facO, sec exercise 1. Civen facO, we can
compute the nth tern) of the senes like this:

double term (double X, int n) { return pow(x,n)/fac(n); } 1/ nth term of series

Given termO, calculating the exponential to the precision o f n terms is now casy:

double expe(double x, int Il)
(

double sum = 0;

/I sum of n terms for x

for (int i=O; i<n; ++i) sum+=lerm(x,i);
return sum;

How can we graph tills? From a programming point of view, the difficulty is that
ollr graphing class, Function, lakes a function of one argument and e"peO takes
tWO argumenLS. Given C++, as we have seen it so far, there is no rcally elegant
solution to this problem, so for now, we'll usc a simple and incJcgam solUlion
(but sec exercise 3). We can take the precision, n , out of the argument list and
make it a variable:

double expN(double x)
(

return expe(x,expN_numbe r_o Cte rms) ;
)

Now expN(x) calculates an exponential to the precision detcrmined by the valuc
o f expN_number_o Cterms. Let's usc that to produce some graphics. First, we'll
pmvide some axcs and the "real" exponential, the standard library expO, so that
wc can see how close our approximation using expNO is:

Fu nClion real_ exp(exp, r _m in, r _max,orig,200,x_scale, y _scale);
real_cxp.seccolor(Color:: blue) ;

111cn, we can loop through a series of approximations increasing the number of
terms of our approximation, 11 , each time amund:

15.5 APP ROXIM AT ION

fo r (int n = 0; n<50; ++n) {
ostringstream ss;

)

ss « "exp approxi mation; n==" « n ;
wi n. sel_label (ss.strO. c_slrO);
expN_number_oCterms = n;
/I gel next approxi malion:
Function e(expN,r_min,r_max,orig,200,x_scale ,y_scalel;
win .attach(e) ;
win .wait_for_buttonO;
win .detach(e);

ote the final detach(e) in that loop. The scope of the Fun ction object e is the
block of the for-statement. Each time we enter that block we get a new Function
called e and each time we exit the block that e goes away, to be replaced by the
next. 111e window must not remember the old e because it will have been de­
stroyed. l 1lUs, detach(e) ensures that the window docs not try to draw a de­
stroyed object.

-nlis first gives a window with just the axes and the "real" exponential ren­
dered in blue:

one MIItn .,,, 1

\o\Te sec that exp(O) is 1 so that our blue "real exponential" crosses lhe J axis in (0,1).
If you look carefully, you'll see L1mt we actually drew the zero term approxi­

mation (expO(x)==O) as a black line right on top of L1le x axis_ Hitting "Next," we

523

524 C HAPTER 15 • GRAPH ING FUNCTIONS AN D DATA

gel the approximation usingjusl one tcrm. NOle that we display the number of
terms lIsed in the approximation in the window label:

one nDtc:h". 1

That's the function exp1(x)==l , the approximation usingjusl one term of the se­
quence. 1t malcilcs the exponential perfectly at (0,1), but we can do better:

With twO terms (1+x), we gel the diagonal crossing the y axis at (0,1). With three
terms (1+x+pow(x,2)1fac(2»), we can see the beginning of a convergence:

15.5 APPROXIMATION

one noICh· ,

With ten terms we arc doing rather well. cspeciaJly for values larger than -3:

If we don't think tOO much about it, we might believe that we could get bener
and better approximations simply by using more and more temlS. However,
there are limits. and after 13 terms something strange starts to happen. Hrst, the
approximations start to get slightly worse, and at 18 terms vertical lines appear:

525

526 CHAPTER 15 • G RAPHING FUNCTIONS AND DATA

one i"IOICI'I'" 1

Remember, nanling-point aritrunctic is nOt pure math . Floating-point numbers
are simply as good an approximation LO real numbers as we can gel with a fixed
number of bits. What happened was that our calculation started LO produce val­
ues t.hat cou ldn 't be represented as doubles so that Olll' results started to diverge
from the mathematically correct answers. For more information, sec Chapter 24.

'1us last picture is also a good illustration of the principle that "it looks OK-'
isn 't the same as "tested." Before giving a probrram to someone else to usc. first
test it beyond what at first seems reasonable. Unless you know belter, m iming a
program slightly longer or with slightly dilTerent data could lead to a real mess -
as in this casc.

15.6 Graphing data
Displaying data is a highly skilled and highly valucd craft. When done wcll, it
combines technical and artistic aspccts and can add signilicandy to our under­
standing of complcx phcnomena. However, that also makes graphing a huge area
that for the most part is unrelatcd to programmiJlg tcchniqucs. Here, wc' ll just
show a simple examplc of displaying data read rrom a lilc. The data shown rep­
resents the agc groups of Japanese people over almost a century. 111C data to lhe
right of the 2008 line is a projeClion:

15.6 GRAPHING DATA

. .. , , ' .f

age 15.J;4 ------------1-------_
.g~ G-U .----
.,e li5'

We' ll usc tltis example to discuss the progranulling problems involved in present­
ing sLich data:

Reading a file

5caJing dam to fit the window

Displaying the data

I ... ,bcling the graph

We will not go into artistic details. Basically, this is "graphs for gceks,'" not "graph,
ical art." C learly, you can do better artistically when you need to.

Given a set of data, we must consider how best to display it. To simplify, we
will only deal with data that is easy to display using two dimensions, but that 's a
huge part of the data most people deaJ ,vith. Note that bar graphs, pie chans, and
similar popular d isplays rcally are JUSt two·dimcnsional data displaycd in a fancy
way. "nlree-d imcnsional data can oflcn bc handled by producing a series of twO­
dimensionaJ images, by superimposing several two-dimensional graphs onto a
single window (as done in the '1apanese age" example), or by labeling individual
points with information. If we want to go beyond that, we'll have to write new
graphics classes or adopt another graphics library.

So, Ollr data is basically pairs of values, such as (year,number of children) . If
we have more data, sllch as (year,number of children, number of adults, number
of elderly) , we simply have to decide wltich pair of values - or pairs of values -
we ,vant to draw. In our example, we simply graphed (year,number of children),
(yea r, number of adults) , and (year,number of e lde rly).

111erc are many ways of looking at a set of (x,y) pairs. When considering
how to graph such a set it is important to consider whether one value is in some

527

528 C HAPTE R 15 • G RAPHI NG FUNCT IONS AND DATA

way a function of me Olher. For example, for a (year,steel production) pair it
would be quite reasonable to consider the steel production a function of the year
and display the data as a continuous line. Open_polyline (§ 13.6) is the obvious
choice for graphing such data. If y should not be seen as a function of x, for ex­
ample (gross domestic product per person,population of counlry), Marks
(§ 13. 1S) can be used to pial uncolillccted poims.

Now, back to our Japanese age distribution example.

15.6.1 Reading a file
The file of age distributions consists of lines like this:

(1960:30646)
(1970 : 24697)

(1980,23689)

~nlC first number after the colon is the percentage of children (age 0- 14) in the
population , lhe second is lhe percentage of adults (age 15-64), and the third is the
pcrccllwge of U1C elderly (age 65+). Our job is to read those. Note that the fOI1l1;u ,
ring o f the data is sliglllly irregular. As lISUal , we have to deal with such details.

"Ib simplify that task, we first define a type Distribution to hold a data item
and an input opcrator to read such data items:

struct Distribution {
int year, young, middle, old ;

);

istream& operator» (istream& is, Distribution& d)
/I assume formal: (year : young middle old)

{

char chl = 0;
char ch2 = 0;
char ch3 = 0;
Distribution dd ;

if (is » chl » dd .year
» ch2 » dd .young» dd .middle » dd .old
»ch3) {
if (chl! = '(' II ch2! =' : ' II chJ !=')') {

is. clear(ios_base : : failbit);
return is;

)

15. <> GRAPHING DATA

else
return is ;

d =ddi
return is ;

TIlis is a straightfonvard application of the ideas from Chapler 10. If tills code isn't
dear to you, please review tllat chapter. We didn't need to defme a Distribution
type and a » operator. However, it simplifies tile code compared to a bnlte-force
appl'Oadl of "juSt read tile numbers and graph tllem." Our usc of Distribution splits
tile cooe up into logical parts to help comprehension and debugging. Don't be shy
about introducing types ')USt to make the code dearer." We deftne classes LO make
the cooe cOlTcspond more directly to the way we tllink aboUl tile concepts in our
code. Doing so even for ';small" concepts that are used only very locally in our
code, such as a line of data representing the age distribution for a year, can be most
helpful.

Given Distribution, the read loop becomes

string fil e_name = "japanese-age-data_txt";
ifstream ifs(filc_name.c_slr(»;
if (! ifs) error("can'l open ", fil e_name);

1/ .

Distribution d ;
while (ifs>>d) (

}

if (d.year<base_year II end_year<d.year)
e rror(" yea r out of range");

if (d.young+d.middle+d.old != 100)
c rror(" pe rcentages don't add up ") ;

1/ ...

TIlat is. we try to open tile me japanese-age-dafa.txt and exit the program if we
don't find that file. h is often a good idea 1I0t to "hardwire" a file name into the
source code the way we did here, but we consider tills program an example of a
small "one-orr effort, so we don 't burden the cade with facilities that arc more
appropriate for long-lived applications. On the other hand, we did pul japanese­
age-data.lxt into a named string variable so the program is easy to modify if we
want to usc it - or some of its code - for something else.

The read loop checks that tile year read is in the expected range and tllat the
percentages add up to 100. That's a basic sanity check for the data. Since »
checks the format of each individual data item, we didn't bother with further
checks in the main loop.

529

530 CHAPTER 15 • GRAPH ING FUNCTIO NS AND DATA

15.6.2 General layout
So what do we want to appear on the screen? You can sec our answer at the be­
ginning of §15.6. The data seems to ask for three Open_polylines - one for each
age group. These graphs need to be labeled, and we decided lO write a "captionn

for each line at the left-hand side of the window. In UllS case, lhat seemed clearer
than the common alternative : to place the label somewhere along the line itself.
In addition, we usc color to distinguish the graphs and associate their labels.

We wam to label the x axis with the years. The vertica1line through the year
2008 indicates where the graph goes from hard data to projected data.

We decided to just use the window's label as the citJe for our graph.
Getting graphing code both correct and good-looking can be surprisingly

tricky. The main reason is that we have to do a 10l o r fiddly calculations or sizes
and offsets. To simpliry that, we start by defining a set or symbolic constants that
defines the way we use our screen space:

ca nst int xmax = 600; II window size
ca nst int ymax = 400;

canst int xoUset = 100; /I distance (rom left·hand side of window 10 y axis
canst int yoUset = 60 ; /I distance from bottom of window 10 x axis

canst int xspace = 40; /I space beyond axis
ca nst int yspace = 40;

canst int xlength = xmax-xoffset-xspace;
ca nst int ylength = ymax- yoffset- yspace;

II length of axes

Basically this defines a rectangular space (the window) with another rectangle
(defmed by the axes) within it:

yspace

ymax yle ngth

xoffset xspace

xlenglh

yoffset

15.6 GRAPHI NG DATA

We find that without sllch a "schematic view" of where things arc in our window
and the symbolic constilllts lhat define it, we get lost and become frustrated when
our ou tput doesn't reflect our wishes.

15.6.3 Scaling data
Next we need to define how to fit our data into that space. We do that by scaling
the data so that it fits into the space defined by the axes. To do that we need the
scaling factors that are the ratio between the data range and the axis range:

consl inl base_year = 1960;
consl inl end_year = 2D40;

consl double xscale = double(xlenglh)/(end_year-base_year) ;
consl double yscale = double(ylength)/l00;

We want our scaling factors (xscale and yscale) to be floating-point numbers - or
our calculations could be subject to serious rounding en·ors. To avoid integer di­
vision , we convert our lengths to double before dividing (§4.3.3l .

\Ve call now place a data point on the x axis by subtracting its base value
(1960), scaling with xscale , and adding the xoffset. A J value is dealt with simi­
larly. We find that we can never remember to do that quite right when we try to
do lhat repeatedly. It may be a trivial calculation, but it is fidd ly and verbose. 1'0
simplify the code illld minimize that chance of error (and minimize frustrating de·
bugging), we define a little class to do the calculation fo r us:

class Sca le { II data value to coordi n(1 te conversion
int cbase;
inl "base;
double scale;

II coordinate base
1/ base of values

public:

);

Scale{int b, int vb, double s) :cbase(b), vbase(vb), scale(s) {}
int operator()(inl v) consl { return cbase + (v- vbase)·scale;)

We walll a class because the calculation depends on three constant values that we
wouldn't like to unnecessarily repeal. Given that, we Cilll define

Scale xs(xoffset,base_year,xscale);
Scale ys(ymax-yoffset,O,-yscale);

Note how we make the scaling factor for ys negative to reflect the fact that y co­
ordinates grow downward whereas we lIsually prefer higher values to be repre­
sented by higher points on a graph. Now we can use xs to convert a year to an x
coordinate. Similarly, we can lise xy to convert a percentage to a y coordinate.

531

C HAPTER 15 • GRAPHING FUNCTIONS AND DATA

15.6.4 Building the graph
Finally, we have all the prerequisites for writing the graphing code in a reason­
ably elegant way_ We start creating a \vindow and placing the axes:

Window win(Point (l00, l00),xmax,ymax, "Aging Japan");

Axis x(Axis: :x, Poi nt(xoffset,ymax-yoffset) , xle ngth,
(end_yea r-base_year)/10,
"year 1960 1970 1960 1990 "
"2000 2010 2020 2030 2040");

x.label.move(- l00,O) ;

Axis y(Axis : : y, Po int(xoffset,ymax- yoffsel), yle nglh, 10, "% of population");

Line curn: nCyear(Poi nl(xs(2008), ys(O», Point(xs(2008), ys(l 00»)) ;
cu rren Cyear. seCstyle(Li n e_style : : dash);

~nlC axes cross at Point(xoffsel,ymax-yoffset) representing (1960,0). Note how
the notches are placed to reflect the data. On the y axis, we have ten notches each
representing 10% of the population. On the x axis, each notch represents ten
years, and the exact number of notches is calculated from base_yea r and
end_year so that if we change that range, the axis would automatically be recal­
culated . 111is is one benefit of avoiding "magic constants" in the code. 111e label
on the x axis violates that rule: it is simply the result of fiddling with the label
str ing until the numbers were in the right position under the notches . To do bet·
ter, we would have to look to a sel of individual labels for individual "notches."

Please note the curious fOnllauing of the label string. We used tWO adjacent
su;ng literals:

"year
"2000

1960
2010

1970
2020

1980
2030

1990
2040"

"

Adjacent string literals arc concatenated by the compiler, so that's equivalent to

"yea r 1960 1970 1980 1990 2000 2010 2020 2030 2040"

11mt can be a useful "trick" for laying out long string literals to make Ollr code
more readable.

The curre nC line is a venicaJ line that separates hard data from projected
data. Note how xs and ys arc lIsed to place and scale the line just right.

Given the axes, we can proceed to the data . We define three Open_polylines
and ftll them in the read loop:

15 .6 GRAPHIN G DATA

O pen_polyline children;
O pen_po lyline adults;
O pen_po lyline aged ;

Distribution d ;
white (ifs>>d) {

if (d .year<base_yea r II end_year<d .year) e rro r("year o ul of range");
if (d .young+d.middle+d .old != 100)

error(" percenlages don 't add up");
inl x = "s(d .year):
chi Idre n .add(Poi nl(x, ys(d . you ng») :
ad ulls .add (Point (x, ys(d . middle»):
aged .add(Poin I(x, ys(d . old»);

"111e use of xs and xy makes scaling and placement of the dala trivial. "Little
classes," such as Scale , can be immensely important for simplifying notation and
avoiding unnecessary repetition - thereby increasing readability and increasing
the likelihood of correctness.

10 make the graphs more readable, we label each and apply color:

Text childre n_label(Poinl(20, children.point(O).y), "age 0·14");
children .seCcolor(Color:: red);
childre n_labe l.sel_color(Color : : red);

Text adullsJabel(Point(2(I,adulls.point(0).y), "age 15·64") ;
adulls.sel_color(Co lor: :blue):
adulls_label.seccolo r(Colo r: : blue);

Text agedJabel(Po int(20,aged .point(O).y), "age 65+");
aged .seCcolor(Color: : dark_green);
aged_labe l.sct_color(Color: :dark-&reen);

Finally, we need to auach the various Shapes to the Window and start the CUI
system (§14.2.3):

wi n .attach{ ch ild fen);
wi n .at tach(ad u lis);
wi n.attach(aged);

win. at tach (ch ildre n_labe l);
win .atlach (adu IIsJabel) ;
win .atlach(agedJabel);

533

534 (H APTER 15 • GRAP H ING FUNC TI ONS AND DATA

win.attach(x);
win.attach(y);
win.altach(currenl_year);

All the code could be placed inside main O, but we prefer to keep the helper classes
Scale and Oistribution outSide together Wilh Dislribution's input operalOr.

In case you have forgotten what we were producing, here is the output again :

_ A~nr: Jap .. " :. r,.. 'X

" .. , , , .

_Ie 15-54 r-------------t----__ _

.,e 6St

~,. .,71 ._ .,. r.. 21.1 N2I !Ill N4I

..; Drill

Function graphing drill:

I. Make an empl)' 600-by-600 Window labeled "Function graphs."
2. Note that you 'll need to make a project with the properties specified in

the "installation of FLTK" nOte from the course website.
3. You 'll need to move Graph.cpp and Window.cpp into your project.
4. Add an x axis and a y axis each of length 400, labeled " 1 = = 20 pixcls"

and with a notch every 20 pi.xcJs. The axes should cross at (300,300).
5. Make both axes red.

In the following, use a separale Shape for each function to be graphed:

CHAPTER 15 REVIEW

I. Graph the function double one(double x) (return 1;) in the range
[-10, 11] with (0,0) at (300,300) using 400 points and no scaling (in the
window).

2. C luUlge it to lise x scale 20 and y scale 20.
3. From now 0 11 use that range, scale, etc. for all graphs .
4. Add doubl e slope(double xl (return xflj) to the window.
5. Label the slope with a Text "x/2" at a point juSt above its boltom left end

point.
6. Add doubl e square(double x) (return x-x;) to the \-."indow.
7. Add a cosine to the window (don't write a new function).
8. Make the cosine blue.
9. Write a function sloping....cosO that adds a cosine to slopeO (as defmed

above) and add it to the window.

Class definition drill :

1. Defme a slruct Person containing a string name and an int age.
2. Define a variable of type Person , initialize it with "Goofy" and 63, and

Wlite it to the screen (CaUl).
3. Define an input (») and an output « <) operator for Pe rson; read in a

Perso n from the keyboard (cin) and write it out to the screen (co ut).
4. Give Pe rson a constructor initializing name and age .
5. Make the representation of Person private, and provide consl member

functions nameO and ageO to read the name and age.
6. Modify » and « to work with the redefined Person .
7. Modify the conSlmC('Qr to check that age is [0:150) and that name doesn't

contain any of the characters ; : " , [J • & " % S # @ ! . Use errorO in case
of error. Tesl.

8. Read a sequence of Persons from input (cin) imo a veclor<Person>;
write them out again to the screen (CaUl). Test with correct and erro·
neOllS input.

9. Change the representation of Person to have fi rst_name and second_name
instead of name. Make it an error not to supply both a first and a second
name. Be slire to fIX » and « also. Test.

Review
1. What is a function of one argumem?
2. When would you usc a (continuous) line to represent data? \!\Then do

you usc (discrete) points?
3. What function (mathematical fonnula) defines a slope?
4. What is a parabola?

535

CHAPTER 15 • GRAPHING FUNCTIONS AND DATA

5. How do you make an x axis? Ay axis?
6. What is a dcfault argumem and when would you use one?
7. How do you add functions together?
8. How do you color and label a graphed function?
9. What do we mean when we say that a series approximates a function?

10. Why would you sketch out the layout of a graph before wriling the code
to draw it?

11. How \ ... ·ould you scale your graph so that the input will fit ?
12. How would you scale the input without trial and error?
13. \lVhy would you fornlat your input rather than just having the file can·

tain "the numbers"?
14. How do you plan me generallayoUl of a graph? How do you rcflect mat

layout in your code?

Terms

approximation
default argument

function
scaling

screen layout

Exercises

1. Here is another way of defining a factorial function:

int fac(int n) { return n>11 n· fac(n-1) : 1;) II factorial n!

It will do fac(4) by first deciding that since 4>1 it must be 4-fac(3), and
mat's obviously 4-3-fac(2), which again is 4-r2-fac(1), which is 4-3*2·1 .
Try to see that it works. A function that c.111s itself is said to be rtffirsiue.
The alternative implementation in §15.5 is called I~eralive becilusc it iterates
through the values (using while). Verify that the recursive facO works and
gives the same results as the iterative facO by calculating the factorial of 0,
r, 2, 3, 4, up until and including 20. Which implementation of facO do you
prefer, and why?

2. Define a class fet that is JUSt like function except that it stores its con·
structor arguments. Provide fct with "reset" operations, so that you can
use it repeatedly for differem ranges, differem functions, etc.

3. Modify Fet from the previous exercise to take an extra argument to can·
trol precision or whatever. Make the type of that argument a template pa·
rameter for extra flexibility.

4. Graph a sine (sinO), a cosine (cosO), the sum of those sin(x)+cos(x), and
the sum of the squares of those sin(x)-sin (x)+cos(x)-cos(x) on a single
graph. Do provide axes and labels.

CHA PTER I S POSTSC RIPT

5. "Animate" (as in §IS.5) the series 1- 1/3+1/S- 1n +119- 1/11- It is
known as Lcibniz's series and converges to piJ4.

6. Design and implement a bar graph class. Its basic data is a veclor<double>
holding .N values, and eacl) value should be represented by a "bar" that is
as a rectangle where the heiglll rcprcsems the value.

7. Elaborate the bar graph class to allow labeling of the graph itself and its
individual bars. Allow the use of color.

8. Here is a coUection of heights in centimeters together with the number of
people in a group of that height (rounded to the nearest Scm): (170,7),
(175,9), (180,23), (185,17), (190,6), (195,1). How would you graph that
data? If you can't think of anything better, do a bar graph. Remember to
provide axes and labels. Place the data in a file and read it from that fIle.

9. Find another data set of heights (an inch is about 2.54cm) and graph
them with your program from the previous exercise. For example, search
the web for "height d istribution" or "height of people in the United
States" and ignore a lot of rubbish or ask your friends for their heights.
Ideally, you don't have to change anything for the new data set. Calcu·
lating the scaling from the data is a key idea. Reading in labels from
input also helps minimize changes when you want to reuse code.

10. What kind of data is unsuitable for a line graph or a bar graph? Find an
example and find a way of displaying it (e.g. , as a coUection of labeled
points).

11. Find the average maximum temperatures for each month of the year for
two or more locations (e.g., Cambridge, England , and Cambridge,
Massachusetts ; there arc lots of towns called "Cambridge") and graph
them together. As ever, be careful with axes, labels, usc of color, etc.

Postscript
Graphical representation of data is important. We simply understand a well­
crafted graph better than the set of numbers that was used to make it. Most peo­
ple, when they need to draw a graph, use someone else's code - a library. How
are such libraries constructed and what do you do if you don't have one handy?
'What arc the fundamental ideas underlying "an ordinary graphing tool"? Now
YOLi know: it isn't magic or brain surgery. We covered only two-dimensional
graphs; three·dimensional graphing is also very useful in science, engineering,
marketing, etc. and can be even more fun. Explore it someday!

537

.t ..
r 16

Graphical User Interfaces

"Computing is not about
computers any more.

It is about living."

- Nicholas Negroponte

A graphicaJ user interface (G U 1) allows a lIscr to interact

with a program by pressing buttons, selecting from menus,

cmering dam in various ways, and displaying textual and graphi­

cal entities on a screen. TImt's what we are used to when we in­

teract with our computers and with wcbsilCS. In this chapter, we

show the basics of how code can be written to define and control

a GUI application. In particular, we show how to write code that

imcracLS with emities on the screen using callbacks. Our GUI

facilities arc built "on lOp of' system facilities. The low-level

features and interfaces are presented in Appendix E, which uses

features and techniques prescmcd in Chapters 17 and 18. Here

we focus on usage.

539

16.1 User interface alte rnatives

16.2 The " NeJCtH button

16.3 A simple window
16.3.1 It c.aro llback function
16.3.2 It wail loop

16.4 Bulton and other Widgets
16.4.1 Widgets
16.4.2 Bul10ns
16.4.3 In_box and Out_box
16.4.4 Menus

CHAPTE R 16 • GRA PHI CAL USE R INTERFACES

16.5 An example

16.6 Control inversion

16.7 Adding a menu

16.8 De bugging GUt code

16.1 User interface alternatives
Every program has a uscr imcrface. A program rulming on a small gadget may
be limiLCd to input from a couple of push buttons and to a blinking light fo r out·
put. O ther computers are connected to the outside world only by a wire. Here,
we will consider the common case in which our program communicates with a
user who is watching a screen and using a keyboard and a pointing device (such
as a mouse). In this case, we as programmers have three main choices:

UM ronsok inplll and olltplll: TIus is a strong comender for tecluucallprofes·
sional work where the input is simple and textual, consisting of com·
mands and shan data items (such as me names and simple data values).
U the output is textual, we can display it on the screen or store it in files .
TIle C++ standard library iostreams (Chapters 10- 11) provide suitable
and convenient mechanisms for this. If graphic."1l output is needed , we
can use a graphics display library (as shown in C hapters 12- 15) with out
making dramatic changes to our programming style.

Use a gmphilll/ user inlerfaa (GUI) library: This is what we do when we
want our user interaction to be based on the metaphor of manipulating
objects on the screen (pointing, clicking, dragging and dropping, hover·
ing, etc.). Often (but not always), that style goes together with a high de·
gree of graphically displayed information. Anyone who has used a
modern computer knows examples where that is convenient. Anyone
who wants to match the "fccl" of Windows/Mac applications must use a
CUI style of interaction.

UJC a web browJer illler.foa : For that, we need to use a markup Qayout) lan­
guage, such as HTM L or XML, and usually a scripting language. Show­
ing how to do this is beyond the scope of this book, but it is often the
ideal for applications that require remote access. In that c.,se, the com-

16. 2 THE " NEXT w BUTTON

munication bel\\'een the program and the screen is again textual (using
streams of characters). A browser is a CUI application that translates
SOUle of that text into graphical elements and translates the Ulouse clicks,
etc. into textual data that can be sent back to the program.

"Ib many, the lise of C U I is the essence of modem progranuning, and sometimes
the interaction with objects on the screen is considered the central concem of pro­
gramming. We disagree: CUI is a fonn of 1/0 , and separation of the main logic
of an application from 110 is among our major idea1s for software. Wherever
possible, we prefer to have a clean interface between our main program logic and
the parts of the prOb'Tafll we usc to get input and produce output. Such a separa­
tion allows us to change the way a program is presented to a user, to POrt our
programs to usc different 1/0 systems, and - most importantly - to think about
the logic of tlle program and its interaction with users separately.

' 11at said , CUI is important and interesting from several perspectives . This
chapter explores both tlle ways we can integrate graphical elements into our appli­
c .. uions and how we can keep interface concem s from dominating our thinking.

16.2 The "Next" button
How did we provide that "Next" button that we used to drive the graphics exam·
pies in Chapters 12- 15? There, we do graphics in a window using a bmton. Ob­
viously, that is a simple form of CUI programming. In fact , it is so simple that
some would argue that it isn't "tme CUI." However, let's see how it was done be­
cause it will lead direClly into the kind of programming that everyone recognizes
as CU I progranuning.

Our code in Chapters 12- 15 is conventionally structured like this:

/I create objects ancVor manipulate objects, display them in Window win:
win .waiCfof _button Oi

/I create objects and/or manipulate objects, display them in Window win:
win .waiCfof_button () ;

/I create objecls ancVor manipulate objecls, display !hem in Window win :
win . wail_fo r _bu Iton();

Each time we reach wail_for_buttonO, we can look at our objects on the screen
until we hit the button to get the output from the next parl of the program. From
lhe point of view of program logic, this is no different front a program that writes
lines of output to a screen (a console window), Slopping now and then to receive
input from the keyboard . For example:

54'

542 CHAPTER 16 • GRAP HI CA L US ER INTERFACES

/I define variables ancVor compute values, produce output
d n » va r; II wait for input

/I define variables ,1n{Vor compute values, produce output
d n » var; /I wai t for input

/I define variables an{Vor compute values, produce output

d n »vari /I wait for input

From an implementation point of view, these twO kinds of programs arc quite dif­
ferent. \\Then your program executes cin» var, it stops and wailS for "the sys­
tem"' to bring back characters you typed. However, the system (the graphical
user interface system) thaI looks after your screen and tracks the mOllse as YOll
usc it works on a ramer difTerent model : the CUI keeps track of where the
mouse is and what the user is doing with the mouse (clicking, etc.). When your
program wants an action, it must

Tell the CU I what to look ror (e.g., "Someone clicked the 'Next' button")

Tell what is to be done when someone does that

Wait umilthe G U I detects an acLion that the program is inteTCSted in

VVhat is new and different here is that the G U I does not just reLUm to our pro·
gram; it is designed to respond in d iIfercm ways to different user actions, such as
clicki ng on one or many buttons, resizing windows, redrawing the window arter
it has been obscured by another, and popping up pop·up menus.

For Slarters, we just want to say, "Please wake me lip when someone clicks my
button"; that is, "Please continue executing my program when someone clicks the
mOllse button and the cursor is in the rectangular area where the image or my but·
ton is displayed." TIlis is j ust about the simplest action we could imagine. How­
ever, such an operation isn't provided by "t.he system" so we wrote o ne ourselves.
Seeing how that is done is the first step in understanding GUI programming.

16.3 A simple window
Basically, "the system" (which is a combination or a GUI library and the operat·
ing system) continuously tracks where the mOllse is and whether its buttons arc
pressed or not. A program can express interest in an area or the screen and ask
"the system" to call a runcLion when "something interesLing" happens. In this par·
ticular case, we ask the system to call one o r our runctions (a "callback runction")
when the mouse button is clicked "on our button." To do that we must

Define a button

Get it displayed

16.3 A SIMPLE W INDOW

Define a function for the G U I to call

1'C1l the CUI about that button and that function

Wait for the CUI to call our fu nction

Let'S do that. A button is part of a Window, so (in Simple_window.h) we define
ollr class Simple_window to contain a member nexC button :

struct Simple_window: Graph_lib :: Window (
Simplc_window(Point xy, int w, int h, const string& title)i

void wait_for_buttonO;
private :

/I simple event loop

);

Button next_button ;
bool bUlton_pushed;

I/the "Next" button
/I implementation detail

static void cb_next(Address, Address); /I ca llback for next_button
void nedO; /I action to be done when next_button is pressed

Obviously, Simple_window is derived from Graph_lib 's Window. All our win·
dows must be derived direcuy or indirectly from Graph_lib: :Window because it is
ute class utat (UlroUgh FLTK) COlillects our notion of a window witll the system's
window impleillemation. Fo r det..ws of Window's implememation, see §E.3.

Ou r button is initialized in Simple_window's constructor:

Simple_window: :Simple_window(Point xy, int w, int h, const slring& tille)
: Wi nd ow(xy, w, h, title),
nex,-buUon(Point(x_maxO-70,0), 70, 20, "Next ", cb_next),
buuon_pushed(false)

attach (nex,-butto n);

Unsurprisingly, Simple_window passes its location (xy), size (w,h), and tiue (title) on
to Graph_lib's Window to deal wiul. Next, u1e constructor initia1izcs nex'-button
with a location (Point(x_maxO-70,O); Utat's roughly the top right com er), a size
(70,20), a label ("Next"), and a "callb.:,ck" function (cb_next). The firs l four parame·
ters cxact.ly parallel whm we do for a Window: we place a rectangular shape on ute
screen and label it.

Finally, we attachO our next_button to our Simple_window; thaI is, we tell
the window that it must display u1e button in its position and make sure that ute
CUI system knows about it.

543

544 CHAPTER 16 • GRAPHI CAL US ER INTERFACES

The button_pushed member is a pretty obscure implementation detail; we
usc it to keep track of whether the button has been pushed since last we executed
next() .ln faCl, just about everything here is implementation details, and therefore
declared private. Ignoring the implementation details, we sec:

struct Simple_window: Graph_lib: :Window {
Simple_window(Point xy. int w, int h , const string& title);

waiC for_button O; II simple event loop

II ...
);

That is, a user can make a window and wait for its button to be pushed.

16.3.1 A callback function
"The funclion cb_nextO is the new and interesting bit here. 111is is the function
that we want the GUI system to call when it detects a click on ollr hulton. Since
we give the function to the GUI for the CUI to "call back to us," it 's commonly
called a calilxuk function. \lVc indicate ch_nextO 's intended use with the prefix cb_
for "callback." That's just to help us - no language or library requires that nam­
ing convention. Obviously, we chose the name cb_next because it is to be the
callback for our "Next" button. The definition of cb_next is an ugly piece of
"boilerplate."

Before showing that code, let's consider what is going on here:

I Our program I
I

" O"u-,-gc- ap"ru"'C'cs",c=u"'r"in'--,,-,:cfa-,-e"li:-b-,ary---"

,, ' Example of a layer

The operating system graphics/G UI facilities

I Device driver layer I
Our program runs on top of several "layers" of code. It uses Ollr graphics library
that we implement using the FLTK library, which is implememed using operat­
ing system facilities. In a system, there may be even more layers and sub-layers.
Somehow, a click detected by the mouse's device driver has to cause our function

16.3 A SIMPLE WINDOW

cb_nexiO to be called. We pass the address of cb_nexiO and the address of our
Simple_window down through the layers of software ; some code "down there"
t.hen calls cb_nexiO when lhe "Next" button is pressed.

TIle CUI system (and the operaling system) can be used by programs writ­
ten in a variety of languages , so it cannot impose some nice C++ style on all
users. In panicular, it docs not know about our Si mple_window class or our
Bulton class. In fact , it doesn't know about classes or member functions at all.
-nle type required for a callback function is chosen so that it is usable from the
lowest level of progranuning, including C and assembler. A callback function re­
turns no value and takes two addresses as its arguments. We can declare a C++
member function that obeys those rules like this :

slatic void cb_nexUAddress, Address); /I callback for next_bullon

-nle keyword slatic is there to make sure that cb_nexi O can be called as an m·di·
nary function, that is, not as a C++ member function invoked for a specific ob­
ject. Having the system call a proper C++ member function would have been
much nicer. However, t.he callback interface has to be usable from many lan­
guages, so this is what we get: a static member function. TIle Address arguments
specify that cb_nextO takes arguments that ru'e addresses of "something in mem­
ory." C++ references are unknown to most languages, so we can't usc those. The
compiler isn't told what the types of those "solllethings" arc. We arc close to the
hardware here and don't get the usual help from the language. "The system" will
invoke a callback function with the fi rst argument being the address of the CU I
emity ("-Widget") for which the callback was triggered. We won't usc that first ar­
gument, so we don't bother to name it. TIle second argument is the address of the
window containing that Widget; for cb_nexlO, that will be our Simple_window.
\Ve can use that infonnation like this :

void Simple_window: :cb_nexUAddress, Address pw)
/I cal! Simple_window:: nextO for the window located at pw
{

reference_to<Simple_window>(pw). nexl Oi
)

TIle reference_lo<Simple_window>(pw) tells the compiler that the address in
pw is to be cons idered the address of a Simple_window; that is, we can usc
reference_to<Simple_window>(pw) as a reference to a Simple_window. In
C hapters 17 ruld 18, we will return to the issue of addressing memory. In §E.l ,
we present the (by then, trivial) definition of refe rence_lo. For now, we are jLlst
glad that we final ly obtained a reference to oLir Simple_window so that we can
access OLi r data and functions exactly as we like and are Llsed to_ Finally, we get
out of tllis system-dependent code as quickly as possible by calling our member
function nextO.

545

546 CHAPTER 16 • G RAPHI CAl US ER INTERFA CES

We could have wriuen all the code we wanted to exeCLlle in cb_next(), bUl
we -like most good CUI programmers - prefer to keep messy low-level stuff
separate from our nice user code, so we handle a callback with two functions:

cb_nexlO simply maps the system conventions for a callback into a call
to an ordinary member function (nextO).

nedO does what we wam done (without having to know about the messy
conventions of callbacks).

The fundamental reason for using two functions here is the general principle that
"a function should perform a single logical action" : cb_nextO gets LIS out of U1C

low-level system-dependent part of the system and nC)ltO performs our desired
action. Whenever we wam a callback (from "the system") to one of our win·
dows, we define such a pair of functions; for example, see §16.5-7. Before going
further, let's repeat what is going on here:

We defme our Simple_window.

Simple_window's constructor registers its nexCbuUon with the CUI
system.

When we dick the image of nexCbutlon on the screen, the CUI calls
cb_nextO.

cb_nedO converts the low-level system infonnation into a call of our
member function nedO for our ".'indow.

nextO performs whatever action we want done in response to the button
dick.

TImt's a rather elaborate way of getting a function called. But remember that we
are dealing with the basic mechanism for communicating an action of a mouse
(or other hardware device) to a program. In particular:

There are typically many programs nmning.

The program is written long after the operating system.

The program is written long after the CUI librru),-

The program can be written in a language that is difTerent from that
used in the operating system.

The technique deals with all kinds of interactions (not just our little but·
ton push).

A window can have many buuons ; a program can have mrulY windows.

However, once we understand how nextO is called, we basically understand how
to deal with every action in a program with a CUI interface.

1 &.3 A SIMPLE WINDOW

16.3.2 A wait loop
So, in this - our simplest case - what do we want done by Simple_window's
next() each time the button is "pressed n ? Basically, we want an operation that
stops the execution of our program at some point, giving us a chance to see what
has been done so far. And, we want nextO to restart our program after that wail:

/I create some objects and/or m<lnipulatc some objects, display them in a window
win .wai'-for_button O; /I next() causes the program to proceed from here
/I create some objects andlor manipulate some objects

Actually, tlmt's easily done. Let's first define wai'-for_buuonO:

void Simplc_window: : wai'-for_buttonO
/I modified cven! loop:

}

II handle all events (as per default). quit when buttoo-pushcd becomes true
/I thi s allows gr<lphics without control inversion

while (! bullon_pushed) FI : :wait();
button_pushed = false;
FI : : redraw();

Like most CU I systems, FLTK provides a function that StOPS a program until
something happens. rn le FLTK version is called wailO. Actually, wailO takes care
of lots of things because our program gets woken up whenever anything that af­
fects it happens. For example, when nmning under Microsoft \oVindows, it is the
job of a program to redraw its window when it is being moved or becomes unob­
scured after having been hidden by another window. It is also the job of the
Window to handle resizing. The FI : :waitO handles all of these tasks in the default
manner. E.ach lime wailO has dealt with something, it retums to give our code a
chance lO do something.

So, when someone clicks our "Nextn bulton, wailO calls cb_nextO and re­
turns (to Ollr "wait loop"). To proceed in wail_for_buHonO, next O just has to set
the Boolean variable button_pushed to Irue. lllat's easy:

void Simple_window: :nexlO
{

bulton_pushed = Irue;

Of course we also need lO define button_pushed somewhere:

bool bullon_pushed = false ;

547

CHAPTER 16 • GRAP HICAL USER INTERFACES

After waiting, wait_for_buttonO needs to reset button_pushed and redrawO the
window to make su re that any changes we made can be seen on the screen. So
that 's what it did .

16.4 Button and other Widgets
We define a button like this:

strucl Button : Widget {
Bullon(Point xy, int w, int h, const string& label, Callback cb);
void atlach (Window&);

) ;

So, a Bulton is a Widget with a location (xy), a size (w,h), a text label (label), and
a callback (cb). Basically, anything that appears on a screen with an action (e.g. , a
callback) associated is a Widget .

16.4.1 Widgets
Yes, wiLlgel really is a technical tenn. A more descriptive, but less evocative, name for
a widget is a C01ltrol. We use widgeLS to defi ne fom1S of interaction \,~th a program
through a GU I (graphical user i.nterface). Our Widget illl'erface class looks like this:

class Widget {
/I Widget is a handlc to an FI_widgct - il is "not* an FI_widgct
II we try to keep our interface classes at arm's length from FLTK

public:
Widgel (Point xy, int w, int h , const string& 5, Callback cb);

virtual void move(inl dX, int dy);
virtual void hide();
virtual void showO;
virtual void attach (Window&) = 0;

Poinlloc;
int width ;
int height ;
string label;
Callback dojt;

protected:

) ;

Window· own;
FI_Widget O pw;

II cvery Widget belongs to a Window
II connection to the FLTK Widget

16.4 BUTTON AND OTH ER WIDGETS

A Widget has two imeresting functions that we can usc for Bullon (and also for
any other class derived from Widget, e.g., a Menu ; sec § 16.7):

hideO makes the Widget invisible.

showO makes the Widget visible again.

A Widget StaTU out visible.
Just like a Shaj>e, we can move{) a Widget in iu Window, and we must

atlachO it to a Window before it can be used. Note that we declared atlachO to
be a pure virtual function (§14.3.5): every class derived from Widget must define
what it mcans for it 10 be attached 10 a Window. In fact , it is in atlachO that the
system-level widgets arc created. TIle allach () function is called from Window as
part of its implementation of Window's own atlach() . llasically, connecting a win­
dow and a widget is a delicate little dance where each has 10 do its own j>art. TIle
result is that a window knows about iu widgets and that each widget knows
about its window:

Widget

Wmdow

~
~ Widget

Note thai a Window doesn' t know what kind of Widgets it deals with . As de­
scribed in § 14.4-S, we arc using basic object-oriented programming to ensure
that a Window can deal with every kind of Widget. Similarly, a Widget doesn't
know what kind of Window it deals with_

We have been slightly sloppy, leaving data members accessible. TIle own and
j>W members arc strictly for the implementation of derived classes so we have de­
clared them j>rotected.

The definitions of Widget and of the widgets we lise here (Button, Menu ,
ctc.) arc found in CUI-h .

16.4.2 Bullons
A Bullon is the simplest Widget we deal wilh. All it does is to invoke a callback
when we click on it:

549

55<1 CH APTER 16 • G RAPHI CAL USE R INTER FACES

class Button: public Widget {
public :

};

Bulton{Point "Y, int ww, int hh, const string& s, Callback cb)
:Widgel(xy,ww,hh,s,cb) {}

void attach(Window& win);

ll1at's aiL TIle attach() function contains all the (relatively) messy FLTK code.
We have banished the explanation to Appendix E (not to be read until after
Chapters 17 and 18). For now, please just notc that defining a simple Widget isn't
particularly difficull.

We do not deal with the somewhat complica.ted and messy issue of how but­
tons (and other Widgets) look on the screen. 111C problem is that there is a ncar
infinity of choices and that some styles are mandated by certain systems. Also,
from a programming technique point of view, nothing really new is needed for
expressing the looks of buttons. If you get desperate, we note that placing a
Shape on top ofa button doesn't affect the button's abili ty to function - and you
know how to make a shape look like anything at all.

16.4.3 In_box and Out_box
We provide two Widgets for getting text in and out of our program:

struct In_box : Widget (

};

In_box(Point xy, int w, int h, const shing& s)
:Widget(xy,w,h,s,O) ()

int geUntO;
string geCstringO;

void attaeh(Window& win);

struel Out_box: Widget {

} ;

OuCbox(Point xy, int w, int h, const string& s)
:Widget(xy,w,h,s,O) {)

void put(int);
void pul(eonst string&);

void attach(Window& win);

An In_box can accept text typed into it, and we can read that text as a string
using geCstringO or as an integer using get_int() . If you want to know if text has
been entered, you can read using gecstringO and see if YOll get the empty string:

16.4 BUTTON AND OT HER WIDGETS

Siring s = some_inbox.get_stringO;
if (s =="") {

/I deal with missing input

An OuCbox is used to present some message to a user. In analogy to In_box, we
ean putO eit.her integers or strings. §16.5 gives examples of the use of In_box and
Out_box.

We could have provided geUloatins-pointO, geCcomplexO, etc., but we
did not bOlhcr because you can take the string, slick it i.ntO a stringstream, and
do IDly input formatting you like that way (§11 .4).

16.4.4 Menus
\-Vc offer a very simple notion of a menu:

struct Menu : Widget {

);

en urn Kind { horizontal, vertical };
Menu(Point xy, int w, int h, Kind kk, canst string& label);
Vecto,_,ekButton> selection;
Kind k;
int offset ;
int attach(Button& b);
int attach(Button - p);

void showO
{

/I attach bullon 10 Menu
/I allach new button 10 Menu

/1 show all buttons

for (unsigned int i = 0; kselection.sizeO; ++i)
selection [i] . showO;

)

void hideO; /I hide all bullons
void move(int dx, int dy); II move all buttons

void attach(Window& win); II attach all buttons to Window win

A Menu is basically a vector of buttons. As usual, the Point xy is the tOp left cor­
ncr. 11le width and height are used to resize buttons as they are added to the
menu. For examples, see § 16.5 and §16.7. Each Illenu button ("a menu item") is
an indcpcndem Widget presented to the Menu as an argument to attachO. In
turn, Menu provides an attach O operation to attach all of its Buttons to a
Window. Tbe Menu keeps track of its Bultons using a Vector_ref (§13.IO, §E.4).
If you want a "pop·up" menu, you have to make it yourself; see §16.7.

551

552 CHAPTER 16 • GRAPHICAL USER INTER FACE S

16.5 An example
To gel a better feci for the basic CU I facili ties, consider the window for a simple
application involving input, outpul, and a bit of graphics:

This program allows a user to display a sequence of lines (an open polyline;
§ 13.6) specified as a sequence of coordinate pairs. The idea is that the user re­
peatedly enters (x,}) coordinates in the "next x" and "next y" boxes ; after each
pair the user hits the "next point" bulton.

Initially, the "current (x,y)" box is empty ,md the program waits for the user
to elUer the first coordinate pair. That done, the starting poim appears in the
"current (x,y)" box, and each new coordinate pair entered results in a line being
drawn: A line from lhc current point (which has its coordinates displayed in the
"current (X,y)" box) to the newly entered (x,]) is drawn, and that (x,]) becomes
the new current point

This draws an open polyline. 'When the user tires of this activity, there is the
"quit" bUllon for exiting. l1lat's pretty stTaightfon'o'ard, and the program cxer·
cises several useful G UI facilities: text input and Olltput, line drawing, and multi·
pIc buttons. TIle window above shows the result after entering twO coordinate
pairs; after seven we can gel lhis:

16 .5 A N EXAMPLE

Let'S define a class for representing such windows. It is pretty straightfonvard:

struCl lines_window : Window {
lines_window{Point xy, int w, int h, const string& title);
Open_po lyline lines ;

private :

) ;

Button next_button;
Button quiCbutton ;

1/ add (next_x/nexcy) to lines

In_box nexCx;
In_box nexCy;
OuCbox xy_out;

static void cb_next(Address, Address); II callback fo r nexcbutton
void next() ;
static void cb_quiHAddress, Address);
void quitO;

II callback for quicbutton

l11e line is represented as an Open_polyline. The buttons and boxes are de­
clared (as Buttons, tn_boxes, and OuCboxes) and for each bullon a member
function implementing the desired action is defined together with its "boilerplate"
callback function.

lines_window's constructor initializes everything:

553

554 (HAPTER 16 • GRAP HICAL USER INTERFACES

lines_window: : Lines_window(Point xy, int w, int h, consl string& title)
: Window(xy,w,h,t itle),
nexCbullo n(Point(,cmax()- l50,O), 70, 20, "Ned point", cb_nexl),
quiCbutlon{Point(x_max()-70,O), 70, 20, "Quil" , cb_quil),
nexex(point(x_max ()-310,O), SO, 20, "next x: "),
nexCy(Point(x_maxO-210,O), SO, 20, "next y: "l,
xy_out(Point(l00,O), 100, 20, "current (x,y):")

}

altach(nexc bu 110 nj;
aUach(quicbutlon)i
atlach(nexCx)i
atlach(nexCY) i
a tlach (xy_o ul)i
attach(lines);

llmt is, each widget is constructed and then attached to the window.
Dealing with the "Quit" hunon is trivial:

void Lines_window: :cb_quil(Address, Address pw)
(

referencc_Io<Lines_window>(pw).quitO;
)

void lines_window: :quit()
(

hid eOi II curious FlTK idiom for dele te window
)

/I "Ihe usual"

111is is just "the usual": a callback function (here, cb_quiIO) that forwards to the
runClion (here, quitO) that does the real work. H ere the real work is to delete the
Window. 11m's done using the curious FI..;T'K idiom or simply hiding it.

All the real work is done in the "Next point " button. Its callback runction is
just the usual :

void lines_window: :cb_nexl(Address. Address pw)
(

re(e rence_lo<lines_window>(pw). next()i
)

/I "the usual "

The nexlO runction defines what the "Next point" butto n actually does: it reads a
pair or coordinates, updates the Open_polyline, updates the position readout,
and redraws the window:

16.5 AN EXAMPLE

void Lines_window: :nextO
(

)

inl x = ncxCx.geU nl();
int y = nexcy.geUnIO;

I ines.add (Poin I (x, y»;

II update current position readout:
slringslream ss;
55« '(' « x« ',' « y « ')';
xy _o ut . put(ss.SI rO);

redrawO;

111at's all pretty obvious. We gel integer coordinates from the In_boxes lIsing
geUnl O. We usc a slringstream to fonnat the string to be put into the OuCbox j
the slrO member function lets us gel to the string within the stringstream. The
final redraw() here is needed to present the results to the user; Ulllil a Window's
redrawO is called , the old image remains on the screen.

So wh,lt's odd and differen t about this prognlm? Let's see its main() :

#incl ude "GU l.h"

int mai nO
try (

lines_window win (Poinl(l00, 1(0),600,400, "lines");
return gui_main () ;

catch(cxccption& c) {

)

cerr« "exception : " « e.whatO« '\n';
return 1;

catch (...) {

)

ccrr « "Some exception\n";
return 2;

TIlere is basically nothing there! The body of mainO is just the definition of our
window, win, and a call to a function gui_mainO. TIlere is not another function ,
if, switch, or loop - nothing of the kind of code we saw in Chapters 6 and 7 -
j ust a definition of a variable and a call 10 the function gui_mainO, which is itself

555

556 CHAPTER 16 • GRAPHICAL USER INTERFA CES

just a call o f FLTK's run O. Looking further, we can find that rUIlO is simply the
illfmile loop:

while(wait(»i

Except for a few implcmcillalion details postponed to Appendix E, we have seen
all of the code that makes Ollr lines program run. We have seen all of the funda­
mental logic. So what happens?

16.6 Control inversion
What happened was that we moved the control of the order of execution from the
program to the widgets: whichever widget the user activates, runs. For example,
click o n a button and its callback runs. When that callback rctums, the program
settles back, waiting for the user to do something clsc. Basically, waitO tells "the
sysLCm" to look Ollt for the widgets and invoke the appropriate callbacks. In the­
ory, waitO could teU you, the programmer, which widget requested attention and
Icave it to you to call the appropriate function. However, in FLTK and most other
G U 1 systems, waitO simply invokes the appropriate c."tllback, saving you the
bot.her of writing code to select il.

A "conventional program" is organized like this:

Application
Call Input

function

A "GU I program" is organized like this:

Application
Callback r S::-y-Sl

-em- --'

Prompt
User
responds

"Clicks" User
invokes
action

16. 7 ADDING A MENU

One implication or this "control inversion" is that the order or execution is com­
pletely determined by the actions or the user. l 11is complicates bOlh program or­
ganization and debugging. It is hard to imagine what a user will do and hard to
imagine every possible effect or a random sequence or callbacks. "Illis makes sys­
tematic testing a nightmare (sec Chapter 26). TIle techniques for dealing with
that arc beyond the scope or this book, but we encourage you to be ext.ra careful
with code driven by users through callbacks. In addition to the obviolls contTol
now problems, there arc also problems of visibility and difficulties with keeping
track of whidl widget is connected to what data. To minimize hassle, it is essen­
tial to keep the CUI portion of a program simple and to build a CUI program
incrementally, testing at each stage. When working on a CU I program, it is al­
most essemiallo draw little diagrams or the objects and their interactions.

How docs the code triggered by the various callbacks commun.icate? TIle
simplest way is for the functions to operate on data stored in the window, as was
done in the example in §16.5. There, the lines_window's nextO function, in­
voked by pressing the "Next point" bulton, reads data from the In_boxes (nexex
and nexey) and updates the lines member variable and the Ouebox (xy-oul).
Obviously, a fUllction i.nvoked by a callback can do anything: it could open files ,
connect to the web, etc. However, for now, we'Jt just consider the simple case in
which we hold our data in a window.

16.7 Adding a menu
Let's explore the control and communication issues raised by "control inversion"
by providing a menu fo r our "lines" program. First, we'Jt simply provide a menu
that allows the user to change the color of all lincs in t.he lines member variable.
""e add lhe menu color_menu and its callbacks:

slrud lines_window: Window {
Lin es_window(Poinl xy, inl w, int h, consl slring& litle);

Open_polyline lines ;
Menu color_menu ;

sialic void cb_,ed(Address, Address) ; /I callback for red button
sialic void cb_blue(Address, Address); /I ca ll back for blue button
stalic void cb_black(Address, Address); /I callback for black button

/I the actions:
void red_pressedO { change(Color:: red); }
void blue_pressedO { change(Color: :blue) ;)
void black_pressedO {change(Color : :black); }

557

'''' CHAPTER 16 • GRAPHI CAL USER INTERFA CES

void change(Colo r c) (lines.seLeolor(c);)

/I . . . as before ...
};

Writing all of those almost identical callback functions and "action" functions is
tedious. However, it is conceptually simple, and offering something that's signifi·
camly simpler to type in is beyond the scope of this book. When a menu button
is pressed, it changes the lines to lhe requested color.

Having defmed the color_menu member, we need to initialize it:

Lines_window: :lines_window(Po int xy, int w, int h, const slring& title)
: Window(xy,w,h,tille),

(

}

/I .. . as before ...
color_me n u (Poinl(x_maxO- 70,40),70, 20,Menu: : ve rtical, II co lor")

II . .. as before ...
color_me nu .attach(new Button(Poin ((O,O),O,O, "red" ,cb_red»;
color_me nu . attach(new Button(Poin t(O,O),O,O, "blue" ,cb_blue));
colof_me nu . attach(new Butto n(Poin t(O,O),O,O, "black" ,cb_black));
attach(colo,_me nu);

TIle bullons are dynamically attached to the menu (using attachO) and can be re­
moved and/or replaced as needed. Menu ::attachO adjusts size and location of
the button and attaches them to the window. That's aU, and we gel:

16.7 ADDING A MENU

Having played with this ror a while, we decided that what we really wamed was a
'·pop·up menu"; that is, we didn 't want to spe nd precious screen space on a menu
except when we are using it. So, we added a "color menu" button. When we
press that, up pops the color menu, and when we have made a selection, the
menu is again hidden and the button appears.

Here first is the window after we have added a rew lines:

We see the new "color menu" button and some (black) lines. Press "color menu"
and the menu appears:

559

560 CHAPTER 16 • GRAPHICAL USE R INTE RFACES

Note that the "color menu" hunan is now hidden. We don 't need it until we arc
fin ished with the menu . Press "blue" and we get:

~nlC lines arc now blue and lhe "color menu" button has reappeared.
~Io achieve this we added the "'color menu" button and modified the

"pressed" runctions to adjust the visibility of Lhe menu and the bunan. Here is
the complete Lines_window after all oLir modifications:

struct Lin es_window: Window {
lines_window(Point "y. int w, int h, const string& tille);

private:
/I data :
Open_Jwlyline lines ;

II widgets:
Button next_button; II add (nexcx,nex,-y) to lines
Bulton quit_button ; II end progra m
In_box nex'-x;
In_box nexCy;
Out_box xy_oul;
Menu colof_menu;
BuHon menu_bunon;

void change(Color c) { lines. sel_color(c); }

void hide_menuO { color_menu.hideOi menu_button .showO; }

16.7 ADD ING A MENU

l ;

/I actions invoked by callbacks:
void red_pressed O { changc(Color:: red); hidc_menu() ; }
void blue_pressed () (change(Color: : blue) ; hide_menu O; }
void black_pressedO (change(Color: :black); hide_menu O;}
void menu_pressed O { menu_button .hideO; color_menu .showO; }
void next();
void quitO;

/I call back functions:
stalic void cb_fed (Address, Address},
static void cb_blue(Address, Address):
stalic void cb_black(Address, Address);
slatic void ch_menu (Address, Address),
static void cb_ned(Address, Address);
static void cb_quit(Address, Address);

Note how all but the eonstmetor is private. Basically, that window class is the
program. All that happens, happens through its callbacks, so no code from out­
side the window is needed . \.ve sorted the declarations a bit hoping to make the
class more readable . The constructor provides arguments LO all of its sub-objects
and attaches them to the window:

Lines_window: :Lines_window(Point xy, int w, int h, const string& title)
: Window(xy,w,h,tille),
colol_menu (Point(x_max(}-70,30),70,20,Menu: : vertical, "color"),
menu_butlon(Point(x_maxO- 60,30), 50, 20, "color menu", cb_menu),
nexCbullon(Point(x_max(}-150,0), 70, 20, "Next point", cb_nextJ,
quit_bullon (Point(x_maxO-70,0), 70, 20, "Quit", cb_quiO,
ned_x(Poinl(x_max(}-310,OJ, 50, 20, "next x: tI) ,

nexcy(Point(x_max(}- 210,OJ, SO, 20, "next y: tlJ,
xy_ouI(Point(l00,OJ, lOD, 20, "current (x,y):")

attach (nex,-bu lion);
attach (q uit_ bu lion);
attach(nexCx);
atlach(nex,-y);
altach(xy_out);
xy_out.put(" no point");
color_menu.nllach(new Bulton(Poinl(O,O),O,O," red " ,ch_red));
colof_menu . allach (new Button(Point(O,O),O,O, "blue" ,cb_blue));
colof_menu . allach(new Button(Point(O,O),O,O, "black" ,cb_black»;
atlach(colo,_menu);

561

562

)

CHAPTER 16 • GRAP H ICAL US ER INTERFAC ES

colOT_menu .hide();
attach (men u _button);
attach (lines);

Note that the initializcrs arc in the same order as the data member definitions.
111at's the proper order in which to write the inicializers. In fact , member initial­
izcrs are always cxccUlcd in the o rder their data members were declared. Some
compilers (helpfully) give a warning if a base or mem ber constrtJctor is specified
OLit o f order.

16.8 Debugging CUI code
Once a G U I prOgr'dITI starts working it is often quite casy to debug: what YOLI sec
is what you gel. H owever, there is often a most frustrating period before the first
shapes and widgets stan appearing in a window or even before a window ap­
pears on the screen. lI'Y this main O:

int mainO
{

)

Lines_window (Point(l00, 100),600,400, "lines");
return gui_mainO;

Do yO Li see the error? Whether YOll see it or not, you should try it ; lhe program
will compile and run, but instead o f the lines_window giving you a chance to
draw lines, you get at most a fli cker o n the screen. How do you find errors in
sllch a program?

By carefully using well-tried program parts (classes, function , libraries)

By simplifying all new code, by slowly "'growing" a progra m from its
simples t version, by carefully looking over the code line for line

By chccking all linker settings

By comparing to already working programs

By explaining the code to a friend

~111e one lhing that you will find it hard to do is to trace the execution of lhe
code. U you have leamed to use il debugger, you have a chance, butjusl inserting
"'output statements" will not work in this case - the problem is that no Output ap­
pears. Even debuggers will have problems because there are several things going
on at once ("multi-threading") - your code is nOt the only code trying to interact
with the screen. Simplification of the code and a systematic approach to under­
stand ing the code arc key.

16.8 DEBUGG ING GU I CODE

So what was the problem? Here is me correct version (from §16.5):

int mainO
(

Lines_window win(Point(l oo, 100),600,400, "lines") ;
re turn gui_mal nO;

We "forgot" the name of the Lines_window, win. Since we didn't actually need
that name that seemed reasonable, but the compiler then decided that since we
didn't usc that window, it could ulmlediately destroy it. Oops! l1mt window ex­
isted for something on the order of a millisecond. No wonder we missed it.

Another common problem is to put one window exactly on top o f another.
111is obviously (or rather not at all obviously) looks as if there is only one win­
dow. Where did the other window go? We can spend significa.nt time looki.ng for
nonexistent bugs in the code. 111e same problem can occur if we put one shape
on lOp of another.

Finally - to make matters still worse - exceptions don' t always work as we
would like tltem lD when we use a G U I library. Since our code is managed by a
G U I library, an exception we throw may never reach our handler - the library
or the operating system may "cat" it (that is, they may rely on error·handling
mechanisms that differ from C++ exceptions and may indeed be completely
oblivious of C++).

Common problems found during debugg1ng include Shapes and Widgets
not showing because mey were not attached and objects misbehaving because
they have gone out of scope. Consider how a programmer might factor ou t the
crealion and attachment of buttons in a menu:

/I helper function for loading buttons in to a menu
void load_disaster_me nu (Me nu& m)
(

)

Point orig<O,O);
Butto n bl (orig,O,O, "flood " ,cb_f1ood);
Butto n b2(orig,O,O, "fire " ,cb_fire);
/I ...
m.attach(bl);
m.attach(b2);
/I ...

int mainO
{

/I .

563

564 CHAPTER 16 • GRAP HI CAL US ER INTER FAC ES

Me nu disaslers(Point (100, 100),60,20,Me nu : : horizontal, "disaste rs");
load_ d isasler _men u(disaslers);
win .allach(disaslers);
1/ . . .

~fbis will not work. All those buttons arc local to the load_disaster_menu func­
tion and attaching them to a menu will not change thaL An explanation can be
found in § I 8.5.4 (DQu't return (l povlter to a lrod variable), and an illustration of the
memory layout for local variables is presented in §8.5.8. TIle essence of the SLOry
is th at aft er load_disaster_me nu O has Tctumcd, those local objects have been de­
stroyed and the disaste rs menu refers to nonexistent (destroyed) objects. l l lC re­
sult is likely to be surprising and not pretty. TIle solution is to usc unnamed
objects created by new instead of named local objects :

/I helper function for loading buttons into a menu
void load_disaster_me nu (Menu& m)

(

)

Point o rig(O,O);
m.attaeh(new BuUo n(orig,O,O, "flood " ,eb3 Iood»;
m.attaeh(new Butto n(orig,O,O, "fire" ,eb_fire»;
II ...

111c correct solution is even simpler than the (all too commo n) bug.

~ Drill

1. Make a completely new project with linker settings for FLTK (as de­
scribed in Appendix D).

2. Using the facilities of Graph_lib, type in the line-d rawing program from
§16.5 and get it to run.

3 . Modify the program to use a pop-up menu as described in §16.7 and get
it to run.

4. Modify the program to have a second menu for choosing line styles and
get it to ru n.

Review

1. ' '''hy would you want a graphica.l Llser interface?
2. When would you wam a non-graphical user imcrface?

CHAPTER 16 EXER CISES

3. What is a software layer?
4. Why would you want to layer software?
5. What is the fundament."lI problem when communicating with an operat·

ing system from C++?
6. What is a callback?
7. What is a widget?
8. What is another name ror widget?
9. What docs the acronym FLTK mean?

10. How do you pronounce FLTK?
II. What other CUI toolkits have you heard of?
12. Which systems use the tenn widget and which prerer collirol?
13. What are examples or widgets?
14. When would you use an inbox?
15. What is the type o r the value stored in an inhox?
16. \Vhen would you use a button?
17. \Vhell would you use a menu?
18. \.vhat is cOlllrol inversion?
19. What is the basic strategy ror debugging a CUI program?
20. Why is debugging a CU I program harder than debugging an "ordinary

program using streams for I /O"?

Terms
butlOn
callback
console 110
control
colllrol inversion

Exercises

dialog box
CUI
menu
sornvare layer
user interface

visible/hidden
waiting ror input
wait loop
widget

l. Make a My_window that's a bit like Simple_window except that it has
two buttons, next and quit.

2. Make a window (based on My_window) with a 4-by·4 checkerboard or
square buuons. When pressed, a button perrorms a simple action , such
as printing its coordinates in an output box, or turns a slightly different
color (uillil another button is pressed).

3. Place an Image on tOP or a Button; move both when the button is pushed.
Use this random number generator to pick a new location ror tbe "image
button":

int rint(intlow, int high) { return low+rand()%(high- Iow); }

It returns a random int in the range [Iow,high).

565

566 (HAPTER 16 • GRAPHICAL USER INTERFA CES

4. Make a menu with items mal make a circle, a square, an equilateral tri­
angle, and <l hexagon, respectively. Make an input box (or two) for giv­
ing a coordinate pair, and place the shape made by pressing a menu item
at that coordinate. Sorry, no drag and drop.

5. Write a program that draws a shape of your choice and moves it to a
new point each lime you dick "Next." "nlC new point should be deter­
mined by a coordinate pair read from an input strcrul],

6. Make an "analog clock ," that is, a clock with hands that move. You gel
the time of day from the operating system through a library c.:-ul. A m~or

part of this exercise is to find the functions that give you the lime of day
and a way of waiting for a short period of time (e.g. , a second [or a clock
tick) and to learn to usc them based on the documentation you found.
Hint : cloekO, sleep().

7. Using the techniques developed in the previous exercises, make an
image of an airplane "Oy around" in a window. Have a "stan " and a
"StOp" button.

S. Provide a currency converter. Read the conversion rates from a fil e on
startup. Enter an amount in an inpm window and provide a way of se­
lecting currencies to convert to and from (e.g., a pair of menus).

9. Mod ify lhe calculator from Chapter 7 to get its input from an input box
and return its results in an output box.

10. Provide a program where you can choose among a set of functions (e.g.,
s inO and logO), provide parameters for those functions , and then grapb
them.

Postscript

C V I is a huge topic. Much o f it has to do with style and compatibility \\~th exist­
ing systems. Furthermore, much has to do with a bewildering variety of widgets
(such as a C VI library offering many dozens of alternative button sty les) that
would make a traditional botanist feel quite at home. However, little of that has
to do with fundamental programming techniques, so we won't proceed in that di­
rectio n. Other topics, such as scaling, rotation, morphing, three-dimensional ob­
jects, shadowing, etc., requ ire sophisticatio n in graphical andlor mathematical
topics which we don't assume here.

One thing you should be aware of is that most C VI systems provide a "C V I
bu ilder" that allows you to design your window layouLS graphically and attach
callbacks and actions to buttons, menus, etc. specified graphically. For many ap­
plications, such a CVI builder is well worth using to reduce the tedium of writ·
ing "scaffolding code" such as our callbacks. However, always try to understand
how the resulting programs work. Sometimes , the generated code is equivalent to
what you have seen in this chapter. Sometimes more elaborate and/or expensive
mechanisms arc used.

Part III
Data and Algorithms

-'. .

"'- '7

Vector and Free Store

"Use vector as the default! "

-Alex Stepanov

T his chapter and the next four describe the containers and

algorithms part of the C++ standard library, traditionally

called tllC STL. We describe the key facilities from the S11.. and

some of their uses. In addition, we present the key design and

programming techniques used to implemem the S11.. and some

low-level language features used for thal. Among those are point­

ers, arrays, and free store. 111e focus of this chapter and the next

two is the design and implementation of the most common and

most useful STL camainer : vector.

..9

570 CHAPTER 17 • VECTOR AND FREE STORE

17.1 Introduction

17.2 vector basics

17.3 Memory, addresses, and pointers
17.3.1 The sizeof operator

17.4 Free store and pointers
17.4.1 Free·slore allocation
17.4.2 Access through pointers
17.4.3 Ranges
17.4.4 Initialization
17.4.5 The null pointer
17.4.6 Free·slore deallocalion

17.5 Destructors
17.5. 1 Generated destructors
17.5.2 Destructors and free sto re

17.1 Introduction

17.6 Access to elements

17.7 Pointers to class objects

17.8 Messing with types: void- and
casts

17.9 Poinlers and references
17.9.1 Poinler and refe rence

parameters
17.9.2 Pointers, references, and

inhe ritance
17.9.3 An ellilmple: lisls
17.9.4 list operilliions
17.'.S list use

17.10 The this pointer

17.10.1 Morelinkuse

The most useful container in the C++ standard library is vector. A vector pro­
vides a sequence of elements of a given lype. You can refer to an clement by its
index (subscript), extend the vedor by using push_backO, ask a vector for thc
number of its elements using sizeO, and have access to the vector checked
against attempts to access out-of-range elements. The standard library vector is a
collvenient, nexible, efficient (in lime and space), statically type-safe container of
clements. The standard string has similar properties, as have other useful stan­
dard container types, such as list and map, which we will describe in Chapter 20.
However, a computer's memory doesn' t directly suppOrt sllch use fu l types. All
that the hardware directly supports is sequences of bytes. For example, for a
veclor<double>, the operation v.push_back(2.3) adds 2.3 to a sequence of doubles
and increases the clement count of v (v.sizeO) by I. At the lowest level, the com­
puter knows nothing about anything as sophislic.,ted as push_backO; all it knows
is how to read and write a few bytcs at a time.

In this and the fo llowing two chapters, we show how to build vector from the
basic language facilities available to every programmer. Doing so allows us to il­
lustrate useful concepts and programming techniques, and to see how they arc
expressed using C++ language fealures. The language facilities and program­
ming techniques we encounter in the vector implementation arc generally useful
and very widely used.

Once we have seen how vector is designed, implemeIlled, and used, we can
proceed to look at other standard library containers, such as map, and examine
the elegant and efficient facilities for their usc provided by the C++ standa rd li­
brary (Chapters 20 and 21). These facilities, called algorithms, save us from pro­
granuning common tasks involving data ourselves. Instead, we can lise what is

17.1 INTRODUCTION

available as part or every C++ implementation LO ease the writing and testing or
Ollr libraries. We have already seen and used one or the standard library's most
usdul algorithms: sartO.

We approach the standard library vecto r through a series or increasingly so­
phisticated vector implementations. First, we build a very simple vector. 111en,
we see what's undesirable about that vector and fix it. When we have done that a
rew times, we reach a vecto r implementation that is roughly equivalent to the
standard library vector - shipped wilh your C++ compiler, the one that you
have been using in the previolls chapters. This process or gradual refinemem
closely mirrors the way we typically approach a new programming task. Along
the way, we encollnter and explore many classical problems related to the usc or
memory and data structUI"CS. The basic plan is this:

Clmpta- 17 ~hu dmpter): How can we deal with varying amounLS or mem­
ory? In particular, how can differem vectors have difTerelll numbers or
elements and how can a single vector have difTerelll numbers or cle­
lUcIUS at different times? 'lOis leads us to examine rree store (heap stor­
age), pointers, casts (explicit type conversion), and rdcrences.

Chapter 18: How can we copy vectors? How can we provide a subscript
operation ror them? We also introduce arrays and explore their relation
to pointers_

ClUI!)/tT 19: How can we have vectors with different clement types? And
how can we deal with out-or-range en'ors? To answer those questions,
we explore the C++ template and exception racililies.

In addition to the new language racilities and techniques that we introduce to
handle the implementation or a flexible , efficient, and type-safe vector, we will
also (re)use many or the language racilities and programming techniques we have
already seen. Occas ionally, we'll take the opportunity to give those a slighuy
more rormal and technical definition.

So, this is the point at which we finally get to deal directly with memory.
Why do we have to? Our vector and siring arc extremely usdul and convenient;
we can just use those_ After all, containers, such as vector and strin g, are de­
signed to insulalC us rrom some or the unpleasant aspects or rcal memory. How­
ever, unless we arc content to believe in magic, we must examine the lowest level
or memory management. Why shouldn't you "just believe in magic"? Or - to
pu t a more positive spin on it - why shouldn't you "just truSt that the imple­
menters or vector kllew what they were doing"? After all , we don't suggest that
you examine ule device physics that allows our computer's memory to runction.

Well, we arc progranuners (computer scientists, SOrtlVare developers, or what­
ever) rather than physicists. Had we been studying device physics, we would have
had to look into the details or computer memory design_ However, since we arc
smdying progranulling, we must look into the delailed design or programs_ In the­
ory, we could consider the low-level memory access a.nd ma.nagement racilides

571

572 CHAPTER 17 • VECTOR AND FREE STORE

"implementation details" just as we do the device physics. However, if we did that,
you would l10ljust have to "believe in magic"; you would be unable to implement
a new container (should you need one, and tlml's not uncommon). Also, you
would be unable to read huge amounts of C and C++ code that directly uses
memory. As we will sec over the next few chapters, pointers (a low-level and direct
way of referring to an object) are also useful for a variety of reasons not related to
memory management. It is not easy to lise C++ well without sometimes lIsing
pOlllters.

More philosophicaHy, I am among the large group of computer professionals
who are of the opinion that if you lack a basic and practical understanding of
how a program maps o nto a computer 's memory and operations, you will have
problems getting a solid grasp of higher-levcl topics, such as data StniClU l'eS, algo­
rithms, and operating sysLCms.

17.2 vector basics
We start our incrememal design of vector by considering a very simple usc:

vecto r<do uble> age(4);
ageI01=0.33j
ageI1]=22.0 ;
ageI21=27.2 ;
ageI3J=54.2 ;

II a vector with 4 clements of type double

Obviously, this creales a veCio r with four clements o f type double and gives
those fOLi r clements the values 0.33, 22.0, 27.2, and 54.2. 111c four elements arc
numbered 0, 1, 2,3. TIle numbering of elements in C++ standard library COil '
tainers always starts from 0 (zero). Numbering from 0 is very common, and it is a
universal conventio n among C++ programmers. The number of clements of a
veCiOT is called its size. So, the size of age is 4. TIle clements of a veclo r arc num­
bered (indexed) from 0 to size- I. For example, the clements of age are numbered
o to age .size()-1. We C.'lll represent age grapbic..1.lIy li ke this:

age :
r-.;--'-----'

agelOJ: ageI1] : age(2) : age(3) :

0.33 22.0 27.2 54.2

How do we make this "graphical design" real in a computer's memory? How do we
get the values stored and accessed like lha!? Obviously, we bave to deflllc a class and
we wam to call this class vector. Fun.hcnnore, it needs a data member to hold its

17. 2 V ECTO R BASICS

size and one to hold its clements. But how do we represent a set of clements where
the number of elements CUI vary? We could lise a standard library vector, but that
would - in this conte..xt - be cheating: we are building a vector here.

So, how do we represent that a rrow in the drawing above? Consider doing
without it. \oVe could dcflnc a fixed -sued data structure:

class vecto r {

} ;

int size, ageO, age l , age2, age3;
1/ . . .

Ignoring some notational details, we'll have something like this :

age :
size : age[O] : ageI1]: age[2]: age[3]:

4 I 0.33 I 22.0 I 27.2 I 54.2 I
"111m's simple ,md IUce, but the first time we try to add an clement with push_backO
we arc sunk : we have no way of adding an c1emem; the number of elements is fIXed
to fOllT in the program text. \oVe need something more than a data strucntre holding
a fixed number of clements. Operations that change the number of elements of a
vector, such as push_backO, can't be implemented if we defi ned vector to have a
fIXed number of clements. Basically, we need a data member that points to the set of
clements so that we can make it point to a different set of clements when we need
more space. We need something like the memory address of the first clement. In
C++, a data type that CUI hold an address is c.-uled a poVIler and is syntactically dis­
linb'1J ished by the SUffIX · , so that double· means "pointer to do uble." Given that,
we can define our first version of a vector class:

II a very si mplified vector of doubles (like vector<double»
class vecto r (

int 51:;

double· c lem;
public:

vector(int s);

lithe size
II pointer to the fi rst element (of type double)

/I constructor: alloca.te s doubles,
II let elem point to them
II store s in sz

int sizeO eonst { re turn sz; } II the current size
} ;

Berore proceeding with the vector design, let liS study the notio n of "pointer" in
some detail. l 11e notion or "pointer" - together with its closely rela.ted notion of
"array" - is key to C++'s nOlion of "memory."

573

574 CHAPTER 17 • VECTOR AN D FREE STO RE

17.3 Memory, addresses, and pointers
A computer's memory is a sequence of bytes. We can number the bytes from 0 to
the last one. We call such "n number that indicates a location in mCIllOlY'" an
(u/dreSJ. You can think of an address as a kind of integer value. ' 11C first byte of
memory has the address 0, the next the address I, and so on. "Vc <:", 11 visualize a
megabyte of memory like this:

o 2 210_1

1 1 1·.·.· .. ·.· ... · ·.· · · .. ··.0
Everything we pul in memory has an address. For example:

int var = 17;

This will sel aside an "int-sized" piece of memory for val' somewhere and put the
value 17 into that memory. We can also store and manipulate addresses. An ob­
ject that holds an address value is called a poilllt.,.. For example, the type needed to
hold the address of an int is called a "poimer to int" or an "int pointer" and the
notation is int · :

inl - ptr = &var; II ptr holds lhe address of var

The "address of' operator, unary &, is used to get the address o r an object. So, ir
var happens to start at address 4096 (also known as 21 ~), ptr will hold the value
4096,

Basica.lly, we view our computer's memory as a sequence o r bytes numbered
rrom 0 to the memory size minus I. On some machines that's a simplification,
but as an initia1 programming model o r the memory, it will suffice.

Each type has a corresponding po inter type. For example:

char ch = 'C ' j

char · pc = &ch j

int ii = 17 j
intO pi = &iij

II pointer 10 char

II pointer 10 int

Ir we want to see the va1ue or the object pointed to , we can do that using the
"conleills or operator, unary · . For example :

17.3 MEMORY, ADDRESSES, AND PO IN TERS

cout « "pc==" « pc« " i contents of pc==" « 'pc« "\n ";
cou f « "pi=="« pi« It; contents of pi==" « ' pi « "\n"i

' Ille olltpm for ' pc will be lhe character c and lhe omput for ' pi will be lhe inte­
ger 17. TIle output for pc and pi will vary depending on where the compiler alia·
cated our variables ch and ii in melllory. The notalion used for the pointer value
(address) may also vary depending on which conventions your system uses ; hexa­
decimal notation (§A.2.1.1) is popular for pointer values.

~nle cOlllell1s 0/ operator (often called the deniercla operator) can also be used
all the left-hand side of an assignment:

' pc = 'x';
'pi = 27i
' pi= 'pe;

1/ OK: you can assign 'x' 10 lhe char pointed to by pc
II OK: an intO points to an int so 'pi is an int
1/ OK: you can assign a char (pc) to <In int (pi)

Note that even though a pointer value can be printed as an integer, a pointer is
not an integer. "What docs an inl point to?" is nOt a well-formed question ; ints
do nOl. poim , pointers do. A pointer type provides the operations suitable for ad ­
dresses, whereas int provides the (arithmetic and logical) operations suitable for
integers. So pointers and integers do not implicitly mix:

int i = pi ;
pi = 7;

/I error: can't assign an intO to .1n jnt
II error: can't assign an int to an int·

Similarly, a pointer to char (a charO) is not a pointer LO inl (an int O) . For example:

pc= pi ;
pi = pc;

1/ error: can', assign an intO to a charo

1/ error: can', assign a char" to an intO

Why is il an error to assign pc to pi? Consider one answer : a char is usually
much smaller than an inl, so consider this:

char chl = 'a';
char ch2 = 'b';
char ch3 = 'c';
char ch4 = 'd ';
intO pi = &ch3;

' pi = 12345;
' pi = 67890;

II poinllo ch, a char-sized piece of memory
/I error: we cannol assign a charo to an intO
II but lei's pretend we could
II write to an int-sized piece of memory

575

57. CHAPTER 17 • VECTOR AND FREE STORE

Exacliy how lhe compiler allocates variables in memory is implementation de­
fined , but we might very well get something like this:

ehl: pi :

Now, had the compiler allowed the code, we would have been writing 12345 to
the memory sLarting at &chl. TImt would dcfmitcly have changed the value of
some nearby memo ry, such as ch2 or ch4. If we were really unlucky (which is
likely), we would have ovcnvrittCIl part of pi itscln In that case, the next assign ­
ment · pi=67890 would place 67890 in some completely diffcrclll part of memory.
Be glad that such assigmnem is disallowed, but this is one of the vcry rew protec­
tions offered by the compiler at this low level of programming.

In lhe unlikely case that you really need to convert an int to a pointer or to
convert one pointer type to another, you have to usc reinlerpreCcast; sec §17.8.

We arc really close to the hardware here. 111is is not a particularly comfort­
able place to be for a programmer. We have only a few primitive operations avail­
able and hardly an y support from the language or the standard library. However,
we had to get here to know how higher-level facilities, such as vector, arc imple­
mented. We need to understand how to write code at this level because not all
code can be "high-level" (sec Chapter 25). Also, we might better appreciate the
convenience and relative safety o f the higher levels of software once we have ex­
perienced their absence. Our aim is always to work at the highest level of ab­
straction that is possible given a problem and the constraints on its solution. In
this chapter and in C hapters 18-19, we show how to gct back to a more comfort­
able level o f abstraction by implementing a vector.

17.3.1 The sizeof operator
So how much memory docs an inl really take up? A pointer? The operator
sizeof answers such questions:

cout « "the size of char is n« sizeof(char)« " « sizeof ('a ')« '\n ' ;
cout « "the s ize of int is " « sizeof(inl) «"« sizeof (2+2)« '\n' ;
int · p = O;
cou l « "th e size of int· is"« sizeof(int-)« " « sizeof (1') « '\n ';

As you can sec, we can apply sizeof either to a Iype name or to an expression; for
a type, s izeof gives the size of an object of that type and for an expression it gives
the size o f the type of the resull. The result of sizeof is a positive integer a.nd the
unit is sizeof(char), which is defined to be 1. Typically, a char is stored in a bYle,
so s izeof reports the number of bytes.

17 .4 FREE STORE AND POINTERS

TRY THI S

Execute the example above and see what you get. Then extend the example
to determine the size of baal, double, and some other type.

111e size of a type is no! guaranteed to be the same on every implementation of
C++. 111cse d.'ys, sizeof(int) is typically 4 on a laptop or desktop machine. With an
8-bit byte, that means that an int is 32 bits. However, embedded-systems processors
with 16-bit ints and high-perfonnance architeClures with 64-bit ints are common.

How much memory is used by a vector? We C.'lIl try

vector<inl> v(TOOO);
cout « "the size of vector<inl>(TOOO) is " «sizeof (v)« '\n' ;

111e Output will be something like

the sizc of vcctor<int>(l000) is 20

~nle explanation will become obvious over this chapter and the next (sec also
§19.2.1), but clearly, sizeof is not counting the clements.

17.4 Free store and pointers
Consider the implementation of vector from the end of §17.2. From where docs lhe
vector get the space for the elements? How do we gel the poimer clem to poim to
them? ' '''hen you start a C++ program, the compiler sets aside memory for your
code (sometimes called axk s/orage or text Jtorage) and for the global vruiables you de­
fine (ca.lled Jtatic Jtomge). It also sets aside some memory to be used when you c.'l1l
functions, and lhey need space for their arguments ruld local variables (t.hat 's called
JlacA s/orage or at/tommie Jlorage) . The rest of the computer's memory is potentially
available for other uses; it is "free." We can illustrate that graphic.,Uy:

memory layout: Code

Static: data

Sud<

577

578 CHAPTER 17 • VECTOR AND FR EE STO RE

TIle C++ language makes this "free store" (also called the heap) available lhrough
an operator called new. For example:

double p = new double(4) ; /I al locate 4 doubles on the free store

This asks the C++ run-time system to allocate 4 doubles on the free Slo re and re­
turn a pointer to the first double to us. We usc that pointer to initialize our
pointer variable p. We can rcprcscnllhis graphic."llly:

llle rrcc store:

p :

I ~
"f I I I I

The new operator retums a pointer to the object it creates. If it created several
objects (an array), it returns a poimcr to the first of those objects. If that object is
of type X, the paimer returned by new is o f type X· . For example:

char- q = new doubleI41i II error: double" assigned to char·

Thal new returns a pointer to a d o uble and a d ou ble isn't a char, so we should
not (and calmot) assign it to the pointer to char variable q .

17.4.1 Free-store allocation
We request memory to be allQC(lted on thefoe store by the new operator:

11le new operator returns a poil1lcr to the allocmed memory.

A poimer value is the address o f the ftrst byte of t.he memory.

A pointer points to an object o f a specified type.

A pointer docs llot know how many elements it points to.

The new operator can allocate illdividual clements or sequcnces (arrays) or cle­
ments. For example:

int - pi = new int;
int - qi = new int[4];

II allocate one int
/I allocate 4 ints (an array of 4 ints)

17.4 FREE STORE ANO POINTERS

double pd = new double; /I allocate one double
double· qd = new double[n) ; 1/ allocate n doubles (an array of n doubles)

Note thlt the number of objects allocated can be a variable. l1tat's important becausc
that allows us to sclca how Ill,my objccts we allocate at rUIl time. If n is 2, we get

pi :

qi:

Pointers to objects of different types arc different types. For example:

pi = pd;
pd= pi ;

/I error: can', assign a double* to an intO
II error: can', assign an intO to a double '

\-Vhy not? Artcr all, we can assign an inl to a double and a double to an jnt. TIle
reason is the [) operator. It relics on thc size of the element type to figure alit
where to find an element. For example, qi[2] is twO int sizes further on in mem­
ory than qilOI, and qd[2] is two double sizes further on in memory than qdIO) . If
the size of an inl is different from the size of double, as it is on many computers,
we could get some rather strange rcsults if we allowed qi to point to the memory
allocated for qd .

That's the "'practical expianation.n 111e theoretical explanation is simply
"'Allowing assignment of pointers to differelll types would allow type errors."

17.4.2 Access th rough pointers
In add ition to using the dereference operator " on a pointer, we can use the sub­
script operator []. For example:

double · p = new double[4];
double x = "p;
double y = p(2);

1/ alloca te 4 doubles on the free store
1/ read the (firs!) object pointed to by p
1/ read the 3rd object pointed to by p

Unsurprisingly, the subscript operator counts from 0 just like vecto r's subscript
operator, so p12] refers to the third clement; prO] is the fi rs t clcmenl so plO] means
exactly the same as "p. TI1C I] and · operators can also be lIsed for writing:

579

580

. p = 7.7;

pl2J = 9.9;

CHAPTER 17 • VECTOR AND FREE STO RE

II write to the (first) object I>ointed to by p
II write to the 3rd objecl pointed to by p

A pointer poims to an object in memory. The "contents orn operator (also called
the dmference operator) allows liS to read and write the object pointed to by a
pointer p:

double x = .p;
. p = B.8;

/I read the object pointed to by p
/I write to the object pointed 10 by P

\>\'hcn applied to a poimer, the t I operator (rcats memory as a sequence of ob­
j ects (o f the type specified by the pointer dccla'dlion) with the first one paimed to
by a pointer p:

double x = pIJ] ;
p ll] = 4 .4 ;
double y = pIO) ;

II read the 41h object pointed to by p
/I write to the 4th object pointed \0 by p
/I plO] is the same as ' p

l1lat's all. 111crc is no checking, no implementa tion clcvcrncss, jusl simple access
to OLir computer's memory:

plOI: pil I: p121 : p131:

8.9 9.9 4.4

~l1Us is exactly the simple and optimally efficient mechanism for accessing melll­
ory that we need to implemellt a vector.

17.4.3 Ranges
The major problem with pointers is thai a pointer doesn't "know" how many clc­
mems it points to. Consider:

double· pd = new doublel1l;
pd[2] = 2.2;
pd[4] = 4.4;
pd[- ll = - 1.1;

Docs pd have a third element pd[2]? Does it have a liftll element pd[4J? If we
look at the delinition o f pd, we lind that the answers arc yes and no, respectively.
However, the compiler doesn't know that ; it docs not keep track o f pointer val·
ues. Qur code will simply access memory as if we had alloc.'ued enough memory.
It will even access pd[- ll as if the location three doubles berore what pd poilllS
to was part of our allocation:

17. 4 FREE STO RE AND POINTERS

pd :

pdl-31 : pd l-21: pd l-11 : pdlOI: pdl1l : pd121: pd131 : pd141 :

-3.3 2.2 4.4

We have no idea what the memory locations marked pdI-3] and pd[4] are used
ror, However, we do know that they weren't meant 1.0 be lIsed as pan or ollr array
or three doubles pointed to by pd . Most likely, they arc p.1.rts or other objects ,md
we just scribbled allover those. That's not a good idea. In ract, it is typically a dis­
astrously poor idea: "disas trous" as in "My program crashes mystel'iously'" or
"My program gives wrong output." T ry saying that aloud ; it doesn't sound nice at
all. We'll go a long way to avoid that. Out-of-range access is particularly nasty be­
cause apparently unrelated parts or a program arc affected. An OUt-or-rangc read
brlves us it "" lI1dom" value that may depend on some completely unrelated com­
putation. An out-of-rangc write can put some object into an "impossible" state or
simply give it a totally unexpected and wrong value. Such writes typically aren't
noticed until long arter they occurred, so they arc particularly hard to find. Worse
slill: nm a program with an out-or-range error twice with sligluly different input
ami it may give different results. Bugs or this kind ("transient bugs") are some or
the most diffi cult bugs to find .

We have to ensure that such Out-or-range access doesn't happen. O ne or the
reasons we usc vector rather than directly using memory alloc.-lI.ed by new is tllat
a veclor knows its size so that it (or we) can easily prevent out-or-range access.

One thing that can make it hard to prevent out-or-rangc access is that we can as­
sign one double· to another do uble independently or how many objects each
points to. A pointer really doesn't know how many objects it points to_ For example:

do uble· p = new do uble;
double* q = new do uble[1OOO]i

/I allocate a double
/I allocate 1000 doubles

q [700] = 7.7;
q = p;
double d = q[700];

/I fine
II lei q point to the same as p
/I out-of-range access!

Here, in just three lines or code, q[700] rcrers to twO different memory 10Cl.ltions,
and the last usc is an out-of-range access and a likely disaster.

Second value or q

l<i rSl value o r q

581

50' CHAPTER 17 • VECTOR ANO FREE STORE

By now, we hope that you are asking, "But why can't pointers remember the
size?" Obviously, we could design a "pointer" that did exactly that - a vector is
almost that, and if you look through the C++ literature and libraries, you' ll find
many "smart poimers" that compensate for weaknesses of the low-level buill-in
pointers. However, somewhere we need to reach the hardware level and under­
stand how objecLS arc addressed - and a machine address docs not "know" what
it addresses. Also, understanding pointers is essential for understanding lots of
real-world code.

17.4.4 Initialization
As ever, we would like to ensure that an object has been given a value before we
usc it; that is, we want to be sure that our pointers are initialized and also thm the
objects they point to have been initialized. Consider:

double* pO;
double* p1 = new double;
double* p2 = new double{S.S);
double- p3 = new double[S] ;

/I unini tialized: likely trouble
/I get (allocate) an unini tialized double
II get a double initial ized to 5.5
/I get (a llocate) 5 unini tialized doubles

Obviously, declaring pO without initializing it is asking for trouble. Consider:

This will assign 7.0 LO some location in memory. We have no idea which pan of
memory that will be. It could be harmless , but never, never ever, rely on that.
Sooner or later, we get the same result as for an out·of-range access: "My pro·
gram crashed mysteriously" or "My program gives wrong output." A scary per­
centage of serious problems with old-style C++ programs ("C-slyle programs")
is caused by access through uninitialized pointers and out-of-range access. We
must do all we can to avoid such access, partly because we aim at professional­
ism, partly because we don't care to waste our time searching for that kind of
error. There arc few activities as frustrating and tedious as tracking down this
kind of bug. It is much more pleasant and productive to prevcnt bugs than to
hunt for them.

Memory allocated by new is not initialized for built-in types. If you don't like
that fo r a single object, you can specify value, as we did for p2: · p2 is 5.5. Note
the usc of () for initialization. TItis contrasts to the lise of [I to indicate "array."

TIlere is no facility for specifying an ittitializer for an array of objects of built­
in types allocated by new. For arrays , we have to do some work ourselves if we
don 't like the default initializer. For example:

double - p4 = new double(SI;
for (int i = 0; kS; Hi) p4[il = i;

17. 4 FREE STORE AND POIN TER S

Now p4 points to objects of type do uble co ntaining lhe values 0.0, 1.0, 2.0, 3.0,
and 4.0.

As usual, we should worry about un initialized objects and make sure we give
them a value before we read them. Beware that compilers often have a "debug
mode" where they by default initialize every variable to a predictable value (usu­
ally 0). TImt implies that when turning o ff the debug features to ship a program,
when running an optimizer, or simply when compiling on a different machine, a
program with uninitialized variables may suddenly run differently. Don't get
c.."1ught with an unin.itialized variable.

When we define our own types, we have better control of initialization. If a
type X has a default constructor, ''''e get:

X· pxl = new X;
X· px2 = new XI1 7] ;

II one default-initialized X

111 7 default-initialized Xs

If a type Y has a cOnstrucLOr, but not a default constructor, we have to explicitly
initialize :

Y· pyl = new Yi
Y· py2 = newY[17]i
Y· py3 = new Y(13);

II error: no default constructor

II error: no default constructor

/I OK: initialized to V(13)

17.4.5 The null pointer
If you have no other pointer to usc for initializing a pointer, use 0 (zero):

double" pO = Oi /I the null pointer

When assigned to a pointer, the value zero is called the null pointer, and o ften we
test whether a pointcr is valid (i.e. , whcther it points to somcthing) by checking
whcthcr it is o. For examplc:

if (pO != O) /I consider pO valid

lllis is not a perfect test, because pO may contain a "random" value that happens
to be nonzero or the addrcss of an object that has been deleled (see §17.4.6).
However, that's often the best we can do. We don't actually have to lllel1lion 0
explicitly because an if-statement really checks whether its condition is nonzero:

if (pO) II consider pO valid; equivalent to pO!""O

We prefer this shortcr form, considering it a marc direct expression of the idea
"pO is valid ," but opinions vary.

583

S84 CHAPTER 17 • VECTO R ANO FREE STORE

We need 10 use the null poimer when we have a pointer that sometimes
points to an object and sometimes nolo That's rarer than many people think ; COIl­

sider: if YOli don't have an object for a pointer to point to, why did you define
that pointer? Couldn't YOLI wait until you have an object?

17.4.6 Free-store deallocation
The new operator allocates ("gets") memory from the free store. Since a cam­
pUler's memory is limited, it is usually a good idea to retum memory to lhe frec
Siore once we are finished using it. 11m! way, the free store can reuse that mem­
ory for a new allocation. For large programs and fo r long-running programs such
freeing of memory fo r rellse is essential. For example:

do uble· calc(int res_size, int max) !/Ieaks memory
{

)

double· p = new double{maxl;
double- res = new doublelres_sizel;
/I use p to calculate results to be put in res
return res;

double* r = calc(l 00,l000);

As wriuen, each call of calcO "leaks" the doubl es allocated for p. For example,
the call calc(l00,l 000) will render the space needed for 100 doubles unusable fo r
the rest o f the program.

The operator for retuming memory to the free store is called delete. We
apply de lete to a pointer retumed by new to make the memory available to the
free store for fu ture allocation. The example now becomes

double* calc(int res_size, int max)

{

)

/I the caller is responsible for the memory allocated for res

double* P = new do uble{max);
double res = new do ublelres_sizel ;
/I use p to calculate results to be put in res
deletell p; /I we don't need that memory anymore; free it
return res;

double* r = calc(l00, 1000);
/I use r
delete(I r; II we don't need that memory anymore: free it

17 .4 FREE STO RE AND PO IN TER S

Incidentally, this example demonstrates one of the major reasons for using free
store: \ve can create objects in a function and pass them back to a caller.

'11ere arc two fonns of delete :

delete p frees the memory for an individual object allocated by new.

deletel l p frees the memory for an array of objects allocated by new.

It is the programmer's tedious job to usc the right version.
Deleting an object twice is a bad mistake. For example:

inl· p = new int(5);
delete Pi /I fine: p poinls to an object created by new
/I ... no usc of p here ...
delete p ; /I error: p painls to memory owned by the free-store ma nager

TIlere arc two problems with the second delete p:

You don't own the object pointed LO anymore so the free -store manager
may have changed its imernal data structure in such a way that it can't
correctly execute delete p again.

111e free-store manager may have "recycled" the memory pointed to by p
so that p now points to another object; deleting that orner object (owned
by some other part of the program) will cause errors in your program.

Both problems occur in a real program; rney are not just theoretical possibilities.
Deleting the null pointer doesn't do anything (because the null pointer doesn't

point to an object), so deleting the null pointer is hannless. For example:

int · p =Oi
delete Pi
delete Pi

/I fine: no action needed
/I also fine (slill no action needed)

Why do we have to bother with freeing memory? Can't the compiler figure out
when we don't need a piece of memory anymore and just recycle it without
human intervention? It can. That's called aul01Tlu.tic garbu.ge collection or just garbage
(011«1;011. Unfortunately, automatic garbage collection is not cost-free and not ideal
for all kinds of applications. If you really need automatic garbage collection, you
can plug a garbage collecmr into your C++ program. Good garbage colicclOrs
arc available (sec \\T\.v\.v.research.att.com/-bs/C++.hunl). However, in this book
we assume that you have to deal with your own "garbage," and we show how to

do so conveniently and efficiently.
When is it important not to leak memory? A program that needs to run "for­

ever" can't afford any memory leaks. An operating system is an example of a pro­
gram that "runs forever," and so arc most embedded systems (see Chapter 25). A

585

CHAPTER 17 • VECTOR AND FREE STORE

library should not leak memory because someone might use it as part of a system
lim shouldn 't leak memory. In general, it is sim ply a good idea not to leak. Many
programmers consider leaks as proof of sloppiness. However, that's slightly over­
stating the point. When you run a program under an operating system (Uni\:,
Windows, whatever), all memOlY is alilomatically returncd to the system at the
end of the program. It follows that if you know that your program will not usc
more memory than is available, you might reasonably decide LO "leak" until the
operating system does the deallocauon for you. However, if you decide to do that,
be sure that your memory consumption estimate is correct, or people will have
good reason to consider you sloppy.

1 7.5 Destructors
Now we know how to store the elements for a vector. We simply allocate suffi·
cient space for the elements on the free store and access them through a pointer:

/I a very simplified vector of doubles
class vector (

/lihe size int 5Z;

dou ble · elem;
public :

/I a pointer 10 Ihe clements

};

vectorOnt 5)

:sz(s),
e lem(new doublers»
{

/I constructor
/I initialize sz
/I initialize elem

for (int i=O; ks; ++i) elem[il=O; /I initial ize elements

int sizeO const (return 5Z;} /I the current size
II ...

So, sz is the number of elements. We iniLialize it in the constmctor and a user o f
vecto r can get the number of elements by calling sizeO. Space for the clements is
allocated using new in the constructor, and the pointer returned from the free
Slore is stored in the member pointer c lem.

Note that we initialize lhe elements to their default value (0.0). ' 1le st:Uldard
library vecto r docs that, so we thought it best to do the same from tile start.

Unfortunately, our first primitive vector leaks memory. In lIle constnlctor, it
allocates memOlY for the elements using new. To follow the mle stated in §17.4 ,
we must makc sure that lIus memory is freed using delete . Consider:

17.5 DESTRUCTORS

void f(int nJ
(

)

vector v(n);
II . ..

/I allocate n doubles

When we leave fO , the elements creaLCd on the free store by v are nm freed. We
could define a clean_upO operation for vector and call that:

void f2 (int nl
(

vector v(n); /I define a vector (which allocates another n ints)
11 • •• usev ...
v.clean_up(); /I clean_upO deletes elem

That would work. However, one of the most common problems with free store is
that people forget to delete . The equivalent problem wou ld arise for clean_up() ;
people wouJd forget to call it. We can do beller than that. The basic idea is to
have the compiler know about a function that does the opposite of a constructor,
juSt as it knows about the constructor. Inevitably, such a function is ca.l led a
deJ/ruclor. In the same way tha t a constructor is implicitly called when an object of
a class is created, a destructor is implicitJy called when an object goes out o f
scope. A constnlctor makes sure that an object is properly crea ted and initialized .
Conversely, a destructor makes sure that an object is properly cleaned up before
it is destroyed. For example:

/I a very simplified vector of doubles
class vector (

II the size int SZ;

double- elem;
public:

II a pointer to the e lements

);

vector(int sl /I constructor
:sz(s), elem(new double[s]) II allocate memory

{

for (int i=O; ks; ++ i) elem[i}=O; II initialize elements
)

-vector()
(de lele{) e lem; }

II . . .

/I destructor
II frcc memory

587

588

Given that, we can write

void f3(int n)
{

CH APTER 17 • VECTO R AND FREE STORE

int- p = new int(n]; /I allocate n inls
vector v(n) i /I define a vector (which allocates another n ints)

II ... use pand v .. .
delete(] p; /I deallocate the ints

} 1/ vector automatically cleans up after v

Suddenly, that delete[) looks rather tedious and eITor-prone! Given vector, there
is no reason to allocate memory using new just to deallocate it using deletel) at
the end of a function . 111at's what vector docs and docs belter. In particular, a
vector cannOt forgel to call ils dCSlnlCtO l" to deallocate the mcmOlY lIsed for the
clements.

We arc 11m going to go into great detail about the uses of dCSU1Jctors here, but
they arc great for handling rcsourtts that we need to frrs! acquire (from somewhere)
and later give back: fil es, threads, locks, etc. Remember how iostreams clean up
after themselves? They flush buffers, close flies, free buffer space, etc. ' 1mt's done
by their destructors. Every class that "owns" a resource needs a destructor.

17.5.1 Generated destructors
If a member of a class has a destructor, then that destmctor will be called when
the obj ect containing the member is destroyed. For example:

struct Customer {

};

string name;
veclor<string> addresses;
II.

void some_fclO
{

Customer fred;
II initialize fred
II use fred

When we exit some_feU) , so that fred goes out of scope, fred is destroyed ; that
is, the destructors for name and addresses are called. Ths is obviously necessary
for destructors to be useful and is sometimes expressed as "The compiler gener·
ated a destructor for Customer, which calls lhe members' destructors." llmt is

17 .5 DESTRU CTORS

indeed often how the obviolls and necessary guarantee that destructors are called
is implemented.

TIle destructors for members - and for bases - arc implicitly called from a
derived class deslruclOr (whether user-defined or generated). Basically, alJ the
niles add up to: "Destructors arc called when the object is destroyed" (by going
out of scope, by delete, etc.) .

17.5 .2 Destructors and free store
Destructors arc concepluaHy simple but are the foundation for many of the most
effective C++ programming techniques. TIle basic idea is simple:

\Vhatever resources a class object needs 10 function, it acquires in a con­
stnlctor.

During the object's lifetime it may release resou rces and acquire new ones.

At the end of the object's lifetime, the destructor releases all resources
still owned by the object.

TIle matched construclOr/destructor pair handling free-store memory for vector
is the archetypical example. We'll gct back to that idea with more examples in
§19.5. Here, we will examine an important application that comes from the usc of
free-store and class hierarchies in combination. Consider:

Shape" fel()
(

)

Text II(Poinl(200,200)," Ann emarie");
II ...
Shape p = new Text(Point(l00, 100), "Nicholas");
return p;

void fO
(

Shape" q = fe t{):
II . ..
delete q;

111is looks fairly plausible - and it is. It all works, but let's see how, because that
exposes an elegant, important, simple technique. Inside felO, the Text object II is
properl)' destroyed at the exit from fetO. Text has a string member, which obviously
needs to have its destructor called - Siring handles its memory acquisition and re­
lease exactly like vector. For II, that's easy; the compiler JUSt calls Text's generated
dcstructor as described i.n §17.5. 1. But what abollt the Text object that was rctumed

589

590 CHAPTER 17 • VECTOR AND FR EE STORE

from fclOr n c calling function fO has no idea that q points LO a Text ; all it knows is
lhat it points to a Shape. 111cn hO\,.. docs delete p get to c."1l1 Text's dCSlnlClor?

In §14.2. 1, we breezed past the fact that Shape has a destruCLOr. In fact, Shape
has a virtual dCSlIlictOf. That's the key. ' '''hen we say d elete p, delete looks at p's
type to sec if it needs to call a destructor, and if so it calls it. So, delete p calls
Shape 's destructor -Shape(). But -ShapeO is virtual, so - using the virtual c."1l1
mechanism (§14.3. 1) - that call invokes the destructor of Shape's dCI; vcd class, in
this Cdse - r ed O. !-lad Shape::-Shape() not been virtual , Text: :-TextO would not
have been called and Text's string member wouldn't have been properly destroyed.

As a rule o f thumb: if yOli have a class with a virtual function, it needs a
virtual destructor. '11e reason is:

I. If a class has a virtual function it is likely to be used as a base class, and

2. If it is a base class its derived class is likely to be allocated using new, and

3. If a derived class object is alloc. ted using new and manipulated through
a pointer to its base, then

4. It is likely to be deleted through a pointer to its base

Note that destructors are invoked implicitly or indirectly through delete . They
are not called directly. That saves a lot of tricky work.

TRY THIS

Write a little program using base classes and members where you define the
conStl1.lctors and destructors to output a line o f infonnarion when they are
called . Then, create a few objects and see how their constructors and de-­
structors are called.

17.6 Access to elements
For ve ctor to be usable, we need a way to read and write elements. Fo r starters,
we can provide simple gelO and set() member functions:

/I a very si mplified vector of doubles
class vector {

int sz; /I the size
double - elem; /I a pointer to the elements

publi c:
vector(inl s) :sz(s), elem(new double[s]) ()
-vectorO (deletell elem;)

/I constructor
/I destructor

17. 7 POIN TE RS TO ClASS O I~JECT S

) ;

int sizeO const { return sz;)

doubl e gel(int n) { retu rn elem!n]; }
void set(inl n, double v) { ele m!nl=v;)

/I the current size

/I access: read
II access: write

Both gelO and sel() access the clements using the [J operator on the elem pointer:
elem[n).

Now we can make a vector of doubles and use it:

vector v(5);

fo r (int i=O; i<v.sizel); ++i) (

v.sel{i, l .' *i);
coul « "v["« i « "1=="« v.get(i)« '\11 ' ;

TIlis will output

v[O]==O
v[11==1.'
\'[21==2 .2
v[31==3.3
v[41==4.4

TIlis is still an overly simple vector, and the code using getO and setO is rather
ugly compared to the usual subscript nolation. However, we aim to Stan small and
simple and then grow our programs step by step, testing along the way. As ever,
this stl<lteb'Y of growth and repealed testing minimizes errors and debugging.

17.7 Pointers to class objects
~nle notion of "pointer" is generaJ, so we can point to just about anything we can
place in memory. For example, we can use pointers to vectors exactly as we usc
pointers to chars:

vector· f(i nt s)
{

)

vector· p = new vecto r(s);
/I fill 'p
return Pi

/I allocate a vector on free store

591

5'2 (HA PTER 17 • VECTO R AND FREE STORE

void ffO
{

)

veclo r· q = ((4);
/I use 0q
de lete q; /I free veclor on free store

NOle that when we delete a vecto r, its destructor is called. For example:

vector· p = new veclor(S)j

delete Pi
/I allocate a vector on free 5tore

/I deallocate

Creating the vecto r 011 the free store, Lhe new operator

First allocates memory for a vector

TI1en invokes the vector's constructor to initialize that veclo r; the COIl­
structor allocates memory for the vector's clemellts and initializes those
clements

Deleting the vector, the delete operator

Frrst invokes the veclor's dCSlnlctor ; the destructor invokes the dcstnlc­
tors for the clements (if they have destructors) and then dcallocatcs the
memory used for the veclor's clements

' 11cn dcallocates the memory used for lhc vector

Note how nicely that works recursively (see §8.5.8). Using t.be real (standard Ii·
brary) vector we can also do:

vector< vector<do uble> >. p = new vector<vector<do uble> > (10)i

delete Pi

Here delete p invokes the deslmctQr for vector< veclor<double> > j this destnlctor
in tum invokes the destructor for its vector<double> clements, ,md all is neatly
cleaned up, leaving no object undestroyed and leaking no memory.

Bcc.'luse delete invokes destmctors (for types, such as vecto r, that have one),
delete is often said to destroy objects, not JUSt deallocate them.

k usual, please remember that a "naked" new o uts ide a constmctor is an
opportunity to forget to de lete it. Unless you have a good (that is, really simple,
such as Vector_,e f from §13 .1O and §E.4) strategy for deleting objects, try to
keep news in constmctors and de letes in destructors.

So far, so good, but how do we access the members ofa vector, brlven only a
pointer? Note that all classes support the operator. (dot) for accessing members,
given the name of an object:

17.8 M ESS IN G WIT H TYPE S: VOIO' ANO CAS TS

vector v (4);

int " = v.size();
double d = v_gel(3);

Similarly, all classes support the operator - > (arrow) for accessing members,
given a pointer to an object:

vector· p = new veclor(4);
inl " = p->size();
double d = p->geH3);

Like . (dot), -> (arrow) can be used for both data members and function mem­
bers. Since built-in types, such as inl and double , have no members, -> does n't
apply to buih-in types. D OL and arrow are often called member access operatorJ.

17.8 Messing with types: void ' and casts
Using pointers and free-slore-allocated arrays, we are very close to the hardware.
Basically, our operations on pointers (initialization, assignment, -, and I J) map di­
rectly to machine instructions. At this level, the language alTers only a bit of nota­
tiona.! convenience and the compile-time consistency offered by the type system.
Occasionally, we have to give up even tlmt last bit of protection.

Naturally, we don't wam to make do without !.he protection of !.he type sys­
tem, but sometimes there is no logical altemative (e.g. , we need to interact with
anotl,er language tlmt doesn't know about C++'s types). TI,ere arc also an un­
fortunate number of cases where we need to interface with old code that wasn't
designed with static type safety in mind. For that, we need twO things:

A type of pointer that points lO memory without knowing what kinds of
objects reside in lhat memory

An operation to tell the compiler what kind of type to assume (withoUl
proof) for memory pointed to by one of those pointers

11,e type void" means "pointer to sOllle melllory that the compiler doesn't know
the type of." We usc void - when we wam to transmit an address between pieces
of code that really don't know each other's types . Examplcs are the "address" ar­
guments of a callback function (§ 16.3.1) and the lowest level of memory alloca­
tors (such as the implementation of the new operator).

'n lere arc no objects of type void , but as we have seen, we usc void to mean
"no value relUrned":

void v;
void fO;

/I error: there are no objects of type void
/I fO rclurns nothing - fO does not return an object of type void

594 (HAPTER 17 • VECTO R AND FREE STOR E

A pointer to any object type can be assigned to a void". For example:

void" pvl = new int i /I OK: int· converts to void '
void" pv2 = new doubleflO]; /! OK: double" converts to void"

Since the compiler doesn't know what a void" points to, we must tell it :

void f(void " pv)
{

}

void" pv2 = pv;
double* pd = pV i

' pv = 7;

1/ copying is OK (copying is what void's are for)
/I error: cannot conven void ' to double"
I! error: cannot dereference a void'
/! (we don't know what type of object it points to)

pv{2J = 9; 1/ error: cannot subscript a void'
in to pi = static_cast<into>(pv); II OK: explicit conversion

II ...

A static_cast can be used to explicitly convert between relaled pointer types, stich
as void" and double (§A.5.7) . The name "static_cast" is a deliberately ugly
name ror an ugly (and dangerous) opeJ<lOon - usc it only when absolutely neces·
sary. You shouldn't find it necessary very orten - ir at aiL An operation such as
staticcast is called an explidl type CDllUemQ1l (because that 's what it docs) or collo­
quiallya CIlJI (because it is used to support something that's broken).

C++ olTers twO casts that are potentially even nasticr than static_cast :

reinte rpreCcasl can cast betwecn unrelated types, sllch as int and double .

consCcast can "cast away const ."

Fo r example:

Register· in = reinterpret_casI<Registero>(OxfO;

void f(consl Buffer· p)
{

Buffer* b = consccast<Buffer*>(p);
II . ..

111C first exam ple is thc elassical nccessary and proper usc or a reinterpreccasi.
We tell the compiler that a certain part o r memory (the memory starting with 10·
cation OxFF) is to bc cons idered a Register (presumably with special scmantics).
Such code is necessary when you write things like device drivers.

17 .9 POINTERS AN D REFERENCES

in : I OxFF I

O~r:-"----'

III the second example, cons,-cast strips the co nsl from the co nsl Buffe r· c l.lIed
p. Presumably, we kllOW what we are doing.

At least stat ic_cast can't mess with the poimer/imeger distinction o r with
"const-ness," so prefer sialic_cast if you feci the need for a cast. When you think
yOll need a c.."lS t, reconsider: Is there a way to write the code without the cast? Is
there a way to redesign that part of the program so that the caSt is not needed?
Unless you are interfacing to other people's code or to hardware, there usually is
a way. If not, expect subtle and nasty bugs. Don't expect code using re inter­
pre,-cast to be portable.

17.9 Pointers and references
YOLI can think of a reference as an automatically dereferenccd immutable pointer or
'IS an al tem alive name for an object. Poimers and references differ in these ways:

Assignment to a poimer changes the poimer 's value (not the pointed-to
vallie).

1"0 get a pointer YOli generally need to use new or & .

To access an object pointed to by a pointer yOll lise · or [J.
Assignment to a reference changes what the reference refers to (not the
reference itself).

YOll cannot make a reference refer to a different. object after initialization.

Assignment of references does deep copy (assigns to the referred-to ob­
ject); assignment of pointers docs not (assigns to the pointer object itself).

Beware of Ilull l>ointers.

Fo r exam ple:

int x= 10;
int O p = &x;
. p = 7;
int x2 = . p;
int O p2 = &x2;
p2 = p;
P = &x2;

II you need & to get a pointer
/I use • to assign to x through p
/I read x through p
/I get a pointer to another int
/I p2 and p both point to x
/I make p point to another object

595

596 CHAPTER 17 • VECTOR ANO FR EE STORE

The equivalent example for references is

inty = 10;
int&r =y;
r = 7;
inty2=r;
int& ,2 = y2;

r2 = ' i
r = &y2;

II the & is in the type, not in the inilial izer
/I assign to y through r (no' needed)
/I read y through r (no' needed)
/I gel a reference 10 another int

/I the va lue of y is assigned to y2
/I error: you can't change the value of a reference

/I (no assignment of an in'· to an int&)

Note the last example; it is not just this construct that will fail- there is no way to
get a reference to refer to a different object after initialization. If you need to point
to something different, use a pointer. For ideas of how to usc pointers, sec §17.9.3.

A reference and a polmer are both implemented by using a meIllOry address.
They just lise that address differently to provide you - the programmer - slighliy
different facilities.

17.9.1 Pointer and reference parameters
When you want to change the value of a variable to a value computed by a func­
tion, you have lhree choices. For example:

int incr_v(int x) {return x+1; } II compute a new value and return it
void incr_p (int* p) { ++. p ; } II pass a pointer

II (dereference it and increment the result)
void incr_r{int& r) {++r; } II pass a reference

How do YOll choose? Vi'e think returning the value often leads to the most obvi­
ous (and therefore least en'or-prone) code; that is:

inl x = 2;

x = incr_v(x); II copy x to incr_vO; then copy the result out and assign it

We prefer that style for small objects, SUdl as an int. However, passing a value
back and fonh is not always feasib le. For e.xample, we might be writing a func­
tion that modifies a huge data structure, such as a vector o f 10,000 ints; we can't
copy those 40,000 bytes (at least twice) with acceptable efficiency.

How do we choose between using a reference argument aJld using a pointer
argument? Unfortunately, either way has bOlh attractions and problems, so again
the answer is less than clear-cut. You have to make a decision based on the indi­
vidual function and its likely uses.

17 .9 POINTER S AND REFE RENCE S

Using a pointer arh'llment alerts the programmer that something might be
changed. For example:

inl x = 7;
incr_p(&x) lIthe & is needed
incr_r(x);

"Il,e need to usc & in incr_p(&x) alerts the user that x might be changed . In con­
trast, incr_r(x) "looks innocent." This leads to a slight preference for the pointer
verSion.

On the mher hand , if you usc a poilller as a function argument, the function
has to beware that someone might call it with a null pointer, that is, with a
pointer with the value zero. For example:

incr_p(O);
int* p = O;
in cr_p(p);

II crash: incr_pO will try to dereference 0

1/ crash: incr_pO will try to dereference 0

11,is is obviously nasty. The person who writes incr_pO can protect against this:

void incr_p(int - p)
(

if (p==O) error(" null po inter argument to incr_pO") ;
++.p ; II dereference the pointer and increment the object pointed to

But now incr_pO suddenly doesn't look as simple and attractive as before. Chap­
ter 5 disCLIsses how to cope with bad arguments. In contrast, users of a reference
(sudl as incr_, O) arc entitled to assume that a reference refers to an object.

If "passing 1l00hing" (passing no object) is acceptable from the point of view
of the semantics of the function, we must usc a pointer argument. Note : 1113t 's
not the case for an increment operation - hence the need for throwing an excep­
lion for p==O.

So, the real answer is: "The choice depends on the nature of the function" :

For tiny objects prefer pass-by-value.

For functions where "no object" (represented by 0) is a valid argument
use a pointer parameter (and remember to test for 0).

Otherwise, use a reference parameter.

See also §8.5.6.

597

CHAPTER 17 • VECTOR AND FREE STO RE

17.9.2 Pointers, references, and inheritance
In §14.3, we saw how a derived class, such as Circle, could be used where an ob­
ject of its public base class Shape was required. We can express that idea in terms
of pointers or references: a Circle- can be implicitly converted to a Shape* be­
cause Shape is a public base of Ci rcle. For example:

vo id rOlale(S hape* s, inl n); /I rotate 's n degrees

Shape p = new Circle(Point(l00, 100),40);
Circl e c(Po inI(200,200),SO);
rolale(&c,45);

And similarly for references:

void rOlale(Shape& S, inl n);

Shape& r = C;
rolale(c,75);

II rotate s n degrees

l1us is cm cial for mOst object-oriented programming techluqucs (§ 14.3-4).

17.9.3 An example: lists
Lists arc among the most common and useful data structures. Usually, a list is
made out of "links" where eacb link holds some infonnation and pointers to
other links. This is one of the classical uses of pointers. For example, we could
represent a short list of Norse gods like this:

InorseJ<ods I

"-
Freia Odin Thor

'--- - I---
--- c- -

A list like this is called a dQubfJ-linked tisl because given a link, we can find both
the predecessor and the successor. A list where we can find only the successor is
called a singi)'-tiIlJud list. We usc doubly-linked lists when we want to make it easy
to remove an clement. We can define these links like this:

slruct link {
siring value;

17. 9 PO INTER S AND REFERE NCES

) ;

link · prey;
l ink· SUCCi

link(co nsl string& v, link · p = 0, link- s = 0)
: value(v), prev(p), succ(s) ()

111at is, given a link, we can get to its successor using the SUCt pointer and to its
predecessor using the prey poimer. We usc the null pointer to indicate that a link
doesn't have a successor or a predecessor. We can build our list of Norse gods
like this:

link - no rse....gods = new link("Thor",O,O);
no rse....god s = new link("O din " ,norse....gods,O);
no rse....god s->s ucc->prev = norse....gods;
no rse_god s = new link(" Frc ia" ,norse....gods,O):
no rsc_s ods->s ucc- >prev = norse....godsi

We built tha t list by creating the links and tying them together as in the picture :
first 1110r, then Odin as the predecessor of Thor, and finally Freia as the prede­
cessor of Odin. You can follow the pointer to sec that we gOI it right, so thai each
succ and prey points to the right god. However, the code is obscure because we
didn't explicit1y define and name an insert operation:

link - insert(link · p, link - n) /I insert n before p (incomplete)
(

n->succ = Pi
p->prev->succ = n ;
n->prev = p->prev;
p ->prev = n:
re turn n:

/I P comes after n
/I n comes after what used to be p's predecessor
/I p's predecessor becomes n's predecessor
/I n becomes p's predecessor

111is works provided that p really points to a link and t1mt the link pointed to by
p really has a predecessor. Please convince yourself that this really is so. When
t11inking abom pointers and linked structures, such as a list made out of links, we
invariably draw litt1e box-and-arrow diagrams on paper to verify that our codc
works for small examples . Please don't be too proud to rely on this efTective low·
tech design technique.

That version of in sertO is incomplete because it doesn' t handle the cases
where n, p, or p ->prev is O. We add the appropriate tests for the null pointer and
gel the messier, but COlTect, version:

599

600 CHAPTER 17 - VEC TOR AND FREE STO RE

link - insert(link - p, link · n) II insert n before p; relurn n
(

)

if (n==O) return Pi
if (p==O) return n;
n->succ = Pi II P comes after n
if (p->prev) p->prev->s ucc = n j
n->prev = p->prevj /I p's predecessor becomes n's predecessor
p->prev = n j II n becomes p's predecessor
return n j

Given that, we could write

linke norse_sods = new link("Thor") i
norse-8ods = inserl (norse....gods,new link(nOdin"));
norse-8ods = inserl (norse....gods, new Link(n Freia"»;

Now all the error-prone liddling with the prey and succ poimers has disappeared
from sight. Poimer liddling is tedious and error-prone and Jhouid be hidden in
well-written and well-tested functions. In panicular, many errors in conventional
code come from people forgetting to test pointers against 0 - JUSt as we (deliber­
ately) did in the lim version of insert() .

Note that we used default arguments (§15.3.1 , §A.9.2) to save users from
mentioning predecessors and successors in every constructor use.

17.9.4 List operations
The standard library provides a list class, which we will describe in §20.4-. It
hides all link manipulation, but here we will elaborate on our notion of list based
on the link class to get a feci for what goes on "under the covers" of list classes
and sec more examples of pointer usc.

What operations docs our link class need to allow its lIsers to avoid "pointer
liddling"? 111m's to some extent a matter of tasle, but here is a useful set:

'11e constructor

insert : insert before an element

add : insert after an clement

erase: remove an cIemem

find : find a Link with a given value

advance: get the 11th slIccessor

We could write these operations like this:

17.9 POINTERS AND REFER ENC ES

link" add{link" p, link · n) /I inserl n after p; return n
{

1/ much like inserl (see exercise 11)

)

link" erase(link" p) /I remove 'p from li sl; return p's successor
{

)

if (p==O) return 0;
if (p->succ) p->succ- >prev = p->prev;
if (p->prev) p->prey->succ = p->succ;
return p- >succ;

Link" find(link · p. const string& s) /I find s in list;

while (p) (

)

if (p->value == 5) return p;
p = p->succ ;

return 0;

/I return 0 for "nol found~

link" advance(link" p. int n) /I move n posilions in lisl
/I relurn 0 (or "not found"

/I posi1ive n moves forward, negative backward
{

)

if (p==O) return 0;
if «kn) {

while (n--) {

)

)

if (n<o) {

if (p->succ == 0) return 0;
p = p->s ucc;

while (n++) {

)

return p;

if (p->prev == 0) return 0;
p = p->prev;

60'

602 (HAPTER 17 • VECTO R AND FREE STO RE

NOle the lise of the postfix n++ . This form of increment ("posl·incremcm") yields
the value before the incrcmelll as its value.

17.9.5 list use
ru a little exercise, let's build 1'.\10 lists:

link· no rsc-!;ods = new Link("Tho r");
norsc....gods = insert(norsc....gods,new Link("Odin"»;
norsc....gods = insert(norsc....gods,new link("Zeus"»i
no rse....gods = inse rt(norsc....gods, new Link("freia "»:

Link" greek....gods = new Link(tl Heratl
);

grec k....gods = insert(gree k....gods,new link("Ath ena")):
gree k-sods = inserl(gree k....gods,new Link("Mars"));
greek....gods = insert(greek....gods,new Link(IIPoseidon"» ;

"Unfortunatcly," we made a couple of mistakes: Zeus is a Greek god, rather than a
Norse god, and the Greek god of war is Ares, not Mars (Mars is his L1.tin/ Roman
name). We can fIX that:

Lin k- p = find (greek-J;ods, "Mars");
if (p) p->value = "Ares";

NOlC how wc wcre cautious about find O rcturning a o. Wc think that wc know
that it can't happen in this case (aftcr all, we just inserted Mars into grcck_gods),
but in a rcal example somconc might change that code.

Similarly, we can move Zeus into his correct Pantheon:

Lin k- p = fi nd(norse-8ods, "Ze us") ;
if (p) {

)

e rase(p);
inse rt(gree k-8ods,p);

Did you notice the bug? It 's quite subtle (unless you are used to working directly
with links). What if the Link we e raseO is the one pointed to by norse_sods?
Again, that doesn 't actually happen here, but to write good, maintainable code ,
we have to take that possibility into account:

Link - p = find (no rse-8ods, "Zeus");
;f (p){

if (p==no rse-8ods) norse_gods = p->succ;

17.10 THE THIS POINTER

erase(p);
greek_gods = inserl(greek_gods, p);

)

While we were at it, we also corrected the second bug: when we insert Zeus IxjQl"e
the first Creek god, we need to make gree k--sods point LO Zeus's Link. Pointers
are extremely useful and nexible, but subtle.

Finally, let's print out those IisLS:

void pri nt_all(Li nk- p)
{

coul «"{ ";
while (p) (

coul « p->value ;
if (p=p->succ) coul « ", ";

)

coul «" }";

prinCall(n orse--S0ds);
cout«"\n";

pri nt_aU(greek--sods) ;
cout«"\n" ;

111is should give

{ Freia, Odin , Thor }
{ Zeus, Poseidon, Ares, Athena, He ra }

17.10 The this pointer
Note that each of our list functions takes a l ink - as its first argument and ac­
cesses data in that object. That's the kind of function that we often make member
functions. Could we simplify Link (o r link lISC) by making the operations mem­
bers? Could we maybe make the pointers private so that only the member func­
tions have access to them? We could:

class Link (
public:

string value;

603

CHAPTER 17 • VECTO R AND FREE STO RE

Link(const string& v, Link · p = 0, Link" s = 0)
: value(v), prev(p), succ(s) ()

Link" insert(Link" n) ; /I insert n before this object
Link" add(Link" n) ; /I insert n after this object
Link" erase() ; /I remove this object from list
Link" (ind(const string& s); /I find s in list
canst Link· find (const string& s) const; /I find s in list

Link" advance(int n) const; /I move n positions in list

Link" nextO canst { return SUCC i }

l ink" previou sO const (return prev;)
private :

) ;

link" prev;
link" S UCC;

This looks promising. We defined the operations that don't change lhe state of a
link into canst member functions. \Ve added (nonmodifying) nextO and previous()
functions so that users could iterate over lists (of Links) - mose arc needed now that
direct access to succ and prev is prohibited. We left the value as a public member be·
cause (so far) we have no reason not to ; it is "jUSt data."

Now let's try 10 implement Link : :insertO by copying our previous global
in sertO and modifying it sui tably:

Link · Link : :inserI(Link" n)
{

II insert n before p; return n

Link" p = this; II pointer 10 this object
ir (n==O) return p; II nothing to insert
if (p==O) return n; II noth ing to insert into
n- >s ucc = Pi II P comeS after n
ir (p->prev) p->prev->succ = n;
n- >prev = p->prev; II p's predecessor becomes n's predecessor
p->prev = ni II n becomes p's predecessor
return n ;

)

But how do we get a pointer to the object fo r which Link:: insertO was called?
Without belp from the language we ea.n' t. However, in every member function.
the identifier this is a pointer that points to the object for which lhe member fune­
lion was called. Alternatively, we could simply usc this instead o f p:

17. 10 THE T HI S PO INTER

Link - Link :: insert(Link- n)
{

/I insert n before this object; return n

}

if (n==O) return thi s;
if (this==O) return n;
n->succ = this; II this object comes a(ter n
if (t his->prev) this- >prev->succ = n;
n->prev = this->prev; /I this object's predecessor

/I becomes n's predecessor
this->prev = n; /I n becomes this object's predecessor
return n i

T his is a bit verbose, but we don't need to mention th is to access a member, so
we can abbreviate:

link - link: :insert(link - n)
{

II insert n before this object; return n

if (n==O) return this;
if (this==O) return n;
n->succ = this; /I this object comes after n
if (prev) prev->succ = ni
n- >prev = prey; /I this object's predecessor becomes n's prt"CIecessor
prev = ni /I n becomes this object's predecessor
return ni

}

In other words, we have been using the this pointer - the pointer to the currelll
objcct - implicitly every time we accessed a member. It is only when we need to
refer to the whole object that we need to mention it explicitly.

Note tllat this has a specific meaning: it points to the object for which a memo
ber fu nction is called . It docs not point to any old object. The compiler ensures
tlmt we do not change the value of this in a member function. For example:

slruct S (

};

1/ . ..
void mutate(S - p)
{

}

this = Pi /I error: "this" is immutable
II ...

605

CHAPTER 17 - VECTOR AND FREE STORE

17.10.1 More link use
Having dcalt wilh the implemcntation issues, we can see how the use now looks:

Linke norse....gods = new Link(tlThor");
norse....gods = norse....gods->insert(new Link("Odin tl»;
norse_gods = norse....gods->inserl(new Link(tlZeustl»;
norse....gods = norse....gods->inserl(new Link("Freia "));

Linke greek....gods = new Link(" Heralt);
greek....gods = greek....gods->inserl (new Link("Alhenalt»;
grcek....gods = greek....gods->inserl (new Link("Marslt»;
greek....gods = greek....gods->inserl(new Link("Poseidonlt));

That's very much like before. As before, we correct our "mistakes." Correct the
name of the god of war:

Link - p = greek....gods->find(HMars");
if (p) p->value = "Ares";

Move Zeus into his correct Pantheon:

Linke p2 = norse....gods->find("Zcus");
;f(p2) (

)

if (p2==norse....gods) norse_sods = p2->nextO;
p2->erase()i
greek....gods = greek....gods->insert(p2);

Finally, let's print out those lists:

void prinl_all(Link- p)
{

coul « "{ to;
while (p) (

coul « p->valuei
if (p=p->ncxl ()) coul « ", " ;

)

coul « "}" ;

C H APTER 17 DR ILL

prinCall(norsc_sods);
(out«''\n '';

pri nt_all(greek-8ods);
cout«"\n";

111is should again hrive

{ Freia, Odin , Thor)
{ Zeus, Poseidon, Ares, Athena, Hera }

So, which version do you like better: the one where insertO, etc. arc member
functions or the one where they are freestanding functions? In this case the dif·
ferences don't matter much, but see §9.7.5 .

One thing to observe here is that we sti ll don't have a list class, only a link
class. 11mt forces us to kecp worrying about which poimer is the pointer to the
fi rst clement . \ oVe can do better than that - by defining a class List - but designs
along the lines presented here arc very conmlon. -The standard library list is pre­
sented in §20.4.

~ Drill
111is drill has twO parts. TIle fi rst exerciseslbuilds your understanding of free­
store-allocated arrays and contrasts arrays with vectors:

I . Allocate an array of ten inls on the free store using new.
2. Print the values of the ten ints to caul.
3. Deallocate the array (using delete[J).
4. Write a function print_array10(ostream& os, int· a) that prints out the

values of a (assumed to have ten clements) to os.
5. Allocate an array of ten ints on the free store; initialize it with the values

100, 10 I, 102, etc.; and print out its values.
6. Allocate an array of II ints on the free store; initialize it with the values

lOO, lO I, lO2, etc.; and print alit its values.
7. Write a function prinCarray(ostream& as, int- a, int n) that prints out

the values of a (assumed to have n clements) to as.
8. Allocate an array of 20 ints on the free store; initialize it with the values

100, 101, 102 , etc.; and print out its values.
9. Did you remember to delete the arrays? (If not, do it.)

10. Do 5, 6, and 8 using a vector instead of an array and a print_vectorO in·
stead of prinCarrayO.

607

CHAPTER 17 • VEC TOR AND FREE STORE

The second part focuses on pointers and their relation to arrays. Using print_array()
from the last drill:

l. Allocate an int , i11itialize it to 7, and assign its address to a variable pl .
2. Print out the value of pl and of the int it points to.
3. Allocate an array of seven ints; initialize it to 1,2,4,8, etc.; and assign its

address to a variable p2 .
4. Print out the value of p2 and of the array it points to.
5. Declare an int · called p3 and uutialize it with p2.
6. Assign pl to p2 .
7. Assign p3 to p2.
8. Print out the values of p1 and p2 and of what they point 10.

9. Deallocate all the memory you allocated from the free store.
10. Allocate an array of ten ints; initiaJize it to 1, 2,4, 8, etc.; and assign its

address to a variable pl .
II. Allocate an array of ten ints, and assign its address to a variable p2 .
12. Copy the vaJues from the array pointed to by pl into the army pointed to

by p2.
13. Repeat 10-12 using a vector rather than an array.

Review

I. Why do we need data structures with varying numbers of elements?
2. What four kinds of storage do we have fo r a typical program?
3. What is free store? What other name is commonly used for it? "\'\'hat op-

erators support it?
4. What is a derefcrence operator and why do we need one?
S. "What is an address? How are memory addresses manipulated in C++?
6. What infonnation about a pointed-to object does a pointer have? What

useful information does it lack?
7. "\'\'hat Cc"1I1 a pointer point to?
8. What is a leak?
9. What is a resource?

10. How C<Ul we initialize a pointer?
II . What is a nuli pointer? When do we need to use one?
12. When do we need a pointer (instead of a reference or a named object)?
13. What is a destructor? When do we want one?
14. When do we want a virtual destructor?
IS. How are destructors for members called?
16. What is a cast? When do we need to use one?
17. How do we access a member of a class through a pointer?
18. What is a doubly-linked list?
19. What is this and when do we need l"O lise it ?

CHAPTER 17 EXERCISE S

Terms

address
address of: &

alloe-ltion
cast
container
comcnts of: •
deallocation
delete
de lete[J
dereference

Exercises

desuuctor
free store
link
list
member acccss: ->
member destructor
memory
memory leak
new
null poimer

pointer
range
resource leak
subscripting
subscript: [J
this
type conversion
virtual destructor
void ·

1. What is the outpm format of pointer values on your implementation?
Hint : Don' t read the documentation.

2. How many bytes arc there in an int? In a double? In a bool? Do not use
sizcof except to verify your answer.

3. \>Vrite a function, void to_lower(char· s), that replaccs all uppercase char­
acters in the C-style string s with their lowercase equivalents. For exam­
ple, "Hello, World! " becomes "hello, world !" Do not use any standard
library functions. A C-style string is a lero-tenninated array of charac­
ters, so if you fmd a char with the value 0 you are at the end.

4. Write a fUIlction, char· strdup(const char·), that copics a C-style string
into memory it allocates on the free store. Do not use any standard li­
brary functions.

5. Write a function, char· findx(const char· s, canst char· x), that finds the
first occurrence of the C-style string x in s.

6. This chapter docs not say what happens when you run out of memory
using new. That's called memory exhauslirm. Find out what happens. You
have two obvious alternatives: look for documentation, or write a pro­
gram with an infinite loop that allocates but never deallocatcs. Try both.
Approximately how much memory did you manage to allocate before
failing?

7. Write a program that reads characters from cin into an alTay that you al­
locate on the free store. Read individual characters until an exclamation
mark (!) is entered. Do not lise a sid : :string. Do not worry about mem­
ory exhaustion.

8. Do exercise 7 again, but this time read into a sId : :string rather than to
memory yOll put on the free store (string knows how to lise the free store
[or you).

61. CHAPTER 17 • VECTOR AND FREE STO RE

9. Which way does lhe stack grow: up (toward higher addresses) or down (to­
ward lower addresses)? Which way does the free store initially grow (that
is, before you usc delete)? Wrile a program to dctcnninc the answers.

10. Look at your solution of exercise 7. Is there any way thal input could gel
the array to overflow; that is, is there any way you could enter morc
characters than you allocated space for (a serious error)? Docs anything
reasonable happen if you try to enter more characters than you allo­
cated? Look up tealiocO and usc it to extend your allocation if needed.

11. Complete the "list of gods" example from §17.1O.! and run it
12. 'Why did we define two versions of findO?
13. Modify t.he link class from §IZlO.l to hold a value of a slruel God .

struet God should have members of type string: name, mythology, vehi­
cle, and weapon. For example, God(" Ze us", "Greek", "", "lightning")
and God(" Odin", "Norse", "Eight-legged fl ying horse called Sie ipner",
''''). Write a princaUO function that lists gods with their attributes one
per line. Add a member function add_ord eredO that places its new ele­
ment in its correct lexicographical position. Using the Links with the val­
ues of type God, make a list of gods from three mythologies; then move
the elements (gods) from that list to three lexicographically ordered lists
- one for each mythology.

14. Could the '" list of gods" example from §17.10.1 have been written using a
singly-linked list; that is, could we have left the prev member Ollt of Link?
Why might we want to do that? For what kind of examples wOlild it
make sense to lise a singly-linked list? Re-implement that example using
only a singly-linked list.

Postscript
Why bother with messy low-level Sluff like poimers and free store when we can
simply usc vecto r? Well, one answer is that someone has to design and implement
vector and similar abstractions, and we'd like to know how that's done. 111ere arc
programming languages that don't provide facilities equivalent to pointers and
thus dodge the problems with low-level programming. Basically, progranuners of
such languages delegate the laSks that involve direct access to hardware to C++
programmers (and progranuners of other languages suitable for low-level pro­
granun..ing). Our favorite reason, however, is si.mply that you can't really claim to
understand computers and progranillllng until you have seen how software meets
hardware. People who don' t know about pointers, memory addresses, etc. often
have the strangest ideas of how their progratlillllng language facilities work; such
wrong ideas can lead to code that's "interestingly poor."

I.

r 18

Vectors and Arrays

"Caveat emptor! "

- Good advice

T his chapter describes how vectors are copied and accessed

through subscripting. To do that , we discuss copying in

general and consider vector's relation to lhe lower-level notion of

arrays . We present arrays' relation to pointers and consider the

problems arising from their use. We also present the five essential

operations that must be considered for every type: construction,

default construction, copy cons truction, copy assignment, and

destruction.

611

i12

18.1 Introduction

18.2 Copying

18.2.1 Copy constructors
18.2.2 Copy assignments
18.2.3 Copy terminology

18.3 Essential operations

18.3.1 Explicit conslructo rs
18.3.2 Debugging conslructors and

deslruclors

18.4 Access to vector elements

18.4.1 Oyerloading on consl

18.1 Introduction

CHAPTER 18 • VECTORS AND ARRAYS

18.5 Arrays

18.5.1 Pointe rs 10 array elemenls
18.5.2 Pointers and arrays
18.5.3 Array initialization
18.5.4 Pointe r problems

18.6 hamples: palindrome

18.6.1 Palindromes using string
18.6.2 Palindromes using arrays
18.6.3 Palind romes using pointers

To get into the air, a plane has to accelerate along the runway until it moves fast
enough to "jump" into the air. 'While the plane is lumbering along the runway, il
is little more than a particu1arly heavy and awkward truck. Once in the air, it
soars to become an altogether different, elegant, and efficient vehicle. It is in its
true clement.

In this chapter, we are in the middle of a "run" to gather enough progr.un·
ming language features and techniques to get away from the constraints and diffi­
culties of plain computer memory. We want to get to the point where we can
program using types that provide exactly the properties we want based on logical
needs. To "get there" we have to overcome a nu mber of fu ndamental constr<lints
related to access to the bare machine, such as the following:

An object in memory is of fIXed size.

An object in memory is in one specific place.

ll1e computer provides only a few fundamental operations on such ob­
jects (such as copying a word, adding the values from two words, etc.).

Basically, those arc the constraints on the built-in types and operations of C++
(as inherited from C; sec §22_2.5 and Chapter 27). In Chapter 17, we saw the be­
gillilings of a vector type that controls all access to its elements and provides us
with operations that seem "natural" from the point of view of a lIser, nnher limn
from the point of view of hardware.

This cllapter focuses on the notion of copying. TIlls is an im portant but
rather technical point: What do we mean by copying a nontrivial object? 1'0 what
extent arc the copies independent after a copy operation? What copy operations
arc there? How do we specify them? And how do they rdate 1"0 other fundamen­
tal operations, such as initialization and cleanup?

18.2 COPYIN G

Inevitably, we get to discuss how memory is manipulated when we don't
have higher-Ievcltypcs such as vector and string. We examine arrays and point­
ers, their relationship, their usc, and the traps and pitfalls of their use. This is es­
semial information to anyone who geLS to work with low-level uses of C++ or C
code.

Please note that the details of vector arc peculiar to vectors and the C++
ways of building new higher-level types from lower-level ones. However, every
;thigher-lcvel" type (string, vector, list, map, etc.) in every language is somehow
built from the same machine primitives and reOecLS a variety of resolutions to the
fundamental problems described here.

18.2 Copying
Consider our vector as it was at the end of Chapter 17:

class vecior (
int sz; /I Ihe size
double- elem;

public:
II a poinler 10 Ihe elemenls

);

vector(int 5)

:sz(s), elem(new doublels1) { }
-vectorO

{delcte{] clem; }
II . ..

Let's try to copy one of these vectors:

void f(int n)
(

II consTructor
/I allocates memory
/I destructor
/I deallocates memory

vector v(3);
v.set(2,2.2);
vector v2 = v;
II.

II define a vector of 3 elements
/I sel v12] to 2.2
II what happens here?

)

Ideally, v2 becomes a copy of v (that is, = makes copies); that is, v2.sizeO==v.size()
and the v2[il==vlil for all i's in the range [O:v.sizeO). Furthermore, all memory is
returned to the free store upon exit from fO . llmt's what the standard library
vector docs (of course), but it's nm what happens for our still-far-too-simple
veclor. Our task is to improve our vector to gel it to handle such examples cor­
reclly, but first let's figure out what our CUlTellt version actually does. Exaclly

613

,1' CHA PTER 18 • VECTORS AND ARRAYS

what docs it do wrong? How? And why? Once we know that, we Ct"Ul probably fix
the problems. More importantly, we have a chance to recognize and avoid similar
problems when we sec them in other contexts.

TIle default meaning of copying fol' a class is "Copy all the data members."
11mt often makes perfect sense. For example, we copy a Point by copying its co·
ordinates. But for a pointer member, just copying the members causes problems.
In particular, [or the vectors in our example, illllcans that after the copy, we have
v.sz==v2.sz and v.elem==v2.elem so that our vectors look like this:

v:.: : : 7~
2.2

That is, v2 doesn't have a copy of v's elements ; it shares v's clements. We could
write

v.seI(1 ,99);
v2.set(O,88);

/I set vl ll to 99
!/ set v210l toB8

cout « v.get(O) «' , « v2 .get(1);

"nle result would be the Output 88 99. 1l1at wasn't what we wanted. Had there
been no "hidden" connection between v and v2, we would have gotten the output
00, because we never wrote to vIOl or to v2[1], You could argue that the behavior
we got is "interesting," "!lead" or "sometimes useful," but that is not what we in­
tended or what the standard library vector provides. Also, what happens when
we return from fO is an unmitigated disaster. Then, the destructors ror v and v2
are implicitly called; v's destructor frees the storage lIsed ror the clements lIsing

delete[] elem;

and so docs v2's destructor. Since elem points to the same memory 1QC.."ltion in
both v and v2, that memory will be freed twice with likely disastrous results
(§17.4.6).

18.2.1 Copy constructors
So, what do we do? We' ll do the obvious: provide a copy operation that copies
the elements and make sure thalthis copy operation gets called when we initialize
one vector with another.

Initialization of objects o r a class is done by a constructor. So, we need a con­
stnlctor that copies. Such a constructor is obviously called a wfry cow/me/or. It is

18 .2 CO PYING

defined to take as its argument a reference LO the object from which to copy. So,
for class vector we need

veclor(const veclor&);

~nlis constructor will be called when we try LO initialize one vector with another.
We pass by reference because we (obviously) don't want LO copy the argument of
the constructor that defines copying. We pass by canst reference because we
don't want to modify Ollr argument (§8.5.6). So we refine veclor like this:

class vector {
int Sl;
double- elem;
void copy(const vector& arg);

public:

) ;

veclor(const veclor&) ;
/I . .

/I copy elements from arg into ' clem

II copy constructor: define copy

111e copyO simply copies the elemellls from an argument vector:

void veclor : :copy(const vector& arg)
II copy elements IO :arg.sz-l l

for (inl i = 0; i<arg.Sl; Hi) e lem[il = arg.elemlil;
)

TIle copyO member function assumes that there are sz elements available both in
its argument arg and in the veclor it is copying into. To help make sure that's
true. we make copyO private. Only functions that arc part of the implementation
of veclor can call copyO. These fu nctions need to make sure that the sizes matcll.

11le copy constructor sets the number of elements (sz) and allocates memory
for the elements (initializing clem) before copying elcmelll values from the argu­
ment vector ;

veclor: : veelo,(consl veclo,& arg)
II allocate elemenls, lhen initialize them by copying

:sz(arg.sz), elcmCnew double(arg.sz j)

copy(arg);

615

616 CHAPTER 18 • VEC TOR S AND ARRAYS

Given this copy constructor, consider again our example :

vector \'2 = v;

lllis dcrmition will initialize v2 by a call of vector's copy constructor with v as its
argument. Again given a vector wilh three clements, we now gel

v: [3~~==~----'[1 ==~====~2~.2CJ

v2: ~3=r=====r-------[=====r=====r~2.~2~
Given that, the destructor can do the right thing. Each set of clements is cOn'cclly
freed . Obviously, the o va vectors are now independent so that we can cll,lI1l;,TC the
value o f clements in v without affecting v2 and vice versa. For example:

v.set(1,99);
v2.sel(O,88);

II set vlll 1099
IIset v2[01 1088

cout « v.get(O)« " « v2.geI(1);

l1lis will output 0 O.
Instead o f saying

vector v2 = v;

we could equally well have said

vector v2(v);

When v (the initializcr) and \'2 (the variable being initialized) arc of me same type
and that rype has copying conventionally defined, those twO notations mean ex­
actly the same and yOll ct1.n lise whichever notation you like better.

18.2.2 Copy assignments
""e handle copy construction (initialization), but we can also copy veclors by as­
signment. As with copy initialization, the default meaning o f copy assignment is
l11emberwisc copy, so with veclor as defined so far, assignment will cause a dou­
ble deletion (exactly as shown for copy constructors in § 18.2. 1) plus a memory
leak. For example:

void f2(inl n)
(

veclor v(3); /I define a veclor

18 .2 COPYING

)

v.sel (2,2.2);
veclar v2(4);

v2 = v;
/I . ..

II assignment: what happens here?

We would like v2 to be a copy of v (and that 's what the standard library vector
does), but since we have said nothing about the meaning of assignment of our
veclor, the default assignment is used ; that is, the assignment is a memberwise
copy so that v2's sz and elem become identical to v's sz and elem, respectively.
We can illustrate that like dus:

When we leave f20 , we have the same disaster as we had when lcaving fO in
§18.2 before we added the copy constructor: the elements pointed to by both v
and v2 are freed t".ice (using delete(1). In addition, we have leaked the memory
initially allocated for v2's four elements. We "forgot" to free those. The remedy
for this copy assignment is fundamentally the same as for the copy itutialization
(§18.2.1). We define an assigmnent lhat copies properly:

class vcclor {
int SZ;

double" elem;
void copy(const veclor& arg); II copy elements from arg into ' elem

public:
veclor& operator=(consl vector&) ; II copy assignmenl
/I . ..

) ;

vector& vector : :operator=(const vector& a)

/I make Ihis \'€Clor a copy of a
(

doublc" P = new double[a .szJ; /I allocate new space
copy(a); II copy elements
deletell elemi II deallocate old space
elem = Pi
sz = a .sz;
return "this ;

II now we ca n reset elem

/I return a self-reference (see § 1 7.10)

617

618 CHAPTER 18 • VECTO RS AND A RR AY S

Assignment is a bit more complicated than construction because we must deal
with the old clcmclllS. OUf bas ic strategy is to make a copy of the elements from
the source vecto r:

double- p = new double[a.5z)i
copy(a);

/I allocate new space

111cn we free the old clements from the target vector:

de le teU cle m; II deallocate old space

Finally, we let c lem point to the new clements:

clem = Pi
52 = a.52;

/I now we can reset clem

We can represent the resull graphically like tlus:

~!=:=====:: ____ ~~====~~~~~~~~~G~.~.v~c~nlbia:c::k,to YO 3 22 c • the lrec store by
delete[]

.2: >-3,--,-_S",' '-clzl
:', ~L_-'-_--.l _ _ L------.J

-..., 2.2

\PVc now have a vector mal docsn' tlcak memory and doesn' t free (d elete[!) any
memory twice.

'When implementing the assignmclll, you could consider simplifying the
code by freeing the memory for the old elemenLS before creating t.he copy, but it
is usually a very good idea not to throwaway information before you know that
yOll can replace it. Also, if you did that, strange things would happen if you as·
signed a veclo r to itself:

veclor v(10);
v=v; /I self-assignment

Please check that our implementation bandies that case corrcctly (if not with op·
timal efficiency).

18.2.3 Copy terminology
Copying is an issue in most programs and in most programming languages. TIle
basic issuc is whcther you copy a pointer (o r reference) o r copy the infonllation
pointed to (referred to):

18 .2 COPYING

Sh,lI/ollJ copy copics only a pointer so that thc twO pointcrs now refer to
thc samc objcct. 111at's what poimers and references do.

Deej) copy copies what a pointer points to so that the two po inters now
refer to distinct objcctS. That's what vectors, strings, etc. do. We define
copy constniclOrs and copy assignments when we want deep copy for
objects of our classcs.

Here is an example of shallow copy:

intO p = new inl(77);
intO q = p; /I copy the poinlCr p
. p = 88; II change the value of the int pointed to by p and q

'ATe can illustratc that like this:

p:

In contrast, we can do a decp copy:

intO p = new int(77);
intO q = new inW p); /I allocate a ne\v int, then copy the value poi nted to by p
. p = 88; /I change the value of the int poi nted to by p

'vVe can illustrate that like this:

Using tim terminology, we can say lhat the problem wilh our anginal ved or was
that it did a shallow copy, rather than copying the clements pointcd to by its elem
pointer. Our improved vector, like tile standard libral), vector, docs a deep copy
by allocating new space for the elements and copying their values. Types tllat pro·
vide shallow copy (like poiIllers and references) are said to have poinler ~1"11I!ics or
riferclu utl/anhCs (tlley copy addresses). Types that provide deep copy (like string
and vector) arc said to have value sellulIl!ics (tlley copy tile values pointed to). From
a uscr perspective, types with value semantics behave as if no pointers were in­
volved - just values tllat c.."ln be copied. One way of tllinking of types with value
semantics is tlmt tlley "work just like integers" as far as copying is conccm ed.

.,9

,2. CHAPTER 18 • VECTORS AND ARRAYS

18.3 Essential operations
We have now reached the point where we can discuss how to decide which COIl­

structors a class should have, whether it should have a destructor, and whether
you need to provide a copy assignment. There arc five essential operations to

cons ider :

Constructors from one or more arguments

Default constructor

Copy constructor (copy object of same type)

Copy assignment (copy object of same type)

Destructor

Usually we need one or more constructors that take arguments needed to initial­
ize an objecl. For example:

string s("Triumph");
vector<do uble> v(10);

II initialize s to the character string "Triumph'
/! make v a vector of 10 doubles

As you can see, the meaning/use of an initializer is completely up to the construc­
tOf. The standard siting's constructor uses a character string as an initial value,
whereas the standard vector's constructor uses an integer as the initial number of
clements . Usually we usc a constructor to establish an invariant (§9.4.3). If we
can't define a good invariant for a class that its constructors can establish, we
probably have a poorly designed class or a plain data structure.

Constructors that take arguments are as varied as the classes they serve. The
remaining operations have more regu lar patterns.

How do we know if a class needs a default constructor? We need a default
consuuctor if we want to be able to make objects of the class without specifying
an initializer. ·nle most COllllllon example is when we want to put objects of a
class into a standard library vector. 11le following works only because we have
default values for int, string, and veclor<in l> :

vector<do uble> vi(10); /I vector of 10 doubles, each initia lized to 0.0
vector<st ring> vs(10); 1/ vector of 10 strings, each initialized to ".
vector<vector< inl> > vvi(10); /I v(.'ctor of 10 vectors, each initialiwd to vectorO

So, having a default constructor is often useful. TIle question then becomes:
" \>\Then docs it make sense to have a defau lt constructor?" An answer is: "When
we can establish the invariant for the class with a meaningful and obvious default
value." For value types, such as inl a.nd double, the obvious value is 0 (for do uble,
t.hat becomes 0.0). For Siring, the empty siring, "" , is the obvious choice. Fo r

18.3 ESSENTIAL OPERATIONS

vector, the empty vedor serves well . For every type T, TO is the default value, if a
default exists. For example, doubleO is 0.0, stringO is '''' , and vector<inl>() is the
empty vector ori nts.

A class needs a destructor if it acquires resources. A resource is something
you "get from somewhere" and that you must give back once you have finished
using it. llle obvious example is memory that you get from the free store (using
new) and have to give back to the free store (using de lete or delete[J). Our
vector acquires memory to hold its clements, so it has m give that memory back;
therefore. it needs a destnlctor. Other resources that you might encounter as
your programs increase in ambition and sophistication are files (if you open one,
you also have to dose it), locks, thread handles, and sockets (for communication
with processes and remote computers).

Another sign that a class needs a destructor is simply that it has members
that arc pointers or references. If a class has a pointer or a reference member, it
often needs a destructor and copy operations.

A class that needs a destructor almost always also needs a copy conSlmctor
and a copy assignmcnt. The reason is simply that if an object has acquired a re­
source (and has a pointer member pointing to it), the default meaning of copy
(shallow, melllberwise copy) is almost certainly wrong. Again, vector is the clas­
sic example.

In addition, a base class for which a derived class may have a destructor
needs a virtual destructor (§17.5.2).

18.3.1 Explicit constructors
A constructor that mkes a single argument defines a conversion from its argu­
ment type to its class. 1l1is can be most useful. For example:

class comple" (
public:

comple,,(double); /I defines double-to-complex conversion
complex(double,double);
II . ..

);

comple" zl = 3.14; II OK: convert 3.14 to (3. 14,0)
complex z2 = complex(1.2, 3.4);

However, implicit conversions should be used sparingly and with calilion, be­
c.ause they can cause unexpected and undesirable effects. For example, our
vector, as defined so far, has a constructor that takes an into This implies that it
defines a conversion from int to vector. For example:

621

622

class vector {

};

1/ . ..
vector(inf);
1/ . ..

vector v = 10;
v= 20;

CHAPTER 18 • VEC TOR S AND ARRAYS

II odd: makes a vector of 10 doubles
II eh? Assigns a new vector of 20 doubles to v

void f(const vector&);
f(10); /I eh? Calls f with a new vector of 10 doubles

It seems we are getting more than we have bargained for. Fortunately, it is simple
to suppress this usc of a constructor as an implicit conversion. A constructor de­
fined explicit provides only the usual construction semantics and not lhe implicit
conversions. For example:

class vector {
1/ . ..
explicit vector(inl);
1/ . ..

};

vedar v = 10;
v = 20 ;
vector vO(10);

1/ crror: no int-lO-vecl0r<double> conversion
/I error: no int-lo-vCC10r<double> conversion

/10K

void f(const vector<double>&);
f (10); II error: no int-to-vector<double> conversion

f(vector<double>(10» ; II OK

10 avoid surprising conversions, we - and the standard - define vector's single­
argument constructors to be explicit. It 's a pity that constructors arc not explicit
by default; if in doubt, make any constructor that can be invoked with a single ar­
gument explicit.

18.3.2 Debugging constructors and destructors
Constructors and destructors are invoked at well-defined and predictable points
of a program's execution. However, we don't always write explicit caJls, such as
vector(2); rather we do something, such as declaring a vector, passing a vector as
a by-value argument, or creating a vector on the free store using new. This can
cause confusion for people who think in terms of syntax. Illere is not just 11 sin­
gle syntax that lriggers a constructor. It is simpler to think of constructors and de­
structors this way:

18 .3 ESS ENTIAL O PERATIONS

Whenever an object of type X is created, one of X's constructors is invoked.

Whenevef an objeet of type X is destfoyed, X's dest1uctor is invoked.

A destructOf is called whenever an object of its class is destroyed ; that happens
when names go OUi of scope, the program terminates, or delete is used on a
pointef to an object. A constructor (some appfopriate constructor) is invoked
whenever an object of its class is created; that happens when a variable is initial­
ized , an object is created using new (except for bu ilt-in types), and whenever an
object is copied.

But when docs that happen? A good way to get a feci for that is to add print
statements to constructors, assignment operations, and destructors and then just
try. For example:

slru e! X (/I simple lest class
inl val;

void o ut(co nsl slring& s)
(cerr « this« "->" «s« ": H « val « "\n ";)

XO{ o ul("XO"); val=O; } /I defau lt constructor
X(int v) (o ul("X(int)") ; val=v; }
X(const X& x){ o ut("X(X&) ") ; val=x.val;) /I copy constructor
X& opcrator=(const X& a) /I copy assignment

(o ut("X: :opcrator=()") ; val=a .va1; return · this; }
- XO (ou t(H_XO");) /I destructor

} ;

Anything we do with this X will leave a tfacc that we can study. For example:

x glob!2}; 1/ a global variable

X copy(X a) { return a; }

X copy2(X a) { X aa = a; return aa ; }

X& reUo(X& a) { return a ; }

X· make(int i) (X al i); return new X(a); }

slruct XX { X a ; X b ; };

inl mainO
(

X loc(4);
X loc2 = lac;
lac = X(5) ;

/I local variable

624

(

loe2 = copy(loc) ;
loe2 = copy2(1oc);
X loc3(6);
X& r = reUo(1oc);
delete make(7);
delete make(8);
veclor<X> v(4);

xx loc4;
X· P = new X(9);
delete Pi
X· pp = n ew X[5]i

delete pp;

Try executing that.

TRY THIS

CHAPTE R 18 • VE CTO RS AND ARRAYS

/I an X on the free store

/I an array of Xs on the free store

We really mean it: do run this example and make sure you understand the
result. If you do, you'U understand m Ost of what there is to know about con­
struction and destruction of objects.

Depending on the quality of your compiler, you may note some "missing copies"
relating to our calls o f copyO and copy20. We (humans) can sec that those fune­
lions do nOlhing: they just copy a vallie unmodified from input to output. If a
compiler is smart enough to nolice that, it is allowed to eliminate the c'll1s to the
copy cons tructor. In othcr words, a compilcr is a llowed to assumc that <l copy
constructor copies and docs nothing but copy. Some compilers are smart enough
to eliminate many spurious copies.

Now cons ider : why should we bother with this "silly class x"? It 's a bit like
the finger exercises t.hat musicians have to do. After doing them, other things -
things that matter - become easier. Also, ir you have problems with constructors
and destructors, you can i.nsert such print statements in constructors ror your real
classes to sec that they work as intended. For larger programs, this exaet kind or
tracing becomes tedious, but similar techn.iques apply. Fo r example, you can de·
termine whether you have a memory leak by seeing ir the number o r constmc·
uons minus the number or destmctiolls equals l ero. Forgetting to define copy
COl1stm clors and copy assiglUllents ror classes that a llocate memory or hold point·
ers to objects is a common - and easily avoidable - source or problems.

If your problems get too big to handle by sllch simple means, you will have
learned enough to be able to start using the proressional tools ror finding such
problems; they arc often referred to as "leak detectors." The idcal, or course, is
not to leak memory by using teclmiqucs that avoid sllch leaks.

18.4 ACC ESS TO VEC TOR ELEMEN TS

18.4 Access to vector elements
So far (§17.6), we have used se(() and getO member functions to access elements.
Such uses are verbose and ugly. We want our usual subscript nouuion: v[i). The
way to get that is to define a member function called operato r[J. Here is our frrst
(naive) tly:

class vecto r {
int sz;
double· e lem;

public :
/I . ..

IIlhe size
II a pointer to the elements

doubl e operato r[J(inl n) { return elem[n]; }
} ;

/I return clement

'1lallooks good and especially it looks simple, but unfortunately it is tOO simple.
Letting the subscript operator (operator[JO) return a value enables reading but
not writing of clements:

vector v(10);
inl x = v[2];
v[31 = x;

II fine
Ilerroe vl31 is not an Ivalue

Here, v[iJ is interpreted as a call v.operator(J(i), and that call returns the value of
v's clement number i . For this overly naive vector, v[3] is a floating·poilll value,
not a floating-point variable.

TRY TH IS

Make a version of this vector that is complete enough to compile and see
what error message your compiler produces for v[3]=x ; .

Our next try is to let ope rator[J return a pointer to the appropriate clement:

class vector {
int sz;
double" elem;

public :
/I ..

/I the size
/I a pointer to thc elements

double" ope rator[l{int n) (return &elemln1; }
} ;

Given that definition, we can write

/I return pointcr

.25

.,6

veclaT v(10);

for (in! i=Oj i<v.size(); ++i) (
·v[i] = i;
cout« · v[i] ;

)

CHAPTER 18 • VECTO RS AND ARRAY S

/I works, but sti ll too ugly

Here, v[i] is interpreted as a call v.operator[] (i), and that call rctums a pointer 10

v's clement number i. The problem is that ""'C have to write · to dereference that
pointer to get to the clement . TImt's ahnost as had as having to wnte setO and
get(). Retuming a reference from the subscript operator solves lhis problem:

class vector {
1/ . . .
double& operator[](int n l (return elem[n]i } II return reference

) ;

Now we can write

vector v(10);

for (inl i=O; i<v.size(); ++i) {

v[il = i;
cout« v[il;

)

/I works!
/I v i ii returns a reference clement i

We have achieved the convcnuo nal notation: v[il is interpreted as a (,I ll v.opcra­
lor[](i). and that returns a reference to v's clement number i.

18.4.1 Overloading on const
The operator[] () defined so far has a problem: it cannot be invoked fo r a cons t
vector. For example:

void {(const vector& cv)
{

double d = cv[l]; /I error, but should be fi ne
cv[l] = 2.0; 1/ error (as it should be)

)

TIle reason is our vector : :operator[]() could potentially change a vector. It doesn't,
butlhe compiler doesn't know mat because we "forgot" to tell it. 111e solution is to
provide a version mat is a const member function (see §9.7.4). "That's easily done:

class vector (
1/ . ..
double& operator[](int n) ; 1/ for non-canst vectors

1 a.s ARRAYS

double operator[J(inl n) const; II for const vectors
} ;

We obviollsly couldn't return a double& from the eonst version, so we re­
turned a double value. We could equally well have returned a const double &,
but since a double is a small object there would be no point in returning a refer­
ence (§8.5.6) so we decided to pass it back by value. We can now write:

void ff(const vector& cv, veclor& v)
(

)

double d = cv11l;
ev(l] = 2.0;
double d = v(I];
vl11 = 2.0;

/I fine (uses Ihe canst r])
/I error (uses the const I H
/I fine (uses the non -const III
/I fine (uses the non-conSI I II

Since veclors arc often passed by const reference, this const version of ope ra·
tor[] () is an essential addition.

18.5 Arrays
For a while, we have llsed amry to refer to a sequence of objects allocated on the
free store. We can also allocate arrays elsewhere as named variables. In fact, they
arc common

As global variables (but global variables are most often a bad idea)

As local variables (but arrays have serious limitations there)

As function arguments (but an array doesn't know its own size)

As class members (but member arrays can be hard to initialize).

Now, yOll might have detected that we have a not-50-subtle bias in favor of vectors
over arrays. Use vector where you have a choice - and you have a choice in most
contexts. However, arrays existed long before vectors and are roughly equivalent
to what is offered in aLher languages (notably e), so you must know arrays, and
know them well, to be able to cope with older code and with code written by peo­
ple who don't appreciate the advamages of vector.

So, what is an array? How do we defi ne an array? How do we use an array?
An (lrmy is a homogeneoLis sequence of objects alloc.-ued in contiguous memory;
that is, all clements of an array have the same type and there arc no gaps between
the objects of the sequence. The clements or an array are numbered from 0 up­
ward. Ll a declaration, an array is indicated by "square brackets":

consl int max = 100;
int gai[max]; II a global array (of 100 ;nts); "lives iorever"

627

628

void f(int nJ
(

)

char lac[20);
inllai(60)i
double ladln];
II .

CHAPTER 18 • VE CTO RS AND A RR AYS

II loca l array; " I ives~ until the end of scope

/I error: array size not a constant

Note the limitation: the number of clements of a named arm)' must be known at
compile time. If you want the number of eiClUclllS to be a variable, you mllst put
it on lhe free store and access it through a poimer. 'Tllat's what vector docs with
its array of clements.

J ust like the arrays on free store, we access named arrays using the subscript
and dereference operators (I J and .). For example:

void f2()

(

)

char lae(20);

lae[7] = 'a ' i
· Iac = 'b' ;

lac(- 21 = 'b' ;
lac(200] = 'e' ;

II local array; " lives'" until the end of scope

/I equivalent to lac IOI= 'b '

/I huh?
1/ huh?

111is function compilcs, but we know that "compiles" doesn't mean "works cor·
reedy." The use of [I is obvious, but there is no range checking, so f20 compiles,
and the result o f writing to lac[-21 and lacl2001 is (as for all out-of-range access)
usually disastrous. Don't do it. Arrays do not range check. Again, we arc dealing
directly Witll physical memory here; don't expect "system support."

But couldn't the compiler see that lac has just 20 clements so that lac(2001 is
an error? A compiler could , but as far as we know no production compiler does.
TIle problem is that keeping track of array bounds at compile time is impossible
in general, and catching errors in the simplest cases (like the one above) only is
no t very helpful .

18.5.1 Pointers to array elements
A pointer can point to an clement of an array. Consider:

double ad [1 0];
double- p = &adI51; II point to ad[51

18 .5 A RR AYS

We now have a pointer p to the double known as ad(51:

We can subscript and dereference lhat pointer:

. p =7;

pl'l = 6,
pl-31 = 9,

Wegct

TIlat is, we can subscript the pointer with both positive and negative numbers.
As long as the resulting clement is in range, all is well. However, access outside
the range or the array pointed imo is illegal (as with rree-Slore-allocated arrays;
see §17.4.3). Typically, access outside an array is not detected by the compiler and
(sooner or later) is d isastrous.

O nce a pointer points into an array, addition and subscripting can be used to
make it point to another clement or the array. For example:

p += 2; 1/ move p 2 c lements to the right

We get

And

p -= 5; II move p 5 clements to the left

629

CHAPTER 18 • VECTORS AND ARRAY S

We get

p:

Using +, - , +=, and -= to move pointers around is called painter tln·tflmctic. Obvi·
ollsly, if we do that, we have to take great care to ensure that the result is nOt a
pointer to memory outside the array:

p += 1000;
double d = .p;

. p = 12.34;

/I insane: p points into an array with just 10 e lements
/I illegal: probabl y a bad value
/I (definitely an unpredictable value)
/I illegal: probabl y scrambles some unknown data

Unfortunately, not all bad bugs involving pointer arithmetic are that easy to spot.
llle best policy is usually simply to avoid poinler arithmetic.

llle most common lise of poimer arithmetic is incrementing a pointer (using
++) to point to the next element and decrementing a pointer (using --) to point
to the previous element. For example, we could print the vallie of ad's elements
like this:

for (double· p = &ad[O]; p<&adll0] ; ++p) coul « . p « '\n ';

Or backward:

for (double* p = &ad[9]i p>=&ad [O]i --p) Coul« *p « '\n ' i

lllls use of pointer arithmetic is not uncommon. However, we find the last ("back·
ward") example quite easy to get wrong. Why &ad191 and not &ad[10]? \,yhy >=
and not >? These examples could equaUy well (and equally efficiently) be done
using subscripting. Such examples could be done equally well using subscripting
into a vedor, which is more easily range checked.

Note that most real·world uses of pointer arithmetic involve a pointer passed
as a runction argument. In that case, the compiler doesn 't have a clue how many
clements arc in the array pointed into: yOll are on your own. l1mt is a situation
we prefer to stay away from whenever we can.

Why docs C++ have (anow) pointer arithmetic at all? It can be such a bother
and doesn't provide anything new once we have subsclipting. For example:

18.5 ARRAY S

do uble p1 = &ad(O],
double· ,,2 = p1+7,
double" p3 = &pll71;
if (p2! = p3) coul « "impossible!\n";

Mainly, the reason is historical. TIlese n iles werc crafted for C decades ago and
can't be removed without brcaking a lot of code. Partly, there can be some con­
venience gained using pointer arithmetic in some important low· level applic<I '
lions, stich as memory managers.

18.5.2 Pointers and arrays
'The name of an array refers to all the clements of the array. Consider :

char ch(l00};

' Ille size of ch , sizeof(ch), is 100. However, lhe mune of an array tums into ("decays
to") a paimer with the slightest excuse. For example :

char · p = ch ,

Here p is initialized to &ch(O] and sizeof(p) is something like 4 (not 100).
TIlis can be useful . For example, consider a function strlenO that counts the

number of characters in a zero·tenninated array of characters:

int strlen(const char· p) /I similar to the standard library stden()
(

}

inl count = 0,
while (. p) (++counl , ++p;)
return counl ,

We can now call this with strlen (ch) as well as strlen (&chIO». You might point
out lhat this is a very minor notational advantage, and we'd have to agree.

One reason for having array names convert to pointers is to avoid acciden­
tally passing large amou nts of data by value. Consider :

inl slrlen (consl char am
(

int counl = 0;

II simi lar \0 the standard library strienO

while (a(count]) { ++(ounl;)
return count ,

}

631

632

char lois [l00000J;

void fO
{

)

int nchar = slrlen(lots);
/I . . .

C HAPTER 18 • VECTORS AND ARRAYS

Naively (and quite reasonably), you might expect this call to copy the 100,000
characters specified as the argument to sirlen(), blll mat's not what happens. In­
stead, lhe argument declaration char pll is considered equivalent to char· p and
the call strlen(lo ts) is considered equivalent to strlen(&lots[O)). 111is saves you
from an expensive copy operation, but it should surprise you. \lVhy should it sur­
prise you? Because in every other casc, when you pass an object and don't ex'
plicitly declare an argument to be passed by reference (§8.5.3-6), that object is
copied.

Note thal the pointer you get from treating the name of an array as a pointer
to its first clement is a value and not a variable, so you cannOl assign to it:

char ac[10];
ac = new char [20];
&ac[O] = new char [20];

/I error: no assignment to array name
II error: no assignmenllo pointer value

Finally! A problem that the compiler will catch!
As a consequence of this implicit array-name-to·pointer conversion, you can't

even copy arrays using assignment:

int x[looJ;
inl y{ loo];
II ...
X=Yi I/error
inl z[l oo] = y; /I error

~nl is is consistent, but often a bOlher. If yOll need to copy an array, you must
write some more elaborate code to do so. For example:

fa r (int i=O; i<loo; ++i) x(i]=y(i];
memcpy(x. y.1 00· sizeaf(i n I»;
capy(y.y+100, x);

/I copy' 00 ints
/I copy 1 OO'sizeof(int) bytes
Ilcopy 100 inls

Note thaI t.he C language doesn't. support anything like vector, so in C, you must
lise arrays extensively. 111is implies t.hat a lot of C++ code uses arrays (§27.1.2).
[n particular, C-style strings (zero-terminated arrays of characters; see §27.5) are
very common.

18 .5 ARRAYS

If wc want assignmcnt, wc havc to use somcthing like vector . TI1C vector
eCluivaicnt to the copying code above is

veclor<inl> x(100);
veclor<inl> y(100);
II.
x = y; /I copy 100 ints

18.5.3 Array initialization
Arrays have one significant advantage over vectors and Olhcr llser-defmcd con­
tainers: the C++ language provides notational support for the initialization of ar­
r-dyS . For example:

charac!l = "Beorn"; II array of 6 chars

Count those characters. TIlere arc five, but ac becomes an array of six characters
bccausc the compiler adds a temtinating zcro character at th e end of a string literal :

ac : I'B' I'e' I'o' I 'r' I'n'l 0 I
A zero·terminated string is the nonn in C and many systems. We call such a zero·
terminated array of characters a C-.st;·k .slrillg. All string literals arc C-sty lc strings.
For example:

char· pc = "Howdy"; /I pc points 10 an array of 6 chars

Graphically:

pc:

'H' '0' 'w' 'd' 'y' 0

Note that the char with the numcric vaiue 0 is not the character '0' or any other
letter or digit. The purpose of that temtinating zero is to allow functions to find
the end of tlle string. Remcmber: An array does not know its sizc. Relying on tlle
temtinating zero convention, we can write

int strlcn(const char- p)

{

}

int n = 0;
while (p [n l) Hn;
return n;

/I simi lar to the sta ndard library strfen()

634 CHAPTER 18 • VECTORS AND ARRAYS

Actually, we don't have to define slrlenO because it is a standard library function
defmed in the <slring .h> header (§27.S, §B.1O.3). Note that strlenO coums the
characters, but not the temlinating 0; that is, YOli need 11+ I chars LO SLOre /I char­
acters in a C-stylc string.

Only character arrays can be initialized by literal Slrings, but all arrays can be
initialized by a list of values of their e1emem type. For example:

inl a il] = { 1, 2, 3, 4, 5, 6};
int a i2(100) = { 0,1,2,3,4,5,6,7,8,9};
double ad(1001 = { };
char charsll = {'a', 'b' , 'e'}i

/I array of 6 inls
lithe last 90 elements are initialized to 0
/I all elements initia l ized to 0.0
/I no terminating O!

Note that the number of elements of ai is six (not seven) and the number of cle­
ments for chars is three (not four) - the "add a 0 at the end" rule is ror literal
character strings only. Ir an array isn't given a size, that size is deduced rrom the
initializer list. l1lat's a rather useful reature. Ir there arc rewer initializer valu$!s
than array clements (as in the definitions or ai2 and ad), the remaining elements
arc initialized by the element type's default value.

18.5.4 Pointer problems
Like arrays, pointers arc orten overused and misused. Orten, the problems people
get themselves into involve b oth pointers and arrays , so we'll summarize the
problems here. In particular, all ser ious problems with pointers involve trying to
access somcthing that isn' t an object or the expected type, and many or those
problems involve access outside the bounds or an array. Here we will consider

Access through the null pointer

Access through an uninirialized pointer

Access ofT the end or an array

Access to a deallocated object

Access to an object that has gone out of scope

In all cases, the practical problem ror the programmer is that the actual access
looks perrectly innocent; it is "just" that the pointer hasn't been given a value
that makes the usc valid. Worse (in the case or a write through the pointer), the
problem may manirest itselr only a long time later when some apparently unre­
lated object has been corrupted. Let's consider examples:

DOII 'I uaw Ihrough 1M lIull poil/ler:

int · p = 0;
·p=7; /I ouch!

18.5 ARRAY S

Obviollsly, in real-world programs, this typicaJly occurs when there is some code
in between the initialization and the usc. In particular, passing p lO a function or
receiving it as the result from a function arc common examples. We prefer not to
pass null poimers around, but if you have la, test for the null pointer before lise:

and

int o. p = fc,-Iha,-can_return_,,-O() ;
if (p==O) {

}

else {

}

II do something

/I use P
'p = 7;

void fcUhat_can_receive_a_O(int ' p)

{

if (p==O) {

}

else {

}

II do something

/I use P
"p = 7;

Using references (§17.9. 1) and using exceptions to signal errors (§S.6 and §19.5)
arc the main tools for avoiding l1ull pointers.

Do inili(l/ize)'our poiJ/lm :

int o. p;
. p = 9; II ouch!

In particular, don't forget to initialize pointers that arc class members.
Dml 'I acceJJ m:mexistl:1ll array elemellts:

inl a(10];

inl · p = &a(10];
"p=11 ; /lauch!
a(10) = 12; /I ouch!

635

'36 CH APTER 18 • VECTOR S AND ARRAY S

Be careful with the first and last elemenLS of a loop, and try not to pass arrays
around as poimcrs to their first elements. Instead usc vectors. If you really must
usc an array in morc than one function (passing it as an argument), then be extra
careful and pass its size along.

DOll'l access through a deleted po/iller:

int - p = new int(7);

/I . ..
d ele te Pi
/I . . .
• p = 13; II ouch!

TIle delete p or the code after it may have scribbled all over . p or used it for
something else. Of all of these problems, we consider this one the hardest to sys­
tcmatica11y avoid. The most effective defense against this problem is not to have
"naked" news that require "naked" de letes: lISC new and delete in constructors
and dCSlnlCLQfS o r lise a container, such as Vector_ref (§E.4), to handle deletes.

DOIl'1 return (l pointer to a {()(QI variable:

int · fO
(

}

/I . ..

int x=7;
II .
return &x;

int · p = fO;
/I . ..
• p = 15; !lauch!

TIle return from fO or the code after it may have scribbled all over . p o r used it
for something elsc. The reason for thal is that the local vmiablcs of a function arc
allocated (on the stack) upon entry to the function and deallocated again at the
exit from the function. In particular, desu-uctors arc called for local variables of
classes with destructors (§ 17.5. 1). Compilers could catch mOst problems related
to rCluming pointers 10 local variables, but few do.

Consider a logically equivalent example:

vector& ffO
(

vector x(7);

18 .6 EXAMPLES : PAliNDROME

II.
return x;
1/1he vector x is destroyed here

II.

vector& p = UO;
II . . .
p!41 = 15; 1/ ouch!

Qtite a rew compilers catch this variant or the return problem.
It is cOlllmon ror programmers to underesumate these problems. However,

many experienced programmers have been defeated by the innumerable varia­
tions and combinations o r these simple array and pointer problems. '11e soluuon
is nOt to litter your code with poimers, arrays, news, and deletes. If you do,
"being careful" simply isn't enough in realistically sized programs. Instead, rely
on vectors, RAJ! (" Resource Acquisition Is Initialization"; see § 19.5), and other
systematic approaches to the management or memory and other resources.

18.6 Examples: palindrome
Enough teclmical examples! Let's try a little puzzle. A palindrome is a word that is
spclled the same rrom both ends. For example, OIl11a, petep, and ma/a)'alllln are
palindromes, whereas ida and Ii()mesid are not. There are nvo basic ways or deter­
mining whether a word is a palindrome:

Make a copy of the letters in reverse order and compare that copy to the
original.

See ir thc fi rs t letler is the same as the last, then see ir lhe second letter is
the same as lhe second 10 last, and keep going until you reach the middle.

Here, we' ll take the second approach . 111ere arc many wa),s or expressing this
idea in code depending on how we represent the word and how we keep track or
how far we have come with the comparison or characters. We'll write a little pro­
gram that tests whether words arc palindromes in a rew different ways just to see
how different language features affect the way the code looks and works.

18.6.1 Palindromes using string
First, we try a version using the standard libraty string with int indices to keep
track of how rar we have come with Ollr comparison:

bool is_palindrome(const string& s)
{

int first = 0; 1/ index of firsl leiter

637

CHAPTER 18 • VECTORS AND AR RAYS

int last = s. lengthO- l; I/inde)(of last leller
while (first < last) (II we haven't reached the middle

if (s[first] !=s[last]) re turn fa lse;

)

++first;
-- last;

return true;

II move forward
II move backward

We return true if we reach the middle without finding a difference. We suggest
that you look at this code to convince yourself that it is correct when there arc no
letters in the string, just one letter in the string, an even number of letters in the
string, and an odd number of leIters in the string. Of course, we should not just
rely on logic to see that our code is conecl. We should also test. We can exercise
is_palindromeO like this:

int mainO
{

st ring s;
while (cin»s) (

cout «s« " is";

)

if (!is_palindrome(s)) co ut « " not";
cout «" a palindrome\n ";

Basically, the reason we are using a string is that "strings arc good for deal ing
with words:' It is simple to read a whitespace·separated word into a string, and a
string knows its size. Had we wanted to test is_palindromeO with strings contain·
ing whitespace, we cou ld have read using getlineO (§11.5). 111al would have
shown allllLl and as 4fjl Stl tO be palindromes.

18.6.2 Pa lindromes using arrays
What if we d idn't have strings (o r vecto rs), so that we had to use an array to
store the characters? Let's sec:

bool is_palindrome(const char sU, int n)

{
/I s points to the first character of an array of n characters

int first = 0;
int last = n-1;

II index of firs t letter
II index of last letter

18 .6 EXAMPL ES: PALINDROM E

while (first < last) (/I we haven't reached the middle
if (sl first)l=s[lasl» return fal se;
++first i
-- last;

return Irue ;

II move for.vard
1/ move backwa rd

To exercise is_palindromeO, we first have to get characters read into the array.
One way to do I.hat safely (i.e., without risk of overflowing the array) is like this:

istream& read_word(istream& is. char· buffer, int max)
II read at most ma)(- l characters from is into buffer

(

)

is.width(max) ;
is» buffe r;

return is;

II read al moSI max - l characters in the ne)(1 »
/I read whitespace-Ierminated word,
/I add zero after the last character read inlO p

Setting the istream 's width appropriately prevents buffer overflow for the next »
operation. Unfortunately, it also means that \\'e don't know if the read terminated
by whites pace or by the buffer being full (so that we need to read more charac­
ters). Also, who remembers the details of the behavior of widthO for input? TIle
standard library string and vector are really better as input buffers because they
expand to fi t the amount of input. The terminating 0 character is needed because
most popular operations on arrays of characters (e style strings) assume 0 termi­
nation. Using read_wordO we can write

int mainO
(

canst int max = 128;
char s[max];
while (read_word (cin,s,max)) {

co ut « s«" is";

)

if (! is_palindrome(s,strlen(s))) cout « " nol ";
co ut «" a palindrome\n";

TIle s(rlen(s) call rctums the number of characters in the array after the call of read_
wordO, and cout<<s outputs the characters in the array up to the tenninating o.

.,.

CH APTE R 18 • V ECTORS AND ARRAY S

We consider this "array solution" significantly messier than the "string solu­
tion," and it gets much worse if we try to seriously deal with the possibility of
long strings. See exercise 10.

18.6.3 Palindromes using pointers
Instead of using indices to identify characters, we could use pointers:

bool is_palindrome(const char· first , canst char· last)
II first points to the first leller, last to the last leller

{
while (first < last) (II we haven't reached the middle

if (O firsl!=o last) return fal se;
++first; II move forward
--last ; /I move backward

return tru e;
)

Note that we can actually increment and decremem pointers. Increment makes a
pointer point to the next clement of an array and decrement makes a pointer
point to the previous clement . If the array doesn 't have such a next clement or
previous clement, you have a serious uncaught out-of-range error. That's another
problem with pointers.

We call tlus is_palindromeO like this :

int mainO
{

)

canst int max = 128;
char sl max1;
while (read_word(cin ,s,max» (

coul « s«" is";

)

if (! is_palindrome(&sIOl,&s[slrlen(s)- l») coul «" nOI";
coul « " a palindrome\n";

Just for fUll , we rewTite is_palindrome() like this:

bool is_palindrome(const char· first, canst char · last)
/I firs t points to the first leller, last to the last leiter

{

(HAPTE R 18 ORl ll

if (lirsklasl) {
if (* firsl!=*last) return false ;
retu rn is_pali nd rom e(++fi rsl ,--Iasl) ;

)

return tru e;
)

111is code becomes obvious when we rephrase the definition of palilldrome: a word
is a Ih'llindrome if the first and the last characters arc the same and if the substring
you gel by removing the firs t and the last characters is a palindrome.

yI Drill

In Ulls chapter, we have two drills: one to exercise arrays and one to exercise vectors
in roughly u1e same maimer. Do both and compare ule efTon involved in each.

Array drill :

I. Define a global int array ga often ints initialized to 1, 2, 4, 8, 16, etc.
2. Define a function fO taking an int array argument and an int argument

indicating the number of elements in the array.
3. In fO :

a. Define a local int array la of ten inls.
b. Copy the values from ga into la .
C. Print OUl the elements of la.
d. Define a pointer p to int and initialize it with an array allocated on the

free store with the same number of clements as the argument array.
e. Copy the values from the argument array into the free·store array.
f. Print OUl the clements of the free,slore array.
g. Deallocate the free·store array.

4. In main ():
a. Call fO with ga as its argument.
h. Define an array aa with ten elements, and initialize it with ule fi rst ten

factorial values (1, 2·1, 3·2·1, 4*3·2·1, etc.).
C. Call fO with aa as its argument.

Standard library vector drill :

I. Define a global vector<inl> gv; initialize it with ten ints, 1, 2, 4, 8, 16. etc.
2. Define a function fO taking a vector<inl> argument.
3. In fO:

a. Define a local vector<inl> Iv with ule same number of clements as the
argument vector.

641

642 CHAPTER 1 B • VECTORS AND ARRAYS

h. Copy the values from gv intO Iv.
c. Print out lhe elements of Iv.
d. Defmc a local veclor<int> 1\12; initialize it to be a copy of the argu­

ment array.
e. Print Ollt the clements of Iv2.

4. In main() :
a . Gall fO with gv as its argumellt.
b . Define a ve ctor<int> vv, and initialize it with the first ten factorial val­

ues (I , 2* 1, 3*2*1 , 4*3"'2*1, etc.).
c. Call fO with vv as its argument.

Review
1. What does "Caveat cmptorl" mean?
2. What is the default meaning of copying for class objects?
3. When is the default meaning of copying of class objects appropriate?

When is it inappropriate?
4. What is a copy constructor?
5. ""hat is a copy assignment?
6. What is the difference between copy assignment and copy initialization?
7. What is shallow copy? What is deep copy?
8. How does the copy of a vector compare to its source?
9. What are the five "essential operations" for a class?

10. W hat is an explicit constructor? W here would you prefer one over the
(default) alternative?

11. W1tat operations may be invoked implicitly for a class object?
12. What is an array?
13. How do you copy an array?
14. How do you initialize an array?
15. When should you prefer a pointer argumem over a reference argument?

Why?
16. What is a C·style string?
17. What is a palindrome?

Terms

array
alTay initialization
copy asslgrunem
copy constructor

deep copy
default constructor
essential operations

explicit consnuClor
palindrome
shallow copy

CHAPTE R 18 EXERCISES

Exercises
1. Write a function, char· strdup(const char·), that copies a C-style string

into memory it allocates on the free store. Do not usc any sta.ndard library
functions. Do not use subscripting; usc the dereference operator · instead.

2. Write a function, char · findx(const char· s, const char · xl , that finds the
frrst occurrence of tile C ·style string x in s. Do not lise any standard library
functions. Do not lise subscripting; use tile dereference operator · instead.

3. Write a function, int slrcmp(co nst char· s1, const char· s2), that com­
pares C-style strings. Let it return a negative number if s1 is lexicograph­
ically before 52, zero if s1 equals s2, and a positive number if s1 is
lexicographically after s2. Do not usc any standard library functions. Do
not use subscripting; usc the dereference operator · instead.

4. Consider what happens if you give strdupO, findxO, and slrcmpO an ar­
gument that is not a C·style string. Try it! First figure out how to get a
char · that docsn't point to a zero-terminated array of characters and then
use it (never do this in real - non-experimental - code; it can create
havoc). Try with free -store-allocated and stack-allocated "fake C -style
strings." If the results still look reasonable, turn ofT debug mode. Re­
design and re-implement those three functions so that tlley take anotller
argument giving the ma.ximum number of elements allowed in argument
strings. 111el1, test that with correct C-style strings and "bad" strings.

5_ Write a function, string caCdot(const slring& s1, consl slring& s2), that con­
catenates twO strings witll a dot in between. For example, cat_dot{"Niels",
"Bohr") will retum a string containing Niels.8ohr.

6. Modify cat_dotO from the previous exercise to take a string to be lIsed as
the separator (rather than dot) as its third argument.

7. Write versions oCthe caCdot()s from the previous exercises to take C-style
strings as arguments and rctUl1l a free-store-allocated C-style string as tile
result. Do not use standard library functions or typcs in the implementa­
tion. Test these functions with several strings. Be sure to free (using delele)
all tile memory you allocated from free Store (using new). Compare the ef­
fon involved in tltis exercise with the effon involved for exercises 5 and 6.

8. Rewrite all the functions in §18.6 to use the approach of making a back­
ward copy of the string and then comparing; for example, lake "home" ,
generate "emoh", and compare those twO strings to see that they arc dif­
ferent, so home isn't a palindrome.

9. Consider tile memory layout in §173. Write a program that tells tllC order
in which static storage, tile stack, and the free store arc laid out in mem­
ory. In which direction does the stack grow: upward toward higher ad­
dresses or downward toward lower addresses? In an array on free store,
are clements with higher indices allocated at higher or lower addresses?

643

644 CHAPTER 18 • VECTORS AND ARRAYS

10. Look at the "array solution" to the palindrome problem in §lB.6.2. FIX it
to deal with long strings by (a) reporting if an input string was tOO long
and (b) allowing an arbitrarily long string. Comment on the complexity
of the tWO versions.

11. Look up (e.g. , on the web) skiJ) list and implement that kind oflist. 111is is
not an easy exercise.

12. Implement a version o f the game "Hulll the Wumpus." "H ulll the WUIll­
pus" (or just "Wump") is a simple (non·graphical) compliler game origi­
nally invented by Gregory Yob. The basic premise is that a rather smelly
monster lives in a dark cave consisting of connected rooms. Your job is to
slay the wumpus using bow and arrow. In addition to the wumpus, the
cave has two hazards: bottomless pits and giant bats. If you elller a room
with a bottomless pit, it 's the end of the game for you. If you enter a
room with a bat, the bat picks you up and drops you into another roolll.
If you enter the room with the wumpus or he enters yours, he eats you.
When you emer a room you will be told if a hazard is nearby:

"I smell the \'rompus": It 's in an adjoining roolll.

"I feel a breeze": One of the adjoining rooms is a bottomless pit.

"I hear a bat" : A giant bat is in an adjoining room.

For your convenience, rooms arc numbered. Every room is con­
nected by tUlUleiS to three other rooms. YV"hen entering a room, you are
tOld something like ';You are in room 12 ; there are mnnds to roolllS 1,
13, and 4; move or shoot?" Possible answers arc m13 (" Move to room
13") and s13-4-3 ("Shoot an arrow through rooms 13, 4, and 3"). The
range o f an arrow is three rooms. At the start of the game, yOll have five
arrows. The snag about shooling is that it wakes up the wumpus and he
moves to a room adjoining the o ne he was in - that could be your room.

Probably the trickiest part of the exercise is to make the c.we by select­
ing which rooms arc connected with which other rooms. You 'll probably
want to use a random number generator (e.g., randintO from sld_lib_fadl ­
Hies .h) to make different runs of the program lise different caves and to

move around the batS and the wumpus. Hint : Be sure to have a way to
produce a debug Output o f the state of the cave.

Postscript

The standard library vector is built from lower-level memory management facili­
ties, such as pointers and arrays, and its primary role is to help liS avoid the com­
plexities of those faci lities. YV"henever we design a class, we must consider
initialization, copying, and destruction.

.L

r 19

Vector, Templates, and
Exceptions

"Success is never fmal ."

-Winston Churchill

T his chapter completes the design and implementation of

the most common and most useful STL container : vector.

Here, we show how to implement comainers \vhere the number

of elements can vary, how to specify containers where the cle­

ment type is a parameter, and how to deal with range errors. As

usual, the techniques used are generally applicable, rather than

simply restricted to the implementation of vector, or even to the

implementation of containers. Basically, we show how to deal

safely with varying amoums of data of a variery of types. In ad­

dition, we add a few doses of realism as des ign lessons. The tech­

niques rely on templates and exceptions, so we show how to

dermc templates and give the basic techniques for resource man­

agcmem thal are the keys LO good usc of exceplions.

64.

CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPTION S

19.1 The problems

19.2 Changing size
19.2.1 Representation
19.2.2 reserve and capacity
19.2.3 resize
19.2.4 push_back
19.2.5 A.ssignment
19.2.6 Our vector so far

19.3 Templates
19.3.1 Types as template parameters
19.3.2 Generic programming
19.3.3 Containers and inheritance
' 9.3.4 Integers as template parameters
19.3.5 Template argument deduction
19.3.6 Generalizing vector

19.1 The problems

19.4 Range checking and exceptions
19.4.1 An aside : design considerations
19.4.2 A confession : macros

19.5 Resources and exceptions
19.5.1 Potential resource management

problems
19.5.2 Resource acquisition is

initialization
19.5.3 Guarantees
19.5.4 auto_ph
19.5.5 RAil for vector

At the end of Chapter 18, our vector reached the point where we can

Create vectors of double'precision floating·point elements (objects of
class vector) with whatever number of elements we want

Copy our vectors using assigmnent and initialization

Rely on vectors to correctly release their memory when they go Out of
scope

Access vector elements using the conventional subscript notation (on
both the right-hand side and the left·hand side of an assigmnent)

111at's all good and useful, but to reach the level of sophistication we expect
(based on experience with th e standard library vector), we need to address three
more concerns:

How do we change the size of a vector (change the number of clements)?

How do we catch and report Out-or-range vector element acccss?

How do we specify the element type or a vector as an argument?

For example, how do we define vector, so that this is legal:

vecfor<double> vd:
double d ;
while(cin» d) vd .push_back (d);

vector<char> vc(1oo);

II elemenls of Iype double

II grow vd to hold all the elements

II elements of type char

19.1 THE PROBLEMS

int n;
cin»n;
vc.resize(n); 1/ make vc have n elements

Obviously, it is nice and useful to have vectors that allow this, but why is it im­
portant from a programming poilll of view? What makes it interesting to some­
one collecting useful progranuning techniques for future use? We arc using two
kinds of nexibility. We have a single elllil"Y, the vector, for which we can vary two
things:

TIle number of elements

TIle type of elements

1110se kinds of variability arc useful in rather fu ndamental ways. We always col­
lect data. Looking around my desk, I see piles o f bank statements , credit card
bills, and phone bills. Each of those is basically a list of lines of information of
various types: strings ofleuers and numeric values. In front of me lies a phone; it
keeps lists of phone numbers and names. In the bookcases across the room, there
is shelf after shelf of books. Our programs tend to be similar: we have containers
of clements of various types. We have many dilTerem kinds of containers (vector
is j ust the most widely useful), and they contain infonnatioll such as phone num·
bers, names, transaction amounts, and documents. Essentially all the examples
from my desk and my room originated in some computer program or anOlher.
111e obvious exception is the phone: it is a computer, and when I look at the
numbers on it I'm looking at the output of a program JUSt like the ones we're
writing. In fact, those numbers may very well be stored in a veclor<Number>.

Obviollsly, not. all containers have the same number of elements. Could we
live with a vector that had its size fL'tcd by its initial definition; that is, could we
write our code without push_backO, resizeO, and equivalclll operations? Sure
we could, but that would put an UlU1ecessary burden on the programmer : the
basic trick for living with fLxed-size containers is to move the clements to a bigger
container when the number of clements grows tOO large for the initial size. For
example, we could read into a vector without. ever changing the size of a vector
like this :

1/ read elements into a vector without using push_back:
veclor<double>· p = new veclor<double>(10);
inl n = 0; 1/ number of elements
double d;
while(cin » d) {

if (n==p->size()) (
vector<double>· q = new vector<double>(p->sizeW2);
copy(p->begin (), p->end(), q->begin ());

647

...

}

}

(HAPTER 19 • VE CTOR , TEMPLATES, AND EX C EPTIONS

delete p;
p = q;

(·p)[n] = d i
++n;

'1131 '5 not prell)'. Are you convinced thai we gOI it right? How can you be sure?
NoLC how we suddenly started to use poimers and explicit melllory management.
What we did was to imitate the style of programming we have to usc when we
are "close to the machine," using only the basic memory management techniques
dealing with ftxed-size objects (arrays ; see § 18.5). One of the reasons to usc con­
tainers, such as vector, is to do better than that; that is, we want vector to handle
such size changes internally to save us - its users - the bother and the chance to
make mistakes. In other words, we prefer containers that can grow to hold the
exact number of elemenlS we happen to need. For example:

veclor<double> d ;
double d j
while(cin>>d) vd.push_back(dlj

Are such changes of size common? If they are not, facilities for changing size are
simply minor conveniences. However, such size changes are very commoll. The
most obvious example is reading an unknown number o f values from input.
Olher examples arc collecting a sel of results from a search (we don't in advance
know how many results there will be) and removing clements from a collection
one by one. Thus, the question is not whether we should handle sile changes for
containers, but how.

"Why do we bother with changing sizes at all? WIlY not "just alloc.,te enough
space and be done with it I"? That appears to be the simplest and most effi cient
strategy. H owever, it is that only if we can reliably allocate enough space without
allocating grossly too much space - and we can't. People who try that tend to
have to rewrite code (if they carefully and systematically checked for overflows)
and deal with disasters (if they were careless with their checking) .

Obviously, not all vectors have the same type of clements. \rVe need vectors of
doubles, temperature readings, records (o f various kinds), strings, operations,
CUI buttons, shapes, dates, pointers to windows, etc. The possibilities arc endless.

11lere arc many kinds of containers. This is an important point, and because
it has important implications it should be not be accepted without thought. 'Why
can 't all containers be vectors? If we could make do with a single kind of can·
tainer (e.g., vector), we could dispense with aIllhe concerns about how to pro­
gram it and just make it pan of me language. If we could make do with a single
kind of container, we needn't bother learning about different kinds of cOlllainers;
we'd just use vector all the lime.

19. 2 C HANG ING SIZE

Well , data structures are the key to most significant applications. There are
many thick and useful books abom how to organize data, and much of that in­
formation could be described as answers to the question "How do 1 best store my
data?" So, the answer is that we need many difTerem kinds of containers, but it is
too large a subject to adequately address here. However, we have already used
vectors and strings (a siring is a container of characters) extensively. In the next
chapters, we will see li sts, maps (a map is a tree of pairs of values), and matrices.
Because we need Illany d ifTerent containers, the language fcatures and program­
ming techniques needed to build and use containers arc widely useful. If fact, t.he
techniques we use to store and access data are among the most fundamental and
most useful for all nontrivial forms of computing.

At the most basic memory level, all objects arc of a fl ed size and no types
exist. What we do here is to introduce language facilities and programming tech·
niques that allow us to provide containers of objects of various types for which
we can vary the nUlllber of elements. 111is gives us a fundamentally useful de­
gree of nexibility and conveniencc.

19.2 Changing size
\.vhat facilities for changing size docs the standard library vecto r a fTer? It pro­
vides three simple operations. Given

vector<do uble> v(n)j /I v.sizeO==n

we can change its size in three ways:

v.resile(10)i

v = v2 j

/I v now has 10 elements

II add an elemenl wilh Ihe value 7 to the end of v
/I v.sizeO increases by 1

/I assign another vector; v is now a copy of v2
/I v.sizeO now equals v2.sizcO

TIle standard library vector offers more operations that can change a vector's
size, stich as eraseO and insert () (§B.4.7), but here we will just see how we ean
implement those three operations for our vecto r.

19.2.1 Representation
In §19.1 , we show the simplest strategy for changing size : just allocate space for
the new number of elements and copy the old elemellts into the new space. H ow­
ever, if you resize often, that 's inefficient. In practice, if we change the size once,
we usually do so many times. In particular, we rarely see JUSt o ne push_backO.

649

650 CHAPTER 19 • VECTOR , TEMPLATES , AND EXCE PTI O NS

So, we can optimize our programs by anticipating such changes in size. In fact, all
vector implementations keep track of both the number of elements and an
amount of "free spacen reserved for "future expansion." Fo r example:

class vector {

/I number of elements
/I address of fi rst element

int SZ;

double e lem;
inl space; /I number of elements plus "free space"rSIOIS"

II for new elements (" the current allocation")

publi c:
1/ ...

} ;

We can represent this graphically like this :

sz:
elem:

space:

. -_. -_ ... ------'.
Free space

0 : , 5%: (uninitialized) ::i-{;::O , "1 r- .. !
~ Ele.ments --- -- --- •• - •••••••••••••• ------.---- -.~r -­

(initialized)
' .. '. ---. -. ------... .. ---_. -_. _. -_ ' .' -'

Since we count elements starting with 0, we represent sz (the number of cle­
ments) as referring La one beyond the last clement and space as referring to one
beyond the last allocated slot. The pointers shown are really e lem+sz and
elem+space.

VVhen a vector is first constmcted, space is 0:

sz :
e lem:

space :

---------------. -.

-.... -._-_ .. _------
We don' t Start allocating eXLra slots until we begin changing the number of c1e­
mellls. Typically, space==sz, so there is no memory overhead unless we use
push_backO.

The default constmctor (creating a vector with no clements) sets all three
members to 0:

vector : :vectorO :sz(O), elem(O), space(O) { }

19 .2 CHANGING SIZE

111at gives
_____ ._0 ___ 0_ .. _ ...

sz:
elem:

space: §
. · .. L .
--- ---- ----- -.. ..; :

" "1" --

..
------_. ----.-

~nlm one-beyond-the-end clement is completely imaginary. The default constructor
docs no free-store alloc.'luon and occupies minimal storage (but see exercise 16)_

Please note that Ollr vector illustrates techniques that can be used to imple­
ment a standard vector (and other data structures), but a fair amount of freedom
is given to standard library implementations so that std: :vector on your system
may usc different techniques.

19.2.2 reserve and capacity
"l1le most fundamental operation when we change sizes (that is, when we change
the number of clements) is vector: :reserve() _ That's the operation we usc to add
space for new elements:

void vector: :reserve(int newalloc)
{

)

if (newalloc<=s pace) return ;
double p = new double[newallocli
for (int i=Oi kSZi ++i) plil = e lem[i]i
delete[J elemi
elem = Pi
space = newalloc;

II never decrease allocalion
II allocate new space
1/ copy old elements
1/ deallocate old space

Note that we don't initialize the clements of the reserved space. After all, we arc
just reserving space; using that space for clements is the job of push_backO and
resizeO.

Obviously the amount of free space available in a vector can be of interest to

a user, so we (like the standard) provide a member function for obtaining thm
information:

int vector: :capacityO const { return space; }

'1113t is, ror a vector callcd v, v.capacityO-v.sizeO is the number of clements we
could push_backO to v without causing reallocation.

651

.52 (HAPTER 19 • VECTOR , TEMPLATES , AND EX C EPTI O NS

19.2.3 resize
Given reserveO, implementing resize() for ollr vector is fairly simple. 'A'e have to
handle several cases:

TIle new size is larger than the old allocation.

TIle new size is larger than the old size, but smaller than or equal to the
old allocation.

The new size is equaJ to the old size.

The new size is smaller than the old size.

Let's sec what we get:

void vector:: resize(int newsize)

{

)

/I make (he vector have newsize elements
/I initialize each new element with the default value 0.0

rese rve(newsize);
ror (int i=SZi i<newsize; •• i) elem[i] = 0;

5Z = news ize;
/I initialize new elements

We let reserveO do the hard work of dealing with memory. The loop initializes
new clements (if there are any).

We didn't explicitly deal with any cases here, but you can verify lhat all are
handled correcliy nevenheless.

TRY THI S

What cases do we need to consider (and test) if we want to convince our­
selves that this resizeO is correct? How about newsize == o? How about
newsize ==-77?

19.2.4 push_back
When we first think of it, push_backO may appear complicated to implement,
but given reserveO it is quile simple:

void vector: :push_back(double d)

)

1/ increase vector size by one; initialize the new clement with d

if (space==O) reserve(8);
else if (52==space) reserve(2*space);

elemlszJ = d ; /I add d at end

1/ starr with space for 8 clements

1/ get more space

++52; /I increase the size (sz is the number of clements)

19.2 CHANGI NG SIZE

In other words, if we have no spare space, we double me size of lhe allocation. In
practice that turns out to be a very good choice for the vast majority of uses of
vector, and that's the strategy used by most implementations of lhe standard Ii·
brary vector.

19.2.5 Assignment
We could have defined vector assignment in several different ways. For example,
we could have decided mat assignment was legal only if the two vectors involved
had the same number of eiemellls. However, in §18.2.2 we decided that vector
assigmllelll should have the most general and arguably the most obvious mean­
ing: after assignment v1 =v2 , the vector v1 is a copy of v2. Consider:

V2:

Obviously, we need to copy the clements, but what about lhe spare space? Do we
"copy- the "free space" at the end? We don't: me new vector \-vill get a copy of
the clements, but since we have no idea how that new vector is going to be used,
we don 't bother with extra space at the end:

V2:

111e simplest implementation of that is:

Allocate memory for a copy.

Copy the clements.

Delete the old allocation.

Set the sz, elem, and space to the new values.

654 C HAPTER 19 • VECTO R, TEMPLATE S, AND EX CEPT ION S

Like this :

vector& vector: :operalor=(const vector& a)

{

)

II like copy constructor, but we must deal with old elements

double- p = new double[a.sz];
for (int i = 0; ka.sz; ++i) p[i] = a.eJem[i] ;
delete[J elem;
space = 5Z = a.5Z;
clem = p;
return "'this;

II allocate new space
/I copy clements
1/ dea llocate old space
1/ sel new size
II set new elements

/I return self-reference

By convention, an assignment operator returns a reference to the object assigned
to. The notation for that is ·this, which is explained in § 17. 1O.

This implementation is correct, but when we look at it a bit we realize that
we do a lot of redundant allocation and dcallocatiol1. \¥hat if the vedor we as­
sign to has morc elements man the one we assign? \¥hal if the vector we assign
to has the same nu mber of elements as the vector we assign? In many applica­
tions, that last case is very common. In either case, we can just copy the clements
into space already available in the target vector :

veclor& vector: :operator=(consl vector& a)
{

)

if (this==&a) return · this; /I self-assignment, no work needed

if (a.u:<=space) { /I enough space, no need for ne\v allocation
for (int i = 0; ka.sz; ++i) elem[i] = a.elem[i]; /I copy elements
sz = a,sz;
re turn - this;

)

double* p = new double[a .szli
for (int i = 0; ka .sz; ++i) p[il = a .elem[il;
deletell elem;
space = sz = a.sz;
e lem = Pi
re turn ·this;

/I allocate new space
/I copy elements
/I deallocate old space
/I set new size
/I set new elements
/I return a self-reference

Here, we fi rs t test for self-reference (e.g., v=v); in that case, we just do nOlhing.
~fbat test is logically redundant bu t sometimes a significant optimization. It docs,

19.2 CHANG ING SIZ E

however, show a common usc of the this poimcr checking if t.he argument a is the
same object as the object for which a member function (here, operalor=O) was
called. Please convince yourself that this code actually works if we remove the
Ihis==&a line. The a.sz<=space is also just an optimization. Please convince
yourself t.hat this code actually works if we remove the a.sz<=space case.

19.2.6 Our vector so far
Now we have ill1 almost real vector of doubles:

II an almost rcal vector of doubles:
class vector {
/ ,

' /

invariant:
for O<=n<sz eleml nl is clement n
sz<=space;
if SZ<slhlce there is space for (space- sz) doubles after elemlsz- l1

inl SZ ;
do uble· ele m;
inl space;

/I the size
/I pointer to the elements (or 0)

/I number of elements plus number of free slots
public :

) ;

veclorO : sz(O), elem(O), space(O) { }
veclor(int s) :sz(s), elem(new double[s]), space(s)
{

for (inl i=O ; i<sz; Hi) e lemlil=O;
)

veclor(consl vector&);
veclor& o pe ralor=(const veclo r&);

- veclor() (delele[] elem;)

/I elements are initia lized

/I copy constructor
/I copy assignment

/I destructor

double& operator[](int n) { relurn elem[n); } /I access
const double& operator{l(int n) const (return e lem[n); }

int sizeO const (return sz;)
int capadtyO const (return space;)

void resize(int newsize) ;
void push_back(double d);
vo id reserve(int newalloc);

II growth

655

656 (HA PTE R 19 • VECTO R, TEMPLATES , AND EXCEPTIONS

Note how it has the: essential operations (§ l S.3): constructor, defauh conStmctor,
copy operations, destructor. It has an operation for accessing data (subscripting:
II) and for providing information about that data (si:teO and capacilyO), and for
controlling growth (resize(), push_backO, and reserveO).

19.3 Templates
Blit we do n', just want vectors of do ubles; we want to freely specify the clement
type for OUf veclars. For example:

veclor<double>
veclor<inl>
veclor<Month>
vector<Window">
vector< vector<Record> >
vector<char>

II vector o(pointers to Windows
/I vector of vectors of Records

To do that, we must sec how to define templates. We have used templates from
day one, bUll/mil now we haven 't had a need to define one. The standard library
provides what we have needed so far, but we muslll 't believe in magic, so we
need to examine how the designers and implememers of the standard library pro­
vided facilities sllch as the vedor type and the sortO function (§2 1.1 , §B.5.4).
This is not just o f theoretical interest, because - as usual - the tools and tech­
niques lIsed for the standard library are among the most usefu l for our own code.
For example, in C hapters 2 1 and 22, we show how templates can be used for im­
plementing the standard library containers and algorithms. In Chapter 24, we
show how to design matrices for scientific computation.

Basically, a template is a mechanism that allows a progranuner to use types as
parameters for a class or a runn ion. ~rne compiler then generates a specific class
or function when we later provide specific types as arguments.

19.3.1 Types as template parameters
''''e wam to make the clement type a parameter to vector. So we take our veclor
and replace do uble with T where T is a parameter that can be given "values" such
as double , inl, Siring, veclor<Record>, and Window· . TIle C++ notation ror in­
troducing a type parameter T is lemplale<class T> prefix, meaning "ror all types
T." For c.xample:

/Ian almost real vector ofTs:
template<class T> class veClor (

inl51:; /I the size
/I read "for all types T~ (just like in math)

19 .3 TEMPLATE S

Pele m;
inl space;

public:

/I a pointer 10 Ihe elements
/1 size+free_space

vectorO : sz(O), elem(O), space(O) { }
vector(int s);

vecto r(co nst vecto r&):
vector& o perator=(const vector&);

.... vecto rO {deletell ele m; }

/I copy constructor
/I copy assignment

/I destructor

T& o pe rato r{J(i nt n) { return el em[n]; } /I access; return reference
const T& o perator[J(inl n) const { return ele m[n}: }

) ;

int size() const (return sz;)
int ca pacityO const { relurn space: }

void resize(inl newsize);
vo id push_back(consl T& d):
void reserve(inl newalloc);

/I the current size

/I growth

lnat's just our vector of do ubles from § 19.2.6 with double replaced by the tem­
plate parameter T. Wc can usc this class template ve cto r Like this:

vector<double> vd :
veclor<inl> vi :
vector<do uble> vpd:

/I T is double
/lTisint
/I T is double-

vector< vecto r<int> > vvi : /I T is vector<int>, in which T is int

One way of thinking about what a compiler does when we lise a template is that
it generates the class with the actual type (the template argument) in place of the
template parameter. For example, when the compiler sees vecto r<char> in the
code, it (somewhere) generates sOlllelhing like this:

class vector_char (
int sz: /I the size
char· elem: /I a pointer to the elements

/I size+free_space int space:
publ ic :

vecto r_char();
vecto r_char(int s):

657

658

) ;

(HAI'TER 19 • VECTO R, TEMPL ATES, AND EXCEPT IONS

vector_char(const vectol_char&); II copy constructor
vectof_char& operator=(const vector_char &); /I copy assignment

II destructor

char& operatorll (int n); II access: return reference
const char& operator[J (int n) const;

int sizeO const;
int capacityO const;

void resize(int newsize);
void push_back{const char& d);
void reserve(int newallac);

II the current size

1/ growth

For vector<double>, the compiler generates roughly the vector (of double) from
§ 19.2.6 (using a suitable internal name meaning vector<double» .

Sometimes, we call a class template a type generator. The process of generating
types (classes) from a class temptate given template arguments is called Jpea"aliuz­
(ioll or template install/ill/wlI. For example, vector<char> and vector<Poly_line · > are
said to be specializations o r vector. In simple cases, such as our vector, instantia­
tion is a pretty simple process . In the most general and advanced cases, template
instantiation is horrendously complicated. Fortunately r01" the user o r templates,
that complexity is in the domain or the compiler writer, not the template user.
Template instantiation (generation or template specializations) takes place a t com­
pile lime or link time, not at lUn time.

Naturally, we can usc member functions of such a class template. For example:

void fc t(vector<string>& v)
(

)

inl n = v.sizeO;
v.push_back("Norah");
II .

\-\Thcn such a member function of a class template is used, the compiler generates the
appropriate function. For ex.'l.Illple, when the compiler sees v.push_back("Norah"), it
generates a function

void vector<slring>:: push_back(const slring& d) {/ • . .. • /}

19.3 TEMPLATES

from the template definition

te mplale<c1ass T> void vecto r<T> : :push_back(const T& d) {/- ... -/ };

TImt way, there is a function for v.push_back("No rah") to call. 1.11 other words,
when you need a function for a given argument type, the compiler will write it
for you based on its template.

Instead of writing template<class T>, you can write template<type name T>.
TIle two constlUCts mean exactly the same thing, but some prefer typename "be·
cause it is clearer" and "because nobody gets confused by typename thinking
that you can't use a built-in type, such as int, as a template argument." We are of
the opinion that class already means type, so it makes no difference. Also, class is
shorter.

19.3.2 Generic programming
Templates arc the basis fo r generic programming in C++. In fact , the simplest
definition of "generic programming" in C++ is "using templates." TImt definition
is a bit tOO simpleminded, though. We should not define fundamental program­
ming conccpts in terms o f programming language features. Programming lan­
guage features exist to support programming techniques - not the other way
arou nd . As with most popular notions, there are many definitions o f "generic
programming." We think that the most useful simple definition is

Gt7lCic programming: Writing code that works with a variety o f types pre­
sented as arguments, as long as those argument types meet specific syntactic
and semantic requirements.

For example, the clements of a vector must be of a type that we can copy (by copy
constrllction and copy assiglilllent), and in Chapters 20 and 21 we will see teill '
plates that require arithmetic operations on their arguments. When what we para·
mctelizc is a class, we get a daJJ lemplale, what is often called a param~/eriud fJfx or a
JxmlJllel~7ized cla.JJ. When what we parameterize is a function, we get a jill/clio" lem­
plale, what is often called a parameterized jimclioll and sometimes also called an algo­
rilll1ll. TIlliS, generic progranuning is sometimes referred to as "algorithm-oriented
programming" ; the focus of the design is more tlle algoritluns than the data types
they use.

Since the notion of parameterized types is so central to programming, let's
explore the somewhat bewildering tenllinology a bit further. ~nlat way we have a
chance not to get too confused when we meet such notions in other contexts.

~fbis form of generic programming relying on explicit tcmplate parameters is
often c.'llled paralfl£tric pol),morphism. In contrast, the polymorphism you get from
using class hierarchies and virtual functions is called ad hoc po/prwrp/tiJrn and that style

65.

660 CHA PTER 19 • VEC TOR, TEMPL ATES , AND EXCEPTIONS

of programming is called objed-orinl1td programming (§14.3-4). TIle rcason that both
styles o f programming are called polymmphum is that each style relies on the pro­
granuner to presclll many versions of a concept by a single intClfacc. EVI)"nl)lpllism is
Greek for "many shapes:' referring to the many differe1ll types you can manipUlate
Lhrough a conunon interface. In the Shape examples from Chapters 16- 19 we liter·
ally accessed many shapes (such as Text, Circle, and Polygon) through the interface
defined by Shape. \¥hen we use vecfors, we usc many vecfors (such as vector<inl>,
vedor<double>, and vector<Shape» through the interface defined by the veclor
template.

There are several differences between object-oriented programming (using
class hierarchies and virtual functions) and generic programming (using telll­
plates). TIle most obvious is that the choice of function invoked when you usc
generic programming is determined by the compiler at compile tinIe, whereas for
object-oriented programming, it is not detennined until nm time. For example:

v.push_back(x);
s.draw();

/I put J(into the vector v

/I draw the shape s

For v.push_back(x) the compiler will determine the element type for v and usc
the appropriate push_backO, but for s.d raw() the compiler will indirectly call
some drawO function (using s's vtbl ; see § 14.3. 1). llis gives object-Oliemed pro­
granuning a degree of freedom that generic programming lacks , but leaves run­
of-the-mill generic programming more regular, easier to understand, and betler
performing (hence the "ad hoc" and "parametric" labels).

To sum up:

Gmerlc programming: supported by templates, relying on compile-time
resolution

Oijul-<mcTlled programmillg: supported by class hierarchies and virtual
functions, relying on run-time resolution

Combinations of the two are possible and useful. For example:

void draw_all(vedor<Shape">& v)
{

for (inl i=O; i<v.size(); ++i) v(i1->draw();
)

Here we call a virtual function (drawO) on a base class (Shape) using a virtual
function - that's certainly object-oriented programming. However, we also kept
Shapc"s in a vcctor, which is a parameterized type, so we also used (simple)
genenc programmlllg.

19.3 TEM PLATES

So - assuming you have had your fill of philosophy for now - what do peo-
ple actually use templates for? For unsurpassed nexibility and perfomlance,

Usc templates where performance is essential (e.g. , numerics and hard
real time ; see Chapters 24 and 25).

Usc templates where nc.x.ibility in combining information from several
types is essential (e.g. , the C++ standard library; see Chapters 20-21).

Templmes have many useful properties, such as great nexibility and near·optimal
performance, but unfortunately they arc not perfect. As usual, the benefits have
corresponding weaknesses. For templates, the main problem is that the flexibility
and performance come at the cost of poor separation between the "inside" of a
template (its definition) and its interface (its declaration). 111is manifests itself in
poor error diagnostics - often spectacularly poor error messages. Sometimes,
these error messages come much later in the compilation process than we would
prefer.

\OVhen compiling a usc of a template, the compiler "looks into" the template
and also into the template argument types. It does so to gel lhe infonnation to
generate optimal code. To have all that information available, current compilers
tend to require that a template must be fu lly defined wherever it is used . 11lat i.n·
cludes all of its member functions and all template functions called from those.
Consequently, template writers tcnd to place template definitions in header fLies.
~nlis is not actually required by mc standard, but until improved implementa·
tions are widely available, we recommend that yOll do so for your own tem·
plates: place the definition of any template that is to be used in more than one
translation unit in a header fLie.

Initially, write only very simple templates yourself and proceed carefully w
gain experience. One useful development technique is to do as we did for vector :
First develop and test a class using specific types. Once that works , replace the
specific types with template parameters. Use template-based libraries, such as the
C++ standard library, for generality, type safety, and performance. Chapters 20
and 2 1 arc devoted to the containers and algorithms of the standard library and
will give yOli examples of the use of templatcs.

19.3.3 Containers and inheritance
111ere is one kind of combination of object·oriented programming and generic
programming lhat people always try, but it does n'l work : attempting to use a
container of objects of a derived class as a container of objects of a base class. For
example:

vector<S hape> vs;
vector<Circ1e> vc;

66'

662 CHAPTER 19 • VECTOR, TEMPLATES, AND EXCEPT IONS

\IS = ve ; /I error: vector<Shape> required
void f(vector<Shape>&);
fIve) ; /I error: veclor<Shape> required

But why not? After all, YOli say, I can convert a Ci rcle to a Shape! Actually, no ,
you can'l. You can convert a Circle- to a Shape* and a Circle& to a Shape&, but
we deliberately disabled assignment of Shapes, so that YOli wouldn't have to
wonde r what would happen if you put a Circle with a radius into a Shape vari­
able 11m doesn't have a radius (§ 14.2.4). What would have happened - had we
allowed it - would have been what is called "slicing" and is the class object equiv­
alent to integer truncation (§3.9.2).

So we try again using pointers:

veclor<Shape-> vps;
vector<Circle*> VpC;

vps = "pc; II error: veclor<Shape" > required
void f(vector<Shape*>&);
f(vpc) ; II error: vector<Shape" > required

Again , the type system resists; why? Consider what f() might do:

void f(veclor<Shape*>& v)
{

v. push_back (new Reciangle(Poi n I (0,0), Point(1 00, 1 00»);
)

Obviously, we can put a Reclangle· into a veclor<S hape*>. However, if that
veclor<Shape*> was elsewhere cons idered to be a vector<Circle*>, someone
would get a nasty surprise. In particular, had the compiler accepted the example
above, what would a Rectangle* be doing in vpc? Inheritance is a powerru l and
subtle mechanism and templates do not implicitly extend its reach. 111ere are
ways or using tem plates to express inheritance, but they are beyond the scope or
this book. Just remember that "0 is a B" docs not imply "c<o> is a C" ror an
arbitrary template C - and we should value that as a protection against acciden­
tal type violatio ns. See also §25.4.4.

19.3.4 Integers as template parameters
Obviollsly, it is userul to parameterize classes with types. How about parameter­
izing classes with "other things," such as integer val ues and string values? Basi­
cally, any kind or argument can be useful, but we'll consider only type and
integer parameters. Otller kinds o r parameters are less rrequently use rul , and
C++'s support ror o ther kinds or parameters is sucll that their usc requires qu ite
detailed knowledge or language reatures.

19.3 TEMPLATES

Consider an example of the most common use of an integer value as a tem­
plate argument, a container where the number of elements is known at compile
time:

templale<class T, inl N> slrucl array {
T e lem(NJi /I hold elements in member array

1/ rely on the default constructors, destructor, and assignment

T& operalor(J (int n); /I access: return reference
canst T& ope rato r[J (int nl consl;

yo dataO { return elem; } /I conversion to y-
canst yo dataO consl { return elem; }

int sizeO consl {return N; }
) ;

We can use array (see also §20.7) like this:

array<inl ,256> gb; 1/256 integers
array<dou ble,6> ad = {O.O, 1.1, 2.2, 3.3, 4.4, 5.5}; /I note the initializer!
const inl max = 1024;

void some_fel(inl n)
(

array<char,mao loc;
array<char,n> oops; 1/ error: the value of n not known to compiler
II . ..

)

array<char,mao loc2 = lOCi
II . ..
lac = 10c2;
II . ..

1/ make backup copy

II restore

Clearly, array is very simple - much simpler and less powerful than vecto r - so
why would anyone want to use an array rather than a vector? One answer is "ef­
ficiency." We know the size of an array at compile time, so t.he compiler can allo­
cate static memory (for global objects, such as gb) and stack memory (for local
objects, such as loc) rather than using the free store. When we do range check­
ing, the checks can be against constants (the size parameter X). For most pro­
grams the efficiency improvement is insignificant, but if you are writing a crucial
system component, such as a network driver, even a small diJTerence can matter.

66J

664 CHAPTE R 19 • VE CTO R, TEMPLATES , AND EXCE PT IONS

More importantly, some programs simply can't he allowed to use free stOre. Such
programs are typically embedded systems programs and/or safcty-cri ticru pro­
grams (sec C hapter 25). In such programs, array gives us many of the advantages
o f vecto r without violating a critical restriction (no free-store use).

Let 'S ask the opposite question: not "Why can't we just usc vector?" but
"Why notjusl usc built-in arrays?" As we saw in §18.5, arrays can be rather ill
behaved : they don't know their own size, they convert to pointers at the slightest
provocation, they don't copy properly; array does n't have those problems. For
example :

double · p = ad ;
do uble · q = ad.dataO;

/I error: no implicit conversion to pointer
/I OK: explicit conversion

template<class C> void prinloul(const C& c)
{

fo r (in I i = 0; i<c.size(); ++i) cout « cli l « '\n' ;
}

lllis printoutO can be called by an array as well as a vecto r:

printout(ad);
vector<int> vi ;
/I . ..
printout(vi);

II call with array

II call with vector

111is is a simple example of generic programming applied to data access. It works
because the interface used for array and vector (sizeO and subscripting) is the
same. C hapters 20 and 21 will explore this style of programming in some detail.

19.3.5 Template argument deduction
For a class template, you specify the template arguments when yOli create an ob·
ject of some specific class . For example:

array<char,1024> buf;
array<double,lO> b2;

IIforbuf, T ischarand N is 1024
II for b2 , T is double and N is 10

For a function template, the compiler usually deduces the template arguments
from the function argu menlS. For example:

lemplale<class T, inl N> \loid fil l(array<T,N>& b, consl T& val)
{

fo r (inl i = 0; i<N; ++i) b[i) = val ;
}

19 .3 TEMP LATES

void to
{

till (buf, 'x');

fill (b2,0.0);

}

/I for nllo, T is char and N is 1024
/I because Ihafs what buf has
/I for fi ll(), T is double and N is 10
/I because that's what b2 has

Technically, fill{buf, 'x') is shorthand for filkchar, 1024>(buf, 'x ') , and fill (b2,0) is
shorthand for filkdouble ,10>(b2,O), but fonunately we don't o ften have to be
that specific . "n le compiler figures it out for us.

19.3.6 Generalizing vector
\¥hen we generalized vector from a class "vector of double" to a template "vector
of T," we didn't review the definitions of push_backO, resizeO, and reserveO. We
must do that now because as they are defined in §19.2.2 and §19.2.3 they make
assumptions that are tme for doubles, but not lme for all lYJ>CS that we'd like to
use as vector element types:

How do we handle a vector<x> where X doesn't have a default vaJue?

How do we ensure that elements are destroyed when we are fi nished
with them?

Must we solve those problems? We could say, "Don't try to make vectors of
types without default values" and "Don't use vectors for types with destructors
in ways that cause problems." For a facility that is aimed at "general use," such re·
strictions arc annoying to users and give the impression that the designer hasn 't
thought the problem through or doesn't really care about lIsers. Often, such SllS­

picions are correCl, but the designers of the standard library didn' t leave these
warts in place. To mirror the standard library vector, we must solve these two
problems.

We can handle types withollt a default by giving the user the option to spec­
ify the value to be used when we need a "default vaIue" :

template<class T> void veclor<T>: :resize(int newsize, T def = T(»;

That is, use TO as the default value unless the user says otherwise. For example:

vector<double> vl ;
vl . resize(l00);
vl .resize(200, 0.0);
v1. resize(300, 1.0);

/I add 100 copies of double(), that is, 0.0
II add 100 copies of 0.0 - menlioning 0 .0 is redundanl
/I add 100 copies of 1.0

665

... C HAPTER 19 • VECTOR , TEMPLATE S, AND EXCEPTIONS

struct No_default (
No_defau lt(int); /I the only constructor for No_default
/I . ..

};

veclor<No_defaull> v2(10);
vectof<No_defaull> v3;
v3. resize(1(M), No_default(2»;
v3 .resize(200);

lIerror: tries to make 10 No_default(~

/1 add 100 copies of No_default(2)
/I error: tries to make 100 No_def;lUItOS

~nle dcstnlctor problem is harder to address. Basically, we need to deal with
something really awkward: a data structure consisting of some initialized data
and some uninitialized data. So far, we have gone a long way to avoid uninitial­
izcd data and the programming errors that usually accompany it. Now - as illl­
p[emcntcrs o f vector - we have to face that problem so thal we - as users o f
veclor - don 't have to in our applications.

First, we need to find a way o f getting and manipulating uninitialized storage.
Fortunately, the standard library provides a class allocator, which provides unini­
tialir.ed memory. A slightly simplified version looks like this :

template<class T> class allocato r (
public :

};

II . . .
P allocate(int n); /I allocate space for n objects of type T
void dealiocate(T· p, in t n) ; II deallocate n objects of type T starting at p

void construct(P p, const T& v);
void destroy(P p);

/I construct a T with the value v in p
1/ destroy the T in p

Should you need the full story, have a look in The C++ Programming Language,
<memory> (§B. l.l), or the standard. However, what is prescnted here shows the
four fundamental operators that allow us to

Allocate memory of a size suitable to hold an object of type T without
initializing

Construct an object of type T in uninitialized space

Destroy an object of type T, thus retllmillg its space to the unillitialized
stale

Deallocate uninitialized space of a size suitable for an object of type T

19 .3 TEMPLATE S

Unsurprisingly, an all ocator is exactly what we need ror implememing vec­
tor<T>: : reserveO. We start by giving vector an allocator parameter:

template<class T, class A = aliocator<T> > class vector (

);

A alloc; II use allocate to handle memory for elements
II ...

Except rOJ" providing an allocmor - ,md using the standard one by ddault instead
or using new - all is as berm·e. As users or vector, we can ignore allocators until
we find ourselves needing a vector that manages memory ror its elements in
some unusual way. As imp1cmenters or vector and as students trying to under­
stand rundamental problems and learn rundamental techniques, we must see
how a vector can deal with ulunitialized memory and presem properly con­
structed objects to its users. TIle only code affected is vector member runctions
that directly deal with memory, such as vector<T>:: reserve() :

templale<class T, class A>
void veclor<T,A>: :reserve(inl newalloc)
(

if (newalloc<=s pace) return ; 1/ never decrease allocation
1* p = alloc.allocale(newalloc); 1/ allocate new space
for (inl i=O; i<sz; ++i) alloc.construcl(&p[iJ,elem[iJ); 1/ copy
for (inl i=O; ksz; ++i) alloc.destroy(&elem[i]), /I destroy
alloc.deallocale(elem,space); /I deallocate old space
clem = p;
space = newalloc;

)

We move an clement to the new space by constructing a copy in uninitialized
space and then destroying the original. We can't use ass ignment because ror
types such as SIring, assig.mlCllt assu mes that t.he target area has been initialized.

Given reserveO, vector<T,A>:: j>ush_backO is simple to wTite:

templale<class T, class A>
void vector<T,A>: : push_back(const T& val)
(

)

if (space==O) reserve(8),
e lse if (sz==space) reserve(2·space);
a 1I0c. co nslrucl(&elem[sz], val) ;
++SZ;

/I start with space for 8 elements
/I get morc space
/I add val at end
1/ increase the size

66'

... CHAPTER 19 • VECTO R, TEMPLATES, AND EXCE PTIONS

Similarly, veclor<T,A>: : resize() is nOt too difficult:

template<class T, class A>
void vector<T,A>: :resize(int newsize, T val = TO)
(

reserve(newsize);
for (int i=sz; knewsize; ++i) alloc.construcI (&elem[il,val) ; 1/ construci
for (int i = newsize; k sz; ++i) alloc.deslroy(&elem[i)) ; II destroy
5Z = newsize;

)

Note that because some types do not have a default constmctor, we again pro­
vide the option to supply a value to be lIsed as an initial value for new clemenLS.

The other new thing here is the destruction of "surplus clements" in the case
where we are resizing to a smaller vector. Think of the destructor as turning a
typed object imo "raw memory."

"Messing with allOCalors" is pretty advanced stuff, and tricky. Leave it alone
until you are ready to become an expert.

19.4 Range checking and exceptions
We look at our vector so far and fmd (with horror?) that access isn't range checked.
The implementation of operator[) is simply

template<class T, class A> T& vector<T,A>: :operator[](int nl
(

return elcm[n);

So, consider:

vector<int> v(100) ;
v[- 200] = v[2001; /I oops!
int i;
cin»i;
v[i] = 999; /I maul an arbitrary memory local ion

111is code compiles and runs, accessing memory not owned by our vector. This
could mean big trouble! In a real prognun, such code is unacceptable. Let 'S try to
improve our vector to deal with this problem. The simplest approach would be
to add a checked access operation, called at() :

19.4 RANGE CH ECKING AND EX CEPTIONS

slruct oUI_oCrange { r ... " ' }; /I class used 10 reporl range access errors

lemplate<class T, class A = aliocalo r<T> > class vector (
/I . ..

} ;

T& al(inl n);
const T& at(inl n) const;

T& o pe ralorl1(inl n);
consl T& o pe ralo r(Hinl n) consl;
/I.

/I checked access
/I checked access

/I unchecked access
" unchecked access

lemplate<d ass T, class A > T& veclo r<T,A>: :at(int n)
(

}

if (n<O II sz<=n) throw o uCoLrangeO;
relurn elem[n];

Icmplate<d ass T, class A > T& vecto r<T,A>: :operator[1(inl n) /I as before
(

return clem[n];
)

Given that, we could write

void prinCsome(veclor<inl>& v)
(

}

inl i=-1;
d n » i;
while(i!= - t) try {

cout « "vl" « i « "]==" «v.at(i)« "\n";

catch(ouCoCrange) {
cout « "bad index: » « i « "\n";

Here, we use at() to get range-checked access and we calch o UI_oLrange in case
of an illegal access.

TIle general idea is to usc subscripting with r I when we know that we have a
valid index and alO when we might have an out-of-range index.

.. ,

67. (HAPTER 19 • VEC TOR, TEMPLATES, AND EXCEPTIONS

19.4.1 An aside: design considerations
So far, so good , but why d idn't we just add the range check to operatorllO? Well,
the standard library vector provides checked all) and unchecked operatorllO as
shown here. Let's try to explain how that makes some sense. There arc basically
fOllr arguments:

I . Cmnpatibi1if)': People have been using unchecked subscripting since long
before C++ had exceptions.

2. EjJioouy: You can build a checked-access operator on top an optimally
fast unchecked-access operator, but you cannOt build an optimally fas t
access operator on lOp of a d lccked-access opcralor.

3. Cnu/minl.J: In some environments, exceptions arc unacceptable.

4. OptiO/Ul/ checkillg: lllC standard doesn't actually say that you can't range
check vector, so if you want checking, usc an implementation that checks.

19.4.1.1 Compat ibility
People rcally, really don't like to have their old code break. For example, if yOll
have a Ill.illion lines o f code, it could be a very costly affair to rework it all to usc
exceptio ns correctly. We can argue tllat the code would be better for the extra
work, but then we are not the ones who have to pay (in time o r money). Furtller'
1U0re, maintainers of existing code usually argue that unchecked code may be un·
safe in plinciple, but their particular code has been tested and used for years and
all the bugs have already been found . We can be skeptical about tlmt argument,
but again nobody who hasn't had to make such decisions about real code should
be tOO judgmental. Naturally, there was no code using the standard library vector
before it was introduced into the C++ standard, but there were many millions of
lilles of code tllat used very similar vectors tlmt (being pre·standard) didn't usc ex·
ceptions. Much of tlmt code was latcr modified to use the standard .

19.4.1 .2 Efficiency

Yes, range chccking can be a burden in extreme cases, such as buffers for net·
work interfaces and matrices in high·performance scientific computations. How·
ever, the cost o f range checking is rarely a concern in the kind o f "ordinary
computing" that most of us spend most of our time on. TI1lIS, we recommend
and usc a range·checked implementation of vector whenever we can.

19.4.1.3 Constraints
Again, the argument holds for some progranmlers and some applications. In fact,
it holds for a whole lot of programmers and shouldn't be lightly ignored. How·
ever, if you arc starting a new program in an environment that doesn't involve
hard real lime (sec §25.2.1), prefer exceptio n·based error handl ing and range~
checked vectors.

19.4 RANG E CH EC KING AND EXCEPTION S

19.4.1.4 Optional checking
111e ISO C++ standard simply states that oUl-of-range vector access is not guar­
anteed to have any specific semantics , and that such access should be avoided. It
is perfectly standards-conforming to throw an exception when a program tries an
out-of-range access. So, if you like vector to throw and don't need to be con·
cerned by the fIrst three reasons for a particular application, use a range-checked
implementation of vector . 11mt's what we arc doing for this book.

The long and the short of this is that real-world design can be messier than
we would prefer, but there are ways of coping.

19.4.2 A confession: macros
Like our vector, most implementations of the standard library vector don't guar­
antee to range check the subscript operator (II) but provide atO that checks. So
where d id those sid : :OuI_oCrange exceptions in our programs come from? Basi­
cally, we chose "option 4" from §19.4.1: a vector implementation is not obliged
to range check [1, but it is not prohibited from doing so either, so we arranged for
checking to be done. What you might have been using is our debug version,
called Vector, which does check [J . That's what we use when we develop code. It
cuts down on errors and debug time at little cost to performance :

struct Range_error: out_oCrange { II enhanced vectOf range errOf reporting
int index;
Range_error(int i) :ou l...oCrange(" Range error"), index(i) ()

} ;

template<c1ass T> slruct Vector : public sId: :vector<T> {
typedef type name sid: :vector<T>: :size_type size_type ;

};

VectorO { }
Vector(size_type n) :std: :vector<T>(n) ()
Vector(size_type n, const T& v) :std : :vector<T>(n,v) {}

T& operator[](unsigned int i) /I rather than return at(i);
(

}

if (kOlllhis->s ize()<=i) throw Range_error(i);
return std : :vector<T>: :ope rator[](i) ;

const T& operator[J(unsigned int i) const
(

jf (kOllthis->size()<=i) throw Range_error(i);
return std : :vector<T>: :operator[J(i);

671

672 CHAPTER 19 • VEC TOR , TEM P LATE S, AND EXC EPTI O N S

We use Range_error to make the olTending index available for debugging.
The typedef introduces a convenient synonym; see §20.5.

11lis Vector is very simple, arguably too simple, bm it has been useful in debug­
ging nonuivial programs. ~nlC a1tcmalive is to use a systematically checked imple­
mentation of the complete standard library vector - in fact , that lIury indeed be what
you have been using; we have no way of knowing exactly what degree of checking
your compiler and library provide (beyond what the standard guarantees).

In std_lib_faci lilies. h, we use the nasty trick (a macro substitution) of redefin­
ing vector to mean Vector :

1/ disgusting macro hack to get a range-checked vector:
#define vector Vector

That means that whenever yOlI wrote vector, the compiler saw Vector. ' 1lis trick
is nasty because what you see looking at the code is not what the compiler sees. In
real-world code, macros are a signifi cant source of obscure errors (§27.8, §A.17).

We did the same to provide range-checked access for string.
Unfortunately, there is no standard, portable, and clean way of gelling range

checking from an implementation of vector's [1. It is, however, possible to do a
much cleaner and more complete job of a range-checked vector (and string) Ulan
we did. H owever, that usually involves replacement of a vendor's standard Ii·
brary implementation, adjus ting installation options, or messing with standard Ii·
brary source code. None of those options is appropriate for a beginner's first
week of programming - and we used string in Chapter 2.

19.5 Resources and exceptions
So, vector can UITOW exceptions, and we reconunend that when a function cannot
perfonn its required action, it throws an exception to tellUlat to iLS callers (Chap­
tcr 5). Now is the time to consider what to do when we write code ulat must deal
with exceptions Ulrowll by vector operations ,md other functions Ulat we calL TIle
naive answer - "Use a try-block LO catch the exception, write an error message,
and ulen terminate the program" - is tOO crudc for mOSt nontrivial systems.

One of the fundamental principles of progranuning is that if we acquire a fe·
source, we must - somehow, direcuy or indirectly - return it to whatever part of
the system manages that rcSOLLrce. Examples of resources are

Memory

Lock>

Fmc handles

"nlrcad handles

Sockets

Windows

! 9.5 RE SO U RC ES AND EXCEPT!O NS

Basically, we define a resource as something that is acquired and must be given
back (released) or reclaimed by some "resource manager." TIle simplest example
is free-store memory that we acquire using new and return to the free store using
de lete . For example:

void suspicious(int S, int xl
{

int- p = new jnl[S]i 1/ acqui re memory
/I ...
delete[] Pi 1/ release memory

)

As we saw in §17.4.6, we have to remember to release the memory, and that's not
always easy to do. "\¥hen we add exceptions to the picture, resource leaks can be­
come colllmon; all it takes is ignorance or some lack of care. In particular, we
view code, such as suspiciousO, that explicit1y uses new and assigns the resulting
pointer to a local variable wit1l great suspicion .

19.5 .1 Potential resource management problems
One reason for suspicion of apparent1y innocuous pointer assignments such as

int - p = new inl[s] i 1/ acqui re memory

is that it can be hard to verify t.hat the new has a corresponding delete. At least
suspiciousO has a de lete[] Pi statement that might release the memory, but let's
i.magine a few things that might cause that release not to happen. "\¥hat could we
put in the ... pan to cause a memory leak? TIle problematic examples we find
should give you cause for thought aJld make you suspicious of such code. They
should also make you appreciate the simple and powerful alternative to such code.

Maybe p no longer points to the object when we gel to the de lete:

void suspicio us(int S, int xl
{

int · p = new int[s]i /I acquire memory
/I.
if (x) P = q; II make p point to another object
1/ . ..
deleteD p; 1/ release memory

We put that if (xj t11ere to be Sllre that you couldn't know whether we had
changed the value of p. Maybe we never get to the de lete :

674 CHAPTER 19 • VECTOR , TEMPLATE S, AND EX CEPTION S

void suspicious(int 5, int xl
{

int - p = new int[s); II acquire memory
1/ . . .
if (x) return ;

1/ . . .
deletelJ Pi /I release memory

Maybe we never get to lhe delete because we threw an exception:

void suspiciousOnt 5, inl x)
{

)

inl· p = new intis}; /I acquire memory
veClor< int:> V;
1/ . ..
if (x) p ix) = v.at{x);

/I . ..
de le le{) Pi /I release memory

It is this last possibility thal concerns us most here. When people first encounter
this problem, they lend to consider it a problem with exceptions rather than a re­
SOLlrce management problem. Having misdassified the roOl cause, they come up
with a solution that involves catching the exception:

void suspicious(int 5, int xlI/messy code
{

)

int · p = new inI[5]; II acquire memory
vector<int:> Vi

1/ . ..
try {

if (x) p ix) = v.at(x);

1/ . . .
} catch (.. .) {

deletell Pi
throWi

)

1/ . . .
dele le[] Pi

/I catch every exception
/I release memory
/I re-throw Ihe exceplion

/I release memory

19 .5 RESO URCES AND EXCEPTIONS

'nlis solves the problem at the cost of some added code and a duplication of the
resource release code (here, dele teU p;). In other words, this solution is ugly;
worse, it doesn't generalize well. Consider acquiring more resources:

void suspicious(vector<inb& v, int s)
{

)

int - p = new intIs1 ;
vector<inbv1;
1/ . ..
int - q = new intIs];
vector<double> v2;
/I . ..
deletell p;
delete[J q ;

Note that if new fails to find free-store memory to allocate, it will throw the stan­
dard library exception bad_alloc. 111e try ... catch technique works for this ex­
ample also, but you' ll need several try-blocks, and the code is repetitive and ugly.
We don't like repeti tive and ugly code because "repetitive" translates into code
that is a maintenance hazard, and "ugly" translates into code that is hard to get
right, hard to read, and a maintenance hazard.

TRY TH IS

Add try-blocks to this last exam ple to ensure that all resources are properly
released in all cases where an exception might be thrown.

19.5.2 Resource acquisition is initialization
Fortunately, we don' t need to plaster our code with complicaLCd try ... catch
statements to deal with potential resource leaks. Consider:

void f(veclor<int>& v, int s)
{

)

vector<int> p(s);
veclor<int> q(s);
/I ..

TIlis is better. More impoltantly, it is obuiousiy better. TIle resource (here, free-store
memory) is acquired by a COl1strucLOr and released by the matching destructor.

'75

676 CHAPTE R 19 • VECTOR , TEMPLATES , AND EX CE PTI ONS

\OVc actually solved tills particular "exception problem" when we solved the mem­
ory leak problems for vectors. The solution is general ; it applies to aU kinds of re­
sources: acquire a resource in the constructor for some object that manages it, and
release it again in the m atching dcslrucLOr. Examples of resources that arc usually
best dealt with in tills way include database locks, sockets, and 110 buffers
(ioslreams docs it for you). 111is technique is usually referred to by th e awkward
phrase "Resource Acquisition Is Initialization," abbreviated to RAIL

Consider the example above. \Nh.ichevcr way we leave fO, lhe destructors for
p and q are invoked appropriately: since p and q aren't pointers, we GUl' 1. assign to
them, a re turn statemclll will not prcvcllllhc inv()C;1.tion of dcstmctors, and neilher
will thro\vi.ng an exception. 11lis general mle holds: when lhe thread of execution
leavcs a scope, the destructors for every fully constructed object and sub-object are
invoked. An object is considered constnlcted when its constmctor completes. E.'\{.
ploring the detailed implications of those two Statements might cause a headache,
but they simply mean that construcl'Ors and dcstmctors arc invoked as needed.

In panicu lar, use vector rather than explicit new and de lete when you need
a nonconstant amount of storage within a scope.

19.5.3 Guarantees
\Vhat can we do where we can 't keep the vector within a single scope (and its
sub·scofx:s)? For example:

vector<int>· make_vecO /I make a filler! vector
{

}

vector<int>* p = new vector<int>; /I we allocate on frcc store
1/ . . . filil he vector with data; Ihis may throw an exception ...
return Pi

111is is an example of a common kind o f code: we call a fUJ1Ction to constmct a
complicated data st.mcture and retum that data structure as the result. 111e snag
is that if an exception is thrown while "ftlling" the vector, make_vecO leaks that
vector. An unrelated problem is that if the function succeeds, someone will have
to delete the object retumed by make_vecO (see §17.4.6).

We can add a try·block to deal with the possibility of a throw :

vector<int>* make_vecO /I make a filled vector
{

veclo r<int>* p = new veclo r<int>; /I we allocate on free store
try {

}

/I fill the vector with data; this may throw an exception
return Pi

19 .5 RESOUR CES AND EX CEPTIONS

)

catch (...) {
delete p;
throw;

)

/I do our local cleanup
/I re-throw to allow our caller to deal with the (act
/I thaI some_functionO couldn't do what was
/I required of it

111is ma ke_vecO function illustrates a very common sty le of error handling: it
tries to do its job and if it can't, it cleans up any local resources (here the vecto r
on the free store) and indicates failure by throwing an exception. Here, the excep­
tion thrown is one that some other function (vector: :atO) threw; make_vecO sim­
ply re-throws it using th row; . ~nlis is a simple and effective way of dealing with
errors and can be used systematically.

7M basic guarantee: The purpose of the try ... catch code is to enSLIre that
make_vecO either sLicceeds or throws an exception without having
leaked any resources_ Tllat's often called the basic guaranlee. All code that
is part of a program that we expect to recover from an exception throw
should provide the basic guarantee_ All standard library code provides
the basic guarantee.

The strong guamlllee: If, in addition to providing the basic guarantee, a
function also ensures that all observable values (aU values not local to
lhe function) arc the same after failure as they were when we called the
function, lhat function is said lO provide the strong guamntee. The strong
guaramee is the ideal when we wrile a function: either the function suc­
ceeded at doing everything it was asked to do or else nothing happened
except lhat an exception was thrown to indicate failure.

rhe no-throw guarantee: Unless we could do simple operations without any
risk of failing and throwing an exception, we would not be able to ,mte
code 1O meet the basic guarantee and the strong guarantee. Fortunately,
essentially all built-in facilities in C++ provide the no-throw guarantee:
they simply can 't throw. To avoid throwing, simply avoid throw itself,
new, and dynami c_cast of referencc types (§A.5_7).

Tlle basic guarantee and the strong guarantee arc most useful for thinking about
corrcclIless of programs. RAl I is essential for implementing code wnnen accord­
ing to those ideals simply and with high pcrfonnance. For more detailed infoTUla­
tion see Appcndi." E of The C++ Itogrmnmulg La1lguage.

Naturally, we should always avoid undefined (and usually disastrous) opera­
tions, such as dereferencing 0, dividing by 0, and accessing an array beyond its
range_ Catching exceptions docs nOl save you from violations of the fundamental
language rules.

678 CHAPTER 19 • VECTOR , TEMPLATES , AND EXCEPTIONS

19.5.4 auto_plr
So, make_vecO is a useful kind of function that obeys the basic !Ulcs for good re­
source management in the presence of exceptions. It provides the basic guarantee
- as all good funClions should when we want to recover from exception throws.
Unless something nasty is done with nonlocal data in the "fill the vCCLOr with
data" pan, it even provides the strong guarantee. However, that Iry ... catch code
is still ugly. The solution is obvious: somehow we must lise RAlI ; that is, we
need to provide an object to hold that vector<int> so that it can delete lhc vector
if an exception occurs. In <memory>, the standard library provides the auto_pt,
for that:

veclor<int>* make_vecO /I make a filled vector
(

)

auto_ptr< vector<int> > p(new vector<int»; II allocate on free store
II fi ll the vector with data; this may throw an exception
relurn p.release() ; II return the pointer held by p

An auto_plr is simply an object thal holds a pointer for you within a function.
We immediately initiaJize it with the object we got from new. You can use - > and
• on an aulo_ptr exactly like a pointer (e.g., p-> at(2) or (· p).at(2»), so we think
of auto_ptr as a kind of pointer. However, don't copy an auto_ph without first
reading the auto_ptr documentation ; the semantics o f auto_plr arc d ifferent from
those o f every other lype you have seen. TIle releaseO operation tcJls the
auto_plr to give us our ordinary pointer back, so that we can retum that pointer
and so that the auto_plr doesn't destroy lhe object pointed to when we retum. If
you feci tempted to use aUlo_ptr in more intercstillg ways (e.g. , to copy one), re­
sist that temptation. Holding a pointer to guarantee deletion at the end of a scope
is what aUlo_ptr is for, and other uses require you to master some rather special­
ized skills. 1llls auto_ptr is a very specialized facility to handle examples like this
last version o f make_vecO simply and efficiently. In particular, auto_plr allows us
to repeat our recommendation to look upon explicit try-blocks with suspicion;
most can be replaced by some variant of the "Resource Acquisition Is Initializa­
tion" tedmique_

19.5.5 RAil for vector
Even using a smart pointer, such as auto_ptr, may seem to be a bit ad hoc. How
can we be sure that \ ... ·e have spolled all pointers that requ ire protection? How can
we be sure that we have released all pointers to objects that should not be de­
stroyed at the end of a scope? Consider reserveO from § 19.3.5:

19.5 RESO U RCES AND EXCEPT IONS

template<class T, class A>
void vector<T,A>: : reserve(int newalloc)
{

if (newalloc<=space) return ;
p p = alloc.allocate(newalloc);

/I never decrease allocation
/I allocate new space

for (int i=O; ksz; ++i) alloc.construcU&p[i],elemliJ); II copy

for (int i=O ; ksz; ++i) alloc.destroy(&elemfiJ); /I dewoy

alloc.deallocate(elem,s pace);
elem= p;

/I deallocate old space

space = newalloc;

Note that the copy operation for an old clement, alloc.constru ct(&p[ij,elem[iJ) ,
might throw an exception. So, p is an example of the problem \ .. "e warned about
in §195. 1. Ouch! We could apply the auto_plr solution . A better solution is to
step back and realize that "memory for a vector" is a resource; that is, we can de­
fine a class vector_base to represent the fundamental concept we have been using
all the time, the picture with the three clements defining a vector's memory use:

--
sz:

e lem:
space:

0: sz-l : .

=t--C::o-'''''''''''''''''''.-r: ': T::: : : : :: :: ::: :::: :] ::; : ,:
Elements

(initialized)

In code, that is (after adding the allocator for completeness)

template<class T, class A>
struct vector_base {

);

A alloc; /I allocator
Pelem;
inl SZ;

int space;

/I start of allocation
/I number of elements
/I amount of allocated space

vector_base(const A& a, int n)
: alloc(a), e lem(a.allocale(n)), sz(n), space(n) { }

-vector_baseO (alloc.deallocate(elem,space); }

"

680 CHAPTER 19 • VECTOR , TEMPLATES, AND EXCEPTIONS

Note that vector_base deals with memory rather than (typed) objects. Our
vector implementation can usc that LO hold objects of the desired clement type.
Basically, vector is simply a convenient interface to vector_base :

templale<class T, class A = allocator<T> >
class vector : private vecto,_basc<T,A> {
public:

1/ . .
);

We can then rewrite reserveO to something simpler and morc correct:

template<class T, class A>
void veclor<T,A>: : reserve(inl newallac)
{

if (newalloc<=space) rctu rn; II never decrease allocation
vecto,_base<T,A> b(alloc,newal loc); II allocate new space
for (int i=Oj ksz; ++i) alloc,conSlruel(&b ,elem[iJ,elem[i])i 1/ copy
for (int j=Oj kszj ++i) alloc,deslroy(&elem[i]); 1/ destroy old
swap< vector_base<T,A> >(·this,b); /I swap representations

\,yhen we exit reserveO, the old allocation is automatically freed by vector_base's
destmclOr - even if that exit is caused by the copy operation thro\\,j.ng an excep­
tion. The swapO function is a standard library algorithm (from <algorithm» that
exchanges the value o f twO objects. We used swap< vectof_base<T,A> >(·this,b)
rather than the simpler swap(- this,b) because - this and b are of different types
(vector and vector_base, respectively), so we had to be explicit about which swap
specialization we wanted.

TRY THIS

Modify reserve to use auto_ptr. Remember to release before returning.
Compare that solution to the vector_base one. Consider which is easier to
write and which is easier to get correct.

CHAPTER 19 REVIEW

~ Drill

I. Defme template<class T> shud S {T val; }; .
2. Add a constmcLOr, so that you can initialize with a T.
3. Deftne variables of types S<int>, S<char>, S<double>, S<string>, and S<

vedor<int> >; initialize them with values of your choice.
4. Read those values and print them.
5. Add a function template getO that retums a reference to val.
6. Put the definition of getO outside the class.
7. Make val private.
8. Do 4 again using getO.
9. Add a sel() function template so that you can change val.

to. Replace getO and setO with an operator[1.
11. Provide const and non-co nst versions of operator[j .
12. Define a function template<class T> read_val(T& v) that reads from cin

into v.
13. Use read_ valO to read into each of the variables from 3 except the

S< vector<int> > variable.
14. Bonus: Define template<class T> oslream& operalor« (oslream&, vec-

10r<1>&) so that read_valO will also handle the S< vector<int> > variable.

Remember to test after each step.

Review

I. Why would we want to change the size of a vector?
2. "Vhy \\'ould we want to have d ifferent element typCS for d ifferent veclors?
3. Why don't we just always define a vector with a large enough size for all

eventualities?
4. How much spare space do we allocate for a new vector?
5. When must we copy vector elements to a new location?
6. Which vector operations can change the size of a vector after construction?
7. What is the value of a vector after a copy?
8. Which two operations defme copy for vector?
9. What is the default meaning of copy for class objects?

10. What is a template?
11 . What are the two most useful types of template arguments?
12. What is generic programming?
13. How does generic programming differ from objeCt-orienled programming?

68'

682 C H APTE R 19 • VEC TOR , TEMPLATES , AND EXCEPTIONS

14. How does array differ from vecto r?
15. How does a rray differ from the built·in array?
16. How docs resizeO differ from reserve()?
17. \"'hat is a resource? Define and give examples.
18. What is a resource leak?
19. What is RAIl? What problem does it address?
20. What is auto_plr good for?

Terms

#define
atO
auto_ptr
basic guaramee
exception
guarantees
IIlstanuauon

Exercises

macro
push_backO
RAIl
resizeO
resource
re-throw
self-ass ignment

specialization
strong guarantee
template
template parameter
this
throw;

For each exercise, create and test (with output) a couple of objects o f the defined
classes to demonstrate that your design and implementation actually do what yOll
think they do. Where exceptions are involved , this can require careful thought
about where enoTS can occur.

1. Write a template function lhat adds a vector of clements o f an object of
any type to which clements can be added.

2. Write a template function that takes a vector<T> vt and a vector<U> vu
as arguments and retums the sum of all vt[iJ -vulils.

3. Write a template class Pair that can hold a pair of values of any type. Use
this to implement a simple symbol table like the one we used in the cal·
culator (§7.8).

4 . Modiry class link from §17.9.3 to be a template with the type o f value as
the template argument. Then redo exercise 13 from Chapter 17 with
link<God>.

5. Defme a class Int having a single member of class int. Define construc·
tors , assigmnem, and operators +, - , . , I ror it. Test it, and improve its de­
sign as needed (e.g. , define operators « and » for convenient 1/0).

6. Repeat the previous exercise, but wilh a class Numbe r<T> where T can
be any numeric type. Try adding % to Numbe r and see what happens
when you try to use % for Numbe r<double> and Number<int>.

7. Try your solution to exercise 2 with some Numbers.

CHAPTER 19 EXERCI SES

8. Implement an allocator (§19.3.6) using the basic alloc.-ttion functions
maliocO and freeO (§B.1O.4). Get vector as defined by the end of §I9.4
to work for a few simple test cases.

9. Re-implement veclor::operator= () (§I9.2.5) using an allocator (§ I9.3.6)
for lllelllOlY management.

10. Implement a simple auto_ph supporting only a constructor, destructor,
->, *, and release() . In particular, don't try to implement an assignment
or a copy constructor.

11. Design and implement a counted_ptr<T> that is a type that holds a
pointer to an object of type T and a pointer to a "usc count" (an int)
shared by all counted pointers to the same object of type T. The use
count should hold the number of counted pointers pointing to a given T.
Let the counted_ptr's constructor allocate a T object and a usc coum on
the free store. Give the counted_ph an initial value for the T. ' '''hen the
last counted_ph for a T is destroyed, counted_ptr's destructOr should
delele t..he T. Give the counted_ph operations that allow us to use it as a
pointer. "Dlis is an example of a "smart pointer" used to ensure that an
object doesn't get destroyed lIntil after its last user has stopped using it.
Write a set of test cases for counted_plr using it as an argument in calls,
container elements, etc.

12. Define a File_hand le class with a constructor that takes a string argu­
ment (the me name), opens the me in the constructor, and closes it in the
destructor.

13. Write a Tracer class where its constructor prints a string and its deslluc­
tor prints a string. Give the strings as constructor arguments. Usc it to
see where RAI l management objects will do their job (i.e. , experiment
with Tracers as local objects, member objects, global objects, objects allo­
cated by new, etc.). Then add a copy constructor and a copy assignment
sO that you can lise Tracer objects to sec when copying is done.

14. Provide a GU I interface and a bit of graphical output to the "Hunt the
Wumpus" game from the exercises in Chapter 18. Take the input in an
input box and display a map of thc part of the cave currently known to
lhe player in a window.

15. Modify the program from the previous exercise to allow the user to mark
rooms based on knowledge and guesses, such as "maybc bats" and "bot­
tonuess pit."

16. Sometimes, it is desirable tlmt an empty vector be as small as possible.
For example, someone might use vector< vector< vector<inl> > > a lot,
but have most clement veClors empty. Define a vector so that sizeoHvec­
tor<inb)==sizeof(int ·), that is, so that the vector itself consists oluy of a
pointcr to a rcpresentation consisting of tllC elements, tlle number of ele­
ments, and the space pointer.

683

584 CHAPTER 19 • VECTOR, TEMPLATE S, AND EX C EPTI ONS

Postscript

Templates and exceptions arc immensely powerful language features. They sup­
port programming techniques of great flexibility - mostly by allowing people to
separate conccOlS, that is, to deal with olle problem at a time. For example, using
templatcs, we can defme a container, such as vector, separately from t.he ddini­
lion of an element type. Similarly, using exceptions , we can write the code that
detects and signals an crror separately from the code that handles that ClTor. '11C
third major theme of this chapter, changing the size of a vector, can be seen in a
similar light: push_backO, resizeO, and reserveO allow us to separate the defini­
tion of a vector from the specification of its size.

\:1. .

,.. 20

Containers and Iterators

"Write programs that do one thing
and do it welL Write programs

to work together."

-Doug M cilroy

T his chapter and the next present the S1L, the containers

and algorithms part of the C++ standard library. 111C STL

is an extensible framework for dealing with data in a C++ pro­

gram. Mter a rlfSl simple example, we prescm the general ideals

and the fundamemal concepts. We discuss iteration, linked-list

manipulation, and STL containers. The key notions of sequence

and iterator are used to lie containers (data) together with algo­

rithms (process ing). This chapter lays the groundwork for the

general , efficient, and useful algorithms presented in the next

chapter. As an example, it also presents a framework for texl ed­

iting as a sample application.

685

686 C HA PTE R 20 • CON TA I N ER S AND ITERATO RS

20.1 Storing a nd processing data
20.1.1 Working wi th data
20.1.2 Generalizing code

20.2 STl ideals

20.3 Seque nces and ile rato rs
20.3.1 Back to the example

20.4 linked lists
20.4.1 list operations
20.4.2 Ite ration

20.5 Gene ralizing vector yet again

20.6 An e xample : a simple lext edito r

211.6.1 Lines
20.6.2 lIeralion

20.7 vector, list, and Siring

20.7.1 insert and erase

20.8 Ada pting our vector to the STL

20.9 Ada pting built· in a rrays to the STL

20.10 Containe r overview

20.10.1 tleralor categories

20.1 Storing and processing data
Before looking into dealing with larger co llections of data items, let's consider a
simple example that points to ways of handling a large class of data-processing
problems. J ack and Jill arc each measuring vehicle speeds, which they record as
floating-poim values. Jack was brought up as a C programmer and stores his val­
ues in an array, whereas Jill stores hers in a vector. Now we'd like to lise their
data in our program. How might we do this?

We could have J ack's and J ill 's programs write out the values to a file and
then read them back into our program. Tllat way, we are completely insulated
from their cho ices of data structures and interfaces. Often, such isolation is a
good idea, and if that's what we decide to do we "Ill use the techniques from
C hapters 10- 11 ror input and a vector<double> for our calculations .

But, what if using rues isn't a good option for the task we want to do? Let's
say that the data-gathering code is designed to be invoked as a function call to de­
liver a new set of data every second. O nce a second, we call J ack's and J ill 's fU llc­
tions to deliver data for LIS to process:

double- get_fromjack(int~ count); II Jack puts doubles into an array and
/I returns the number of elements in ' counl

vector<double>- geCfromjill(); /I Jill fills the vector

void fctO
{

)

int jack_count = 0;
double jack_data = geUromjack(&jack_countJ;
vector<double>· jill_data = get_fromjillO ;
/I ... process .
deletel] jack_data ;
delete jill_data;

20 . 1 STORING AND PRO C ESS IN G DATA

The assumption is that the data is stOred on the free sLOre and that we should
delete it when we are finished using it. Another assumption is that we can' t
rewrite Jack's and Jill 's code, or wouldn't want to.

20.1.1 Working with data
Clearly, this is a somewhat simplified example, but it is not dissimilar to a vast
number of real·world problems. If we can handle this example elegantly, we can
handle a huge number of common programming problems. The fundamental
problem here is that we don't control the way in which our "data suppliers'" store
the data they give us. It 's our job to either work with the data in the fonn in
which we get it or to read it and store it the way we like better.

What do we want to do with that data? Sort it? Find the highest value? Find
the average value? Find every value over 65? Compare Jill's data with J ack's?
See how many readings there were? TIle possibili ties are endless, and when
writing a real program we ,.viIl simply do the computation required. Here, we
just want to do something to learn how to handle data and do computations in·
volving lots of data. Lee's firs t do something really simple: find the element with
the highest value in each data set. We can do that by inserting this code in place
of the " ... process . .. ,., comment in fel() :

/I ...
double h =-1;
double jack_high ;
double· jill_high;

II jack_high will point to the element with the highest value
II ji ll_high willlX'int to the element with the highest value

for (int i=O; kjack_count; ++i)
if (h< jack_dataliH

jack_high = &jack_data iii; /I save address of largest e lement

h = - 1;
for (in I i=O; i< jill_data ->sizcO; Hi)

if (h«·jiICdala)[i])
jill_high = &(·jill_data)(i); II save address of largest element

coul « "Jill 's max : "« · jill_high
«"; Jack's max: " « ·jack_high;

/I.

NOle the ugly notation we use to access J ill's data: (· jiICdata)[ij . TIle function
fromjillO returns a pointer to a vector, a vector<double> To get to the data, we
first have to dereference the pointer to get to the vector, ·jill_data , then we can
subscripl that. However, *jill_datalil isn't whal we wanl; that means ·(jill_dataliJ)

.. 7

... CHAPTE R 20 • CONTA INE RS AND ITE RATO RS

because [J binds tighter than .. so we need the parentheses around · jill_data and
gel (·ji ll_dala)[iJ.

TRY THI S

If you were able to change Jill 's code, how would you redesign its interface to
get rid of the ugliness?

20.1.2 Generalizing code
VVhat we would like is a unifonn way o f accessing and manipulating data so that
we don't have to write our code differently each time we get data presented to us
in a slightly different way. Let's look at Jack's and Jill 's code as examples a fhow
we can make our code more abstract and uniform.

Obviously, what we do for Jack's data strongly resembles what we do forJill 's.
H owever, there arc some annoying difTcrcnces : jack_count vs. jill_data- >si-lc()
and jack_datam vs. (· jill_dataHil . We could eliminate the lauer difference by intro­
ducing a reference :

vector<double>& v = -jill_data;
for (int i=O; i<v.sizeO; Hi)

if (h<v{i]) jill_high = &vlil;

1l1is is tantalizingly dose to the code for J ack's data. 'What would it take to write
a function that could do the calculation forJill 's data as well as forJack's? We can
think o f several ways (see exercise 3), but for reasons of generality which will be­
come clear over the next two chapters, we chose a solution based on pointers:

double - high(double- first, double - last)
II return a pointer to the clement in Ifirst, last) that has the highest value
(

}

doubleh=-l ;
double - high ;
for(double- p = first ; p!=lasti ++p)

if (h<· p) high = Pi
return high;

Given that, we can write

double- jack_high = high(jack_data,jack_data+jack_count);
vector<double>& v = -jill_data;
double- jill_high = high (&v(O),&v(O)+v.size());

20.1 STO RING AND PROCE SS IN G DATA

111is looks better. We don't introduce so many variables and we write the loop
and the loop body only once (in highO). If we want to know the highest values,
we can look at · jack_high and -jill_high. For example:

cout « "Jill 's max: " « -jill_high
« "; Jack's max: " « *jack_high;

Note that highO relics on a veCLOr storing its elements in an array, so that we can
express our "lind highest clement" algorithm in tenus of pointers into an array.

TRY THI S

We left two potentially serious errors in this little program. One can cause a
crash, and the other wiil give wrong answers if highO is used in many other
progTams where it might have been useful. TIle general techniques that wt:
describe below will make them obvious and show how to systematically
avoid tllem. For now, juSt fmd them and suggCSt remedies.

TItis highO function is limited in that it is a solution to a single specific problem:

It works for arrays only. We rely on the elements of a vector being stored
in an array, but there are many more ways of storing data, such as lists
and maps (sec §20.4 and §2 1.6.1).

It can be used for vectors and arrays of doubles, but not for arrays or
vectors with other clement types , such as vector<double> and cha r[10).

It finds the clement with the highest value, but lhere are many more sim­
ple calculations that we want to do on such data.

Let'S explore how we can support this kind of calculation on sets of data in far
greater generality.

Please note that by deciding to express our "find highest clement" algorithm
in terms of pointers, we "accidentally" generalized it to do more than we re­
quired: we can - as desired - lind the highest clement of an array or a vector,
but we can also find the highest clement in part of an array or in part of a vector.
For example:

1/ . ..
vector<double>& v = · jill_dataj
double* middle = &v(Oi+v.sizeOf1;
double* highl = high(&vtOl. middle);
double* high2 = high(middle, &vIO]+v.size());
1/ . ..

II max of firs l half
/I max of second half

690 CHAPTER 20 • C ONTA IN ERS AND ITERATOR S

Here highl will point to the clement with the largest value in the first half of the
vector and high2 will point to the clement with the largcst value in the second
haJf. Graphically, it will look something like this:

&v(OJ Middle &v[OI + v.sizeO

,-'-1--\ - --,-I'----\----.I.l:J
highl high2

We used palmer arguments for highO. That's a bit low-level and c."m be error­
prone. We suspect that for many progranuncrs, the obvious function for finding
the clement with the largest value in a vector would look like this:

double- find_highest(veclor<double>& v)
{

)

double h =-1;
do uble· high = 0:
for (int i=O; i<v.sizeOi ++ i)

if (h<v[il) high = &v[i] ;
return high;

However, that wouldn't give LIS the flexibility we "accidentally" obtained from
highO - we can 't use fjnd _highestO to find the clement with the highest value in
part o f a vector. "Ve actually achieved a practical benefit from writing a function
that could be used fOT both arrays and vectors by "mcssing with pointers." \ oVe
will remember that: generalization can lead to functions that arc useful for more
problems.

20.2 STl ideals
111e c++ standard library provides a framework for dealing with data as se~
quences of clements, called the STL. STL is usually said to be an acronym for
"standard template library." 111e STL is thc part of the ISO C++ standard Ii·
brary that provides containers (such as vector, list, and map) and generic algo­
rithms (such as sort, find , and accumulate). l11Us we can - and do - refer to
facilities, such as vector, as being part of both "the 5TL" and "the standard li­
brary." Other standard library features, such as ostream (C hapter 10) and C-style
string functions (§B.I0.3), arc not part of the STL. To beller appreciate and un­
derstand the 5TL, we will first consider the problems we must addrcss when
dealing with data and lhe ideals we have for a solution.

20 . 2 STL IDEALS

There are two major aspects o f computing: the computation and the data.
Sometimes we focus o n the computation and talk about if·s tatements, loops,
functio ns, error handling, etc. At other times, we focus on the data and talk about
arrays, vectors, strings, flIes, etc. However, to get useful work done we need both.
A large amount of data is incomprehensible without analysis, visualization, and
searching for "the interesting bits." Conversely, we can compute as much as we
like, but it's going to be tedious and sterile unless we have some data to tie our
computation to something real. Furthermore, the "computation part" of our pro­
b'Tam has to clegantJy interact with tJle "data pan."

Computation

Read Write

Input Output

\,yhen we talk about data in tills way, we think of lots of data: dozens of Shapes,
hundreds of temperature readings , thousands o f log records, millions o f points,
billions of web pages , etc.; tllat is, we talk about processing containers of data,
streams of data, etc. In particular, this is not a discussion of how best to choose a
couple o f values to represent a small object, such as a complex number, a temper­
ature reading, or a circle. For such types, see Chapters 9, 11, and 14.

Consider some simple examples o f something we'd like to do with "a lot of
data" :

Sort tile words in dictionary order.

Find a nu mber in a phone book, given a name.

Find the highest temperature.

Find all values larger than 8800.

Find the first occurrence of the value 17.

Sort the telemetry records by U1llt number.

Sort tJle telemetry records by time stamp.

Find the first value larger than "Petersen."

Hnd the largest amount.

Find the first difference between two sequences .

Compute the pair-wise product of the clements of two sequences.

Fmd the highest temperature for each day in a month.

Hnd tJle top ten best sellers in tile sales records.

Count the number o f occurrences o f "Stroustrup" on the web.

Compute tile sum of the elements.

6"

6'2 (HAPTER 20 • CON TAINER S AND ITERATORS

NOle U1a(we can d escribe each of these casks without actually mentioning how
the data is stored. Clearly, we must. be dealing with something like lists, vectors,
files, input streams, etc. for lilesc tasks to make sense, but we don't have to know
the details about how the data is stored (or gathered) to talk about what to do
with it. What is important is the type of the values or objects (the element type),
how we access those values or objects, and what we want to do with them.

111cse kinds of tasks are very common. Naturally, we want to write code per­
forming such tasks simply and efficiently. Converse1y, the problems for us as pro­
brrammcrs are:

"nlere is an infinite variation of data types ("kinds of data") .

TIlere is a bewildering number of ways to Slore collections or data clc­
ments.

"111ere is a huge variety o r tasks we'd like to do with collections or data.

To minimize the efTect o r these problems, we'd like our code to take advantage or
commonalities among types, among the ways or storing data, and among our
processing tasks. In other words, we wam to generalize our code to cope with
these kinds or variations. We really don't want to hand-crart each solution rrom
scratch ; that would be a tedious waste o r Urne.

To get an idea or what support we would like ror writing our code, consider
a more abstract view or what we do with data:

Collect data into containers

Such as vector, list, and array

Organize data

For printing

For rast access

Retrieve data items

By index (e.g., the 42nd clement)

By value (e.g., the first record with the "age field " 7)

By properties (e.g., all records with the "temperature field" >32 and
< lOO)

Modirya container

Add data

Remove data

Son (according to some criteria)

Perrorm simple numeric operations (e.g. , multiply all elements by 1.7)

20.2 STl IDEAL S

We'd like to do these t.hings without getting sucked into a swamp of details abollt
differences among containers, differences in ways o f accessing clements, and dif­
ferences among clement types. If we can do that, we'll have come a long way to­
ward our goal of simple and efficient usc of large amounts of data_

Looking back at the programming tools and techniques from the previous
chapters, we note that we can (already) write programs that arc sinular independ·
ently o f the data type used:

Using an inl isn't all that different from using a double .

Using a veclor<int> isn't all that different from using a veClor<slring>.

Using an alTay of do uble isn't all that different from using a vec­
lo r<double>.

We'd like to organize Ollr code so that we have to write new code only when \ e
want to do something really new and different. In particular, we'd like to provide
code for common progranuning tasks so that we don' t have to rewrite our solu·
tion each time we rmd a new way of storing the data or find a slightly different
way of interpreting the data.

Hnding a value in a vedor isn't all that different from finding a value in
an array.

Looking for a siring ignoring case isn't all that different from looking at
a string considering uppercase leuers different from lowercase ones.

Graphing experimental data with exact values isn't all that different from
graphing data with rounded val ues.

Copying a file isn't all that different from copying a vecto r.

vVe want to build on these observations to write code that 's

Easy to read

Easy to modify

Regular

Short

Fast

10 minimize our programming work, we would like

Uniform access to data

Independently o f how it is stored

Independently of its type

T ypc-safe access to data

Easy traversal of data

Compact storage of data

...
Fast

Retrieval o f dam

Addition of data

Deletion of data

C HAPTER 20 • CONTAINERS AND lTERATORS

Standard versions of the most common algorithms

Such as copy, find , search, sort, sum, . . .

TIle STL provides that, and morc. We will look at it not just as a very useful sct
of facilities , bLll also as an example of a library designed for ma:'(imai flexibility
and performance. The STL was designed by Alex Stcpanov to provide a frame­
work for general , correct, and efficient algorithms operating on data structures.
~111e ideal was the simplicity, generality, and elegance of mathematics.

111e alternative to dealing with data using a framework with clearly articu­
lated ideals and principles is for each progranuncr 10 craft each program out of
the basic language facil ities using whatever ideas seem good at the time. "nmt'S a
lot of extra work. Furthennore, the result is often an unprincipled mess; rarely is
the result a program that is easily understood by people other than its original de­
sibrrler, and only by chance is the result code that we can use in other contexts.

Having considered the motivation and the ideals, let 's look at the basic defi­
nitions of the STL, and then finall y get to the examples that 'U show us how to ap­
proximate those ideals - to write be tter code for dealing with data and to do so
with greater ease.

20.3 Sequences and iterators
"111e central coneept of the STL is the sequence. From the STL point of view, a
collection of dam is a sequence. A sequence has a beginning and an end . We can
traverse a sequence from its beginning to its end , optionally reading or writing
the value of each element. We identify the beginning and the end of a sequence
by a pair o f iterators. An ileralor is an object tha t identifies an element of a se­
quence. \.ye can think of a sequence like this:

Here, begin and end are iterators; they identify the beginning and the end of the
sequence. An STL sequence is what is usually called "half-open"; that is, the ele­
ment identified by begin is part of the sequence, but the e nd iterator points one

20,3 SEQ U EN CES AND ITER ATO RS

beyond the end of the sequence. The usual mathematical notation for such se­
quences (ranges) is [begin:end)_ The arrows from one element to the next indi­
cate that if we have an iterator to one element we can gel an iterator to the next.

\¥hat is an itermor? An iteralor is a rather abstract notion:

An iteralor points to (refers to) an element of a sequence (or one beyond
the last element).

You can compare two iteralors using == and 1=.
You c,.'l.1l refer to the value of the element pointed to by an iterator using
the lInary .. operator ("dereference" or ;;colllents or').

YOLI can get an iterator to the next element by using ++ .

For example, if p and q arc iterators to clements of the same sequence:

Basic standard ilerator operations

p==q

p!=q

' p

-p=val

val=*p

++p

true if and only if p and q point to the same element or both point to one
beyond the last element

!(p==q)

refers to the element pointed to by p

writes to the element pointed to by p

reads from the element pointed to by p

makes p refer to the next element in the sequence Of to one beyond the last
clement

Clear ly, the idea of an itcrator is related to the idea of a pointer (§17.4). In fact , a
pointer to an element of an array is an iterator. H owever, many iteralOrs arc not
just pointers; for example, we could define a range-checked iteralar that throws
an exception if you try to make it point outside its [begin :e nd) sequence or tries
to dereference end . It turns out that we gel enormous flexibil ity and generality
from having iterator as an abstract notion rather than as a specific type. 1l1is
chapter and the next will give several examples.

TRY THI S

Write a function void copy(int· il , int- el, int- f2) that copies the elements of
an array of ints defmcd by [£1 :el) into another [12:f2+(e l -fl»). Usc on]y the
iterator operations mentioned above (not subscripting).

.95

... CHAPTE R 20 • CONTA INERS AN D ITER ATORS

iteralors are used to connect OUf code (algorithms) to our data. The writer of
the code kllOWS about the iterators (and not about the details of how the itcrators
actually get to the data), and the data provider supplies itcrators rather than ex­
posing details about how the data is stored to all users. The result is pleasingly
simple and offers an important degree of independence between algorithms and
containers. 1'0 quote Alex SlcprulOV: "The reason STL algorithms and containers
work so well together is that they don't know anything about each other." In­
stead, hoth understand about sequences defmed by pairs of ileratOrs.

sa ri, find , search , copy, .. " my~very_own_algori lhm , you f_code,

vector, list, map. array, .. " my_conlai ner, your_container, ...

In o ther words, my code no longer has to know about the bewildering variety of
ways of storing and accessing data ; it just has to kllOW about iterators. Con~
versely, if I'm a data provider, I no longer have to write code to serve a bewilder­
ing variety of users; I just have to implement an iterator for my data. At the most
basic level, an iterator is defined by just the . , ++ , ==, and != operators. That
makes them simple and fast.

The STL framework consists of about ten containers and abollt 60 algo­
rithms connected by iterators (see Chapter 21). In addition, many organizations
and individuals provide containers and algorithms in the style of the STL. TIle
STL is probably the currently best-known and most widely lIsed example of
generic progranuning (§19.3.2). If you know the basic concepts and a fewexam­
ples, you can use the rest.

20.3.1 Back to the example
Let's see how we can express the "find the eiemelll with the largest value" prob­
lem using the STL notion of a sequence:

template<dass Iterator >
Iterator high(lterator first , Herator last)
II return an iterator to the element in Ifirst:lastl that has the highest value
{

)

!terata r high = first ;
far (lteratar p = first; p!=last; ++p)

if (· high<· p) high = p;
return high;

20 .3 SEQUENCES AND ITERATORS

Note that we eliminated the local variable h that we had used to hold the highcst
value seen so far. \¥hcn we don 't know thc namc of the actual type of the ele­
mClus of the scqucnce, the initialization by - 1 secms completely arbitrary ,md
odd. llmt's because it was arbitrmy and odd! It was also an error waiting to hap­
pen: in our example - 1 worked only because we happened nOt to have any nega­
tive velocities. We knew that "magic constants," such as - 1, are bad for code
maintenance (§4.3. 1, §7.6.1, §1O.11.1, etc.). Here, we see that they can also limit
the utility of a function and can be a sign of incomplete thought abollt thc solu­
tion; that is, "magic constants" can bc - and often are - a sign of sloppy thinking.

Note that t.his "generic" highO can be used for any elemcnt type that can be
compared using <. For example, wc could use highO to find thc Icxicographically
last string in a veclor<slring> (see exercise 7).

11\e highO template function can be used for any sequcnce defincd by a pair
of itcrators. For example, we can exactly rcplicate our example program:

doublc- gcUromjack(int- coun!) ; II Jack puts doubles into an array and
1/ returns the number of elements in ·count

vcctor<double>· geUromj ill() ; 1/ Jill fi lls the vector

void (ctO
(

)

int jack30unt = 0;
do uble jack_data = ge,-from_jack(&jack_count);
vector<double>· jill_data = geUromj ill O;

double jack_high = high(jack_data,jack_data+jack_count);
vcctor<double>& v = · jill_data;
double· jill_high = high(&v[OI,&v[OI+v.size());
cout « "Jill 's high "« · jill_high « "i Jack's high " « · jack_high;
II ...
delete[J jack_data;
delete jill_data;

For the twO calls here, the lIe rator template argument type for high O is double* .
Apal1 from (finally) getting the code for highO correct, there is apparcntly no dif·
ference from our previous solution. To be precise, there is no difference in the
codc that is executed, but there is a most important difference in the generality of
our code. 111e templated version of highO can be used for every kind of se­
qucnce that can be described by a pair of iterators. Before looking at the detailed
conventions of the STL and the useful standard algorithms that it providcs to
save LIS from writing COlllmon tricky code, let's consider a couple of more ways
of storing collections of data clements.

697

... (HAPTER 20 • CONTAINERS AND ITERATORS

TRY THI S

We again left a serious error in !.hat program. Find it, fLX it, and suggest a
general remedy for that kind of problem.

20.4 Linked lists
Consider again the graphical representation of the notion of a sequence:

Compare it to the way we visualize a vector in memory :

begin O,' }L--'

0: 1:

Basically, the subscript 0 identifies the same clement as does the iteratol' v.beginO,
and the subscript v.sizeO identifies the ol1c-bcyond·thc-last clement also identified
by the iterator v.end().

TIH~ elements of the vector arc consecutive in memory. '113t'5 not requ ired
by STL's notion of a sequence, and it so happens liml there are many algorithms
where we would like to insert an e1emCIll in between two existing clements with­
out moving those existing clements. The graphical represelllation of thc abstract
nOlion suggests the possibility of inscrting clcmelllS (and of delcting clcmcnts)
withollt moving othcr elements. l1le 5TI.. notion of iterators supports that.

111C data structure most dircctly suggested by tile 511... seqLlcncc diagram is
callcd a li"ked lui. 111e arrows in the abstract model are usually implcmented as
pointers. An clemcnt of a Iinkcd list is part of a "link" consisting of the clemelll
and one or more pointers. A linked list where a link has just one pointer (to the
next link) is called a sillgly-IiilRed lui and a list where a link has pointers to both tile
previoLis and the next link is called a doubly-tinka' luI. We will sketch thc imple­
mentation of a doubly-linked lis t, which is what the C++ standard library pro­
vides under the name of list . Graphic.ll1y, it can be represented like this:

2004 UNKED LISTS

'n,is can be represented in code as

template<class Elem> stru ct Link (
link · prev; II previous link
link · SUCCi /I successor (next) link
Elem valj /I the value

);

tcmplatc<class Elem> st,u Cl list (
link<Elem>* first j
link<Ele m>* lastj /I one beyond the last link

) ;

l11e layout of a link is

pOft
suee

Oem

~Inerc are many ways of implementing linked lists and presenting them to USCTS.

A description of the standard library version can be found in Appendix B. Here,
we'll just outline the key properties of a list - you can insert and delete elements
without disturbing existing elements - show how we can iterate over a list, and
give an example of list use.

When you try to think about lists, we strongly encourage you to draw little
diagrams to visualize !.he operations you are considering. Linked-list manipula­
tion really is a topic where a picture is worth lK words.

20.4.1 List operations
What operations do we need for a list?

111e operations we have for vector (constnlctors, size, etc_), except sub­
scripting

Insert (add an clement) and crase (remove an elemem)

Something !.hat can be used to refer to clements and to traverse the list:
an iterator

In the STL, !.hat iterator type is a member of its class , so we'll do the same:

6 ..

'00 CHAPTE R 20 • CONTAINERS ANO ITERATORS

template<class Elem> class list (
/I representation and implementation details

public:

) ;

class iterator; /I member type: iterator

iterator beginO; /I iterator to first element
iterator end(); /I iterator to one beyond last element

iterator insert(iterator p, consl Elem& v);
iterator erase(iterator pI;

/I insert v into list after p
/I remove p from the I isl

void push_back{consl Elem& v); II insert 11 at end
void push_front(const Elem& v); 1/ insert 11 at (ronl
void pop_frontO ; II remove the first element
void pop_backO; /1 remove the last element

Elem& fronl O;
Elem& back();

II .

II the first element
/I the last element

Just as "our" vector is nOllhc complete standard library vector, this list is not lhe
complete definition of the standard library list. Illere is nothing wrong wlth this
list ; it simply isn't complete. TIle purpose of "our" li st is to convey an under­
standing of what linked lists are, how a list might be implemented, and how to
use the key features. For more information see Appendix B or an expert-level
C++ book.

~nle iterator is central in the defmition of an STL list. lleraton; are used to

identify places for insertion and elements for removal (erasure). Illey arc also
used for "navigating" th rough a list rather than using subscripting. Illis use of it­
craton; is very similar to the way we used pointers to traverse arrays and vectors
in §20. 1 and §20.3.1. Illis style of iterators is the key to the standard library aI­
goritlmu (§2 U -3).

Why not subscripting for li st? We could subscript a list, but it wou ld be a
surprisingly slow operation: 151[1000] would involve starting from the first cle­
ment and then visiting each link along the way until we reached element number
1000. If we want to do that, we can do it ourselves (or use advance() ; see §20.6.2).
Consequently, the standard library list doesn't provide the innocuous-looking
subscript syntax.

We made list's iterator type a member (a nested class) bec.."luse there was no
reason for it to be globaL It is used only with lists. Also, this allows tiS to name
every container's iterator type iterator. In the standard library, we have
list<T>: :iterator, vector<T>: :iterator, map<K, v>: :iterator, and so on.

20.4 LI N KED LI STS

20.4.2 Ite ration
rille list itcrator must providc . , ++, ==, and ! =. Since thc standard library list is a
doubly-linked list, it also provides -- for iterating "backward" toward the front
of the list:

lemplale<class Bern> class lisI<Elem>: : ite rato r {
Lin k<Ele m>· curr; /I current link

publ ic:

);

ite ralor{Link* p) :curr{p) {}

ile rato r& o pe ralor++() {cu rr = cUrr- >succ; relurn · Ihis; } /I forwa rd
ite ralo r& o pe rato r--O { curr = curr->prev; return · this; } II backward
Elem& o pe rato r·O { return val; } II get yalue (dereference)

bool o perator==(consl ile rator& b) co nsl { return curr==b.curr; }
bool operator != (consl iteralor& b) consl { return curr! =b.curr; }

TIlese functions arc short and simple, and obviously efficient : there are no loops,
no complicated expressions, and no "suspicious" Function calls. If the implemcn­
tauon isn't clear to you, just have a quick look at the d iagrams above. TIlls Jist it­
erator is just a pointer to a link with the required operations. Note that even
though the implementation (the code) For a list<Elem>:: ite rato r is very different
From the simplc pointer we have used as an iterator For vectors and arrays, the
mcaning (the semantics) of the operations is identical. Basically, the List iterato r
provides suitable ++, -- , *, ==, and != for a Link poimer.

Now look at highO again :

tempJale<class Iterator >
Iterator high(lterato r fi rst, Ite rato r last)
II return an iterator to the element in [first,last) that has the highest Yalue
{

Ite rator high = first ;
fo r (lte rato, p = first ; p !=lasl ; ++p)

if (* high<· p) high = p ;
return high;
)

We can usc it for a list :

void fO
{

lisl<int> 1s t;

701

'02

)

CHAPTE R 20 • CONTAINERS AND ITERATORS

int x;
while (ci n » x) Isl.push_front(x);

lisl<inl>: :iterator p = high(lst ,begin(), Ist.end();
cout« "the highest value was" « . p « endl ;

Here, the "value" of the Iterator argu ment is list<int>: :iterator, and the imple­
mentation of ++, . , and ! = has changed dramatically from the alTay case, but the
meaning is still the same. The template function highO still traverses the data
(here a list) and finds t.be highest value. We can insert an element anywhere in a
Jist, so we used push_irontO to add cJemcllls at the from JUSt to show that we
could. We could equally well have used push_backO as we do fo r vectors.

TRY TH 15

The standard library vector doesn't provide push_frontO, Why not? Imple­
ment push_IrontO for vector and compare it to push_hackO.

Now, finall y, is the time to ask, "But what if the list is empty?" In other words,
"What if Ist.begin()==lst.cndO?" In that case, . p will be an attempt to derefer­
ence the one-beyond-the-last elemem, Ist .endO : disaster! Or - potentially worse
- the result could be a random value t.bat might be mistaken for a correct answer.

The last formulation of the question strongly hints at the solution: we can
test whether a list is empty by comparing beginO and endO - in fact, we can tCSt

whether any Sll.. sequence is empty by comparing its beginning and end :

beg;n ~~
r-- -, L _____ .J

That's the deeper reason for having end poilll one beyond the last element rather
than at the last clement: the empty sequence is not a special case. We dislike spe­
cial cases because - by definition - we have to remember to write special·case
code fo r them.

In our example, we could use that like this:

lisl<inl> : :iteralor p = high(lst .beginO. Ist.end (»;
if (p==lst.e nd(» /I did we reach the endr

cout « "The list is empty" ;
e lse

cout « "the highest value is " « . p« endl;

20 .5 GEN ER ALIZ ING VECTOR YET AGAIN

We usc this kind of test systematically with STL algorithms.
Because the standard library provides a list, we won't go funher into the im­

plementation here. Instead , we'll have a brief look at what lists arc good for (see
exercises 12-14 if you arc interested in Jist implementation details).

20.5 Generalizing vector yet again
Obviously, from the examples in §20.3-4, the standard library vector has an
iterator member type and beginO and endO member fu nctions (just like sid : :Iisl).
However. we did not provide those for our veclor in Chapter 19. What docs it
really take for different containers to be used more or less illlerchangeably in the
STL generic programming slyle presented in §20.3? First, we'll outline the solu­
tion (ignoring allocators to simplify) and then explain it:

template<class T> class vector {
public:

);

Iypedef unsigned long size_type;
typedef T value_type;
typedef 1* iterator;
typedef const 1* consUterator;

II ...

iterator begin();
consUterator beginO const;
ite rator endO;
consUterator endO canst;

size_type size();

II . . .

A typedef creates an alias for a type; that is, for our vector, iterator is a syn­
onym, another name, for the type we chose to usc as our iterato!": 1* . Now, for a
vector called v, we can write

veclor<inl>: :iteralor p = find(v.beginO, v.endO,32):

and

for (vector<inl>: :size_lype i = 0; i<v.size(); ++i) cout« v[iJ« '\n' ;

703

704 C HAPTE R 20 • CONTA INERS AND tTERATORS

The point is that to write that, we don't actually have LO know what types arc
named by iterator and size_lype. In particular, the code above, because it is ex­
pressed illlcnns of ilerator and size_type, will work with vectors where size_type
is not an unsigned long (as it is not on many embedded systems proccSSOI's) and
where iterator is nOt a plain pointel; but a class (as it is 0 11 many popular C++
implementations).

'IllC standard defi nes list and the other standard containers similarly. For
example :

lemplate<dass Ele rn> class list {
public :

);

class Link;
typedef unsigned long size_type;
typedef Elem value_type;
class iterator j /I see §20A .2
class consCiteratorj II like iterator,

/I but not allowing writes to elements

II ...

iterator begin() ;
consUterator besinO co nst;
iterator end O;
consUterator e n dO const ;

II ...

That way, we can write code that docs not care whether it uses a li st or a vector .
All the standard library algorithms arc defined in terms of these member type
names, such as iterator and size_lype , so that they don't unnecessarily depend
on the implementations of containers or exactly which kind of container they op­
erate on (sec C hapter 2 1).

20.6 An example: a simple text editor
The essential fea ture of a list is that you can add and remove d ements without
moving other dements of the list. Let's try a simple example that illustrates that.
Consider how to represent the characters of a text document in a simple text edi­
tor. TIle representation should make operations on the document simple and rea­
sonably efficient.

20.6 AN EX AMP LE : A SIMPLE TEXT EDI TOR

\.yhich operations? Let's assume that a document will fit in your computer's
main memory. TImt way, we can choose any representation that suits us and simply
convert it to a stream or bytes when we want to store it in a file. Similarly, we can
read a stream or bytes rrom a me and convert those to our in-memory representa­
tion. "nlat decided, we can concentrate on choosing a convenient in-memory repre­
SCIltation. Basically, there are fi ve things that a lii' representation must support well:

Constructing it rrom a stream or bytes rrom input

Inserting one or more characters

Deleting one or more characters

Searching ror a string

Generating a stream or bytes ror output to a me or a screen

111e simplest representation would be a vector<char>. However, to add or delete
a character we would have to move every rollowing character in the document.
Consider:

This is he slarl of a very long document.
There are lois of ...

\<\'e could add the t needed to get

This is the start of a very long document .
The re are lots of _ . .

However, ir those characters were stored in a single vector<char>, we'd have to
move every character rrom h onward one position to the right. "n mt could be a
lot or copying. In ract, ror a 70,000-character-long document (such as th.is chapter,
couming spaces), we would on average have to move 35,000 characters to insert
or delete a character. The resulting real-time delay is likely to be noticeable and
annoying to users. Consequently, we "break down" our representation imo
"chunks" so that we can change pan or the document without moving a lot o r
characters around. \Ve represent a document as a list or "lines," list<Line>, where
a Line is a veclor<char>. For example:

Lind This Is the start of a we Ion document

There are tots of ...

Now, when we insclted that I, we only had to move the rest or lhe characters on that
line. Funhennon::, when we need to, we can add a new line wilhout moving any

705

706 CHAPTER 20 • CONTAINER S AND JTERATOR S

characters. For example, we could insert "This is a new line." after "document. " to
get

This is the start of a ve ry long docume nt.
This is a new line .
The re are lots of . ..

All we needed to do was to insert a new "line" in the middle:

Lind This is the start of iI we long document

There are lots of ...

[___ L_,
-.-----~

This is a new line

The logical reason thai it is important to be able to insert new links in a list wilh­
out moving existing links is that we might have iterators pointing to those links
or pointers (and references) poiming to the obj ects in th ose links. Such iterators
and pointers arc unaffected by insertions or deletions of lines. For example. a
word processor Illay keep a vector<list<line>:: ite ratoD holding iterators to the
beginning of evcry title and subtitle in the current Docume nt :

.
• ,

20.1

202

20.3

: . . ~- -- --- -.j

Line 1 Strin and processin data

Line 307 STL Ideals

Line 870 S uences and iterators

We can add lines to "paragraph 20.2" without invalidating the iterator to "para­
graph 20.3."

In conclusion, we lise a list oflincs rather than a vector o r lines or a vecto r or
all the characters ror both logical and pcrfonnance reasons. Please note lh:l.l situ­
ations where these reasons apply are rather rare so that the "by derault, usc
vector" rule or lhumb still holds. You need a specific reason to prefer a list over a
vector - even ir you think o r your data as a list or elements! (Sec §20.7.) A list is a

20.6 AN EXAMPLE: A SIMPLE TEXT EDITO R

logical concept that you can represent in your program as a (linked) list or as a
vedor. The closest STL analog to our everyday concept or a list (e.g. , a to·do list,
a list or groceries, or a schedule) is a sequence, .md most sequences are best rep·
resented as vectors.

20.6.1 lines
How do we decide what's a ';line" in our document? There are three obvious
choices:

I . Rely on newline indicators (e.g., '\n') in user input.

2. Somehow parse the document and usc some "natural" punctuation (e.g. , .).

3. Split any line lhat grows beyond a givcn length (e .g., 50 cllaracters) into
two.

111cre arc undoubtedly also some less obvious choices. For simplicity, we use al­
ternative 1 here.

We will reprcsent a document in Ollr editor as an object or class Document.
Stripped or all refinements, our document type looks like this:

typedef veclor<char> line ; 1/ a line is a vector of characters

strucl Documen t (

};

lisl<line> linei II a document is a list of lines
II line! ij is the ilh line

DocumentO (line. push_back(line(»;)

Every Document starts alit with a single empty line: Document's constructo r
makes an empty line and pllshes it into the list or lines.

Reading and spliuing into lines can be done like this:

istream& operator»(islream& is, Documenl& d)
{

ehar chi
while (is»ch) (

d.line. back(). push_back{eh); 1/ add Ihe character
if (eh=='\n ')

d.line .push_back(Line() i /I add anOlher line
}

return is;
}

707

708 CH APTER 20 • CONTA INER S AND ITERATO RS

Both vector and list have a member function backO that returns a reference to
the last clement. To usc it, yOli have to be sure that there really is a last clement
for backO LO reFer to - don't lISC it on an empty comaincr. ll1at 's why we defined
an empty Docume nt to have one empty Line . Note umt we store every character
from input, evell lhc newline characters ('\n '). Storing those newline characters
gready simplifies Output, but you have to be careful how you define a character
COlint Gust counting characters will give a number that includes space and new­
line characters).

20.6.2 Iteration
If the document was j ust a vector<char> it would be simple to iterate over it.
How do we iterate over a list of lines? Obviously, we can iterate over the list
using lisl<line>: :ileralo r. However, what if we wamed to visit the characters one
after another without any fuss about line breaks? We could provide an ilerator
specifically designed for our Document :

class TexUterator { /I keep track of line and character position within a line
list<line>!! ite rato r In ;
line: :ileralor pos;

publ ic:

);

/I start the iterator at line II's character position pp:
TexU leralor(list<line>: :ilerator 11, line: :iterato r pp)

:In(1l), pos(pp) {}

char& ope rato r*O { return *pos; }
TexUleralor& o pe rator++O;

bool ope ralor==(const TexUte rator& othe r) const
{ return In==other.ln && pos==other.pos; }

bool o pe rato r!=(const TexCile ralor& other) const
{ re lurn !(* Ihis==oth er); }

TexUterator& Text_iterator: :o pe rato r++O
{

)

if (pos==(* ln). end()) {
++In ; /I proceed to next line
pos = (* In).begi nO;

++pos;
return *this;

/I proceed to next character

20.6 AN EXAMPLE: A SIMPLE TEX T EDITOR

To make TexUterato r useful, we need to equip class Docume nt with conven·
tional begi nO and end() functions:

struct Document {
lisf<li ne> line ;

TexUterato r begin O /I first character of firS I line
{ return TexUterato r(line. beginO, (· Iine .begin ()) .begin ()) ; }

TexUterato r endO /I one beyond the last line
(return TexUterato r{line.e nd O, (* Iine .e nd ()) .end()) ;)

} ;

We need the curious p line.begin (». begin O notation because we wam the begin­
ning of what line. beginO points to; we could alternatively have used line .beginO->
begin O because the standard library iteracors SUppOI1 ->.

\oVe can now iterate over the characters of a document like this:

void print (Document& d)
{

fo r (TexUteralor p = d.begi n(); p!=d .end(); ++p) cout « · Pi
}

Presenting the document as a sequence of characters is usefu l for many lhings,
but usually we traverse a document looking for something more specifi c than a
character. For example, here is a piece of code to delete line n:

void erase_line(Document& d, int n)
{

if (n<O II d.line .size()<=n) return i /I ignore out·or-range li nes
d .Ii ne. erase(advan ce(d .Ii n e. begi n (), n»;

11le call advance(n) moves an iterator n elements fon vard; adva nce() is a stan­
dard library function, but we could have implcmemed it ourselves like this:

template<d ass Iter> Iter advance(lIer p, int n)
{

}

while (n>o) { ++Pi -- n;)
return Pi

/I go fo rward

709

·10 CHAPTER 20 • CONTA INER S AND IT ERATORS

Note that advanceO can be used to simulate subscripting. In fact, for a vector
called v, ·advance(v.beginO,n) is roughly equivalclll to vln1. Note that "roughly"
means that advance() laboriously moves past ule first n- 1 clements one by one,
whereas the subscript goes straight to the mh elemcm. For a list, we have to lISC

the laborious method. It 's a price we have to pay for the morc ncxiblc layout of
the clements of a list.

For an itcrator thal can move both forward and backward, such as the itcra­
tor for list, a negative argument to the standard library advanceO will move lhe
itcrator backward. For an ilcralor that can handle subscripting, such as the ilcra'
tor for a veclar, the standard library advanceO will go d irccliy to the right cle­
ment rather than slowly moving along using ++_ Clearly, the standard library
advanceO is a bit smarter than ours. 111at's worth noticing: typically, the stan­
dard library facilities have had more care and time spel1l on them than we could
afford , so prefer the standard facilities to "home brew."

TRY THIS

Rewrite advance() so that it will "go backward" when you give it a negative
argument.

Probably, a search is the kind of iteration that is most obvious to a user. We search
for individual words (such as milkshake or Gavin), for sequences of letters that
C..'l.B't easily be considered words (such as secret\nhomestead - i.e., a line ending
with secret foUowed by a line starting WitJ1 homestead), for reb'Ular expressions
(e.g. , [bBJ\w' ne - i.e., an upper- or lowercase B followed by 0 or more letters fol­
lowed b), ne ; sec Chapter 23), etc. Let's show how to handle tJ1e second eLSe, find­
ing a string, using our Document layout. We usc a simple - non-optimal
algoritJun:

Find tJ1e firs t character of our search string in the document.

See if that cha racter and the following characters match our search
string.

If so, we arc finished ; if not, we look for tJ1e next occurrence of that first
character.

For generality, we adopt tJ1e STL convention of defining the text in which to search
as a sequence defi ned by a pair of iteralors. "111at way we can Lise our search func­
tion for any pan of a document as well as a comple!"e document. If we find an oc­
currence of aUf string in the document, we return an iterator to its frrst characler; if
wc don't find an occurrence, we return an iterator to the cnd of tJle sequence:

20 . 7 VECTO R, LI ST. AND STR ING

TexUterator find _txt(TexU terator first, TexUte ralor last, canst string& s)
(

if (s, sizeO==O) return last; /I can't find an empty siring
char first_char = slDl;
while (t rue) (

)

TexU te ralor p = find(fir st,last,firsCchar);
if (p==last II match(p,last,s)) return p;

Returning the end of the sequence to indic.ate "not found"" is an important STL
convention. ' 11e matchO function is trivial ; it just compares two sequences of
characters. Try writing it yoursclr. 1l1e find O used to look for a character in the
sequence of characters is arguably the simplest standard library algorithm
(§21.2). We can usc our find_lxtO like this:

TexCilerator p =
fin d _txt(my _doc, begi n () , my_doc, endO, "secret\n h om estead");

if (p==my_doc.end ())
co ut « "not found";

else (
/I do something

Our "text processor" and its operations are very simple. Obviously, we arc aim~
ing for simplicity and reasonable efficiency, rather than at providing a "fe<lture­
rich" editor. Don't be fooled imo thinking that providing dfoiel1t insertion,
deletion, and seard l for arbitrary character sequences is trivial, though . We chose
this example to illustrate the power and generality of the STL concepts sequence,
iterator, and comainer (such as list and vector) together with some STL pro­
gramming conventions (techniques), such as returning the end of a sequence to
indicate failure. Note that if we wanted to, we could develop Document into an
511.. container - by providing TexU te rator we have done the key part of repre­
senting a Document as a sequence of values.

20.7 vector, list, and string
Why did we lise a list for the lines and a vector for the characters? More pre­
cisely, why did we use a list for the sequence of lines and a vector for the se­
quence of characters? Furthermore, why didn't we usc a string to hold a line?

711

712 CHAPTER 20 • CON TAINERS AND lTERATO R$

We can ask a slightly morc general variant of this question. We have now
seen four ways to store a sequence o f characters :

chari! (array of characters)

vector<char>

string

list<char>

How do we choose among them for a given problem? For really simple tasks,
they arc imcrchangcablc ; that is, they have very similar interfaces. For example,
given an iteratof, we can walk through each using ++ and usc · to access the
characters. If we look at the code examples related to Document, we can actually
replace our vector<char> with list<char> or string without any logical problems.
Such interchangeability is fundamentally good because it allows us to choose
based on performance. However, before we consider pcrfonnancc, we should
look allogicaJ propenies ohhese types: what can each do that the others can't?

ElemU : Doesn't know its own size. Doesn't have beginO, end(), or any of
the other useful container member functions. C an't be systematically
range checked . Can be passed to functions written in C and C-style
functions. TIle clements arc allocated contiguously in memory. The size
of the array is fixed at compile lime. Comparison (== and !=) and output
« <) usc the pointer to the fi rs t clement of the array, not the clements.

vector<Elem>: C an do just about everything, including inse rt() and
eraseO. Provides subscripting. List operations, such as insertO and
eraseO, typically involve moving characters (that can be inefficient for
large clements and large numbers of clements). Can be range checked.
TIle clements arc allocated contiguously in memory. A vector is expand­
able (e.g., usc push_backO). Elements of a veclor arc stored (contigu­
ously) in an array. Comparison operators (==, !=, <, <=, >, and >=)
compare clements.

stri ng: Provides all the common and useful operations plus specific text
manipulation operations, such as conc."l.tenation (+ and +=). TIle cle­
ments are not guaranteed to be contiguous in memory. A string is ex·
pandable. Comparison operators (== , !=, <, <=, >, and >=) compare
clements.

listd lem>: Provides all the common and usual operations, except sub·
scripting. We can insertO and deleteO without moving Olher clements.
Needs two words extra (for link pointers) for each clement. A list is ex·
pandable. Comparison operato rs (== , !=, <, <=, >, and >=) compare
clements .

20.7 VEC TOR, LIST, AND STRING

AIl we have seen (§17.2, § 18.5), arrays are useful and necessary for dealing with
memory at the lowest possible level and for interfacing with code written in C
(§27. 1.2 , §27.5). Apart from that, vector is preferred because it is easier to usc,
more flexib le, and safer.

TR Y THI S

What does that list of differences mean in real code? For each array of char,
vector<char>, list<char>, and string, define one with the value "Hello", pass
it to a function as an argument, write out lhe number of characters in the
string passed , try to compare it to "Hello" in that function (to see if you re­
ally did pass "Helio"), and compare the argument to "Howdy" to see which
would come first in a dictionary. Copy the argument into another variable of
the sanle type.

TRY THI S

Do the previous Try this for an array of int, vector<int>, and lisl<int> each
with the value {1, 2, 3, 4, 5).

20.7.1 insert and erase
1l1e standard library vector is our default choice for a container. It has most of
the desired features , so we use a1tematives only if we have to. Its main problem is
its habit of moving clements when we do list operations (inserl O and e raseO);
that can be costly when we deal with vectors with many elements or vectors of
large clements . Don't be too worried about that, though. We have been quite
happy reading half a million floating-poim values into a vector using push_backO
- measurements confirmed that pre-allocation didn't make a noticeable differ­
ence. Always measure before making significam changes in the imerest of per­
formance; even for experts, guessing about performance is very hard.

AIl pointed out in §20.6, moving elements also implies a logical constraint:
don't hold iterators or pointers to clements of a vector when you do JiSt opera­
tions (such as inserl() , e raseO, and push_backO): if an clement moves, your itera­
tor or pointer will point to the wrong clement 0 1' to no clement at all. This is the
principal advantage of lists (and maps; sec §2 1.6) over vectors_ If you need a co[­
lection of large objects or of objects that you point to from many places in a pro­
gram, consider using a list.

Let'S compare insertO and erase() for a vector and a list: First we take an ex­
ample designed only to illustrate the key points:

713

71. CHAPTER 20 • CON TAINERS AN O ITERATORS

vector<int>: : ite rator p = v.begin() ;
++p; ++p; ++p;

II take a vector
/I poinl lo its 3rd element

vector<int> : :ite rator q = Pi
++q ; /I poinllo its 4th element

v ~ P-cp ~
1 0 11 1 2 1 3 1 -15i''''''':'''''''''''''''''''''''''''''',

p = v.inserl(p,99); /I p points at the inserted element

P' q'D
v: ~r::-o r;, T:2cr: .. S-~3 'i-:. T:

S
'-" ------------------.

L:...l-'--'-'=-="-"--L.:...L::.J_, , , , , " , , , " , " , , , , .

NOle that q is now invalid. "nlc clements may have been reallocated as the size of
the vector grew. If v had spare capacity, so that it grew in place, q most likely
points to the clement with the value 3 rather than lhe element with the value 4,
but don' t try to take advantage of that.

p = v.erase(p); /I p points at the clement after the erased onc

P G:J q .. D
v ~ I . ..

1 0 l ' 1 2 1 3 1 .. r~ I.·.·.·.·.·.·.·.·,·.·,',,·,·,·,·,',·,': ','i

'I1ml is, an inse rtO followed by an eraseO of the inserted element leaves us back
where we started, but with q invalida ted. H owever, in between, we moved all the
clements after the insertion point, and maybe all clements were rcloc.·ued as v grew.

To compare, we 'll do exactly the same with a list :

lisl<inl> : : itera tor p = v.begin() ;
++p; ++p; ++p;
lisl<in l> : : ite rator q = p ;
++q;

"

/1 take a list
/I point to its 3rcl element

/I point to its 4th elemenl

P' q '

20 .8 ADAPTING OUR VECTOR TO THE STl

p = v.inserl(p,99); /I P poinls at the inserted elemenl

v ~[~}-{!J

Note that q still poi.nts to the clement with the value 4 .

p = v.erase(p); "I' points at the elemenl after the erascd onc

Again we find ourselves back where we started. However, for list as opposed to
fo r vector, we didn't move any elemcnts and q was valid at all times.

A list<char> takcs up at least three times as much mcmOly as the other three
alternatives - on a PC a list<cha r> uses 12 bytcs per clement; a veclor<char>
uses I byte per element. For large numbers of characters, that can be significant.

In what way is a vector superior to a string? Looking at the lists of their
properties, it seems that a string can do all that a vector can, and more. That 's
pan of the problem: since string has to do more things, it is harder to optimize. In
fact , vector tends to be optimized for "memory operations" such as push_back O,
whereas siring tends not to be. Instead, string lends to be optimized for handling
of copying, for dealing with short strings, and for i.nteraction with C-style st.rings.
In the text editor example, we chose vector because we were using inse rt() and
de lete() . 11131 is a perfonnance reason, though. 111e major logical difference is
that you can have a vector of just about any clemcnt type. We have a choice only
when we arc thinking about characters. In conclusion, prefer vector to string un­
less you need string operations, such as concatenation or reading whitespace­
separated words.

20.8 Adapting our vector to the STL
After adding beginO, end(), and the typedefs in §20.5, vector now JUSt lacks insertO
and eraseO to be as close an approximation of std: :vector as we need it to be:

lemplate<class T, class A = allocator<T> > class vector {
int SZ j /I the size
T* elem; /I a pointer to the elements

716 CHA PTER 20 • CONTAINERS AND ITERATOR S

int space;
A alloe;

pUblic:

/I number of elements plus number of free space "sIOls"
/I use al locate to handle memory for elements

);

1/ . .. all the other stuff from Chapter 19 and §20.5 .. .
I ypedcf r- iteratof; /I Elemo is the simplest I>ossibie iterator

iterato r insert(iterato r P, const T& val) ;
itcrator erase(iterator p);

We again Llsed a pointer to the clement typc, P , as the iterator type. ' nmt's the
simplest possible solution. We left providing a range-checked iterato r as an exer­
cise (exercise 18).

Typically, people don't provide list operations, such as insert() and e raseO,
for data types that keep their clements in contiguous storage, such as vector.
However. list operations, such as insertO and eraseO, arc immensely lIserul and
surprisingly efficient ror short vectors or small numbers or clements. \,Ve have re·
peatedly seen the usefulness or push_backO, which is another operation tradi·
tionally associated with lists.

Basically, we implement veClor<T>: :eraseO by copying all clements artcr thc
element we erase (remove, delete). Using the definition or vector rrom §19.3.6
with the additions above, we get

template<dass T, class A>
veClor<T,A>:: iterator vector<T,A>: :erase(iterator p)
{

if (p==end(» return p;
for (ite rato r pos = p+1; pos!=end(); ++pos)

·(pos-1 l = ·pos; /I copy element ~one position to the left"
alloc.destwy(&· pos); /I destroy surplus copy of last element
--SZ;

return p;
)

It is easier to ullderstand such code ir YOll look at a graphical representation:

SZ:

e lem:

space:

.................

=
t-r:;;;J~' ',' . L , ,. ;

: ' : ' -.... -'- .. _··············· ··· ·· ·r·.'
Elemell ts

(initialized)
". ""••........

20.8 ADAPT ING OU R V EC TOR TO THE STL

111e code for eraseO is quite simple, but it may be a good idea to tryout a couple of
examples by drawing them on paper. Is the empty vector cOlTectly handled? Why
do we need the p==endO test? What if we erased the last clemem of a vector?
Would this code have been easier to read if we had used the subscript notation?

Implementing vector<T,A>: :insertO is a bit more complicated:

template<class T, class A>
veclor<T,A>: :ilerator veclor<T,A>:: insert(ilerator p. const T& val)
(

int index = p- beginO;
if (sizeO==ca pacily(» reserve(rsi:ze()) ; /I make sure we have space

/I firs! copy las! elemen! into unin itialized space:
alloc.construct(elem+sz, * backO);
++sz;
ite ralor pp = begin()+index; /I the place to put val
for (ilerator pas = endO- l ; pos!=pp; --pos)

· pos = *(pos- l); II copy elements one position to the right
• (begin()+offset) = val; I/ " insert ~ val
return pos;

Please note:

An iterator may not point outside its sequence, so we use pointers, such
as elem+space, for that. 111at's one reason that allocators are defined in
terms of pointers and nOt iterators.

When we usc reserve(), the clements may be moved LO a new area of
memory. 111erefore, we must remember the iJ1dex of the element to be
erased , rather than the itcrator to it. When vector reallocates its ele·
ments, iteraLOrs into that veclor become invalid - you can think of them
as pointing to the old memory.

Qur usc of the allocator argument, A, is intuitive, but inaccurate. If you
shou ld ever need to implement a container, you'll have to do some care·
ful reading of the standard.

It is sublieties like these lImt make us avoid dealing with low· level memo
ory issues whenever we can. Naturally, the standard library vector - and
all other standard library containers - gel that kind of importam seman·
tic detail right. 111at's one reason to prefer the standard library over
"home brew."

For pel{ollua.nce reasons, you wouldn't use insertO and eraseO in thc m.iddle of a
IOO,OOO·d emcnt vector; for that, lists (and maps; sec §21.6) are better. However, tllC

717

718 C HAPTER 20 • CONTAINERS AND ITERATORS

inserl() and e raseO operations are available for all vectors, and their pcrfonmmcc is
unbeatable when you are j ust moving a few words of data - or even a few dozen
words - because modem computers are really good at this kind of copying; sec ex­
ercise 20. Avoid Oinked) lists fOT representing a list of a few small clements.

20.9 Adapting built-in arrays to the STl
We have repeatedly pointed out the weaknesses of the built-in arrays: they im­
plicitly convert to pointers at the slightest provocation, they can't be copied llsing
assignment, they don't know their own size (§ 18.5.2), etc. ""e have also po inted
OUl their main strength : they model physical memory almost perfectly.

To get the best of bOlh worlds, we can build an array container that provides
the benefits of arrays without the weaknesses . A version of array was introduced
into the standard as pan of a Technical Report. Since a feature from a TR is not
req uired to be part of every implementation , array may not be part of the imple·
mentation you use. However, the idea is simple and useful :

template <class T, int N> /I not quitc thc standard array
strud array {

} ;

typedefT value_type;
typedefTo ite rato r;
typedef T" consUterator;
typedef unsigned int size_type; lIthe type of a subscript

T elems[N] ;
/I no explicit construct/copy/destroy net.'<led

iterator beginO { ret urn e lems; }
co nsUterator beginO canst { return e lems; }
ite rato, end O (return elems+N;)
co nsU terator endO ca nst { return elems+ N; }

size_type sizeO canst;

T& o pe rato r[](int nl { return elems[n]; }
canst T& operato r[](int nl canst { return elems[n]; }

canst T& aUint nl canst;
T& aUi nt n);

T O dataO { return elems; }

1/ range-checked access
1/ range-checked access

canst T ° data() canst { return elems; }

20 . 10 CONTAINER OVERVIEW

111is definition isn't complete or completely standards·conforming, but it will
give yOll the idea, It will also give you something to use if your implementation
doesn't yet provide the standard array. If available, it is in <array>, Note that be·
cause array<T,N> "knows" lhat its size is N, we can (and do) provide assignment,
==, 1=, etc. just as for vectOr,

As an example, let 's use an array with the STL versio n of highO from §20.4.2:

void fO
{

array<do uble,6> a = { O.O, 1.1, 2.2, 3.3, 4.4, 5.5};
array<do uble,6>: : ite rator p = high(a.beginO, a.end());
cout « "Ih e highest value was " « . p « endl;

}

Note that we did not lhink of array when we wrote highO, Being able to usc
highO for an array is a simple consequence of following standard conventions for
both.

20.10 Container overview
~111C Sll.. provides quite a few containers:

Standard containers

vector

lisl

deque

m. p

mu1timap

a contiguously allocated sequence of elements; use it as
the default container

a doubly-linked list; use it when you need to insert and
delete elements without moving existing elements

a cross between a list and a vector; don't use it until you
have expert-level knowledge of algorithms and machine
architecture

a balanced ordered tree; use it when you need to access
elements by value (see §21.6.1 - J)

a balanced ordered tree where there can be multiple
copies of a key; use it when you need to access elements
by value (see §21,6. 1- J)

a hash table; an optimized version of map; use for large
maps when you need high performance and can devise a
good hash function (see §21.6.41

719

no CHAPTER 20 • CONTAI NERS AND ITERATORS

Standard containers (continued)

unordered_multi map

,,'
multiset

unordered_set

unordered_mulliset

array

a hash table where there can be multiple copies of a key;
an optimized version of multimap; use it for large maps

when you need high performance and can devise a good
hash function (see §21.6.4)

a balanced ordered tree; use it when you need to keep
track of individual v<Jlues (see §2 1.6.5)

a balanced ordered tree where there can be multiple
copies of a key; use it when you need to keep track of
individual values (see §21.6.S)

like uno rde red_map, but jusl with values, not (key,value)

pairs

like uno rde red_multimap, but just with values, not
(key,value) pairs

a fixed-size array that doesn't suffer most of the problems
related to the built-in arrays (see §20.6)

You can look up incredible amounts o r additional inromlalion on these comain­
ers and their use in books and online documentation. Here are a rew quality in­
rormation sources:

Austem, Mau , ed. "Technic.."ll Report on C++ Standard Library Extensions,"
ISO/IEC Pum 19768. (Colloquially known as TRI .)

Austern, Matthew H. Generic Programming and the SrL. Addison-Wesley, 1999.
ISBN 020 1309564.

Koenig, Andrew, ed. 'The C++ Stmuwnl. Wiley, 2003. ISBN 0470846747. (at

suitable ror novices.)
Lippman, Stanley B. ,J osee Lajoie, and Barbara E. Moo. 17/£ C++ Pn'l/£r. Addison­

Wesley. 2005. ISBN 020 172 1481. (Use only the 4th edition.)
Musser, David R., Gillmer J. Derge, and Atul Saini. SrL 'Iiltonal mui Reference

Gllide: c++ Programming with the Stwuwrd Template Libr(llY, &Cfmd Edition.
Addison-Wesley, 200 1. ISBN 020 1379236.

Stroustrup, Bjame. 'The C++ Programming Language. Addison-Wesley, 2000. ISBN
0201700735.

TIle documentation ror the SC I implememation o r the STI.. and the iostream li­
brary: WW\\I.sgi.comflech/st..! . Note that they also provide complete code.

TIle documemauon o r the Dinkumware implementation or the standard library:
www.d inkumwarc.comfmanuals/derault.aspx. (Beware or several library ver­
sions.)

TIle documentation or the Rogue Wave implementation or the standard library:
www2.roguewave.com!supportJdocslindex.dm.

20.10 CONTAINER OVERVIEW

Do you feel cheated? Do you think we should explain all about containers
and their use to you? That's just not possible. There are too many standard facil ­
ities, too many useful techniques, and too many useful libraries for you to absorb
them all at once. Programming is too rich a field for anyone to know all facilities
and techniques - it can also be a noble art. As a programmer, you muSt acquire
the habit of seeking out new information about language facilities, libraries, and
techniques. Progranmllng is a dynanllc and rapidly developing field , so just being
comem with what you know and are comfortable with is a recipe for being left
behind. !; Look it up" is a perfectly reasonable answer to many problems, and as
your skills grow and mature, it willmore and more often be tlle answer.

On the other hand , you will find that once you understand veclor, list, and
map and the standard algorithms presemed in Chapter 21, you'll find other STL
and STL-style containers easy to use. You 'll also find that YOll have the basic
knowledge to understand non-SlL containers and code using them.

What is a container? You can find the definition of an sn.. container in all of
the sources above. Here we will just give an informal definition. An sn .. container

Is a sequence of elements [beginO:endO).

Container operations copy clements. Copying can be done with assign­
ment or a copy constructor.

Names its element type value_type.

Has iterator types called ite rator and const_iterator. lterators provide · ,
++ (both prefix and postfIX), ==, and != with the appropriate semantics.
'111e itermors for list also provide -- for moving backward in the se­
quence ; that's called a bidireciWnal itemtor. TIle itcrators for vector also pro­
vide --, 11 , + , and - and are called rat,,/om-aca.u lJtralors. (Sec §20.10.l.)

Provides inserl O and eraseO, fronlO and backO, push_backO and
pop_backO, sizeO, etc.; vector and map also provide subscripting (e.g. ,
operdlor (I).

Provides comparison operators (==, '=, <, <=, >, and >=) that compare
the clements. Containers use lexicographical ordering for <, <=, >, and
>=; that is, they compare the elements in order starting with the first.

TI1C aim of this list is to give you an overview. For more detail see Appendix B.
For a more precisc specification and complete list, sec The C++ Programming Li·
brill] or the standard .

Some data types provide much of what is required from a standard container,
but not all. We sometimes refcr to those as "almost containcrs." The most inter­
esting of those arc:

722

"AlmoSI containe rs"

T(n] built-in array

string

valarray

(HAPTER 20 • CONTAINERS AND ITERATORS

no sizeO or other member functions; prefer a container, such as

vector, string, or aHay, over a built-in array whcn you have a
choice

holds only characters but provides operations useful for text
manipulation, such as concatenation (+ and +=); prefer Ihe

standard siring to other strings

a numerical vector wi th vector operations, but with many

restrictions to encourage high-performance implementations;

use only if you do a lot of vector arithmetic

In addition, many people and many organizations have produced containers that
meet the standard container requirements, or abllost do so.

If in doubt, use vector. Unless you have a solid reason not to, lise vector.

20.10.1 Iterator categories
We have talked about iterators as ir all iterators are imerdulIlgcable. ~111e)' are in­
terchangeable if you do only the simplest operations, such as traversing a se­
quence once reading each value once. Ir you want to do more, such as iterating
backward or subscripting,),ou need one or the more advanced iterators.

Iterator categories

input iterator

output ite rato r

forward iterator

bidirectional ite rator

We can iterate forward using ++ and read element values
using o . This is the kind of iterator that istream offers; see
§2 1.7.2. If (-p).m is valid, p->m can be used as a
shorthand.

We can iterate forward using ++ and write element values
using -. This is the kind of iterator that ostream offers; see
§2 1.7.2.

We can iterate forwa rd repeatedly using ++ and read and
write (unless the e lements are const, of course) e lement
values using ' . If (Op).m is va lid, p->m can be used as a
shorthand .

We can iterate forward (using ++) and back-. ard
(using --I and read and write (unless the elements are
consl) e lement values using -. This is the kind of iteratOf
that lis t, map, and set offer. [f (Op).m is valid, p- >m can
be used as a shOf1hand.

CHAPTER 20 DR ILL

Iterato r categories (continued)

random ·access iterato r We can iterate forward (using ++) and backward (using - -)

and read and write (unless the elements are consl) element

values using · or (J. We can subscript and add an integer

to a random-access iterator using + and subtract an integer

using - . We can find the distance between two random·

access iterators to the same sequence by subtracting one

from the other. This is the kind of ilerator that vector offers.

If (-p).m is valid, p->m can be used as a shonhand.

From the operations offered, we can sec that wherever we can usc an output iter·
atDr or an input iterator, we can use a fonvard iterator. A bidirectional iterator is
also a fo rward iterator and a random·access iterator is also a bidirectional itera·
tor. Graphically, we can represent the iterator categories like this:

Input lie, ouIpiit-

Note that since the iterator categories arc not classes, this hierarchy is not a class
hierarchy implemented using derivation .

...;' Drill

I. Define an array of ints with the ten elements { 0, 1,2,3, 4, 5, 6, 7, 8, 9 }.
2. Define a vector<inl> with those ten elements.
3. Define a list<inl> with those len elements.
4. Define a second array, vector, and list, each initialized as a copy of the

firs t array, vector, and list, respectively.
5. Increase the value of each element in the array by 2; increase the value of

each element in the vector by 3; increase the value of each element in the
lis, by 5.

72.1

CHAPTER 20 • CONTAINERS AND ITERATORS

6. Write a simple copyO operation,

template<class Iterl , class lter2> (opy(lter fl , Iterl el , Itcr2 12);

that copies [fl ,el) to [f2,f2+(el- fl » just like the standard library copy
function. Note that if fl==el the sequence is empty, so that there is noth­
ing to copy.

7. Use your copyO to copy the array into the vector and to copy the list into
the array.

B. Use the standard library findO to see if the vector contains the value 3
and print out its position if it does ; use findO to see if the list contains the
value 27 and print Out its position if it docs. TIle "position" of the first el­
ement is 0, the position of the second elemelll is 1, elc. NOle that if find()
returns the end of the sequence, the value wasn't found.

Remember to tCSt after each step.

Review

I. Why docs code wriuen by differelll people look different? Give examples.
2. What are simple questions we ask of data?
3. What are a few difTerem ways of storing data?
4. \¥hat basic operations can we do to a collection of data items?
5. \¥hat arc some ideals for the way we store our data?
6. \¥hat is an STL sequence?
7. \¥hat is an S1L iterator? \¥hat operations does it support?
8. How do you move an iterator to the next clement?
9. How do you move an iterator to the previous element?

10. What happens if you try to move an iterator past the end of a sequence?
11. What kinds of iteralors can you move to the previous elemelll?
12. Why is it useful to separate data from algorithms?
13. \¥hat is the STL?
14. \¥hat is a linked list? How does it fundamentally difTer from a vector?
15. What is a link (in a linked list)?
16. \¥hat does insertO do? What does eraseO do?
17. How do you know if a sequence is empty?
18. What operations does an iteratar far a list provide?
19. How do you iterate over a container using the STL?
20. \lVhen would you use a string rather than a vector?
2 1. \¥hen would you use a list rather than a vector?
22. \¥hat is a container?
23. \¥hat should beginO and end() do for a container?
24. \¥hat containers does the STL provide?
25. \¥hat is an iterator category? \lVhat kinds of iteratars does the STL ofTer?
26. ' oYhat operations are provided by a random-access iterator, but not a bi­

directional iterator?

Ct-IAI'TER 20 EXERCISES

Terms

algorithm
array container
beginO
container
contiguous
doubly-linked list
element

Exercises

empty sequence
end ()
e rase()
inserl()
iteration
iterator
linked list

sequence
singly~linked list
size_type
STL
typedef
value_type

1. If you haven't already, do all Try this exercises in the chapter.
2. Get the J ack-and:Jill example from §20. 1.2 to work. Use input from a

couple of small files to test it.
3. Look at the palindrome e.'l:amplcs (§ 18.6); redo theJ ack-and:Jill example

from §20. 1.2 using that variety of techniques .
• L Find and ftx the errors in theJ ack-and:Jill example from §20.3. ! by using

STL techniques throughout.
5. Define an input and an output operator (» and «) fo r vector.
6. Write a rmd-and-replace operation for Documents based on §20.6.2.
7. Find the lexicographical last string in an unsorted vector<string>.
8. Define a function that counts the number of characters in a Document.
9. Define a program that counts the number of words in a Document. Pro­

vide twO versions: one that dermes "word" as "a whitespace-separated se­
quence of characters" and one that defines "word" as "a sequence of
consecutive alphabetic characters." For example, with the fonner defini­
tion, alpha_numeric and as12b are both single words, whereas with the
second definition they arc both two words.

10. Define a version of the word-counting program where the user can spec­
ify the set of whitespace characters.

11. Given a list<inl> as a (by-reference) parameter, make a vector<double>
and copy the clements of the list into it. Verify that the copy was com­
plete and correct. 111en print the clements sorted in order of increasing
value.

12. Complete the definition of list from §20.4.1-2 and get the highO exam­
ple LO n lll . Allocate a link to represent one past the end.

13. We don't really need a "real" ol1e-past-the-end link for a Jist. Modify
your solution LO the previous exercise to use 0 to represent a pointer to
tbe (nonexistent) one-past-the-end link (list<Elem>: :endO); that way, the
size of an empty list can be equal to the size of a single pointer.

14. Define a singly-linked list, slist, in the style of sid : : list. Which operations
from list could you reasonably eliminate from sli st because it doesn 't
have back pointers?

Tl6 CHAPTER 20 • CONTAINERS AND rTERATOR S

IS. Define a pvector to be like a vector of pointers except that it contains
pointers to objects and its desuuctor deletes each object.

16. Define an ovector that is like pvector except that the (I and • operators
rerum a reference lO the object poimed to by an element rather than the
pointer.

17. Define an ownership_vector that hold paimers to objects like pvector,
but provides a mechanism for the user to decide which objects are owned
by the veClOr (i.e. , which objects are deleted by the deslnlctOr). Hint :
Tills exercise is simple if you were awake for Chapter 13.

18. Define a range·checked iterator for vector (a random·access iteTat'Or).
19. Define a range·checked vector for list (a bidirectional iterator).
20. Run a small timing experiment to compare the cost of using vector and

list. You can find an explanation of how to time a program in §26.6.1.
Generate N random int values in the range [O:N) . fu each int is gener­
ated, insert it into a vector<int> (which grows by one element each time).
Keep the vector sorted; that is, a value is inserted after every previous
value that is less than or equal to the new value and before every previ­
ous value that is larger than the new value. Now do the same experimem
using a lisl<int> to hold the ints. For which N is the list faster than the
vector? Try to explain your result. This experiment was first suggested
by John Bentley.

Postscript

If we have N kinds of containers of data and M things we'd like to do with tllem,
we can easily end up writing N* M pieces of code. If the data is of K different
types, we could even end up 'with N* M* K pieces of code. The STL addresses this
proliferation by having tile element type as a parameter (taking care of tile K fac·
tor) and by separating access to data from algoritluns. By using iterators to access
data in any kind of container from any algorithm, we can make do with N+ M al­
goritllms. 1llis is a huge simplification, For example, if we have 12 containers and
60 algoritllms, the brute-force approach would require 720 functions , whereas the
S11.. strategy requires only 60 functions and 12 definitions of ilerators: we just
saved ourselves 90% of tile work, In addition, the STL provides conventions for
defining algorithms mat simplify writing correct code and composable code, so
the saving is greater stilL

Algorithms and Maps

"In theory, practice is simple."

-Trygve Reenskaug

T his chapler completes our presentation of the funclamclllal

ideas of the STL and OUf survey of the facilities it offers.

Here, we focus on algorithms. Our primary aim is to imrocluce

you to about a dozen of the most useful ones, which will save

you days, if not months, of work. Each is presented with exam­

ples of its uses and of programming techniques that it supports.

OUf second aim here is to give you sufficient tools to write your

own - elegant and efficient - algorithms if and when you need

morc than what the standard library and other available libraries

have to offer. In addition, we introduce three morc containers:

map, set, and unordered_map.

m

'28

21.1 Standa rd libraryalgorilhrns

21.2 The simplest algorithm : findO
21.2.1 Some gene ric uses

21.3 The gene ral search : findjfO

21.4 Fu nction objects
21.4.1 An abstract view of functio n

objects
21.4.2 Prediciltes o n class members

21.5 Nume rical algorithms
21.5.1 Accumulate
21.5.2 Gen(" ralizing accumulaleO
21.5.3 Inne r product
21.5.4 Generalizing innec produclO

C H APTER 2 1 • ALGO RITHM S AN D MAP S

21 .6 Associative containe rs

21 .6.1 Maps
21 .6.2 map overview
21 .6.3 Ano ther map example
21.6.4 unordered_map
21.6.5 Sets

21.7 Copying

21.7.1 Copy
21.7.2 Stream ite ralors
21.7.3 Using a set to keep o rder
21.7.4 copyjf

21.8 Sorl ing and searching

21.1 Standard library algorithms
The standard library offers about 60 algorilhms. All are useful for somconc
sometimes ; we focus on some mat are often uscful for many and on somc that
are occasionally very useful for someone:

Selected sta ndard algorithms

r=find(b,e,v)

r=find_if(b,e,p)

x=count(b,e,v)

x=cou nUHb,e,p)

sorl(b,e)

sort(b,e,p)

copy(b,e,b2)

unique_copy(b,e,b2)

merge(b,e,b2,e2, r)

r=eq uaCrange(b,e,v)

r points to the first occurrence of v in Ib: e).

r poi nts to the fi rst element x in Ib:e) so that
p(x) is true .

x is the number of occ urrences of v in Ib:e).

x is the number of elements in Ib :e) so that
pIx) is true.

Sort Ib:e) using <.

Sort [b:e) using p.

Copy Ib: e) to Ib2:b2+(e-b»); there had bette r
be enough elements after b2.

Copy Ib: e) to [b2:b2+(e-b» ; don't copy
adjacent duplicates.

Merge two sorted sequences [b2:e2) and
Ib:e) into Ir:r+(e-b)+(e2-b2» .

r is the subsequence of the sorted range Ib:e)
with the value v, basically, a binary search for v.

2 1. 2 THE SIMPLEST ALGORITHM: FIND O

Selected standard algorithms (continued)

eq ual(b,e,b2)

x=accumulate(b,e,i)

x=accumulate(b, e, i,op)

Do all elements of Ib:ej and Ib2 :b2+(e-b))
compare equal?

II: is the sum of i and the elements of Ib: e).

like the other accumulate, but with the
"sum" calculated usi ng op.

x:inner_product(b,e,b2,i) x is the inner product of Ib: e) and
Ib2:b2+(e-b».

x=i nner_product(b,e,b2,i,op,op2) like the other inner-product, but with op
and op2 instead of + and · .

By derault, comparison ror equality is done using == and o rdering is done based
on < (lesHhan). The standard library algorithms are found in <algorithm>. For
more information, sec §B.5 and the sources listed in §20.7. "111ese algorithms take
one or more sequences. An input sequence is defmed by a pair or iterators; an
output sequence is defined by an itcrator to its first element. Typically an algo­
rithm is parameterized by one or 1110~ operations that can be defined as funcuon
objects or as functions. The algorithms usually report "failuren by returning the
cnd of an input sequence. For example, find(b ,e,v) retllms e if it doesn 't find v.

21.2 The simplest algorithm: findO
Arguably, the simplest useful algorithm is lindO. lL finds an element with a given
value in a sequence:

lemplate<class In , class T>
In find(ln first, In last, const T& val)
II find the first element in [first,last) that equals val
{

)

while ([irsl!=last && *fi rs t != val) ++first;
return first;

Let's have a look at the definition of lindO. Naturally, you can use find O without
knowing exactly how it is implemented - in ract, we have used it already (e.g.,
§20.6.2). H owever, the defm,ition o f findO illustrates many useful design ideas, so
it is worth looking at.

First of all, findO operates on a sequence defined by a pair of iterators. We arc
looking for the value val in the halr-open sequence [firsl:lasl). The result retunled

7JO (HAPTER 21 • ALGORITHMS AND MAPS

by find O is an ilcratof. That result points either to the HrSl clcmcm of the sequence
with the value val or to last. Returning an iterator to the one-bcyond-the-Iast cle­
melll of a sequence is the most common S11. way of reporting +; nOl found." $0 we
can usc findO like Lhis:

void f(vector<inl>& v, inl xl
{

)

vector<int>: :ilerator p = find (v.begin O,v.end O,x)i
if (p!=v.end()) (

/I we found x in v
)

else (
I/nox in v

II.

Here, as is COlllmon, the sequence consists of all the clcmcills of a container (an
$TL vector). We check the returned ilcralor against the end of our sequence to
sec if we found our value.

We now know how to usc findO and therefore also how to usc a bunch of
other algorithms that follow the same conventions as {indO. Before proceeding
with more uses and morc algorithms, !et's just have a closer look a t t.hat. definition:

template<class In , class T>
In find(ln firsl , In last, const T& val)

)

/I find the first element in [firs!, las!) that equals val

while (firsl!=last && · firsf!= val) ++firsf;
return first ;

Did you find that loop obvious a t first glance? We didn't. It is actually minimal,
efficient, and a direct representation of the fundamental aJgorithm. However,
until you have seen a few examples, it is not obvious. Let's w ri te it. "the pedes­
m,m wayn and see how that version compares:

template<class In, class T>
In find(ln first, In last, const T& val)

II find the first element in 1fi rst,last) that C<luals val
{

21 .2 TH E SIMPLE ST ALGORITHM : FINDO

)

for (In p = first; p!=last; ++p)
if (* p == val) return p;

return last;

These two defi nitions arc logically equivalent, and a really good compiler will
generate the same code for both. However, in reali ty many compilers arc not

good enough to eliminate that extra variable (p) and to rearrange the code so that
all the testing is done in one place. W hy worry and explain? Partly, because the
style of the fi rst (and prefcrred) version of findO has become very popular, and
you must understand it to read mher people's code; panly, because performance
matters exactly for small , frequently used functions that deal with lots of data.

TRY THIS

Are you sure those t\\TO defin itions are logically equivalent? How would you
be sure? Try constructing an argument for their being equivalent. That
done, try both on some data. A famOllS computer scientist (Don Knuth) oncc
said, "I have only proven the algorithm correct, nOt tested it." Even mathe­
matical proofs can contain errors. To be confident, you need to both reason
and test.

21.2.1 Some generic uses
"lllC findO algorithm is generic. That means that it can be used for different data
types. In fact, it is generic in two ways; it can be used for

Any STL-Sty1e sequence

Any element type

Here are some examples (consult the d iagrams in §20.4 if you get confused):

void f(vector<inl>& v, inl x) /I works for vector of int
{

vector<int>:: iterator p = find(v.beginO,v.endO,x);
if (p! =v.end()) (1* we found x *1}
II . ..

Here. the iteration operations lIsed by find O arc those of a vector<inl>: :iterator;
that is. ++ (in ++firsl) simply moves a pointer to the next location in memory
(where the next clement of the vector is stored) and * (in ·first) dereferences such

731

732 (HAPTER 2 1 • ALGORITHM S AND MAPS

a pointer. The itcrator comparison (in fir sl!=lasl) is a pointer comparison, and
the value comparison (in °fir sl!=val) simply compares two integers.

Let's try wilh a list

void f(I ist<slring>& v, string)It)

(

/I works for lis! of str ing

list<string:>:: iteratol p = find (v.begin(),v.end O,x);
if (p !=v. end()) {Ie we found x 01}

II .
}

Here, the iteration operations used by findO arc those of a list<st,ing>: :ilerator.
lne operators have the required meaning, so that the logic is the same as for the
vector<int> above. The implementation is very different, though; that is, ++ (in
++first) simply follows a pointer in the link part of the clement to where the next
element of the list is stored, and · (in Ofirst) finds the value part of a link. TIle it­
erator comparison (in firsl!=lasl) is a pointer comparison of link-s and the value
comparison (in · fir st!=val) compares strings using stri ng's != operator.

So, HndO is extremely flexible: as long as we obey the simple rules for itertl­
tors, we can usc findO to find clements for any sequc.nce we can think of and for
any container we care to defme. For example, we can use find O to look for a
character in a Document as defined in §20.6:

void f(Documenl& v, ehar x) /I works for Document of char
(

}

TexUterator p = find (v.begin(),v.end O,x) ;
if (p!=v.end(» {r we found)(-/ }
II .

This kind of flexibility is the hallmark of the STL algorithms and makes them
more useful than most people imagine when they first encounter them.

21.3 The general search: find_if 0
We don't actually look for a specific value all that often. More often, we arc inter­
ested in fmding a value that meets some criteria. We could get a much more use­
ful find operation if we could define our search criteria ourselves. Maybe we
want to find a value larger than 42. Maybe we want to compare strings withou!.
taking case (upper case vs . lower case) intO account. Maybe we want to find the
first odd value. Maybe we want to find a record where the address field is "17
Cherry Tree l ane".

21 .3 THE GENE RAL SEARC H : F1ND _IFO

"nlc standard algorithm that scarches bascd on a user-supplied critcrio n is
find_if 0 :

template<class In , class Pred>
In findj f(ln first, In lasl , Pred pred)
{

while (firsl!=lasl && !pred(·first» ++first;
return fir st;

Obviously (when you compare the sourcc code), it is just like findO except that it
uses !pred(Ofirst) rather th,m °firsl! =val; t.hat. is, it. stops searching once the predi­
cate predO succeeds ratller than when an element. equals a value.

A predicate is a function that. rcLUms true or false . Clearly, findj fO requires
a predicat.c that takes one argument. so that it can say pred (· first) . We can easily
write a predicat.e that checks some property of a value, such as "Does t.he string
contain the Ieuer x?" "Is the value larger than 42?" "Is the number odd?" For ex­
ample, we Co:'lIl find the first odd value in a vector of ints like this:

boot odd(int x) { return)(%2;) /I % is the modu lo operator

void f(vector<int>& v)
{

vector<int>:: ilerator p = fi nd_if(v.begin O, v.end(), odd);
if (p!=v.end()) (I" we found an odd number o/}

II.

For t.hat call of findjfO, findjfO calls oddO for each clement lIntil it finds lhe
fi rs t odd value.

Similarly, we can find the first clement of a list with a value larger than 42
like t.his:

boollarger_than_ 42(int x) (return x>42 ;)

void f(lisl<double>& v)
{

}

list<double>: : iteralor p = find_if(v.begin (), v.end(), IargeUhan_42);
if (p! =v.end()) { J. we found a value > 42 0/)

II . ..

m

CHAPTER 2 1 • ALGOR ITHMS AND MAPS

111is last example is nOl very satisfying, though. \-Vhal if we next wanted to find
an element larger than 41? We would have to write a new function. Find an ele­
ment larger than 19? Write yet another function. 111ere has to be a better way!

If we want to compare to an arbitrary value v, we need somehow to make v
an implicit argument to findjfO 's predicate. We could try (choosing v_val as a
name that is less likely to clash with other names)

int v_val; IIlhe value to which larger_than_vO compares its argument
boollarger_than_vCint xl { return x>v_val ;}

void f(lisl<doubl e>& v, int x)
(

)

v_val = 31; II set v_val to 31 for Ihe nexl call of larger_than_v
list<double>:: ileralor p = find_ifCv.begin O, v.end O, larger_lhan_ v);
if (p!=v.endOl { /* we found a value> 31 -')

v_val = x; II set v_val lo x for the next call of larger_lhan_v
list<double>: :iterator q = find_if(v.beginO, v.end O, largeUhan_v);
if (q! =v.end()) {I- we found a value > x· ')

/I . ..

Yuck! We arc convinced that people who write sllch code will eventually get what
they deserve, but we pity their users and anyone who gets to maintain their code.
Again : there has to be a better way!

TRY THIS

Why arc we so disgusted with that use of v? Give at least three ways this
could lead to obscure errors. List three applications in which you'd particu­
larly hate to find such code.

21.4 Function objects
So, we want to pass a pred icate to findjfO , and we want that predicate to COIll ­

pare elements to a value we specify as some kind of argumem. In particular, we
want to write something like this:

21.4 FUN CTION OBJECT S

void f(list<double>& v, int x)
{

list<double>: :iterator p = find_if(v.begin O, v.endO, larger_than(31»;
if (p!=v.end(» (r we found a value > 31 */)

lisl<do uble>: :iterator q = find_if(v.begin O, v.end O, Larger_than(x»;
if (q !=v.end (» {/* we found a value> x */}

II .. .

Obviously, larger_than must be somethiJlg that

We can call as a predicate, e.g., pred(*first)

Can store a value, such as 31 or x, for usc when called

For that we need a "function object,n that is , an object that can behave like a func­
tion. We need an object because objects can store data, such as the value with
which to compare. For example:

class larger_than (
int V;

r ub1ic:
largeUhan(int w) : v(vv) ()

bool operalorO(int x) const { return X>V;)

} ;

/I store the argument
II compare

Interestingly, lhis definition makes the example above work as specified. Now we
just have to figure out why it works. When we say larger_than (31) we (obviously)
make an object of class larger_Ihan holding 31 in its data member v. For cxample:

fi ndj f(v. beginO, v .e ndO,largeUhan (31 »

Here, we pass that object to findjfO as its parameter called pred . For each cle­
ment of V, fi nd_if() makes a call

prcd (*nrst)

111is invokes the call operator, called operator(), for ou r fUll ction object llsing the
argument ·first. TIlc resuit is a comparison of the clement's value, ·€i rsl, with 31 .

What we see here is that function call can be seen as an operator, the "() op­
erator,n just like any other operator. TIle "() operator" is also called thejimclioT/

7J5

736 (HAI)TER 21 • ALGORITHMS AND MAPS

call &jJeralar and the ajJjJlico.twn C!jJeratrtr. So () in pred(*first) is given a meaning by
Larger_than: :operatorO, just as subscripting in vIi] is given a meaning by
vector: :operator[1.

21 .4.1 An abstract view of function objects
We have here a mechanism that allows for a "functionn to "carry around" data
that it needs. Clearly, function objects provide us with a very general, powerful,
and convenient mechanism. Consider a Illorc general notion of a function object:

class F { II abstract example of a func tion object
S S; /I state

public:

};

F(const S& 5S) :S(5S) (I· establish ini tial stale */)
T operatorO (const S& 55) const
(

1/ do something with 55 to s
/I return a value of type T (T is often void, bool. or 5)

}

const S& staleO const { return s;} II reveal sta te
void reset(co nst S& ss) { s = ss;) II reset state

An object of class F holds data in its member s . If needed, a function object can
have many data members . Another way of saying that something holds data is
that it ';has state." When we create an F, we can initialize that state. Whenever we
waHl to, we can read that state. For F, we provided an operation, stateO, to read
that state and another, resetO, to write it. However, when we design a funct ion
object we are free to provide any way of accessing its state that we consider ap­
propriate. And, of course, we can directly or indirectly call the function object
using the normal function call notation. We defined F to take a single argument
when it is called, bUl we can define function objects with as many parameters as
we need.

Use of function objects is the main method of parameterization in the STL.
\'\Te use function objects to specify what we are looking for in searches (§21.3), for
defining sorting criteria (§21.4.2), for specifying arithmetic operations in numeri­
cal algorithms (§2 I.S), for defining what it means for values to be equal (§21.8),
and for much more. The usc of function objects is a major source of flexibility
and generality.

Function objects are usually very efficient. In particular, passing a small func­
tion object by value to a template function typically leads to optimal perform-

2 1.4 FUNCTI O N OB JECT S

ance. The reason is simple, but surprising to people more fami liar with passing
functions as arguments: typically, passing a function object leads to significantly
smaller and faster code than passing a function! ll1is is true only if the object is
small (something like zero, one, or two words of data) or passed by reference and
if the fu nction call operator is small (e.g., a simple comparison using <) and de·
fi ned to be iuline (e.g., has its definition within its class itself). Most of the exam·
pies in this chapter - and in titis book - follow this pattern. ~nle basic reason fo r
the high performance of small and simple function objects is that they preserve
sufficient type information for compilers to generate optimal code. Even older
compilers with unsophisticated optimizers call generate a simple ;'greater·than"
machine instruction for the comparison in larger_than rather than calling a func·
tion. Calling a function typically takes 10 to 50 times longer than executing a
simple com parison operation. In addition, the code for a fu nction call is several
times larger than the code for a simple comparison.

21.4.2 Predicates on class members
As we have seen, standard algorithms work well with sequences of elements of
basic types, such as inl and double . However, in some application areas , contain·
ers of class values arc far marc common. Consider an example that is key to ap·
plications in many areas, sorting a record by several criteria:

struct Record {
Siring name;
char addr[241 ;

/I standard string for ease of use
/I old style to match database layout

/I . . .

l;

vector<Record> Vf;

Sometimes we want to SOrt vr by name, and sometimes we want to sort it by ad·
dress. Unless we can do both elegantly and effi ciently, our techniques arc of lim·
ited practical interest. Fortunately, doing so is easy. We can write

1/ .
sorl(vr.beginO, vr.endO, Cmp_by_name());
1/ ...
sort(vr.begin(), vr.end O, Cmp_by_addr()) ;
1/ ...

/I sort by name

/I sort by addr

Cmp_by_name is a function object that compares two Records by comparing their
name members. Cmp_by_addr is a funclion object that compares twO Records by

737

738 CHAPTER 2 1 • ALGORITHMS AND MAPS

comparing their addr members. To allow the user to specify such comparison 0;­
leria, ehe standard library sort algorithm takes an optional third argument specify.
ing the sorting crilcl;a. Cmp_by_nameO creates a Cmp_by_name for sortO to usc
to compare Records. TIlat looks OK - meaning lhat we wouldn't mind maintain­
ing code that looked like that. Now all we have to do is to define Cmp_by_name
and Cmp_by_addr:

/I different comparisons for Record objects:

slruct Cmp_by_name {

};

bool operatorO(co nst Record& a, consl Record& b) const
(return a.name < b.namci)

struct Cmp_by_addr (

};

bool operator()(const Record& a, const Record& b) const
(return slrncmp(a.addr, b.addr, 24) < o; } II !!!

The Cmp_by_name class is pretty obvious. The function call operator, opera­
torOO, simply compares the name strings using the standard string's < operator.
However, the comparison in Cmp~by~addr is ugly. That is because we chose an
ugly representation of the address : an array of 24 characters (not zero termi­
nated). We chose that part..ly to show how a function obj ect can be used to hide
ugly and en'or-prone code and partly because this particular representation was
once presented to me as a challenge: "an ugly and important reahvorld problem
that the STL can't handle." Well, the STL could . TIle comparison function uses
thc standard C (and C++) library function strncmpO that compares fiXed-length
character arrays retuming a negative number if the second "su'ing" comes lexico·
graphically after the first. Look it up should you ever need to do such an obscure
comparison (e.g., §B. IO.3).

21.5 Numerical algorithms
Most of the standard library algorithms deal with data management issues : they
copy, sort, search, etc. data . However, a few help with numerical computations .
TIlese numerical algorithms can be important when you compute, and they
serve as examples of how you can express numerical algorit..luns within the STL
framework.

TIlere arc just four STL-style standard library numerical algorithms:

2 1. 5 NUMERICAL ALGO RITHM S

Numerical algorithms

x:accumulale(b,e,i)

x=i n ner _producl(b,e, b2, i)

r=partial_su m(b, e, r)

r=adjacenCdifference(b,e,b2,r)

Add a sequence of values; e.g., for (a,b,c,d)
produce a+b+c+d. The type of the result x is the
type of the initial value i.

Multiply pairs of values from two sequences and
sum the results; e.g., for (a,b,c,d) and (e,f,g.h)
produce aOe+b·f+cOg+doh.1he type of the result
x is the type of the initial value i.

Produce the sequence of sums of the first n
clements of a sequence; e.g., for (a,b,c,d)
produce {a, a+b, a+b+c, a+b+c+d).

Produce the sequence of differences between
elements of a sequence; e.g., for (a,b,c,d)
produce (a,b-a,c-b,d-<) .

~nley are found in <numeric>. We' ll describe the first two here and leave it for
you to explore the other twO if you feet the need .

21.5.1 Accumulate
"Ille simplest and most useful numerical algoritlun is accumulateO. In its simplest
form, it adds a sequence o f values:

template<class In , class T> T accumulate(l n fir st, In last, T init)
(

)

while (firsl! =lasl) (
init : init + · first;
++first ;

)

relurn inil ;

Given an initial value, init, it simply adds every value in the [fi rst : last) sequence
to it and returns the sum. TIle variable in which the sum is computed, inil, is
often referred to as the aaumu/ator. For example:

inial) : (1 , 2, 3, 4, 5);
cout « accumulate(a, a+sizeof(a)/sizeof(i nt), 0);

111is will prim 15, that is, 0+ I +2+3+4+5 (0 is the initial value). Obviously, accu­
mulateO can be used for all kinds of sequences:

739

740 C H APTER 2 1 • ALG ORITH MS AND MAPS

void f(vector<double>& vd , in' · p, int nJ
(

double sum = accumulale(vd.begin(), vd.e ndO, 0.0);
int 5um2 = accumulate(p,p+n,O) ;

The type of the result (the sum) is the type of the variable that accumulaleO lIses
to hold the accumulator. TIlls gives a degree of OexibililY that can be important.
Fo r example:

void f(int · p, int nl
(

)

int 51 = accumulate(p, p+n, 0);
lo ng s l = accumulate(p, p+n , 10ng(0»;
double 52 = accumulate(p, p+n, 0.0);

/I sum into an inl
II sum the ints inl0 a long
1/ sum the ints inl0 a double

A long has more significant digits than an int on some computers. A double can
represent larger (and smaller) numbers than an int, but possibly with less preci­
sion. We'll revis it the rolc of range and precision in numerical computations in
Chapter 24.

Using the variable in which you want the result as the initializer is a popular
idiom for specifying the type of the accumulator:

void f(vector<double>& vd, int · p, int n)
(

)

double sl = 0;
sl = accumulate(vd .beginO, vd.end O, sl);
int s2 = accurnulate(vd.beginO, vd.endO, s2);
float s3 = 0;
accurnulale(vd .begin(), vd .endO, s3);

/I oops

/I oops

Do remember to initialize the accu mu latOr and to ass ign the result o f acc umu­
late O to the variable. In this example, s2 was used as an initializer before it was it·
self initialized ; the result is therefore undefined. We passed s3 to accurnulateO
(pass·by·value; see §8.5.3), but the result is never assigned anywhere; that compi.
lation is just a waste of time.

21.5.2 Generalizing accumulateO
So, the basic three·argument accumulateO adds. However, there are many other
useful operations, such as multiply and subtract, that we might like to do 0 11 a se·

2 1.S NUMERICAL ALGORITHMS

quence, so the STL offers a second four-argument version o f accumulateO where
we ca.Il specify the operation to be used:

template<class In, class T, class BinOp>
T accumulate (ln first, In last, T init, BinO p o p)
{

}

while (firsl!=last) (

}

init = o p(init , · first);
++firsl;

return init ;

Any binary operation that accepts tWO arguments of the accumulator's type ca.n
be used here. For example:

array<double,4> a = (1.1, 2.2, 3.3, 4.4 }; 1/ see §20.9
co ul « accumulate(a.begi nO,a.end O, 1.0, multiplies<double>(»;

Illis will prillt 35. 1384, that is, 1.0* 1. 1*2.2-a.3*4.4 (1.0 is the initial value). "nle bi­
nary operator supplied here, multiplies<double>O, is a standard library function
object that multiplies ; multiplics<doublc> multiplies doubles, multiplies<inl> mul·
tiplies ints, etc. There are other binary function objects: plus (it adds), minus (it
subtracts), divides, and modulus (it takes the remainder). TIley are all defined in
<funct io nal> (§B.6.2).

Note that for products of floating-point numbers, the obvious initial value is 1.0.
As in the sartO example (§21.4.2), we are often interested in data within class

objects, rather than just plain built-in lypeS. For example, we might want to calcu­
late the totaJ COSt of items given the unit prices and number o f units:

slrucr Record (
do uble un ii_price;
int units; /I number of units sold
II ...

) ;

We ca.n let the accumulate's operator exrract the units from a Record element as
well as multiplying it to tile accumulator value:

double price(double v, consl Record& r)
{

return" + r.uniC price • r.unils; /I calculate price and accumulate

741

742 C H APTER 21 • ALGORITHMS AND MAl'S

void f(const vector<Record>& vr)
{

)

double total = accumulale(vr.beginO, vr.end O, 0.0, price);

" . .

We were "lazy" and used a function, rather than a function object, to calculate the
price - just to show that we could do that also. We tend to prefer function objects

If they need to SLOr e a value between calls, o r

1£ they are so short that inlining can make a difference (at most a handful
of primitive operations)

In this example, we might have chosen a function object fo r the second reason.

TRY TH 15

Defme a veclor<Record>, in.itialize it with fou r records of your choice, and
compute their total price using the fu nctions above.

21 .5.3 Inner product
Take two vectors, multiply each pair of clements with the same subscript, and
add all of those sums. That's called the limer product of the twO vectors and is a
most useful operation in many areas (e .g. , physics and linear algebra; see §24.6).
If you prefer code to words, here is the S11.. version:

template<class In , class In2. class T>
T inne r_produCl (ln first, In last. In2 firsl2, T init)

/I note: this is the way we multiply twO vectors (y ielding a sC<l lar)

while(firsl!=lasl) {

)

inil = init + (·firsl)· (Ofirst2);
++first;
++first2 ;

return inil i

/I multiply pairs of clements

~nus generalizes the notion of inner product to any kind of sequence of any type
of clemclll. Iv; an example, consider a stock market index. The way that works is

2 1.5 NUMERICAL ALGOR ITH MS

to take a set of companies and assign each a "weighl." For example, in the Dow
Jones Industrial index Alcoa had a weight of 2.4808 when last we looked. To get
the current value of the index, we multiply each company's share price: with its
weight and add all the resulting weighted prices together. O bviously, that's the
inner product of the prices and the weights. For example:

II calculate the Dow Jones Industrial index:
vector<double> dow_price ; /I share price for each company
dow _p rice. push_ back(81 .86);
dow_price. push_back(34.69};
dow_pri ce. push_back(54.4S);
/I . ..

lisl<double> dow_weighl; /I weight in index for each company
dow_weight .push_back(S. 8549);
dow_weight .push_back(2.4808);
dow_weighl .push_back(3.8940);
/I ...

double djU ndex = inner_producl(/I multiply (weight,value) pairs and add
dow_price .beginO, dow_price.e ndO,
dow_we ighl.beginO,
O.O};

coul « "DJ! value " « dj U ndex « '\n';

Note that inner_produclO takes two sequences. However, it takes only threc ar·
guments: only the beginning of the second sequence is mentioned. The second
sequence is supposed to have at least as many clements as the first. If not, we
have a run·time error. As far as inner_produclO is concerned, it is OK for the sec·
and sequence to have more clements than the first; those "surplus elements" wi ll
simply not be used.

' 11e twO sequences need not be of the same type, nor do they need to have
tIle same clement types. To illustrate this point, we used a vector to ho ld the
prices and a lisl to hold t.he weights.

21.5.4 Generalizing inne r_productO
'11e inner_produ ctO " 'til be generalized JUSt as accumulaleO was. For inner_prod­
uctO we need twO extra arguments, though: one to combine the accumulator with
the new value, exactly as for accumulaleO, and one for combining the ciemem
value pairs :

743

744 C H APTE R 21 • ALGOR ITHMS AND MAPS

template<class In , class In2, class T, class BinOp, class BinOp2 >
T inner_product(1n first, In last, 1"2 fifSl2, T init, BinOp op, BinOp2 o p2)
{

while(firsl!=last) (
inil = op(init, op2(-first, -first2»;
++first;
++first2;

return init;
)

til §21.6.3, we rerum to the Dow Jones example and usc this gencrruized
inncr_productO as part of a more elegant solution.

21.6 Associative containers
After vector, the most useful standard library container is probably the map. A
map is an ordered sequence of (key, value) pairs in which you can look up a value
based on a key ; for example, my_phone_bookl "Nicholas"J could be the phone
number of Nicholas. The only potential competitor to map in a popu larity con­
test is un ordered_map (see §21.6.4), and that 's a map optimized for keys that are
strings. Data structures similar to map and unordered_map arc known under
many names, such as a.uociaJiue arrays, hash tahles, and red-black trees. Popular and
useful concepts always seem to have many names. In the standard library, we col­
lectively call all such data structures assOOatiue am/aillerJ.

The standard library provides eight associative contai.ners:

Associative containers

m. p

set

unordered_map

unordered_set

multimap

mullisel

unordered_mullimap

unordered_multiset

an ordered container of (key,val ue) pairs

an ordered container of keys

an unordered container of (key, value) pairs

an unordered container of keys

a map where a key can occur multiple times

a sel where a key ca n occur multiple times

an unordered_map where a key can occur multiple times

an unordered_set where a key can occur multiple limes

These containers arc found III <map>, <sel>, <uno rde red_map>, and <un­
ordered_set>.

2 1.6 ASS O CIATIVE CONTAINER S

21.6.1 Maps
Consider a conceptually simple task: make a list of the number of occurrences of
words in a t'ext. TIle obvious way of doing this is to keep a list of words we have
seen together with the number of times we have seen each. When we read a new
word, we see if we have already seen it; if we have, we increase its COUilt by one;
if not, we insert it in our list and give it the value I. We could do that using a list
or a vector, but then we would have to do a search for each word \"'c read. TIlat
could be slow. A map stores its keys in a way that makes it easy to sec if a key is
present, thus making the searching part of our task trivial:

int mainO
{

map<Slring, inl> wordSi

string Si

II keep (word,frequency) pai rs

while (ci n»s) ++words[sl; II nOle: words is subscripted by a siring

}

Iypedef map<Slring, int>: :consUterator Ite r;
for (Ite r p = words. beginO; p!=words.endO; ++p)

cou t « p- >fi rst « ": "« p->second« '\n' ;

The really interesting part of the program is ++words[s). As we can see from the
fITSt line of mainO, words is a map of (string,int) pairs ; that is, words maps
strings to ints. In other words, given a string, words can give us access to its cor·
responding int. So, when we subscript words with a string (holding a word rcad
from our input), wordsls1 is a reference to the in t corresponding to s. Let's look
at a concrete example:

wordsl"sultan")

If we have not seen the string "sullan" before, "sultan" will be entered into words
Wilh the default value for an inl, which is O. Now, words has an entry ("sultan" ,O).
h follows that if we haven't seen "sultan" before, ++words["sullan"] will associate
the value 1 with the string "sultan". In detail : the map will discover that "sultan"
wasn't found, insert a ("s ultan",O) pair, and then ++ will increment that value,
yielding 1.

Now look again at the program: ++words[s] takes every "word" we get from
input and increases its value by one. The ftrst time a new word is seen, it gets the
value 1. Now the meaning of the loop is clear:

while (ci n»s) ++wordsls];

745

746 CHA PTER 21 • ALCORITHMS AND MAPS

This reads every (whitespace-separatcd) word on input and computes the num­
ber of occurrences for each. Now all we have to do is to produce the output. We
can iterate though a map, just like any oilier STL container. The clements of a
map<Slring, int> are of type pai r<string, in t>. The flrst member of a pair is called
fi rst and the second member seco nd , so lhe output loop becomes

typedef map<string,inl>: :co nsUterator lIer;
fo r (lfe r p = wo rds.beginO; p! =words.endO; ++p)

coul « p ->first « n: " « p->second « '\n ' ;

The typede f (§20.5 and §A.16) is just for notational convenience and readability.
As a test, we can feed the opening statements of the first edition of 1M C++

Programming lAnguage to our program:

c++ is a general purpose programming language designed to make pro­
gramming more enjoyable for the serious programmer. Except for minor
details, C++ is a superset of the C progrnnunillg language. In addition to
the facilities provided by C, C++ provides flexible and efficient facilities
for defining new types.

We gel the output

C: 1
C++ :3
C,: 1
Excepl : 1
In : 1

a: 2
additio n : 1
and : 1

by: 1

d efining: 1

d esigned : 1
dela ils,: 1

effi cient : 1

e njoyable: 1

facilities: 2
fl exible: 1
for : 3
general: 1

is: 2

2 1.6 ASSOCIATIVE CONTAINERS

language : 1
language.: 1
make: 1
minor: 1
more: 1

new: 1

of: 1

programmer.: 1

programming: 3
provided : 1

provides: 1

purpose: 1
serious: 1

superset : 1
th e: 3
to : 2
types.: 1

If we don 't like to distinguish between upper- and lowercase letters or would like
to eliminate punctuation, we can do so: see exercise 13 .

21.6.2 map overview
$0 whm is a map? TIlere is a variety of ways of implementing maps, but the STL
map implementations tend to be balanced binary search trees; more specifically,
they arc red-black tTees. We will not go into details, but now you know the tech­
nical terms, so you can look them up in the literature or on the web, should you
want to know more.

A tree is built up from nodes (in a way similar to a Jist being built from links ;
sec §20.4). A Node holds a key, its corresponding value, and pointers to two de­
scendant Nodes.

Map node: Key lint
Vaiue second

Node-left
_·right

Here is the way a map<fruil ,int> nlight look in memory assuming we had in­
serted (Kiwi,IOO), (Qoince,O), (Plum,8), (Apple,7), (Grnpe,2345), and (Ornnge,99)
into it :

747

748 C H APTE R 2 1 • ALG ORI THM S AND MAPS

Fruits: Orangt: 99

Grnp< 2345

Appl< 7 KiM 100 Plum 8 : One ~~-b"s; -: !... ______________ J

Given that the name of the Node member that holds the key vaJue is first, the
basic rule of a binary search tree is

lefl->fir stdirst && firsl<right- >first

TImt is, for every node,

Its left sub-node has a key that is less than the node's key, and

TIle node's key is less than the key of its right sub-node

You can verify that this holds for each node in the tree. That aJlows us to search
"down the tree from its root." Curiollsly enough, in computer science literature
trees grow downward from their roots. In the example, the root node is (Orange,
99). We just compare our way down the tree until we fllld what we are looking
for or the place where it should have been. A tree is called Ixdnna d when (as in
the example above) each sub-tree has approximately as many nodes as every
other sub-tree that's equaJly far from the rOOL Being balanced minimizes the av­
erage number of nodes we have to visit to reach a node.

A Node may also hold some more data which the map will use to keep its
tree of nodes balanced. A tree is balanced when each node has about as many de­
scendants to its left as to its right. If a tree with .N nodes is balanced, we have to at
most look at 10~(.N) nodes to Ulld a node. That's much better than the average
of M2 nodes we have to examine if we had the keys in a list and searched from
the begilUung (the worst case for such a linear search is X). (Sec also §2 1.6.4.)
For example, have a look at an unbaJanced tree:

Fruits:

Orange 99

Grnp< 2345 Qyinc< 0

Appl< 7 Kiwi 100

21.6 ASSOCIATIVE CONTAINERS

lois tree still meets the criteria that the key of every node is greater than that of
its left sub-node and less than that of its right su b-node:

left->firsldirsl && firsl<right->first

However, this version of the tree is unbalanced, so we now have three "hops" to

reach Apple and Kiwi, rather than the two we had in the balanced tree. For trees
of many nodes the difference can be very significant, so the trees used to imple­
ment maps are balanced .

We don't have to understand about trees to use map . It is just reasonable to
assume that professionals understand at least the fundamentals of their tools.
W hat we do have to understand is the interface to map provided by the standard
library. Here is a slightly simplified version:

templale<class Key, class Value, class emp = less<Key> > class map (
1/ .

);

typedef pair<Key,Value> value_lype; /I a map deals in (Key, Value} pairs

typedef sometypel iterator; II probably a pointer to a tree node
typedef sometype2 consCilerator;

iterator begin();
iterator e ndO;

II points to first element
/I points one beyond the last element

Value& operator[](const Key& k) ; If subscript with k

iterator find (const Key& k); If is there an entry for k?

void erase(iteralor pI; II remove element pointed to by p
pair<iteralor, banI> inserl(const value_type&); II insert a (key,value) pair
1/ ...

You can find the real version in <map>. You can imagine the iterator to be a Node "
but you cannot rely on your implementation using that specific type to implement
iterator.

"Dle similarity to the interfaces for vector and list (§20.5 and §B.4) is obvious.
TIle main difference is that when you iterate, the elements are pairs ~ of type
pair<Key,Value>. That type is another useful sn type :

templale<class T1, class 12> strue! pair {
typedef T1 firsUype;
typedef 12 second_type ;

749

751l

);

(HAPTER 21 • ALGORITHMS AND MAPS

T1 fi rs t;
T2 second;

pairO :first(Tl{)), second(T2()) ()
pair(consl T1 & x, consl T2& y) :first(x), seco nd (y) ()
lemplate<class U, class v >

pair(co nst pair< U,V>& p) :firsl(p.firsl), second(p.second) ()

template<class T1 , class 12>
pair<T1 ,T2> make_pair(Tl x, T2 y)

(

re turn pa ir<T1 ,T2>(x,y);

We copied the complete deflIlition of pair and its useful helper function make_pairO
from the standard.

Note that when you iterate over a map. the elements will come in the order
defined by the key. For example, if we iterated over the fruits in the example, we
would get

(Apple,n (Grape,l00) (Kiwi,2345) (Orange,99) (Plum,B) (Q uince ,O)

111c order in which we inserted those fruits doesn' t matter.
TIle inser(() operation has an odd rerum value, which we most orten ignore

in simple programs. It is a pair of an iterator to the (key, value) clement and a
bool which is tru e if the {key, value) pair was insened by this call of inserlO. If the
key was already in the map, the insertion fails and the bool is false.

Note that you can define the meaning of the order used by a map by supply·
ing a third argument (Cmp in the map declaration). For example:

map<slring, double, No_case> m;

No_case defines case-insensitive compare ; see §21.8. By default the order is de·
fined by less<Key>, meaning less-than.

21.6.3 Another map example
To better appreciate the utility of map, let's return to the Dow Jones example
from §21.5.3. TIle code there was eOlTect if and only if an weights appear in the
same position in their vector as their corresponding name. 111at'S implicit and
could easily be the source of an obscure bug. TIlcre are many ways of attacking
that problem, but one attractive one is to keep each weight together with its COIll­
pany's Licker symbol, e.g. , ("AA",2.4808). A "ticker symbol" is an abbreviation of

21 ,6 ASSOC IATIVE CONTAINERS

a company !laille used where a terse representation is needed. Similarly we can
keep the company's ticker symbol together with its share price, e.g. ,
("AA",34.69). Finally, ror those or us who don' t regularly deal with lhe U.S. stock
market, we can keep the company's ticker symbol together with the company
name, e.g., ("AA","Akoa lne.n); that is, we could keep three maps or cOiTespon·
ding values.

i<irst we make the (symbol,price) map:

ma p<Slring,double> dow_price;
/I Dow Jones Industrial index (symbol ,price);
/I for up-ta-date quotes see www.djindexes.eom

dow_price{"MMM") = 81.86;
dow_price ("AA"} = 34.69;
dow_price ["MO"} = 54.45;
/I . ..

TIle (symbol,weight) map:

map<string,double> dow_weight; /I Dow (symbol.wcightJ

dow_weight.insert(make_pair("MMM", 5.8549));
dow_weight.insert(make_pair(" AA " ,2.4808));
dow_weigh t. i nsert(ma ke _pai r(" MO" ,3 .8940) l;
/I . .

We used insertO and make_pairO to show that the clements o r a map reaJly are
pairs. The eXillllple also illustrates lhe value o r notation; we find the subscript no­
Lation easier to read and - less important - easier to write.

-nle (symbol,name) map:

map<string,slring> dow_name; 1/ Dow (symbol,name)
dow_name["MMM") = "3M Co.";
dow_namef"AA"l = "Alcoa Inc.";
dow_nameI"MO"1 = "AUria Group Inc.";
/I . ..

Given those maps, we can convenicmly extract all kinds o r information. For
example:

double alcoa_price = dow_price ("AAA");
double boeins.-price = dow-price ["BA");

/1 read values from a map

if (dow-price.find (" INTC") != dow_price.end(» II fi nd an entry in a map
cout « "Intel is in the Dow\n";

751

752 C HAPTER 2 1 • ALGOR ITH M S AND MAPS

Iterating through a map is easy. We just have LO remember lha! lhe key is caJled
first aud the value is called second :

typedef map<String,double>: :consUteralor Dowj teratof j

/I write price (or each company in the Dow index:
for (Dow_iterator p = dow_price.beginOj p!=dow_price.endOj ++p) {

const string& symbol = p ->firslj /I the "ticker" symbol
co ut « symbol «'\1'
« p->scco nd «'\I'
« dow_name[symboIJ« '\n ' j

)

We can even do some computation directly using maps. In particular, we call ca1-
culatc the index, just as we did in §2 1.5.3. We have to extract share values and
weights from their respective maps and multiply them. We can easily write a
function for doing tha t for any tWO map<String,double>s:

double weighted_value(

{

)

consl pa ir<slring,do uble>& a,
const pair<string,do uble>& b

) lIextract values and multiply

return a.second .. b.second;

Now we just plug that function into the generalized version of inner-productO
and we have the value or our index:

double djUndex =
inner_product{dow_price. beginO, dow_price.endO, II all companies

dow_wcight.begin O, II their weights
0.0, /I ini tial value
plus<double>(), /I add (as usual)
weighted_value); II extract values and weights

II and multiply

Why might someone keep such data in maps rather than vedors? We used a
map to make the association between the different values explicit. 11mt's one
common reason. Another is that a map keeps its clements in the order defllled by
its key. When we iterated through dow above, we output the symbols in alpha­
belical order; had we used a vector we would have had to son . 111e most com-

{

2 1.6 ASSOCIATIvE CONTAINERS

mon reason to use a map is simply that we want to look up values based on the
key. For large sequences, finding something using findO is far slower than look­
ing it up in a sorted structure, such as a map.

TRY TH IS

Get this liule example to work. Then add a few companies of your own
choice, with weights of your choice.

21 .6.4 unordered_map
10 find an clement in a vector, findO needs to examine all the clements from the
beginning to the clement with the right value or to the end. On average, tile COSt
is proportional to the length of the vector (N); we call that cost O(N}.

To find an clement in a map, the subscript operator needs to examine all tile
elements of the ITee from the root to the clement with the right value or to a leaf.
On average the cost is proportionaJ to the depth of the trec. A balanced binary
trce holding N clements has a maximum depth of lo~(N); the cost is O(1o&(N)).
O(lo&(N)) - lhat is, cost proportional to 10&(N) - is actually pretty good com­
pared to O(N):

J{ 15 128 1023 16,383

log,(N) 4 7 10 14

~nle actual cost will depend on how soon in our search we find our vaJues and
how expensive comparisons and iterations arc. It is usually somewhat more ex­
pensive to chase pointers (as the map lookup does) than to increment a pointer
(as findO does in a vector).

For some types, notably integers and dmracter strings, we can do even better
than a map's tree search. We will not go into details, but the idea is that given a
key, we compute an index into a vector. That index is called a haJh value and a
container that uses this technique is lypically called a haJh tabk. The number of
possible keys is far larger thall the number of slots in the hash table. For example,
we often use a hash function to map from the billions of possible strings into an
index for a vector with 1000 clements . This can be tricky, but it can be handled
well and is especially useful for implementing large maps. TIle main virtue of a
hash table is that on average the cost of a lookup is (ncar) constant and inde·
pendent of the number of elements in the table, that is, 0(1). Obviously, that C.1.1l

be a significant advantage for large maps, say a map of 500,000 web addresses.
For more information about hash lookup, you can look at the documentation for
unordered_map (available on the web) or just about any basic text on data Struc­
lures (look fo r hash table and hashi1lg).

753

754 (HAPTER 2 1 • ALGORITHMS AND MAPS

We can illustrate lookup in an (unsoncd) vector, a balanced binary tree, and
a hash wblc graphically like this:

Lookup in unsoncd vector :

···+++++1
Lookup in map (balanced binary (fcc):

Lookup in unordered_map (hash table):

'.
' .

TIle STL unordered_map is implemented using a hash table, just as the 511...
map is implcmcmcd using a balanced binary tree, and an STL vector is imple­
mented using an array. Part of the utility of the STL is to fit all of these ways of
storing and accessing data into a common framework together with algorithms.
The rule of thumb is:

Usc vector unless you have a good reason not to.

Usc map if you need to look up based on a value (and if your key type
has a reasonable and efficient less-than operation).

Usc unordered_map if you need 10 do a lot of lookup in a large map and
YOli don' t need an ordered traversal (and if you can lind a good hash
function for your key type).

Here, we will nO(describe unordered_map in any detail. You can use an un­
ordered_map with a key of type string or int exacLly like a map, except Lllat
when you iteratc ovcr the clements, the clements will not be ordered. For exam·
pie, we could rewrite part of the Dow Jones example from §21.6.3 like this:

21.6 ASSOCIATIVE CON TAINERS

unordered_map<string,double> dow_price;

typedef unordered_map<slring,double>: :consU lerator Dow_iterator;

for (Dow_ilerator p = dow_price.beginO; p!=dow_price.end O; ++p) {
const string& symbol = p->first; /I the "ticker" symbol

cout« symbol « '\t '
«p->second « '\1'
«dow_namelsymboll « '\n ' ;

)

Lookup in dow might now be faster. However, that would not be significant be·
cause there arc only 30 companies in that index. Had we been keeping the prices
of all the companies on the New York Stock Exchange, we might have noticed a
performance difference. We will, however, notice a logica1 difference: the omput
from the iteration will now nOt be in a1phabetica1 order.

The unordered maps arc new in the context of the C++ standard and not
yet quite "first -class members,1t as they are defined in a Technical Report rather
than in the standard proper. TIley arc widely available, though, and where they
arc not you can often find their ancestors , called something like has h_map.

TRY THIS

Write a small program using #include<unordered_map>. If thaI. doesn't
work, unordered_map wasn't shipped with your C++ implementation. If
you really need unordered_map, you have to download one of the available
implementations (e.g., see www.boost.org).

21.6.5 Sels
We can think of a set as a map where we are not interested in the values, or
rather as a map without values. We can visualize a set node like t.his:

Sci node: Key first

Node-left
Node· right

We can l"epreSeill the set offmits used in the map example (§21.6.2) like this:

755

756 C HAPTER 21 • ALGORIT H MS AND MAPS

Fmits: Orange

Crape Qymce

:-~;b-e~~d-I~~ ':
!.. • • _ • • • _- • • _ • • _ • • • '

What are sets useful for? As it happens, there arc lots of problems that require us
to remember if we have seen a value. Keeping track of which fruits are available
(independently of price) is one example; building a dictionary is anothcr. A
slightly different style of usage is having a set of "records n

; that is, the clements
arc objects that potentially contain "lots or' infonnation - we simply lise a memo
ber as the key. For example:

stfuci Fruit {
string name;
int count;

I;

double uniC price;
Date lasCsale_date;
II ...

struct Fruit_order (

I;

bool ope ratorO(co nsl Fruit& a, const Fruit& b) const
{

return a .name<b.name;

set<Fruit, Fruit_order> invento ry;

Here again , we sec how using a function object can significantly increase the
range of problems for which an STL component is useful.

Since set doesn't have a value type, it doesn't support subscripting (operalorOO)
either. We must use "list operations;' SUdl as insertO and eraseO, instead. Unfortu­
nately, map and set don't support Jlush_backO either - the reason is obvious: I.hc
set and not UIC programmer del.cnlllllcs where the new vallie is inserted. Instead
use in seriO. For example:

i nve nlory. i nsert(Fru it(" qui nee" .5));
inve ntory. insert(Fruit("apple", 200, 0.37»;

2 1.7 COPYING

One advantage of set over map is that you can use the vallie obtained from
an ilerator directly. Since there is no (key,value) pair as for map (§21.6.3), the
dereference operator gives a value of the eleillent type:

Iypedef set<fruit>: :consUterator 51;
fo r (51 p = inventory.beginO, p!=inventory.endO; ++p) cout« *p « '\n';

Assuming, of course, that you have defined « for Fruit.

21.7 Copying
In §2 1.2, we deemed findO "the simplest useful algorithm." Naturally, lhat point
can be argued. Many simple algorithms arc useful - even some t.hat arc trivial 10

write. \oVhy bother to write new code when you can use what others have written
and debugged for you, however simple? When it comes to simplicity and utility,
copyO gives findO a run for its money. The sn.. provides three versions of copy:

Copy operations

copy(b,e, b2) Copy Ib :c) to Ib2 :b2+(e-b»).

unique_copy(b,e, b2) Copy Ib :e) 10 Ib2 :b2+(e- b»; suppress adjacent copies.

copy_if(b ,e, b2,p) Copy lb :e) to Ib2:b2+(e- b»), but only elements that meet

the predicate p.

21.7.1 Copy
TIle basic copy algorithm is defined like this:

templale<c1ass In , class Out> Out copy(ln fir st, In last, Out res)
(

)

while (first! =last) (
· res = · fir st; /I copy element

++rcs;
++first;

return res ;

Givcn a pair of iterators, copyO copies a scquence into another sequence speci­
fied by an itcrator to its first clement. For example:

757

758 (HAPTER 21 • ALGORITHMS AND MAP S

void f(vecto r<do uble>& vd, list<int>& Ii)

{
II copy the elements of a list of ints into a vector of doubles

if (vd.sizeO < li .sizeO) error(" larget container too small ");
copy(li .beginO, li.end(), vd .begin();
II . ..

Note that the type of the input sequence of copyO can be differclll from the type
o f the output sequence. TIlal 'S a useful generality of sn... algorithms: they work
for all kinds of sequences without making unnecessary assumptions about their
implementation. We remembered to check that there was enough space in the
output sequence to hold the clements we put there. It's the programmer's job to
check such sizes. 511.. algoritluns arc programmed for maximal generality and
optimal performance; they do not (by default) do range checking or other poten,
tially expensive tests to protect their users, At times, you'll wish they did, but
when you want checking, you can add it as we did above.

21 .7.2 Stream iterators
You will have heard the phrases "copy to output" and "copy from input.n 11mt's a
nice and useful way o f thinking of some forms of 110 , and we can actually use
copy to do exactly that.

Remember that a sequcnce is something

With a beginning and an end

Where we can get to the next element using ++

Where we can get the value of the current clement using ·

We can easily represent input and output streams that way. For example:

oSlreamj le ralor<slring> oo(coul); /I assigning to ·00 is to write to cout

·00 = "He llo, "i

++00:
·00 = "World !\n ":

/I meaning cout « "Hel lo, "
/I "get ready for next output operation~

/I meaning cout « 'World! \ n"

YOLI can imagine how this could be implemented. ~l1le standard library provides
an oslream_ile ralor type that works like that ; oSlreamj le ralor<T> is an iterator
that you can lise to write valucs of type T.

Similarly, the standard library provides tllC type iSlream_ileralo r<T> for read­
ing valucs of type T:

2 1. 7 COPYING

islream_ileralor<slring> ii(dn) : /I reading ·ii is to read a string from cin

// meaning cin» sl siring s1 = · ii;
Hii ;
string s2 = · ii;

/I Nget ready for the next input operat ion N

/I meani ng cin» s2

Using oSlrearn_iterator and istrearn_iterator, we can use copyO for our 110. For
example, we can make a "quick and dirty" dictionary like this:

int rnainO
(

}

string from, to;
dn » from »to;

ifstream is (from.c_slrO);
of stream os(lo.c_str(» ;

istrearn_iterator<string> ii(is);
istrearn_iterator<string> eos;
oslrearn_ilerator<string> oo(os, "\nil);

vector<string> b(ii,eos);
sort(b.beginO ,b.end()):
copy(b.beginO ,b.endO ,00);

/I get source and target fi le names

1/ open input stream
/1 open output stream

/1 make input iterator for stream
1/ input senti nel
/1 make output ilerator for stream

1/ b is a vec tor initialized from input
/I sort the buffer
/I copy buffer to output

The iterator eos is the stream iterator's representation of "end of inpllt." When
an istream reaches end o f input (of len referred to as eof), its iSlreamj terator will
equal the default istreamjterator (here called cos).

Note that we initialized the vector by a pair of iterators. As the initializers for
a container, a pair of iterators (a,b) means "Read the sequence [a:b) into the con·
tainer." Naturally, the pair of iterators that we used was (ii,eos) - the beginning
and end of input. That saves us from explicitly using » and push_backO. We
strongly advise against the alternative

vector<string> b(ma,,_size);
copy(ii,eos,b.begin() ;

/I don' t guess about the amount of input!

People who try to guess the maximum size of input usually find that they have
underestimated, and serious problems emerge - for them or for their users -
from the resulting buffer overOows. Such overflows are also a source of security
problems.

759

7'" CHAPTER 21 • ALGORITHM S AND MAPS

TRY THI S

First get the program as written to work and test it with a small flle of, say, a
few hundred words. Then try the emphaticaUynot rt!COTIIJ1Ie7Ilkd version that
guesses about the size of input and see what happens when the input buffer b
overflows. Note that the worst-case scenario is that the overflow led to noth­
ing bad in your particular example, so that you would be tempted to ship it
to users.

In our little program, we read in the words and then sorted them. 111al seemed
an obvious way of doing things at the time, but why should we put words in "the
wrong place" so tha l we later have to sort? Worse yet, we find that we Slore a
word and print it as many times as it appears in the input.

We can solve the latter problem by using unique_capyO instead of capyO . A
uniquc_copyO simply doesn' t copy repeated identical vaJues. For example, using
plain copyO the program will take

the man bit the dog

and produce

b it
dog
man
the
the

If we used unique_copyO, the program would write

b it
dog
man
the

Where did those newlines come from? Outputting wilh separators is so COlllmon
lhal. the ostreamj terato r's constmctor allows YOll to (optionally) specify a string
to be primed after each value:

ostreamj te rato r<string.> oo(os, "\n"); /I make output iterator for stream

2 1. 7 COPY IN G

Obviously, a newline is a popular choice ror Output meant ror humans to read,
but maybe we prefer spaces as separators? We could write

ostreamjterato r<string> oo(os," "); /I make output iterator for stream

This wo uld give us the output

bil dog man the

21.7.3 Using a sel lo keep order
There is an even easier way or getting that output ; use a sel rather than a vecto r:

inl mainO
(

string from, 10;
cin » from » 10; /I get source and target fi Ie names

ifslream is(from.c_strO);
of stream os(to.c_slr());

/I make input stream
/I make output stream

istreamj te rator<string> ii(is);
istreamj te rator<string> cos;
oSlream_ilerator<slring> oo(os," ");

/I make input iterator for stream
/I input sentinel
II make output iterator for stream

set<string> b(ii,eos) ;
copy(b.beginO ,b.end O ,00);

/I b is a sel initialized from input
/I copy buffer 10 output

)

\"'hen we insert values into a SCI, duplicates arc ignored. Furthermore, the cle·
ments or a set are kept in order so no sorting is needed. With the right tools,
most tasks arc easy.

21.7.4 copy_if
The copyO algorithm copies unconditionally. TIle unique_copyO algorithm sup'
presses adjacent elements with the same value. The third copy algorithm copies
only elements ror which a predicate is O'1Ie:

lemplalfx class In, class Out, class Pred>
Oul copyjf(ln first, In last, Out res, Pred p)

/I copy elements that fu lfi ll the predicate

761

762

(

)

CHAPTER 2 1 • ALGOR ITHMS AND MAPS

while (first ! =Iast) (
jf (p(·first)) ·res++ = -firsl ;
++firstj

)

return res;

Using our larger_than function object from §21.4, we t.'ln find all clements of a
sequence larger than 6 like this:

void Hconsl vector<inl>& v)

(

)

/I copy al l elements with a value larger than 6

vector<inl> v2(v.size());
copyjf(v.begin (), v.endO, v2.beginO, LargeUhan(6» i
1/ . ..

TImnks to a mistake I made, this algoritlull is missing from the 1998 I SO Stan­
dard. This mistake has now been remedied, but yOlI can still find implementa­
tions without copyjf. lf SO, juSI usc the definition from this section.

21.8 Sorting and searching
Often, we want our data ordered. We can achieve that either by using a data
structure that maintains order, such as map and sel, or by sorting. 111C most
common and useful sort operalion in me STL is me sortO that we have already
used several times. By default, sart O uses < as the sorting criterion, but we can
also supply our own criteria:

template<class Ran> void sort(Ran first, Ran last);
template<class Ran, class Cmp> void sort(Ran first , Ran last , Cmp cmp);

As an example of sorting based on a user-specified cri terion, we'll show how to
sort strings wimout takin g case into account :

strucl No_case {
bool operator()(const string& x, canst string& y) cons!
(

21 .8 SORTIN G AN D SEAR C H IN G

)
);

fo r (int i = 0; i<x .le ngth (); ++i) (
if (i == y. length ()) return fa lse; II y<x
char xx = tolowe r(x[i]);
char yy = to lowe r(y[i);
if (xx<yy) return true ; 1/ x<y
if (yy<xx) return fa lse; /I y<x

relurn true; II x<y (fewer characters in x)

void sort_and_print(vector<string>& vc)
{

)

sorl(vc. begin(), vc.endO, No _ caseO);

fo r (vector<slring>: :consUle ralo r p = vc. begin (); p!=vc.end (); ++p)
coul «·p « '\n';

Once a sequence is sorted, we no longer need to search from the beginning using
fi ndO; we can use the order to do a binary search. Basically, a binary search
works like this:

Assu me that we are looking for the value x; look at the middle clement:

If the element 's value equals x, we found it!

If the element's value is less than x, any clement with value x must be to
the right, so we look at the right half (doing a binary search on that half).

If the value of x is less than the element's value, any clement with value x
must be to the left, so we look at the left half (doing a binary search on
that half).

If we have reached the last clement (going left or right) without finding x,
then there is no element with that value.

For longer sequences, a binary search is much faster than findO (which is a linear
search). The standard library algorithms for binary search arc searchO and
equaCrangeO. ' '''hat do we mean by "longer"? It depends, but ten elements arc
usually su ffi cient to give searchO an advantage over findO. For a sequence of 1000
elements, searchO will be something like 200 times faster than find () ; see §21.6.4.

The binary_search algorithm comes in twO variants:

templale<class Ran, class T>
bool binary_search(Ran fir st , Ran last, const T& val);

763

' 64 (HAPTE R 21 • ALGOR IT HMS AND MAP S

te mplate<class Ran, class T, class Cmp>
boot binary_search(Ran first, Ran last, const T& val, Cmp cmp);

These algorithms require and assume mat their input sequence is soncd. If it isn't,
"interesting things," such as infinite loops, might happen. A bi nary_searchO simply
tells LIS whether a value is present :

void f(vecto r<string>& vs)
{

II vs is sorted

if (binary _sea rch(vs. beginO,vs. endO, "sta rfru il"» {
/I we have a sta rfrui t

)

II.

So, binary_searchO is idem when an we care about is whether a value is in a se­
quence or nolo U we care about the element we fi nd, we can usc lower_bound O,
uppe r_bound{), or equal_rangeO (§23.4, §B.5.4). In the cases where we care
which clement is found, lhe reason is usually that it is an object containing more
information than just the key, that there can be many elements with the same
key, or that we want to know which clement met a search criterion.

'0/" Drill

After each operation (as defmed by a line of this drill) print the vector.

1. Define a stru ct Ite m { string name j int iid ; do ub le value; , - ... o, }; and
make a veClo r<ltem>, vi, and fill it with ten items from a ftle .

2. Sort vi by name.
3. Sort vi by iid.
4. SOrt vi by value; print it in order of decreasing value (i.e., largest value

first).
5. Insert Item("horse shoe",99,12.34) an d lte m("Ca non 5400", 9988A99.95).
6. Remove (crase) (1."'0 Ite ms identifi ed by name from vi.
7. Remove (crase) (1."'0 Ite ms identi fi ed by iid from vi.
8. Repeat the exercise with a list<ltem> rather than a vecto r<lIem>.

Now try a map:

I . Defi ne a map<string, inl> called msi.
2. Insert ten (name,value) pairs into it, e .g., msil"lect ure "J=21.

CHAI)TER 2 1 REVIEW

3. OUtput the (name,value) pairs to caul in some format of your choice.
4. Erasc the (name, value) pairs from msi.
5. Write a function that reads value pairs from dn and places them in msi.
6. Read ten pairs from input and enter them into msi.
7. Write the elements of msi to caul.
8. O utput the sum of the (integer) values in msi.
9. Defi ne a map<int,slring> called mis.

10. Enter the values from msi into mis ; that is, if msi has an element ("Iec­
ture n ,21), mis should have an element (21, "lecture").

II. Output the elements of mis to caul.

More vector use:

I. Read some floating-point values (at least 16 values) from a me into a vec­
tor<double> called vd.

2. Output vd to caul.
3. Make a vector vi of type vector<ini> with the same number of elements

as vd j copy the clements from vd into vi.
4. Output the pairs of (vd[i],vili I) to cout, one pair per line.
5. Output the sum of the elements of Yd.
6. Output the difference between the sum of the clements of vd and the

sum of the elements of vi .
7. 111ere is a standard library algorithm called reverse that takes a sequence

(pair of iteTaLOrs) as arguments j reverse vd, and output vd to caul.
8. Compute the mean value of the clements in vd ; output it.
9. Make a new vector<double> called vd2 and copy all elements of vd with

values lower t.han (less than) the mean into vd2.
10. Sort. vd j output. it again.

Review

I. \\That. arc examples of useful STL algorithms?
2. What. does (indO do? Give at least five examples.
3. What does counUf() do?
4. What does sort(b,e) usc as its sorting criterion?
5. How does an STL algorithm take a container as an input argument?
6. How docs an STL algorithm take a container as an output argument?
7. How docs an STL algorithm usually indicate "not found" or "failure"?
8. ' >Vhat is a function object?
9. In which ways docs a function object differ from a function?

10. What is a predicate?
11. What docs accumulateO do?
12. What docs inner_productO do?

76.

766 CHA PTE R 21 • ALGORITHMS AND MAPS

13. 'What is an associative container? Give at least three examples.
14. Is list an associative container? Why not?
15. What is the basic ordering property o f binary tree?
16. What (roughly) does it mean for a tree to be balanced?
17. How much space per element does a map take up?
18. How much space per element does a vector take up?
19. Why would anyone use an unordered_map when an (ordered) map is

available?
20. How does a set difTer from a map?
2 1. How docs a multLmap differ from a map?
22. Why usc a copyO algoritlun when we could "'jUSt wrile a simple loop"?
23 . What is a binary search?

Terms

accumulateO
algorithm
application: ()
associative container
balanced tree
binary_searchO
copyO
copy_if 0
equal_rangeO

Exercises

find O
findjfO
function object
genen c
hash function
inner_productO
lower_boundO
map
predicate

searching
sequence
,e'
sorlO
sorting
stream iterator
unique_copyO
unordered_map
uppe r_boundO

1. Go Lhrough the chapter and do all Try this exercises that you haven't al­
ready donc_

2. Find a reliable source of STL documentation and list every standard li-
brary algorithm.

3. Implement counlO yourself. Test il.
4. Implement counCa O yourself. Test il.
5 . What would we have to do if we couldn't return end O to indicate "not

found"? Redesign and rcimplement find O and eounlO to take iterators to
the ftrst and last elements. Compare the results to the standard versions.

6. In the Fruit example in §21.6.5, we copy Fruils into the sel. What if we
didn 't want to copy the Fruils? We could have a sel<Fruil·> instead.
However, to do that, we'd have to define a comparison operation for that
sel. Implement the Fru it example using a sel<Fruil*, FruiCcomparison>.
Discuss thc differences between the two implementations.

CHAPTE R 21 EXERCISES

7. Write a binary search function for a vector<inl> (without using the stan­
dard one). You can choose any interface you like. Te~l it. How confident
arc you that your binary search function is correct? Now write a binary
search function for a lisl<slring>. Test it. How much do the two binary
search functions resemble each other? How much do you think they
would have resembled each other if you had not known about the Sl1.?

8. Take the word-frequency example from §21.6.1 and modify it to output
its lines in order of frequency (rather than in lexicographical order). An
example line would be 3: C++ rather than C++: 3.

9. Define an Order class with (customer) name, address, data, and vee­
tor<Purchase> members. Purchase is a class with a (product) name,
uniCpriee, and eounl members. Define a mechanism for reading and
writing Orders to and from a file. Define a mechanism for printing
Orders. Create a fi le of at least ten Orders, read it illlo a vector<OrdeD ,
sort it by name (of customcr), and write it back out to fi le. Create an­
other file of at least ten Orders of which about a third arc the same as in
the first file, read it into a list<OrdeD, sort it by address (of customer),
and write it back out to fLle. Merge the two fLIes into a third using
std :: merge() .

10. Compute the total value of the orders in the two ftles from the previolls exer·
cise."le value of an individual Purchase is (of course) its unit_price·count.

11 . Provide a CU I interface for emering Orders into files .
12. Provide a CUI imerface for querying a fLle of Orders; e.g. , "Find all or­

ders from Joe ," "rmd the tOlal value of orders in fLle Hardware," and
"List all orders in ftIe Clothing." Hint: First design a non·CUI interface;
then, build the CUI on lOp of that.

13. Write a program to "clean up" a text file for usc in a word query pro·
gram; that is, replace punctuation with whitespace, put words imo lower
case, replace 0011 '1 with 00 1101 (etc.), and remove plurals (e.g. , ships be­
comes JIIiP). Don't be too ambitious. For example, it is hard to detennine
plurals in general, so just remove an s if you fmd both sllip and JIIips. Use
that program on a real·world text me with at least 5000 words (e.g., are·
search paper).

14. Write a program (using the output from the previous exercise) to answer
questions such as: "How many occurrences of ship are tllere in a me?"
"Much word occurs most frequently?" "Which is the longest word in
the file?" "Which is the shortest?" "List all words starting with s." "List
all four·letter words."

15. Provide a CUI for the program from tile previous exercise.

767

768 CHAPTER 21 • ALGOR IT HMS AND MA PS

Postscript
The STL is the pan of the ISO C++ standard library concerned with containers
and algoritluns. As such it provides very general, ncxiblc. and useful basic lools.
It can save us a lot of work: reinventing the wheel can be fun, but it is rarely pro­
ductive. Unless there are strong reasons not to, use the STL containers and basic
a1gorilluns. What is more, the 5TL is an example of generic programming, show­
ing how concrete problems and concrete solutions can give rise to a collection of
powerful and general tools. If you need to manipulate data - and most program­
mers do - the STL provides an example, a set of ideas, and an approach that
a rLeIl can help.

Part IV
Broadening

the View

~

,. 22

Ideals and History

"When someone says,
'I want a programming language

in which I need only say what I wish done,'
give him a lollipop."

- Alan Perlis

T his chapter is a very brief and very selective history of pro­

gramming languages and the ideals they have been designed

to serve. The ideals and the languages that express them arc the

basis for professionalism. Because C++ is the language we usc in

this book, we focus on C++ and languages lhat influenced C++.

TIle aim is to give a background and a perspective to the ideas pre­

sellted in this book. For each language, we present its designer or

designers: a language is not JUSt an abstract creation, but a concrete

solution designed by individuals in response to problems they faced

at the time.

m

22.1 History, ideals, and
professionalism
22.1.1 Programming language aims and

philosophies
22.1.2 Programming ideals
22.1.3 Stylesfparadigms

(HAPTER 2 2 • IDEAL S AND H ISTORY

22.2 Programming language history
overview
22.2.1 The earliest languages
22.2.2 The roots of modern languages
22.2.3 The Algol family
22.2.4 Simula
22.2.5 C
22.2.6 C++
22.2.7 Today
22.2.8 Information sources

22.1 History, ideals, and professionalism
"History is bunk ," Henry Ford famously declared. TIle contrary opinion has
been widely quoted since antiquity: "He who docs not know history is con­
demned to repeat it." TIle problem is to choose which parts of history to know
and which parts to discard : "95% of everything is bunk" is another relevant
quote (with which we concur, though 95% is probably an underestimate). Our
view of the relation of history to current practice is that there can be no profes­
sionalism without some understanding of history. If you know too liule of the
background of your field, you are gullible because the history of any fi eld of
work is littered with plausible ideas that didn't work. "nle "real meat" of history
is ideas and ideals that have proved their worth in practical use.

We \ ... ·ould have loved to talk about the origins of key ideas in many more lan­
guages and in all kinds of software, such as operating systems, databases, graph­
ics, networking, lhe web, scripling, elC., bUl you'll have to ftnd those important
and useful areas of software and programming elsewhere. We have barely enough
space to scratch the surface of the ideals and history of programming languages.

TIle ultimate aim of programming is always to produce useful systems. In
the heal of d iscussions about prograuuning techniques and programming lan­
guages, that's easily forgotten. Don't forgel that! If you need a reminder, take an­
other look at C hapter 1.

22.1.1 Programming language aims and philosophies
What is a programming language? \¥hat is a programming language supposed
to do for us? Popular answers to "\¥hat is a programming language?" include

A tool for instructing machines

A nOlation for algorithms

A means of conununication among programmers

A tool for experimentation

22.1 HISTORY, IDEALS, AND PROFESSIONA U SM

A means of controlling computerized devices

A way of expressing relationships among concepts

A means of expressing high-level designs

Our answer is ''All of the above - and more! " Clearly, we arc thinking about
general-purpose programming languages here, as we will throughOUl this chap­
ter. In addition, there arc special-purpose languages and domain-specific lan­
guages serving narrower and typically more precisely defined aims.

What properties of a progranuning language do we consider desirable?

Portability

Type safety

Precisely defmed

High performance

Ability to concisely express ideas

Anything that eases debugging

Anything that eases testing

Access to all system resources

Platform independence

Runs on all platforms

Stabili ty over decades

Prompt improvements in response to d UUlges in application areas

Ease of learning

Small

SuppOrt for popular programming styles (e.g., object-oriented progrd.m­
ming and generic programming)

Whatever helps analysis of programs

LotS of facilities

Supported by a large community

Supportive of novices (students, learners)

Comprehensive facilities for experts (e.g. , infrastructure builders)

Lots of sofn\lare development tools available

Lots of software componentS available (e.g., libraries)

Supported by an open software conununity

Supported by major platform vendors (Microsoft, IBM, etc_)

Unfortunately, we can't have all this at the samc timc. "l11at's sad because every
o ne of these "properties" is objectively a good thing: each provides benefitS, and

m

774 C HAPTER 22 • IDEALS AND HI STORY

a language that doesn't provide them imposes added work and complications on
its users. The reason we can't have it all is equally fundamental: several of the
propcnics are mutually exclusive. For example, you cannOt be 100% platform in­
dependent and also access all system resources; a program that accesses a re­
source lhat is nOt available on every platfoml cannot run everywhere. Similarly.
we obviously want a language (and the lOols and libraries we need to usc it) liml
is small and easy LO learn, but that can't be achieved while providing comprehen­
sive suppOrt for programming on all kinds of systems and fo r all kinds of appli­
cation areas.

This is where ideals become important. Ideals arc what guide the technical
choices and trade-ofTs that every language, library, tool, and program designer
must make. Yes, when you write a program you arc a designer and must make
design choices.

22.1.2 Programming ideals
'TIle preface o f 1M C++ Programming Language starts, "C++ is a general purpose
programming language designed to make programming more enjoyable for the
serious programmer." Say what? Isn't programming all about delivering prod~
uCts? About correctness, quality, and maintainability? About lime-to-market?
About supporting software engineering? 'TIlat, tOO, o f course, but we shouldn 't
forget the programmer. Consider another example: Don Knuth said, "'11e best
thing about the Alto is that it doesn't run faster at night." 11le AltO was a com­
puter from the Xerox Palo AltO Research Center (PARC) that was o ne of the first
"personal computers," as opposed to the shared computers for which there was a
1m of competition for daytime access.

Our tools and techniques for programming exist to make a programmer, a
human, work better and produce better results. Please don't forget that. So what
guidelines can we articulate to help a programmer produce the best software with
the least pain? We have made our ideals explicit throughout the book so this sec­
tio n is basically a summary.

The main reason we want our code to have a good structure is that the struc­
tu re is what allows us to make changes without excessive effort. "n1e better the
structure, the easier it is to make a change, find and fix a bug, add a new fealllre,
port it to a new architecture, make it nm faster, etc. 111at's exactly what we mean
by "good."

For the rest of this section, we will

Revisit what we are trying to achieve, that is, what we want from our code

Present two general approaches to soft\vare development and decide that
a combination is better than either altemative by itself

Consider key aspects of program stmcture as expressed in code:

Direct expression of ideas

22.1 HI STORY, ID EALS , AND PROFE SS IONAL ISM

Abstraction level

Modulmity

Consistency and minimalism

Ideals arc meant to be used. They arc tOols for thinking, nOt simply fancy
phrases to trOt out to please managers and examiners. Ou r programs are meant
to approximate our ide."lis. \"'hen we get stuck in a program, we step back to sec
if o ur problems come from a departure from some ideal ; sometimes that helps .
\¥hen we evaluate a program (preferably before we ship it to users), we look for
departures from the ideals that might cause problems in the future . Apply ideals
as widely as possible, but remember that practical concerns (e.g., pcrfonnance
and simplicity) and weaknesses in a language (no language is perfect) will often
prevent you from achieving more than a good approximation o f the ideals.

Ideals can guide us when making specific technical decisions. For example,
we can't juSt make every single decision about imerfaces for a library individu·
ally and in isolation (§14.1). TIle result would be a mess. Instead we must go
back to our firs t principles, decide what is important about this particular library,
and then produce a consistent set o f interfaces . Ideally, we would articulate OLir
design principles and trade·offs for that particular design in the documentation
and in comments in the code.

During the start of a project, review the ideals and sec how they relate to the
problems and the early ideas for their solution. This can be a good way to get
ideas and to refine ideas. Later in the design and development process, when you
arc stuck, step back and sec where your code has most departed from the ideals
- this is where the bugs are mOst likely to lurk and the design problems are most
likely to occur. This is an alternative to the default technique of repetitively look·
ing in the same place and trying the same techniques to find the bug. "TIle bug is
always where yOlI are not looking - or you would have found it already."

22.1.2.1 What we want

lYrically, we want

ComcflleSJ: Yes, it can be difficult to define what we mean by "correct,"
but doing so is an im portant part of the complete job. Often, others de­
fine for us what is correct fo r a given project, but then we have to inter·
pret what they say.

MamlaituWility: Every successful program will be dmnged over time ; it will
be ported 1.0 new hardware and software platfonns , it will be extended
with new facilities, and new bugs will be found that must be flXed . 111e
scctions below about ideals for program structure address this ideal.

Ftr/uT7IIalla : Performance ("efficiency") is a relative term. Pcrfomlance has
to be adequate for the program's pUqlOse. It is often claimed that efficient
code is necessarily low· level and that concerns with a good, high-level

775

CHAPTER 22 • IDEAL S AND HI STORY

structure of the codc cause inefficiency. On the contrary, we find that ac­
ceptable perfonnance is often achieved though adherence to the ideals
and approaches we recommend. The STL is an example of code that is si­
multaneously abstract and very efficient. Poor pcrfonnance can as easily
arise from an obsession with low-level details as it can from disdain for
such details.

01l-~ tkJiuny: Delivering the perfect program a year late is usually not
good enough. Obviously, people expect the impossible, but we need to
deliver quality software in a reasonable time. There is a myth that "com­
pleted on time" implies shoddiness. On the contrary, we find that em­
phasis on good stmcture (e.g., resource management , invariants, and
interface design), design for testability, and use of appropriate libraries
(often designed for a specific application or application area) is a good
way to meet deadlines.

Tbis leads to a concern for structure in our code:

If there is a bug in a program (and every large program has bugs), it is
easier to fmd in a program with a clear structure.

If a program needs to be understood by a new person or needs to be
modified in some way, a clear structure is comprehensible with far less
e!Tort than a mess of low-level details.

If a program hits a performance problem, it is often easier to tUlle a high­
level program (one that is a good approximation of the ideals and has a
well-defined structure) than a low·level or messy one. For starters, the
high-level one is more likely to be understandable. Second, the high-level
one is often ready for testing and tuning long before the low-level one.

Note the point about a program being understandable. Anything that helps us
understand a program and helps us reason about it is good. Fundamentally, reg­
ularity is better than irregularity - as long as the regularity is not achieved through
oversimplification.

22.1 .2.2 General approaches
TIlere are n\-'O approaches to writing correct software:

&llum-up: Compose the system using only components pmvcd to be correct.

Top-duum: Compose the system a Lit of components assumed to comain
errors and calch all errors.

Interestingly, the most reliable systems combine these two - apparently contrary
- approaches. The reason for that is simple: for a large real-world system, neither
approach will deliver tlle needed correctness, adaptability, and maintainability:

22.1 HI STORY, IDEA LS. AND PR O FES SIONALISM

We can't build and "prove" enough basic components to eliminate all
sources of errors.

We C."lIl' t completely compensate for the flaws of buggy basic components
(libraries, subsystems, class hierarchies, etc.) when combining them in the
final system.

However, a combination of approximations to the two approaches can deliver
more than either in isolation: we can produce (or borrow or buy) components
that arc su fficiently good, so that the problems that remain can be compensated
for by error handling and systematic testing. Also, if we keep building beuer
components , a larger part of a system can be constructed from them, reducing
the amount of "messy ad hoc code" needed .

Testing is an essential part of software development. It is discussed in some
detail in Chapter 26. lcsting is the systematic search for errors. "Test early and
often" is a popular slogan. We try to design our programs to simplify testing and
to make it harder for errors to "hide" in messy code.

22.1 .2.3 Direct expression of ideas
When we express somcthing - be it high.level or low·level - the ideal is to ex·
press it directly in code, rather tha.n though work·arounds. TIle fundamental
ideal of representing our ideas directly in code has a few specific variants:

Rejft'eJelll ideas directly in COlle. For example, it is better to represent a.n argu·
ment as a specifi c type (e.g., Month or Color) than as a more general one
(e.g., int).

Repmenl illllepertdmt ideas indepmdenliy in axle. For example, with a few ex·
ceptions, the standard sartO can sort any standard container of any ele·
mCilt type ; the concepts of soning, sorting criteria, container, and clement
type arc independent. Had we built a "vector of objects allocated on the
free store where the elements arc of a class derived from Object with a
beforeO member function defined for usc by vector: :sort() " we would
have a far less general sartO bec.,use we made assumptions about storage,
class hierarchy, available member fu nctions, ordering, etc.

RepresmJ r(wtionships amollg it/.eas dinctly i1l cOlk. The most common relation·
ships that can be dircctly represented are inheritance (e.g. , a Circle is a
kind of Shape) and parameterization (e.g., a vector<T> represents what's
common for all vectors independently of a particular clement type).

Combine /{leas expressed in ,ode jru iy - where and 01l1y where combinations milk
smJe. For example, sartO allows us to use a variety of element types and
a variety of containers, but the elements must support < (if they do not,
we usc the sortO with an extra argument specifying the comparison crite·
ria), and the containcrs we son must support random·access itcrators.

777

77B (HAPTER 22 • IDEALS AND HISTORY

Exprw simpk idellJ simply. Following the ideals listed above can lead to

overly general code. For example, we may end up with class hierarchies
with a more complicated taxoIlomy (inheritance structure) than anyone
needs or with seven parameters to every (apparently) simple class. To
avoid every user having to face every possible complication, we try to
provide simple versions that deal with the most common or most impor­
tant cases. For example, we have a sort(b,e) that implicitly sorts using
less-than in addition to the general version sort(b,e,o p) that sorts using
op. If we could (and we will be able to in C++Ox; sec §22.2.8), we'd also
provide versions sort(c) for sOrting a standard container using less-than
and sorl(c,op) for sorting a standard container using o p.

22 .1.2.4 Abstraction level
We prefer to work alille IliglleJ/fi(Lfibie level 0/ abJlraclioll; that is, Ollr ideal is to ex·
press our solutions in as general a way as possible.

For example, consider how to reprcselll enu·ies for a phone book (as we might
keep it on a PDA or a cell phone). We could represent a set of {name, value) pairs
as a vecfor<pair<string,Value_type» . Ho\ ... ·ever, if we essentially always accessed
that set using a name, map<String,Value_type> would be a higher level of abstrac­
tion, saving us the bother of writing (and debugging) access functions. On the
Olher hand, vector<pair<string,Value_type» is itself a higher level of abstraction
than two arrays, slring[max) and Value_typeImaxJ, where the relationship be·
tween the string and its value is implicit. The lowest level of abstraction would be
something like an int (number of clements) plus two void · s (paiming to some
fonn of representation, known to the programmer but not to the compiler). In our
example, every suggestion so far could be seen as tOO low·level because it focuses
on the representation of the pair of values, rather than their function. We could
move closer to the application by dertning a class that directly reflected a use. Fo r
exrullplc, we could write our application code using a class Phonebook with an in·
terface designed for convenient usc. That Phonebook class could be implementcd
using anyone of thc representations suggested.

'Tlle reason for prcfcn·ing tlle higher level of abstraction (when we have an
appropriate abstraction mechanism and if our language supportS it with accept·
able efficiency) is that such formulations arc closer to thc way we tllink about our
problems and solutions than solutions that have been expressed at the level of
computer hardware.

'Tlle reason given for dropping to a lower level of abstraction is typically "cffi·
ciency." TIlls should be donc only when really needed (§25.2.2). Using a lower·level
(more primitivc) language feature does not necessarily give better pcrfonnancc.
Somctimes, it eliminates optimization opportunities. For exrunp1c, using a Phone­
book class, we have a choice of inlplementations, say, bet\veen string(max] plus
Valuc_typelmaxl ruld map<String,Value_type>. For some applications the fanner is
more efficient and for otllers the latter is. Naturally, pcrfonnrulce would not be a

2 2. 1 HI STOR Y. IDEA LS, AND PROFE SS ION ALI SM

major cOllcem in an application involving only your personal directory. However,
this kind of trade-off becomes interesting when we have LO keep track of - and mao
nipulate - millions of entries. More seriously, after a wltile, the usc of low· level fea·
tures soaks up the programmer's time so that opportunities for improvements
(pcrfollnance or otherwise) arc missed bec..1.USC of lack of time.

22. 1.2.5 Modularity

Modularity is an ideal. We wam to compose our syStelllS out of "components"
(functions, classes, class hierarchies, libraries, elc.) that we can build, understand,
and test in isolation. Ideally, we also wallt to design and implement such compo­
nents so that they can be used in more than one program ("reused"). Ra« is the
building of systems out of previously tested components that have been used else·
where - and the design and use of such components. We have touched upon this in
our discussions of classes, class hierarchies, interface design, and generic program·
mingo Mucll of what we say about "programming styles" (in §22.1.3) relates to the
design, inlplementation, and usc of potentially "reusable" components. Please note
that nOt every componen t can be used in more than one program; some code is sim·
ply too specialized ,md is not easily improved to be usable elsewhere.

Modul;u'ity in code should reOecl import.1.l1t logical distinctions in the appli·
c'1tion. We do not "increase reuse" simply by putting two completely separate
classes A and B into a "reusable component" called C. By providing the union of
A's and 8 's interfaces, the introduction of C complicates our code:

User I User 2

"'. /
c

Here, User 1 and User 2 both usc C. U nless you look into C, you might think
that User I and User 2 gained benefits from sharing a popular component. Bene·
fits from sharing ("reuse") would (in this case, wrongly) be assumed to include
better testing, less total code, larger user base, etc. Unfortunately, except for a bit
of oversimplification, this is not a partiOllarly rare phenomenon.

\.vhat would help? Maybe a common interface to A and B could be provided:

User I User 2 User I User 2

\, /

77'J

780 CHAPTER 22 • IDEALS AND HI STORY

These d iagrams arc intended to suggest inheritance and parameterization, respec­
tively. In both cases, the imcrfacc provided must be smaller than a simple union
of A's and B's interfaces for the exercise to be worthwhile. In other words, A and
B have to have a fundamental commonality for users to benefit from. Note how
we again came back to interfaces (§9.7, §25.4.2) and by implication to invariants
(§9.4.3).

22.1.2.6 Consistency and minimalism
Consistency and minimalislll arc primarily ideals for expressing ideas. So we
might dismiss them as being abollt appearance. H owever, it is rcally hard to pres­
ent a messy design elegantly, so demands of consistency and minimal ism can be
used as design criteria and affect even the most nnnlllc details of a program:

Don't add a feature if you are in doubt about its utility.

Do give similar facilities similar interraces (and names), but only if the
similarity is fundamental.

Do give different facilities different names (and possibly different inter­
face style), but only if the d ifferences are fundamental.

Co nsistent naming, interface style, and implementation style help maimenance.
\lVhen code is consisteIlt, a new programmer doesn 't have to learn a new set of
conventions for every part of a large system. The S1L is an example (Chapters
20-2 1, §B.4-6). When such consistency is impossible (for example, for ancient
code or code in another language), it can be an idea to supply an interface that
matches the style of the rest of the program. TIle alternative is to let the foreign
("strange," "poor") style infect every part o f a program that needs to access the
offending code.

One way of preserving minimalism and consistency is to carefully (and con­
sistently) document every interface. 1l1at way. inconsistencies and duplication
are more likely to be noticed. Documenting pre-conditions, post-conditions, and
invariants can be especially useful as can careful attention to resource manage­
ment and error reporting. A consistent error-handling and resource management
strategy is essential for simplicity (§19.5).

To some programmers, the key design principle is KISS ("Keep It Simple,
Stupid") . We have even heard it claimed that KISS is the only worthwhile design
principle. However, we prefer less evocative fonnulations, such as "Keep simple
things simple" and "Keep it simple : as simple as possible, but no simpler." The
latter is a quote from Albert Einstein, which renecLS that there is a danger of sim·
plifying beyond the point where it makes sense, lillis damaging Lile design. TIle
obvious question is, "Simple for whom and compared to what?"

22.1 HI STORY, ID EALS. AN D PROF ESS IONA LI SM

22.1.3 Styles/paradigms
When we design and implement a program, we aim for a consistent style. C++
supports four major styles that can be considered fundamental:

Procedural programming

Data abstraction

Object-oriented programming

Generic programming

These arc sometimes (somewhat pompously) called "progranuning paradigms."
"nlere are many more "paradigms," such as functional programming, logic pro­
gramming, rule-based programming, constraints-based programming, and as­
pect-oriellled programming. However, C++ doesn 't suppon those direcuy, and
we just can't cover everything in a single beginner's book, so we'll leave those to
"future work" together with the mass of details that we must leave out about the
paradigms/styles we do cover:

ltoadural programming: the idea of composing a program out of functions
operating on arguments. Examples arc libraries of mathematical func­
tions, such as sqrtO and cosO. C++ sup pons ulis style of programming
through the notion of functions (Chapter 8). The ability to choose to
pass arguments by value, by reference, and by const reference can be
most valuable. Often, data is organized into data structures represented
as structs. Explicit abstraction mechanisms (such as private data mem­
bers or member functions of a class) arc not used. Note that this style of
programming - and functions - is an integral part of every other style.

Data abs/me/ion: the idea of first providing a set of types suitable for an ap­
plication area and lhen writing the program using those. Matrices pro­
vide a classical example (§24.3-6). Explicit data hiding (e.g., the lise of
private data members of a class) is heavily used. The standard string and
vector are popular examples, which show ule strong relationship be­
tween data abstraction and parameterization as used by generic pro­
gramming. This is called "abstraction" because a type is used through an
interface, rather than by direcuy accessing its implementation.

Oijed-oriellleli programming: the idea of organizi.ng types into hierarchies to
express their relationships directly in code. TIle classical example is the
Shape hierarchy from Chapter 14. TIlis is obviously valuable when the
types really have fundamental hierarchical relationships. However, there
has been a strong tendency to overuse; lhat is, people built hierarchies of
types that do not belong together for fundamental reasons . When people
derive, ask why. "\That is being expressed? How does tlie base/derived
distinction help me in this particular case?

781

782 CHAPTER 22 • IDEALS AND HISTO RY

Generic programming: the idea of taking concrete algorithms and "lifting"
them to a higher level of abstraction by adding parameters to express
what can be varied withollt changing the essence of an algoritilin. '11C
highO example from Chapler 20 is a simplc example of lifting. loc
findO and sortO algorithms from the STL arc classical algorithms ex­
pressed in very general forms lIsing t,'"Cl1cric programming. Sec Chapters
20-21 and the followingcxamplc.

All together now! OrLen, people mlk about programming slylcs ("paradigmsn
) as

if they wcre simple disjointed altcmativcs : either you usc generic programming
or you usc object-oriented progranuning. If your aim is 10 express solutions to
problems in the best possible way, you will usc a combination o f styles. By "best,"
we mean easy to read, easy to write, easy to maintain, and su fficiently efficient.
Consider an example: the classical "Shape example'" originated with Simula
(§22.2.6) and is usually seen as an example of object-oriented programming. A
firs t solution might look like this:

void draw_all (veclor<Shape>& v)
(

(or(inl i = 0; i<v.sizeO; Hi) v[il- >draw() ;
}

This docs indeed look "rather objea-oriemed." It critically relics on a class hierar­
chy and on the virtual fu nction call fmding the right drawO function for every
given Shape ; that is, for a Circle, it calls Circle : :drawO and for an Open_polyline,
it caUs Open_polyline: :drawO. But the veclor<Shape·> is basically a generic pro­
gramming construct: it relies on a paramcter (the clement type) that is resolved at
compile time. We could emphasize that by using a simple standard libnuy algo­
rithm to express the iteration over all clements:

void draw_all(veclor<Shapc*>& v)
(

for_each(v.bcgin(), v.endO,mem_fun (&Shape : : draw» ;
}

The third argument o f for_cachO is a function to be ,,·dled for each element of
the sequence specified by t.he first. two arguments (§B.5.1). Now, that third fun c­
tion call is assumed to be an ordinary function (or a function object) called using
the f(x) syntax, rather than a member fu nction, called by the p->fO syntax. So,
we use the standard library function mem_funO (§B.6.2) to say that we reall y
want to call a member function (the virtual function Shape: :drawO). TIle point is
that for_cachO and mem_funO, being templates, really aren't very "OO-like";
mey clearly belong to what we usually consider generic programming. More in­
teresting still, mem_funO is a freestanding (template) function returning a class

22.2 PROGRAMMING LANGUAGE HISTORY O V ER VIEW

object. In Olher words, it can easily be classified as plain data abstraction (no in­
heritance) or even procedural programming (no data hiding). So, we could claim
that this one line of code uses key aspects of all of the four fundamental styles
supported by C++.

But why would we write the second version of the "draw all Shapes" exam­
ple? It fundamentally does the same as the first version ; it even takes a few more
characters to write it in that way! We could argue that expressing the loop using
for_cachO is "more obvious and less error-prone" than writing out the for-loop,
but for many that's not a terribly convincing argument. A bener one is that
"for_cachO says what is to be done (iterate over a sequence) rather than how it is
to be done." However, for most people the convincing argument is simply that
"it 's useful": it points the way to a generalization (in the best generic program­
ming tradition) that allows us to solve more problems. Why are the shapes in a
vector? Why not a list? Why not a general sequence? So we can write a third
(and more general) version:

tcmplatc<class Iter> void draw_all(lter b, lie, e)
(

for_each(b,e,mem_fun(&Shape: : draw»);
)

TItis will now work for all kinds of sequences of shapes. In particular, we can
even call it for the clements of an array of Shapes:

Point p(O,l00);
Point p2(SO,SO);
Shape all = { new Circle(p,50), new Triangle(p,p2,Poinl(25,25» }i

draw_all(a,a+2);

For lack of a better term, we calI progranuning using the most appropriate mix of
styles multi-paradigm programming.

22.2 Programming language history overview
In the very beginning, programmers chiseled the 7.eros and ones into stones by
hand! Well , almost. Here, we'll start (almost) from the beginning and quickly in­
troduce some of the major developments in the history of programming lan­
guages as they relate to programming using C++.

There arc a lot of programming languages. The rate of language invention is
at least 2000 a decade, and the rate of "language death" is about the same. Here,
we cover abnOSl 60 years by briefly mentioning len languages. For morc informa­
cion, see Imp:lfresearch.illOSl.ComlhopVHOPL.hunl. 111ere, you can fmd links to
all the articles of the three ACM 5lGPLAN HOPL {History of Programming

783

784 CHAPTER 22 • IDEALS AND HISTORY

Languages) conferences. These arc extensively peer-reviewed papers - and there­
fore far more truStworthy and complete than the average web source of informa­
tion. TIle languages we discuss here were all represented at HOPL. Note thal if
you type the fu ll title of a fatnous paper imo a web search engine, there is a good
dml1cc that you'll find the paper. Also, most computer scicmisLS mentioned here
have home pages where you can find much information about their work.

OUT presentation of a language in this chapter is necessarily very brief: each
language mcmioned - and hundreds not mentioned - deserves a whole book.
We arc also very selective in what we mention about a language. We hope you
takc this as a challenge to leam more rather than thinking, "So that 's alilhere is
to language X!" Remember, every language mentioned here was a major accom­
plishment and made an important contribution to our world. There is just no
way we could do justice to these language in this short space - but not mention­
ing aJlY would be worse. We would have liked to supply a bit o r code ro r each
language, but sorry, this is not the place for such a project (see exercises 5 and 6).

Far too often , an artiract (e.g., a programming language) is presellled as sim ­
ply what it is or as the product or some anonymous "development process." -n lis
mis represents history: typically - especially in the early and fommtive years - a
language is the result of the ideals, work, personal tastes, and extemal cOllSl.J'a.ims
on one or (typically) more individuals. Thus, we emphasize key people associated
with the languages. IBM, Bell Labs, Cambridge University, etc. do not design lan­
guages; individuals from such organ izatiollS do - typically in collaboration with
friends and colleagues.

Please note a curious phenomenon that orten skews our view of histOly. Pho­
tographs o r ramous scientists and engineers arc most orten taken when they arc
famous and disringuished, members or national ac.ldemies, Fellows of lhe Royal
Society, Knights or S1. J ohn, recipients of the Turing Award, etc. - in other
words, when they are decades older than when they did their most spectacular
work. Almost all were/arc among the most productive members of their profes­
sion until late in life. H owever, when you look back to the birth of your favorite
language features and probrramming techniques, lly to imagine a young man
(there arc still far too few WOUlen in science and engineering) trying to fi gure out
ifhe has sufficient cash to invite a girlfriend out to a decent restauraI1l 0 1' a parent
trying to decide if a crucial paper can be submitted to a conference at a time and
place t.hat can be combined with a vacation for a young family_ 111e gray beards,
balding heads, and dowdy clothes come much later.

22.2.1 The earliest languages
\¥hen - starting in 1948 - the first "modern" stored-program electronic comput­
ers appeared, each had its own language. 111ere was a one-ta-Olle correspondence
between the expression o r an algorithm (say, a calculation o r a planelmy orbit)
and ins tructions for a specific mach inc. Obviously, the scientist (the users were
most often scientists) had notes with mathcmatical rormulas, but the program

22.2 PROGRAMMING LANG U AGE HI STORY OV ERVIEW

was a list or machine instructions. The first primitive lists were decimal or octal
numbers - exactly matching their representation in the computer's memory.
Later, assemblers and "auto codes" appeared ; that is, people developed languages
where machine instructions and machine facilities (such as registers) had sym­
bolic names. So. a programmer might write "LD RO 123" to load the contents or
the memory with the address 123 into register O. However, cach machine had its
own set or instructions and its own language .

David ' '''heeler rrom the University or Cambridge Computer Laboratory is
the obviolls candidate ror representing programming language designers or that
time. In 1948, he wrote the first real program ever to run on a stored·program
computer (the "table or squares" program we saw in §4.4.2. 1). He is one or about
ten people who have a claim on having written the first compiler (ror a machine­
speci fic "auto code"). He invented the runction call (yes, even something so ap·
parently simple needs to have been invented at some point). He wrote a brilliant
paper on how to design libraries in 1951 ; that paper was at least 20 years ahead
or its time! He was co-author with Maurice Wtlkes (look him up) and D.]. Gill or
the first book about programming. He received the first Ph.D. in computer sci­
ence (rrolll Cambridge in 1951) and later made major contributions to hardware
(cache architectu res and early local-area networks) and algorithms (e.g., the TEA
encryption algorithm [§25.5.6] and the "BUI·rows-"Wheeler transrorm" [the com­
pression algorithm used in bzip2]). David "Wheeler happens to have been Bjame
Stroustn lp's Ph .D. thesis adviser - computer science is a young discipline. David
·Wheeler did some or his most important work as a grad student. He worked on
to become a proressor at Cambridge and a Fellow or the Royal Society.

References

Burrows, M., and David Wheeler. "A Block Sorting Lossless Data Compression
Algorillllll." Technical Report 124, Digital Equipment Corporation, 1994.

Bzip2link : ww\v.bzip.orgf.
Cambridge Ring website: http ://koo.corplls.calll.ac.uklprojects/earlyatmlcr82.

78'

786 CHAPTER 22 • IDEALS AND HI STO RY

Campbell-Kelly, Martin. "David J ohn Wheeler." BiograJ)hi.cal Memoirs 0/ Fellows 0/
the Royal Society, Vol. 52, 2006. (His technicaJ biography.)

EDSAC: http://en.wikipcdia.orglwikilEDSAG.
Knuth, DonaJd . The Ar' 0/ Unnputer Programming. Addison-Wesley, 1968, and

many revisions. Look for "David Wheeler" in the index of each volume.
TEA link: http://cn.wikipcdia.orglwikifIiny_Encryplioll_Algoritlun.
Wheeler, O. J. "The Usc of Sub-routines in Progr<umncs," Proceedings of the

1952 ACM National Meeting. (TImt's the library design paper fi'om 1951.)
Wilkes, M. V , D. Wheeler, and D. J Gill . Preparation 0/ Progral1ufar a1/ Ekctronic

Digi1al Computer. Addison-Wesley Press, 1951; 2nd edition, 1957. The first book
on programmmg.

22.2.2 The roots of modern languages
H ere is a chart o f important early languages:

1950s: 1960s:

COBOL BCPL

PU I

1970s:

Algol68

C lassic C

1l1CSC languages arc important partly because they were (and in some cases still
are) widely used or because they became the ancestors to important modem Ian·
guages - often direct descendants with the same name. In this section, we ad·
dress the lhree early languages - Fortran, C OBOL, and Lisp - to which most
modem languages trace their ancestry.

22.2.2.1 Forlran

The introduction of Fonran in 1956 was arguably the most significant step in the
development of programming languages. ;<Fortran" stands for ;<Fonnula Transla­
tion," and the fundamental idea was to generate effi cient machine code from a
nOtation designed for people rather than machines. The model for the Fortran
nOtation was what scientists and engineers wrote when solving problems using

22,2 PR OGRAMMING LANG UAG E HISTORY OVERVI EW

mathematics, radlcr dmn dIe machine instructions provided by the (then very
new) clectronic computers.

From a modem perspective, Fortran can be seen as the first auempt to di­
rectly represent an application domain in codc. It allowed proh'Tammers to write
linear algebra much as they found it in textbooks. Fortran provided arrays, loops,
and standard mathematical functions (using the standard mathematical nOlation,
such as x+y and sin(x)). 111ere was a standard libraty of mathematical functions,
mechat1isms for 110, and a user could defme additional functions atld libraries.

"nle notation was largely machine independent so that Fort.ran code could
often be moved from computer to computer with only minor modification. This
was a /lUge improvement over the state of the art. 11lerefore, FOnratl is considered
dIe first high·level programming language.

It was considered essential that the machine code generated from the Fortratl
source code was dose to optimally efficient: machines were room·sized and enor·
mously expensive (many times the yearly salary of a team of good program·
mers), they were (by modem standards) ridiculously slow (such as 100,000
instructions/second), and they had absurdly small memories (such as 8K bytes).
However, people were fitti ng useful programs into those machines, and an im·
provement in nmation Oeading to better progranuller productivity and portabil·
ity) could not be allowed to get in the way of that.

Fortran was hugely successful in its L:'lfget domain of scientific and engineering
calculations and has been under cominuous evolution ever since. TIIC main ver­
sions of the Fortran language arc II, IV, 77, 90, 95, 03. It is still debated whether
Fortran77 or FOItran90 is more widely used today.

787

788 CHAPTER 22 • IDEALS AND HI STORY

The rust definition of and implementation of Fortran were done by a team at
IBM lcd by J ohn Backus: "We did not know what we wanled and how to do il. It
just sort of grew." How could he have known? Nothing like that had been done
before, but along the way they developed or discovered the basic structure of
compilers: lexical analysis, syntax analysis, semantic analysis, and optimization.
To t.his day Fortran leads in the optimization of numerical computations. One
thing that emerged (after the initial Fortran) was a notalion for specifying gram­
mars: the Backus-Naur Form (BNF). It was first used for AJgol60 (§22.2.3 .1)
and is now used for most modem languages. We use a version o f BNF for our
grammars in Chapters 6 and 7.

Much later, J ohn Backus pioneered a whole new branch of programming
languages ("functional programming"), advocating a mathematical approach to
programming as opposed to the machine view based on reading and writing
memory locations. Note that pure math docs not have the notion of assignment,
or even actions. Instead you "simply" state what must be true given a sct of con­
ditions. Some of the roots of functional programming are in Lisp (§22.2.2.3),
and some of the ideas from functional programming are reflected in the STL
(Chapter 2 1).

References

&ckus,John . "Can Programming Be Liberated from lhe von Neumallll Style?"
Camnllm;whom q{th£ ACM, 1977. (His Turing award leclllre.)

Backus, John. "The History o f FORTRAN I, II , and III." ACM SIGPLAN
NotiaJ, Vol. 13 No.8, 1978. Special Issue: History of Programming Languages
Conference.

Hutton, Grahanl. Programming in Haskell. Cambridge University Press, 2007.
ISBN 052 1692695.

150/1 EC 1539. Programming Languages - rortran. (The "Fortran 95" standard.)
Paulson, L. C. ML far 11/£ f%rkvlg Programmer. Cambridge University Press, 199 1.

ISBN 0521390222 .

22.2.2 .2 COBO L
COBOL ("The Common Business-Orientcd Language") was (and sometimcs
still is) for business programlllers what Fortran was (and sometimes still is) [01'

scientific programmers. TI1C emphasis was on data manipulation:

Copying

Storing and retrieving (record keeping)

Printing (rcports)

22.2 PROGRAMMING LANGUAGE H ISTORY OVERVIEW

Calculation/computation was (often correctly in COBOVs core application do­
mains) seen as a minor matter. It was hoped/claimed that COBOL was so close
to "business English" t..hat managers could program and programmers would
soon become redundanl. That is a hope we have heard frequently repeated over
the years by managers keen on cu tting the COSt of progranuning. It has never
been even remotely tnle.

COBOL was initially designed by a commiuee (CODASYL) in 1959-60 at
the initiative of the U.S . Department of Defense and a group of major computer
manufactu rers to address the needs of business-related computing. The design
built directly on the FWW·MATIC language invented by Grace Hopper. One of
her contributions was the use of a close-to-English syntax (as opposed to the
mathematica1 notation pioneered by Fortran and still dominant today). Like For­
tran - and likc all successful languages - COBOL underwent continuous evolu­
tion. The major revisions were 60, 61 , 65, 68, 70, 80, 90, and 04.

Grace Murray Hopper had a Ph.D. in mathematics from Ya1e University.
She worked for the U.S. Navy on the very first computers during World War II.
She returned to the navy after a few years in the early computer industry:

'-Rear Admiral Dr. Grace Murray Hopper (U.S. Navy) was a remarkable
woman who grandly rose to lhe challenges of programming the first
computers. During her lifetime as a leader in the field of software devel­
opment concepts, she contributed to the transition from primitive pro­
gt"a11l11ung tcchluqucs to thc use of sophisti c.a. ted compilcrs. She believed
that 'wc·vc always done it that way' was not necessarily a brood reason to
continue to do so."

- AlUla Borg, at lhe "Crnce Hopper Celebration of
Women in Computing" conference, 1994

78.

CH APTER 22 • IDEALS AND HISTORY

Grace Murray Hopper is often credited with being the first person to call an
error in a computer a "bug." She certainly was among the early users of the term
and documented a usc:

As can be seen, that bug was real (a moth), and it affected the hardware directly.
Most modem bugs appear to be in the software and have Icss graphical appeal .

Refe rences

A biography of C . M. Hopper: http://tergcstcsofl.com/ -eddysworldlhopper.htm.
ISO/l Ee 1989:2002. by""""Ji"" 7idnwlogy - Progmmming Longuarp - COBOL.
Samlllet,J ean E. "TIle Early History of COBOL." ACM SIGPLAN Nohen, Vol. 13

No.8, 1978. Special Issue: History of Programming Languages Conference.

22.2.2.3 Lisp
Lisp was originally designed in 1958 by John McCarthy at MIT for linked·list
and symbolic processing (hence its name: "LISt Processing"). Initially Lisp was
(and is often still) interpreted, as opposed to compiled. There arc dozens (most
likely hundreds) of Lisp dialects. In fact, it is often claimed that "Lisp has an im­
plied plural." The current most popular dialects are Conunon Lisp and Scheme.
~nis famil y of languages has been (and is) the mainstay of artificial intelligence
(AI) research (though delivered products have often been in C or C++). One of
the main sources of inspiration for Lisp was the (mathematical notion of) lambda
calculus.

rortran and COBOL were specifically designed to help ddivcr solutions to
real'world problems in their respective application areas. TIle Lisp community
was much more concerned with programming itself and the elegance of pro'
grams. Often these efforts were successful. Lisp was the fi rst language to separate
its definition from the hardware and base its semantics on a form of math . If Lisp
had a specific application domain, it is far harder to define precisely: "AI" or
"symbolic computation" don't map as clearly into common everyday tasks as
"business processing" and "scientific programming." Ideas from Lisp (and from
the Lisp community) can be found in many more modem languages, notably the
functional languages.

22 .2 PROGRAMMING LANG UAG E HISTO RY OVERVIE W

J ohn McCarthy's B.S. was in mathematics from the Californ ia Institute of
lcchnology and his Ph.D. was in mathematics from Princeton University. You
may notice that there are a lot of math majors among the programming language
designers. After his memorable work at M IT, McCarthy moved to Stanford in
1962 to help found the Stanford AI lab. He is widely credited for inventing the
term artificial ill/elligmu and made many contributions to that field.

References

Abelson, Harold, and GeraldJ. Sussman. Structure (lIId lllterprttahon qf01mjmter Pro­
grams, &cond Edition. Mrf Press, 1996. ISBN 02620 11530.

ANS I INCITS 226-1994 (formerly ANS I X3.226:1994). Amen'can National Slall­
dan/for Programmil/g umgllagr - 01111111011 USP.

McCarthy, J ohn. "Hi:ilory of LIS P." ACM SIGPLAN Notice;, Vol. 13 No.8, 1978.
Special Issue : History of Programming Languages Conference.

Steele. Guy L.Jr. O1mml111 Ii.sp: The Uu~. Digital Press, 1990. ISBN 1555580416.
Steele, Guy L. J r. , and Richard Gabriel. "TIle Evolution of Lisp." Proceedings of

the ACM History of Programming Languages Conference (HO PL·2). ACM
SIGPLAN Notim, Vol. 28 No.3, 1993.

22.2.3 The Algol family
In the late 1950s, many fclt that progranuning was getting tOO complicated, too ad
hoc, and too unscientific. ~fbey fclt that the variety of programming languages
was unnecessarily great and that those languages were put together with insuffi­
cient concern for generality and sound fundamental principles. TIus is a sentiment
that has surfaced many times since then, but a group of people came together
under the auspices of IFIP (the International Federation of Infonnation Process­
ing) , and in just a couple of years they created a new language that revolutionized
the way we think about languages and their definition. Most modem languages -
including C++ - owe much to this effort.

791

792 CHAPTER 22 • IDEALS AND HI STO RY

22.2.3.1 AIgol60
111C "ALGOritlunic Language," Algol, which resulted from the effofts of the
I FIP 2. 1 group, was a breakthrough of modern programming language concepts:

Lexical scope

Use of grammar to define the language

C lear separation of syntactic and semantic rules

C lear separation of language definition and implementation

Systematic use of (static, i.e., compile-time) types

Direct support for structured programming

The very notion of a "general-purpose progranuning language" came with AlgoL
Before that, languages were scientific (e.g., Fonran), business (e.g., C OBOL), list
manipulation (e.g" Lisp), simulation, eLC. O f these languages, AlgoJ60 is most
closely related to Fortran.

Unfortunately, A1go160 never reached major nonacademic usc. It was seen as
"too weird" by many in the industry, "too slow" by Fonran progranmlers, "nOI
supportive of business processing" by COBOL programmers, "nOI flexible
enough" by Lisp programmers, "too academic" by most people in the induslry
(including the managers who controlled investment in tools), and " 100 Euro·
pean" by many Americans. Most of the criticisms were correct. For example, the
AIgol60 repon didn'l define any lIO mechanism! However, similar criticisms
could have been leveled at just about any cOlllemporary language - and Algol set
the new standard for many areas.

One problem \vith Algol60 was that no one knew how to implement it. That
prOblem was solved by a team of programmers led by Peter Naur (the editor of
the Algol60 report) and Edsger Dijkstra:

22.2 PROGRAMM I NG LANG U AG E HI STO RY OVERVIEW

Peter Naur was educated (as an astronomer) at the University of Copen­
hagen and worked at the l echnical University of Copenhagen (DTH) and for
the Danish computer manufacturer Regnecemralen. He learned programming
early (1950-5 1) in the Computer Laboratory in Cambridge, England (Demnark
didn't have computers that early) and later had a distinguished career spanning
the academia/industry gulf. He was co-inventor of BNF (the"Backus-Naur
1;0.,))") used to describe grammars and a very early proponent of formal reason­
ing about programs (BjaOle Stroustfup first - in 1971 or so - learned the usc of
invariants from Peter Naur's technical articles). Naur consistently maintained a
thoughtful perspective on computing, always considering the human aspects of
programming. In fact, his later work could reasonably be considered part of phi­
losophy (except that he considers conventional academic philosophy utter non­
sense). He was the first professor of Datalogi at the University of Copenhagen
(the Danish tenn (wlalogi is best translated as "infonllalics" ; Peter Naur hates the
tcnll computer oScUm!e as a misnomer - computing is not primarily about computers).

Edsger Dijkstra \ \!3.S another of computer science's all·time greats. He studied
physics in Leyden but did his early work in computing in Mathematisch Ceo·
lmm in Amsterdam. He later worked in quite a few places, including Eindhoven
University of Technology, Burroughs Corporation, and the University of Texas
(Austin). In addition to his seminal work on Algol, he was a pioneer and strong
pmpollent of the use of mathematical logic in programming, algorithms, and Olle
of the designers and implementers of THE operating system - one of the first
operating systems to systematically deal with concum:ncy. THE stands for
"Technische Hogeschool Eindhoven" - the university where Edsger Dijkstra
worked at the time. Arguably, his most famous paper was "Go-To Statement
Considered Harmful ," which convincingly demonstrated the problems with un­
stmctured control flows.

(HAPTER 22 • IDEAL S AND HI STORY

TIle Algol family tree is impressive:

A1go158 A1go160 A1go168

Ole Simula67 and PascaL These languages are the ancestors to many (probably
most) modern languages.

References
Dijkstta, Edsger W. "Algol 60 Translation: An Algol 60 Translator for lhe xl and

Making a Translator for Algol 60." Report MR 35/61. Mathematisch Cemmm
(Amsterdam), 1961.

Dijkstra, Edsger. "Go·To Statement Considered Harmful." O,wmulIicatiollJ 0/ the
ACM, Vol. II No.3, 1968.

Lindsey, C. H. "111e HislOry of AlgoI68." Proceedings of the ACM History of
Progranuning Languages Conference (HOPL-2). ACM SIGPLAN Notice;., Vol.
28 No.3 , 1993.

Naur, Peter, ed. "Revised Report on the Algorillullic Language Algol 60." NS
Regnecemralen (Copenhagen), 1964.

Naur, Peter. "Proof of Algorithms by General Snapshots." BIT; Vol. 6, 1966, pp.
310-16. Probably the first paper on how to prove programs correct.

Naur, Peter. "The European Side of the Last Phase of the Development of
ALGOL 60." ACM SICPLAN Notiw, Vol. 13 No.8, 1978. Special Issue: His·
tory of Programming Languages Conference.

Periis, Alan]. "The American Side of the Development of AlgoL" ACM SIC­
PLAN Notius, Vol. 13 No.8, 1978. Spcciallssue: History of Programming Lan·
guages Conference.

van Wtingaarden, A. , B.]. Mailloux,]. E. L. Peck, C. H. A. Kosler, M. SintzoIT,
C. H. Lindsey, L. G. L. T. Meertens, and R. C. Fisker, eds. Rcuised Report 01/ the
Algoril/lll1ic umguage Algol 68 ($cpt. 1973). Springer·Verlag, 1976.

22.2.3.2 Pascal
TIle Algol68 language mentioned in the Algol family tree was a large and ambi­
tious project. Like Algo160, it was the work of "the Algol cOllullittee" (lFIP work­
ing group 2.1), but it took "forever" to complete and many were impatient and
doubtful that something useful would ever come from that projecl. One member
of the A1gol committee, Niklaus Wirth, decided simply to design and implement
his own successor to Algol. In contrast to Algo168, that language, called Pascal,
was a simplification of Algo160.

22.2 PROGRAMMING LANGUAGE HI STORY OVERVIEW

Pascal was completed in 1970 and was indeed simple and somewhat inflexi·
ble as a result. It was orten claimed to be intended just ror teaciling, but early pa­
pers describe it as an alternative to Fortran on the supercomputers or the day,
Pascal was indeed easy to learn, and arter a very portable implementation be·
came available it became very popular as a teaching language, but it proved to be
no threat to Fortran.

Pascal was the work or Proressor Niklaus Wirth (photos rrom 1969 and
2004) or the Technical University or Switzerland in Zurich (ETH). His Ph.D. (in
elect,'ieal engineering and computer science) is rrom the University or Calirornia
at Berkeley, and he maintains a lirelong connection with Calirornia. Proressor
Wirth is the closest thing the world has had to a proressionallanguage designer.
Over a period or 25 years, he designed and implemented

Algol W

PI.J360

Euler

Pascal

Modula

Modula·2

Oberon

Oberon·2

Lola (a hardware description language)

NikJaus Wirth describes this as his unending quest ror simplicity. His work has
been most influential . Studying that series or languages is a most interesting exer·
cise. Proressor Winh is the only person ever to present twO languages at HOPL.

In the end, pure PascaJ proved to be toO simple and rigid for industrial suc·
cess. In the 1980s, it was saved rrom extinction primarily through the work o r

C HAPTE R 22 • ID EAL S AND HI STORY

Anders Hejlsberg. Anders Hej lsberg was one of the three founders of Borland.
He first designed and implemented Turbo Pascal (providing, among other things,
more flexible argument-passing facilities) and later added a C++-like object
model (but with just single inheritance and a nice module mechanism). He was
educated at the Technical University in Copenhagen, where Peter Naur occasion­
ally lectured - it 's somelimes a vely small world . Anders Hejlsberg later de­
signed Delphi for Borland and Coif for Microsoft.

The (necessarily simplified) Pascal family tree looks like this :

Turbo Pascal Borland Pascal Delphi

Pascal Pascal-2

Modula Modula-2 ~O~b~c~m~ny-~ Oberon·2

References
BoriandlTurbo Pascal . http://en.wikipedia.orglwikifTurbo_Pasc.1.1.
Hejlsberg, Anders, Scolt Willamuth, and Peter Golde. TIre ON< Prog1WIIIIIUIg Lmlgll(~,

&emul £liJjq,,_ Microsoft _NET Development Series. ISBN 0321334434.
Wrrth, Niklaus. "TIle Programming Language Pascal." A cla byrmllllJia, Vol. I Fasc 1,

1971.
\ Virth, Niklaus. "Design and lmplementation of Modula _" Sojtware- Prartice and

Exj)tril1/{:e, Vol. 7 No. 1, 1977.
Wirth, Niklaus_ "Recollections about the Development of Pascal." Proceedings of

the ACM History of Programming L1.nguages Conference (HOPL-2). ACM
SlGPLAN .N'otias, Vol. 28 No.3, 1993.

Wirth, Niklaus. Modula-2 (lJUJ Oberon. Proceedings of the lllird ACM SICPLAN
Conference on the History of Prograillmillg Languages (HOPL-llI). San
Diego, CA, 2007. http://port.1.Lacm.orgltoc.cfm?id= 1238844-.

22.2.3.3 Ada
"nle Ada progranuning language was des igned to be a language for all the pro­
gramming needs of the U.S. Department of Defense. In particular, it was to be a
language in which to deliver reliable and maintainable code for embedded sys­
tems programming. Its most obvious ancestors are Pascal and Simula (see

22 .2 PROGRAMMING LANGU AG E HI STORY OVERVIEW

§22.2.6). ~111e leader of the group that designed Ada was jean Ichbiah - a past
chainnan of the Simula Users' Croup. TIle Ada dcsign emphasized

Data abstraction (but no inheritance until 1995)

Strong static type checking

Dircct language support concurrency

"111e design of Ada aimed to be the embodiment of software engineering in pro­
gramming languages . Consequently, the U.S. 000 did not design the language;
it designed an elaborate process for designing the language. A huge number of
people and organizations contributed La the design process, which progressed
through a series of competitions. to produce the best specification and next to
produce the best language embodying the ideas of the winning specification.
111is inunense 20-year project (1975-98) was from 1980 managed by a depart­
ment called Aj PO (Ada j oint Program Office).

In 1979, the resulting language was named after Lady Augusta Ada Lovelace
(a daughter of Lord Byron, the poet). Lady Lovclace could be claimed to have
been the first programmer of modern times (for some definition of "'modern") be­
calise she had worked with C harles Babbage (the Lucasian Professor of Mathe­
matics in Cambridge - that 's Newlon's chair!) on a revolutionary mechanical
computer in the I840s. Unfortunately, Babbage's machine \ \f3S unsuccess ful as a
practical 1001.

~nmnk.s to lhe c1aborate process, Ada has been considered thc ultimate design.
by-committee language. TIle lead designer of the wuming design team, j ean Ichbiah
from the French company Hone)'\vcll Bull, emphatic.'llly denied that. However, I
suspeCt (based on discussion with him) that he could have designed a better lan­
guage, had he not been so constrained by the process.

797

". CHAPTER 22 • IDEAL S AND HI STORY

Ada's Lise was mandated for military applications by the 0 00 for many
years, leading to the saying "Ada, it 's nOtj usl a good idea, it's the law!" Initially,
the usc of Ada was just "mandated," but when many projects received "waivers"
to L1 SC other languages (typically C++), the U.S. Congress passed a law requiring
lhe use of Ada in most military applications. That law was later rescinded in the
face of commercial and technical realities. Bjame StrOuSlfup is one of the vcry
few people to have had his work banned by the U.S. Congress.

"nlat said , we insist that Ada is a much beuer language than its reputation
would indicate. We suspect that if the U.S. DoD had heen less heavy-handed
about its usc and the exact way in which it was to be used (standards for applic.1.­
tion dcvelopmelll processes, sofnvare development tools, documentation, etc.), it
could have become noticeably more successful. To this day, Ada is important in
aerospace applications and similar advanced embedded systems application
areas.

Ada became a military standard in 1980, an ANS I standard in 1983 (the first
implementation was done in 1983 - three years cifier the first standard!), and an
ISO standard in 1987. The ISO standard was extensively (but of COllfse compati­
bly) revised for a 1995 ISO standard. Notable improvements included more flex­
ibility in the concurrency mcchanisms and support for inheritance.

References

Barnes,John. Programmi1lg ill Ada 2005. Addison-Wesley, 2006. ISBN 0321340787.
Consolidated Ada Reference Manual, consisting of the international standard

(ISO/l EG 8652:1995). bfonnntum Teduwlogy - Progrwmllillg LmI{§mgt!S - Ada, as up­
daLOd by changes from 7idmiaJ Omig<>",um 1 ~SO/IEC 8652: 1995TC 1 :2000).

Official Ada homepage: www.usdoj.gov/crt/adal.
Whitaker, William A. ADA - The Project: The DoD High Order lLmguage Hf1rkillg

Croup. Proceedings of the ACM History of Programming Languages Confer­
ence (HOPL-2). ACM SICPIAN NoticeJ, Vol. 28 No.3, 1993.

22.2.4 Simula
Simula was developed in the early to mid-1960s by Kristen Nygaard and Olc­
Johan Dahl at the Norwegian Computing Center and Oslo University. Simula is
indisputably a member of the Algol family of languages. In fact, Simula is almost
completely a superset of Algo160. However, we choose to single alit Simula for
special attention because it is the source of mOst of the fundamental ideas that
today are referred to as "object-oriented programming." It was the first language
to provide inheritance and virtual functions. 111e words c/llJJ for "user-defined
type" and virtual for a function that can be overridden and called through the in­
terface provided by a base class come from Simula.

2 2 ,2 PROGRAMMING LANG U AGE HI STORY OVERVIEW

Simula's conlli bution is not limited to language fea tures. It came with an ar·
ticulated notion of object-oriented design based on the idea of modeling re.."ll·
world phenomena in code:

Represent ideas as classes and class objects.

Represelll hierarchical relations as class hierarchies (inheritance).

l lms, a program becomcs a set of interacting objects rather tlmll a monolith.

Kristen Nygaard - the co-inventor (with Ole:Johan Dahl, to the left, wearing
glasses) of Sinmla 67 - was a giant by most measures (including height), with an
intensity and generosity to match. He conceived of the fundamental ideas of
object-oriented programming and design, notably inheritance, and pursued their
implications over decades . He was never satisfied with simple, short-term, and
shortsighted answers. He had a constant social involvement that lasted over
decades . He can be given a fair bit of credit for Norway staying out of the Euro­
pean Union, which he saw as a potential centralized and bureaucratic nightmare
that wOlild be insensitive to the needs of a small country at the far edge of the
Union - Norway. rnthe mid-1970s Kristen Nygaard spent significant time in the
computer science department of the University of Aarhus, Denmark (where, at
the tillie, Bjame StrOlIstrup was studying for his master's degree).

Kristen Nygaard's master's degree is in mathematics from the University of
Oslo. He died in 2002, just a month before he was (together with his lifelong
friend Ole:Johan Dahl) to receive the ACM's Tliring Award, arguably the highest
professional honor for a computer scientist.

'99

800 CHAPTER 22 • IDEALS AND HI STOR Y

Olc:Johan Dahl was a morc conventional academic. He was vcry imcrested
in specification languages and formal mclllOds. In 1968, he became the fi rst full
professor of informatics (compuler science) at O slo University.

In August 2000 Dahl and ygaard wcre made Commanders o f the O rder of
Saint Olav by the King o f onvay. Even truc gccks can gain recogn ition in their
hometown!

References

Bin"wistlc, G., O:}. Dahl, B. Myhrhaug, and K. Nygaard: SlMULA &gUl. Student­
liucratur (Lund. Sweden), 1979. ISBN 9 144062125.

Hoimcvik,j. R. "Compiling SIM U LA: A Historical Study ofTcdmological Gen­
esis." /1:."'££ AIIIUlb of tIlt Hutory o/Unllpuhilg, Vol. 16 No.4, 1994, pp. 25-37.

Kristen Nygaard's homcpage : http :lnlcim.ifi.uio. nol- kristcn/ .
Krogdahl, S. "111C Birth of Simula." Proceedings o r the H iNC I Conrerence in

Trondheim,June 2003 (l FIP we 9.7, in cooperation with IFIP TC 3).
Nygaard, Kristen, and Ole:Johan Dahl. "~111e Development o f the SIM ULA

Languages." ACM SIGPLAN Notius, Vol. 13 No.8, 1978. Special Issue: HistOl),
or Programming Languages Conference.

SIMULA Standard. DATA proaSJillg - Progrmll1l11ilg !allguageJ - SIM ULA. Swedish
Standard, Stockholm, Sweden (1987). ISDN 9 171622349.

22.2.5 C
In 1970, it was "well known" that serious systems programming - in particular
the implementation or an operating system - had to be done in assembly code
and could not be done portably. That was much as the situation had been ror sci·

22.2 PROGRAMMIN G LANG U AGE HISTORY OVERVIEW

em ific programming before Fortran. Several individuals and groups set out to
challenge that orthodoxy. In the long run, the C programming language (Chap­
ter 27) was by rar the most successful of those effons.

Dennis Ritchie designed and implemented ule C programming language in
Bell 1clephone Laboratories ' Computer Science Research Center in MUlTaY Hill,
New J ersey. 111e beauty of C is that it is a deliberately simple programming lan­
guage sticking very close to the fundamental aspects of hardware. Most of the
current complexities (most of which reappear in C++ for compatibility reasons)
were added after his original design and in several cases over Dennis Ritchie's
objections. Part of C's success was its early wide availability, but its real strength
was its direct mapping of language fea tures to hardware facilities (sec §2S.4- S).
Dennis Rit chie has succinctly described C as "a strongly typed, but weakly
checked language"; that is, C has a static (compile-time) type system, and a pro­
gram that uses an object in a way that differs from its definition is not legal. How­
ever, a C compiler can' t check thal. 111al made sense when the C compiler had to
run in 48K bytes of memory. Soon after C came into usc, people devised a pro­
gram. called lint, that separately from the compiler verified conformance to the
type system.

Together with Ken 11lOl11pson, Dennis Ritchie is the co-inveillor of Unix,
easily the most inOuential operating system of aU times. C was - and is - associ­
ated with the Uni." operating system and through that with Linux and the open­
source movement.

DelU1is Ritchie is retired from Lucent Bell L'lbs. For 40 years he worked in Bell
L'lboratories' Computer Science Research Center. He is a graduate of Harvard
University (physics); his Ph.D. is in applied mathematics from Harvard University.

801

802 CHAPTER 22 • IDEALS AND HI STO RY

In the early years, 1974-1979. many people in Bell L1.bs influenced the de­
sign of C and ilS adoption. Doug McIlroy was everybody's favorite critic, d iscus­
sion partner, and ideas man. He influenced C , C++. Unix, and much morc.

Brian Kernighan is a programmer and writer cxtraordinairc. Both his code
and his prose arc models of clarity. lllC style of this book is in part derived from
lhe tutorial sections of his masterpiece, fI,e C Progl"tlllllllillg UlIIgtUl/:,'t (known as
"K&R"' after its co-authors Blian Kernighan and Dennis Ritchie).

It is not enollgh to have good ideas; to be useful on a large scale, those ideas
have 10 be reduced to their simplest form and articulated dearly in it way that is

22.2 PR OG RAMMING LANG UAGE HI STORY OV ER VIEW

accessible to large nu mbers of people in their target audience. Verbosity is among
the worst enemies of such presentation of ideas; so is obfuscation and over­
abstraction. Purists often scoff at the results of such popularization and prefer
"original results " presented in a way accessible only to expertS. We don't: geuing
a nontrivial, blll valuable, idea into the head of a novice is difficult, essential to
the growth of professionalism, and valuable to society at large.

Over the years, Brian Kernighan has been involved with many influential pro·
gramming and publishing projectS . 1 .. \10 examples arc AWK - an early scripting
language named by the initials of itS authors (Aha, Weinberger, and Kernighan) -
and AM PL, "A Mathematical Programming Language."

Brian Kemighan is currently a professor at Pr inceton Univcrsity; he is of
COUfse an excellent teacher, specializ.ing in making otherwise complex topics
clear. For morc than 30 years he worked in Bell Laboratories' Computer Science
Research CelUer. Bell Labs later became AT&T Ben Labs and later still split into
AT &T Labs and Lucent Bell Labs. He is a graduate of the U niversity of Toronto
(physics); his Ph.D. is in electrical engineering from Princeton University.

TIle C language family tTee looks like this:

CPL

Kcn Thompson.
BTL, 19n __

BCPL Classic C

--- Martin Richards,
Cambridge, 1967

'Christophcr Strochey,
Cambridge, mid' 1960s

"

The origins of C lay in the never-completed C PL project in England, the
BCPL (Basic C PL) language that Martin Richards did while visiting MIT on
leave from Cambridge University, and an interpreted language, called B, done by
Ken Thompson. Later, C was standardized by ANS I and the ISO and there were
a lot of iJillucnces from C++ (e.g., function argument checking and consts).

C PL was ajoint project between Cambridge University and Imperial College
in London. Initially, the project had been done in Cambridge, so "C" officially
stood for "Cambridge." When Imperial College became a partner, the official ex­
planation of the "c" beca . .me "Combined." In reality (or so we arc told), it always
stood for "Christopher" after Christopher Slrachey, C PL's main designer.

References

Brian Kernighan's home page: http ://cm.bell-labs .comlcmlcs1wholbwk.
Dennis Ritchie's home page: hup:lfcm.bell-Iabs.comlanlcs/who/dmr.
ISO/ IEIC 9899: 1999. Programming umguaga - C. (The C standard.)

""3

C HAPTER 2 2 • IDEAlS AND HISTORY

Kemighan, Brian, and Dennis Ritchie. 17te C Programming umguage. Prentice Hall .
1978. Second Edition, 1989. ISBN 0131103628.

A list of members of the IkU Labs' Computer Science Research Center: http://an.bcll­
labs.com/an/csJalumni.hUlll.

Ritchards, Martin. BCPL - The Language and Its (;om/)11er. Cambridge University
Press, 1980. ISBN 052 1219655.

Ritchie, Dennis. "111e Developmem of the C Programming Language. Proceed·
ings of the ACM History of Programming Languages Conference (HOPL-2).
ACM SIGPLAN No/iuJ, Vol. 28 No.3, 1993.

Salus, Peter. A Qjar/er Gel/iliry 9/UNIX. Addison-Wesley, 1994. ISBN 0201547775.

22.2 .6 C++
C++ is a general-purpose programming language with a bias toward systems
programming lhat

Is a belter C

Supports data abstraction

Supports object-oriented progranuning

Supports generic programming

It was originally designed and implemellted by Bjarne Stroustrup in Bell Tele­
phone Laboratories' Computer Science Research Center in Murray Hill, New
J ersey, that is , down the corridor from Dennis Ritchie, Brian Kernighan, Ken
l11Ompson, Doug McIlroy, and other Unix greats.

22.2 PROGRAMMING LANGU AGE HISTORY OVERVIEW

Bjarne Stroustrup received a master's degree (in mathematics with computer
science) from the universil)' in his hometown, Arhus in Denmark . TIlen he went
to Cambridge. where he got his Ph.D. (in computer science) working fo r David
\¥heeler. ~nle main contributions of C++ were to

Make abstraction techniques alTordable and manageable fo r mainstream
projects

Pioneer the use of object~oriented and generic programming techniques
in application areas where effi ciency is a premium

Before C++, t.hese techniques (often sloppily lumped t.ogether under the label of
"object-oriented progranuning") were mostly unknown in the indust.ry. As wi th
scientific programming before Fortran and systems programming before C, it.
was Mwell known" that these techniques were too expensive for real-world use
and also too complicated for "ordinary progranuners" to master.

' 11e work on C++ starled in 1979 and led to a commercial release in 1985.
After its initial design and implementation, Bjarne Stroustmp developed it. further
toget.her with friends at Bell L.:.bs and elsewhere until its standardization officially
starled in 1990. Si nce then, the defi nition of C++ has beell developed by fi rst
ANSI (the national standards body for the United States) and since 199 1 by ISO
(the international standards organil.ation). Bjarne Stroustrup has taken a major
part in that elTon as the chairman of the key subgroup in charge of new language
features. , 11e first international standard (C++98) was ratified 1998 and the sec·
ond is in the works (C++Ox).

"n e most signi ficant development in C++ after its initial decade of growth
was the S11.. - lhe standard library's facilities for containers and algorithms. It
was the outcome of work - primarily by Alexander Stepanov - over decades
aiming at producing lile most general and efficient software, inspired by the
beauty and util ity of mathematics.

805

CHAPTER 22 • IDEALS AND HI STORY

Alex Stepanov is the inventor o f the S11.. and a pioneer o f generic program­
tning. He is a graduate of the University of Moscow and has worked on robolics,
algorithms, and more, using a variety of languages (including Ada, Scheme, and
C++). Since 1979 , he has worked in U.S. ac.,demia and industry, notably at CE
Labs, AT&T Bell L,bs , Hewlett-Packard, Silicon Craphics, and Adobe.

1978-89

'11e C++ family tree looks like this:

C with Classes

1979- 84

c++ ARM C++

1989

C++98

"C with Classes" was Bjarne StrOuslnlp's initial synthesis of C and Simula
ideas. It died inunediately following the implementation of its successor, C++.

Language discussions often focus on elegance and advanced features. How­
ever, C and C++ d idn't become twO of the most successful languages in the bis­
tory of computing that way. '11eir strengths were nexibility, performance, and
stability. Major software systems live over decades, often exhaust their hardware
resources, and often suffer completely unexpected changes of requirements. C
and C++ have been able to thrive in that environment. Our favorite Dennis
Ritchie quote is, "Some languages arc designed to prove a point ; others arc de­
signed to solve a problem." By "others," he primarily meant C. Bjal1le Strollslnlp
is fond of saying, "Even I knew how to design a prettier language than C++."
The aim for C++ - as for C - was not abstract beauty (though we strongly ap­
preciate that when we can get it), but utility.

I have often regretted nOt being able to use C++Ox features in this book . It
would have simplified many c.xamples and explanations. However, unordered_map
(§21.6.4), array (§20.9), and regexp (§23.5-9) arc examples from lhe C++Ox stan·
dard library. C++Ox will also feature better checking of templates, simpler and morc
general in.itializmion, and in places a more robust notation. Sec my HOPL-lII p"pcr.

Refere nces

Alcxander Slepanov's publications: \V\vvv.stepanovpapers.com.
Bjame StrouStlUP'S home page: www.researcll .att.com/ -bs.
ISO/ IEC 14882:2003. Programming Languages - C++. (Ille C++ standard.)
Stroustrup, Bjamc. "A H istory of C++: 1979-1991. Proceedings of the ACM

History of Programming Languages Conrerence (HOPL·2). ACM SIGPLAN
Nolim, Vol. 28 No.3, 1993.

Stroustrup, Bjarne. 771£ Design and Evolution o/"C++. Addison-Wesley, 1994. ISH
020 15'13303.

Stroustrup, Bjarne. '(he C++ Programming Language (Special £ilil;on). Addison-Wes­
ley, 2000. ISBN 020 1700735.

22 .2 PROGRAMMING LANGUAGE HI STORY O VERVIEW

StrouStrup, Bjarnc. "C and C++: Siblings" ; "C and C++: A Case for Compati­
bility"; and "C and C++: Case Studies in Compatibility." 7k C/C++ UjC"J
JOlimal. July, Aug., and Sept. 2002.

SU'OllStrup, Bjame. ;'Evolving a Language in and for the Real World: C++ 1991-
2006. Proceedings of the Third ACM SIGPLAN Conference on the History
of Programming Languages (HOPL-III) . San Diego, CA, 2007. http://ponaL
acm.orgltoc.cfm?id=1238844.

22.2.7 Today
What programming languages are currently lIsed and for what? That's a really
hard question to answer. The family u'ee of curremlanguages is - evcn in a most
abbreviated fonn - somcwhat crowded and messy:

Lisp

CfnranV
J ava95

Simula67 EifTeJ

C89 c++ C++98

ADA ADA98 Cit2.0

Pascal Object Pascal
COBOL04

COB0L89
Q sualBasv

In fact, most of the statistics we find on the web (and elsewhere) are hardly better
than rumors because they measure things that are only weakly correlated with
usc, stich as numbcr of wcb postings containing the name of a programming lan­
guage, compiler shipments, academic papers, books sales, etc. All such measures
favor the new over the established. Anyway, what is a programmer? Someone
who uses a programming language every day? How about a student who writes
small programs just to learn? A professor who just talks about programming? A
physicist who writes a progranl almost every year? Is a professional programmer
who - almost by definition - uses several programming languages every week
counted many times or just once? We have seen each of these questions an­
swered each way for different statistics.

However, we feel obliged to give you an opinion, so in 2008 there arc about
10 million professional programmers in the world. For that opinion we rely on

007

(HAPTER 22 • IDEAL S AND HISTORY

lOG (a data-gathering firm), discussions with publishers and compiler suppliers,
and various web sources_ Feel free to quibble, but we know the number is larger
than I million and less than 100 million for any halfway reasonable definition of
"programmer." Which language do they use? Ada, C , C++, Cf', COBOL, For­
tran,Java, PERL, PHP, and VISual Basic probably Gust probably) account for
significantJy more than 90% of all programs.

In addition to the languages mentioned here, we could list dozens or even
hundreds more . Apart from trying to be fair to interesting or important lan­
guages, we see no point. Please seck ou t infonnation yourself as needed. A pro­
fessional knows several languages and leams new ones as needed. 111ere is no
"onc true language" for all people and all applications. In faCl, all major systcms
\\-'c can think of use morc than one language.

22.2.8 Information sources
Each individual languagc dcscription above has a reference list. TIlese are refer­
ences covering several languages:

More language designer links/photos
wvvw.angclfirc .comltx4/cus/pcoplc/.

A few examples of languages
http ://dmoz.orgJComputcrs/ProgrammingJLanguages/.

'lextbooks
Scott, Michael L. Programming Language Pragmatic;. Morgan Kaufmann, 2000.

ISBN 155860442 l.
Sebesta, Robert W. eon«pt.s if Programming Languaga. Addison-Weslcy, 2003.

ISBN 032 11 93628.

History books
Bergin, T.]. , and R. G. Gibson, eds. History o/"Programming ulJIgull{P - II. Addison­

Wesley. 1996. ISBN 020189502 l.
Hailpcm, Brcm, and Barbara C . Ryder, cds. Procecdings of tJle 11Urd ACM SIG­

PLAN Conference on the H istOry of Programming Languagcs (HOPL-III).
San Diego, CA, 2007. http://ponal.acm.orgJtoc.cfm?id=1238844.

Lohr, Stevc. Go 70: rM Story of the Math Mqjors, Bridge Pln)'I!rS, BlgJilecrs, Chess Wn­
arm, Maueridr Scientist.s and lamoclast.s- rM Programmers Wllo Createtl "Ie Software
Revolution. Basic Books, 2002. ISBN 9780465042265.

Sammet, Jcan. Programming Lnnguages: History and Fwuuwumtau. Prentice-Hall ,
1969. ISBN 0137299885.

Wcxelblat, Richard L. , cd. History o/"Programmillg LallgJlageS. Academic Press, 1981.
ISBN 0 127450408.

CHAPTER 22 REVIEW

Review

1. YVhat are some uses of history?
2. \¥hat are some uses of a programming language? List examples.
3. List some fundamental properties of programming languages that are ob-

jectively good.
4. What do we mean by abstraction? By higher level of abstraction?
5. \¥hat arc our four high.level ideals for code?
6. List some potential advantages of high. level programming.
7. What is reuse and what good might it do?
8. YVhat is procedural programming? Give a concrete example.
9. What is data abstraction? Give a concrete example.

10. What is object·oriented programming? Give a concrete example.
11. What is generic programming? Give a concrete example.
12. What is multi-paradigm programming? Give a concrete example.
13. YVhen was the fi rst program run on a stored-program computer?
14. \ 'Vhat work made David YVheeler noteworthy?
15. What was the primary contribution of J ohn Backus's firsllanguage?
16. What was the frrs t language designed by Grace Murray Hopper?
17. In which field of computer science did J ohn McCarthy primarily work?
18. YVhat were Peter Naur's contributions to Algo160?
19. What work made Edsger Dijkstra noteworthy?
20. What languages did Niklaus Wirth design and implement?
21. What languages did Anders Hejlsberg design?
22. What was J ean Ichbiah's role in the Ada project?
23. What style of progranuning did Simula pioneer?
24. Where (outside Oslo) did Kristen Nygaard leach?
25. What work made Ole:Johan Dailinoteworthy?
26. Ken TIlompson was the main designer of which operating system?
27. ""hat work made Doug Mcl1roy noteworthy?
28. What is Brian Kernighan's most famous book?
29. \¥here did Dennis Ritchie work?
30. \VIlat work made Bjarne Stroustrup noteworthy?
3 1. What languages did Alex Stepanov use trying to design the S1L?
32. List ten languages not described in §22.2.
33. Scheme is a dialect of which language?
34. What are C++'s two most prominent ancestors?
35. What docs the C in C++ stand for?
36. Is Fortran an acronym? If so, what for?
37. Is COBOL an acronym? If so, what for?
38. Is Lisp an acronym? If so, what for?
39. Is Pascal an acronym? If so, what for?
40. Is Ada an acronym? If so, what for?
41 . Which is the best programming language?

810 CHAPTER 22 • IDEALS AND HISTORY

Terms

In this chapter "Terms" are really languages, people, and organizations.

Languages,

Ada

Algol

BCPL
C
C++
COBOL
Fortran

Lisp
Pascal

Scheme

Simula

People:

Charles Babbage

J ohn Backus

Olc:Johan Dahl

Edsgcr Dijkstra
Anders H ejlsbcrg

Grace Murray Hopper

Jean lchbiah

BI;an Kernighan

John McCarthy

Doug Mcllroy

Peter Naur

Kristen Nygaard

Demus Ritchie

Alex Stcpanov

Bjame SLrOUSlrUP
Ken Thompson

David Wheeler

NiklaliS Wirth

Organizations:

Bell Laboratories

Borland

Cambridge University (Eng­
land)

ETH (Swiss Federal Technical
University)

IBM

MIT

Norwegian Computer Center

Princeton University

Stanford University

Technical University of
Copenhagen

U.S. Deparnnent of Defense

U.S. Navy

CHAPTER 22 EXERCI SES

Exercises
1. Define programming.
2. Define programming langJl~.
3. Go through the book and look at the chapter vignettes. Which ones were

from computer scientists? Write one paragraph summarizing what each
of those scientists contributed.

4. Go through the book and look at the chapter vignettes. Which ones were
nOt from computer scientists? Identify the cou ntry of origin and field of
work of each.

5. Write a "Hello, World!" program in each of the languages mentioned in
this chapter.

6. For each language memioned in this chapter, look at a popular textbook
and see what is used as the frrst complete program. Write that program in
all of the other languages. Warning: TIlis could easily be a t OO-program
project.

7. We have obviously "missed" many important languages. In particular,
we essentially had to cut all developments after C++. Make a list of five
modern languages that you think ought to be covered and write a page
and a half - along the lines of the languages sections in this chapter - on
three of those.

B. Whal is C++ used for and why? Write a 10- to 20·page report.
9. What is C used for and why? Write a 10- to 20-page report.

10. Pick one language (not C or C++) and write a 10- to 20-page description
of its origins, aims, and facilities. G ive plenty of concrete examples. Who
uses it and for what?

11 . Who currently holds the Lucasian Chair in Cambridge?
12. Of the language designers mentioned in this chapter, who has a degree in

mathematics? "Vito does not?
13. Of the language designers mentioned in lhis chapter, who has a Ph.D.?

In which field? Who does not have a Ph.D.?
14. Of the language designers mentioned in this chapter, who has received

tlle Turing Award? What is that? Find the actual Turing Award citations
for tlle winners mentioned here.

15. Write a program tlm, given a file of (name,year) pai rs, such as
(Algoi,1960) and (C ,1974), graphs the names on a timdi.ne.

16. Modify the program from the previous exercise so that it reads a liIe of
(name,year,(ancestors)) ntples, such as (Fonran,19S6,()), (Algoi,1960,(For­
trail)) , and (C++,198S,(C ,Simula)), and graphs tllem on a timeline with
arrows from ancestors to descendants. Use tills program to draw improved
versions of the diagrams in §22.2.2 and §22.2.7.

811

.,2 CHAPTER 22 • IDEAL S AND HISTORY

Postscript
Obviously, we have only scratched the surface of both the history of program­
ming languages and of the ideals that fuel the quest for better software. We COIl­

sider hisLOry and ideals sufficiently important to feel really bad about lila(, We
hope LO have conveyed some of our excitement and some idea of the immensity of
the quest for better software and better programming as it manifest itself though
the design and implementation of programming languages. That said, please re­
member that programming - the development of quality software - is the funda­
mental and important topic; a programming language is just a tool for that.

\ 1 .
. ,.- 23

Text Manipulation

"Nothing is so obvious that it's obvious
The use of the word 'obvious' indicates

the absence of a logical argument."

- Errol Morris

T his chapter is mostly about extracting information from

texl. We store lots of our knowledge as words in docu­

ments, such as books, email messages, or "printed" tables, just to

later have to extract it into some form that is morc usefu l for

compuwuon. Here, we review me standard library facilities most

used in text processing: strings, iostreams, and maps. Tllen, we

introduce regular express ions (rege)(s) as a way of expressing

patterns in texl. rmally, we show how to use rCbrular expressions

to fmd and cxu'act specific data elements , stich as ZIP codes

(postal codes), from texl and to verify the [om lat of text flies.

81 3

814

23.1 Text

23.2 Strings

23.3 VO streams

23.4 Maps

23.4.1 Implementation de tails

23.5 A problem

23.6 The idea of regular expressions

23.7 Searching with regular expressions

23.1 Text

CHAPTER 23 • TEXT MANIP ULATI O N

23.8 Regular expression syntax
23.S.1 Characte rs and special

characters
23.8.2 Characte r classes
23.S.3 Repeals
23.8.4 Grouping
23.S.S Alternation
23.8.6 Cha racter sets and ranges
23.8.7 Regular elrpression errors

23.9 Matching with regular expressions

23.10 Refe re nces

We manipulate text essentially all the time. Our books arc full of text, much of
what we see on our computer screens is text, and our source code is text. Our
communication channels (of all sorts) overflow with words. Everything that is
communicated between tvvO humans could be represented as text, but let's not go
overboard . Images and sound are usually best represented as images and sound
(i.e.,just bags of bits), but just about everything else is fair game for program text
analysis and transfonnation.

We have been using iostreams and strings since Chapter 3, so here, we' ll just
briefly review those libraries. Maps (§23.4) are particularly useful for text pro­
cessing, so we present an example of their use for email analysis. After this re­
view, this chapter is concerned with searching for pattel'lls in text using regular
expressions (§23.3-10).

23.2 Strings
A Siring contains a sequence of characters and provides a few llseful operations,
such as adding a character to a strin g, giving the length of the Siring, and COIl ­

catenating strings. Actually, the standard string provides quite a few operations,
but most are useful only when yOll have to do fairly complicated text manipula­
tion at a low level. Here, we just mention a few of the more useful. You can look
up their details (and the full set of string operations) in a manual or expert-level
textbook should you need them. TIley are fo und in <strin g> (note: not
<slring. h» :

23 .2 STRINGS

Selecte d s tring ope rations

sl = s2

S += X

sfil

sl+s2

sl ==s2

sl<s2

s.sizeO

s.lenglhO

s.cstrO

s. begin O

s.end{)

s.inserl(pos,x)

s.append(pos,x)

s.erase(pos)

pos = sJi nd(x)

in>>s

gelline(in,s)

o ut<<s

Assign s2 to sl ; s2 can be a Siring or a (-style siring.

Add x at end; x can be a character, a Siring. or a (-style string.

Subscripting.

Concatenalion; the characters in the resulting string will be a
copy of those from sl followed by a copy of those from s2.

Comparison of siring va lues; sl or s2, but not both, can be a C·
style string. Also != .

lexicographical comparison of string values; sl or s2, but not
both, can be a (·style string. Also <=, >, and >=.

Number of charaders in s.

Number of characters in s.

C-style version of characters in s.

Iterator to first character.

Iterator to one beyond the end of s.

Insert x before sipos]; x can be a Charadef', a Siring. or a (·style
string. s e>epands to make room for the charaders from x.

Insert x after si pos); x can be a character, a string. or a (·style
string. s e>epands to make room for the characters from x.

Remove the character in sipos] . s's size decreases by 1.

Find x in s; x can be a character, a Siring. or a (·style string; pos
is the index of the first character found, or npos (a position off
the end of s).

Read a whitespace-separated word into s from in .

Read a line into s from in .

Write from S to o ut.

TIle 110 opera tions arc explained in Chapters 10 and 1 1 and summarized in

§23.3. Note tha t the input operations into a Siring expand the siring as needed ,
so that overOow cannot ha ppen.

The in serl O and appe nd O operations move characters to make room for
new characters. 'Ille e raseO operation moves characters "fonvard" in the s iring
to make sure that no gap is left where we erased a character.

81 5

116 CHAPTER 23 • TEXT MANIP U LATION

The standard library string is really a template, called basic_string, that sup­
ports a variety of character sets, slich as Unicode, providing thousands of charac­
ters (such as [, n, 00, 0, Q, and ~~ in addition to "ordinary characters"). For
example, if you have a type holding a Unicode character, slIch as Unicode, you
can write

TIle standard string, string, which we have been using, is simply the basic_siring
of an ordinary char:

typedef basic_string<char> string; /I string mea ns basic_slring<char>

\Ve do nOt cover Unicode dlaraclcrs or Unicode strings here, but if you need
them you can look them lip, and YOll 'lI find that they can be handled (by lhc lan­
guage. by siring, by ioslreams, and by regular expressions) much as ordinary
charaClers and strings. If you need to usc Unicode characters, it is best to ask
someone experienced for advice; to be useful, your code has to follow not just
the language rules but also some system conventions.

In the context of text processing, it is impoltam that JUSt about anything can
be represented as a string of characters. For example, here on this page, the num·
ber 12.333 is represented as a string of six characters (surrounded by whitespace).
If we read this number, we mUSt convert those characters to a floating·point num·
ber before we can do arithmetic operations on the number. Ths leads to a need
to convert values to 51 rings and slrings to values. In §llA, we saw how to turn
an integer into a siring using a slringslream. This technique can be generalized
to any type that has a « operator:

le mplale<class T> Siring to_string(const T& 1)

{

}

oslringstream as;
05« I;
retu rn os .slrO;

For example:

string 51 = to_string(12.333);
string 52 = to_string(1+So6-99m;

The value of sl is now "12.333" and the value of s2 is "17" . In fact , to_SlringO
can be used not just for numeric values, but for allY class T with a « operator.

23.2 STRING S

The opposile conversion, from slrings to numeric values, is about as easy, and as
useful:

struel bad_from_string : sld::bad_cast
/I class for reporting sIring cast errors

{

consl char · whalO consl II override bad_casl's whalO
(

relurn "bad casl from siring";
)

);

lemplale<class T> T from_slring{consl slring& s)
(

istringslream isIs);
T I;
if (!(is» I» Ihrow bad_from_slringO;
relurn I;

For example:

double d = from_sl ring<double>("12.JJJ");

void do_somelhing(eonsl slri ng& s)

"Y
(

inl i = from_slri ng<int>(s) ;
II ..

catch (bad_from_string e) {
error ("bad input siring" ,5);

)

The added complication of from_slringO compared to lo_slringO comes because
a Siring can represent values of many types. TIlls implies that we must say which
type of value we want to extract from a siring. It also implies that the siring we
are looking at may not hold a representation of a value of the type we expect. For
example:

int d = from_stri ng<int>("Ma ry had a little lamb"); /I oops!

817

818 CHAPTER 23 • TEXT MANI PULATION

So mere is a possibility of error, which we have represented by the exception
bad_fram_slring. In §23.9, we demonstrate how from_slringO (or an equivalent
function) is essential for serious text processing because we need to extract nu­
meric values from text fields. In §16.4.3, we saw how an equivalent fu nction
gcUIlIO was used in G U I code.

Note how to_slringO and rrom_stringO are similar in function. In fact , they
arc rougWy inverses of each other; that is (ignoring details of whilcspace, round·
ing, elc.), for every "reasonable type T" we have

5==10 _stri n g(from _stri ng<1>(5)) II for all s

and

/I for all t

Here, "reasonable" means that T should have a default constructor, a » operator,
and a matching « operator defined.

Note also how me im plementations of lo_slringO and from_stringO bOlh use
a stringstream to do all the hard work. This observation has been used to define
a general conversion operation between any two types with matching « and »
operations:

slru cl badJexical_cas l : sid : : bad_casl
{

consl char· whatO consl (return "bad cast"; }
};

template<typename Target. type name Source>
Target lexical_cast{So urce arg)
{

)

sid : :slringslrea m inte rpreter;
Target result ;

if (!(inte rpreter « arg)
II ! (inte rprete r » result)
[I !(inte rprete r » sid : :ws).eofOl

throw bad_lexical_castO;

return result ;

II read arg into stream
/I read result from stream
II stuff left in stream?

The curious and clever !(inle rpreler»std :: ws).eoro reads any whitespace that
might be left in me stringstream after we have extracted the resul t. \<Vhitespace is
allowed, but there should be no more characters in the input and we can check

2) .) 1/0 STREAMS

that by seeing if we arc at "end of file." So if we arc trying to read an int from a
string using lexical_cast, "123" and "123 " will succeed , but "123 5" will not be­
cause o f that last 5.

"nlis rather elegant, though oddly named, lexicaCcast is provided by the
boost library, which we will usc for regular expression matching in §23.6-9 . It
will also be pan of future versions of the C++ standard .

23.3 1/0 streams
Considering the connection between strings and alher types, we get to 110
st.reams. 111e 110 stream library doesn't just do input and output; it also per·
fo rms conversions betwecn string formats and types in memOly. The standard li­
brary 110 streams provide facilities for reading, writing, and formatting strings of
characters . TI1C iostream library is deso·ibed in Chapters lO and II , so here we'll
JUSt summarize:

Stream VO

in »x

out «x

in .get(c)

getli ne(in,s)

Read from in into x according to x's type.

Write x to out according to x's type.

Read a charJcter from in into c.

Read a line from in into the string s.

11le standard streams arc organized into a class hierarchy (§ 14.3):

istream ostream

istrin tream ifstream iostream ostrin stream of stream

strin stream fstream

Together, these classes supply us with the ability to do 110 to and from files and
strings (and anything that can be made to look like a ftle or a string, such as a
keyboard and a screen; sec C hapter lO). As described in C hapters 10 and 11, the
iostreams provide fai rly elaborate formatting facilities. TIle arrows indicate inher­
itance (see §I4.3), so that, for example, a stringstream can be used as an iostream
or as an istream or as an ostream.

Like string, ioslreams can be used with larger character sets such as Uni­
code, much like ordinary characters . Please again note that if YOll need to usc
Unicode I/O, it is best to ask someone experienced for advice; to be usefu l, your
code has to follow not just the language rules but also some system conventions .

819

8W (H APTER 23 • TEXT MANIPU LATION

23.4 Maps
Associative arrays (maps, hash tables) are key (pun imended) to a lot of text pro­
cessing. The reason is simply that when we process text, we collect information,
and that information is often associated with text strings, such as names, ad·
dresses, postal codes, SociaJ Security numbers, job titles, etc. Even if some of
those text strings could be converted into numeric values, it is of len morc con­
venient and simpler to treat them as text and lise lhat text for identification. "nlC

word-counting example (§2L6) is a good simple example. If you don't feel com­
fortable using maps, please reread §21.6 before proceeding.

Consider email. We o f len search and analyze email messages and cmaillogs
- usually with the help of some program (e.g., TIlUndcrbird or Omlook).
Mostly, those programs save us from seeing the complete sourcc of the messages,
hut all the infonnation abom who sent, who received , where the message wCnt
along the way, and much more is presented to the progra.ms as text in a message
header. 111at's a complete message. TIlere arc thousands o f tools for analp.ing
the headers . Most lise regular expressions (as described in §23.5- 9) to extract in­
fonnation and some fonn of associative arrays to associate related messages. For
example, we often search a mail fil e to collect a ll messages with the same sendcr,
thc same subject, or containing infonllation on a particular topic.

H ere, we will use a very simplified mail file to illustratc some of the tedl­
niqucs for extracting dam from text mes. TIle headers arc real RFC2822 headers
from wv-/w.faqs.orglrfcslrfc2822.hulll. Consider :

From: John Doe <jdoe@machin e.exa mpJe>
To : Mary Smith <mary@exampJe. nel>
Subject: Saying He llo
Date : Fri, 21 Nov 1997 09:55 :06 - 0600
Message- ID : <1234@loeal.machine .exam ple>

This is a message just to say hello .
So, "Hello" .

From: Joe Q. Public <john.q.public@example.com>
To: Mary Smith <@machine. tld :mary@example. nel>"jd oe@test .example
Date: Tue, 1 Jul2oo3 10:52:37 +0200
Message- ID: <5678.21- Nov-1997@example ,com>

Hi everyone.

23.4 MAP S

To: "Mary Smith : Personal Account " <smith@home.example>
From : John Doe <jdoe@maehine.example>
Subject: Re: Saying Hello
Date: Fri, 21 Nov 1997 11 :00:00 - 0600
Message- ID: <abed.1234@loeal.maehin e. lld>
In- Reply-To: <3456@example. net>
Refe re nees: <1234®loeal. maehi n e. exam pic> <.l456@cxampl c. net>

This is a reply to yo ur reply.

Basically, we have abbreviated the me by throwing most of the infonnation away
and cased the analysis by terminating each message by a line containing just ---­
(four dashes). Vi'e will write a small "toy application" that fi nds all messages sent
by ''john Doc" and write a lit their "Subjeel." If we can do that, we can do many
interesting things.

Firs t, we mllst consider whether we want random access to the data or JUSt to
analyze it as it streams by in an input stream. \,ye choose the fomler because in a
real program, we would probably be interested in several senders or in several
pieces of infonnation fmm a given sender. AJso, it 's actually the harder of the two
tasks, so it will allow us to examine more techniques. In particular, we get to use
iterators again.

Our basic idea is to read a complete mail file into a structure (which we call a
Mail_fil e). 'n lis stnlctllre will hold all the lines of the mail me (in a
veelor<string» and indicators of where each individual message starts and ends
(in a vector<Message» :

Mail file :

vedor<Message>
.. .

\ 1---- I
\ ..ctoK>trlng> l---drom'JOhn Doe I

...iTo, Mary Smith I
Subject: Saying H ello J

I,--=:=L:tc ... I
J

. . .

821

822 CHAPTER 23 • TEXT MANIPU LATION

To this , we will add itcrators and beginO and end() functions, so that we can iter­
ate through the lines and through t.he messages in the usual way. "111is "boiler­
plate" will allow liS conveniem access to the messages . Given that, we will write
our " toy application" to gather all the messages from each sender so thallhcy are
easy to access together :

muhimap<String,Message·>

j ohn Doe"

john Doe"

"John O. Pubtic"

Mail file :

vector<Message>

Finally, we will write out all the subject headers of messages from "John Doc" to
illustrate a usc o f the access structures we have created.

We usc many of the basic standard library facilities :

#include<string>
#indude<vector>

#include<map>
#indude<fslream>
#include<ioslream>
using names pace Sid ;

We define a Message as a pair of iterators into a vector<string> (our vector of lines):

typedef vecto r<string>: :consCiterator Line_iter;

23.4 MAPS

class Message (/I a Message points to the first and the last lines of a message
line_ite r first;
Line_ite r last;

publi c:

} ;

Message(Line_iler pl , line_iler p2) :firs((pl), lasl(p2) { }
line_iter beginO co nst (return first; }
linej le r en dO const { return last; }
1/ . . .

We define a MaiU ile as a structure holding lines or text and messages:

typedef vector<Message>: :consUterato r Mess_ite r;

shu ct MaiUile (/I a Mail_file holds all the lines from a file

};

/I and simplifies access to messages
/I file name string name;

vecto r<string> lines;
vecto r<Message> m;

/I the lines in order
II Messages in order

MaiUile(const string& n); /I read file n into lines

Mess_iter beginO const { return m.beginOi }
Messj ter e ndO const { return m.end Oi }

Note how we added itcrators to the data structures to make it easy to systemati·
cally traverse them. We arc not actually going to usc standard library algorithms
here, but ir we wanted 1'0, the iterators arc there to allow it.

To find infomtation in a message and extract it, we need two helper runctions :

/I find the name of the sender in a Message;
/I return true if found
/I iffound, place the sender's name in s:
bool find_from_addr(const Message· m, slring& s);

/I return the subject of the Message. if any. othc vise • ":
Siring find_subjecl(conSI Message m);

Finally, we can write some code to extract inrom13tion rrom a file:

823

824 CHAPTER 2 3 • TEXT MANIPULATION

int main O
(

)

Mail_file mfile(lImy-mail-file.txt"); II initialize mfi le from a file

/I fi rst gather messages from each sender together in a muhimap:

mullimap<Slring, const Message·> sender;

fo r (M ess_i ter p = mfile.begin(); p l=mfi le.end() ; ++p) (
const Message& m = · Pi
string S;
if (find_fro m_addr(&m,$»

sende r. i n sert(make_pair(s,&m» ;
)

/I now itera te th rough the multi map
/I and extract the subjects of John Doe's messages:
typedef multimap<string, const Message->: :consUteralor M e l ;
pair<MCI,MCI> pp = sende r.equal_,ange("Jo hn Doe");
for(MCI p = pp.firsl ; p!=pp.second; ++p)

cout « find _subjeCl(p->secondl« '\n';

Let LIS examine the usc of maps in detail. We used a multimap (§20.10, §B.4) be­
cause we wanted to gather many messages from the same address together in one
place. The standard library multimap docs that (makes it easy to aceess clements
with the same key). Obviollsly (and typically), we have 1"\\"0 parts to our task:

Build lhe map.

Use the map.

We build the multi map by traversing all the messages and inserting them into the
multimap using insertO:

for (Messjte r p = mfile .beginO; p! =mfile.endO; ++p) (
const Message& m = . p;

)

string s;
if Ifind_from_addr(&m,s))

sende r.inserl(make_pair(s,&m»;

2) ,4 MAPS

What goes into a map is a (key, value) pair, whidl wc make with make_pairO_ We
use our '·homemade" find_from_addrO to find the name of thc sender. We use
the empty string to indicate that an address wasn't found .

Why do we introduce the refercnce m and pass its addrcss? Why don 't we
just usc p dircctly and say find_from_addr(p,s)? Because evcn though we k.now
that Messj ler refers to a Message, there is no guarantee that it is implemented as
a pointer.

Why did we first put the Messages in a veclor and then later build a
mullimap? 'Why didn't we just put the Messages into a map immediately? The
reason is simple and fundamental:

First, we build a generaJ structure that we can use for many things.

111en, we usc that for a particular application.

'n1at way, we build up a coUection of more or less reusable components. Had we
inUl1ediatcly built a map in the Mail_file, we would have had to redefine it when­
ever we wanted to do some different task. In particular, our mullimap (significantly
called senders) is sorted based on the Address field of a message. Most other appli­
cations would not find that order particularly useful : they might be looking at Re­
turn fields, Recipients, Copy-to fields, Subject fields, time stamps, etc.

TIlis way of building applications in stages (or ta)'ers, as the parts are some­
times called) can dramaticaJly simplify the design , implementation, documenta­
tion, and maintenance of programs. TIle point is that each part docs only one
thing and does it in a straightforward ' \faY. On the other hand, doing everything
at once would require cleverness. Obviously, our "extracting information from
an email header" program was just a tiny example of an application. The value of
keeping separate things separate, modularization, and gradually building an ap·
plication increases with size_

To extract infonllation, we simply find all the entries with the key "John
Doe" using the equal_rangeO function (§B.4.1O). TIlcn we iterate through all the
clemems in the sequence [first,second) returned by equal_,angeO, extracting the
subject by using find_subjectO:

typedef mult imap<string, const Message>: :consUte rator MCI;

pai r<MCI,MCI> pp = sende r.equal_range("John Doe")i

for (MCI p = pp.firsli pl=pp.second ; ++p)
cout « find_subject(p->second) « '\n';

When we iterate over the elemcnts of a map, we get a sequence of (key,value)
pairs, and as with all pairs, the frrst clement (here, the str ing key) is called fir sl
and the second (here, the Message value) is called second (§21.6).

825

826 CHAPTER 23 • TEXT MANIPU LATION

23.4.1 Implementation details
Obviously, we need to implement the fu nctions we usc. It was tempting to save a
tree by leaving this as an exercise, bUl we decided to make this example complete.
The MaiLfile constructor opens the flle and constructs the lines and III vectors:

MaiUile:: MaiUile(const string& n)
/I open fi Ie named On"

{

)

II read the lines (rom "n" into "lines·

II find the messages in the lines and compose them in m
1/ for simplicity assume every message is ended by a ,,----" line

ifslteam in(n .c_slrO);
if (!jn){

II open the fi Ie

cerr« "no "« n« '\n';
exit(1)j II terminate the program

string Sj

while (gelline(in ,s» lines.push_back(s)j II build the vector of lines

Linejter first = lines.begin O; /I build the vector of Messages
for (Linej ter p = lines.beginO; p!=lines.endO; ++p) {

if (.p == "----") { II end of message
m. p ush_back(Message(first, p»;
first = p+1; 11 ---- nol pari of message

)

)

The error handling is rudimentary. If this were a program we planned LO give to

friends LO use, we'd have to do belter.

TRY THIS

What would be "better error handling"? Modify Mail_file 's constructor to
handle likely fonnatting errors related to the use of" ----".

The find3 rorn_addrO and find_subjectO fu nctions are simple placeholders u ntil
we can do a bener job o f identifying information in a fi le (using regular exprcs·
sions §23.6-1O) :

2 3.4 MAPS

int is_prefix(const string& s, canst string& p)
/I is p the fi rst part of s?

)

int n = p.size();
if (string(s,O,n)==p) return n;
return 0;

bool find_from_addr(const Message' m, string& s)
{

)

for(linejter p = m->begin(); p!=m->endO; ++p)
if (int n = is_prefix(O p, "From: "» {

s = string(" p,n);
return true ;

)

return false ;

string find_subject{const Message& m)
{

)

for{line_iter p = m.begin (); p! =m.end(); Hp)
if (int n = is_prefix(' p, "Subject: "» return string("p,n);

return "";

Note the way we use substrings: string(s,n) constmcts a string consisting of the
tail of s from s[n] onward (s[n] .. s[s.size()- l J), whereas string(s,O, n) constmcts a
string consisting of the characters s[OJ .. s{n- 1J. Since thcse operations actually
constmct new strings and copy dlaracters, they should be used with care where
pcrfom13llce matters.

Why are the find_from_addrO and find_subjeclO functions so different? For
example, one relUms a bool and the other a siring. They are different because
we wanted to make a }Xlint:

find _frorn_addrO distinguishes between finding an address line with an
empty address (" ") and finding no address line. In the first case,
find_frorn_addrO rerums (rue (because it found an address) and sets s to
'''' (because the address just happens to be empty). In the second case, it
rerums false (because there was no address line).

find_subjectO returns "" if there was an empty subject or if there was no
subject line.

827

828 (HAPTER 23 • TEXT MANIPU LATION

Is the distinction made by find_irom_addrO useful? Nccessaly? We think lhallhc
distinction can be usefu l and lhat we definitely should be aware of it. It is a dis­
tinction that comes up again and again when looking for information in a data
fLle: did we find the field we were looking for and was there something llsefu l in
it? In a real program, bOlh the find_from_addrO and find_subjeclO functions
would have been wriucn in the style of find_from_3ddrO to allow users to make
that distinClion.

This program is n Ot tuned for pcrfonnance, but it is probably fast enough for
most uses. In particular, it reads iLS input fLle only once, and it docs not keep mul­
tiple copies of the tcxt from that fil e. For large files, it may be a good idea LO re­
place the mullimap with an unordered_mu ltimap, but unless you measure, you'll
never know.

See §2 1.6 for an introduction to the standard library associative containers
(map, multimap, set, uno rd ered_map. and uno rd ered_multimap).

23.5 A problem
110 streams and string help us read and write sequences of characters, help us
store them, and help with basic manipulation. However, it is very common to do
operations o n text where we need to consider the cOlllext of a string or involve
many similar strings. Consider a trivial example. Take an email message (a se­
quence of words) and see if it cOlllains a U.S. state abbreviation and Z IP codc
(twO lcttcrs followed by five d igits):

string Sj

while (cin»s) (
if (s.sizeO==7
&& isa lpha(sIO)) && isalpha(sll])
&& isd igil(sI2]) && isdigit(sI3J) && isdigit(s[4])
&& isdigil(sI5)) && isdigit(s[6J»

coul « "fo und "« s« '\fl';

Hcre, isleller(x) is tru e if x is a leite r and isdigil(x) is tru e if x is a digit (sec §ll.6).
TI1cre arc sevcral problems with this simplc (tOO simple) solution:

It 's verbose (four lincs, eight function c.'llls) .

We miss (intentionaHy?) evcry ZIP code number not separatcd from itS
COntcxt by whitespace (SUd1 as "TX77845" , TX77845-1234, and ATX77845).

We miss (intentionally?) every ZIP codc number with a spacc bctwcen
thc letters and the digitS (such as TX 77845).

23 .5 A PROBLEM

We accept (intentionally?) every ZIP code number with the lellers in
lower case (such as tx77845).

If we decided to look fo r a postal code in a different format (such as C8l
OFD), we have to completely rewrite the code.

TIlere has to be a better way! Before revealing that way, let 's juSt consider the
problems we would encoulller if we decided to stay with the "good old simple
way" of writing more code to handle more cases.

If we want to deal with more than one format, we'd have to start adding
if-statements or switch-statements.

If we want to deal with upper and lower case, we'd explicitly have to
convert (usually to lower case) or add yet another if-statement.

"Ve need to somehow (how?) describe the context of what we want to
find. TIlat implies t.hat we must deal with individual characters rather
than with strings, and that implies that we lose many of the advantages
provided by ioslreams (§7.8.2).

If you like, you can try to write the code for that, but it is obvious that on this
track we are headed for a mess of if-statements dealing with a mess of special
cases . Even for this simple example, we need to deal with alteOlatives (e.g., both
five· and nine-digit ZIP codes). For Illany other examples, we need to deal with
repetition (e.g., any number of digits followed by an exclamation mark, such as
123! and 123456!). Eventually, we would also have to deal with both preflXcs and
suflixes. As we observed (§11.l - 2), people's tastes in Output fortnats arc not lim­
ited by a progranuner's desire for regularity and simplicity. Just think of the be­
wildering variety of ways people write dates:

2007-06-05
June 5, 2007
jun 5, 2007
12 Jun e 2007
61.512007
516107

At this point - if not eal·lier - the experienced progra.nuner declares, "TIl ere has
to be a better way!" (Ulall writing more ordinary code) alld proceeds to look for
it. ~nle simplest and most popular solution is using what arc called regular ex/ms­
Slims. Regular expressions are ule backbone of much text processing, ule basis for
the Unix grep conunand (see exercise 8), and an essential part of lallguages heav­
ily lIsed for such processing (such as AWK, PERL, and PHP).

8'"

83. (HAPTER 2 3 • TEXT MANIPU LAT ION

The regular expressions we will usc arc implemented by a library that will be
pan of the next C++ standard (C++Ox). It is compatible with the regular expres­
sions in PERL. lbis makes many explanations, tutorials, and manuals available.
ror example, see the C++ standard COI11l1uttee's working paper {look for "WG21 "
on the web),J olm Maddoc's boosl: :regex documentation, and most PERL tutori­
als. Here, we will describe the fundamental concepts and some of the most basic
and useful ways of using regular expressions.

TRY THIS

The last two paragraphs "carelessly" used several names and acronyms with­
out explanation. Do a bit of web browsing to see what we are referring to.

23.6 The idea of regular expressions
111c basic idea of a regular expression is that it defines a pallem that we can look
for in a text. Consider how we might concisely describe the pattern for a simple
ZIP code, such as TX77845. H ere is a first attempt:

wwddddd

H ere, w represents "any letter" and d represents "any digit." We usc w (for
"word") because I (for "letter") is too easily co nfused with the digit I. "Tllis nota­
tion works for this simple example, but let's try it for the nine-digit ZIP code for­
mat (such as TX77845-5629). H ow about:

wwddddd-dddd

lllatiooks OK, but how come that d means "any digit" bUl - means "plain" dash?
Somehow, we ought to indicate that w and d are special: they represent character
classes rather than themselves (w means "an a or a b or a c or ... " and d means "a
1 or a 2 or a 3 or . . . "). That's too subtle. Let's prefix a letter that is a name of a class
of characters with a backslash in the way spcciaJ characters have always been indi­
cated in C++ (e.g., \n is newline in a string literal). This way we get

\w\w\d\d\d\d\d-\d\d\d\d

This is a bit ugly, but at least it is unambiguous, and the backslashes make it obvi­
ous that "sometlling unusual is going on." H ere, we represent repetition of a char-

23.6 THE IDE A OF REGULAR EXPRE SS IONS

acter by simply repeating. That can be a bit tedious and is potentially error-prone.
Qtick: Did we really gel the five digits before the dash and four after it right? We
did, but nowhere did we actually Jl!)' S and 4, SO you had to count to make sure.
We could add a COLInt after a character to indicate repetition. For example:

\w2\dS-\d4

However, we really ought to have some syntax to show that the 2, S, and 4 in that
paltem are counts, rather than juSt the alphanumeric characters 2, S, and 4. Let'S
indicate counts by putting them in curly braces:

\w{2)1d{5)-Id{4)

That makes (special in the same way as \ (backslash) is special, but that can't be
helped and we can deal with thal.

So far, so good, but we have to deal with twO more messy details: the final
four digits in a ZIP code are optional. We somehow have to be able to say that
we will accept both TX7784S and TX7784S- 5629. 111ere are two fundanlental ways
of expressing that:

\w(2)\d(S} or \w (2}\d(S}-\d(4}

and

\w (2)\d(S} and optionally -\d(4}

To say that concisely and precisely, we first have LO express the idea of grouping
(or sub-pattern) to be able to speak about the \w (2}\d(S} and -\d(4} pans of
\w(2}\d(S}-\d{4} . Conventionally, we use parentheses to express grouping:

~w{2)1d{5»){ - Id (4))

Now we have split the pattern into two sub-patterns, so we just have to say
what we want to do with them. As usual, the cost of introducing a new facility is
lO introduce another special character: (is now "special" just like \ and (. Con­
ventionally I is used to express "or" (alternatives) and 1 is used to express some­
thing conditional (optional), so we might write:

~w{2)1d{5»I~w{2)1d{5)-Id{4»

and

831

832 CHAPTER 23 • TEXT MANIP ULATION

~w{2}\d {S}}{ - \d{'}} I

As with the curly braces in the count notation (e.g. , \w(2l) , we lise lhc question
mark (1) as a suffiX. For example, (-\d{4})1 means "optionally -\d{4}"; that is, we
accept four digits preceded by a dash as a sumx. Actually, we arc not using the
parentheses around the pattern for the five-digit Z IP code (\w{2)\d{5}) for any­
thing, so we could leave them out:

Iw{2} \d{S}{ - \d{'}} I

To complete our solUlion to the problem stated in §23.5, we could add an op­
tional space after lhe twO letters:

Iw{2} lId{S}{-\d{4}}l

That " 1" looks a bit odd, blll of course it 's a space character followed by the ?,
indicating that the space character is optional If we wanted to avoid a space
being so unobtrusive that it looks like a bug, we could put it in parentheses:

Iw{2}{ }lId{S}{{- \d{4}}l

If someone considered that still too obscure, we could invent a notation for a
whitcspace character, such as \5 (s for "space") . That way we could write

Iw{2}l s 1\d{S} (-\d{')} I

But what if someone wrote (wo spaccs after the letters? As defined so far, the pat­
tem would accept TX77845 and TX 77845 but not TX 77845. lllat's a bit subtlc.
We need to be able LO say "'zero or marc whites pace dmraclers," so we introduce
t.he sufflX • to mean "'zero or more" and get

Iw{2}1s '\d{S){ - \d{ 4}} I

This makes sense if you followed every step of the logical progression. This nOla­
tion for patterns is logical and extremely terse. Also, we didn't pick our design
choices at random: this particular notation is extremely common and popular.
tor many text-processing tasks, you need to read and write this notation. Yes, it
looks a bit as if a ca.t walked over the keyboard, and yes, typing a single character
wrong (even a space) completely changes the meaning, but please JUSt get used to
it. We can't suggest anything dramatically heller, and this style of notation has al­
ready been wildly popular for more than 30 years since it was first introduced fo r
the Unix grep command - and it wasn 't completely new even then.

23.7 SEA RCHI NG WITH RE GU LAR EXPR ESS IONS

23.7 Searching with regular expressions
Now, we will use the ZIP code pattern from the previous section to find ZIP
codes in a me. The program defines the pattern and then reads a me line by line,
searching for the pattern . If the program finds an occurrence of the pattern in a
line, it writes out the line number and what it found:

#indude <boost/regex.hpp>
#ind ude <iostream>
#indude <siring>
#indude <fstream>
using namespace std ;

int mainO
{

ifstream in(" file. txt "); 1/ input file
if (! in) cerr « "no fil e\n";

boost:: regex pat ("\\w{2}\\s · \\d{5}(- \\d{4))'f");
cout «"pattern : " « pat « '\n ';

int lineno = 0;
Siring line; /I inpul buffer
while (getline(in ,line)) {

++Iine no;

II ZIP code pauern

boost: :smalch matches; /I matched strings go here
if (boost:: regex_search(line, matches, pal)

cout « line no« ": " « matches(OJ« '\n ' ;

}

l1us requires a bit of a detailed explanation . First consider :

#includ e <boostlregex .hpp>

boost: : regex pat ("\\w{2}\\s*\\d{5}(-\\d(4))'f"); II ZIP code pauern
boost: :smatch matches; /I matched strings go here
if (boost :: regex_search(1ine , matches, pat»)

We are using the boost implementation of the regex library that will soon be part
of the standard library. 1b lise that library, you may have to install it. To indicate
which facilities arc from the regex library, we use explicit qualifications with the
library's namespace boost, e.g., boost:: regex.

.33

834 C HAPTER 2] • TEXT M AN IPULATION

Back to regular expressions! Consider:

boost : :regex pat ("\\w{2}\\s-'\d{5}(- \\d{4})1") ;
coul « "pattern : "« pat « '\n 'i

Here we first define a patlern, pat (of type regex), and then write it to outpul.
Note that we wrote

"\\w{2}1" ' lid {5}{ - IId{ 4} I'"

If you run the program, you 'll sec the output:

pattern : \ w {2}\s-\d{S}(-\d{4})f

In C++ string literals, backslash is the escape character (§A.2.4), so to gel a (sin­
gle) \ into a literal string we have to write \\.

A regcx pattern really is a kind o f string, so we can output it using « . A
regex is not j llJl a siring, but the somewhat sophisticated mechanism for pattern
matching lhat is created when you initialize a regex (or assign to one) is hidden
and beyond the scope of this book. However, once we have initialized a regex
with our pattern for Z IP codes, we can apply it to each line of our file:

boost: :smatch matches ;
if (boost: :regex_sea rch(line, matches, pat»

cout « lineno « ": " « matcheslO] « '\n' ;

111e regex_search(line, matches, pat) searches the line for anything that matdles
the regular expression stored in pat, and if it finds any matches, it stores them in
matches. Naturally, if no match was found, regex_search(l ine, matches, pat) re­
~urns false .

The matches variable is of type smatch. The s stands for O;sub." Basically, an
smatch is a vector of sub-matches. The first clement, here matches[OJ , is the com·
plete match. We can treat matches[iJ as a string if i<matches.sizeO. So if - fo r a
given regular expression - the maximum number of sub-patlcm s is N, we find
matches .size()==N+1.

So, what is a sub-pattem? A good first answer is, "Anything in parentheses in
the pattern." Looking at "\\w{2}\\s·\\d{5}(- \\d{4})?", ,\-"e see the parentheses
around the four-digit extension of the ZIP code. 111at's the only sub-pattern we
sec, so we guess (correctly) that matches_size()==2. We also guess that we can
easily access those last four digits. For exanlple:

while (getiine(in,line» {
boost: :smatch matches;

23.7 SE AR CHI NG W ITH REG U LAR EXPRESSIONS

)

if (boost: :rcge,,-search(line, matches, pat)) {
co ut « lineno « ": " « matches[O]« '\n';
if (1<malches.sizeO && malches[l].malched)

cout «"\I: "« malches[l]« '\n ';
)

II whole match

II sub-match

Strictly speaking, we didn't have to test l<malchcs .size() because we already had
a g<XKIlook at the pauem, but we fclt like being paranoid (because we have been
experimenting with a variety of patterns in pat and they didn't all have just one
sub· pattern) . We can ask if a sub· match succeeded by looking at its matched memo
ber, here matches[l J. malched . In case you wonder: when matches[ij. malched is
fal se, the unmatched sub-pattern malches[i] prints as the empty string. Similarly, a
sub·pattern tllal doesn't exist, such as malches(17] for the pattern above, is treated
as an umnatdled sub-pattern.

We tried this program with a fIle containing

address TX77845
fHf Ix 77843 asasasaa
ggg TX3456-23456
howdy
zzz TX23456-3456sss ggg TX33456-1234
cvzcv TX77845 - 1234 sdsas
xuTx77845xu
TXl234~l23456

and got the output

pattern : "\w(2}\s-\d{5)(-\d(4})1"

1 : TX77845
2: Ix 77843
5: TX23456-3456
: -3456
6: TX7784~l234
: - 1234
7: rx77845
8: TXl234~l234

: - 1234

Note that we

Did nm get fooled by the ill-formatted "ZIP code" on the linc with ggg
(what's wrong witll that one?)

835

83. (HAPTER 23 • TEXT MANIP U LATION

Only found the first ZI P code from the line with zzz (we only asked for
one per line)

Found the correct suffIxes on lines 5 and 6

Found the ZIP code "hidden" among lhe xxx's on line 7

Found (unfortunately?) the ZIP code "hidden" in TX12345-123456

23.8 Regular expression syntax
'ATe have seen a rather basic example of regular expression matching. Now is the
time to consider regular expressions (in the foml they are used in the regex li­
brary) a bit morc systematically and completely.

R~guklr (xprwifJIu ("regcxps" or "rcgcxs") is basically a liule language for ex­
pressing patterns of characters. It is a powerful (expressive) and terse language,
and as slich it can be quite cryptic. After decades of usc, there arc many subtle
features and several dialects. H ere, we will just describe a Oarge and useful) sub·
set of what appears to be the currently most widely used dialect (tile PERL one).
Should you need more to express what you need to sayar to understand the reg·
ular expressions of Olhcrs, go look on the web. Tutorials (of wildly dilTering qual·
ity) and specifications abound. In particular, the boosl: : regell: specifi cation and
its standard colluruuee equivalent (in WG21 TRI) are easily found .

The library also supports the ECMAscript , POSIX, awk, grep, and egrep
nOlations and a host o f search options. l1lis can be extremely useful, especially if
you need to match some patlern specified in another language. You can look up
those options if you fecllhe need to go beyond the basic faci li ties described here.
However, remember that "using the most features" is not an aim of good pro·
gramming. Whenever you can, take pity on the poor maintenance programmer
(maybe yourself in a couple of months) who has to read and understand your
code: write code mal is not unnecessarily clever and avoid obscure features
whenever you can.

23.8.1 Characters and special characters
A regular expression specifics a pattern that can be used to match characters
from a string. By default, a character in a pattern matches itself in a string. For ex·
ample, the regular expression (pattern) "abc" will match the abc in Is Ih ere an
abc he re?

The real power of regular expressions comes from "'special characters" and
character combinations that have special meanings in a paltern :

23. 8 ":ECUlAR EXPR ES SIO N SYNTAX

Characters wilh special meaning

any single character (a ~wildcard")

[character class

{ count

I

•

+

I

s

begin grouping

end grouping

next character has a special meaning

zero or more

one or more

optional (zero or one)

alternative (or)

start of line; negation

end of line

For example,

'.y

matches any three-letter string starting with an x and ending with a y, such as
ny, x3y, and xay, but not yxy, 3xy, and xy.

Note that (.. .), . , +, and 1 arc suffix operators. For example, \d+ means
"one or more decimal digits."

If you want to lise one of the special charactcrs in a pattern, you have to "cs­
cape it" using backslash; for example, in a pattern + is thc onc-or-morc operator,
but \+ is a plus sign.

23.8.2 Character classes
11le most common combinations of characters are representcd in a terse foml as
"special charactcrs"' :

Special characters for charader classes

\d a decimal digit U:digil :lJ

• a lowercase character [(: lower:1l

" a space (sp.1ce, tab, etc.) ((:space:1J

I" an uppercase character ([:upper :JJ

Iw a leiter (a- z or A- ZJ or digit (0-9) or an underscore U ([:alnum:JJ

837

838 CHAPTE R 23 • TE XT MAN IPULAT ION

Special characters for character classes (continued)

II)

It

IS

\U

\W

not \d

flO! \ 1

not \5

not \ u

not \ w

I" [:digil :))

("{ :Iower :)]

' ''[:space :1I

I"[: uppe r:]]

["[:alnum:lJ

Note lhm an uppercase special character means "not the lowercase version o f that
special character," In particu lar, \W means "not a leuer" rather than "an upper­
c..1SC leuer,"

"m e entries in the third column (e.g., U: digit :JJ) give an ahcmativc syntax
using a longer name.

Like the string and iostream libraries, the rege)(library can handle large
character selS, sllch as Unicode. As with Siring and iostream, we just mention
lhis so liml y Oll can look for help and morc infonnation sho uld you need it. Deal­
ing with Unicode text manipulation is beyond the scope of this book.

23.8.3 Repeals
Repeating pa tlcm s arc specified by the suffIX opermors:

Repetition

t n)

(n,)

(n,m)

eXilctly n times

n or more times

at least n and at most m times

zero or more, that is, to,}
+ one or more, thai is, {1,}

? option.ll (zero or one), that is, (O,1)

For example,

A, '

matches a ll A fo llowed by zero or more X5, such as

2 3.8 REGU LAR EXPRE SS ION SYNTAX

Au
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx

If you want at least onc occulTence, usc + rather than · . For example,

malches an A followed by one or mon: xs, such as

A,
Au
Axxxxxxxxxxxxxxxxxxxxxxxxxxxxx

but not

A

The common case of zero or one occurrcnce ("optionan IS represented by a
question mark. Fo r example,

Id- l\d

matches the two digits with an optional dash between them, such as

1- 2
12

but not

1- -2

~Io specify a specific number of occurrences or a specific range of occurrences,
usc curly braces. For example,

\w{2)-\d{4,5}

matches exaClly twO letters and a dash (-) followed by foul' or five digitS, such as

Ab- 1234
XX- 54321

22-54321

but not

839

840

Ab-123
?b-1234

Yes, digits are \w characters.

23.8.4 Grouping

C H APTER 2 3 • TEXT MANIPULAT ION

To specify a regular expression as a sub-pattern, you group it using parentheses.
For exam ple:

1Id-,)

lllis defines a sub-paltern of zero or more digits followed by a colon. A group
can be used as part of a morc elaborate pattern. For example:

1Id-,)/IId+)

This specifics an optional and possibly empty sequence o f digits followed by a
colon followed by a sequence of one or more d igits. No wonder people invented
a terse and precise way of saying slich things!

23.8.5 Alternation
The "or" character (I) specifics an alternative. For example:

SubjeCl: (FW:IRe:)l(.*)

TIlis recognizes an email subject linc with an optional FW: or Re : followed by
zero or morc characters. For example:

Subject: FW: Hello, world!
Subjecl: Re :
Subject: Norwegian Blue

but not

SUBJECT: Re : Parrots
Subject FW: No subject!

An empty alternative is not allowed:

(Idef) /I error

23 .8 REG ULA R EXPRES SIO N SYNTA X

However. \\'e can specify several alternatives at once:

(bsIBslbSIBS)

23.8.6 Character sets and ranges
rn le special characlers provide a shonhand for the most common classes of char­
acters: digits (\dl; letters, digits, and underscore (\wl; etc_ (§23.7.2l. However, it is
easy and often uscfulto define our own. For example:

l\w @1

la-z]

[a-zA-Z]

IPpl
[\w\-)

lasdfghjkl; '1

I . I
I.I{(,,-+?IIS]

a word character, a space, or an @

the lowercase characters from a to z

upper- or lowercase characters from a to z

an upper- or lowercase P

a word character or a dash (plain - means range)

the characters on the middle line of a u.s. QWERTY keyboard

a dot

a character with special meaning in a regular expression

In a character class specifica.tion - (dash) is used to specify a range, such as 11-3]
(1, 2, or 3) and Iw-z] (w, x, y, or zl. Please usc such ranges carefully: not every
language has the same letters and not every letter encoding has the same order­
ing. If you fed the need for any range that isn't a sub-range of t.he most common
letters and digits of the English alphabet, consult the documentation.

Note that we can lise the special characters, sllch as \w (meaning "any word
character"), within a character class specification. So, how do we get a backslash
<\l into a character class? As usual, we "escape itn with a backslash: " .

When the first character of a character class specification is II , that II means
negation. For example:

Illaeiouy]

III\dJ

Illaeiouy1

not an English vowel

not a digi t.

<Ul English vowel or a II

In the last regular expression, the II wasn't the first character after the I, so it was
JUSt a character, not a negation operator. Regular expressions can be subtle.

An implementation of regex also supplies a set of named character classes for
use in matching. For example, if you want to match any alphanumeric character
(that is, a Iettcr or a digit : a-z or A-Z or 0-9) you can do it by the regular expres­
sion [[:alnum:]) . Here, alnum is the nrulle of a set a charactcrs (the set of alpha­
Ilumeric chru·acters). A patlern for a nonempty quoted string of alphanumeric
characters would be "U: alnum :ll+". To put that regular expression into a string,
we have to escape the quotes:

841

342 CHAPTER 23 • TEXT MANIPULATION

string s = "\" [[:alnum :]I+\"" ;

Furthermo re, to put that string into a regcx, we must escape lhe backslashes as
well as the quotes and usc the () style of initialization because regex's constmctor
from a Siring is explicit:

regex 5("\\\"11 : alnum : 1J+\\\'''');

Using regular expressions leads LO a lot of notational conventions. Anyway, here
is a list of the standard character classes:

Character classes

alnurn

alpha

blank

cntrl

d

digit

graph

lowe r

print

punet

,
space

upper

w

xdigit

any alphanumeric character

any alphabetic character

any whitespace character thai is not a line separator

any control character

any decimal digit

any decimal digit

any graphical character

any lowercase character

any printable character

any punctuation character

any whitespace character

any whitespace character

any uppercase character

any word character (alphanumeric characters plus the underscore)

any hexadecimal digit character

An implementation of regex may provide more character classes, but if yOll de­
cide to usc a named class not listed here, be sure to check if it is portable enough
for your intended usc.

23.8.7 Regular expression errors
'What happens if we specify an illegal regular expression? Consider :

regex pat1 ("(lghi)") ;
regex pat2("[c-a] ");

II missing a lternative
/I not a range

23 .11 REGU LAR EXPRE SS ION SYNTAX

When we assign a pattem to a regeJl. , the patlem is checked, and if the regular ex·
pression matcher can't use it fo r matching hec.1.use it's illegal or too cOlllplic.1. ted ,
a bad_eJl.pression exception is th rown.

Here is a lit tle program that's useful for getting a feci for regular expression
matching:

#include <boost/regeJl..hpp>
#include <iosiream>
#include <string>
#include <{stream>
#include<sSlream>
using namespace std ;
using namespace boost; /I if you use the boost implementation

/I accept a pattern and a set o(lines from input
/I check Ihe pattern and search (or lines with that pattern

int mainO
(

regeJl. pattern;

Siring pat;
coul« "enter pattern : ";
gelline(cin,pat); /I read pattern

try {
pattern = pat ; /I this checks pal
coul« "pattern : " « pattern « '\n ' ;

calch (bad_eJl.pression) {

)

caul« pal « " is not a valid regular eJl.pression\n";
eJl.it(l);

coul « "now enter lines :\n ";
Siring line ; II inpul buffer
inllineno = 0;

while (getline(cin,line» {
++Iineno;
smalch matches;

843

144 CHAPTER 2] • TEXT MANIPULATION

if (regex_search(line, matches, pattern» (

)

else

co ut « "line " « Iineno « " : " « line « '\n' ;
for (int i = 0; kmalches.sizeO; ++i)

co ut « "\Imatches[" « i « "]: "
« matches[i) « '\n ' ;

cout « "d id n't match\n ";

TRY THIS

Get the program to run and usc it to try out some pattcms, slich as abc, x. · x,
(, .), \(["W \), and \w+ \w+(Jr\.)l,

23.9 Matching with regular expressions
rnlcrc arc twO basic uses of regu lar expressions:

Seardling for a string that matches a regular expression in an (arbitrarily
long) stream of data - regex_searchO looks for its patlclll as a substring
in the stream

Malchi1lg a regular expression against a string (of known Si7.c) -
regex_rnatchO looks for a complete match of its patlcrn and the string

111c search for Z IP codes in §23.6 was an example of searching. Herc, wc will
cxaminc an eXiUllple of matching. Consider extracting data from a tablc like t.his:

KlASSE ANTAL DRENCE ANTAL P1CER ElEVER IALl

OA 12 11 23

1A 7 8 15

18 4 11 15

2A 10 13 23

3A 10 12 22

4A 7 7 14

4B 10 5 15

SA 19 8 27

6A 10 9 19

23.9 MATCHIN G WITH REGULAR EXPRE SSIONS

KLASSE ANTAL DRENGE ANTAL PIGER ElEVER IALl

6B 9 10 19

7A 7 19 26

7G 3 5 a

71 7 3 10

BA 10 16 26

9A 12 15 27

OMO 3 2 5

01>1 2

01'2 0 5 5

l OB 4 4 a

I OCE 0

IMO a 5 13

2CE B 5 13

3DCE 3 3 6

4MO 4 5

6CE 3 4 7

aCE 4 4 a

9CE 4 9 13

REST 5 6 " Aile klasser 184 202 3a6

~nlis table (of the number of students in Bjame Stroustrup's old primary school
in 2007) was c."'{ tracted from a context (a web page) where it looks nice and is
fairly typical of the kind of data we need to analyze:

It bas numeric data fields.

It has character fields with strings meaningful only to people who under­
stand the context of the table. (fIere, that point is emphasized by the use
of Danish.)

The character strings include spaces.

~nle "fields" of this data are separated by a "separation indicator," which
in this case is a tab character.

We chose this table to be "fairly typical" and "not too d ifficult," but note one sub­
tlety we must face: we can't actually see the differcnce between spaces and tab
characters; wc have to leave that problem lO our code.

845

(HAPTER 23 • TEXT MANIPULATION

We will illustrate the lise of regular expressions to

Verify that this table is properly laid out (i.e., every row has the right
number of fields)

Verify that the numbers add up (the last line claims to be the sum o f the
columns above)

If we can do lhat, we can do juSt about anything! Fo r example, we could make a
new table where the rows with lhe same initial digit (indicating the year: first
grades start with I) arc merged or sec if the number of students is increasing or
decreasing over lhe years in question (sec exercises 10- 11).

To analyze the table, we need twO patterns: one for the header line and one
for lhe rest of the lines:

regex header(" I\ (\\w 1+(
regex rowe " I\ [\\w]+(

,\\w 1+)·5");
\\d+)(\\d+)(\\d+)S ");

Please remember thal we praised the regular expression syntax ror terseness and
utility; we did nOt praise it ror case or comprehension by novices. In ract, regular
expressions have a well-eamed reputation ror being a "write-only language." Let
liS st<'l.rt with lhe header. Since it docs nOt contain any numeric dala, we could just
have thrown away that fi rst line, but - to get some practice - let us pm·se it. It con­
sists or rour "word fields" ("alphanumeric fields") separated by tabs. TIlese fields
can contain spaces, so we cannot simply usc plain \w to spcciry its characters. In­
stead, we lise I\w], that is, a word character (leIter, digit, or underscore) or a
space. One or more or those is written [\w J+. We want the first of those at the start
or a line, so \ve get I\« \w J+). The "hat" (1\) mem1.S "start of line." Each or the rest
o r the fields can be expressed as a tab rollowed by some words: (, \w 1+) . Now we
take an arbitrary number or those rollowed by an end or line: ([\w I+)·S. ' Ille
dollar sign ($) means "end or line." Now to write that as a C++ string literal , we
have to add extra backslashes, and we get

nl\ [\\w J+([\\w I+)* S"

Note how we can't sec that the tab characters arc really tabs, but in Lhis case they
expand in the typesetting so as to rcveal themselves.

Now ror the more interesting part or Lhe exercise: the pattern ror the lines rl'Om
which we want to extract the nUllleric dala. 111C Grst field is as before : I\(\w J+. It is
rollowcd by exactly tllree numeric fields, each preceded by a lab: (\d+), so that we
gel

I\[\w J+(\d+)(\d+)(\d+)$

23 .9 MATCH ING WITH REGULAR EXPRESSIONS

which, after putting it into a string literal, is

""[\\w 1+(\\d+)(\\d+){ \\d+)$"

Now all we have to do is LO use those patterns. First we will juSt validate the table
layout:

in l mai nO
(

ifstream in (" lable.txl ") ; II input fi Ie
if (! in) enor("no input fil e\n") ;

string lin e; II input buffer
int line no = 0;

II header line regex heade r("" [\\w 1+(
regex row(""[\\w J+(

[\\w I+)·S");
\\d+)(\\d+)(\\d+)S"); /I data line

)

if (gelline (in, lin e)) {
smatch matches;

II check header line

if (!regex_match(line, matches, header))
en or(" no header");

)

while (gelline(in ,line)) (
++Iinenoj
smatch matches j

II check data line

if (! regex_match(line, matches, row))
error("bad line" ,to_string(line no» ;

)

For brevity, we left out the #includes. We arc checking all the characters on each
line, so we usc resex_match rather than res ex_sea rch. The difTerence between
those two is exactly that regex_malch must match every character o f its input to
succeed , whereas regex_search looks at the input trying to find a substring that
matches. Mistakenly typing regcx_match when YOll meant rcscx_search (or vice
versa) can be a most frustrating bug LO find. However, both o f those functions
usc their "matches" argument identically.

We can now proceed to verify the data in that table. We keep a slim of the
number of pupils in the boys ("drenge") and girls ("piger") columns. For each
row, we check that last field ("ELEVER IAI.:T") really is the sum of the first twO
fields. 111e last row ("Aile klasscr") purports to be the sum of lhe colunlllS above.

847

848 CHAI' TER 23 • TEXT MANIPULATI ON

To check that, we modify row to make the text field a subm3tch so that we can
recognize "Allc klasscr";

int ma inO
(

ifslream in(" table.txl "); /I input file
if (!in) c rror(" no input fil e ");

siring linc; II input buffer
int line no = 0;

regex header(""[\\w]+(

regex row(""([\\w)+)(

~\w I+)OS");

\\d+)(\\d+)(\d+)S") ;

if (getlin e(in, line» (II check header li ne

)

boost: :smatch matches;
if Oboosl: :regex_match(line, matches, header» (

e rror("no header") ;

/I column totals:
int boys = 0;
int girls = 0;

while (getline(in, line» (
++Iineno;
smatch matches;
if (! regex_match(lin e, matches, row»

(err « "bad line : "« lineno« '\n ';

if (in. cofO) co ul « "at eot\n ";

II check row:
int curf_boy = from_string<int>(matches[2]);
int curr-&irl = from_string<int>(matches(3]);
inl curr_total = from_string<int>(matches[4J);
if (curr_boy+curr-&irl!= curr_total) e rror("bad row sum \n il);

if (matches[l!=="Alle klasser") (// Iast line

)

if (curr_boy 1= boys) error(lI boys don't add up\n") ;
if (curr-&irl 1= girls) error(IIgirls don 't add up\n");
if (!(in»ws).eofO) error(" characters after total lin e");
return 0;

23 . 10 REFEREN CES

)

1/ update totals:
boys += curt_boy;
girls += curr....girl ;

error("didn 't find total line");

111e last row is semantically d ifferent from the other rows - it is their sum. \o\'e
recognize it by its label ("Aile klasser"). We decided to accept no more non-white­
space characters arter that last one (using the technique from lexical_cast (§23.2))
and to give an error if \ve did not find it

We used the from_string fu nction from §23.2 to extract an integer vaJue from
the data fields. We had aJready checked that those fields consisted exclusively of
digits so we d id nOI have to check that the string·lo·int conversion succeeded.

23.10 References
Reb'ular expressions arc a popular and useful tool. l11ey arc available in Illany
programming lanbruagcs and in many fonnats. 111CY arc supported by an elegant
theory based on formaJ languages and by an efficient. implementation technique
based on state machines. 111e full generality of regular expressions, their theory,
their implementation, and the use of state machines in general are beyond the
scope of this book. However, because these topics arc rather standard in com­
puter science cun'icula and because regular expressions arc so popular, it is not
hard to find morc information (should you need it or just be interested).

For more information, sce:

AllO, Alfred V., Monic.., S. Lam, Ravi Sethi, and Jeffrey D. Ullman. (;q,lIj)#t'TJ:

AiflD/)/(J, 7CchlliqlleJ, alld -rooiJ, SeW!IlJ & Jitioll (usually called "111e Dragon
Book") . Addison-Wesley, 200Z ISBN 0321 547985.

Auslem , Matt, cd. "Draft Technical Report on C++ Library Extensions."
ISO/IEC D"n < 19768, 2005. www.open·std .orgljtcl /sc22/w(l. l /docs/papers/
2005/n I836.pdf.

BoosLorg. A repository for libraries meant 10 work weU with the C++ standard
library. www.boost.org.

Cox, Russ. "Regular E,xpression Matching Can Be Simple and Fast {but Is Slow in
J ava, Perl, PH P, Python, Ruby, .. .).'" http://swtch.com/- rscIrcgexplrcb'Cxp l .hunl.

Maddoc,J . boost::reb'Cx documentation. www.boosLorgllibs/regexldodi.:ndcx.html
Schwam, Randal L., 10m Phoenix, and Brian D. Foy. uamillg ltrl, rollrth EdiliQII.

O 'Reilly, 2005. ISBN 0596101058.

84.

850 CHAPTER 23 • TEXT MA N IPULATION

~ Drill
1. Find out if regclI: is shipped as part of your standard library. H int: Try

sid : : regell: and tr1 :: rege).:.
2. Get the little program from §23.7.7 to work; t.hat may involve getting

boost :: regex installed on yOlll' system (if it isn't already) and figuring
out how to set the project and/or command·line options to link to the
regell: library and usc the regell: headers.

3. Usc the program from drill I to test the palterns from §23.7.

Review

I. Where do we find "texl"?
2. What are the standard library faci li ties most frcqucnt..ly useful for text

analysis?
3. Docs in se rtO add before or after its position (or itcrator)?
4. 'What is U nicode?
5. How do you convert to and from a string representation (to and from

some other type)?
6. \Vhat is the difference between cin» s and getline(cin ,s) assuming s is a

string?
7. List the st<mdard streams.
8. What is the key o f a map? Give exam ples o f lIseful key types.
9. How do you iterate over the clements of a map?

10. What is the differcncc between a map and a multi map? Which useful
map operation is missing for multimap, and why?

II . 'What operations arc required for a fon vard iterator?
12. What is the difference between an empty field and a nonexistent field?

Give nvo examples.
13. Why do we need an escape character to express regular expressions?
14. How do you get a regular expression into a regex variable?
15. What docs \w+\s\d(4} match? Give three examples. What string li teral

would you use to initialize a regex variable with that pattern?
16. How (in a program) do you ftnd alit if a string is a valid regular expression?
17. What does regex....searchO do?
18. What does regex_matchO do?
19, How do you represent the character dot (.) in a regular expression?
20. How do you represent the notion of "at least three" in a regular c.'{pression?
2 1. Is 7 a \w character? Is _ (underscore)?

(t-tAPTER 23 EXERCISES

22. What is the nOlation for an uppercase charactcr?
23. How do you specify your own character set?
24. How do you extract the value of an integer field?
25 . How do you represent a noating·point number as a regular expression?
26. How do you extract a noating-point value from a match?
27. What is a sub·match? How do you access one?

Terms

match
multimap
pattern

Exercises

regex_matchO
regex_searchO
regular expression

search
smatch
sub-pattern

I. Get the email me exam ple to nllli test it using a larger file of your own
creation. Be sure to include messages that are likely to trigger er rors,
such as messages with twO address lines , several messages with the same
address and/or same subject, and empty messages. Also test the program
with something that simply isn't a message according to that program's
specification, such as a large file containing no . . . lines.

2. Add a mullimap and have it hold subjects. Let the program take an input
string from the keyboard and print out every message with that string as
its subject.

3. Modify the email example from §23.4 to usc regular expressio ns to find
the subject and sender.

4 . Fmd a real email message me (containing real email messages) and mod·
ify the email example to extract subject lines from sender names taken as
input from the user.

S. Find a large email message file (thousands of messages) and then time it
as wriuen with a multi map and with that multi map replaced by an un­
orde red_multimap. Note that our application docs not take advantage of
the ordering of the multimap.

6. Write a program that finds dates in a text fil e. Write Out each line COIl ­

taining at least one date in the forma t line-numbe r: lin e. Start with a
regular expression for a simple formal, e.g. , 1212412000, and test the pro­
gram with that. Then, add more formats.

7. Write a program (similar to the one in the previolls exercise) that finds
credit card numbers in a me. Do a bit of research to find alit what credit
card fonnats arc really used .

851

852 CHAPTE R 23 • TEXT MANIPULATION

8. Modify the program from §23.8.7 so that it takes as inputs a pattern and
a fIle name. Its output should be the numbered lines (line- number: linc)
that contain a match of the pattern. If no matches arc found, no Olltput

should be produced.
9. Using eorO (§B.7.2), it is possible to detcnninc which line of a table is the

last. Use that to (try (0) simplify the table-checking program from §23.9.
Be sure to test you r program with files that end with empty lines aft er the
table and with files that don't end WiUI a newline at all.

10. Modify the tablc-chcck.ing program from §23.9 to write a new table
where the rows with the same initial digit (indicating the year: fi rst
grades stan with 1) arc merged.

11. Modify the table-checking program from §23.9 to sec if the number of
snldenlS is increasing or decreasing over the years in question.

12. Write a program, based on the program thai finds lines containing dales
(exercise 6), that finds all dates and reformats them to ule ISO
yyyy/mm/dd formal. The program should take an input fil e and produce
an output fi le that is identical to the input file except for the changed date
fommtting.

13. Docs dot (.) match '\n '? Write a program to find OUL
14. Write a program Ulat, like the one in §23.8.7, can be used to experiment

with pauern matching by typing in a pattern. However, have it read a fil e
into memory (representing a line break with the newline character, '\n '),
so that you C."Ul experiment with patterns spanning line breaks. Test it
and document a dOlen test patterns.

15. Describe a pattern that cannot be expressed as a regular expression.
16. For expen s only: Prove that the pattern found in the previolls exercise

really isn't a regu lar expression.

Postscript

It is easy to get trapped into the view that computers and computation arc all
about numbers, that computing is a fonn of math. Obviously, it is not.Just look
at your computer screen ; it is full of tCXt and pictures. Maybe it's busy playing
music. For every application, it is imponant to usc proper tools. In the context of
C++, that means using appropriate libral·ies. For text manipulation, the regular
expression library is often a key tool - and don't forget the maps and ule stan­
dard algorithms.

' .. L
'-:24

Numerics

"For every complex problem
there is an answer that is
clear, simple, and wrong."

-H. l. Mencken

T his chapter is an overview of some fundamental language

and library facilities supporting numeric computation. We

present the basic problems of sizc, precision, and truncation. The

central part of the chapter is a d iscussion of multidimensional ar­

rays - both C-stylc and an N-dimensional matrix library. We intro­

duce T<mdom numbers as frequently needed for testing, simulation,

and games. Finally, we list the standard mathematical functions

and briefly introduce the bas ic functionality of the standard li­

brary complex numbers.

853

854

24.1 Introductio n

24.2 Size, precision, and overflow
24.2.1 Numeric limits

24.3 Arrays

24.4 C-slyle multidime nsional a rrays

24.5 The Matrix library
24.5.1 Dime nsions and access
24.5.2 10 Matrix
24.5.3 20 Matrix
24.5.4 Matrix I/O
24.5.5 3D Matrix

24.1 Introduction

CHA PTER 2 4 • NUMER ICS

24.6 An example: solving linea r
equations
24.6.1 Classical Gaussian elimination
24.6.2 Pivoting
24.6.3 Test ing

24.7 Random numbe rs

24.8 The standard mathe matical
f unctions

24.9 Complex numbers

24.10 References

For some people, numerics - that is, serious numeric..1 computations - arc every­
thing. Many scientists, engineers, and statisljcians are in this category. For many
people, numerics are sometimes essential. A computer scicmist occ..'1sionally col­
laborating with a physicist would be in this category. For most people, a need ror
numerics - beyond simple aJithmetic or integers and floating·point numbers - is
rare. The purpose or tills chapter is to address language·technical details needed
to deal with simple numerical problems. We do not auempt to teach numerical
analysis or the finer points or floa ting·point operations ; such topics arc rar be·
yond the scope or this book and blend Witil domain-specific topics in the applica·
tion areas. Here, we present

Issues related to the built·in types having fIXed size, such as precision and
overflow

Arrays , both the built·in notion of multidimensional arrays and a Matrix
library that is better suited to numerical computation

A most basic desCliption or random numbers

The standard library mathematica1 functions

Complex numbers

The emphas is is on the Matrix library that makes handling or matrices (multi­
dimensional arrays) trivial.

24.2 Size, precision, and overflow
When we Lise the built-in types and L1sual computational techniques, numbers
arc stored in fIXed amounts or memory; that is, tile imeger types (int, long, etc.)
arc only approximations of the mathematical notion or integers (whole numbers)

24. 2 SIZE, PRECISION, AND OVER FLOW

and the floating-point types (float , do uble, etc.) are (only) approximations of t.he
mathematical notion o f real numbers. TItis implies that from a mathematical
point of view, some compmations arc imprecise or wrong. Consider:

float x = 1.01333;
float sum = 0;
fo r (int i=O; k 333; ++i) sum+=x;
cout « setprecision(15) « sum« "\n ";

Running this, we do not gel I as someone might naively expect, but rather

0.999999463558197

We expected something like that. What we see here is an effect of a rounding
error. A floating-point number has only a fixed number of bits, so we can always
"fool it" by specifying a compmation that requires more bits to represent a result
than the hardware provides. For example, the rational number 1/3 cannot be rep­
resented exacuy as a decimal number (however many decimals we usc). Neither
can 11333, so when we add 333 copies o f x (ule machine's best approximation of
1/333 as a float), we get someuling that is slightly different from I . \,yhenever we
make significant usc of floating-point numbers, rounding errors will occur ; the
only question is whether tlle error significantly affects tlle result.

Always check that yOllr results arc plausible. When you compule, you must
have some notion of what a reasonable result would look like or you could easily
get fooled by some "silly bug" o r computation elTor. Be aware of the possibility
of rounding errors and if in doubt, consult an expert o r read up on numerical
techniques.

TRY THIS

... Replace 333 in the example with 10 and run the example again. What result
would you expect? What result did you get? You have been warned!

TIle effects of integers being of fixed size can sUlface more d ramatically. The
reason is that floating-point numbers arc by defini tion approximations of (real)
numbers, so they tend to lose precision (i.e., lose the least significant bits). hlte­
gers, on L1 le other hand, tend to overflow (i.c. , lose the most significant bits). lllat
tends to make floating-point errors sneaky (and often unnoticed by novices) and
integer errors spectacular (and typically hard not to notice). Remember that we
prefer errors to manifest themselves early and spectacu larly so that we call fix
them.

855

856

Consider an integer problem:

short int y = 40000;
int i = 1000000;

cout « y« " " « j*j« "\n" i

Running this, we got the output

- 25536 -n7379968

CHAPTER 24 • NU MERI CS

·nlat was expected. \oVhal we see here is the effeCl of overflow. lmcgcr types rep­
resent (relatively) small integers only. There just aren't enough biLS LO cxacLiy rep­
!'cscm every number we need in a way that 's amenable to efficient computation.
Here, a 2-bytc short integer could not represent 40,000 and a 4-bytc int can' t rep­
resent 1,000,000,000,000. The exact sizes arc++ built-in types (§A.8) depend on
the hardware and the compiler; sizeof(x) gives you the size of x in bytes for a
variable x or a type x. By definition, sizeof(char)==1 . We can illustrate sizes like
this:

char

shorl

D
CD

int, IOng,~, ~fI~o~a~1 r--'-~=:=~:::;:~
do " ble LI ---"----"----'----'---1--1----'----'

' n)CSC sizes arc for Windows using a Microsoft compiler. C++ supplies integers
and flmlling-poim numbers of a variety of sizes, but unless you have a very g<Xld.
reason for something clse, slick to char, int, and double . In mosl (but of course
not all) programs, the remaining integer and floating-point types arc more trouble
than Lhey arc wonh.

You can assign an integer to a floating-point number. U the integer is larger
than the floating-point type c..,n rcprcsclll, YOLI lose precision. For example:

coul « "sizes: "« sizeof(i nt)« " « sizeo((floal)« '\n';
int x = 2100000009; II large int
fl oat f = Xi
coul «x « ' , « f « e ndl;
cout « setprecisio n(15)« x«' '« f« '\0';

On our machine, this produced

Sizes: 4 4
2100000009 2.1e+OO9

24.2 SIZE, PRECI SION , AND OVERFLOW

21 00000OO9 2100000000

A float and an int take up the same amount of space (4 bytes). A float is repre­
sellted as a "mantissa" (typically a value between 0 and I) and an exponent
(mantissa* IO), so it calUlot represent exactly the largest int. (If we tried to,
where would we find space for the mantissa after we had taken the space needed
for the exponent?) As it should, f represented 2100000009 as approximately cor­
rect as it could. However, that last 9 was too much for it to represent exactly -
and lhllt was of course why we chose that number.

On the other hand, when you assign a floating-point number to an imeger,
you get truncation ; that is, the fractional part - the digits after the decimal point
- is simply thrown away. For example:

float f = 2.8;
int x = f;
cout« x«"« f « '\n' ;

~nle value of x will be 2 . It will not be 3 as you might imagine if you arc lIsed to
"4/5 rounding rules." C++ float-to'int conversions truncate rather than round.

When you calculate, you must be aware of possible overflow and truncation.
C++ will not catch such problems for you. Consider:

void f(int i, double fpd)
(

)

chare=i;
short s = i ;
i = i+1 ;
long Ig = i - i ;
float fps = fpd;
i = fpd;
fps = i;

void gO
{

char ch = 0;

/I yes: chars really are very small integers
II beware: an int may not fi t in a short int
II what if i was the largest int?
II beware: a long may not be any larger than an int
/I beware: a large double may not fit in a float
/I truncates: e.g., 5.7 -> 5
II you can lose precision (for very large int values)

for (in I i = 0; i<500; Hi)

coul« int(ch++)« '\1';
)

If in doubt, check, experimem! Don' t JUSt despair and don' t JUSt read the docu­
mentation. Unless you are experienced, it is easy to misunderstand the highly
technical documentation related to numerics.

857

858 (HAPTER 24 • NUMERICS

TRY THIS

Run gO. Modify fO to prim out c, s, i, etc. Test it with a variety of values.

Ille representation of integers and their conversions will be examined fur­
ther in §25.5.3. When we can , we prefer to limit ourselves to a few data types.
That can help minimize confusion. For example, by not using float in a program,
but only doubl e, we eliminate the possibility of double-to-floal conversion prob­
lems. In fact, we prefer to limit OUf usc to inl, double, and complex (see §24.8)
for computation, char for characters, and bool for logical entities. Vlc deal with
the rest of the arithmeuc types only when we have to.

24.2.1 Numeric limits
In <li mits>, <11mils.h>, and <float.h>, each C++ implementation specifics prop­
erties of the built-in types, so that programmers can use those properties to check
against limits, set sentinels, etc. These values are listed in §B.9. 1 and can be cri ti­
cally important to low-level tool builders. If you think you need them, you arc
probably too close to hardware, but there arc other uses. For example, it is nOt
uncommon to be curious abollt aspects of the language implememation, such as
"H ow big is an inl?" or "Are chars signed?"' Trying to find the definite and cor­
rect answers in the system documentation can be difficult, and the standard only
specifies minimum requirements. H owever, a proh'1'am giving the answer is trivial
to write :

cout« "number of bytes in an int : " «sizeof(inl) « '\n';
coul« "largest int : "« INT_MAX« e ndl;
coul « "smallest int value : " « numeric limits<int> : :minO« '\n ';

if (nume ric-,i mils<char>: : is_signed)
cout « "char is signed\n";

else
coul « "char is unsigned\n";

coul« "char with mi n valu e: "« numeric_limits<char> : :minO« '\n';
cou t « "min char value: "« int (numeric_limils<char>: :min())« '\n ';

When you write code imended to run on several kinds of hardware, it occasion­
ally becomes immensely valuable to have t.his kind of information available to
the program. -nle alternative would typically be to hand·code the answers into
the program, thereby creating a maintenance hazard.

TIlese limits can also be useful when you want LO detect overnow.

24.4 C-STYlE MULTIDIMENSIONAl ARRAYS

24.3 Arrays
An amry is a sequence of elements where we can access an element by its index (p0-
sition). Another word for tlmt general notion is ueclor. Here \ve arc particularly eOIl­
cellled Witll arrays where the clements arc themselves arrays: multidimensional
arrays. A common word for a multidimensional array is IfUltrix. The variety of
names is a sign of the popularity and utility of tile general concept The standard
veclor (§B.4), array (§20.9), and the built-in array (§A.8.2) are one-dimensional. So,
what if we need twO dimensions (e.g., a matrix)? If we need seven d imensions?

We can visualize one- and two-dimensional arrays like tllis:

I I I I I

A vector (e.g., Malrix<int> \/(4»),
also called a one·dimensional array,
or even a I-by-N mauix

A 3·by4 matrix (e.g., Matrix<int,2> m(3,4»),
also called a two-dimensional array

Arrays arc fundamemal to most compming ("number cnmching"). Most intercst­
ing scientilic, engineering, statistics, and linancial computations rely heavily on
alTays.

We often refer to an array as consisting of rows and columns:

A colulI1n

A row , __ _____ ___ .,/

\.I ~ t ~ l A3by4ma~, . .
~. i- ... -- ---i ___ mm} ________ _) r~~~:: a two-dnnenSlonal array

. . .
A colu mn is a sequence of elements wiLh the same rrrst {xl coordinate. A row is a
SCI of elements with the same second (y) coordinate.

24.4 C-style multidimensional arrays
' 11e c++ built-in array c."'l.n be used as a multidimensional array. We simply treat
a multidimensional array as an array of arrays, that is, an array with arrays as el­
ements. For example:

85'

.60

int ail4J;
double ad[3][4];
char ac[3][4][Sl;
ai[l] = 7;
ad[2][3] = 7.2;
ac[2][J][4] = 'e' ;

Il l-dimensional array
1/ 2-dimensional array
11 3-dimensional array

CHAPTER 24 • NUMERI C S

1l1is approach inherits the virtues and the disadvantages of the one-dimensional
array:

Advantages

Direct mapping LO hardware

Efficient for low-level operations

Direct language support

Problems

C-slyle multidimensional arrays arc alTays of arrays (sec below).

Fixed sizes (i.e., fixed at compile time). If yOll want to determine a
siz.e at run time, you' ll have to usc free store.

Can't be passed cleanly. An array turns imo a pointer to its first cle­
ment at the sliglllcst provocation.

No mnge checking. As usual, an array doesn't know it's own size.

No array operations, not even assignment (copy).

Built·in arrays arc widely used for numeric computation. "Iltcy are also a mqjo/"
source of bugs and complexity. For most people, they are a serious pain to write
and debug. Look them up if you are forced to use them (e.g., 'l7!e C++ Program­
ming L(lngu(lge, Appendix C, pp. 836-40). Unfortunately, C++ shares its multi·
dimensional arrays with C , so there is a lot ·of code "out there" using them.

The most fundamental problem is that you can't pass multidimensional ar·
rays cleanly, so you have to fall back on pointers and explicit calculation of loca·
tions in a multidimensional array. For example:

void fl(int a[J][5J) ; II useful for 13]lSI matrices only

void f2 (inl [][5J, int diml); 111 st dimension ca n be a variable

void n (inl [5][I, int dim2); /I error: 2 nd dimension cannot be a vari able

void £4(inl[H], int diml, inl dim2); /I error (and wouldn't work anyway)

2 4 .5 Tt-lE MATR IX LIBR A RY

void f5(int· m, int diml , int dim2) II odd, but works
{

for (int i=Oj i<diml j ++i)
for (int j = OJ j<dim2; ++j) mWdim2+jJ = OJ

)

Here. we pass m as an int- even though it is a two-dimensional array. As long as
the second dimension needs to be a variable (a parameter). there really isn't any
way of telling the compiler that m is a (dim1 ,dim2) array. so we just pass a pointer
to the SL.'lrt o f the memory that holds it. ' 11e expression mWdim2+jJ really means
mli,il, but because the compiler doesn't know that m is a two-dimensional array,
we have to calculate the position of mli,jJ in memory.

This is tOO complicated, primitive, and error-prone for our taste. It can also
be slow because calculating the location of an element explicitly complicates opti­
mization. Instead of trying to teach you all about it, we will concentrate on a
C++ library that eli minates the problems with the built-in arrays.

24.5 The Matrix library
What arc the basic "things" we want from an array/matTi." aimed at numerical
computation?

"My code should look very much like what I find in my math/engineer­
ing textbook text about arrays."

Or about vectors, matrices, tensors

Compile-time and run-time checked.

Arr.tys of any dimension

Arrays with any number of elements in a d imension

An-ays arc proper variables/objects.

You ca.1l pass them around

Usual array operations:

Subscripting: ()

Slicing: r J

AssignmeIll: =

Scaling operations (+=, -=, -=, %=, etc.)

Fused vector operations (e.g., resli] =alil°c+b[2J)

[)()(product (res = sum of a[i]-blil ; also known as the inner_product)

861

862 C H APTER 2 4 • N UM ERIC S

Basically, lransfonns conventional array/vector notation into the code
yOll would laboriously have had to write yourself (and n ms at least as ef­
ficiently as that).

You can extend it yourself as needed (no "mab';c" was used in its imple­
mentation).

~nlC Matrix library does that and only that. If you waIll more, such as advanced
array fu nctions, sparse arrays, control over memory layout, etc., you must write
it yourself or (preferably) lISC a library that beneT approximates you r needs.
However, many such needs can be served by building algorithm and data struc­
tures o n top of Matrix. The Matrix library is not part of lhe ISO C++ standard li­
brary. You find it on the course site as Matrix .h. It defi nes its facilities in
namcspacc Numeric_lib. We chose the name "matrix" because "vector" and
"array" are even more ovem sed in C++ libraries. ~nle plural of matrix is IIUI/riUJ

(with 1IU1/ri:.:eJ as a rarer form), Where "Matrix" refers to a C++ language emity,
we will use Matrixes as the pluraiLO avoid confusion , 111e implementation of lhe
Matrix library uses advanced techniques and will nOt be described here .

24.5.1 Dimensions and access
Consider a simple example:

#include "Matrix.h"
using namespace Numeric lib;

void (int nl , int n2, int n3)
{

Matrix<double,1> adl (nl);
Matrjx<int,1> ail (nl) ;
adl (7) =0;
adl [7] =8;

Matrix<double,2> ad2(nl ,n2);

1/ elements are doubles; one dimension
1/ elemcnts arc ints; onc dimension
1/ subscript usi ng () - Fortran style
1/11 also works - C style

I/l-dimensional
Matrix<double,3> ad3(nl ,n2,n3); 1/3-dimensional
ad2(3,4) = 7.5; 1/ true multidimensional subscripting
ad3(3,4,5) = 9.2;

So, when you define a Matrix (an object of a Matrix class). you specify the clement
type and the number of dimensions. Obviously, Matrix is a template, and the ele·
ment type and the number of dimensions arc template panmleters . 111e result of
giving a pair of arguments to Matrix (e.g., Matrix<double,2» is a type (a class) of
which yOll can define objects by supplying arguments (c.g. , Matrix<double,2>

24 . 5 THE MATRIX LIBRARY

ad2(nl, n2»); those arguments speeify the dimensions. So, ad2 is a nvo-dimensionai
array with dimensions nl and n2, also known as an nl -by- n2 matrix. To gel an
e1emelll of the declared clement type from a onc-di mell5 ional Matrix, you sub­
script with one index; to get an clement of the declared element type from a two­
dimensional Matrix, you subscript with twO indices; and so on.

Like built-in arrays, and vedars, our Matrix indices are zero-based (rather
than I-based like Fortran arrays); that is, the clements of a Matrix arc numbered
[O,max), where ma..x is the number of elements.

This is simple and "straight out o f the textbook." If you have problems with
this, you need to look at an appropriate math textbook, nOt a programmer's
manual. The only "cleverness" here is that you can leave out the number of di­
mensions for a Matrix: "one·dimensional" is the default. Note also that we can
usc I I for subscripting (C and C++ style) or () for subscripting (Fortran style).
Having bOlh allows us to better deal with multiple dimensions. The [xl subscript
notation always takes a single subscript, yielding the appropriate row of the
Mat rix ; if a is an II-dimensional Matrix, alx] is an /I- I-dimensional Matrix. 111c
(x,y,z) subscript notation takes one or more subscripts, yielding the appropriate
clement of the Matrix; the number of subscripts Illust equal the number of di­
menSIons.

Let's see what happens when we make mistakes:

void [(inl nl , int n2, int n3)
(

)

Matrix<i nt ,O> aiD; /I error: no 00 matrices

Matrix<da uble, 1> ad l (5);
Matrix<inl,l > ai(5);
Malrix<double,1> adll m i

adl (7) = 0;
ad1 = ai;
adl = adl1 ;

/I Matrix_error exception (7 is out of range)
II error: different element types
/I Matrix_crror cxception (different dimensions)

Malrix<double,2> ad2(nl);
ad2(3) = 7.5;
ad2(1 ,2,3) = 7.5;

/I error: length of 2nd dimension missing
/I error: wrong number of subscripts
II error: wrong number of subscripts

Malrix<double,3> ad3(nl ,n2,n3);
Matrix<double,3> ad33(nl ,n2,n3);
ad3 = ad33; II OK: same element type, same dimensions

... (HAI'TE R 24 • NUMERICS

We catch mismatches between the declared number of dimensions and their use
al compile time. Range errors we catch at run time and throw a Malril,_error
exception.

IllC first dimension is the row and the second the column, so we index a 20
matrix (two-dimensional array) with (row,column). We can also usc the [..ow][co1-
umn] notation because subscripting a 2D matrix with a single index gives the 10
matrix that is tllC row. We can visualize that like this:

a[O] :

alll :
a[2) :

00

10
20

01 02

11 12
21 22

011J121
/

All 1,2) ~.

13
23

TIlis Matrix will be laid out in memory in "row-first" order:

A Matrix "knows" its dimensions, so we can address the clements of a Matrix
passed as an argument very simply:

void init(Matrix<int,2>& a) 1/ initialize each element to a characteristic value
{

}

for (int i=O; ka.diml0; ++i)
for (i nt j = 0; j<a.dim2(); Hj)

a(i,j) = 10· i+j;

void print (eonst Matrix<int,2>& a) /I printlhe elements of a row by row
{

}

for (int i=O; i<a.diml0; Hi) {
for (int j = 0; j<a.dim2(); ++j)

cout «a(i,j) «'\1';
coul« '\n ';

So, diml () is the number o r clements in the fi rs t dimension, dim20 the number or
clements in the second dimension, and so on . l11e ty pe or the clements and the
number or dimensions are pan or the Matrix type, so we C.1Ilnot write a function
that takes any Matrix as an argument (but we could write a template to do that):

void init(Malrix& a); /I error: element type and number of dimensions missing

14.5 THE MATR I X LIBRARY

Note that the Malrix library doesn't supply matrix operations, sllch as adding
two 40 Malrixes o r multiplying a 20 Malrix with a l D Malrix. Doing so ele­
gantly and efficiently is currently beyond the scope of this library. MatrL,(li­
braries of a variety of designs could be built on top of the Malrix library (sec
exerCLse 12).

24.5.2 1 D Matrix
Wh,H can we do to the simplest Malrix, the ID (one-dimensional) Malrix?

We C'111 leave the number of dimensions out of a declaration because 1 D is
the default:

Malrix<inl,1> al (10);
Malrix<inl> a(10);

II a 1 is aiD Matrix of ints
II means Matrix<int, I> a(1 0);

So, a and al arc of the same type (Matrix<int ,1» . We can ask for the size (the
nu mber of elements) and the dimension (the number of elements in a dimen­
sian). For a I 0 Matrix, those arc the same.

a.sizeO;
a.diml0;

/I number of elements in Matrix
/I number of elements in 1st dimension

\>Ve can ask for tile elements as laid out in memory, that is, a pointer to the first
element:

int - p = a.dataO; II extract data as a pointer to an array

l 1lis is useful for passing Matrix daLa to C Slyle functions taking pointer argu·
ments. We can subscript :

ali); II ith element (Fortran style), but range checked
a[i); II ith element (C style), range checked
a(I ,2); /I error: a is a 'D Ma trix

It is comlllon for algorithms to refer to part of a Matrix. Such a "part" is called a
sliceO (a sub-Matrix or a range of elements) and we provide twO versions;

a.slice(i) ; /I the clements from the a Iii to the last
a.slice(i,n); lithe n elements from the a[ll to a [I+n- 11

Subscripts and slices can be used on lhe left-hand side of an ass ignment as well as
on the right. lllcy refer LO the elements of their Matrix without making copies of
them. For example:

865

866 C H APTER 24 • NU MERI CS

a.slice(4.4) = a.slice(0,4); /I assign first half of a to second half

For example, if a starts out as

{ 1 23 4 567 8 }

we get

{ 1 23 41 23 4 }

Note that the most common slices are the "initial elements" of a Matrix and the
"last elements"; that is, a.s lice(O,j) is the range [0:;) and a.s li ce(j) is the range
[j:a.sizeO). III particular, the example above is most easily written

a.slice(4) = a .s li ce(O,4); /I assign first half of a to second half

11mt is, the notation favors the common cases . You ca.1l specify i and n so that
a .slice(i,n) is outside the range of a. However, the resulting slice will refer only to
the elements actually in a. For example, a.slice(i,a .size()) refers to the range
[i:a.s izeO), and a.slice(a.size()) and a.slice(a.sizeO,2) are empty Matrixes. "ntis
happens to be a useful convention for many algorithms. ' '''e borrowed that con­
vention from math. Obviously, a.slice(i,O) is an emply Matrix. We wouldn 't write
that deliberately, but there arc algorithms that are simpler if a .s li ce(i,n) where n
happens to be 0 is an empty Matrix (rather than an error we have to avoid).

We have the usual (for C++ objects) copy operations that copy all elements:

Matrix<inl> a2 = a; /I copy initialization
a = al; /I copy assignment

We can apply a built-in operation to each element of a Matrix:

a -= 7;
a = 7;

Il scaling: alil· =7 for each i (also +=. -=.1=. etc.)
/I alil =7 for each i

Illis works for every assignmcllI and every composite assignlllent operator (=,
+=, - =, 1=, "=, %=, "=, &=, 1=, »=, «=) provided lhe element type supports that
operator. We can also apply a function to each element of a Malrix:

a.apply(();
a.apply(f,7);

/I a[il =f(a[ill for each element alii
/I a[i!=f(aIiL7) for each elemenl alii

24 .5 THE MATRIX lIHRARY

The composite assignment operators and applyO modify the elements of lheir
Matrix argu mcnt. If we instead want to create a new Matrix as the result, we can
use

b = apply(abs,a)j /I make a new Matrix with b(i)::abs(a(i))

This abs is the standard library's absolute valuc function (§24.8). Basic.1..IIy,
apply(f,x) relates to x.apply(f) as + relates to += . For example:

b = a·7j
a .= 7j

Y = apply(f,x)j
x.apply(f)j

/I bli l = alil '7 for each i
/I alii", a[il *7 for each i
II y[i] = i(x[i]) fo r each i
/I x[iI:. f(x[i]) for each i

Here we get a==b .md x==y.
In Fonran, this second apply is called a "broadcast" function and is typically

written f(x) rather than apply(f,x). To make this facility available for every func­
tion f (rather than j uSt a selected few functions as in Fortran), we need a name for
the "broadc."l.S t" opcrmion, so we (rc)use apply.

In addition, to match the two-argument version o f the member apply,
a.apply(f,x), we provide

b = apply(f,a,x); I/b[i[",f(ali[,x) for each i

For example:

double scale(double d , double s) { return d· s;)
b = apply(scale,a,n; II b[i l :::: alW7 for each i

Note that the "freestanding" applyO takes a function that produces a result from
its argument ; applyO then uses those results to initialize the resulting Matrix . Typ­
ically it docs no t modify the Matrix to which it is applied . rnle member applyO
difTers in that it takes a function that modifies its argumem; that is, it modifies cl­
ements of the Matrix to which it is applied. For example:

void scaleJ n_place(double& d, double s) { d .= 5;)
b.apply(scaleJ n_place,7)j II blil . ", 7 for each i

We also suppl y a couple of the most useful fu nctions from traditional numerics
libraries:

Matrix<inl> aJ = 5cale_and_add (a,8,a2);
int r = doCproduct(aJ,a) ;

/I fused mulliply and add
/I dOl producl

'.7

... CHAPTER 24 • NUMERICS

11l(~ scale_and_addO operation is often referred to asfitsed lJIullijJly-add or simply
/mll; its defmilion is result(i)=arg1(i)"arg2+arg3(i) for cadI i in the Matrix.. ~111C dot
product is also kllown as the inner_product and is described in §21.5.3; its defini­
tio n is resull+=argl (i)-arg2(j) for each i in the Matrix where result stalts out as O.

Onc-dimcnsional arrays arc very COIIDll0 n ; you can rcprcsCnl one as a built-in
array, a vecto r, or a Matrix. You use Matrix if yOll need the matrix operations pro­
vided, such as "=, or if the Matrix has to interact with highcr~imcnsional Matrixcs.

You can explain the utility of a library like this as "It matches the math bet­
ter" o r " It saves you from ,"vOting all those loops to do things for each clement."
Either way, the resulting code is significantly shorler and there arc fewer oppor­
tlmities to make mistakes writing it. TIle Matrix operations - such as copy, as­
sigmllem to all clements, and operations on all clements - each save LIS from
reading o r writing a loop (and from wondering if we got the loop exactly right).

Matrix supports two cons tructors for copying data from a built-in array into a
Matrix_ For example:

void some_functio n(do uble p, int n)
{

doubl e vain = { 1.2, 2.3, 3.4, 4.5 } j
Matrix<double> data(p,n);
Matrix<do uble> constants(val);
II .

)

~nleSe arc often useful when we have our data delivered in terms o f arrays or
vectors from parts of a program not using Matrixes.

Note that lhe compiler is able to deduce the number of clements of an initial·
ized array, so we don't have to give the number o f clements when we define
constants - it is 4. On the other hand, the compiler doesn't know the number of
clements given o nly a pointer, so fo r data we have to specify both the poimer (p)
and the number of clements (n).

24.5.3 2D Matrix
-nle general idea o f the Matrix library is that Matri xes of different dimensions
really arc quite similar, except where yOLl need to be specific about dimensions,
so most of what we said about a 10 Matrix applies to a 20 Matrix:

Matrix<inl ,2> a(3,4);

inl s = a.size() ;
inl d1 = a.dim1 0;
inl d2 = a.dim20;
inl · p = a. data() ;

II number of elements
/I number of elements in a row
/I number of clements in a column
/I extract data as a pointer to a C·style array

24 .5 THE MATRIX LIBRARY

We can ask for the total number of elements and the number of elements of eaeh
d imension. We c..""tIl get a pointer to the clements as they arc laid out in memory
as a matrix.

We can subscript:

a(i,j);
a(iJ;

ali][jl;

II {i,Pth element (Fortran style), but range checked
II ith row (C style), range checked
II (i,Plh clement (C style)

For a 20 Matrix , subscripting with IiI yields the 10 Matrix that is the ist row.
111is means that we can extract rows and pass them to opera Lions and functions
that require ai D Matrix or even a built·in array (a[i} ,dataO). Note mat a(i,j) may
be fas ter than a[illj], though that will depend a lot on me compiler and optirnizcr.

c j---- -----t --------f ---- ---- -f -- ---- --_ 1 _:-'::'=~;'2> al3.4)

We can lake slices:

a.s lice(i);
a.s lice(i,n);

II the rows from the alii to the last
II lhe rows from the alii to the a(i+n- \ J

a.slice(O,2) "-...

,- -~ ---------~ ---------~ --------l---------l--·
: , -_ ... _. ;
... . --... --. --.. -.. to _ .. -.... _-.-.. __ -.-.... _-.-.-.. _-__ 'J'

Matrix<i nt,2> a(3,4)

~ a[21.slice(2)

Note that a slice of a 20 Matrix is itself a 20 Matrix (possibly with fewer rows).
"n le d istributed operations arc the same as for 10 Matrixes. ll1ese opera­

tions don't care how we organiz.e the clements; they just apply to all elements in
lhe order those clements are laid down in memory:

Matrix<int ,2> a2 = a;
01 = 012;
a 0= 7;
a.al>ply(f);
a.apply(f,7) ;
b=apply(f,a);
b=apply(f,a,7);

II copy initiali zation
II copy assign ment
II scaling (and +::, -=, 1=, etc.)
II a(i,j)=f{a(i,p) for each element a(i,jl
II a(i,j)=f(a{i,j),7) for each element a(i,j)
II make a nC\v Matrix with b(i, j)==f(a{ i,j))
II make a new Matrix with b(i, j)==i(a(i,j),7)

...

870 CHAPTER 2 4 • NUMERI CS

It tllrns Ollt that swapping rows is often useful, so we supply that:

a .swap_rows(7,9); II swap rO\vs al71 <-> a[91

TIlerc is no swap_columns() . If you need it, write it yourself (exercise 11). Be­
cause of the row-first layout, rows and columns arc nOl completely synuncu'ical
concepts. Illis asymmetry also shows up in that Ii] yields a row (and we have not
provided a column selection operator). In that (i,j,k), the first index, i, selects the
row. TIle asymmetry also reflects deep malhCmalical properties.

' n lcrc seems to be an infinite number of "things" that arc lwo-dimensional
and thus obvious candidates for applications of20 Matrixcs:

enum Piece {none, pawn, knight, queen , king, bishop, rook };
Matrix<Piece,2> board (8,8); /I a chessboard

consl int while_slarl_row = 0;
const int black_starCrow = 7;

Piece inil_pos[J = (rook, knight, bishop, queen, king, bishop, knight, rook) ;
Matrht<Piece> slarC row(inil_pos); 1/ initia lize elements from init_pos
Matrix<Piece> clear_row(8) ; 1/8 elements of the default value

"nle initialization of clear_row takes advantage of none==O and that cle­
ments arc by default initialized to o. We would have liked to write

Matrix<Piece> sfarC row
= {rook, knight, bishop, queen, king, bishop, knight, rook};

However, that won't work until the next version of C++ (C++Ox), so we m ust
usc the trick of initializing an a rray (here, inie pos) and usc tha i to initialize the
Matrix.. We can usc starCrow and clear_row like this :

board [white_start_rowl = start_row;
for (int j = 1; i<7; ++i) board[i) = clear_row;
board lblack_starCrowl = slarCrow;

1/ reset white picces
1/ clear middle of the board
1/ resct black pieces

NOle when we extract a row, using Ii], we get an Ivalue (§4.3); that is, we c:m as­
sign to the result of boardli].

24.5.4 Matrix 1/0
"m e Matrix library provides very simple 110 for tD and 2D Matrixes:

Matrix<double> a(4);

24.5 TH E MATRIX LIBRARY

dn» a,
co ut « a,

ll1is will rcad four whitcspacc-scparatcd doubles delimited by curly braccs; for
cxamplc:

(1.23.45.67.8 }

~111C output is very similar, so that you can read in what YOll wrote out.
111c 110 for 20 Matrixes simply reads and writes a curly-brace-delimited se­

quencc of 10 Matrixes. For example:

Matrix<int,2> m(2,2);
ein» m;
eout « m,

111is will read

{

{ 1 2)
{3 4)
)

111C output will bc vcry similar.
111C Matrix « and » operators arc provided primarily to makc thc writing

of simple programs simple. For more advanced uses, it is likely that you will nced
to replace lhem with your own_ Conscquently, thc Matrix « and » are placed
in tlle MatrixlO.1l header (rather than in Matrix .h) so that you don't have to in­
clude it to lise Matrixes.

24.5.5 3D Matrix
Basically, a 30 (and higher-dimension) Matrix is just like a 20 Matrix, except
with more dimensions_ Consider :

Matrix<int,l> a(10,20,3O);

a.size();
a.dim1 0,
a.dim20,
a.dim30;
int · p = a.datal) ,
a(i,j,k),
ali],

// number of elements
/I number of elements in dimension 1
/1 number of clements in dimension 2
/I number of elements in dimension 3
/I extract data as a pointer to a C-style array
/I (i,j, k)th element (Fortran style), but range checked
/I ith row (C style), range checked

871

a[iJ[jl (k] ;
a.slice(i);
a.slice(i,j)i
Matrix<int ,3> a2 = ai
a= al i
a·= 7i

a.applY<O i
a.apply(f,ni
b=apply(f,a)i
b=apply(f,a,n i
a.swap_rows(7,9) i

(HAPTER 24 • NUMERICS

/I (i,j,k)th element (e style)
/I the elements from the ith to the last
1/ the elements from the ith to the jth
/I copy initializa tion
1/ copy assignment
/I scaling (and +=, -=, 1=, etc.)
/I a{i,j,k)=i(a(i,j,k)) for each element a(i,j,k)
1/ a(i,j,k)=f(a(i,j,k),7) for each element a(i,i ,k)
/I make a new Matrix with b(i,j,k)==f(a(i,j,k))
II make a new Matrix with b(i,j,k)==f(a(i,j,k),7}
/I swap rows al71 <-> al91

If you understand 20 Matrixes, you understand 3D Matri xes. For example, herc
a is 3D, so ali] is 20 (provided i is in range), a[iJlj] is 10 (provided j is in range),
and a[iJlj][kJ is the in! clement (provided k is in range).

We tend to see the world as three-dimensional. 11mt leads to obvious uses of
3D Matrixes in modeling (e.g., a physics simulation using a Cartesian grid):

int grid_nx; 1/ grid resolut ion; set a! stanup
in! grid_" y;
in! grid_nz;
Malrix<double ,3> cube(grid_nx, grid_"y, grid_nz};

And then if we add time as a fourth dimension, we get a 40 space needing a 40
Matrix. And so on.

24.6 An example: solving linear equations
"Ille code fo r a numerical computation makes sense if you understand the math
that it expresses and lends to appear to be utter nonsense if you don' t. ' lllC CX·
ample used here should be rather trivial if you have leamed bas ic linear algebra ;
if not, just see it as an example of transcribing a textbook solution into code with
minimal rewording.

The example here is chosen to demonstrate a reasonably realistic and impor·
tant use of Matrixes. We will solve a set (any set) of linear equations of this form:

a. ,x, + ... + a x = h
~

Here, the x's designate the 11 unknowns; a's and b's arc given constants. For sim·
plicity, we assume that the unknowns and the constants arc floating·point values.

24.6 AN EXAMPLE: SOLVING LINEAR EQUATIONS

111e goal is to find values for the unknowns I.hat simultaneously satisfy the 1/

equations. 111cse equations can compactly be expressed in temlS of a matrix and
two vectors:

Ax = b

Here, A is the square n·by-n matrix defined by the coefficients:

A=
a.... a

TIle vectors x and b arc lhe vectors of unkllowns and constants, respectively:

x, b,

x = and b =
x h • •

111is system may have zero, one, or an infinite number of solutions, depending
on the coefficients of the matrix A and the vector b. There arc various methods
for solving linear systems. We usc a classic scheme, called Gaussian elimination
(see Freeman and Phillips. RIrallel Nummml AlgvritlllllJ; Stewart, Matrix AlgorithlJls,
VOlume I ; and Wood, Inlrrxluchim to NUlJIeriali AI/alysis). First, we transform A and b
so that A is an upper-triangular matrix. By upper-triangular, we mean all the co­
efficients below the diagonal of A arc zero. In other words, the system looks like
this:

au a, . x, h,

0 =
0 0 a x h .- • •

11lis is easily done. A zero for position a(iJ') is obtained by multiplying the equa­
tion for row i by a conStant so that a(i,j) equals another clement in columnj, say
a{kJ). That done, we just subtract lhe two equations and a{iJ') = 0 and the
Olher values in row i change appropriately.

If we can get all the diagonal coefficients to be nonzero, then the system has a
unique sollilion, which can be found by "back substitution." The last equation is
easily solved:

a x = b
Obviously, x[n) is b[II]la(II,Il). That done, eliminate row /I from the system and pro­
ceed to find the value of xIn - IJ. and so on, until the value for xI lJ is computed.

873

874 CHA PTER 24 • NUMERI CS

For each II, we divide by a(n,n) so the diagonal values must be nonzero. If t.hat
docs not hold, the back substitution method fails, meaning that the system has
zero or an infinite number of solutions.

24.6.1 Classical Gaussian elimination
ow let us look at the C++ code to express lhis. First, we'll simplify OUf notation

by conventionally naming the two Matrix types that we arc going to lise:

Iypedef Numericlib : :Malrix<d ouble, 2> Matrix;
typedef Numeric_lib: :Matrix<double, 1> Vector;

Next we will express our desired compulation:

Vedor classical....gaussian_climination(Malrix A, Vector b)
(

)

dassical_elimination(A, b);
return back_substitution<A, b);

11mt is, we make copies of our inputs A and b (using call by value), call a func­
tion to solve lhe system, and lhen calculate the result to relUIll by back substitu­
tion. The point is thai our breakdown of the problem and our notation for the
solution are right out of the textbook. To complele OllT solution, we have 10 im­
plement dassical_eliminationO and back_substitutio nO. Again, the solution is in
the textbook:

void dassi cal_elimination(Matrix& A, Vecto r& b)
{

canst Index n = A.diml0;

II traverse from 1 sl column to the next-to-Iast
II fil ling zeros into all elements under the diagonal:
for (Index j = 0; j<n- l ; ++j) (

)

canst double pivot = A(j, j);
jf (pivot == 0) throw Elim_fai lure(j);

II fill zeros into each element under the diagonal of the ith row:
for (Index i = j+l; i<n; ++i) (

)

canst d ouble mult = A(i, j) I rivot;
Ali) .slice(j) = scale_and_add(AljI .slice(j), - mull, A[i).slice(j));
b(i) -= mult • b(j); II make the corresponding ch.ltlge to b

24 .6 AN EXAMPLE : SOLVING LINEAR EQU ATIONS

~nle "pivot" is the element that lies on the diagonal of the row we arc currently
dealing with. It mUSt be nonzero because we need to divide by it ; if it is zero we
give up by throwing an exception:

Vector back_substitution (const Matrix& A, const Vector& b)
(

)

consllndex n = A.diml();
Vector x(n);

for (Index i = n - 1; i >= 0; -- i) {

)

double s = b(i)-d oCproduct(A[i) .slice(i+ 1),x.slice(i+ 1»;

if (double m = A(i, i)
x(i)=s / m ;

else
throw Back_subsCfailure(i);

re lurn X;

24.6.2 Pivoting
We can avoid the divide·by·zero problem and also achieve a more robust solution
by sorting the rows to get zeros and smaH values away from the diagonal. By
"more robust" we mean less sensitive to rounding errors. However, the values
change as we go along placing zeros under the diagonal, so we have to also reo
order to get small values away from the diagonal as we go along (that is, we can't
just reorder the matrix and then use the classical algOriliUll):

void elim_wilh_partiaLpivoUMatrix& A, Veclor& b)
(

consllndex n = A.dim1 ();

for (Index j = 0; j < n; Hj) {

Index pivot_row = j ;

II look for a sui table pivot:
for (Index k= j +1; k < n; ++k)

if (abs(A(k, j» > abs(A(pivoUow, j»)) pivoC row = j;

II swap the rows if we found a better pivot:
if (pivouow != j) {

A.swap_rows(j, pivot_row);
sid: :swap(b(j), b(pivocrow»;

)

875

876

}

CHAPTER 2 4 • NU MERI CS

/I elimination:
for (Index i=j + 1; i < n ; ++i) (

consl double pivot = A(j, j);

}

if (pivol==O) error(tlean'l solve: pivot==O");
consl double mull = AO, j)/pivot;
Alil .slice(j) = scale_and_add(A[jl.slice(j), -mull, A(i] .slice(j»j
b (i) -= mull · b(j);

We usc swap_rowsO and scalc_and_multiplyO to make the code more conven­
tional and to save us from writing an explicit loop.

24.6.3 Testing
Obviously. we have to tCSt our code. Fonunately, there is a simple way to do that:

void solvc_random_systemOndex nl
{

}

Matrix A = random_matrix(n); /I see §24.7
Vecto r b = random_vector(n);

cout« "A = "« A« endl;
cout « li b = " « b « e ndl ;

try (

}

Vector x = classical-&aussian_climinatio n(A, b);
coul « "classical e lim solution is x = " «x« endl;
Vector v = A .. X;
coul « " A· X = " «\I«endl;

calch(consl e)(ceplion& e) (
cerr« e.whaIO« sid : :endl;

}

We can get to the catch clause in lhree ways:

A bug in the code (but, being optimists, we don't think there are any)

An input that trips up classical_e liminatio n (we should have used
e lim_wilh_partial_pivot)

Rounding errors

24.7 RAN DOM NUMBERS

However, Ollr test is not as realistic as we'd like because gelluincly random matri­
ces m·c unlikely to c.'1USC problems ror classicaCeliminalion .

To veriry our solution, we print out A -x, which had better equal b (or close
cnough ro r our purpose, given rounding errors). The likelihood o r rounding er­
rors is the reason we didn't just do

if (A· xl=b) error("subslilulion failed ") ;

ikc.'1use floa ling-point numbers arc juSt approximations to real numbers, we have
to accept approximately correct answers. In general, using == and != on the re­
sult or a floating-point computation is best avoided: floating point is inherenuy an
approximation.

"l1le Malrix library doesn't define multiplication or a matrix with a vector, so
we did Ulat ror ulls progrmn:

Veclor operalor*(consl Malrix& m, consl Veclor& u)
{

)

conSllndex n = m.dim1 0j
Veclor v(n) j

for (Index i = OJ i < nj Hi) v(i) = doCproducl(mli], u)j

relurn V j

Again , a simple Malrix operation d id most of the work ror us. "n le Malrix output
operations came rrom MalrixlO.h as described in §24.5.3. The random_malrixO
and random_veciorO runctions arc simple lIses o r random numbers (§24.7) and
arc left as an exercise. Index is a Iypedef (§A. IS) ror ule index type used by the
Malrix library. We brought it into scope with a using declaration:

using Numeric lib: :Index j

24.7 Random numbers
Ir you ask people ror a random nu mber, most say 7 or 17, so it has been sug­
gestcd that those arc the "most random" numbers. People essentially never give
the answer O. Zero is seen to be such a nice rollnd number umt it is not perceived
as '·random" and could thererore be deemed ule "least l-andom" number. From a
mathcmatic-,I point or view ulis is uller nonsense: it is not an individual number
ulat is random. What we often need, and what we often rerer to as random num­
bers, is a sequence or numbers Ulat conrorm to some distribution and where you
cannot easily predict ule next number in the sequence given the previous OIles.

877

878 (H APTER 24 • NUME RI CS

Such numbers arc most useful in testing (that's one way of generating a lot of test
cases), in games (that is one way of making sure that the next nm of lhe game
difTers from the previolls nm), and in simulations (we can make a simulated en­
tity behave in a "random" fashion within the limits of its parameters).

As a pracLicaJ tool and a mathematical problem, random numbers reach a
high degree of sophistication to matdl their rcal-world importance. Here, we will
just touch the basics as needed for simple ('csling and simulation . In <cstdlib>,
the standard library provides

inl randO;
RAND_MAX
void srand (unsigned inl) ;

II returns values in the range [O:RAND_MAXI

II the largest value that randO can produce
II seed the random number generator

Repeated caJls of rand O produce a pseudo-random sequence o f ints unifonnly
distributed in the range [0 : RAND_MAXI. We call the sequence of values pseudo­
random because it is generated by a mathematical formula so that it repea LS itself
after a while (i.e., it is predictable and nOI perfectly random). In particular, if we
call rand O repeatedly in a program , it will give the same sequence every time the
program is run. lnat's extremely useful for debugging. When we want different
sequences, we call s randO with different values. For each diffe rent argument to
s randO, we get a different sequence from rand O.

For example, consider the function rando m_vecta rO that was used in §24.6.3.
A call random_vectar(n) produces a Matrix<do uble,1> with n elemenLS with ran­
dom values in the range [O: n]:

Vecta r randa m_vecta r(lndex n)
(

Vecto r v(n);

fa r (Index i = 0; i < n ; ++i)
v(i) = 1.0 • n • randO I RAND_MAX;

re turn v ;

)

Note the usc o f 1.0 to make sure that we usc floating-point arithmetic. It would
be embarrassing if we had used integer division with RAND_MAX and always
gOllen the value o.

Getting an integer in a specific range, snch as [O: max), is harder. Most peo­
ple's first attempt looks like this :

int va l = randO%max;

24 .8 T HE STA NDA RD M AT HEM ATI CA L FUNC TI ONS

' nus used to be a really bad idea because this simply picks o fT the low-order biLS
of the random number and those biLS are not properly randomized by many tra­
ditional random number generators. Today, it appears to be ben er on many sys­
tems, but for portable code, "hiden the random num ber calcula tion in a function:

int rand_int(inl max) { return rand O%max ; }

int randj nt(inl min, int max) (return randj nt(max- min)+min;)

'111at way, you can replace the defilution of rand_intO if you find a poor imple­
mcntation of rand(). For industrial-strength software o r if you need a nonunifonn
distribution, use one of the quality random number libraries that a re widely
available, such as Boost : : random. To gel an idea of the quality of your system's
random number generato r, do exercise 10.

24.8 The standard mathematical functions
11le standard mathematical functions (cos, s in, log, etc.) are provided by t.he
standard library. 111eir declarations arc found in <cmath>.

Standard mathematical functions

abs(x)

ceil(x)

floor (x)

sqrl(x)

cos(x)

si n(x)

tan(x)

acos(x)

asin(x)

atan(x)

sinh (x)

cosh (x)

tanh(x)

exp(x)

log(x)

logI0(x)

absolute value

smallest integer >= x

largest integer <= x

square root; x must be nonnegalive

cosine

sine

tangent

arccosine; result is nonnegative

arcsine; result nearest to 0 returned

arctangent

hyperbolic sine

hyperbolic cosi ne

hyperbolic tangent

base-e exponential

natural logarithm, base--e; x must be positive

base-! 0 logarithm

879

880 CHAPTE R 24 • NUMERICS

The standard mathematical functions are provided for types floal , double , long
double , and complex (§24.9) arguments . If YO LI do floating-point computations,
you 'll fmd these functions useful. If you need more details, documentation is
widely available; your online documentation would be a good place to start.

If a standard malhemalic.."li fu nction cannot produce a mathematically valid
result , it sets the variable efrno. For example:

e rrllO = 0;
double 52 = sqrl(- l)i
if (errno) (e rr « "something wenl wrong with something somewhere" ;
if (errno == EDOM) II domain error

cerr « "sqrt() not defined for negative argument";
pow(very_largc,2)i II not a good idea
if (errno==ERANGE) 1/ range error

(err « "paw(" «veryJarge«" ,2) too large for a double";

If you do serious mathematical computations you must check errno to ensure
that it is still 0 arter you get your result. If not, something went wrong. Look at
your manual or online documentation to sec which mathematical runctions can
set ermo and which values they use ror errno .

As indicated in the example, a nonzero errno simply means "Something
went wrong." It is not uncommon ror rUllcuolls not in the standard library to set
errno in case or error, so you have to look more carerully at the value or errno to
get an idea or exactly what went wrong. If you ICSt CHno immcdiately arter a
standard library runclion and ir you made sure that errno==O bcro rc calling it,
you can rely on the values as we d id with EDOM and ERANGE in the cxample.
EDOM is set ror a domain error (i.e., a problem with the rcsult). ERANGE is sct
ror a rangc error (i.e., a problcm with tlle argumcnts).

Error handling based on errno is somcwhat primitive. h dates rrom the first
(1975 vintage) C mathematical runcUons.

24.9 Complex numbers
Complex numbers arc widely used in scientific and engineering computations.
We assume that if yOll need them, yOll will know about their mathematical prop'
erties, so we' ll JUSt show you how complex numbcrs are expressed in the ISO
C++ standard library. You find the declaration or complex numbers and their as·
sociated standard mathemati c..1.l rUllcuons in <complex>:

te mplale<class Scalar> class complex {
/I a complex is a pair of scalar va lues, baSically a coordinate pair
Scalar re, im;

24 .9 COMPLEX NUMBERS

public:
complex(const Scalar & r, const Scalar & i) : re(r), im(i) ()
complex(co nst Scalar & r) : re(r),im (Scalar ()) ()
complexO :re(Scalar ()}, im(Scalar ()) { }

Scalar realO { re turn rej } /I rea l par!
Scalar imagO { re turn im j } /I imaginary par!

/I operators: = += -= ' = 1=
};

'11C standard library complex is guaranteed to be supported for scalar types float ,
double, and long double. In addition to the members of complex and lhe standard
mathematical functions (§24.8), <complex> offers a host of useful operations:

Complex operators

z1+z2

z1-zl

z"zl

z1/z2

z1==zl

z1!=zl

norm(z)

conj(z}

polar(x,y)

real{z)

imag(z)

abs(z)

arg(z)

out « z

in »z

addition

subtraction

multiplication

division

equality

inequality

the square of abs(z)

conjugate: if z is (re,im}, then coni(z) is (re,- im)

make a complex given polar coordinates (rho,theta)

real part

imaginary part

also known as rho

also known as theta

complex output

complex input

Note: complex docs not provide < or %.
Use complex<T> exactly like a built·in lype, such as double . For example:

typedef complex<double> dcmplx; /I sometimes complex<double>
II gets verbose

881

882 CHAPTER 24 • N UMERI CS

void f(dcmplx z, veclo r<dcmplo& vel
{

)

d cmplx z2 = pow(z,2);
d cmplx %3 = 12*9.3+vc[3J;
dcmplx sum = accumulate(vc.begin(), vc.end(), dcmplx());
1/ . ..

Remember lhat nOt all opcralions that we are lIsed to from int and do uble arc
defined for a complex . For example:

if (z2<%3) II error: there is no < for complex numbers

Note lhal the representation (layout) of lhc C++ standard libra.y complex num­
bers is compatible with their corresponding types in C and Fonran.

24.10 References
Basically, the issues discussed in this chapter, such as rounding errors, Matrix op­
erations, and complex arithmetic, are of no interest and make no sense in isola­
lion. We simply describe (some of) the support provided by C++ to people with
the need and knowledge of mathematical concepts and techniques to do numen­
cal computations.

In case you are a bit rusty in those areas or simply cur ious, we can recom­
mend some infollllation sources :

TIle Macl'Utor History of Mathematics archive, Illlp:!/wWw-gap.dcs .sl-and.ac.ukJ
- history

A great link for anyone who likes math or simply needs to use math

A great link fo r someone who would like to see the human side of math­
ematics; for example, who is the ouly major mathematician to win an
Olympic medal?

Famous mathematicians: biographies, accomplishments

Curio

Famous curves

Famous problems

Mathematical topics

Algebra

Analysis

Numbers and number theory

CHAPTER 24 DRILL

Geomctry and topology

Mathematical physics

Malilemalical astronomy

TIle histOlY of mathematics

Freeman, T L., and Chris Phillips. Parallel Numerical Algonlll1l1.J. Prentice Hall,
1992.

Cullberg,J an. Mallu!IIwha - From tIle Birth of Number;. W. W. Norton, 1996. ISBN
039304002 X. One of the most el~oyable books on basic and useful malilemat­
ics. A (rare) math book that you can read for pleasu re and also usc to look up
specific topics, such as matrices.

Knuth, Donald E. 'fill: Art of Olmpllter Programming, Volllllle 2: Scnimwldical Algo­
n·tJl/lI.J, TlJird &Iitioll. Addison-Wesley, 1998. ISBN: 020 1896842.

Stewart, C . W. Matri-.: AlgrmllmIJ, Volume I: BaJic Decompositi01IJ. SlAM, 1998. ISBN
08987 14141.

Wood, Al istair. Ilitrot:lllctioll to Nummcal Alla/ysu. Addison-Wesley, 1999. ISBN
020 194291X .

./ Drill

I. Print the size of a char, a short , an int , a long. a float, a double , an int*.
and a double (usc sizeof, not <limits» .

2. Print out the size as reported by sizeof of Matrix<in l> a(10), Malrix<inl>
b(10J, Matrix<double> c(10), Malrix<int,2> d(10,10), Matrix<int,3> e (10,
10,10) .

3. Print alit the number of clemenLS of each of the Matri xes from 2.
4. Write a program that takes ints from d n and outpuLS the sqrtO of each

int , or "no square root" if sqrt(x) is illegal for some x (i.e., check your
sqrlO rellirn values).

5. Read ten floating-point values from input and put them into a Ma­
trix<double>. Matrix has no push_backO so be careful to handle an at­
tempt to enter a wrong number of doubles. Print out the Matrix.

6. Compute a multiplication table for [O,n)*(O,m) and represent it as a 20
Matrix. Take n and m from ci n and print out the table nicely (assume
that m is small enough lilat the results fit on a line).

7. Read ten complex<double>s from ci n (yes, ci n supporLS » for complex)
and put them into a Matrix. Calculate and output the sum of the ten COIll ­

plex numbers.
8. Read SLX ints into a Matrix<int,2> m(2,3) and print them out.

883

884 CHA PTER 2 4 • NU MERI CS

Review

1. \OVho uses numerics?
2. \.vhal is precision?
3. What is ovcrnow?
4. ,.vhat is a conunon size of a do uble? Of an int?
5. How can you detect ovcrnow?
6. Where do you rmd numeric limits, such as the largest int?
7. VVhal is an array? A row? A column?
8. What is a C-stylc multidimensional array?
9. What arc the desirable properties o f language support (e.g., a library) for

matrix computation?
10. What is a dimension of a matrix?
11 . How many dimensions can a matrix have (in theoryfmath)?
12. What is a slice?
13. ''''hat is a broadcast operation? List a few.
14. What is the difference between Foman-style and C-style subscripting?
15. How do you apply an operation to each clement of a matrix? Give

examples.
16. VVhal is a fused operation?
17. Define dol pnxJucl.
18. What is linear algebra?
19. \lVhat is Gaussian elimination?
20. What is a pivot? (In linear algebra? In Mreallife"?)
21. Whm makes a number random?
22. \-Yhm is a uniform distribution?
23. Where do you find the standard mathematical functions? For which ar­

gument types are they defined?
24. What is the imaginary part of a complex number?
25. What is the square root of - I ?

Terms

array
C
column
complex Humber
dimension
dot product
elcment-\vise operation
errno

ForlTan
fused operation
lInagmary
Matrix
multidimensional
randOIll number
real
row

scaling

'"" sizeof
slicing
subscripting
uniform distribution

CHAPTER 24 EXERCISES

Exercises
I. The function arguments r for a.apply(O and apply(f,a) arc differelli .

Write a doubleO function for each and usc each to double the elements
of an array { 1 2345 }. Define a single doubleO function that can be used
for both a.apply(double) and apply(double,a). Explain why it could be a
bad idea to write every function to be used by applyO that way.

2. Do exercise I again, but with function objects, rather than functions.
Hint: Matrix .h contains examples.

3. Expert level only (tlus crumot be done with the facilities described in this
book): Write an apply(f,a) tim can take a void (1&), a T (const T&), and
their function object equivalents. Him: Boost: :bind.

4. Get the Gaussian elinunation program to work; that is, complete it, get it
to compile, and test it with a simple example.

S. li)' the Gaussian elimination program with A=={ {O 1} {1 O} } and b=={ 5

6 } and watch it fail. TIlcn, cry elim_with_partiatpivotO.
6. In the Gaussian elimination example, replace the vector operations

doCproductO and sca le_and_add O with loops. Test, and comment on
lhe clarity of the code.

7. Rewrite the Gaussian elimination program without using the Matrix li­
brary; tlmt is, usc built-in arrays or vectors instead of Matrixes.

8. Animate the Gaussian c1inunacion.
9. Rewrite the nonmember applyO functions to return a Matrix of the reo

turn type of the function applied; that is, apply(f,a) should return a
Matrix<R> where R is the return type of f. Warning: The solUlion re·
quires infonnation aboUl templates nOt available in tltis book.

10. How random is your rand O? Write a program that takes twO integers n
an d as inputs and calls randint(n) d times, recording the result. Output
the number of draws for each of [0: n) and "eyeball" how similar tile
counts are. Try witll low values for n and with low values for d to sec if
drawing only a few random numbers causes obvious biases.

II . Write a swap_columns() to match swap_rowsO from §24.S.3. Obviously,
to do that you have to read and understand some of the existing Matrix
libral), code. Don't won)' too much about efficiency: it is not possible to
gel swap_columnsO to run as fast as swap_rows() .

12. Implement

Matrix<double> operatorO(Matrix<double,2>&,Matrix<double>&);

and

Matrix<double,N> operator+(Matrix<double,N>&,Matrix<double,N>&)

If you need to, look up the matllematical definitions in a textbook.

885

886 CHAPTER 24 • NUMERICS

Postscript
If you don't feci comfonable with mathematics, you probably didn't like this
chapter and you'll probably choose a field of work where you arc unlikely to
need the infonnation presented here. On the other hand, if you do like mathe­
matics, we hope that you appreciate how closely the fundamental concepLS of
mathematics can be represented in code.

, t
, '

,.. 25

Embedded Systems
Programming

" 'Unsafe' means 'Somebody may die .' "

-Safety officer

W e present a view of embedded systems programming;

that is, we discuss topics primarily related to writing pro­

grams for "gadgets" that do not look Like conventional computers

with screens and keyboards. We focus on the principles, program­

ming techniques, language facilities, and coding standards needed

to work "close to the hardware." The main language issues ad­

dressed are resource management, memory management, pointer

and array use, and bit manipulation. The emphasis is on safe use

and on alternatives to the use of the lowest-level features. We do

not attempt to presclll specialized machine architectures or direct

access to hardware devices; that is what specialized literature and

manuals are for. As an example, we present the implementation of

an encryption/decryption algorithm.

887

888 C HAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING

25. 1 Embedded syste ms 25.5 Bits, bytes, and wo rds

25.2 Basic concepts

25.2.1 Predictability
25.2.2 Ideals
25.2.3 living with failure

25.3 Memo ry ma nageme nt

25.3.1 Free·store problems
25.3.2 Alternatives to general free store
25.3.3 Pool example
25.3.4 Stack example

25.4 Addresses, po inte rs, and a rrays

25.4.1 Unchecked conversions
25.4.2 A problem: dysfunctional

interfaces
25.4.3 A solution : an interface class
25.4.4 Inheritance and containers

25.1 Embedded systems

25.5.1 8ils and bit operations
25.5.2 bitsel
25.5.3 Signed and unsigned
25.5.4 8it manipulation
25.5.5 8itfields
25.5.6 An elample: simple encryption

25.6 Coding sta ndards

25.6. t What should a coding standard
b,l

25.6.2 Sample rules
25.6.3 Real coding standards

Most computers in thc world arc not immediately recognizable as computers.
l 11ey arc simply a part of a larger system or "gadget." For example:

Ctm: A modern car may have many dozens of computers, controlling the
fuel injection, monitoring engine performance, adjusting lhe radio, can·
troning the brakes, watching for underinflated tires, controlling the wind·
shield wipers, etc.

'felepflO1U!S: A mobile telephone contains at least two computers; typic. ... lIy
one of those is specialized for signal processing.

AirplmU!S: A modern airplane contains computers for everything from
n mning the passenger entertainment system to wiggling the wing tips for
optimal fl ight properties.

WlllffllS: In.ere arc cameras with five processors and for which each lens
even has its own separate processor.

CmJiI mrds (of the "smart c. ... rd" variety)

Me(Jicol equij)lIIn11 monitors and rontrotlus (e.g., CAT scanners)

EWltOrJ (lifts)

PDAs (Personal Digital Assistant)

Prinler COli/rollers

Sowul ~JIt:IIIJ

MP3pla)"m

25. 1 EMBEDDED SY STEMS

Kitc/u:I/ a/J/Jlimu:n (such as rice cookers and bread machines)

Telephont: slIJitc/leJ (typically consisting of thousands of speciali7.cd computers)

Pump (J)1I/rollm (for water pumps and oil pumps, etc.)

H'i!klillg robolS: some for usc in light o r dangerous places where a human
welder cannot go

W/I/d tUTb,iU:J: some capable of generating megawalts of power and 70m
(210ft) tall

$ea-W{/II gate (ollirollm

A.uelllblyt-lil/~ qua/if)t lIIoni/oTJ

&,r (Ode TeadeTJ

OIT awmbly robotJ

CeIIlrjjilgt (OlIlro/1en (as used in many medical analysis proccsses)

Dllk-lbive col/fro/1m

These computers arc parts of larger systems. Such '"' large systems" usually don't
look like computers and we don't usually think of them as computers. W'hen we
see a car coming down the street, we don't say, "Look, there's a d istributed COIll ­

puter system!" V·lell , the CM is aM a distributed computer system, but its opera­
tion is so integrated with the mechanical, electronic, and electrical parts that we
can't really consider the computcrs in isolation. -The constraints on their compu­
tations (in lime and space) and the very defin ition of program correctness cannot
be separated from the larger system. Often, an embedded computer controls a
physical device, and the correct behavior of the computer is defined as the COf­

rect oper.ltion of the physic-'ll device. Consider a large marine diesel engine:

889

890 (HAPTER 25 • EMBEDD ED SYSTEMS PROGRAMMING

Note the man at the head of cylinder number 5. TIus is a big engine, the kind of
engine that powers the largest ships. If an engine like this fai ls, you'll rcad about
it on the fronl page of your morning newspaper. On this engine, a cylinder COIl­

trol system, consisting of three computers, sits on each cylinder head. Each cylin­
der camral system is cOllnected to the engillc camral system (another three
computers) through twO independent networks. '11C engine control system is
then conncClcd to the comrol room where the machine engineers can communi­
cate with it through a specialized G U I system. 111c complete system can also be
remotely monitored via rad io (through satellites) from a shipping-line control
center. For morc examples, see Chapter 1.

So, from a programmer's point of view, what's special about the programs nm·
!ling in the computers that are parts of mat cnginc? More generally, what are ex·
amples of concc01S that become prorninent for various kinds of embedded systems
that we don't typically have to worry too much about fo r "ordinary programs"?

Often, rtlwbility is critical: Failure can be spectacular, expensive (as in "bil·
lions of dollars") , and potentially lethal (for the people on board a wreck
or the animals in its enviromnent).

Often, m OIlTUJ (II/emory, proaSJ()r 9de5, jxJwn") are limited: "111at's not likely
to be a problem on the engine computer, but think of cell phones, sen·
sors, PDAs, computers on board space probes, etc. In a world where
dual·processor 2G Hz laptops with 2G B of memory are common. a criti·
cal computer in an airplane or a space probe may have JUSt 60M Hz and
256KB, and a small gadget just sub· I M Hz and a few hundred words of
RAM. Computers made resilient to environmental hazards (vibration,
bumps, unstable electricity supplies, heat, cold , humidity, workers step·
ping on them, etc.) arc typically far slower than what powers a student's
laptop.

Often, real-lime mjx»1.Se is eJJeIllial: If the fuel injector misses an injection
cycle, bad things can happen to a very complex system generating
100,000Hp; IlUSS a few cycles - that is, fail to function con-ectly for a sec·
ond or so - and strange things can start happening to propellers mat can
be up to 33ft (10m) in diameter and weigh up to 130 tons. You really
don't want that to happen.

Often, (ll)'stemIllUJljinu:tiQTI IlI/interruptedJor yam: Maybe the system is nm·
ning in a communications satellite orbiting the earth, or maybe the sys·
tem is just so cheap and exists in so many copies that any significant
repair rate would ruin its maker (think of MP3 players, credit cards with
embedded chips, and automobile fuel il~ectors). In the United States, the
mandated reliability criterion for backbone telephone switches is 20 min·
utes of downtime in 20 years (don't even think of taking such a switch
down each time you want to change its program).

25 2 BASIC CONCEPTS

Often, lUll/tis-on mllilllerulllct is iTyeasible {Jr Ut'IJ' ran:: You can take a large ship
into a harbor to service the computers every second year or so when
other parts of the ship require service and the necessary computer spe­
cialists arc available in the right place at the right time. Unscheduled ,
hands-on maintenance is infeasible (no bugs are allowed while the ship is
in a m;yor storm in the middle of the Pacifi c). You simply can't send
someone to repair a space probe in orbit around Mars.

Few systems suffer aU of these constrai.nts, and any system that suffers evell one is
the domain of experts. QUI' aim is not to make you an ;'instant cxpert n

; attempting
to do that would be quite silly and very irresponsible. Our aim is to acquaint you
with the basic problems and the basic concepts involved in their sollllion so that
you can appreciate some of the skills needed to build such systems. Maybe you
could become interested in acquiring such valuable skills. People who design and
implement embedded systems arc critical to many aspects of our technological
civilization. lois is an arca where a professional can do a 1m of gcxxi.

Is this relevant to novices? To C++ programmers? Yes and yes. TIlere are
many more embedded systems processors than there are convemional PCs. A
huge fraction of programming jobs relate to embedded systems programming, so
yOllr first real job may involve embedded systems programming. Furthermore,
the list of examples of embedded systems tbat started this section is drawn from
what I bave personally seen done using C++.

25.2 Basic concepts
Much programming of computers that arc parts of an embedded system can be
just like Olher programming, so most of the ideas presemed in this book apply.
However, the emphasis is often different : we must adjust our usc of program­
ming language facilities to the constraints of the task, and often we must manipu­
late our hardware at the lowest level :

CoTT«lnru: 111is is even more important than usual. "Correctnessn is not
just an abstract concept. In the contc.xt of an embedded system, what it
means for a program to be correct becomes not just a question of pro­
ducing the correCl results, bUl also producing them at the right time, in
the right order, and using only an acceptable set of resources. Ideally, the
details of what constitutes correctness are carefully specified, but often
such a specification ca.n be completed only after some experimentation.
Often, critical experiments C .. 1Jl be performed only after the complete sys­
tem (of which the computer running the program is a part) has been
built. Completely specifying correctness for ail embedded system can at
the same time be extremely difficult and extremely important . Here, "ex­
lremel), difficult" can mean "impossible given the time and resources

891

.'2 CHA PTER 25 • EMBED DED SYSTE MS PROGR AMM ING

available" ; we must try Ollr best using all available tools and techniques.
Fortunately, the range of specification, simulation, testing, and other
techniques in a given area can be quite impressive. Here, "extremely im­
portant" can mean "failure leads to injury o r ruin."

Fillllt tolerance: We must be careful to specify the set o f conditions that a
program is supposed to handle. For example, for an ordinary student
program, you might find it unfair if we kicked lhe cord out of the power
supply during a demonstration. Losing power is not among the condi­
tions an ordinary PC application is supposed to deal with. However, los­
ing power is not uncommon for embedded systems, and some arc
expected to deal with that. For example, a critical part of a system may
have dual power sources, backup batteries , etc. Worse, "But I assumed
that the hardware worked correctly" is no excuse for some applications.
Over a lo ng time and over a large range of conditions, hardware simply
doesn't work con'ectly. For example, some telephone switchcs and some
aerospace applications are written based o n the assumption that sooner
or later some bit in the computer's memory will juSt "decide" to change
ilS value (e.g., from 0 to I). Ahematively, itlllay "decide" that it likes the
value I and ignore attemplS to change that 1 to a O. Such erroneous be­
havior happens evelHually if you have enough melllory and usc it for a
long enough time. It happens sooner if you expose the memory to hard
radiation, such as you find beyond the earth's atmosphere. When we
work on a system (embedded or not), we have to decide what kind of
tolerance to hardware failure we must provide. The usual default is to as­
sume that hardware works as specified. As we deal with more critical
systems, that assumption must be modified.

No duwlllime: Embedded systems typically have to nm for a lo ng time
witha m changes to the software or intervention by a skilled operator
with knowledge of the implementation. "A long time" can be days ,
months, years, or tJle lifetime of the hardware. 1l1is is not unique for elll­
bedded systems, but it is a difference from the vast majority o f "ordina ry
applications" and from all examples and exercises in this book (so far).
This "must run fOl'e ver" requirement implies an emphasis on error h.m­
dling and resource management. What is a "resource"? A l'esonrce is
something of which a machine has only a limited supply; from a pro­
gram you acqu ire a resource through some explicit action ("acquire the
resource," "allocate") and return it ("release," "free," "deallocate") LO the
system explicitly or implicitly. Examples of resources are melllory. file
handles, network connections (sockets), and locks. A progrdm that is
part of a long·nmning system must release every resource it requires ex­
cept a few that it permanently owns. For example, a program that fo rgelS

25.2 BAS IC CONCEPTS

to c10sc a filc cvery day will on most operating systcms not survive for
marc than about a momh. A program that fails to deallocate lOO bytes
every day will waste morc than 32K a year - that 's enough to crash a
small gadget after a fcw momhs. ~nlC nasty thing about such resource
'"leaks" is that thc program will work perfectly for months before it sud­
denly ceases to function. If a program will crash, wc prcfer it to crash as
soon as possible so that we yOm remedy the problem. In particular, we
prefer it to crash long before it is given to users.

Rcal-hine (Dluiraillls: \Ve can classify an embedded system as hard real lime
if a ccrtain response must occur before a deadline. If a response muSt
occur beforc a deadline most of the time, but we can afford an occasional
time ovelTun, we classify the system as .frji rrallime. Examples of soft real
time arc a controller for a car window and a stereo amplifier. A human
will not notice a fraction of a second's delay in the movement of the win­
dow, and only a trained listener would be able to hear a millisecond's
delay in a cbange of pitch. An example of hard real time is a fuel injector
that has to "squirt" at exactly the right time relative to tlle movement of
the piston . If tlle timing is off by even a fraction of a millisecond, per­
formancc suffers and the engine starts to deteriorate ; a major timing
problem could completely stOp the engine, possibly leading to accident
or disaster.

Prediclahl1ily: ' 1us is a key notion in embedded systems code. Obviously,
the term has many intuitive meanings, but here - in the context of pro­
gramnung embedded systems - we will use a specialized technical mean­
ing: an operation is predictable if it takes the same amount of time to
execute every time it is executed on a given computer, and if all such op­
erations take the same amount of tillle to execute. For exmnple, when x
and y are integers, x+y takes the same amount of time to execute every
time and xx+yy takes the same amount of time when xx and yy arc twO
other integers. Usually, we can ignore minor variations in execution
speed related to machine architecture (e.g., differences caused by caching
and pipelining) and simply rely on there being a flXed, constant upper
limit 011 the time needed_ Operations that arc not predicl<lble (in this
sense of the word) can't bc used in hard rcal·time systems and must bc
L1scd with great carc in all real-time systems. A classical examplc of an
unpredictable operation is a linear search of a list (e.g., find O) where the
number of elements is unknown and not easily bounded. Only if we can
reliably predict the number of elements or alleast the maximulll number
of elements docs SUcll a search become acceptable in a hard real-time sys­
tem; that is, to guaralltee a response within a given fixed time we must be
able to - possibly aided by code analysis tools - calculate the time
needed for every possible code sequence leading up to the deadline.

893

.94 CHAPTER 25 • EMBEDDED SYSTE MS PROGRAMMING

OmCUTTfmq: An embedded system typically has to respond to events from
the CXlcmaJ world. This lcads to programs where many things happen
"at oncc" because they correspond to real events that really happen at
once. A program that simultaneously deals with several actions is called
(oncurreTll or /Jamllel. Unfortunately the fascinating, difficult, and impor­
tant issue of concurrency is beyond lhe scope of this book.

25.2.1 Predictability
From the point of view of predictability, C++ is pretty good, but it isn't perfect.
All facilities in the C++ language (including virtual function calls) arc pre­
dictable, except

Free-store allocation using new and delete (see §25.3)

Exccplions (§19.5)

d ynamic_cast (§A.5.7)

-n tCSe facilities must be avoided for hard real-time applications. 111e problems
with new and d elete are described in detail in §25.3 ; those arc fu ndamental.
Note that the standard library Siring and the standard containers (yector, map,
etc.) indirectly use free store, so they are not predictable either. "111e problem Witll
d ynamic_cast is a problem Witll current implementations but is not fundamental.

The problem with exceptions is that when looking at a particular throw, the
programm cr cannot - without looking at large sections o f code - know how
long it will take to find a matching catch or even if there is such a catch . In an
embedded systems prohrram, there had better be a catch because we can't rely on
a C++ programmer sitting ready to use the debugger. The problems with excep·
tions can in principle be dealt with by a tool that for eaell throw tells YOli exaClly
which catch will be invoked and how long it will take the throw to get therc, but
currently, that 's a research problem, so if you need predictability, you 'll have to

make do with error handling based on return codes and olher old· fashioned and
tedious, but predictable, techniques.

25.2.2 Ideals
When wr iting an embedded systems program there is a danger tllat the quest for
performance and reliability will lead the programmer to regress to exclusively
using low·level language facilities. 111at strategy is workable for individual small
pieces of code. However, it can easily leave the overall design a mess, make it dif·
ficult to be confident about correctness, and increase the time and money needed
to build a system.

As ever, our ideal is to wo rk at the highest level of abstraction that is feasible
given the constraints on Oll r problem. Don't get reduccd to writing glorified as­
sembler code! As ever, represent your ideas as directly in code as YOll can (given

25.2 BASI C CON CEPTS

all constraints}. As ever, try hard to write the clearest, cleanest, most maintainable
code. Don't optimize until you have to. Performance (in time or space) is often es­
semial for an embedded system, but trying to squeeze performance out of cvery
little piece of code is misguided. Also, for many embedded systems the key is t"O

be con ca and fast enough; beyond "fast enough" the system simply idles until an­
other action is needed. Trying to write every few lines of code to be as efficient as
possible takes a lot of time, causes a lot of bugs, and often leads to missed oppor­
OIllilies for optimiza.tion as algorithms and data structures get hard to underst.a..nd
and hard to change. For example, that "low-level optimization" approach often
leads to missed opportunities for memory optimization because almost similar
code appears in many places and can't be shared because of incidental differences .

J ohn Bentley - famous for his highly efficient code - offers two "laws of
optimization":

First law: Don't do it.

Second law (for experts only): Don't do it yet.

Before optimizing, make sure that you understand the system. Only then can you
be confident that it is - or can become - correct and reliable. Focus on algo­
rithms and data structures. Once an early version of the system runs, carefully
measure and tunc it as needed. Fonunately, pleasant surprises are not uncom­
mon: clean code sometimes runs fast enough and doesn't take up excessive mem­
ory space. Don't count on that, though ; measure. Unpleasant surprises arc not
uncommon either.

25.2.3 Living wi th fa ilure
Imagine that we arc to design and implement a system that may not fail. By "not
fai l" let's say that we mean "will run without human intervention for a month."
What kind of fai lures must we protect against? We can exclude dealing with the
sun going nova and probably also with the system being trampled by an ele­
phant. However, in general we cannot know what might go wrong. For a specific
system, we can and must make assumptions about what kinds of errors arc Illore
common than others. Examples:

Power surges/failure

ConnectOr vibrating out of its sockct

System hit by falling debris crushing a processor

Falling system (disk might be destroyed by impact)

X-rays ".using some memory bits to change value in ways impossible ac­
cording to the language definition

Transient errors arc usually the hardest to find. A tmnsient nror is one that hap­
pens "sometimes" but not every time a program is run. For example, we have

.. ,

.96 CHAPTE R 25 • EMB EDDED SYSTEMS PROGRAMMING

heard of a processor that misbehaved only when the tempcraUlre exceeded
130°F (54°C). It was never supposed to gel that hot; however, it d id when the
system was (unintentionally and occasionally) covered up on the factory floor,
never in the lab while being tested.

Errors that occur away from the lab arc the hardest to fix. You will have a
hard lime imagining the design and implementation effort involved in lcning the
JPL engineers diagnose software and hardware failures on the Mars Rovers
(twenty mjnutcs away from lhe lab for a signal traveling at the speed of light) and
update the software to fIx a problem once understood.

Domain knowledge - that is, knowledge about a system, its envi ronment ,
and its lISC - is essential ror designing and implementing a system with a good re­
silience against errors_ Here, we will touch only upon generalities_ Note that
every "generality" we mention here has been the subject or thousands or papers
and decades or research and development.

PrnxlIl reroum leaks: Don't leak. Be specific about what resources your
program uses and be sure you conserve them (perrectly). Any leak will
kill your system or subsystem eventually. 111e most rundamental re­
sources are time and memory. Typically, a program will also lise other
resources, such as locks, communication channels, and fil es.

Replicate: If a system critically needs a hardware resource (e.g., a COIll­
puter, an Output device, a wheel) to runcLion, then the des igner is raced
with a basic choice : should the system cOIll.-un several copies o r the criti­
cal resource? We can either accept railure ir the hardware breaks or pro­
vide a spare and let the sortware switch to using the spare. For example,
the ruel injector controllers for the marine diesel engine are triplicated
computers cOillecled by duplicate networks. Note that "the spare" need
not be identical to the original (e.g., a space probe may have a primary
strong antenna and a weaker backup). Note also that "the spare" can
typically be used to boost perrormance when the system works withom
a problem.

Seffcheck: Know when the program (or hardware) is misbehaving. Hard­
ware component's (e.g_, storage devices) can be very helpful in this re­
spect, monitoring themselves ror errors, correcting minor errors, and
reporting major railures. Software can check ro r consistency of its data
structures, check invariants (§9.4.3), and rely on intemal "sanity checks"
(assertions). Unfortunately, self-checking can itselr be unreliable, and
care must be taken that repolling an error docsn't itselr cause an error ­
it is really hard to completely check error checking.

Have a quick way oul o/misbelwuillgCOt.Ie: Make systems modular. Base error
handling on modules: each module has a specific task to do. If a module
decides it can 't do its task, it can rcport that to some ot.her module. Keep
the error handling within a module simple {so thal il is 1110re likely lO be

25. 3 MEMORY MANAG EME NT

correct and efficient), and have some other module responsible for seri­
ous errors. A good reliable syS tem is modular and multi-level. At each
level, serious errors arc reponed to a module at the next level - in the
end, maybe to a person. A module that has been notified of a serious
error (a ile that another module couldn't handle itself) can then take ap'
propriate action - maybe involving a restart of the module that detected
the error o r ru nning with a less sophisticated (but more robust)
hbackup" module. Defining exactly what "a module" is for a given sys­
lem is part of the overall system design, but you can think of it as a class,
a library, a program, or all the programs on a computer.

Monitor Jllbs}JlmlJ in case they can't or don't notice a problem themselves .
In a multi-level system higher levels can monitor lower levels. Many sys­
tems that really aren 't allowed to fail (e.g., the marine engines or space
station controllers) have three copies of critical subsystems. llus triplica­
tion is not done juSt to have two spares, but also so that disagreements
about which subsystem is misbehaving can be settled by 2-l0-1 votes.
Triplication is especially useful where a multi-level organization is diffi·
cult (i.e., at thc highest level of a system 01' subsystem that may not fail).

\oVe can design as much as we like and be as careful with the implementation as
we know how to, but the system will still misbehave. Before delivering a system
to users, it must be systematically and thoroughly tested; see Chapter 26.

25.3 Memory management
"Ille twO most fundamental resources in a computer arc time (to execute instruc­
tions) and space (memory to hold data ancl code). In C++, there arc three ways
to allocate memOly to hold data (§17.4, §A.4.2):

Slatic memory: allocated by the linker and persists as long as the program
runs

SIIlCR (automatic) memory: allocated when we c.,11 a function and freed when
we rerurn from the function

Dpl(lmic (he(lp) mallory: allocated by new and freed for possible reuse by
delete

Let's consider these from the perspective of embedded systems programming. In
particular. we will consider memory management from the perspective of tasks
where predictability (§25.2. 1) is considered essential, such as hard real·time pro-­
granuning and safety·critical programming.

Static memory poses no special problem in embedded systems program­
ming: all is taken care of before the program starts to nm and long before a sys·
tem is deployed.

897

898 CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMM ING

Stack memory can be a problem because it is possible LO usc too much of it,
but this is not hard to take care of. "111C designers of a system must dCtenllinc thal
for no execution of the program will the stack grow over an acceptable limit. TIUs
usually means that the maximum nesting of function calls must be limited; that is,
we must be able to demons trate that a chain of calls (e.g., f1 calls f2 calls ... calls fn)
will never be too long. In some systems, lhat has caused a ban on recursive calls.
Such a ban can be rc.uonable for some systems and for some recursive functions ,
but it is not fundamental. For example, I kn/YW mat factorial (10) will call facto rial at
most ten rimes. However, an embedded systems progranUTIcr might very well pre­
fer an iterative implementation of factorial (§ IS.5) to avoid any doubt or accidelll.

Dyn amic memory allocation is usually banned or severely restricted ; that is,
new is either banned or its use restricted lO a startup period , and dele te is
banned. The basic reasons are

Prediclllbilily: Free-store allocation is not predictable; that is, it is not guar­
anteed to be a constant time operation. Usually, it is not : in many imple­
mentations o r new, the time needed to allocate a new object can increase
dramatically after many objects have been allocated and deallocated.

Fragme71laliQtl: 111e rree store may rragment; that is, arter allocating and
deallocating objects the remaining unused memory may be "rrag­
mented " into a lot o r lit tle "ho les'" or unused space that arc useless be·
cause each hole is too small to hold an object or the kind used by the
application. Thus, the size o r userul rree store can be rar less than the size
or the initial rree store minLis the size or the allocated objects.

The next section explains how this unacceptable state or affairs can arise. 111e
bottom line is that we must avoid programming techniques that lise both new
and delete ror hard real-tilllC or sarety-critical systems. The rollowing sections ex­
plain how we can systematically avoid problems with the rree store lIsing stacks
and pools.

25.3.1 Free-store problems
\¥hat's the problem with new? Well, really it's a problem with new and dele te
used together. Consider th e resuit or this sequence or allocations and deallocaliOTlS:

Message· geU npuI(Device&)i

whileV· ... ·/) (
Message p = geUnpu t(dev)i
1/ . ..

1/ make a Message on the free store

Node · nl = new Node(argl ,a rg2);
/I .

25 .3 MEMORY MAN AGEMEN T

delete p;
Node- n2 = new Node (arg3,arg4);
1/ . ..

Ench time around the loop we creme twO Nodes, nnd in the process of doing so
we create a Message and delete it again. Such code would not be unusual as pan
of building a data structure based on input from some "device." Looking at this
code, we might expect to "consume" 2"sizeof(Node) bytes of Illemory (plus free­
store overhead) each time around the loop. Unfortunately, it is not guaranteed
that the "consumption" of memory is restricted to the expected and desired
2"sizeo(Nodc) bytes. In fact , it is unlikely to be the case.

Assume a simple (though not unrealistic) memory manager. Assume also
that a Message is a bit larger than a Node. We can visualize the use of free space
like this, using orange for the Message, green for the Nodes, and plain while for
"a hole" (that is, "unused space") :

After creating n1 (one Message and aile Node)

Arter deleting p (one "hole" and aile Node)

I I After creating n2 (two Nodes and a small "hole")

II 1. -1 After creating n1 the 2nd lime through the loop

II I II After CI'eating n2 the 2nd time through the loop

,--'.1 ~1_-,--,IL1I_J......II-,-I-,1 After creating n2 the 3rd time through thc loop

So, we are leaving behind some unused space ("a hole ") on the free store each
lime we execute the loop. That may be just a few bytes, but if we can't lise those
holes it will be as bad as a memory leak - and even a small leak will eventllally
kill a long-nmning program_ Having the free space in our memory scattered in
many "holes" too small for allocating new objects is called 1IIe7/lOly.!ragmelllal;m/.

Basically, the free-store manager will eventually use up all "holcs" that arc big
enough to hold the kind of objects that the program uses, leaving only holes that
are too small to be usefu l. T his is a serious problem for esselllially all long-run­
ning programs that usc new and delete extensively; it is not uncommon to find
unusable fragments taking up most of the memory. That usually dramatically

899

(HAPTE R 2S • EMBEDDED SYSTEMS PROGRAMM ING

increases the time needed to execllle new as it has to search through lots of ob­
jects and fragments for a suitably sized chunk of memory. Clearly this is not the
kind of behavior we can accept for an embedded system. This can also be a seri­
ous problem in naively designed nOIl'Cmhedded systems.

Why can't "the language" or "the system" deal with this? Alternatively, can 't
we just write our program to not create such "holes"? Let's first cxamine the
most obvious solution to having aJl thosc little useless "holcs" in oLir mcmory:
let's move the Nodes so that all the frec space gets compacted into one contigu­
ous area that we can use to allocate more objects.

Unfortunately, "the system" can't do that. TIle reason is that C++ code
refers direct..ly to objects in memory. For example, the poimers n1 and n2 contain
real memory addresses . If we moved the objects pointed to, those addresses
would no longer point to the right objects. AssUlllc limt we (somewhere) keep
pointers to the nodes we creaLCd. ,.ve could rcpresent the relevant part of our
data sll"Ucture likc this:

111111
I I I I I I I I Nodes with pointers to nodes

Now we compact memory by moving an object so that alllile unused memory is
in one place:

Unfortunately, we now have made a mess of those pointers by moving the ob·
jects they pointed to without updating the pointers. ,,y-hy don 't we just update
lile pointers when we move the objects? We could write a program to do that, but
only if wc knew the details of the data structurc. In general, "the system" (lile
C++ run-time suppOrt system) has no idea where the pointers arc; that is, givcn
an object, the question "Which pointers in the progntm point to this object right
now?" has no good answer. Even if that problem could be easily solved, this ap­
proach (known as compacting garbage co/ke/ion) is not always the right one. For ex­
ample, to work. well, it typically requires more than twice the memOly that the
program ever needs to be able to keep track of pointers and to move objects
around in. That extra memory may not be available on an cmbedded system. In
addition, an efficient compacting garbage collcctor is hard to make predictable.

We could of course answer that "Where are the pointcrs?" question for our
own data structures and compact those. 111at would work, but a simpler ap-

2 5.3 MEMORY MANAGEMENT

proach is to avoid fragmemation in the firs t place. In the example he.re, we could
simply have allocatcd bOlh Nodes before allocating the message:

while(. . .) (
Node· nl = new Node ;
Node· n2 = new Node;
Message" p = geUnpul (dev);
II . .. store ini()(mation in nodes ...
delete p;
II .

However, rearranging code to avoid fragmentation isn't easy in general. Doing so
reliably is at best very difficult and often incompatible with other rules for good
code. Consequently, we prefer to restrict the usc of free store to ways that don't
cause fragmemation in the first place. Often, preveilling a problem is better than
solving it.

TRY THI S

Complete the program above and print out the addresses and sizes of the ob­
jects created to sec: if and how "holes" appear on your machine. If you have
time, you might draw memory layouts like the ones above to better visualize
what's going all.

25 .3.2 Alternatives to general free store
So, we mustn't cause fragmentation . What do we do then? TIIC first simple ob­
selvation is that new cannOt by itself cause fragmelllalion ; it needs delete to crc­
atc the holes. So we start by banning delete. TIlat implies that once an object is
allocated, it will stay part of the program forever.

In the absence of delete, is new predictable; that is , do all new operations
take the same amount of time? Yes, in all common implementations, but it is not
actually guaranteed by the standard. Usually, an embedded system has a startup
sequence of code that establishes tlle system as "ready to run" after initial power·
up or restart. During that period, we can allocate memory any way we like lip to

an allowed maximum. We could decide to usc new during Startup. Altcmativcly
(or additionally) we could set aside global (static) memory for future usc. For rea­
sons of program structure, global data is often best avoided , but it can be sensible
to lise that language mechanism to pre-allocate memory. ~Ine exact rules fo r lhis
should be laid down in a coding standard for a system (sec §25.6).

90'

902 CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING

111crc arc twO data structures that arc particularly useful for predictable
memory al location :

Slacks: A stack is a data SlnlClurC where you can allocate an arbitrary
amount o f memory (up to a given maximum size) and deallocate the last
allocation (only); that is. a stack can grow and shrink only at the top.
There can be no fragmentation , because there can be no "hole" between
two allocations .

1txJ/s: A pool is a collection of objects of the same size. We can "lIoc<uc
and dcalloc.llc objects as long as we don't allocate morc objects than lhe
pool can hold. "Inere can be no fragmentation because all objects arc of
the same size.

For both slacks and pools, both allocation and dcallocation arc predictable and fast.
So, for a hard real-lime or cr itical system we can define stacks and pools as

needed. Iklter yet, we ought to be able to use stacks and pools as specified , imple·
mented, and tested by someone clse (as long as the specification meets our needs).

Note that the C++ standard containers (vector, map. etc.) and the standard
Siring arc not to be used because they indirectly usc new. You can build (buy or
borrow) "standard·like" containers to be predictable, but the default ones that
come with your implementation are not constrained fo r embedded systems usc.

Note thal embedded systems typically have very stringent reliability require·
ments, so whatever solution we choose, we must make su re not to compromise
Ollr programming style by regressing into using lots oflow·levcl faci lities directly.
Code that is full of po inters, explicit conversions, etc. is unreasonably hard to
guarantee as correct.

25.3.3 Pool example
A pool is a data structure from which we can allocate objects of a given type and
later deallocate (free) such objects. A pool contains a maximum number of ob­
jects: that number is specified when the pool is created. Using green for "allo­
cated object" and blue for "space ready for allocation as an object," we can
visualize a pool like this:

A Poo l can be defined like this:

lemplate<class T, int N>class Pool { /I Pool of N objects of type T
public :

PaolO;
P gelO;
void free (P);
int availableO canst;

/I make pool of N Ts
/I get il T from the pool; re turn 0 if no free Ts
/I return a T given out by getO to the pool
/I number of (ree Ts

25. 3 MEMORY MANAGEMENT

private:
/I space for TINI and data to keep track of which Ts are allocated
/I and which are not (e.g .• a list of free objects)

) ;

Each Pool object has a type of elements and a maximum number of objects. We
can use a Pool like this:

PookSmall_buffer, 10> sb_pool i
PookSlal us j nd icator,200> i nd kalor _pool;

Small_buffer* p = sb_pool .geIO;
1/ . . .
sb_pooUree(p)i

It is the job of the programmer to make sure that a pool is never exhausted. TIle
exact meaning of "make sure" depends on the application. For some systems, the
programmer must wTite the code such that gelO is never called urness there is an
object to allocate. On other systems, a programmer can test the result of getO
and take some remedial action if that result is O. A characteristic example of the
biter is a telephone system engineered to handle at most 100,000 calls at a ume.
For each cali, some resource, such as a dial buffer, is allOCo:'lted. If the system runs
out of dial buffers (e.g. , dial_buffer_pooLgetO returns 0), the system refuses to
set up new connections (and may "kill " a few existing calls to create capacity).
The would-be caller can try again later.

Naturally, our Pool template is only one variation of the general idea of a
pool. For example, where the restraints on memory allocation are less Draconian ,
we call define pools where the number of clements is specified in the constructor
or even pools where the number of elements can be changed later if we need
more objects than initially specified.

25.3.4 Slack example
A J/lICH is a data structure from which we can allocate chunks of memory and
deallocate the last allocated chunk. Using green for "allocated memory" and blue
for "space ready for allocation," we can visualize a stack like lhis:

Top of stack

Stack:

As indicated, this stack "grows" toward the right.

"­
I

We could define a stack of objects, just as we defined a pool of objects:

903

C H APTER 25 • EMBEDDED 5YSTEMS PROGRAMM ING

templale<class T, int N> class Stack {
II .

/I stack ofTs

};

However, IllOSt systems have a need ror allocation or objects o r varying sizes. A
stack c.·m do that whereas a pool cannot, so we'll show how to define a stack
rrom which we allocate "raw" memory or varying sizes rather than ftxed-sized
objects:

template<int N>class Stack { /I slack of N bytcs
public:

StackO;
void* get(int n);

vo id fTeeO;
int availableO consl;

private:

/I make an N-byte stack
1/ allocate n bytes from the stack;
II return 0 if no free space
II return the last value returned by gelO to the stack
II number of available bytes

II space for chariNI and data to keep track of what is allocated
1/ and what is not (c.g., a top-of-stack pointer)

};

Since getO returns a void " pointing to the required number o r bytes, it is our job
to convert that memory 10 the k.inds or objects we want. We ca.n use such a stack
like this :

Stack<50*1024> my_free_sto re; I/S0K worth of stor.lge to be used as a stack

void · pvl = my_free_sto re.get(1024);
int · buffer = stat ic_cast<int ·>(pvl);

vo id · pv2 = my_frce_store.get(sizeof(Conncction»;
Conn ection· pconn = new(pv2) Connect ion(incoming,oulgoing, buffcr);

ll1e use or slatic cast is described in §17.8. rn le new(pv2) cOllstmct is a "place­
ment new." It means "Constm ct an object in the space pointed 10 by pv2." It
doesn't allocate anything. The assumption here is that the type Co nn ection has a
constructor that will accept the argument list (incoming,outgoing,bu ffe r). If
that's not the case, the program won't compile.

Naturally, our Stack template is only one variation or the gene .. !1 idea or a
Slack. For example, where the restraints on memory allocation are less Dracon­
ian, we can define stacks where the number o r bytes available rOJ" allocation is
specified in the conslructOr.

2 5. 4 ADDRESSES . POINTERS , AND ARRAYS

25.4 Addresses, pointers, and arrays
Predictability is a need or some embedded systems; reliability is a concern or all.
11lis leads to attempts to avoid language reatures and programming techniques
that have proved error-prone (in the context or embedded systems programming,
ir not necessarily everywhere). Careless usc or pointers is the main suspect here.
~I\\'O problem areas stand OLlt:

E.,xplicit (unchecked and unsare) conversions

Passing pointers to array clements

-nle rormer problem can typically be handled simply by severely restricting the
usc or explicittypc conversions (casts). TIle pointer/array problems arc more sub­
tic, require understanding, and arc best dealt with using (simple) classes o r li­
brary racilities (such as array, §20.9). Consequently, this section rocuses on how
to address the lauer problems.

25.4.1 Unchecked conversions
Physical resources (e .g., control registers ror cxtem al devices) and their most
basic sortware controls typically exist at specific addresses in a low-level system.
We have to enter sllch addresses into Ollr programs and give a type to sllch data.
For example:

See also §17.8. -nlis is the kind or programming you do with a manual or online
documentation open. TIle correspondence between a hardware resource - the
address or the resource's register(s) (expressed as an integer, a rlen a hexadecimal
integer) - and pointers to the sortware that manipulates the hardware resource is
brittle. You have to get it right without much help rrom lhe compiler (because it is
not a programming language issue). Usually, a simple (nasty, completely
unchecked) rei nle rp reCcasl rrom an inl to a pointer lype is the essential link in
the chain or connections from an application to its nontrivial hardware resources.

Where explicit conversions (reinlerpreCcasl, slatic_cast, etc.; sec §A.5.7) arc
Ilot essential, avoid them. Such conversions (casts) are necessary rar less rre­
quently than is typic."lily assumed by programmers whose primary experience is
Witll C and C-slyle C++.

25.4.2 A problem: dysfunctional interfaces
As mentioned (§18.5 .1), an array is orten passed to a runction as a pointer to an
clement (orten, a pointer to lhe fi rst element). 11lereby, they "lose" their size, so
that lhe receiving runction cannot dircclly tell how many clements are pointed (0,

905

CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING

if any. 111is is a cause or many subtle and hard-to-fLX bugs. Here, we examine ex·
amples of those array/pointer problems and present an alternative. We stall with
an example or a very poor (but unrorlunately not ran::) imerrace and proceed to
improve it. Consider :

vo id poor(S hape p, inl sz) /I poor interlace design
{

fo r (inl i = 0; k sz; Hi) pm.draw();
}

vo id f(Shape q, vector<Circle>& sO)
(

Polygon sl[10J;
Shape s2[10) ;
/I initiali ze

/I very bad code

Shape pl = new Rectangle(PoinI(0,0), Po int(10,20)) ;

}

poar(&sO(O],sO.size()); 1/: 1 (pass the array (rom the vector)
poor(sl ,10); /I : 2
poor(s2,20); /I : 3
poor(pl ,l); 11 : 4

delete pl ;
pl = 0;
poor(pl ,l);
poor(q ,max);

11::5

/I ::6

111e fu nction pao rO is an ex.a.mple of poor interface design : it provides an inter­
race tllat provides the caJler ample opporlunity for mistakes but ofTers the imple­
menter essentially no opportunity to defend against such mistakes.

TRYTHIS

Before reading further, try to sec how many errors you can find in fO. Specif­
ically, which of the calJs of paorO could cause the program to crash?

At first glance, the calls look fine, but this is the kind of code that costs a pro­
granuner long nights of debugging and gives a quality engineer nightmares.

1. Passing the wrong clement type, e.g., poor(&sOIOI,sO.size()) . Also, sO might
be empty, in which case &sO(O] is wrong.

25.4 ADDRE SSES, POINTER S, AND ARRAY S

2. Use ofa "magic constant" (here, correct): poor(sl ,10). Also, wrong ele-
ment type.

3. Usc of a "magic constant" (here, incorrect): poor(s2,20).

4. Correct (easily verified): first call poor(pl ,l).

5. Passing a null pointer: second C .. 1.11 poor(pl ,l).

6. May be COITect: poor(q,maJt:). We can't be sure from looking at this code
fragmem. 10 sec if q points to an array with at least max elements, we
have to fmd the definitions of q and max and detennine their values at
ollr poilll of usc.

In each case, the errors are simple. vVe are not dealing with some subtle algorith­
mic or data struclllre problem. ~nle problem is that poorO's interface, involving
an array passed as a poimer, opens the possibility of a collection of problems. You
may appreciate how the problems were obscured by our use of "technical" un­
helpful names, such as pl and sO. However, mnemonic, blll misleading, names
can make such problems even harder to spot.

In theory, a compiler could catch a few of these errors (such as the second
call of poor(p 1,1) where 1'1 ==0), but realistically we arc saved from disaster for
this particular example only because the compiler catches the auempt to define
objects of the abstract class Shape. However, that is unrelated to poorO's inter­
face pmblcms, so we should not take too much comfOrl from that. In the follow­
ing, we usc a variant of Shape that is not abstract so as not to get distracted from
the interface problems.

!-low come the poor(&sO[O],sO.size(» call is an error? 111e &sOIO] refers to lhe
first element of an array of Circles; it is it Ci rcle· _ We expect a Shape- and we
pass a pointer to an object of a class derived from Shape (here, a Circle -). That's
obviously acceptable: we need that conversion so that we can do object-oriented
programming, accessing objects of a variety of types through their conmlOn in­
terface {here, Shape} (§ 14.2). However, poorO docsn't just use that Shape- as a
pointer; it uses it as an array, subscripting its way through that array:

fo r (in I i = 0; ksz; Hi) p[il.drawO;

'n mt is, it looks at the objects starting at memory locations &p[OJ, &p[l I, &p[2J, etc.:

&plOI &plll &p12J " , '\ :" ~L-----"-1_1-,---,
In tenus of memory addresses, these pointers arc sizeof(Shape) apart (§ 17.3. 1).
Unfortunately for poorO's caller, sizeof(Ci rcle) is larger than sizeof(Shape), so
that the memory layolll can be visualized like this:

907

908 CHAPTER 25 • EMBEDDED SYSTEMS PR OG RAMMI NG

&p[O[&p[l] &p[2[

>·.· :;l-1-.... ;;}.·.·.··.· .. ·;
1St Ci rcle 2nd Ci rcle 3rd Circle

11mt is, paorO is calling drawO with a pointer into the middle of the Circles! ll1is
is likely to lead to immediate disaster (crash).

TIle call poor(sl,10) is sneakier. It relies on a "magic constam" so it is imllledi­
ately suspect as a maintenance hazard, but there is a deeper problem. TIle only rca­
son the usc of an array of Polygons doesn't immediately suffer the problem we saw
fo r Circles is that a Polygon didn't add data members to its base class Shape
(whereas Circle did ; sec §13.8 and § 13. 12); that is, sizeo[(Shape)==sizeof(Polygon)
and - morc generally - a Polygon has the same memory layout as a Shape. In
OI.hcr words, we were "jusl lucky"; a slight change in the defi nition of Polygon will
callse a crash. $0 poor(sl,10) works, but it is a bug waiting to happen. 111is is elll­
plmic..'1lly not quality code.

What we see here is the implementation reason for the general language mle
that "a 0 is a B" docs not imply "a Container<D> is a Containern (§ 19.3.3).
For exmllple:

class Circle: public Shape (' • ... -');

void fv (vector<Shapc>&);
void f(Shape &);

void g(vector<Circlc>& vd, Circle & d)
{

lid);
r(vd);

'10K : implicit conversion from Circle to Shape
/I error: no conversion from veclor<Circle> 10 vector<Shapc>

OK, so the use of poorO is very bad code, but can SLich code be considcred em­
bedded systems code; that is, should this k.ind of problem concern us in areas
where safety or performance matters? Can we dismiss it as a hazard for pro­
grammers of non·critical systems and just tcHlhem, ---Don't do that"? \o\'ell, Illany
modem embedded systems rely critically on a CUI, which is almost always or­
ganized in the object-oriented manner of our example. Examples include the iPod
L1ser interface, the interfaces of some cell phones, and operator's displays on
"gadgets" up to and including airplanes. Another example is that controllcrs of
similar gadgets (such as a variety of electric Illolors) can constitu te a classical
class hierarchy. In Olher words, this kind of code - and in particular, this kind of

25.4 ADDRES SES, POINTERS , AN D ARR AYS

funct ion declaration - is exactly the kind of code we should worry about. We
need a safer way of passing in formation about collections of data without causing
other significant pmblems.

So, we don't want to pass a built-in array to a function as a pointer plus a
size. What do we do instead? TIle simplest solution is to pass a reference to a
container, such as a vector. The problems we saw for

void poor(Shapc* p, int sz);

simply cannOl occur for

void general(vector<Shape>&);

If you arc programming where std : :vector (or the equivalent) is acceptable, sitn­
pl y usc vector (or the equivalent) cons istently in imerfaccs; never pass a built-in
array as a pointer plus a size.

If you can' t restrict yourself to vector or equivalents, you enter a territory
that is more difficult and tile solutions there involve techniques and language fea­
[Ures that arc not simple - even though the lise of the class (Array_ref) we pro­
vide is straightforward.

25.4.3 A solution: an interface class
Unfortunately, we cannot usc std ::veclor in many embedded systems becallse it
relics on free store. We can solve that problem either by having a special imple­
mentation of vector or (more easily) by using a container that behaves like a
vector but doesn't do memory management. Before outlining such an interface
class. let's consider what we want from it:

It is a reference to objects in memory (it does not own objects, allocate
objects, delete objects, etc.).

It "knows" its size (so that it is potentially range checked).

It "knows" the exact type of its elements (so that it cannot be the source
of type errors).

It is as cheap to pass (copy) as a (pointer,coum) pair.

It docs 1101 implicitly convert to a pointer.

It is easy to express a subrangc of the range of elements described by an
interface object.

It is as easy to lise as built-in arrays.

IvVe will only be able to approximate "as easy to lise as built-in arrays." \oVe don 't
want it to be so easy to usc that errors start to become likely.

909

910 CHAPTER 2S • EMBEDDED SYSTEMS PROGRAMMING

H ere is one such class:

te mplale<class T>
class Array_ref (
publ ic :

Array_reHP pp, int s) :p(pp), sz(s) { }

T& operato r[)(int n) { return p [n]; }

consl T& o perator[](inl n) const (return p [n); }

bool assign(Array _ref a)
(

if (a.n!=a) re turn false;
for (int i=O; i<sz; Hi) (p(i]=a.p[iJ;)

}

void reset(Array_,ef a) (reset(a. p,a.sz); }
void reset(P pp, int s) { p=pp; SZ=S; }

int sizeO con sl { re turn SZ; }

/I default copy operations:
/I Array_ref doesn't own any resources

/I Array_ref has reference semant ics
private:

} ;

T* p;
int sz;

Array_ref is d ose to minimal:

No p ush_backO (that would require free store) and no alO (that would
require exceptions).

Array_ref is a form of reference, so copying sim ply copies (p ,sz).

By initializing with difTerenl arrays, we can have Array_refs that are or
the same type but have difTerent sizcs.

By updating (p,size) using resetO, we can change the size or an existing
Array_ref (many a1goriliuns require specification or subranges).

No iterator interface (but that could be easily added if we needed it). In
fact, an Array_. ref is in conception very d ose to a range described by twO

itcrators.

25 .4 ADDRESSES, POINTE RS, AND ARRAYS

An Array_ref does nm own its elements; it docs no memory management ; it is
simply a mechanism for accessing and passing a sequence of clements. In that, it
differs from the standard library array (§20.9).

"Ib ease the creation of Array_refs, we supply a few llseful helper functions :

templale<c1ass T> Array_rckT> make_ref(T- PI', inl s)
(

return (1'1') 1 Array_rekT>(pp,s) : Array_rekT>(O,O);

If we initialize an Array_ref with a pointer, we have to expliciliy supply a size.
111at'S an obvious weakness because it provides us with an opportunity to give
the wrong size. It also gives us an opportunity to usc a pointer that is a result of
an implicit conversion of an array of a derived class to a pointer to a base class,
such as Polygon(10] to Shape (the original horrible problem from §25.4.2), but
sometimes we simply have to trust the programmer.

We decided to be careful about null pointers (because they are a common
source of problems), and we took a similar precaution for empty vectors:

template<c1ass T> Array_rekT> makeJef(vector<T>& v)
(

return (v.size()) 1 Array_rekT>(&v!OI,v.size()): Array_rekT>(O,O);
}

Tbe idea is to pass the vector's array of clements. We concern ourselves with
vector here even though it is often not suitable in lile kind of system where
Array_ref can be useful. "Ine reason is that it shares key properties with contain­
ers that can be used there (e.g., pool-based containers; sec §25.3 .3).

Finally, we deal with built-in arrays where the compiler knows the size :

template <class T, inl s> Array_refd> make_ref(T (&pp)[sJ)
(

return Array_rekT>(pp,s);
}

"nle curious T(&pp)(s1 notation declares the argument pp to be a reference to an
array of s elements of type T. TImt allows us to initialize an Array_ref with an
array, remembering its size. We c. .. n't declare an empty array, so we don't have to

test for zero clements:

Polygon arrOI ; II error: no elements

911

912 C H APTER 25 • EM BEDDE D SY STE MS PROG RAMM IN G

Given Array_ref, we can try to rewrite our example:

void better(Array_,e kShape> a)
{

for (int i = 0; i<a.size(); ++i) a [i] .drawO;
)

void (Shape· q , veclor<Cirde>& sO)
{

)

Polygon sl{10];
Shape 52[20J;
/I ini tialize
Shape· pl = new Rectansle(Point(O,O),Po int(10,20»;
belle r(makeJef(sO»; 1/ error: Array_rekShape> required
beUer(makcJef(sl)) ; /I error: Array_rekShape> required
beUer(makCJcf(s2»; /I O K (no conversion required)
beUer(makeJef(pl , l »; /I OK: one element

delete pl ;
pl = 0;
belter(make_,ef(pl,l »; 1/ OK: no clements
beUer(make_,ef(q,max»; II OK (if max is OK)

We sec improvements :

TIle code is simpler. TIle programmer rarely has to think about sizes,
but when necessary they arc in a specific place (the creation of an
Array_ref), rather than sc."1ttercd throughout the code.

The type problem with the Circle[J.to-ShapeIl a.nd Polygon[]-to-ShapeIl
conversions is caught.

~nle problems with the wrong number of clements for 51 and 52 arc im­
plicitly dealt with.

111e potenual problem with max (and other clement COUllts for pointers)
becomes more visible - it 's the only plaee we have to be explicit about
size.

\OVe dca1 implicitly ,md systemalimlly with null pointers and empty vectors.

25.4.4 Inheritance and conta iners
But what if we wanted to treat a collection o f Circles as a collection of Shapes,
thaI is, if we really wanted betterO (which is a variant of our old friend
draw_aIlO ; see § 19.3.2, §22. 1.3) to handle polymorphism? Well, basically, we

25 .4 ADDRES SES, POINTERS , AND ARRAYS

can't. In §19.3.3 ,md §25.4.2, we saw that the type system has very good reasons
for refusing to accept a vector<Circle> as a vector<Shape>. For the same reason,
it refuses to accept an Array_rekCi rcle> as an Array_rekShape>. If you have a
problem remembeling why, it might be a good idea to reread §19.3.3, because
the point is pretty fundamental even though it can be inconvenient.

Furtl1ermore, to preserve run-time polymorphic behavior, we have to manip­
ulate our polymorphic objects through pointers (or rderences): the dOl in
p[iJ .drawO in betterO was a giveaway. We should have expected problems with
polymorph ism the second we saw that dOl rather than an arrow (-» .

So what can we do? First we must lise poimers (or references) rather than ob­
jects directly, so we'll try to usc Array_rekCircleo>, Array_rekShapeo>, etc.
rather than Array_,ekCircle>, Array_rekShape>, etc.

However, we still Gllmot convcll an Array_rekCircleo> to an ArraYJef<Shapeo>
bec.:'luse we might then proceed to plll clements into lhe Array_,ekShapeo> that
are not Circle s. But there is a loophole:

Here, we don't want to modify our Array_,ekShape>; we just want to
draw the Shapes! This is an interesting and useful special case: our argu­
ment ag-dinst the Array_rekCi rcle">to·Array_,ekShapeo> conversion
doesn't apply to a case when: we don't modify the Array_,ekShapeo>.

All arrays of pointers have the same layout (independently of what kinds
of objects they point to), so we don't get into the layout problem from
§25.4.2.

~nmt is, there would be nOlhillg wrong with treating an Array_rekCi rclco> as
an immut(lh/~ Array_rck Shape>. So, we ''just'' have to find a way to treat an
Array_rekCi rcl co> as an immutable Array_rckShapc">. Consider:

veclor<Circleo>

Circle

Smiley3ace
(derived from
Circle)

Silly_face
(derived from
Smiley_face)

-nlere is no logical problem treating that array of Circle" as an immutable array
of Shape" (from an Array_ref) .

913

914 CHAPTER 25 • EM8EDDED SYSTEM S PROGRAMMING

We seem to have strayed into expert territory. In facl, this problem is gen·
uinely tricky and is unsolvable with the 10015 supplied so far. However, let'S sec
what it takes to produces a close-la-perfect altcmative 10 our dysfunctional - but
all too popular - imcrface style (pointer plus clement count ; sec §25.4.2). Plcase
remember: Don 't go into "cxpcn territory" just to prove how clever you arc.
Most often , it is a better strategy to find a library where sOllle experts have done
the design, implementation, and testing for YOLI.

First, we rework bette r() to something that lIses pointers and guarantees that
we don't "mess with" the argument container :

vo id bettcr2(co nSI Array_rekShapc · const> a)
{

fo r (int i = 0; i<a.size(); ++i)
if (a [i))

a[i]- >draw();

We are now dealing with pointers, so we should check for null poimers. To make
SLire that bcttcr2() docsn't modify our anays and vectors in unsafe ways through
Array_rcf, we added a couplc of consls. TIle fi rst consl ensures that we do !lot
apply modifying (mutating) operations, such as assign() and rcscl(), on OUI'

ArraY_fcr, The second consl is placed after the · to indicate that we want a COIl­

stant pointer (rather than a pointer to constants); that is, we don't want to modify
the clement pointers even if we have operations available for thal.

Next, we have to solve the central problem: how do we express the idea that
ArraY_fekCircle*> can be converted

To something like Array_rekShape"> (that we call usc in better20)

BlIt only to an immutable version of Array_rekShapc->

"Ve can do that by adding a conversion operator to Array_ref:

tcmplale<class T>
class Array_ref (
public:

/I as before

template<class Q>
operator consl Array _rckconst Q>()
{

/I check implicit conversion of elements:
slalic cast<Q>(*static cast<P>{O));

25 .<1 ADDRESSES , POINTERS , AND ARRAYS

/I cast Array_ref:
return Array _rekco nst Q>(reinterpreCcast<Q->(P),SZ) i

)

/I as before
);

This is headache-inducing, but basically:

~nle oper:nor casts to Array _,ekcost Q> for every type Q provided we
can cast an clement o f Array_rckY> LO an clement of Array_rekQ> (we
don't use the result of that cast; we just check that wc can cast the cle­
ment types).

We construct a new Array_rek const Q> by using brute force (rcinte r­
prcc casl) to get a pointer to the desired clement type. Brute-force solu­
lions oft en cOlile at a cost; in tltis c.'lse, never use an Array_re f conversion
from a class using multiple inheritance (§A.12.4).
Note that const in Array_rekcon5t Q>: that's what ensures that we can­
not copy a Array_rekco nst Q> into a plain old mutable Array_rekQ>.

\Ve did warn you that this was "expert territory" and "headache-inducing." How­
ever, this version of Array_rcf is easy to use (it 's only the definition/implementa­
lion that is tricky):

void f(S ha j>e- q, vcctor<Ci rcle >& s2)
(

Po lygon- s1(10);
Shape 52(20);
/I initia lize
Shapc · p1 = new Rectangle (Point(O,O),10);
betler2(make_ref(sO»; II OK: converts to Array_rekShape ' consl>
betle r2(make_ref(s1) ; II OK: converts to Array_rekShape'consl>
betler2(make_,ef(s2»; /I OK (no conversion needed)
betler2(make_ref(p1 ,1» ; II error
betler2(make_ref(q,max» i /I error

rn le altempts to lise pointers result in errors because they are Shape s whereas
better2() expects an Array_,ekShapc · >; that is, betler2() expects something that
holds pointers rather than a pointer. If we want to pass pointers to betler2(), we
have to put them into a container (e.g., a built-in array or a vector) and pass that.
For an individual pointer, we could lise the awkward make_,ef(&p1 ,1)_ However,

915

9" C HAPTER 25 • EMBEDDED SYSTEMS PR OG RAMM ING

there is no solution for arrays (with morc than onc element) that doesn't involve
creating a container of pointers to objects.

In conclusion, we can creale simple, safe , easy-to-uSc, and efficient interfaces
to compensate for the weaknesses of arrays. That was the major aim of this sec­
tion. "Every problem is solved by another indirection" (quote by David Wheeler)
has been proposed as "the fi rst law o f computer science," That was the way we
solved this imcrfacc problem.

25.5 Bits, bytes, and words
We have talked about hardware memory concepts, such as bilS, bytes, and words,
before, but in general programming those arc nOt the ones we think much about. In ­
stead we think in tenus of objects of specific types. SUdl as double, string, Matrix,
and Simple_window. Here, we will look at a level of programming where we have
to be more aware of the realities of the underlying memOll"

1f you are uncertain about your knowledge of binary and hexadecimal repre­
sentations of integers, this may be a good lime to review §A.2.1.1.

25.5.1 Bits and bit operations
·n link of a byte as a sequence of 8 biLS:

7: 6: 5: 4: 3: 2: 1: 0:

J. JoJ. JoJoJ· JITD
NOle the convention of numbering biLS in a byte rrom the right (the least signifi·
cant bit) to the lert (the most significant bit). Now think or a word as a sequence
or 4 bytes:

J Oxll J 0,'0 J O,de J Oxad

Again , we number right 10 lert, that is, least significant byte to most significant
byte. 111ese pictures oversimpliry what is round in the real world : there have
been computers where a byte was 9 biLS (but we haven't seen one ror a decade),
and machines where a word is 2 bytcs are nOt rare. However, as long as you re­
member to check your systems manual before taking advantage or "8 bits" and
"4 bytes," you should be fme.

In code meant to be portable, use <Ii mils> (§24.2. 1) to make SUfe youI' as­
sumptions about sizes are co rrect.

How do we represent a set of bits in C++? TIle answer depends a ll how
mall)' bits we need and what kinds of operations we want to be convenient and
efficient. We call use the integer types as seLS o f bits :

25.5 BIT S, BYTES, AND WORDS

bool - I bit, but takes up a whole byte of space

char - 8 bits

short - 16 bits

int - typically 32 bits, but many embedded systems have l6-bit inls

long int - 32 bits or 64 bits

111e sizes quoted are typical, but d ifferent implementations Illay have different
sizes, so if you need to know, test. In addition, the standard library provides ways
of dealing with bits:

sld ::veclor<bool> - when we need more than 8·sizeof(long) bits

sld : :bilsel - when we need more than 8·sizeof(long) bits

sid : :sel - an unordered collection of named bits (see §21.6.5)

A file: lots of bits (sec §25.5.6)

Furthennore, we can usc two language features to represent bits:

Enumerations (enums); see §9.5

Bitfic1ds; see §25.5.5

' 111is variety of ways to represent "bits" reflects the fact that ultimately everything
in computer memory is a set of bits, so people have felt the urge to provide a va­
riety of ways of looking at bits, naming bits, and doing operations on bits. Note
that the built·in facilities all deal with a set of a fixed number of bits (e.g., 8, 16,
32, and 64) so that the computer can do logical operations on them at optimal
speed using operations provided directly by hardware. In contrast, the standard
libr:uy facilities all provide an arbitrary number of bilS. This may limit perfoml­
ance, but don't prejudge efficiency issues: the library facilities can be - and often
are - optimized to nm well if you pick a Ilumber of bits that maps well to the un·
derlying hardware.

Let's first look at the illlegcrs. For these, C++ basically provides the bitwise
logical operations that the hardware directly implements. '111ese operations apply
to each bit of their operands:

Bitwise operations

0'

& ood
, exclusive or

« left shi fl

» right shift

complement

Bit n of xly is 1 ifbit n of x orbit n of y is I.

Bit n of x&y is 1 if bit n of x and bil n of y is 1.

Bit n of x"y is 1 if bil n of x or bit n of y is 1 but not if bolh are 1.

Bil n of x<<s is bit n+5 of x.

Bil n of lC>>S is bil n-5 of x.

Bit n of -x is the opposite of bit n of x.

917

.,. C HAPTER 25 • EMBED DED SYS TEM S PR OG RAMMIN G

You might find the inclusion of "exclusive or" (" , sometimes called "xor") as a
fundamental operation odd. However, that's the essential operation in much
graphics and encryption code.

The compiler won 't confuse a bitwise logical « for an output operator, but
you might. To avoid confusion , remember that an output operator takes an
ostream as its left-hand operand, whereas a bitwise logical operator takes an inte­
ger as its left-hand operand.

Note that & difTers from && ,md I difTers from II by operating individually all
every bit of its operands (§A.5.5), producing a result with as many bits as its
operands . In contrast, && and II jusl rctum true or raise.

Let's try a couplc of examples. We usually express bit pattem s using hexa­
decimal notation. For a half byte (4 bits) we have

He< Bits He, Bits

0,0 0000 0,8 1000

0" 0001 0,. 1001

0<2 0010 0 .. 1010

0" 0011 O,b 1011

0,. 0100 0" 1100

0" 0101 O,d 1101

0,. 0110 O,e 1110

0" 0111 Od 1111

For numbers up to 9 we cou ld have used decimal, but lIsing hexadecimal helps
us to remember that we are thinking about bit pattems. For bytes and words,
hexadecimal becomes really useful. TIle bits in a byte can be expressed as two
hexadecimal digits. For example:

Hell byte Bits

0,00 00000000

O,Of 0000 1111

OdO 1111 0000

Oxff 11111111

Oxaa 10101010

0<.5' 01010101

25.5 BITS, BYTE S, AND WO RD S

So, using unsigned (§25.5.3) (0 keep things as simple as possiblc, we can \vOtc

unsigned char a = Oxaa ;
unsigned char xO = -a; /I complement of a

.: 11 I 0 l' I 0 l' I 0 l' I 0 lOx ••
-.: I 0 11 I 0 11 I 0 11 I 0 11 I Ox55

unsigned char b = OxOf;
unsigned char xl = a&b; /I a and b

.: l' I 0 l' I 0 l' I 0 11 I 0 lOx ••
b: I 0 I 0 I 0 I 0 11 11 11 11 I Oxf

.&b: I 0 I 0 I 0 I 0 11 I 0 11 I 0 lOx.

unsigned char x2 = a" b; /I exclusive or: a xor b

.: l' I 0 l' I 0 l' I 0 l' I 0 lOx ••
b: I 0 I 0 I 0 I 0 11 11 11 11 I Oxf

. ' b: l' I 0 l' I 0 I 0 l' I 0 l' I Oxa5

unsigned char xl = a« l ; /I left shift 1

.: l' I 0 l' I 0 l' I 0 l' I 0 lOx ••
• «1: 101110111011101010x54

Notc that a 0 is "shiftcd in" from beyond bit 7 to fill lip the byte. l11C leftmost bit
(bit 7) simply d isappears.

unsigned char x4 == a»2; /I right shift 2

.: 11 I 0 l' I 0 l' I 0 l' I 0 lOx ••
a» 2 101011101110111010x2a

Notc thal a 0 is "shifted in" from beyond bit 0 to fill lip the byte. l 11e rightmost 2
bits (bit 1 and bit 0) simply disappear.

919

92. CHAPTER 25 • EMBEDDED SYSTEMS I'ROGRAMM ING

We can draw bit patterns like this and it is good to get a feci for bit patterns,
but it soon becomes tediolls. Here is a little program that converts integers to
their bit representation:

int m ai nO
{

int i;
while (ci n»i)

cout « dec « i « "=="

)

« hex « "Ox" « i « "=="
« bilset<8-sizcof(int» (i) « '\n' i

To print the individual biLS of the integer, we usc a standard library bilsel :

b ilset<8·sizeof(i nt»(i)

A bilsel is a fixed number orbits. In this case, we usc the number orbits in an inl
- 8-s izeof(int) - and initialize that b ilset with OUf integer i.

TRY THI S

Get the bits example to work and try out a few values to develop a feel for bi­
nary and hexadecimal reprcsent.1tions. If you get confused about the repre­
sentation of negative values, juSt try again after reading §25.5.3.

25.5.2 bitsel
The standard library template class bilset from <bitsel> is used to represent and
manipulate sets of bits. Each bitset is of a rlXed size. specified at construction:

bitset<4> flags;
bitset<128> dwo rd_bits;
b ilsel<l 2345> lOiS;

A bilset is by default initialized to "all zeros" bUl is typically given an initia lizer;
bilsel iniliaJizers can be unsigned integers or strings of zeros and o nes. For
example:

b itset<4> flags = Oxb;
bitset<128> dword _bits(stri ng(" 1 01 01 01 01 01 01 01 0"));

25.5 BITS , BYTE S, AND WORDS

bilsel<12345> lOIs;

Here lois will be all zeros, and dword_bils will have 112 zeros followed by the 16
bits we explicitly specified. If you try to iniliaJize with a string that has characters
different from '0' and '1', a std :: invalid_argument exception is thrown:

string s;
cin»s;
bitset<12345> my_bits(s); /I may throw std::invalid_a rgument

We can usc the usual bit manipulation operators for bilsets . Assume that bl , b2,
and b3 are bitsets:

b1 = b2&b3; /I and
b1 = b21b3; /I Of

b1 = b2 Ab3; /I XOf

b1 = -b2; /I complement
bl = b2<<2; /I shift left
bl = b2» 3; /I shift right

Basically. for bit operations (binvise logical operations), a bilsel acts like an
unsigned int (§25.5.3) of an arbitralY, useT+Specified size. "What you can do to an
unsigned int (with the exception of arithmetic operations), you can do to a
bilsel. In particular, bilsets are useful for 110:

cin» b ;
coul« hitset<Il>(' e');

/I read a bitsel from input
/I output the bit pattern for the character 'c '

When rcad;'llg \mo a bi\se\ , an ;'nput stream \oaks {or UfOS and oncli. Considef·.

10121

This is read as 101 leaving 21 unread in the stream.
As for a byte and a word , the bits of a bilset are numbered right to left (from

the least signifi cant bit toward the most significant), so that, for example, the nu­

merical value of bit 7 is 21:

7: 6: 5: 4: 3: 2: 1: 0:

1110111010111' 1' 1
For bitsels, the numbering is not just a convention because a bitsel supports sub­

scripting of bits. For example:

921

922 CHAPTER 25 • EMBEDDED SYSTEM S PR OGRAMMING

int mainO
{

}

const int max = 10;
bitsel<max> b;
while (cin»b) {

}

cout« b« '\n';
for (int i =0; kmax; ++i) cout « b(i];
cout« '\0' ;

II reverse order

If you need a morc complete picture of bilsels, look them up in your online doc­
umentation, a manual, or an expen-level textbook.

25.5.3 Signed and unsigned
Like most languages, C++ supports both signed and unsigned integers. Un­
signed integers are trivial to represent in memory: bitO means 1, bill means 2,
bil2 means 4, and so on. However, signed integers pose a problem: how do we
distinguish between positive and negative numbers? C++ gives the hardware de­
signers some freedom of choice, but almost all implementations usc the twO's

complement representation. The leftmost (most significant bit) is takcn as the
"sign bit":

I I I I I I I I
16-bit (unsigned) int

If thc sign bit is 1, the number is negative_ Almost univcrsally, the two's comple­
mcm representation is used_ To save paper, we consider how we would represent
signed numbers in a 4-bit integer:

Positive:

Negative:

o
0000

1111
- I

1
0001

1110
-2

2
0010

1101

-3

4
0100

1011

-5

7
0111

1000

-8

The bit pauem for -(x+l) can be described as the complement of the bits in x

(also known as - x; see §25_5.1).

25.5 BIT S, BYTES , AND WOR DS

So far, we have just used signed integers (e.g., int). A slightly better set of
rules would be:

Use signed integers (e.g. , int) for numbers.

Use unsigned integers (e.g., unsigned int) for sets orbits.

111at'S not a bad rule of thumb, but it 's hard to stick to because some people pre­
fer unsigned integers for some fomlS of arithmetic and we sometimes need to use
their code. In particular, for historical reasons going back to the early days of C
when ints were 16 bits and every bit mattered, v.sizeO for a veclor is an unsigned
integer. For example:

vector<inl> v;
II . . .
for (inl i = 0; kv.size(); ++i) coul « vli] « "n';

A "helpful" compiler may warn us that we are mixing signed (i.e., i) and un­
signcd (i.e., v.sizeO) val ues. Mixing signed and unsigned variables could lead to
disaster. For example, the loop variable i might overflow; that is, v.sizeO might be
larger than the largest signed int. Then, i would reach the highest value that
could represent a positive integer in a signed int (the number of bits in an int
minus I to the power of two, minus 1, e.g. , 215 - 1). 1l1en , the next ++ couldn't
yield the next-highest integer and would instead result in a negative value. "111e
loop would never terminate! Each time we reached the largest integer, we would
start again from the smallest negative int value. So for 16-bit inls that loop is a
(probably very serious) bug if v.sizeO is 32*1024 or larger; fo r 32-bit inls the
problem occurs if i reaches 2*1024*1024*1024.

So, technically, most of the loops in this book have been sloppy and could
have caused problems. in other words, for an embedded system, we should ei­
ther have verified that the loop could never reach the critical point or replaced it
with a different form of loop. To avoid this problem we can usc either the
size_type provided by vector or itcrators:

for (veclor<inl>: : size_type i = 0; k v_size(); ++i) cout « v[i] «'\n' ;

for (vector<in l>: : iteralor p = v.begin() ; p! =v.end(); ++p) cout « . p « '\n' ;

111C size_type is guar.ultced to be unsigned, so thc first (unsigned intcger) form
has onc more bit to play with than the int version above. That can be significant,
but it still gives only a single bit of range (doubling the number of iterations that
can be done). "1l1e loop using iteraLOrs has no such limitation.

923

924 (HAPTE R 25 • EMBEDDED SYSTEM S PRO G RAMMI NG

TRY THIS

TIle following example may look innocent, but it is an infinite loop:

vo id infinileO
{

unsigned cha r max = 160; II very large
for (signed char i=O; k max; ++i) coul « inl(i)« '\n ';

)

Run it and explain why.

Basically, there are tWO reasons for using unsign ed integers as integers, as op­
posed to using them simply as sets o rbits (i.c. , not using +, - , . , and /) :

To gain that extra bit of precision

To express the logic.'ll property that the integer can't be negative

TIle former is what programmers gct om of using an unsigned loop variable.
111C problem with using both signed and unsigned types is that in C++ (as in

C) they convert to each other in surprising and hard·to-rclllcmbcr ways. Consider :

unsigned inl ui = - 1;
int si = ui;
int si2 = ui+2;
unsigned ui2 = ui+2;

Surprisingly, the firs t initialization succeed s and ui gets the value 4294967295,
wh ich is the unsigned 32-bit imeger with the same representation (bit pattern) as
the signed integer - 1 ("all ones"). Some people consider that neat and lise - I as
shonhand for "all ones"; others consider that a problem. TIle same conversion
ru le applies from unsigned to signed , so s i gelS the value - 1. As we would expect,
si2 becomes I (- 1+2 == I), and so docs ui2. The result fo r ui2 ought to surprise
you for a second: why should 4294967295+2 be I? Look at 4294967295 as a
hcxadecimal number (Oxffffffff) and things become clearer: 4294967295 is the
largest unsigned 32-bit integer, so 4294967297 cannot be represented as a 32-bit
integer - unsigned or not. So we say either that 4294967295+2 overflowed or
(more precisely) that unsign ed integers supPOI1 modular arithmetic; that is, arith­
metic o n 32-bit integers is modulo-32 aritiUllctic.

Is everything clear so far? Even if it is, we hope we have convinced you that
playing with that extra bit of precision in an unsigned integer is playing with fire.
It can be confus ing and is therefore a potential source o f errors .

2 5.5 BIT S, BYTES . AND WORD S

What happens ir an integer overflows? Consider :

Inl i= O;
while (H i) prinl (i); /I prinl i as an integer followed by a space

What sequence or values will be printed? Obviously, this depends on the dcfini·
tiOIl or Inl (no, ror once, the use or the capital J isn't a typo). For an integer type
with a limited number or bits, \\'e will eventually overOow. If Int is unsigned (e.g. ,
unsigned char, unsigned int, or unsigned long long), the ++ is modulo mit.lunelic,
so after the largest number that can be represented we get 0 (and the loop temli·
nates). Ir Inl is a signcd imeger (e.g., signed char), the numbers will suddenly tum
negative and start working their way back up to 0 (where the loop will tcnninate).
For example, rora signed char, we will sec 1 2 ... 126127 - 128-127 ... - 2-1.

What happens ir an integer overflows? The answer is that we proceed as ir
we had enough bits, but throwaway whichever part or the result doesn't fit in the
integer into which we store our result. That strategy will lose us the leftillost
(most signific.'lnt) bilS. That's lhe same effect we sec when we assign:

int si = 257;
char c = si;

II doesn't fit into a char
II implicit conversion 10 char

unsigned char ue = si;
signed char sc = si ;
print(si) ; print(e); prinl (uc); J>rint(se) ; coul « '\n' ;

si = 129;
c = si;
ue = si;
sc = si ;

II doesn't fi, into J signed char

print(si); prin t(c) ; print(uc); print(sc);

We gCt

257 1

129 - 127 129 -127

TIle explanation or this result is that 257 is tWO more than will fit into 8 bilS (255
is "8 ones") and 129 is nvo more than can fit into 7 bits (127 is "7 ones") so the
sign bit gets set. Aside: This program shows that chars on our machi ne are un·
signed (c behaves as ue and differs rrom sel.

TRY THIS

Draw out the bit patterns on a piece or paper. Using paper, then figure Out

what the answer would be ror si= 128. Then run the program to see ir your
machine agrees.

925

926 CHAPTER 25 • EMBEDDED SYS TE MS PROGRAMM ING

An aside: Why did we introduce that prinlO function? We could try:

cout « i«"i

However, if i was a char, we would then output it as a character rather as an iIue­
geT value. So, to treat all iIllcger types unifo rmly, we defined

templale<class T> vo id print(T i) {coul « i« '\I' i }

void print(char i) (coul « int(i) « '\1'; }

void print(signed char i) (cout « inl(i) « '\I '; }

void prinl(unsigned char i) (coul « int(i)« '\1' ; }

To conclude : YOll C."lll usc unsigned integers exactly as signed integers (including
o rdinary arithmetic), but avoid that when you can because it is tricky and error­
prone.

Try never to use unsigned just to gel another bit of precision.

If you need one extra bit, you'U soon need another.

U nfonunmc]y, you can' t completely avoid unsigned ari thmetic:

Subscripting fo r standard library containers lIses unsigned .

Some people like unsigned arithmetic.

25.5.4 Bit manipulation
\Vby do we actually manipulate bils? Well, most of us prefer not to. "Bit fid ·
dling" is low-level and error'prone, so when we have alternatives, wc take them.
H owever, biLS are both fundamemal and very useful , so many of liS can 't just pre·
tend they don't exist. TIus may sOllnd a bit negative and discouraging, but that's
deliberate. Some people really loue to play with biLS and bytes, so it is worth re·
membering tim bit fiddling is somelhing yOll do when you must (quite possibly
having some fu n in the process), but biLS shouldn't be everywhere in your code.
To quote J o hn Bentley: "Peo ple who play with bits will be bitten" and "People
who play with bytes will be byuen ."

So. when do we manipulate bils? Sometimes the natural objecls of our appli·
cmion simply arc bils, so that some of the natural operations in o ur application
domain are bit operations. Examples of such do mains are hardware indicators
("flags"), low-level communications (where we have to extract values of various
types out of byte streams), graphics (where we have to compose pictures OUl o f
several levels of images), and encryption (see the next section).

25.5 BI TS, BYTE S, AND WORD S

For example, consider how to extract (low-level) information from an integer
(maybc because we wanted to transmit it as bytes, the way binary 110 docs):

void f(short val)
{

II assume 16-bit, 2-byte short integer

unsigned char left = val&Oxff;
unsigned char right = (val>>8)&Oxff;
1/ . ..

II leftmost (least significant) byte
II rightmost (most significant) byte

bool negative = val&Ox6000;
/I

II sign bi!

)

Such operations arc common. They are known as "shift and mask." We "shift"
(using « or ») to place the bits we want to consider to the rightmost (least sig­
nificant) part of the word where they are easy to manipulate. We "mask" using
and (&) together with a bit pattem Qlere Oxff) to eliminate (set to zero) the bits we
do not want in me result.

W hen we want to name bits, we often use enumerations. For example:

e num Printer_flags (
acknowledge=l,
paper_empty=l « l ,
busy=l <<2,
ou,-oCblack=l<<3,
oul_oCcolor=1«4,
/I .

);

TIlis defines each enumerator to have exaClly the value that its name indicaLCs:

out_oLcolor ,. Ox10 00010000

out_oLblack 8 0,8 0000 1000

busy • 0,. 00000100

paper_empty 2 0,2 00000010

acknowledge 1 0" 00000001

Such values arc useful because they can be combined independently:

unsigned char x = out_oCcolor I ou,-oLblack;
x 1= paper_empty;

II x becomes 24 (16+8)

1/ x becomes 26 (24+2)

Note how 1= can be read as "set a bit" (or as "set some bits") . Similarly, & can be
read as "Is a bit set?" For example:

927

9,. C HAPTER 25 • EMBEDDED SYSTEMS I'ROG RAMMING

if (x& ouCoCcolor) {
1/ .. .
}

We can still usc & to mask:

/I is out_oCeolor sct? (yes, it is)

unsigned char y = x &(out_oCcolor I ouC oC black)i 1/ x becomes 24

Now y has a copy of the biLS from x's positions 4 and 3 (oul_oCcolo r and
ouc oCblack).

It is very common to usc an cnum as a set of biLS. When doing that, we need
a conversion to gel thc rcsuh of a bitwise logical opcrmion "back into" the enum.
For example:

Flags 2 = Printe ,_f1ags(ouCoCcolo r I ouCoCblack); /I the cast is necessary

TIle reason that the cast is needed is that the compiler "'"lnnot know that the result
of a uL of_color I o ul_oCblack is a valid value for a Flags variable. ~nlC compiler's
skepticism is warranted : after all, no enumerator has a value 24 (ou'-o'-,olor I
ouL oCblack), but in this case, we know the assignment to be reasonable (but lhe
compiler docs not).

25.5.5 Bitfields
As mentioned , the hard ware interface is o ne arca where bits occur frequently.
Typically, an interface is defined as a mixture of bits and numbers of variOliS
sizcs. 111cse "bits and numbers" are typically named and occur in specifi c posi­
tions of a word, o ft en called a dt:uia register. C++ has a specific language facil ity to
dcal with such flXed layouts: bi!foldJ. Consider a page number as uscd in the page
manager dcep in an operating system. Here is a diagram from an operating sys­
tem manual:

position : 31: 9: " " " " 0'

PPN : 122 13 13 l ' l ' l ' l ' I
name: PFN unused CCA I dirty I global

nonreachable valid

~nle 32·bit word is used as two numeric fields (one of 22 bits and o ne of 3 bits)
and four fl ags (1 bit each). The sizes and positions of these pieces of data are
fiXcd. There is even an unused (and unnamed) "field" in the middle. We can ex­
press this as a struct :

25.5 BITS , BYTES , AND WORDS

struct PPN { II R6000 Physical Page Number
unsigned int PFN : 22 ; II Page Frame Number
int : 3 ; II unused
unsigned int CCA : 3; II Cache Coherency Algorilhm
boof nonreachabfe : 1 ;

bool dirty : 1 ;

bool valid : 1 ;

bool global : 1 ;

};

We had to read the manual to sec that PFN and CCA should be interpreted as un­
signed integers, blll otherwise we could wlitc out that stfUcl directly from the di­
agram. Bitfields rill a word left to right. You give the number of bits as an intcger
value after a colon. You can 't specify an absollile position (e.g., bit 8). If you
"consume" more bits witll bitfields tllall a word can hold, tlle fields tllat don't fit
arc put into the next word. Hopefull y, that's what you want. Once defined, a bit­
field is used exactly like other variables:

void part_oL VM_system(PPN • p)
(

II ...
if (p->d irly) (1/ contents changed

II copy 10 disk

}

)

II.

p->dirty = 0 ;

Bitfields primarily save you the botller of shifting and masking to get to infonna­
Lion placed in the middle of a word. Fo r example, given a PPN called pn we could
extract the CCA like this:

un signed int x = pn.CCA; II exlracl CCA

Had we used all int called pni LO represent tlle same biLS, we could instead have
written:

unsigned inl y = (pni» 4)&Ox7; II extract CCA

That is, shift pn right so that tlle CCA is tlle leftmost bil, then mask all other bits
olT with the Ox7 (i.e., last three bits set). If you look at the machine code, you'll
most likely find lhat the generated code is identical for those two Jines.

929

930 CHAPTE R 25 • EMBEDDED SYSTEMS PROG RAMMIN G

"111C "acronym soup" (CCA, PPN, PFN) is typical of code at this level and
makes little sense Ollt of contcxl.

25.5.6 An example: simple encryption
As an example of manipulation of data at the level of the data's representation as
bits and bytes, let us consider a simple encryption algorithm: the Tiny Encryp­
tion Algorithm (TEA). It was originally written by David Wheeler of Cambridge
University (§22.2. 1). 1t is small but the protection against undesired decryption is
excellent.

Don't look too hard at the code (unless you rcally want to and arc willing to
risk a headache). We present the code simply to give you the flavor of some real­
world and useful bit manipulation code. If you want to make a study of encryp­
tion, you need a separate textbook fo r thal. For more information and variants of
the a1goritlun in other languages, see http://en.wikipcdia.orglwikirliny_Encryp­
tion_AJgoritlun and the TEA website of Professor Simon Shepherd , Bradford
University, England. TIle code is not meant to be self-explanatory (no COIlUllents!).

The basic idea of enciphering/deciphering (also know as cncryption/decryption)
is simple. I want to send you some text, but I don't want others to read it. TIlerefore,
I transfonn the text in a way that renders it unreadable to people who don't know
exactly how I modified it - but in such a way that you can reverse my lr.msfonna­
tion and read the text. That's c.-uJcd enciphering. To encipher I usc an algorithm
(which we must assume an uninvited listener knows) and a string called the "key."
You and J both have the key (and we hope that the uninvited listener docs not).
When you get the enciphered text, you decipher it using the "kcy"; that is, you re­
constitute the "dear text" that I sent.

TEA takes as argument an array of two unsigned longs (v(OJ,v(l l) represent­
ing eight characters to be enciphered , an array of two unsigned longs (wIOJ,w(l J)
into which the enciphered output is written, and an array of four unsigned longs
(k[0] .. k[3 j) , which is the key:

vo id e nciphe r(

(

const unsigned long ·const v,
unsigned long ·const w,
canst unsigned long· canst k)

unsigned long y = vIOl;
unsigned long z = v[l];
unsigned long sum = 0;
unsigned long delta = Ox9E3779B9;
un signed long n = 32;

25.5 BIT S, BYTE S, AN D WO RD S

)

while(n-- > 0) {

)

y+= (z« 4 A z»5) + z A sum + k(sum&3Ji
sum += de lta ;
z+= (y«4 A y»5) + y A sum + k[sum» 11 &3];

w[OI=Yi w(1 1=zi

NolC how all data is unsigned so that we can perform bitwise operations on it
without fear of surprises caused by spceialtreatmem related to negative numbers.
Shifts «< and »), exclusive or (A), and bitwise and (&) do the essential work
with an o rdinary (unsigned) addition thrown in for good measure. This code is
specifiea.lly wrillen for a machine where there arc 4 bytes in a long. The code is
littered with "magic" COI1Slants (e.g., it assumes that sizeof(long) is 4). 111at' s
generally not a good idea, but this particular piece of software fits on a single
sheet of paper. A5 a mathematical fonnula , it fits on the back of an envelope or -
as originally intended - in the head o f a programmer with a good memory.
David Wheeler wamed to be able to encipher things while he was traveling with­
out bringing nOles, a laptop, etc. In addition to being small, this code is also fast.
"111e variable n determines the number of iterations: the higher the number of it­
erations, the stronger the encryption. To the best of our knowledge, for n==32
TEA has never been broken.

Here is the corresponding deciphering function:

void decipher(

(

)

const unsigned long ·const v,
unsigned long · const w.
const unsigned long· const k)

unsigned long y = v[OJ ;
unsigned long z = v[ll ;
unsigned long sum = OxC6EF3720;
unsigned lo ng delta = Ox9E3779B9i
unsigned long n = 32;
II sum = della«S, in general sum", delta· n
while(n-- > 0) {

z - = (y«4 A y»5) + y A sum + k(sum» ll & 3J;
sum -= delta;
y_= (z«4 A z»5) + z A sum + k[sum&3);

wlOI=Yi w[1]=z;

931

932 CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMMING

We ca.1l usc TEA like this to produce a file to be scm over an unsafe connection:

int mainO
(

II sender

)

consl int nchar = 2*sizeof(long)i
consl int kchar = rnchari

si ring op;
string key;
siring infilc;
siring outfile;

1/ 64 bits
1/ 128 bits

cout« "please enter input file name, output file name, and key :\n ";
dn » infile» oulfile» key;
while (key.sizeO<kchar) key += 'O'i II pad key
ifstrcam inf(infile .c_str());
of stream outf(outfile .c_slr());
if (!inf 11 !oulO e rror("bad file name ");

const unsigned long* k =
reinlerpreCcast<const un signed long·>(key.data(»;

unsigned long Qulptr(2) ;
char inbuflncharl;
unsigned long* inptr = rci nlcrprc l_cast<unsigned long*>(inbuO;
int count = 0;

while (inf.get(inbuf[countJ)) {

)

outf « hex; II use hexadecimal output
if (++count == nchar) (

)

en cipher(i n pi r, outptr, k) ;
/I pad wi th leading zeros :
outf « setw(8) «setfill ('O') « oulptr[Ol « ' ,

«setw(8)« setfill('O')« outptr[l]«' ';
coun t = 0;

if (count) (II pad

)

while(count != nchar) inbuf[co unt++l = '0';
e ncip her(i n pi r, 0 utpt r, k);
outf« outplr[OI « ' , « outptr[l l « ' ' ;

25.5 BITS , BYTE S, AND WORDS 933

111e essemial piece of code is the while loop; the rest is JUSt support. ~nle while
loop reads characters into the input buffer, inbuf, and every time it has eight
characters as needed by TEA it passes them to enciphe rO. TEA doesn' t care
about characters; in fact , it has no idea what it is enciphering. For example, you
could encipher a photo or a phone conversation. All TEA cares about is that it is
given 64 bits (two unsigned longs) so that it can produce a cO'Teslxmding 64 bits.
So, we take a pointer to the inbuf and C.'lS1 it to an unsigned long- and pass thaI
to TEA. We do the same for the key ; TEA will use the first 128 bits (four un-
signed longs) of the key, so we "pad" the user's input to be sure that there are 128
bits. 111e last statement pads the text with zeros 10 make up the multiple of 64
bits (8 bytes) required by TEA.

How do we transmit the enciphered tc.xt? \Ve have a free choice, but since it
is '"just bitsn rather than ASCII or Unicode characters, we c.'ln't really U"eal it as
ordinary text. Binary 110 (sec §11.3.2) would be an option, but here we decided
to output the output words as hexadecimal numbers:

5b8fb57c 806fbcce 2db72335 23989d1d 991206bc 0363a308
8f8ll1ac 38f3f2f3 9110a4bb c5e1389f 64d7efe8 ba133SS9
4ccOOfaO 6f77e537 bde7925f f87045fO 472bad6e dd228bc3
aS686903 Slcc9a61 fc19144e d3bcde62 4fdb7dc8 43dS6SeS
£1d3f026 b2887412 97S80690 d2ea4f8b 2d8fb3b7 936cfa6d
6a13ef90 fd036721 b8003Se1 7467d8d8 d32bb67e 29923fde
197d4cd6 768749S1 418e8a43 e9644c2a eb10e848 ba67dcd8
711S211£ dbe32069 e4e92f87 8bf3e33e b18f942c c965b87a
44489114 18d4f2bc 256da1bf c57b1788 9113c372 12662c23

eeb63c45 82499657 a8265f44 7c866aae 7c80a631 e9147Se1

S991ab8b 6aedbb73 71b642c4 8d78f68b d602bfe4 d1eadde7

S5f20835 1a6d3a4b 202c36b8 66a1eOf2 77199)f3 lld1dOab
74a8cfd4 4ce54f5a eSfda09d acbd£110 2S9a1a19 b96h3a9
456fd8a3 1e78591b 07c8f5a2 101641ec dOc9d7e1 60dbebll
Mad8e72 ad30b839 201£c553 a34a79c4 217ca84d 30f666c6
d018e61c d1c94ea6 6ca73314 cd60de£1 6e16870e 4Sb94dcO
d7b44fcd 96e0425a 72839f71 d5b6427c 214340f9 874S882f
0602c1a2 b437c7S9 caOe3903 bd4d8460 eddOS51e 3ld34dd3
c3f943ed d2cae477 4d9dOb61 f647c377 Od9d303a ce1de974
f9449784 df4603S0 5d42b06c d4dedbS4 17811b5f 4f723692
14d67edb lldaS447 67bcOS9a 4600£047 63e43ge3 2e9d15f7
4f21bbbe 3d7cSe9b 433564fS c3ff2597 3a1ea1df 305e2713
9421d209 2b52384f f78fbae7 d03c1£S8 6832680a 207609f3

9£2c5a59 ee31£147 2ebc3651 e017d9d6 d6d60ce2 2be1£2f9
eb9de5a8 95657e30 cad37fda 7bce06f4 457daf44 eb257206
418c24a5 de687477 5c1b3155 £744fbff 26800820 92224e9d
43c03aS1 d168f2d1 624c54fe 73c99473 1bce8fbb 624S2495
5de382c1 1a78944S aaOO178a 3e583446 dcbd64c5 ddda1e73

.34 CHAPTE R 25 • EMBEDDED SYSTEMS PR OG RAMMI NG

fa168da2 60bcl0ge 7102ce40 9fed3aOb 4424SeSd f612ed4c

b5c16lf8 97££2£00 Idbf5674 45965600 b04cOafa b537&7 70

9&b9bee7 16245160 Od3e556b 6de6eda7 d159blOe 7ldScla6
b8bb87de 316aO£c9 62cOla3d 0 ... 24a51£ 86365842 52dabf4d

372&018b 9a5df281 35c9f8d7 07c8(9):)4 36b6d9aS aOBae934

23gefb&5 5fe3fa6f 659dfSOS faf4c378 4c2048d6 e8bf4939

31167a93 43d17818 998ba244 55dba8ee 79ge07e7 43d26aef

d5682864 OSe641dc bS948ec8 03457e3£ 80c93 4 fe ccSad4f9
Odc16bb2 aSOaalef d62eflcd f8fbbf67 30c17fl2 718f4d9a

43295fed 561de2aO

TRY THIS

The key was bs ; what was the text?

Any sccUlity expert WilllCll you that it is a dumb idea to store clear text and
enciphered flies together and also express an opinion about padding, about using
a two·leuer key, etc., but this is a programming book, rather than a book on com·
pliler security.

\"'e tested the programs by reading the enciphered text and getting the OIigi·
nal back. When writing a program, it is always nice to be able to conduct a sim·
pie test of correcllless.

Here is lhe central part of the deciphering program:

unsigned long inplr(2) i
char oulbuf[nchar+1)i
outbu[[nchar)=Oi II termi nator
unsigned long- oulplr = reinterpret_cast<unsigned long ->(outbuOj
inf.setf(ios_base:: hex , ios_base:: basefield)j /I use hcxtldecimal input

while (inf» inptr(OI» inptr[1]) {
deci ph er(i n pi r,Ou I ph, k) i
outk<outbufi

)

Note the use of

inf.setf(ios_base: : hex , ios_base:: basefield) i

to read the hexadecimal nu mbers. For decryption, it 's the output buffer, oulbuf,
that we treat as bits using a cast.

2 5 .6 COD ING STA NDARDS

Is TEA an example of embedded systems programming? Not specifically,
but you can imagine it being used wherever privacy is needed or financial trans­
actions are conducted - that could include many "gadgets." Anyway, TEA
demonstrates many of the characteristics of good embedded systems code: it is
based on a well-undersLOod (mathematical) model that makes us confident about
its correctncss, it 's small, it 's fast, and it relies direcuy on hardware properties .
The interface style of encipherO and deciph erO is not quite to our taste. How­
ever, encipherO and deciphe rO were designed to be C as well as C++ functions,
so no C++ facilities that are not also supported by C could be used. In addition,
the many "magic constants" came from direct hand translation from the math.

25.6 Coding standards
There arc lllany sources of errors. TIle most serious and hardest to remedy relate
to high-level design decisions, such as overall error-handling strategies, confor­
mance to certain standards (or lack thereof), algorithms, the representation of
data, etc. These problems are no' the ones we address here. Instead, we focus on
errors that arise from codc that is poorly wriuen, ulat is, code that uses program­
ming language faci lities in unnecessarily error-prone ways or expresses ideas in
ways that obscure their meaning.

Coding standards try to address the latter kinds of problems by defming a
"house style" that guides programmers to a subset of the C++ language that is
deemed appropriate for a given application. For example, a coding standard for
embedded systems programming may prohibit the use of new. Typically a cod­
ing standard also tries to ensure that code written by two programmers is more
similar than if they had chosen freely from all possible styles. For example, a cod­
ing standard may require for -statements be used for loops (thereby banning
while-statements). This can make code more uniform, and in large projects that
can be imponant for maintenance. Please note that a coding standard is aimed at
improving code for a specific kind of programming given a specific kind of pro·
grammers. TIlere is no one coding standard suitable for all C++ applications and
all C++ programmers.

So, the problems that a coding standard tries to address arc problems that
arise from the way we express aUf solutions rather than the problems that arise
from inherent complexities of the problem we arc trying to solve with our appli­
c,l tion . We could say umt coding standards are trying to address incidental com·
plexities rather Ulat inherent complexities.

TIle Ill~or sources of such incidental complexities arc

Overly c!cuer progralllmerJ, who usc features they don't understand or de­
light in complicated solutions

Undereducated programmers, who don't lise lhe most appropriate language
and library features

935

936 (H APTER 25 • EMBEDDED SYSTEMS PROGRAMMING

Unnu,ewuy fl(J.l'Ut.liQfIS ill prQgramming style, causing code pcrfonning similar
tasks to look different and confuse maintaincrs

JnappropriaJe programming language, leading to usc of language [eatures that
aTC poorly adapted to a particular applic. ... tion area or to a particular
group o f progranuncrs

blJl!!ficil!7l/ library use, leading to lots of ad hoc manipulation of low-level
resou rces

bzappropriale coding .standards, causing extra work or prohibiting the best
solution to some classes of problems, thus becoming a source o f the kind
of problems that the standards were imroduccd LO solve

25.6.1 What should a coding standard be!
A good coding standard should help a programmer write good code ; that is, it
should help the programmer by giving answers to lots of little questions that each
programmer would Olherwise have to spend time deciding on a case-by-case
basis. 111ere is an old engineer's proverb that says, "Form is liberating." Ideally, a
coding Sla.ndard should be prescriptive, stating what should be done. That seems
obvious, but many coding standards are simply a list of prohibitions, with no
guidance about what to do after having obeyed a long list of don'ts. JUSt being
told what not lO do is rarely helpful and often annoying.

The niles of a good coding standard should be verifiable, preferably by a pro­
gram; that is, once we have written the code, we should be able to look at it and
easily answer the question, "Have I broken any m le of my coding standard?"

A good coding standard should present a rationale for the rules. Program­
mers should nOt just be told, "Because tlmt's the way we do it! " When they are,
they resent it. Worse, programmers invariably try to subvert parts of a coding
standard that they see as pointless and as preventing them from doing a good
job. Don't expeet to like everything about a coding standard. Even the best eod­
ing standard is a compromise, and most prohibit certain practices assumed to
cause problems - even if they never caused you a problem. For example, incon­
sistent naming rules arc a source of confusion, but different people have strong
attachments to some naming conventions and strong dislikes of others. For ex­
ample, I consider the CamelCodingSlyl e of identifiers "pug ugly" and strongly
prefer underscore_style as cleaner and inherently more readable, and many peo­
ple ab'Tee. On the other hand, many reasonable people disagree. Obviously, no
naming standard can please everyone, but in this case, as in many others, a con·
sistent slyle is definitely better than the lack of a standard.

-lb summarize:

A good coding standard is designed for a specific application domain
and a specific group of programmers.

25.6 COD ING STANDA RD S

A good coding standard is prescriptive as well as restrictivc.

Recommending some "foundation" library facilities is often the most
dfective use of prescriptive rules.

A coding standard is a set of rules for what code should look like,

Typically specifying naming and indentation rules; e.g., "Usc
'Stroustrujl layollt.'"

Typically specifying a subset of a language; e.g., "Don't use ne w or
throw."

Typically specifying rules for commenting; e.g., "Every function
must have a comment explaining what it docs."

Often requiring the usc of certain libraries; e.g., "Usc <iostream>
rather than <stdio. h>" or "Usc vector and string raliler lilal1 built-in
arrays and C-style strings."

Common aims of most coding standards arc to improve

Reliability

Portability

Maintainability

Testability

Reusability

Extensibility

Readability

A good coding standard is better than no standard. We wouldn't start a
major (multi-pcrson, multi-year) industrial project without one.

A poor coding standard can be worse than no standard. For example,
C++ coding standards that restrict programming to someliling like the
C subset do hann_ Unfortunately, poor coding standards arc not un·
common.

All coding standards arc disliked by programmers, even the good ones.
Most programmers want to write their code exactly the way Liley like it.

25.6.2 Sample rules
Here, we would like to give you a flavor of a coding standard by listing some
rules_ Naturally, we pick rules that we hope will be useful to you. However, we
have never seen a real-world coding standard that could be described in fewer
than 35 pages, and most are mudllongcr. So, we don't rry to give yOll a complete

.37

938 CHAPTER 25 • EMB EDDED SYSTEMS PR OGRAMMING

set o f rules here. Furthcnnorc, every good coding standard is designed for a par­
ticular application area and for a particular set of programmers. So, we don't
make any pretenses of universality.

~nlC rules arc numbered and contain a (brief) rationale. Many rules contain
examples for eas ier comprehension. We distingu ish between nCOllllllC7u/litioIlJ,

which a programmer may occasionally decide to ignore, and finn nile;, which
must be followed. In a real set of rules , a finn rule can usually be broken (only)
with writlcn permission from a supervisor. Each violation of a recommendation
or a firm rule requires a comment in the code. Any exceptions to a rule can be
listed in lhe rule. A firm rule is identified by a capital R in its number. A recolll­
mendation is identified by a 10,,·:erc.'lSe ,. in its number.

The rules are classified as

General

Preprocessor

Naming and layout

C lass rules

Functio n and expression rules

Hard real-time

Critical systems

The "hard real-time" and "critical systemsn rules apply o nly to projects clas­
sified as such.

Compared to a good real-world coding slandard, o ur terminology is under­
specifi ed (e.g., what docs "critical" really mean?) and the rules overly terse. Simi­
larities betweelllhese ru les and theJ SF++ rules (sec §25.6.2) arc not accidental; I
helped fomm late theJ SF++ rules. H owever, the code examples in this book do
not conform to the n iles below - after all, the book code is not critica.l embedded
systems code.

General rules

RlOO: Anyone function or class shall contain no more than 200 logical sourcc
lines of code (non-comments).
N elISOll: Long functions and long classes tend to be complex and th erefore dif­
ficult to comprehend and test.

rIOI : Anyone fu nction or class should fit on a screen and serve a single logi­
cal purpose.
R C(lJolI: A programmer looking at only part of a fu nction or class is more
likely to overlook a problem. A function that tries to perfo rm several logical
functions is likely to be longer and more complex that one that doesn't.

25. 6 CO D IN G STANDA RD S

R102: All code shall conform to ISO/lEG 14882:2003(E) standard G++.
Reason: Language extensions or variations from ISO/lEG 14882 are likely to
be less stable, to be less well specified , and to limit pormbility.

Preprocessor niles

R200: No macros shall be used except for source COIltTOJ using #ifdef and
#ifndef.
Reason: Macros don 't obey scope and type rules. Macro usc is not obvious
when visually examining somce text.

R20l: #indude shall be used only to include header (•. h) files.
R((lson: #include is used to access interface declarations - not implement.-uion
details.

R202: All #include directives shall precede all non'preprocessor declaratio ns.
RC(LSoll: An #indude in t.he middle of a me is more likely to be overlooked by
a reader and to cause inconsistcncies from a name resolved differelllly in dif­
ferem places.

R203: Header files (•. h) shall nOt co ntain non-const variable definitio ns or
non-inline non-template function definitions.
Rc(tjon: H eader files should contain interface declarations - not implementa­
tion details. However, constants arc often seen as part o f the interface, some
very simple functions need to be inline (and therefore in headers) for per­
formance, and CUlTent template implementations require complete template
definitions in headers.

Naming Qlld layout

R300: Indentations shall be used and be consist.ent within the same source
rile.
R etLWIl: Readability and style.

R301: Each new statement starts o n a new line.
R C(1J01I: Readability.
EWlIllple:

£ '((1I11/)le:

int a = 7; x = a+7; f (x,9);

inta= 7; /10K

x=a+7; /10K
f(x.9) ; /I OK

/I violation

if (p<q) cout « .p; II violat ion

.3.

940 (HA I'TER 25 • EMBEDDED SYSTEMS PR OGRAMM ING

£WIIII/,/e:
if (p<q)

cout « · Pi /I OK

R302: Identifiers should be given descriptive names.

Identifiers may contain common abbreviations and acronyms.

When Llsed conventionally, x, y, i, j, etc. arc descriptive.

Use the number_oCelcme nts style rather than the
numbe rO fIleme nls style.

Hungarian nmation shaJl not be used .

Type, template, and namespacc names (omy) start with a c..'lpitallcttcr.

Avoid excessively long names.

Er:ample: Device_driver and Buffer_pool.
Ri!m(»l: Readability.
Note: Identifiers starting with an underscore arc reserved to the language im­
plementation by the C++ standard and thus banned.
£"ceptiQll: 'When calling an approved library, the names from that library may
be used.
Excepti(m: Macro names used for #incl ude guards.

R303: Identifiers shall not differ only by

A mixture of C'1se

TIle presence/absence of the underscore character

TIle imerchange of the lelter 0 with the number 0 or lhe letter D

111e interchange of the letter I with the number I or me Jeuer f

111e interchange of the letter S with the number 5

The interchange of the leuer Z with the number 2

111e interchange of the Jeuer 11 wilh the lellc!' II

EYilmple: Head and head 1/ viola tion
Reason: Readability.

R304: No identifier shall be in a ll capital JeUers and underscores.
Emmple: BLUE and BLUE_CHEESE 1/ violal ion
& (lJ()1I : All capital letters arc widely used for macros that may be used III

#ind ude files for approved libraries.

Function and expression rules

r400 : Identifiers in an inller scope should not be idemical to idemifie rs in an
ou ter scope.

2S. 6 CO DIN G STA NDARDS

E.ample:
int var = 9; { int var = 7; ++var;} /1 violation : var hides var

Rell.JoII: Readability.

R401: Declarations shall be declared in the smallest possible scope.
Reason: Keeping initialization and use close minimizes chances of confusion;
letting a variable go out of scope releases its resources.

R402: Variables shaH be initialized.
Example:

int var; 1/ violation: var is not initialized

Reason: Uninilialized variables are a common source of errors.
E.ceplioll: An array or a container that is immediately filled from input need
not be initialized.

R403: Casts shall not be used.
Reason: Casts are a common source of errors.
EWejJlion: dynamic_cast may be used .
E.cePli<m : New·style casts may be used to convert hardware addresses into
pointers and void · received from sources external to a program (e.g. , a CUI
library) into pointers of a proper type.

R404: Built-in arrays shall not be used in interfaces; that is, a pointer as func­
lion argument shall be assumed to point to a single clement. Use Array_ref to
pass arrays.
Rell.JOTI : An array is passed as a poimer and its number of elemems is not
carried along to the called function. Also, the combination of inlplicit array-lo­
pointer conversion and inlplicit derived-to-basc conversion can lead to mem­
DIy corruption.

Class rnleJ

RSOO: Use class for classes with no public data members. Use struct for classes
with no private data members. Don't use classes with both public and private
data members.
Reason: Clari ty.

r501: If a class has a destructor or a member of poimer or reference lype, it
must have a copy constructor and a copy assigmTIent defined or prohibited.
Reason: A destructor usually releases a resource. The default copy semamics
rarely does "the right thing" for pointer and reference members or for a class
with a destructor.

941

942 CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMM ING

RS02: If a class has a virtual function it must have a virtual destructor.
Reason: A class has a virtual function so that it can be used through a base class
interface. A fu nction that knows an object only through that base class may
delete it and dCI;vcd classes need a chance to clean up (in their destructors).

r503: A constructor that accepts a single argumelll must be declared explicit.
R~fljQ1l: To avoid surprising implicit conversions.

Hard real-lime rules

R800 : Exceptions shall not be lIsed.
RcaJQI/: Not predictable.

R80! : new shall be used ouly du ring startup.
&a.sQII: NOl predictable.
Eyteptioll: placement-new (with the standa rd meaning) may be used for mem­
ory a llocated frolll slacks.

R 802: delele shall nOl be lIsed .
Reason: Not predictable; can calise fragmentation.

R803: dynamic cast shall not be used .
Re(lJon : Not predictable (assuming COlllmon implemcntation tcchniquc) .

R804: l11C standard library containers, cxcept sid: :array, shall not be uscd.
Re(lJ()ll : Not predictable (assuming common implemcmation techniquc).

Critical systemr roles

R900: Incremcnt and dccrement operations shall not be uscd as sub-cxprcssions.
£wlIlI/,le:

inl x = vl++i1; /I viol<3lion

++i ;
int x = vii); /10K

Re(lJon: Such an increment might be overlooked.

R901 : Codc should not depend on prcccdcncc rules below thc Icvel of mith·
metic cxpressions.
EWlIllple:

&alllple:
if(a<b 11 c<=d) /I violation : parenthesize (a<b) and (c<=d)

2S.6 CODING STANDARDS

R ,YU(J1I: confusion about precedence has been repeatedly found in code writ­
ten by programmers with a weak C/C++ background.

We left gaps in the numbering so that we could add new 11.l1es without ch,mglng
the numbering o f existing ones and still have the general classific..1.tion recognized
through the numbering_ It is very common for ntles to become known by their
number, so that renumbering would be resisted by the users.

25.6.3 Real coding standards
"111ere arc lots of C++ coding standards. Most arc cOlporate and not widely
available. In many cases, that 's probably a good thing except possibly for the pro­
grammers of those corporations. Here is a list of sLw.dards that - when used ap­
propriately in areas to which they apply - call do some good:

Henricson, Mats, and Erik Nyquist. IndlutriaJ Strength C++: Rule.! and RecommmM­
liolls. Prentice Hall, 1996_ ISBN 0131209655. A set of ntles wrilten in a
telcconullunications company. Unfortunately, these ntles are somewhat dated:
the book was published before the ISO C++ standard. In particular, templates
don't enter lhe picture to the extent they would have had these ntles beell writ­
ten today.

Lockheed Martin Corporation_ "Joint Strike Fighter Air Vehicle Coding Standards
for the System Development and Demonstration Program_n Document Number
2RDUOooOI Rev C. December 2005. Colloquially known as 'j SF++n; a sct of
niles written at Lockheed-Martin Aero for air vehicle (read "airplanen) sofnvare.
"nlese niles really were written by and for programmers who produce software
ufXln which human lives depend. w\vw.research.att.com/ -bslJSF-AV-rulcs.pdf.

Programming Research. High-imegrity C++ Coding Standard Manual Version
2.4-. www. progranuningresearch.com.

Sutler, Herb, and Andrei Alexandrescu. C++ Coding Slmuwrds: 101 Rulej, GuiLk­
lillej, and &jl Prach'(£j. Addison-Wesley, 2004. ISBN 032 1113586. 111i5 is marc
of a "met<! coding standard"; that is, instead of specific 11.l1es it has guidance on
which rules are good and why_

Note that there is no substitute for knowing your applicalion area, your pro­
gramming language, and the relevant programming teclmique. For most applica­
tions - and certainly for most embedded systems programming - you also need
to know your operating system andlor hardware architecture. If you need to usc
C++ for low-level coding, have a look at the ISO C++ conmuuee's report on per­
formance (ISO/IEC TR 18015, www.research_atLcom/ -bslpcrfoml<U1ceTR.pdf);
by «performance" theylwe primarily mean "embedded systems programming_"

Language dialects and proprietary languages abound in the embedded sys­
tems world, blll whenever yOll can, use standardized language (such as ISO
C++), tools, and libraries. That will minimize your learning curve and 1l1crcase
the likelihood that your work will last.

943

944 CHAPTER 25 • EMBEDDED SYSTEMS PROGRAMM ING

~ Drill

I. RUll lhis:

int v = 1; for (int i = OJ i<sizeof(v)·S; ++i) { cout« v « I '; v «=1; }

2. Run mal again with v declared to be an uns igned int.
3. Using hcxadccilllallitcrals, define short unsigned ints:

a. With every bit set

h. 111e lowest (least signifi cant bit) set

c. ~nle highest (most significaJll bit) set

d. TIle lowest byte all set

c. 111e highest byte all set

f. Every second bit set (and lhe lowest bit 1)

g. Every second bit set (and the lowest bit 0)

4. Print each as a decimal and as a hexidecimal.
5. Do 3 and 4 using bit manipulation operations (I, &, «) and (only) the lit­

erals 1 and O.

Review
1. What is an embedded system? Give len examples, out of which at least

three should not be among those mentioned in this dmptcr.
2. What is special about embedded systems? Give fivc concerns that are

common.
3. Define predictability in the context or embedded systems.
4. Why can it be hard to maintain and repair an embedded system?
5. Why can it be a poor idea to optimize a system ror perrormance?
6. Why do we prefer higher levels or abstraction to low-level code?
7. What are transient errors? Why do we particularly fear them?
8. How can we design a system to survive railure?
9. Why can't we prevent every railure?

10. What is domain knowledge? Give examples or application domains.
11. Why do we need domain knowledge to program embedded systems?
12. What is a subsystem? Give examples.
13. From a C++ language point or view, what are the three kinds or storage?
14. When would you like to use rree store?
15. Why is it often infeasible to use rree store in illl embedded system?
16. When can you safely use new in an embedded system?

CHAPTER 25 REVIEW

17. What is the potential problem ,.vlth sid :: vector in the context of embed­
ded systems?

IS. What is the potential problem with exceptions in the context of embed­
ded systems?

19. What is a recursive function call? Why do some embedded systcms pro-
granullers avoid them? What do they use instead?

20. What is memory fragmentation?
2 1. ,,yhat is a garbage collector (in the context of programming)?
22. What is a memory leak? Why can it be a problem?
23. 'What is a resource? Give examples.
24-. "Vhat is a resource leak and how can we systematically prevent it?
25. Why can't we easily move objects from one place in memory to another?
26. What is a stack?
27. What is a pool?
28. 'Why doesn't the use of stacks and pools lead LO memory fragmentat ion?
29. Why is reinlerpreCcasl necessary? 'Why is it nasty?
30. "Vhy arc pointers dangerous as function arguments? Give examples.
31. What problems can arise from using pointers and arrays? Give ex'Ullples.
32. ''''hat arc ahemauves LO using pointers (to arrays) in interfaces?
33. What is "the first law of computer science"?
34. What is a bit?
35. What is a byte?
36. Whal is the lIsual number of bits in a byte?
37. What operations do we have on sets of bits?
3S. W hat is an "exclusive or" and why is it useful?
39. How can we represent a set (sequence, whatever) of bits?
40. How do we conventionaHy number bits in a word?
41. How do we conventionally number bytes in a word ?
42. ''''hat is a word?
43. What is the usual number of bits in a word?
44. What is the decimal value of Oxf7?
45. What sequence o f bits is Oxab?
46. What is a bilsel and when would you need one?
47. How docs an un signed int differ from a s igned inl?
4S. When would yOll prefer an unsigned inl to a signed inl?
49. How would you write a loop if lhe number of clements to be looped over

was very high?
50. Whal is lhe value of an unsigned inl after yOll assign -3 to it ?
51 . Why would we wam to manipulate bits aJld bytes (rather than higher­

level types)?
52. What is a bitficld?
53. Fo r what arc bilfic1ds used?

945

946 C HAPTER 25 • EMBEDDED SYSTEM S PROGRAMMING

54. What is encryption (cncipheri.ng)? Why do we lise it?
55. Can you encrypt a photo?
56. Whal does TEA stand for?
57. How do you write a number to ampuL in hexadecimal notation?
58. Whal is the purpose of coding standards? List reasons fo r having them.
59. Why can't we have a universal coding standard?
60. List some properties of a good coding standard.
G I. How can a coding standard do harm?
62. Make a list of at least ten coding rules that you like (have found useful)?

Why are they useful?
63. Why do we avoid ALL_CArn AL identifiers?

Terms

address
bit
bitfield
bitsel
coding standard
embedded system

Exercises

encryption
exclusive or
gadget
garbage collector
hard real ti.me
I,ak

pool
predictability
real time
resource
soft real time
unsigned

I. If you haven't already, do the Try this exercises in this chapter.
2. Make a list of words that can be spelled with hexadecimal notation. Read

o as 0, read 1 as ~ read 2 as to, etc. For example, Fool and Beef. Kindly
eliminate vulgarities from the list before submitting it for grading.

3 . Initialize a 32·bit signed integer with the bit patterns and print the result:
all zeros , all ones , alternating ones and zeros (starting with a leftmost
one), alternating zeros and ones (starting with a leftmost zero), the
1I001100llOO ... pattern, the 001100110011 ... pattern, the pattelll of
all-one bytes and all-zero bytes starting with an all-ones byte, the pattern
of aU-one bytes and all-zero bytes starting with an all-zeros byte. Repeat
that exercise with a 32-bit unsigned imcger.

4. Add the bitwise logical operators &, I, A , and - to the calcu lator from
Chapler 7.

5. Write 311 infinite loop. Execule it.
6. Write an infinite loop that is hard to recognize as an infinite loop. A loop

that isn't really infinite because it terminates after completely consuming
some resource is acceptable.

7. Write out the hexadecimal values from 0 LO 400; \\!Tite out the hexadeci­
mal values from -200 to 200.

8. Write Ollt the numerical values of e.'lch character on your keyboard.

CHAPTER 25 POSTSCRIPT

9. WIthout using any standard headers (such as <limits» or documenta­
tion, compute the number of bits in an inl and detenlline whether char is
signed or unsigned on your implementation.

10. Look at the bitfield example from §25.5.5. Write an example that initial­
izes a PPN, then reads and prim each field value, then changes each field
value (by assigning 1'0 the field), and prints the result. Repeat this exer­
cise, blll store the PPN information in a 32-bit unsigned integer and use
bit manipulation operators (§25.5.4) to access the biLS in the word.

11. Repeat the previous exercise, but keep the bilS in a bitset<32>.
12. Write out the d ear text of the example from §25.5.6.
13. Usc TEA (§25.5.6) to communicate "securely" between two computers.

Email is minimally acceptable.
14. Implement a simple vector that can hold at most N clements allocated

from a pool. Test it for N==1000 and integer clements.
15. Measure the time (§26.6.1) it takes to allocate 10,000 objects of random

sizes in the [lOOO:O)-byte range using new; then measure the time it takes
to deallocate them using delete. Do tllis twice, once dealJocaling in the
reverse order of allocation and once deallocating in random order. Then,
do the equivalent for allocating 10,000 objects of size 500 bytes from a
pool and freeing them. 111en, do the equivalent of allocating 10,000 ob­
jects of random sizes in the [lOOO :O)-byte range on a stack and then free
them (in reverse order). Compare the measurements. Do each measure­
ment at least three times to make sure the results are consistent.

16. Fonnulate 20 coding style rules (don't just copy those in §25.6). Apply
them to a program of more than 300 lines that you recently WTOle. Write
a short (a page or two) comment on the experience of applying those
rules. Did you find elTors in the code? Did the code get dearer? Did some
code get less clear? Now modify the set of rules based on this experience.

17. In §25.23-4 we provided a class Array_ref claimed to make access to ele­
ments of an array simpler and safer. In particular, we claimed to handle
inheritance correctly. Try a variety of ways 10 get a Rectangle* into a
veetor<Cirde*> using an Array_rekShape*> but no casts or other opera­
tions involving undefined behavior. This ought to be impossible.

Postscript

So, is embedded systems programming basically "bit fiddling"? Ol at all , espe­
cially if YOll deliberately try to minimize bit fiddling as a potential problem with
correctness. However, somewhere in a system bits and bytes have "to be fid ­
dled"; the question is just where and how. In most systems, the low-level code
can and should be localized. Many of the most interesting systems we deal with
are embedded, and some of the mOst interesting and challenging programming
tasks are in this field.

.. 7

'cL . ,.-: 26

Testing

"I have only proven the code correct,
not tested it."

-Donald Knuth

T his chapter covers testing and design for correctness. ~lncse

are huge topics, so we can only scratch lheir surfaces. T he

emphasis is on giving some practical ideas and techniques for leSl ­

ing units, such as functions and classes, of a program. We discuss

the use of interfaces and the selection of tests to ru n against them.

We emphasize the importance of designing systems to simplify

testing and the use of testing from the earliest slages of develop­

ment. Proving programs correct and dealing with performance

problems are also briefl y considered.

... J

950

26.1 What we want
26.1.1 Caveat

26.2 Proofs

26.3 Testing
26.3.1 Regression tesls
26.3.2 Unit tests
26.3.3 Algorithms and non.algorithms
26.3.4 System tests
26.3.5 Testing classes
26.3.6 Finding assumptions thai do not

hold

26.1 What we want

C HAPTER 2 6 • TE STING

26.4 Design for testing

26.5 De bugging

26.6 Performance

26.6.1 Timing

26.7 References

Let's try a simple experiment. Write a binary search. Do it now. Don't wait until
the end of the chapter. Don't wait u ntil after lhe next section . It 's important that
you try. Now! A bi nary search is a search in a soncd sequence that stans at the
middle :

If the midd le clement is cquallO what we arc searching for, we arc fin­
ished.

If the middle element is less than what we are searching for, we look at

the right-hand half, doing a binary search on that.

If the middle clement is greater than what we are searching for, we look
at the left-hand half, doing a binary search on that.

llle result is an indicator of whether the search was successful and some­
thing that allows us to modify the element , if found , such as an index, a
pointer, or an iterator.

Use less-than «) as the comparison (sorting) criterion. Feci free to usc any data
struCUIre you like, any calling conventions you like, and any way of retul'l1ing the
result that you like, but do write the search code yourself. In this rare case, lIsing
someone else's function is cou nterproductive, even with proper acknowledg­
ment. In particular, don't usc the standard library algorithm (binary_sea rch or
equal_range) that would have been your first choice in most situations. Take as
much time as you like.

So now you have writtcn your binary search function_ If not, go back to the
previous paragraph. H ow do you know that your search function is correct? If
you haven't already, wlite down why you arc convinced that this code is correct.
How confident are you abou t your reasoning? Are there parts of your argument
that might be weak?

2 6 . 1 W H AT WE WANT

11mt was a trivially simple piece of code. h implemcntcd a very regular and
well-known algorithm. Your compiler is on the OIuer of 200K lines of code, your
operating systeIll is 10M to 50M lines of code, and the safety-critical code in the
airplane you'll fl y on for your next vacation or conference is SOOK to 2M lines of
code. Docs that make you feel comfortable? How do the techniques you used for
your bin; ..), search function scale to real-world software sizes?

C uriously, given all that complex code, most software works correctly most
of the time. \r\'e do not COunt anything running on a game-infested consumer PC
as "critical." Even more importantly, safety-critical software works correctly just
about all of the time. We cannot recall an example of a plane or a car crashing be­
cause of a software failure over the last decade. Stories about bank software get­
ting seriously confused by a check for $0.00 arc now very old; such things
essentially don't happen anymore. Yet software is written by people like you. You
know that you make mistakes; we all do, so how do "they" get it right?

'1l1e most fundamental answer is that "we" have figured out how to build re­
liable systems out of unreliable parts. We try hard to makc every prob" 'am, evel)'
class, and every function con'Cct, but we typica.!ly fail our first attempt at thal.
~1l1en we debug, test, and redesign to find and remove as many errors as possible.
However, in any nontrivial system, some bugs will still be hiding. vVe know that,
but we can't find them - or rather, we c."l.n't find them with the time and effort we
are able and willing to expend. 'Illen, we redesign the system yet again to recover
from unexpected and "impossible" events. ~1l1e result can be systems that arc
spectacularly reliable. Notc that such reliable systems may sti li harbor errors -
they usually do - and still occasionally work less well than we would like. How­
ever, they don' t crash and always deliver m.inimally acceptable service. For exam­
ple, iI phone system may not managc to connect every call when demand is
exceptionally high, but it never fails to connect many calls.

Now, we could be philosophical and discuss whether an unexpected error
lhat we have cOl~ectured and catered for is really an error, but let's not. It is more
profitable and productive for systems builders "just" to figure how to make our
systems more reliable.

26.1.1 Caveat
Tcsting is a huge topic. There arc several schools of thought about how testing
should be done and di fferent industries and application areas have different trad i­
tions and standards for lesting. TIlat 's natural - you l'Cally don't nced the same
reliability standard for video games and avionics software - but it leads to eon~

fusing differences in terminology and tools. Tt'eat this chapter as a source of ideas
for your personal projects and as a source of ideals if you encounter tes ting of
m~or systems. TIle testing of m~or systems involves a variety of combinations
of tools and organizmional structures that it would make litt1e sense to try to de­
scribe here.

951

952 CHAPTER 26 • TESTING

26.2 Proofs
Wait a minute! Why don', we just prove lhat our programs arc correct, rather
than fussing arollnd with tests? As Edsgcr Oijkst:r.l succinctly pointed out, "Tcst­
ing can reveal ,he presence of errors, not their absence." "n tis leads to an obviolls
desire 10 prove programs correct "much as mathematicians prove theorems."

Unfortunately, proving nontrivial programs correct is beyond the s tale of the
art (outside very constrained applications domains), the proofs themselves call
contain errors (as can the ones mathematicians produce), and the whole ficld of
program proving is an advanced topic. So, we try as hard as we can to structure
our programs so that we can reason about them and convince ourselves that they
arc correcl. However, we also lest (§26.3) and try to organize our code to be re­
silient against remaining errors (§26.4).

26.3 Testing
In §.? l l , we described testing as "a systematic way to search fo r errors.'" Let 's
look at techniques for doing thal.

People distinguish between unit teJlillg and J}Jll1n leJhiJg. A "unit" is something
like a function or a class that is a part of a complete progr.ull . If we tC!l t such units
in isolation, we know where to look for the cause of problems when we find an
error; any error will be in the unit that we are testing (or in the code we lise to
conduct the tests). 111is contrasts with system testing, where we test a complete
system and all we know is that an error is "somewhere in the system." Typically,
errors found in system testing ~ once we have done a good job at unit testing­
relate to undesirable interactions between units. l11ey afe harder to find than er­
rors within individual units and often more expensive LO fix.

Obviously, a unit (say, a class) can be composed of Olher units (say, functions
and other classes), and systems (say, an electronic commerce system) can be com­
posed of mher systems (say, a database, a CUI, a networking system, and an
order validation system), so the distinction between unit testing and systems test­
ing isn't as clear as you might have thought, but the general idea is that by testing
our units well, we save ourselves work - and om end users pain_

One way of looking at testing is that any nontrivial system is built Ollt of
units, and these units arc themselves built Ollt of smaller units_ So, we stan testing
ule smallest units, then we test the units composed from ulose, and we work our
way up until we have tested the whole system; Ulat is, "the system" is JUSt the
largest unit (until we use that as a unit for some yctlarger system).

So, let's first consider how to lest a unit (such as a function, a class, a class hi­
erarchy, or a template). l csters distinguish between white-box testing (where you
can look at the detailed implementation of what you are testing) and black -box
testing (where YOll can look only at the interface of what you are testing). We will

26 .3 TE STING

not make a big deaJ of this distinction; by all means read the implementation of
what you lest. But remember that somcone might later come and rewrite I.hat im·
plementation, so try not to depend on anything that is not guaranteed in the in­
terface. Ll fact , when testing anything, ule basic idea is to throw anything we C<"111

at its interface to sec if it responds reasonably.
Mentioning that someone (maybe yourself) might change the code after you

tested it brings us to regression testing. Basically, whenever you make a change,
you have to retest to make sure that you have not broken anything. So when you
have improved a unit, you renm its unit tests, and before yOll give the complete
system to someone else (or usc it for something reaJ YOllrself), you nm the com­
plete system lCSI..

Running such complete tests of a system is often called regressifm testillg be·
cause it usually includes running tests that have previously found errors to sec if
these errors arc still fIXed. If not, the program has "regressed" and needs to be
fIXed again.

26.3.1 Regression tests
Building up a large collection of tests that have been useful for finding errors in
the past is a major part of building an effective test suite for a system. Assume
that you have users; they will send you bugs. Never throwaway a bug report!
Professionals use bug·tracking systems to ensure that. Anyway, a bug report
demonstrates either an error in the system or an error in a user's understanding
of the system. Either way it is useful.

Usually, a bug report contains far too much extraneous infonnation, and the
firs t task of deaJing with it is to produce the smallest program umt exhibits the re­
ported problem. TIlis often involves cutting away most of the code submitted: in
partieular, we try to eliminate the use of libraries and application code that docs
not affect the error. Finding umt minimal test program often helps us localizc the
bug in the system's code, and that minimal program is whal is added fa the reo
gression ~cs { suite. TIl~ way we find thaI minimal program is to keep removing
code until the error disappears - and thcn reinsert the last bit of code we re.
moved. '11is we do until we run out of candidates for removal.

Just nmning hundreds (or tens of thousands) of tests produced from old bug
rcpor~ may not seem verr systematic, but what we arc really doing here is to sys·
~emauc~lly lise the expenence of users and developers. "nle regression test suite
IS a ~naJor part of a developer group's institutional memory. For a large system,
IVe sunply can't rely on having the original developers available to explain details
of the desi~1 and implementation. '11e regression suite is what keeps a systcm
from mlltatlllg away frOill what the developers and uscrs have agreed to be its
proper behavior.

953

954 C HAPTER 2 6 • TESTING

26.3.2 Unit tests
OK. Enough words for now! Let's try a concrete example: let's teSI a binary
scarcll. Here is the specification from the ISO standard (§25.3.3.4):

template<class Forwardlterator, class T >
boo] binary_search(Forwardlterator fint , FOIWardlterator last.

const T& value);

template<class ForwardIterator, class T, class Compare>
bool binary_search(ForwardIterator first , Focwardlterator last.

OODst T& value , Compare romp);
Requires: TIle clements c of [fi rst ,last) arc partitioned with respect LO the
expressions c < value and !(value < c) or comp (e, value) and !comp
(value, e). Also, for all clements c o f [first , last), c < value implies !(value
< e) o r comp (c, value) implies !comp (value, c),
Returns : tme if there is an iteralar i in lhe range [first ,last) that satisfies
tbe co csponding conditions: !(*i < value) && !(value < · i) or camp (· i,
value) = = raIse && comp (value , ·i) == raise.
Complexity: At most logOast - first) + 2 comparisons.

Nobody said that a ronnal specification (well, semiformal) was easy to read ror
the uninitiated. However, if you actually did the exercise of designing and imple­
mellling a binary search that we strongly suggested at the begilUling of the chap­
ter, you have a pretty good idea of what a binary search docs and how to test it.
TIlis (standard) version takes a pair of fonvard iterators (§20.10.1) and a value as
arguments and returns true ir the value is in the range defined by the iterators.
rIlle iteraLOrs mUSt define a sorted sequence. The comparison (sorting) criterion
is <. We'll leave the second version or binary_sea rch that takes a comparison cri­
terion as an extra argument as an exercise.

Here, we will deal only with errors that are not caught by the compiler, so ex­
amples like these arc somebody else's problem:

binary_sea rch (1 ,4 ,5);
veclor<inl> v(10);

/I error: ,1n int is not ,1 forward iterator

binary _sea reh(v. beginO,v.endO, "7");

binary_sea reh (v. begi nO. v .end(»;

/I error: can' t search for a string
/I in a vector of iots

/I error: forgot the v<1lue

How can we J)'Jtellltltiadly test binary_seareh()? Obviously we can't j ust try every
possible argument for it, because every possible argument would be every possi·
ble sequence of every possible type of value - that would be an infinite number
of tests! So, we must choose tests and to choose, we need some principles for
making a choice:

2().3 TESTING

Tcst ror likely mistakes (find the most errors).

Test ror bad mistakes (find the enut"s with the worst potential consequenccs).

By "bad," we mean errors that would have the direst consequences. In general,
that's a ruzzy notion, but it C,1n be made precise ror a specific program. For exam'
pic, ror a binary search considered in isolation, all errors arc about equally bad,
but ir we used that binary_search in a program where all answers were carerully
double-checked, getting a wrong answer rrom binary_sea rch might be rar more
acceptable than having it not return because it went into an infinite loop. In that
case, we would spcnd greater effort tricking binary_search into an infinite (or
vcry long) loop Lhan wc would trying to mck it into giving a wrong answer. Note
ou r usc or "tricking" here. Testing is - among other things - an exercise in ap­
plying creative thinking to the problem or "how can we get this code LO misbe­
have?" ' 1le best testers arc not just systematic, but also quite devious (in a good
cause, or course) .

26.3.2.1 Testing strategy
How do we go abollt breaking binary_search? We start by looking at binary_
search's requirements, that is, what it assumes about its inputs. Urnortunatcly,
rrom our perspective as testers, it is dearly stated that [first,last) must be a sorted
sequence ; that is, it is the caller's job LO ensure that, so we can 't rairly try to break
binary_search by giving it unsorted input or a (first,last) where laSld irst. Note
thai the requirements ror binary_search do not say what it will do ir wc give it
input that doesn't meet its requirements. E1sewhcre in the standard, it says that it
may throw an exception in that case, but it is not required to. TIlese racls are
good to remember rOt" when we test uses or binary_search, though, because a
caller railing to establish the requirements or a runction, such as binary_search, is
a likely source or en-ars.

'We can imagine the follo\',nng kinds or en-ors ror binary_search:

Never returned (e.g., infinite loop)

Crash (e.g., bad derderence, inrmite recursion)

Value not round even though it was in the sequence

Value round even though it wasn't in the sequence

In addition, we remember the rollowing "oppornmilies" ror user errors:

~ne sequence is not sorted (e.g. , {2,1,5,-7,2,10»).

~nle sequence is not a valid sequence (e.g. , binary_sea rch(&a[l00l,
&.[SO[,n)).

How might an implementer have made a mistake (rar testers to find) ror a simple
call binary_search(pl ,p2,v)? Errors orten occur for "special cases ." Ll particular,

.55

, .. (HAPTER 2 6 • TESTING

when considering sequences (of any sort), we always look for the beginning and
the end. In particular, the empty sequence should always be tested. So, let'S con­
sider a few arrays of integers that are properly ordered as required:

{1 ,2,3,5,8,13,21 }
()

{O
{ 1,2,J,4 }
(1,2,3,4,5)
(1, 1, 1,1 , 1, 1, 1)
(0,1,1,1 ,1,1,1,1,1 ,1,1 ,1,1)
(0,0,0,0,0,0,0,0,0,0,0,0,0,1)

/I an "ordinary sequence~

II the empty sequence

/I just one element

/I even number of elements

/I odd number of elements
1/ all elements equal
/I different element at end
/I different element at end

Some test sequences are best generated by a program:

veclo r<inl> vl ;

for (inl i=O: i<100000000; H i) v. push_back(j); II a very large sequence

Some sequences with a random number of clements

Some sequences with random elements (but still ordered)

TIlis is not as systematic as we'd have liked. After all, we "just picked" some se­
quences. However, we used some fairly general rules of thumb that often arc use­
ful when dealing with sets of values; consider:

TIle empty set

Small sets

L,rge sets

Sets wilh extreme distl"ibutions

Sets where "what is of interest" happens near the end

Sets with duplicate elements

Sets with even and with odd numbers of elements

Sets generated using random numbers

"Ve use the random sequences just to sec if we can get lucky (i.e., find an error)
with something we didn 't think about. h 's a brUle-force technique, bUl relatively
cheap in tcrms of our time.

Why "odd and even" ? Well, lots of algorithms panitioll their input se­
quenccs, e.g., into the first half and the last half, and maybe the programmer con­
sidered only the odd or the even c..lSe. More generally, when we partition a
sequence, the point where we split it becomes the end of a subsequence, and we
know that errors arc likely near ends of sequences.

2 6 .3 TE STI NG

In general, we look for

Extreme cases Qarge, small, strange dislribmions of input, etc.)

BoundaJ)' conditions (anything ncar a limit)

Wh:H that really means, depends on the particular program we arc testing.

26.3.2.2 A simple test harness
We have two categories of tests: tests that should succeed (e.g., searching for a
value that's in a sequence) and tcSts that should fail (e.g., searching for a value in
an empty sequcnce). For each of our sequences, let's conSlnlct some succeeding
and some failing tests . We will start from the simplest and most obvious and
proceed to improve until we have something that's good enough for our
binary_search exmnple:

inl all = (1,2,3,5,8,13,21);
if (binary _sea rch(a,a+sizeof(a)/sizeoU·a), 1) == fal se) coul « "failed";
if (binary_search(a,a+sizeoHa)/sizeoWa),5) == fal se) coul« "failed ";
if (binary_search (a,a+sizeof(a)/sizeoWa),8) == false) coul « "failed ";
if (binary _search (a,a+sizeof(a)/sizeoWa),21) == false) coul « "failed";
if (binary_sea rch(a,a+sizeof(a)/sizeoWa),-7) == true) co ul « "failed ";
if (binary _sea rch(a,a+sizeof(a)/sizcof(*a),4) == true) coul « "failed ";
if (binary_search(a,a+sizeof(a)/sizeof(*a),22) == true) cout « "failed ";

rn lis is repetitive and tedious, but it will do for a start. In fact , many simple tests
arc nothing but a long list of caBs like this. TIl is naive approach has the virtue of
being extremely simple. Even the newest member of the test team can add a new
test to the set. However, we can usually do better. Fo r example, when something
fai led here. we arc notlOld which test fail ed. TIlat's unacceptable. So:

int a[] = (1,2,3,5,8,13,21);
if (binary_search(a,a+sizeof(a)/sizeof(*a),l) == false) cout« "1 failed";
if (binary_search(a,a+sizeof(a)/sizeof(*a),5) == fal se) cout« "2 failed";
if (binary _search(a,a+sizeof(a)/sizeof(·a),8) == false) cout « "3 failed ";
if (binary_search(a,a+sizeof(a)/sizeof(*a),21) == fal se) coul« "4 failed ";
if (binary _search(a,a+sizeo f(a)/sizeof(·a),-7) == true) cout « "5 failed ";
if (binary_search (a,a+sizeof(a)/sizeof(*a),4) == true) coul« "6 failed ";
if (binary_search(a,a+sizeof(a)/sizeof(·a),22) == true) coul« "7 failed ";

Assuming that we will evcIllually have dozens of tests, this will make a huge dif­
fercnce. For tesling I'eah vorld systems, we often have many thousands of tests, so
being precise about what test failed is essential.

957

9sa C H APTER 2 6 • TE STING

Before going further, note anolher example o f (semi-systematic) tcsting tech­
niquc: we tested with correct values, choosing some from the ends of the se­
quence and some frolll "the middle,'" For lhis sequence we could have tried all
values, but typic illy that 's not a realistic option. For the failing values, we chose
one from each end and one in the middle. Again, this is not perfectly systematic,
but we begin to sec a pattem that is lIseFul whenever we deal with sequences of
values or ranges of values - and that's very COllllllo n.

What's wrong with these inilial lcSLS?

We write the same things repeatedly.

vVc number the tests manually.

TIle output is very minimal (not very helpful),

After looking at this for a while, we decided to keep om tests as data in a file.
Each test would contain an identifying label, a value to be looked up, a sequence,
and an expected result. For example:

{ 27 7 { 1 235813 21} 0 }

111is is test number 27. It looks for 7 in the sequence (1,2,3,5,8,13,21) expecting
the resuit 0 (meaning false). 'Why do we put the test inputs in a file rather than
placing them right into the text of the test program? Well, in this c. ... se we could
have typed the tests straight into the program text, but having a lot o f data in a
source code file can be messy. and often, we usc programs to generate test cases.
Machine-generated tcst cases arc typically in data liles, Also, we can now write a
test prognun that we can run with a variety of fil es of test cases:

stru ct Test {

} ;

string label;
int val;
vector<int> seq;
bool res;

istream& operator»(islream& is, Test& t); /I use the described format

int error_count = 0;
Test t;
whi le (cin» t) (

bool r = binary_search(I.seq .begin O, I. seq .endO, t.val);

2 6 .3 TE STING

if (r !=t.res) {
cout « "failure: test "« t.label

«" binary_sea rch : "
« t.seq .sizeO«" elements, val=="« t.va!
«" ->"« t.res« '\11 ';

++error_count ;

return error_count;
}

int mainO
{

int errors = lescallOi
cout « "number of errors : "« errors« "\n";

}

Here is some test input using the sequences we listed above:

(1.1 1 (1 ,2,3,5,8, 13,21) 1 }
(1.2 5 { 1,2,3,5,8,13,21 } 1 }
(1.3 8 { 1,2,3,5,8,13,21 } 1 }
(1 .421 { 1,2,3,5,8,13,21) 1 }
(1.5 - 7 { 1,2,3,5,8,13,21 } 0 }
(1.64 (1,2,3,5,8,13,21) O}
(1.7 22 (1,2,3,5,8,13,21) 0 }

{2 l {} O}

{3.11 {1} 1 }

{3.20 { 1 }O }

{3.3 2 { 1 }O }

Here we sec why we used a string label rather than a number : thal way we can
"number" our tests using a more nexible system - here using a decimal system to
indicate separate tests for the same sequence. A more sophisticated formal would
eliminate the need to repeat a sequence in our test data me.

26.3.2.3 Random sequences
vVhen we choose values to be used in tcsting, we try to outwit the implemellters
(who are often ourselves) and to usc values that focus on areas where we know
bugs can hide {e.g., complicated sequences of conditions, the ends of sequences,

CHAPTER 26 • TESTING

loops, etc.). However, that 's also what we did when we tried to write and debug
the code. So, we might repeat a logical mistake from the design when we design
the tests and completely miss a problem. This is one reason it is a good idea to
have someone different from the developer(s) involved with designing the tests .
We have one technique that occasionally helps with that problem: just generate (a
lot of) random values. For example, here is a fu nction t.hat writes a test descrip­
tion to cout using randj nt() from §24.7:

void make_test(con st string& lab, int n, int base, int spread)
1/ write a test description with the label lab to cout

{

II generate a sequence of n elements starting at base
I/the average distance between elements is spread

coul « "(" « lab « n "« n «" {":
veclor<int> v:
int elem = base:
for (in I i = 0: k n; ++i) { 1/ make elements

elem+= randj nt(spread) :
v.push_back(elern):

int val = base+ land_int(elem-base):
bool found = false:

1/ make sea rch value

fOl (int i = 0: i<n ; ++i) { 1/ print clements and see if val is found
if (v{iJ==val) found = lrue;
cout « v(i]«" ";

coul« "}"« found« " }\n";

Note that we did not use binary_search to sec if the random val was in the random
sequence. We can't use what we are testing to detennine the correct value of a tCSl.

Actually. binary_search isn 't a part.icularly suitable example of the brule­
force random number approach to testing. We doubt I..hat tltis will find atl)' bugs
that arc not picked up by our "hand-crafted" tests, but o ft en I.his technique is use­
ful. Anyway, let's make a few random tests:

int no_oUests = rand_inU1(0);
for (int i = 0; kno_oUests; ++i) (

s iring lab = "rand_Iesc";
rna ke_test(lab+ to _Slri ng(i),

1/ make about 50 rests

1/ to_string from §23.2

26.] TES TI NG

randj nt(SOO),
0,
randj nt(SO»j

/I number of clemen!s
/I base
1/ spread

Generated tests based on random numbers are particularly useful when we need
to test the cumulative effects of many operations where the result of an opera tion
depends on how earlier operations were handled, that is, when a system has
state ; see §5.2.

111e reason LhaL random numbers arc nOt. all that useful for binary_search is
that each search of a sequence is independent of all oLher searches of Lhat se­
quence. 111at of course assumes that the implementation of binary_search hasn't
done something terminally stupid , such as modifying its sequence. "VVe have a
better test fo r that (exercise 5).

26.3.3 Algorithms and non-algorithms
We have used binary~sea rch () as an example. It 's a proper aJgoriLhm with

Well-specified requirements on its inputs

A well-specified elIect on its inputs (in this case, no elIects)

No dependencies on objects that are not its explicit inputs

Without serious constraints imposed by the environment (e.g., no speci­
fied time, space, or resource-sharing requirements)

It has obvious and expliciLly staled pre- and post-conditions (§S.lO). In oLller words,
it's a tester's dream. Often, we arc not so lucky: we have La test messy code Llmt (at
best) is defi ned by a somewhat sloppy English tex.! and a couple of diagrams.

Wait a minute! Are we indulging in sloppy logie here? How can we talk
about COITeClness and testing when we don't have a precise specification of what
the code is supposed to do? 11le problem is that much of what needs to be done
in software is not easy to specify in perfectly clear mathematical temu. Also, in
many cases where it in theory could be specified like lhat, tlle math is beyond the
abilities of the programmers who write and test the code. So we are left with the
ideal of perfectly precise spccificatiOlu and a reality of what someone (such as us)
can manage under real-world conditions and time pressures.

So. assume that you have a messy fUlletion tlIat you have to test. By "messy"
we mean:

III/JUls: Its requirements on its (explicit or implicit) inputs are not specified
quite as well as we would like.

Oul/mls: Its (explicit or implicit) OUtpLHS are not specified quite as well as
we would like.

961

%, C HAPTER 26 • TE STING

!USOIITCeS: Its use of resources (time, memory, liles, CIC.) arc not specified
quite as well as we would like.

By "explicit or implicit" we mean that we have to look nOljust 31 the fo rmal pa­
rameter and the return value, bUl also on any effects all global variables,
ioslreams, files, frcc-store memory allocation, etc. So, what can we do? First of
all, such a function is almost cCriainly tOO long - or we could have stated its re­
quirements and effects more dearly. Maybe we arc talking about a fUll ction that
is live pages long or uses "helper functions" in complicated and nOll-obvious
ways. You may think tJlal five pages is a lot for a function. It is, but we have seen
much, much longer functions than thaL Unfortunately, they arc not uncommon.

If it is our code and if we had time, we would fi rst of all try to break such a
"messy function" up into smaller functions that each come closer to our ideals of
a weU·specifi ed function and first test those. H owever, here we will assume that
our aim is to test the software - that is, to systcmatically find as many C!Tors as
possible - rather than (just) fixing bugs as we find them.

So, what do we look for? Our job as testers is to find crrors. Where are bugs
likely to hide? W hat characterizes code that is likely to contain bugs?

Subtle dependencies on "other code": look for usc of global variables,
non-canst-reference arguments, pointers, etc.

Resource management : look for memory management (new and delete),
file usc, locks, etc.

Look for loops: check end conditions (as for binary_search O).

if-statements and switches (often referred to as "branchillg"): look for er­
rors in th eir logic.

Let's look at examples of each_

26.3.3.1 Dependencies
Consider this nonsense function:

int do_dependenUinl a, int& b) /I messy function

{

)

II undiSCi plined dependencies

inl val;
cin»val ;
vec(val) += 10;
cout« a;
b++;
return b;

26 .] TESTING

To test do_ dependentO. we can't just synthesize sets of arguments and see what
it docs with them. We have to take into account that it uses the global variables
cin. cout, and vee . -l1mt's pretty obvious in this little nonsense function, but in
real code this may be hidden in a larger amou nt of code. Fortunately, there is
soft ware that can help us find such dependencies. Unfortunately, it is not always
easily available or widely used. Assuming that we don 't have analysis software to
help us, we go through the function line by line, listing all its dependencies.

To test do_ dependentO, we have to consider

Its inputs:

~l1le vallie of a

~nle value of b and the value of the int referenced by b

"n lC input from d n (imo val) and the state of d n

~nle state of cou t

"Inc value of vee, in panicular, the value of vec["al]

Its outputs:

~nle return value

TIle value of the int referenced by b (we incremented it)

Tne state of dn (beware of stream state and format state)

"nle state of cout (beware of stream state and fomlat state)

111e state of vec (we assigned to vee[vall)

Any exceptions that vee might have thrown ("ec[val] might be out of
range)

11lis is II long list. In fact, that list is longer that the function itself. TIlis goes a
long way toward explaining OUI' dislike of global variables and our concerns
abollt non·eonst references (and pointers). There really is something very nice
abollt a function that JUSt reads its arguments and produces a result as a return
va lue: we can easily understand and test il.

Once the inputs and Outputs arc identified, we are basically back to the
binary_searchO case. We simply generate tests with input values (for explicit and
implicit inputs) to see if they give the desired ou tputs (considering both implicit
and explicit outpu ts). With do_ dependentO, we wou ld pm bably start with a
vcry large val and a negative val, to sec what happens. It looks as if vec had bct·
ter be a range·checked vector (or we can very simply generate really bad errors).
Wc would of course check what the documentation said about all those inputs
and outputs , but with a mcssy function like that we have little hope of the spcrifi­
cation being complete and precise, so we will JUSt break the functions (i.e., find
errors) and Start asking questions about what is correcl. Often, such testing and
qucstions should lead to a redesign.

%3

964

26.3.3.2 Resource management
Consider this nonsense function:

C H APTER 26 • TESTING

void d o_resourcesl(int a, int b, const char · s) /I messy func tion
/I undisciplined resource use

}

FILE " f = [ope n (s, "r ");
intO p = new inlla1;
if (b<=O) throw Bad_argO;

intO q = new intlb);

d elete[l Pi

/I open file (C sty le)

II allocate some memory

/I maybe throw an exception

/I allocate some more memory

1/ deallocate the memory pointed 10 by p

To test do_resourcesl 0, we have to consider whether evcly resource acquired
has been properly disposed o f, that is, whether every resource has been either re­
leased or passed to some other function.

Here, it is obviolls that

The fLie named s is not closed

The mcmOlY allocated for p is leaked if b<=O or if the second new th rows

The memory for q is leaked if Ikb

In addition, we should always consider the possibility that an attempt at openi ng
a fil e might fail. To get this miserable result, we deliberately used a very old­
fas hioned programming style (fopenO is the standard C way of opening files).
\Ve cou ld have made the job for testers more slraightfon vard by writing

void dOJesources2(int a , int b. canst char - s) II less messy function
(

}

ifs.ream iSiS);
vector<inl>vl (a);
if (b<=O) throw Bad_arGO;
vedor<inb v2(b);

/I open file
II create vector (owning memory)
/I maybe throw an exception
/I create another vector (owning memory)

Now evcry resource is owned by an object with a destructor that will release il.
Considering how we could write a fu nction more simp!), (more cleanly) is some­
times a good way to get ideas for testing. TIle "Resource Acquisition Is Initializ.a·
lion'" (RAIn technique from §19.5.2 provides a general strateg), for this kind of
resource management problem.

Please note thaI resource management is not JUSt checking that every piece of
memory alloc,lted is deleted. Sometimes we receive resources from elsewhere (e.g.,

26.3 TE STI NG

as an argument), and sometimes we pass resources Oul of a function (e.g., as a return
value). It can be quite hard to detcnnine what is right about SUdl cases. Consider:

FILP do_resources3(int a, int · p, const char· s)
/I undisciplined resource passing

{

}

f llP f = fopen(s, "r") ;
delete p;
delete var;
var = new int[27] ;
return f;

/I messy function

Is it right for do_resources30 to pass the (supposedly) opened file back as the re­
turn value? Is it right for do_reso urces30 to delete the memory passed to it as
the aJ"b'llment p? We also added a really sneaky use of the global variable var (ob­
viouslya pointer). Basically, passing resources in and out of functions is common
and usefu l, but to know if it is correct requires knowledge of a rcsource manage­
ment strategy. Who owns the resource? Who is supposed to deletclrelease it?
111e documentation should clearly and simply answer those questions. (Dream
on.) In either case, passing of resources is a fertile area for bugs and a tempting
target for tesling.

Note how we (deliberately) complicated the resource management example
by using a global variable. Things can get really messy when we start to mix the
sources of likely bugs. As progranuners, we try to avoid that. As testers, we look
for such examples as easy pickings.

26.3.3.3 Loops
We have looked at loops when we discussed binary_searchO. Basically most er­
rors occur at the ends:

Is everything properly initialized when we start the loop?

Do we correctly end with the last case (often the last element)?

Here is an eXillllple where we get it wrong:

int doJoop(veclor<i nb& v)
II undiSCiplined loop

{

int i;
int sum;

/I messy fUllct ion

while(i<=vec.size()) sum+=v[i);
return sum;

%5

... CHAPTE R 26 • TESTING

There arc three obvious errors. (What are they?) In addition, a good tester will
immediately spot the opportunity for an overflow where we arc adding to sum:

Many loops involve data and might calise some sort of overflow when
they arc given large inputs.

A fatuous and particularly nasly loop error, the burTer overflow, ralls into the
category that can be caught by systematically asking the twO key questions about
loops:

char buf(MAX]; /I fixed-size buffer

char- read_lineO /I dangerously sloppy
(

)

inti=O;
c har Chi
while(cin .get(ch) && ch!='\n ') buf(i++1 = chi
bu([i+l1 = 0;
return buf;

Of coursc,you wouldn't write something like that! C\'Vhy not? What 's sO wrong
with read_lineO?) Howeve r, it is sadly common and comes in many variations,
such as

/I dangerously sloppy:
gets(buO; /I read a line in to buf
scanf("%s",buO; 1/ read a line into buf

Look up getsO and scanfO in your documentation and avoid them like the
plague. By "dangerous," we mean that such buffer overnows arc a staple o f
"cracking" - that is, break·ins - on computers. Some implementations now wam
against getsO and its cousins for exactly tllis reason.

26.3.3.4 Branching
Obviously, when we have to make a choice, we may make the wrong choice.
This makes if-statements and switch-statements good targets for testers. TIlerc
are two mitior problems to look for :

Arc all possibilities covered?

Arc the right actions associated with the right possibilities?

26 .] TE STING

Consider this nonsense function:

void do_branchl(int x, int y) II messy func tion
II undisciplined use of if

{

)

if (x<O) {
if (y<O)

cout« "very negative\n";
else

cout« "somewhat negative\n";

else if (x>O) {
if (y<O)

cout « "very positive\n";
else

co ut « "somewhat positive\n";
)

rn le most obvious en or here is that we "forgot" me case where x is O. When test·
ing against zero (or for positive and negative values), zero is often forgotten or
lumped with the wrong case (e.g. , considered negative). Also, there is a more sub·
tic (but not uncommon) error lurking here : the actions for (x>O && y<O) and (DO
&& y>=0) have "somehow" been reversed. "This happens a lot wim cut-and·paste
editing.

'11e more complicated the use of if·statements is, the more likely such errors
become. From a tester's point of view, we look at such code and try to make sure
that every branch is tested. For do_branchl 0 the obvious test set is

do_branch1 (-1 ,-1)i

do_branch1(-1 , 1)i
do_branch1 (1 ,-1)i

do_branch1{1 ,1);
do_branchl (-l ,O);
do_branchl (O,- l)i
do_branchl (1,O)i
do_branchl (O,l) i
do_branch1 (0,0);

Basically, that's the bnlte·force "try all the alternatives" approach after we noticed
that do_branchl0 tested agaillst 0 using < and >. To catch me wrong actions for
positive values of x, we have to combine the calls with their desired Output.

967

... CHAPTER 26 • TESTING

Dealing with switch-statements is fu ndamcntaHy similar to dealing with ii­
statements .

void do_branchl (inl x, int y) /I messy function
1/ undisciplined use of switch

{

}

if (y<O && y<=3)
switch (xl {
case 1:

coul « "one\n";
b reak;

case 2:
cout « "two\n";

case 3:
co ut « "three\n";

}

Here we have made fOUf classical mistakes:

We range checked the wrong variable (y instead of x).

"Ve forgot a break statement leading to a wrong action for)(==2.

We fo rgot a default case (thinking we had taken care of that with lhe if­
statement).

We w rolC ydJ when we meant to say (ky.

As testers, we always look fo r unhandlcd cases. Please nme that 'just rlXing the
problem" is not enough. II may reappear when we arc not looking. As testers, we
want to write tests that systematically catch crrors. If we j uSt ftxed this simple
code, we may very well get our fix wrong so that it either does n' t solve the prob­
lem or introduces new and different errors. 111e purpose of looking at the code is
not really to spot errors (though that 's always useful), but to design a suimble set
of tests that will catch all errors (or, more realistically, will catch many errors).

Note that loops have an implicit " if": they test whether we have reached the
end . 111US loops arc also braJlching statements. When we look at programs COIl­

taining branching, me [rrst question is always, "'Have we covered (tested) every
b ranch?" Su rprisingly that is nOt always possible in real code (because in real
code, a function is called as needed by other functions and not necessarily in all
possible ways). Consequently, a common question for testers is, " \Vhat is your
code coverage?" and the answer had better be, "We tested most branches," fol­
lowed by an explanation of why the remaining branches arc hard to readl. 1000f0
coverage is the ideal.

2 6 .3 TE STI N G

26.3.4 System tests
Testing any significant system is a skilled job. For example, the testing or the COIll ­

puters that control telephone systems takes place in specially constructed rooms
with racks rull or computers simulating thc traffic or tens or thousands or people.
Such systems cost millions and are the work or teams or very skilled engineers.
After it is deployed , a main telephone switch is supposed to work continuously
ror 20 years with at most 20 minutes or downtime (ror any reason, including
power railures, flooding, and earthquakes). We will not go into detail here - it
would be easier to leach a physics rreshman to calculate course corrections ror a
Mars probe - but we'll try to give you some ideas that could be usdul ror a
smaller project or ror understanding the testing or a larger system.

First or all , please remember that the plllpose or testing is to find errors, es­
pecially potentially rrequent and pOlentiaHy serious en·ors. It is not simply to
write and run the largest number or tests. TIlis implies that some understanding
or the system being tested is highly desirable. Even more than ror unit testing, cr·
fective system testing relics on knowledge or the application (domain knowl­
edge). Developing a system takes more than just knowledge or programming
language issues and computer science; it requires an understanding or the appli·
calion areas and or the people who use the applications. "nlis is somellung we
find important ror motivating us to work with code: we get to sec so many inter·
esting applications and meet interesting people.

For a complete system to be tested, it has to be built out or all or its parts
(units). "nlis can take significant time, so many system tests are run just once a
day (often at night while the developers are supposed to be asleep) arter all unit
tests have been done. Regression tests arc a key component here. TIle areas or a
program in which we are most likely to find e rrors are new code and areas or
code where errors were round earlier. So running the collection or old tests (the
rq,rression tests) is essential; without those a large systcm will nevcr become sta­
ble. Wc would introduce new bugs as rast as we removed old ones.

Note that we take it ror granted that when we fix a rew errors, we acciden­
tally introduce a rew new ones. We hope the number or new bugs is lower than
the number or old ones that we removed, and that the consequences or the new
ones are less severe. However, at least until we have rerun our regression tests
and added new tests ror our new code, we must assume that our system is bro­
ken (by our bug fLx es).

26_3.4.1 Testing GUls
Imagine sitting in front of a screen trying to be systematic about testing a pro­
gram with an elaborate graphical user interrace. \rVhere do I click lhe mOllse? In
what order? What values do I enter? In what order? For any sigIuficant program,
this is hopeless. TI1cre are so many possibilities that we could consider hiring a

969

.7. C H APTER 2 6 • TESTING

whole bunch of pigeons to peck at the screen at random (they work for bird
feed!). H iring large numbers of "ordinary novice users" and seeing where they
"peck" is indeed not uncommon and also necessary, but it is not a systematic
strategy. Any rcaJ solution has to involve some repeatable sequence of tcsts. 111i5
typically involves designing an interface to the application that bypasses the
CUI.

Why is it necessary to sit a human in front of a CUI application and "pcck~?
The rcason is simply that testers cannot anticipate every action llml a devious,
clumsy, naive, sophisticated, o r hurried user can make. Evell with the best and
most systematic testing, we still need real people LO try out the system. Experi­
ence shows that for any significant system real users will do things that even ex·
perienced des igners, implementers , and testers have failed to anticipate. Or as a
programmer's proverb has it, "As soon as you build a foolproof system. nature
produces a belter fooL"

So, the ideal for testing is that the CUI simply composes calls to some well·
defined interface to the "main program"; that is, the CUI simply provides 1/0,
and any significant processing is done in isolation from 1/0. Doing this implies
that we can provide a different (non-graphical) interface:

User User

I I
CUI Text 1/0

~ ~
"Main program"

11mt allows us to write or generate scripts fo r the "main program" just as we did
for our unit testing (§26.3.2)_ 111cn we can test the "main program" in isolation
from the CUI:

26.3 TE STING

Test output
Script

~/
Text 110

~
"Main program"

Intcrestingly, this also allows us to sem.i-systematica.lly test the GUI: we can run
scripts using the text 110 and watch the effect on the CU I (assuming that we
send the output frOill th e main program to the CU I as well as lhe text-lIO inler­
face). More radically, we might bypass the "main application" while we test lhe
CU I by providing text commands that go "directly" to the CUI through a little
text-to-C U I·command "translator":

Test output
Script

T ~/
CUI

,
Text 110 a

'----... /" n
s
I
a
t

0 ,

lllis illuslratCS twO important aspects of good testing:

ParLS of a system should (as far as possible) be testable in isolation. Only
"uniLS" with clearly defined interfaces arc testable in isolation.

TesLS should (as far as possible) be repeatable. Essentially no test that in­
volves a human is repeatable.

971

972 C HAPTER 26 • TES TING

This is also an example of the "design for testing" that we have alluded to: some
programs arc far easier to test than others, and if we think about testing from the
very onset of OUf design, we can build systems that arc beuer organized and eas­
ier to test (§26.2), Better organized? Consider:

User

I
Program with
CUI

This diagram is obviously simpler than u1e diagrams above. We CaJl start build­
ing this system with less forethought - just use our favorite GUllibrary wher­
ever in the code we need to communicate with the user. It will probably also
require less code than OUf hypothetical application with both text and graphical
1/0. How then can our application using an explicit interface and morc parts be
better organized than a "simple and straightforward" application where the CUI
logic is dispersed throughout the code?

Well, to have twO interfaces, we need to carefully define the interface be­
tween the "main programn and 110. In fact, we have to define a common 110 in­
terface layer (similar to the "translator" we used to lcst the CUI in isolation from
the "main program":

CUI Text I/O

~ ~
110 interface

"Main program"

26 .3 TESTING

We have seen an example or this: the graphical interrace classes in Chapters 13-
16 provided an example. 111ey isolate a "main program" (that is, the code you
wrote) from the "ofT·the-sheW' CUI system: FLTK, Windows, Linux's CU I,
whatever. With this design we can usc any 110 system.

Is this importam? We think it is immensely so. First, it helps testing, and
withollt systematic tcsting it is hard to be serious about correctness. Second, it of.
rers portability. Considcr the following scenario: You have started a small com­
pany and writtcn your initial application for an Apple because you happen to like
that computcr. ow, your company is getting sllccessful , and you notice that
most or your potential customers run their programs on Windows machines and
non-Mac Linux systems. \"'hal do you do? With the "simple" organization of the
code with (Apple Mac) CUI commands scattered throughout your code, you
must rewrite everything. That's OK, because it (relying on ad hoc testing) proba­
bly has many hidden errors. But consider the altemative where the "main pro­
gram" kept the CUI at arm's length (to simplify systematic testing). Now you
simply interrace another CUI to your interface classes (the "translator" on the di­
agram) and keep most code unchanged across systems:

GUI 3
GUI 2

GUl l

~~
Text 110

110 interface

"Main program"

Actually, this design is an example of the use or "thin" explicit interraces to ex­
plicitly separate parts of a program. Il is similar to the usc of "layers" that we saw
in §12.4. l Csting really reinforces the desire to have a program partitioned into
clearly delimited parts (with interraces that we can use for testing).

26.3.5 Test ing classes
l csting a class is technically unit testing, but since there arc typically several
member functions and some state involved, testing a class takes on aspects of sys·
tem testing. This is even more true if the class we are trying to test is a base class,

973

974 CHAPTER 26 • TEST IN G

so that we have to consider it in several contexts (as defined by d ifferent derived
classes). Consider the Shape class from §14.2:

class Shape (/I deals with color and style, and holds sequence of lines
public:

void drawO canst; /I deal with color and draw lines
virtual void move(int dx, int dy);

void seccolor(Color col);
Color colorO consl;

void scCstyle<line_style sty);
Line_style style() const;

void sel_fill_color(Color col);
Color fill_colo rO const;

Point poinl(inl i) const:
int number_oCpointsO const;

vi rlual -Shape() ()

/I move the shape +=dx and +=dy

/I read-onl y access 10 points

protected :
ShapeO;
virtual void draw_linesO const;
void add(Point pI;

/I draw the appropriate lines
/I add p 10 points

void seCpoinl(int i,Point pI;
private:

/I points[i[=p;

};

vector<Point> points; II not used by all shapes
Color !color; /I color for lines and characters
line_style Is ;
Color fco lor; /I fill color

Shape(const Shape&); /I prevent copying
Shape& operator=(const Shape&);

How would wc go about tcsting thal? Let's first consider what (from a testing
point of view) makes Shape different frOIll binary_search :

Shape has scveral functions.

A Shape has a mutable state (we can add points, change color, ctc.); that
is, lhe effect of one function can affect the behavior o f anothcr function.

26. 3 TE STIN G

Shape has virtual functions ; that is, the behavior of a Shape depends on
what (if any) class has been derived from it.

Shape is not an algOl;thm.

A change to a Shape can bave an effect on t.he screen.

111e last point is really nasty. This basically means that we have to have a human
sit and watch to see if a Shape behaves as intended. 11lis is not conducive to sys­
tematic, repeatable, and affordable testing. As mentioned in §26.3.4.! , we'll often
go out of our way to avoid that. However, for now, we will assume an alert
watcher who'll note if the image on the screen deviates from what was required.

Note an important detail: a user can add points, but not remove them. A user
or a Shape can read points, but not change them. From the point of view of lest­
ing, anything that does not (or at least isn't supposed to) cllllnge eases our work.

What can we test and what can' t we test? To test Shape, we must try to test
in isolation and in combination with a couple of derived classes . H owever, to test
that Shape works correctly for a particular derived class , we have to test that de­
rived class.

We note that basically a Shape has a state (value) defined by four data
members:

vector<Poinl> points;
Color leolor; /I color for lines and characters
Line_style Is;
Color fco lor; II fill color

All we G,n do to a Shape is to make changes to those and see what happens. For·
tunately, the only way to change the data members is through the interface de­
fined by the member functions.

The simplest Shape is a Line, so we start (using the most naive style) by mak­
ing one and then making all the changes we can:

Line In(Point(10,10), Point(l00, 100));
In.drawO; II see if it appears

/I check the po ints:
if (In.number_oCpoinlsO != 2) cerr« "wrong number of points";
if (In.poinl(0)!=Point(10, 10» cerr« "wrong point 1";
if (In.point(l)!=Point(l00, 100)) cerr« "wrong point 2";

for (int i=O ; i<10; Hi) {
In .move(i+S,i+S) ;
In.drawO;

}

II see if it moves

.75

976 C HAPTER 26 • TESTING

for (int i=O; i<10; ++i) {
In .move(i-5,i-5);
In .drawO;

II see jf it moves back to where it started

if (po int(O)!= Point(10, 10)) cerr« "wrong poi nt 1 aft e r move";
if (point(l)!= Point(l00, l00» ce rr« "wrong point 2 aft e r move ";

fo r (int i = 0; i<100; ++i) { /I see if the color changes correctly
In . seC color(Colo r(i· ' 00» ;

}

if (In .colorO != j· l 00) (err « "bad set_colo r";
In .draw();

for (int i = 0; i<l00; Hi) { /I see if the style changes correctly
In . seCstyle(li ne_style(j· 5);

}

if On .styleO != j eS) cerr « "bad sel_style ";
In .drawO;

In principle, this tCStS creation, movement, color, and style. In reality, we need to

pick our leSt cases far more carefully (and deviously), just as we did for
binary_sea rch. Again, we will almost certainly conclude that reading in a descrip­
tion of what tests to run from a file is a beuer solution and we' ll find a beuer way
of reporting errors_

Also, we'll find that no human can kcep up with the changes to the Shape, so
we have just two alternatives. We can

Slow down the program so that a human can keep up

Find a representation of the Shape that we can have a program read and
analyze

What is almost completely missing so far is testing of add{Poinl) . For that, we'd
probably use an O pen_polyline .

26.3.6 Finding assumptions that do not hold
TIle specification of binary_search clearly stated thai the sequence in which we
scaldl must be sorted . TImt deprived us of many opportunities for sneaky unit
tests. But obviously there arc opportunities for writing bad code that we have not
devised tests to detect (except for the system tests). Can we usc our understand­
ing of a system's "units" (functions, classes, etc.) to devise better tests?

Unfortunately, the simplest answer is no. As pure testers, we cannot change
the code, but to detect violations of an interface's rcquiremems (pre-conditions),

26 .3 TESTING

someone must either check before each call or as part of the implementation of
each c,111 (see §5.5). However, if we are testing our own code, we can insert such
tcsts. If we arc testers and the people who write the code will listen to us (that 's
1I0t always the case), we can teU them about the unchecked requirements and
have them ensure that they arc checked.

Consider again binary_search : we couldn't test that the input sequence
[firsl:lasl) really was a sequence and mat it was sorted (§26.3.2.2). However, we
could write a function that docs check:

templale<c1ass Ite r, class T>
bool b2(lter first, Iter last, canst T& value)
{

/I check if Ifirst: lastl is a sequence:
if (Iastd irst) throw Bad_sequence() ;

II check if Ihe sequence is ordered:
if (2<1asl- first)

for (ller p = firsl+l ; p<last; ++p)
if (· p<-(p- 1» throw NOI_orde redO;

II all's OK, call binary_search:
return binary _sea rch(firsl,last,value);

Now, there are reasons why binary_search isn't written with such tests, including
these:

111e test for lastdi rst can't be done for a forward iterator; for example,
the iterator for std : :Iist docs not have a < (§B.3.2). In general, mere is no
really good way of testing lhat a pair of iterators defines a sequence
(starting to iterate from first hoping to meet last is not a good idea).

Scantling the sequence to check that the values are ordered is far more
expensive man executing binary_search itself (the real purpose of
binary_search is not to have to blindly walk through the sequence look­
ing for a value the way sid : :find does).

So what could we do? We could replace binary_search with b2 when we are tCSt­
ing (only for calls to binary_search with random-access iterators, though). Alter­
natively, we could have the implementer of binary_search insert code that a
tester could enable:

.77

978 (HAPTER 26 • TESTING

template<dass Iter, class T> 1/ warning: contains p~udo code
bool binary_search (Ite r first, Ite r last, const T& value)
(

)

if (Iesl e nabled) {

)

if (Iter is a random access iterato r) (
II check if [fi rst last) is a sequence:
if (lasld irst) throw Bad_scquence() i

/I check if the sequence is ordered:
if (first! =la51) {

Iter prey = first ;
for (Iter p = ++first i p! =lasl j ++p , ++ prey)

if (·p<·prev) throw Not_orderedOj

/I now do binary_search

Since the meaning of test e nabled depends on how testing of code is arranged
(for a specific system in a specific organization) , we have left it as pseudo code:
when testing yOllr own code, you could simply have a lesCe nabled variable. We
also left the Iter is a random access ite rato r test as pseudo code because we
haven't explained "iterator traits." Should you really need such a test, look up
ileralor traits in a more advanced C++ textbook.

26.4 Design for testing
When we start writing a program, we know that we would like it to evelllually be
complete and correct. We also know that to achieve that, we must test it. Conse­
quentJy, we try to design ror correctness and testing rrom day one. In ract, many
good programmers have as their slogan "Test early and orten" and don 't write
any code before they have some idea about how they would go aboUl testing it.
Thinking abOlll testing early helps to avoid errors in the first place (as well as
helping to find them later). We subscribe to that philosophy. Some programmers
even write unit tests before they implement a unit.

111c cxample in §26.3.2.1 and the exan1plcs in §26.3.3 illustrate these key
notions:

Usc well-defined interraees so that you can write tests ror the usc o r tJlcse
interraces.

Have a way or rcpresellling operations as text so that they can be stored ,
analyzed, and replayed. TIlls also applies to output operations.

26 .6 PERFORMAN C E

Embed tests of unchecked assumptions (assertions) in the calling code to
catdl bad aJ'guments before system testing.

Minimize dependencies and keep dependencies explicil.

Have a dear resource management strategy.

Philosophically, this could be scen as enabling unit-testing techniques for sub­
systems and complete systems.

If performance didn't malter, we could leave lhe test of the (otherwise) un­
checked assumptions (requirements, pre-conditions) enabled all the time. How­
ever, there arc usually reasons why they are not systematically checked. For
example. we saw how checking whether a sequenee is sorted is both complic.'1 ted
and far more expensive than using binary_sort . Consequently, it is a good idea to
design a system that allows us to selectively enable and disable such checks. For
many systems, it is a good idea 10 leave a fa ir number of the cheaper dlecks en­
abled even in the final (shipping) version : sometimes "impossible" things happen
and we would prefer to know about them from a specific error message ralher
than from a simple crash.

26.5 Debugging
Debugging is an issue of technique and attitude. Of these, attitude is the more un·
portant. Please revisit C hapter 5. Note how debugging and testing diJTer. Both
catch bugs, but debugging is much more ad hoc and typically concerned witll re­
moving known bugs and implementing features. \Vhatever we can do to make
debugging more like tcsting should be done. It is a slight exaggeration to say that
we love tesling, but we definitely hate debu~rjng. Good early unit testing and de­
sign for tesling help minimize debugging.

26.6 Performance
Having a prObrram correct is not enough for it to be useful. Even assuming that it
has sufficient facilities to make it useful, it must also provide appropriate per­
formance. A good program is "efficient enough"; that is, it will run in an accept­
able time given the resources available. Note thal absolute effi ciency is
uninlcresting, and an obsession with geuing a program to run fast can seriously
damage development by complicating code (leading to more bugs and more de­
bugging) and making maintenance (including porting and performance tuni ng)
more difficult and costly.

So. how can we know that a program (or a unit of a program) is "effi cient
enough"? In the abstract we cannot know, and for many programs the hardware
is so fast that the question doesn't arise. We have seen products shipped that were
compiled in debug mode (i.e. , running about 25 timcs slower than necessary) to

9,.,

980 C HAPTER 2 6 • TE STI NG

enable better diagnostics for errors occurring after dcploymem (this can happen
to even the best code when it has to coexist with code developed "elsewhere") .

Consequently, the answer to the "Is it efficient enough?" question is : "Mea'
sure how long interesting lest cases take." To do that, you obviously have to
know your end users well enough to have an idea of what they would consider
"interesting" and how much time such interesting lIses can acceptably take. Logi­
cally, we simply clock our tests with a stopwatch and check that none consumes
an unreasonable amount of time. This becomes practical when we usc fu nctions
such as clockO (§26.6.1) to do the timing for us, and we call automatically com­
pare the time taken by tests with estimates of what is reasonable. Alternatively (or
additionally) we can record how long tests take and compare them to earlier tests
runs. 111is way we get a form of regression test for perfonnance.

Some of the worst performance bugs arc caused by poor algorithms and mil
be found by testing. One reason for tcsting with large sets of data is to expose in·
efficient algoritlmls . As an example, assume that an application has to make sums
of the elements in rows of a matrix (using the Matrix library from Chapter 24).
Someone supplied an appropriate function:

double row_sum(Matrix<double,2> m, int n)i /I sum of elements in mIni

Now someone uses that to gencrate a vector o f sums where vln] is the sum of the
elements of the fi rst n rows:

double row_accum(Matrix<double,b m, int n) II sum of elements in mIO:n)
{

)

double s = 0;
for (int i=O; kn; ++n) s+=row_sum(m,i);
return Si

/I compute accumulated sums of rows of m:
vector<double> v;
for (int i = 0; i<m.dim10; ++i) v.push_back(row_accum(m,i+1));

You c<m imagine this to be part of a unit test or executed as part of the application
exercised by a system test. In either case, you w ill notice something strange if the
matrix ever gets really large: basically, the time needed goes up with the square
of the size of m. VVhy? What we did was to add all the clements of tile first row,
then we added all the elements in the second row (revisiting all tile elements of
the first row), then we added all the clements in the tllird row (revisi ting all ti le cl·
ements of the first and second rows), etc.

26 .6 PER FO RMAN CE

If you think this example was bad, cons ider what would have happened if
the row_sum O had had to access a database to get its data. R('ading from disk is
many thousands of times slower lhan reading from main memory.

Now, you may complain: ;';Nobody would write something that stupid !"
Sorry, but we have seen much worse, and usually a poor algorilhm (from the per·
fonnance point of view) is nOt that easy to spot when buried in application code.
Did you spot the performance problem when you first glanced at the code? A
problem can be quitc hard to spot unless you are specifically looking for that par­
ticular kind of problem. Here is a simple real-world example found in a server:

for (i nt i=O; kSlrle n(s) ; ++i) { ' . do someth ing with slil .' }

Often, s was a string with about 20K characters.
Not all performance problems have to do with poor algorithms. In fact (as

we pointed out in §26.3.3), much of the code we write does not classify as proper
algori thms. Such '·non-algorithmic" performance problems typically fall under
the bro.1d classification of "poor design." They include

Repeated recalculation of information (e.g. , the row-summing problem
above)

Repeated checking of the same fact (e.g., checking that a.n index is in
range each lime it is used in a loop or checking an argument repeatedly
as it is passed unchanged from function to function)

Repeated visits LO the disk (or to lhe web)

Note the (repeated) re/x atefl. Obviously, we mean "unnecessarily repeated," but
the point is that unless you do something many times, it will nOt have an impact
a ll performance. We arc all for thorough checking of function arguments and
loop variables, but if we do the same check a million times for the same values,
those redundant checks JUSt might hun performance. If we - by measurement -
find that performance is hurt, we will try to sec if we can remove a repeated ac­
tion. Don't do that unless you arc sure that perfollllance is really a problem. Pre­
mature optimization is the source of many bugs and much wasted time.

26.6.1 Timing
!-low do you know if a piece of code is fast enough? How do you know how long
an operation takes? Weil, in many cases where it matters, you can simply look at
a clock (stopwatch, wall clock, or wristwatch). 111at'S not scientific or accurate,
but if t.hat 's not feasible, you can often conclude that the program was fast
enough. It is not good to be obsessed Wilh perfonnance.

If you need to measure smaller increments of time or if you can't sit around
with a stopwatch, you need to get your computer to help you ; it knows the time

981

982 C HAPTER 26 • TESTING

and can give it to yOll. For example, on a Unix system, sim ply prcGxing a com­
mand with time will make the system print out the time taken. You might usc
time to figure out how long it takes to compile a C++ SOUfce fi le x.cpp. Nor­
mally, you compile it like this:

g++ x.cpp

·10 get that compilation timed, you juSt add time :

time g++ x.cpp

111is will compile x.cpp and also print the time taken on the screen. TIlis is a sim­
pic and effective way of timing small programs . Remember to always do several
timing mns because Mother activities" on your machine might interfere. If you gct
roughly the same answer lhree times, you can usually OUSt the resull.

BUl what if yOli want to measure something that takes juSt milliseconds?
\.vhal if yOll want to do your own, morc detailed, measurements of a parl of a
program? You use the standard library function clockO LO measure the time lIsed
by a function do_somethingO like this:

.include <ctim e>
#include <iostream>
using namespace sid ;

int mainO
{

int n = 10000000;

clock_t t1 = clockO;
if (11 == clock_I(-1)) {

II repea t do_somethingO n times

II start time
II clock_t(- l) means "clockO didn't work~

(err« "sorry, no clock\n";
exit(l);

}

for (int i = 0; kn; i++) do_somelhingO; II timing loop

clock_t 12 = clock(); II end time
if (t2 == clock_t(- l » {

cerr « "so rry, clock overflow\n";
exit(2);

}

26 . 7 REFERENCES

)

co ut « "do_somethingO " « n « " times took "
« double(t1- I1)/CLOCKS_PER_SEC« " seconds"
« n (measurement granularity : "
«ClOCKS_PER_SEC« " of a second)\n ";

The clockO function retums a result of type clock_I. TIle explicit conversion
double(t2-t1) before dividing is necessary because clock_I might be an integer.
Exactly when the clockO starts running is implememaLion defined; clockO is
meant to measure time intervals within a single run of a program. For the values
11 and t2 retumed by c1ockO, doubl e(t2-tT)/CLOCKS_PER_SEC is the system's
best approximation of the lime in seconds between the two calls. You'll find
CLOCKS_PER_SEC ("clock ticks per second") in <clime>.

If clockO isn't provided for a processor or if a time interval is too long to
measure, clockO retums clock_t<-1) .

TI1C clockO function is meant to measure intervals from a fraction of a sec­
ond to a few seconds. For example. if (as is nOt. uncommon) clock_I is a 32-bit
signed int and CLOCKS_PER_SEC is 1000000, we can use clockO to measure from
o to just over 2000 seconds (about half an hour) in microseconds.

Again, don't believe any lime measurement that you cannot repeat with
roughly the same result three limes. What docs "roughly the same" mean?
"Wtdlin 10010" is a reasonable answer. Remember that modem computers arefasl:
1,000,000,000 inSlnlctions per second is common. 111is implies that you won't be
able to measure anything unless you can repeat it tens of thousands of times or it
docs something really slow, such as writing to disk or access ing the web. In the
laner case, you just have to get it to repeat a few hundred tUnes, blll you have to
worry that so much is going on that you might not understand the results.

26.7 References
Stone, Debbie, Caroline Jarrett, Mark WoodrofTe, and Shailey Minocha. User Ill/er­

face Design atul Evaluahim. Morgan Kaufmann, 2005. ISBN 0120884364.
'¥hiuaker, James A. Huw 10 BreaR Sifiwllre: A Prllctical Gui.de 10 Testing. Addison­

We,ley, 2003. ISBN 0321194330.

983

984 CHA PTER 26 • TESTING

".; Drill

Get the lcst of binary_search to run :

1. Implement the input operator fo r Test from §26.3.2.2.
2. Complete a ftl c OftCSls for the sequences from §26.3:

a. {1 ,2,3,5,8, 13,2l} /I an "ordinary sequence~

b. {)
c. {1 }

d. {1 ,2,3,4 } /I even number of elements
c. {1 ,2,3,4,5} /I odd number of elements
f. {1, 1, 1, 1, 1, 1, 1 } /I alJ elements equal
g. (0,1,1 ,1,1,1,1,1,1,1,1,1 ,1 } /I different element at end
h. (0,0,0,0,0,0,0,0,0,0,0,0,0,1 } /I different clement at end

3. Based on §26.3.1.3, complete a program .. hat generates

a. A very large sequence (what would you consider very large, and why?)
b. Ten sequences with a random number of clements
c. Ten sequences with 0, 1, 2 ... 9 random clements (but still ordered)

4. Repeat these tests for sequences of soings, such as (Bohr Darwin Einstein
lavoisier Newton Turing) .

Review

1. Make a list of applications, each with a brief explanation of the worst
thing tlm can happen if there is a bug; e.g., airplane control - crash: 23 1
people dead ; $500M equipment loss.

2. Why don' t we just prove ou r programs correct?
3. What's the difference between unit testing and system testing?
4. What is regression testing and why is it important?
5. What is the purpose of testing?
6. Why doesn' t binary_search just check its requirements?
7. If we can't check for all poss ible errors, what kinds o f errors do we pri~

marily look for?
8. Where al·e bugs most likely to occur in code manipulating a sequence of

elemellls?
9. Why is it a good idea to test for large values?

10. Why do we often represent tests as data rather than as code?
II. Why and when would we lise lots of tests based on random values?
12. Why is it hard to test a program using a CUI?
13. What is needed to test a "unit" in isolation?
14. What is the connection between testability and portability?

C HAPTER 26 EXERCISES

15. What makes testing a class harder than testing a function?
16. W hy is it impommt lhal tests be repeatable?
17. W hm can a tester do when finding mat a "unit" relies on unchecked as~

sumptions (pre-conditions)?
18. What can a designer/implementer do to improve testing?
19. How docs testing differ from debugging?
20. \"'hen docs performance matter?
2 J. Give twO (or more) cxamples of how to (easily) create bad perfonnance

problems.

Terms
assumptions
black·box testing
branching
d ockO
design for tcsting
inputs
Outpu ts

Exercises

post-condition
pre-condition
proof
rcgrcsslon
resource usage
sta te
system test

test covcrage
test harness
testing
timing
unit test
white· box testing

I . Ru n your binary search algorithm [rom §26. ! wilh the tests prescnted in
§26.2. 1.

2. Modify thc lesling of binary_search LO deal with arbitrary element types.
"111cn, test it with siring sequences and noaling-point sequcnces.

3 . Repeat the exercise in §26.2 .1 with the version of binary_sea rch thal
takes a comparison criterion. M ake a list of new opportunities for errors
illlroduced by that extra argument.

4. Devise a fonnm for test data so t.hat you can define a sequence once and
n m several tests against. it.

5. Add a tesltO the set. of binary_search tests to try to ca t.ch the (unlikely)
error of a binary_search modifying the sequence.

6. Modify the calculmor from C hapter 7 minimally to let it take input from a
ftle and produce output. to a fil e (or usc your operating syslem's facilities
fo r redirecting 110). TIlcn devise a reasonably comprehensive test for it.

7. Test I.h e "simple lext editor" from §20.6.
8. Add a text-based interface to the graphics interface library from Chaplcrs

12- 15. For example, the string Cirde(PoinI(O,1),15) should generate a
can Ci rcie(Poinl(O,1),15) . Use this text interface to make a "kid 's draw­
ing" of a two·dimensional hOllse with a roof, two windows, and a door.

985

... CHAPTER 26 • TES TI NG

9. Add a text-based output format for the graphics interface library. For
exam ple, when a call Circle(Poinl(O,1),15) is executed, a string like
Cirde(Point(O,1),15) should be produced on an autpUl stream.

10. Usc the tcxt-based interface from exercise 9 to write a better test for t.he
graphical interface library.

11 . Time the sum example frOIll §26.6 with m being square matrices with di·
mensions 100, 10,000, 1,000,000, and 10,000,000. Use random element
values in the range [- 10: 10). Rewrite the calculation of v to usc a more ef·
ficient (not 0 (n"2») algorithm and compare the timings.

12. Write a program that generates random floating-point numbers and SOrt

them us ing sid : :sorIO. Measure lhe time used to SOrt 500,000 doubles
and 5,000,000 doubles.

13. Repeat the experiment in the previous exercise, but with random strings
of lengths in the [0: 100) range.

14. Repeat the previous exercise, except using a map rather than a vecto r so
that we don't need to son .

Postscript

As prognunmers, we dream about writing beautifu l programs that just work -
preferably the Hrst time we try them. TIle reality is different : it is hard to get pro·
grams right, and it is hard to get them to stay right as we (and our colleagues)
work to improve them. Testing - including design for testing - is a major way of
ensuring that the systems we ship actually work. Whenever we reach the end of
a day in our highly technological world, we really ought to give a kind thought to
the (often forgotten) tcsters.

1. .

1"27

The C Programming
Language

"C is a strongly typed,
weakly checked,

programming language."

-Dennis Ritchie

T his chapter is a bl;ef overview of the C progranuning lan­

guage and iLS standard library from the point of view of

someone who knows C++. It lists the C++ features missing

from C and gives examples of how a C programmer can cope

withollt those. C/C++ incompatibilities are presemed, and CJC++

interoperability is discussed. Examples of 110, list manipulation,

memory managemem, and string manipulation are induded as

illustration.

987

988 CHAI'TER 27 " THE C PROGRAMMING LANGUAGE

27.1 C and c++: siblings 27.4 Free store

27.1.1 CJC++ compatibility
27.1.2 C++ features missing from C
27.1.3 The C standard library

27.2 Functions

27.2.1 No function name overloading
27.2.2 Function argument type

checking
27.2.3 Function definitions
27.2.4 Calling C from C++ and c++

from C
27.2.5 Pointe rs to functions

27.3 Minor language differences

27.3.1 struct tag names pace
27.3.2 Keywords
27.3.3 Definitions
27.3.4 C·style casts
27.3.5 Conversion of void "
27.3.6 en um
27.3.7 Namespaces

27.1 C and c++: siblings

27.5 C-slyle s trings

27.5.1 C·style strings and conSI
27.5.2 Byte operations
27.5.3 An example: sltcpytl
27.5.4 A style issue

27.6 Input/output : s tdio

27.6.1 Output
27.6.2 Inpul
27.6.3 Files

27.7 Constants and macros

27.8 Macros

27.8.1 Function·like macros
27.8.2 Syntax macros
27.8.3 Conditional compilation

27.9 An exampl : intru sive containers

-111C C programming language was designed and implemcntcd by Dcnnis Ritchie
at lkll Labs and popularized by the book rile C Programmillg umguage by Brian
Kernighan and Dennis Ritchie (colloquially known as "K&R"), which is arguably
still the best introduction to C and one of the great books on programming
(§22.2.5). TIle text of the original definition of C++ was an edit of lhe text of the
1980 defin ition of C , supplied by Dennis Ritchie. After this initial branch, both
languages evolved further. Like C++, C is now defined by an ISO standard.

We see C primarily as a subset of C++. ' 1lUS, from a C++ point of view, the
problem of describing C boils down to two issues:

Describe where C isn't a subset of C++.

Describe which C++ features are missing in C and which facilities and
techniques can be used to compensate.

Historically, modern C and modern C++ are sibli ngs. Both arc direct descen·
dants of "Classic C ," thc dialect of C popularized by the first edition of
Kernighan and R.itchie's 77u! C Progmmming wngtulge plus structure assignment
and enumerations:

2 7. 1 C AND C++; SIBLING S

1967 ~~u!y
, , , , , , , , ,

1978

1980

1985 •

1989

1998

, , , , , , , , , , , , , ,
C with C lasses

EadyC++

'11e version orc that is used almost exclusively today is C89 (as described in the
second edition or K&R), and that's what we are describing here. '11ere is still
some Classic C in usc and a rew examples or C99, but those shou ld not cause
you any problems when YO LI know C++ and C89.

Both C and C++ were "bam" in the Computer Science Research Celller or
Bell Labs in MUI1<lY Hill, New J ersey (ror a while, my office was a couple or doors
down and across the corridor rrom those or Dennis Ritchie and Brian Kem.igh,m):

989

(HAPTER 27 " T HE (PROGRAMMING LANGUAGE

Both languages arc now defined/controlled by ISO standards committees. For
each, many supported implementations arc in usc. Often, an implementation
supports both languages with the desired language chosen by a compiler switch
or a source file suffix. Both afe available on more platforms than any other Ian·
guage. Both were primarily designed for and arc now heavily used for hard sys·
tem programming tasks, such as

Operating system kemels

Device drivers

Embedded systems

Compilers

Communications systems

lllere arc no performance differences between equivalent C and C++ pro·
grams.

Like C++, C is very widely used. Taken together, the C/C++ commlmity is
the largcst software development cOIlUllUnity on earth.

27.1.1 (/ (++ compatibility
It is not uncommon to hear referenccs to "C/C++." However, there is no such
language, and the usc of "C/C++" is typically a sign of ignorance. Wc use
"C/C++" only in the context of C/C++ compatibility issues and when talking
about the large shared C/C++ technical community.

C++ is largely, but not completely, a superset of C. With a few very rare ex­
ceptions , constructs that are both C and C++ have the same meaning (seman·
tics) in both languages. C++ was designed to be "as close as poss ible to C , but 110

closer":

For case of transition

For coexistence

Most incompatibilities relate to C++'s stricter type checking.
An example of a program that is legal C but not C++ is one that uses a C++

keyword that is not a C keyword as an identifier (sec §27.3.2):

int class(int new, inl boo]); r C, but not c++ "'

Examples where the semantics differ for a construct that is legal in both Ian·
guages are harder to find , but here is one:

int s = sizeoi('a'); '0 sizcof(inl), often 4 in C and I in C++ "'

27. 1 C AND C++: SIBLING S

-nlc typc or a character literal, sllch as 'a' , is int in C and char in C++. However,
ror a char variable ch \ e have sizcof(ch)==l in both languages.

Inrormation related to compatibility and language differences is nOl exactly
exciting. -m ere arc no new neat programming techniques to leill·n. You might like
printfO (§27.6), but with that possible exception (and some reeble attempts at
geek humor), this chapter is bone dry. Its purpose is simple: to allow YOll to read
and write C ir you need to. -n lis includes pointing Olll the hazards that are obvi­
OliS to experienced C programmers, but lypically unexpected by C++ program­
mers. \OVe hope you can learn to avoid those hazards with minimal grief

Most C++ programmers will have to deal with C code at some point or an­
other, just as most C programmers will have to deal with C++ code. Much or
what we describe in this chapter will be ramiliar to most C programmers, but
some will be considered "expert level." 111e reason ror that is simple: not every·
one agrees about what is "expert level" and we just describe what is common in
real-world code. Maybe understanding compatibility issues can be a cheap way
or gaining illl unrair reputation as a "C expert." But do remember: real expertise
is in the usc or a language (in this case C), rather thilll i.n understanding esoteric
language rules (as arc exposed by considering compalibility issues).

References

ISO/ IEC 9899: 1999. Programmillg ulIIguageJ - C. 111is defines C99; most imple­
mentations implement C89 (orten with a rcw extensions).

ISO/IEC 14882:2003-04·0 1 (second edition). Programmillg LanguageJ - C++. From
a prognmuner's point or view, this standard is idemicalto the 1997 version.

Kcmighan, Briilll W., and Dennis M. Ritchie. VII! C Pmgrmllmillg Language. Addison­
W",ky. 1988. ISBN 0131103628.

Stroustrup, Bjame. "Learning Standard C++ as a New Language." CIC++ UJerJ
]olfnUl/, May 1999.

Stroustrup, Bjame. "C and C++: Siblings"; "C and C++: A Case ror Compati­
bility": and "C and C++: Case Sllldies in Compatibility." rite CIC++ UJm
] olfnUl/, July, Aug., illld Sept. 2002.

l11e papers by Stroustrup arc most easily round on my publications home page.

27.1 .2 C++ features missing from C
From a C++ perspective, C (i.e., C89) lacks a lot or fealllres, such as

C lasses and member runctions

Use struCi and global runctions.

991

992 CHAPTER 27 • THE C PROGRAMMING LANGUAGE

Derived classes and virtual functions

Usc structs, global fUllctions, and pointers to functions (§27.2.3).

Templates and inlinc functions

Usc macros (§27.8).

Exceptions

Usc error codes, error return values, etc.

Function overloading

Give each function a distinct name.

new/delete

Usc maliocO/freeO and separate initialization/cleanup code.

References

Usc pointers.

consl in constant expressions

Usc macros.

Declarations in for-statements and declarations as statements

Place al1 declarations at the lOp of a block or introduce a new block
for each set of defi nitions.

bool

Usc into

stalic_cast , reinlerpreCcast, mId consCcasl

Usc C -slylc casts, e.g., (in l)a rather than static<int>(a) .

II comments

Usc '* ... *' comments.

LOlS of useful code is written in C, so lhis list should remind us that no one lan­
guage feature is absolutely necessary. Most lanb'llage reatures ~ even most C lan·
guage reatures - arc there ror the convenicnce (only) of the programmer. After
all, givcn sufficient time, cleverness, and patience, every program can be written
in assembler. Note that because C and C++ share a machine model that is very
close LO the real machine, they arc well suited 10 emulate varieties of program­
ming styles.

27 . 1 C AN D C++: SIBLING S

The rest o f this chapter explains how to write useful programs without those
features. Our basic advice fo r using Cis:

Emulate the programming techniques that the C++ features wcrc dc­
signed to suppOrt with the facilitics provided by C.

When writing C , write in thc C subset of C++.

Use eompiler waming levels that ensurc function argumcnt checking.

Use lim for large programs (see §27.2.2).

Many of the dewils of ClC++ incompatibilities are rather obscure and technical.
However, to read and write C, you don't actually have to remember most of those:

~111e compiler will remind you whcn yOll are using a C++ fcature that is
not in C.
If YOli follow the rulcs abovc, you arc unlikely to cnCOlllllcr anything
that means something different in C from what it means in C++.

\Vilh the absence of all those C++ facilities, some facilities gain importance in C:

Arrays and pointers

Macros

typedef

sizeof

Casts

We give exrunples of a few such uses in this chapter.
I introduced the /I comments into C++ from C 's ancestor BC PL whcn I got

really fed up with typing r ... ·1 comments. The II comments are accepted by
most C dialects including C99 , so it is prob'lbly safe just to use them. Here. we
will lise /* ... ·1 exclusively in examples meant to be C. C99 introduced a few
more C++ features (as well as a fcw fcaturcs that arc incompatible with C++).
but here we will stick to C89, because that 's far more widely used .

27.1.3 The C standard library
Naturally, a C++ library facility that depends on classes and tcmplatcs is not
available ill C. This includes

vector

map

set

string

' tne ST1. algorithms: e.g. , sortO, findO, and copyO

iostreams

rege"

993

C HAPTER 27 • THE C PR OGRAMMING LANG U AGE

For these, there are often C libraries based on arrays, poimers, and functions to
help compensa te. The main pans of the C standard library are

<sldlib.h>: general utilities (e.g., maliocO and freeO; see §27.4)

<sldio .h>: standard 110; see §27.6

<slring.h>: C ·style string manipulation and memory manipulation; sec
§27.5

<malh .h>: standard floating.poim mathematic.'ll functions ; see §24.8

<errno.h>: error codes fo r <malh.h>; see §21k8

<Iimits. h>: sizes of integer types ; sec §24.2

<time .h>: date and time; see §26.6.1

<assert .h>: debug assertions; see §27.9

<ctype. h>: character dassific.'ltion; see §11 .6

<stdbool.h>: Boolean macros

For a complete description, sec a good C textbook, sllch as K&R. All of these Ii·
braries (and header files) arc also available in C++.

27.2 Functions
In C:

There can be only one function of a given name.

Funcuon argument type checking is optionaL

There arc no references (and therefore no pass·by-reference).

~There arc no member functions.

Thcre arc no inline functions (except in C99).

lllere is an alternative function definition syntax.

Apal1 from that, thillgs arc much as YOll arc used to in C++. Let liS explore what
that means.

27.2.1 No function name overloading
Consider:

void print(int); , . print an int . /

void print(const char·); , . print a string · / / " error! ./

The second declaration is an error because there cannot be two functions with
lhe same name. So you'll have to invent a suitable pair of names:

27. 2 FU NCTI ONS

void prinU nl (int);
void prinCslring(const char ·);

,. print an int . /
, . print a string . ,

111is is occ.asionally claimed to be a virtue: now you can' t accidelllally usc the
wrong function to print an inl! Clearly we don't buy that argumelll , and the lack
of overloaded fu nctions docs make generic programming ideas awkward to im·
plemelll because generic programming depends on semantically similar functions
having the same name.

27.2 .2 Function argument type checking
Consider:

int mainO
(

f (2);

A C compiler will accept this: you don't have to declare a function before you call
it (though you can and should). 111ere rna}' be a defin.ition of fO somewhere. TIlat
to could be in anOlher translation unit, but if it isn't, the linker will complain .

Unfortunately, that definition in another source file might look like this:

int f(char · p)
(

)

intr=O;
while (. p ++) r++ ;

return r ;

TIle linker will not report that elTor. You will get a run·time error or some ran·
dam result.

How do we manage problems like that? Consistent usc of header fil es is a
practical answer. If every function you call or define is declared in a hcader that is
consistently #included whenever needed, we get checking. However, in large pro­
grdlllS that can be hard to achieve. Consequently, most C compilers have options
that give wamings for calls of undeclared functions: lise them. Also, from the ear­
liest days of C , there have been programs that can be used to check for all kinds
of consistency problems. They arc usually called lilli. Usc a lint for every non­
trivial C program. You wiJl find that lint pushes you toward a style of C usage

995

(HAPTER 27 • THE C PROGRA MMING LANGUAGE

that is rather similar to using a subset of C++. One of the observations that led
to the design o f C++ was that the compiler could easily check much (but not all)
of what lim checked.

You can ask to have fu nction arguments checked in C. You do that simply by
declaring a function with its argument types specified (just as in C++). Such a
declaration is called a jimction protoiJ-pe. However, beware of function declarations
that do not specify arguments; those arc 1I0t fu nction prototypes and do not imply
fu nction argument check.ing:

int g(do uble);
int hO;

void my~fctO

(

)

gO;
g("asdr");
g (2);

g (2,3);

hO;
h("asdf");
h (2);

h(2,3);

r prototype - like C++ function declaration -,
,,, not a prototype - the argumentlypes are unspecified ,,'

/ - error: missing argument '"
r error: bad argument type '"
r OK: 2 is converted to 2.0 . ,
r error: one argument too many "/

r OK by the compiler! May give unexpt>etcd results ,,'
/. OK by the compiler! May give unexpected results ,, '
/" OK by the compi ler! May give unexpected results ,, '
, ,, OK by the compiler! May give unexpected results ,,'

The declaration of gO specifics no argument type. 111is does not mean lhat gO
doesn't accept argu ments; it means "Accept any set of arguments and hope Lhey
afe correct for the called fu nction." Again, a good compiler wa l"lls and lint will
catch the problem.

c ••

void fO; // preferred

void f(void);

void f (• . •); /I accept any arguments

(equivalent

void f(void);

void f(void);

void fO; ,- accept any arguments -,

"111cre is a special set o f rules for converting arguments where no function proto­
type is in scope. For example, chars and sho rts are converted to inls, and floals
arc converted to doubles. If you need to know, say, what happens to a long, look
it up in a good C textbook. O ur recommendation is simple: don't call functions
without prototypes.

27.2 FU NCTI O N S

NOle that even though the compiler will allow an argument of the wrong
type to be passed, such as a char· to a parameter of type int, the use of such an
argument of a wrong type is an error. As Dennis Ritchie said , "C is a strongly
typed, weakly checked, progranmling language."

27.2.3 Function definitions
You can define fu nctions exactly as in C++ and such definitions arc fu nction
prototypes:

double square(double d)
(

)

void ffO
(

double" = square(2);
double y = square();
double y = square("Hello") ;
double y = square(2,3);

r OK: converl 2 to 2.0 and call *'
/* argument missing *'
/* error: wrong argument type *'
r error: too many arguments *'

A definition of a function with no arguments is not a function prototype:

void fO {'- do something *'}

void gO
(

(2); , - OK in C; error in C++ -,
)

Having

void fOi '* no argument type specified *'
mean "fO can lake any number of argu ments or any type" seemed really strange.
In rcspomie, I invented a new notation where "nothing" was explicitly stated
using the keyword void (void is a rour·letter word meaning "nothing"):

void {(void); '* no arguments accepted *'

997

(HAPTER 2 7 - THE C PROGRAMMING LA NGU AG E

I soon regretted that, though, since that looks odd and is completely rcdundant
when argument type checking is uniformJy applied. Worse, Dennis Ritchie (the fa ­
ther of G) and Doug McIlroy (the ultimate arbiter of tas!'e in the Bell Labs Com­
puteI' Science Research Cemer; see §22.2.5) both called it "an abomination.n

Unfortunately, thm abomination became very popular in lhe C conununit),. Don't
usc it in C++, though, where it is not only ugly, but also logically redundant.

C also provides a second, Algol60-style function definition, where the param­
eter types arc (optionally) specified separately from their names:

int o ld_style{p,b,x) char- Pi char b;
{

/" ... -,

111is "old-style definition" predmes C++ and is not a prototype . By derauit, an
argument without a declared type is an int. So, x is an int parameter or
o ld_styleO. We can call old_styleO like this:

o ld_styleO;
o ld_style{"hello", 'a', 17);
o ld_style(12, 13, 14);

, - OK: all arguments missing -,
,- OK: all arguments are of the right type . ,
, - OK: 12 is the wrong type, .,
r but maybe old_style() won't use p -,

TIle compiler should accept these calls (but would warn, we hope. rol' the first
and third)_

Our recommendation about runction al'gullleut checking:

Use rUllclion prototypes consistently (usc header files).

Set compiler warning levels so that argument type errors arc caught.

Use (some) lim.

TIle result will be code that's also C++.

27.2.4 Calling C from C++ and C++ from C
You can link fLIes compiled with a C compiler together with filcs compiled with a
C++ compiler provided the two compilers were designed for that. For example,
you can link object fil es generated from C and C++ lIsing your GNU C and
C++ compiler (GCG) together. You call also link objeci files generaled rrom C
and C++ using yOllr Microsoft C and C++ compiler (MSC++) togcther.l11is is
common and userul because it allows you to usc a larger sel or libraries than
would be available in just onc of those two languages_

C++ provides stricter type checking than C. In particular, a C++ compiler
and linker check that two functions f(inl) and f(dou ble) arc consistently defined
and used - even in different source file s_ A linker ror C doesn't do that kind or

27 .2 FUNC TI ONS

checking. 10 call a fu nction defined in C from C++ and to have a fUIlClion de­
fined in C++ called from C , we need to tell the compiler what we arc doing:

II calling C function from C++;

exte rn "C" double sqrt(double)i II link as a C func tion

void my_c_plus_plus_fcIO
(

double sr = sqrl (2)i

Basically extern "C" tells the compiler to use C linker conventions. Apart from
that, all is nonna! from a C++ point of view. ln fact, the C++ standard sqrt(double)
usually is the C standard library sqrt(double) . Nothing is required from the C
program to make a function callable from C++ in this way. C++ simply adaptS
to the C linkage convention.

We can also usc extern "C" to make a C++ function callable from C:

1/ C++ function callable from C

extern "C" jnl call_HS· p, inl i)

(

return P->f(i) i
)

In a C program, we can now callthc member function f() indirectly, like this:

r call C++ function from C -,

inl caJU (S- p, inl i);
strucl S· make_S(int,const char-);

void my_c_fct(int i)
(

)

,-... . ,
struct S· p = make_S(x, "foo")i
inl x = caIU(p,i)i
r ... -,

No mention of C++ is needed (or possible) in C for this to work.

...

1000 (H APTE R 27 • THE C PROGRAMMING LANGUAG E

The bcnclit of lhis intcropcrabiliry is obvious: code can be written in a mix.
of C and C++. In particular, a C++ program can lISC libraries wrinen in C, and
C programs can usc libraries writ ten in C++. Funhcrmorc, most languages (no­
tably Fortran) have an interface for calling la/from C.

In the examples above, we assumed that C and C++ could share the class
object pointed to by p. TImt is true for most class objects. In particu lar, if you
have a class like this,

II in C++:
class complex {

double re, im;
public:

/I all the usual operations
);

you can get away with passing a pointer to an object to and from C. YOll c..'m even
access re and im in a C program lIsing a declaration:

l- inC -'
struct complex {

double re, im;

'* no operations *'
);

~111C rules fo r layout in any language can be complex, and the rules for layout
among languages can even be hard to specify. However, you can pass built·in
types between C and C++ and also classes (structs) without virtual functions. If
a class has virtual functions, you should JUSt pass pointers to its objects and leave
the actual manipulation to C++ code. llle call_H) was an example o f this: fO
might be virtual and then that example would illustrate how to call a virtual func ·
tion from C.

Apan from sticking to the bui[t~in types, the s implest and sarcst sharing of
types is a slruct defined in a common ClC++ header fi le. However, that strategy
seriously limits how C++ can be used, so we don't restrict ourselves to it.

27.2.5 Pointers to functions
What can we do in C if we wa.nt to use object-oriented techniques (§14.2-4)? Ba·
sically, we need an a.llemative to virtual functions. For most people, the first idea
that springs to mind is to use a slruct wit.h a "type field n that describes what kind
of shape a given object represents. Fo r example:

27.2 FUN CTIONS

struct Shape1 {

};

enum Kind (circle, rectangle} kind ;

r ... *'
void draw(struct Shape1 * p)
{

}

switch (p- >kind) (
case circle: '* draw as circle *'

break;
case rectangle :

}

r draw as rectangle *'
break;

int f(struct ShapeP pp)
(

}

draw(pp) ;
/* ... *'

~nlis works. There arc two snags, though:

For each "pseudo-virtual" function (such as drawO), we have to write a
new switch-statement.

E..1.ch time we add a new shape, we have to modify every "pseudo-virtuaJn
function (such as drawO) by adding a case to the switch·statement.

"n le second problem is quite nasty because it means that we can't provide our
"pscudo-vinuaJn fu nctions as part of a library, because our users will have to
modify those fu nctions quite o ften. TIle mOst effective alternative involves point­
ers to functions:

Iypedef void (*PfclO)(struct Shape2*);
Iypedef void (·Pfct1int)(slruct Shape2· , intI;

slruct Shape2 (

} ;

PfctO draw;
Pfct1int rotate; '* ... */

1001

1002 CHAPTER 27 • THE C PROGRAMMING LANGUAGE

void draw(struct Shape2· p)
(

(p->drawHp);
)

void rotate(struct Shape2e p, int d)
(

(p->rotale)(p,d) ;
)

This Shape2 can be uscd juSl like Shape1 .

int f(slruct Shaper pp)
(

)

draw(pp);
/* . .. 0/

With a lit tle extra work, an object need not hold one pointer to a fu nction for
each pseudo-virtual function. Instead, it can hold a pointer to an array of poilUers
to functions (much as virtual functions arc implemented in C++). TIle main
problem with using such schemes in real-world programs is to gel the initializa­
tion of all those paimers to functions right.

27.3 Minor language differences
This section gives examples of mino r ClC++ differences that could uip yOll up if
you have never heard of them. Few seriously impact programming in that the dif­
ferences have obvious work-aroullds.

27.3.1 struct tag namespace
In C , the names or strucls (there is no class keyword) are in a separate name­
space rrom other identifiers. 111ercfore, every name o r a slruct (called a smlClure

latJ must be prerL'(ed wilh the keyword struct . For example :

struct pair {int lII ,y;) ;

pair pl ; , - error: no identifier "pa jr ~ in scope *'
struct pair p2; 1* O K *'
int pair = 7;
slruct pair p3;
pair = 8;

'* OK: the struct tag pai r is not in scope *'
, . OK: the slrucl tag pa ir is not hiddcn by the int *'
, - OK: ~pair" refers to thc int *'

2 7.3 MINOR LANG U AGE DIFFERENCES

Amazingly enough, thanks to a devious compatibility hack, this also works in
C++. H aving a variable (or a functio n) with the same name as a slrucl is a fairly
COlllmon C idiom, though not one we recommend.

If you dan', wimt to write slruct in front of every stTUCmre nrunc, usc a typeder
(§20.5). 111e foUowing idiom is conunon:

Iypeder s lruct { int x,y; } pair;
pairpl = { 1,2 };

In general, you' ll find typeders more common and more useful in C, where you
dan' , have the option of defining new types with associated operations.

In C, names of nested structs are placed in the same scope as the strucl in
which they arc nested. For example:

slrucl S {
slructT { r ... o/} ;

'" ... "'
);

slruct T x; ' " OK in C (not in C++) "'

In C++, you would write

S: :T x ; /I OK in C++ (not in C)

\ rVhenever possible, don't nest slrucls in C: their scope rules differ from what
most people naively (and reasonably) expect.

27.3.2 Keywords
Many keywords in C++ arc not keywords in C (bec."'l.use C doesn't provide the
fu nctio nality) and can be used as identifiers in C:

c++ keywords that are not C keywords

and and_eq asm bitand bitor bool

1003

catch class campi cons'-cast delete dynamic3 ast

explicit e"port fal se fri end inline mutable

namespace new not no'-eq operator 0 '

or_eq private protected public reinterpre,-cast static_cast

template this throw true t,y typeid

typcname using virtual wchar_t '"' "ot_eq

1004 C HAPTER 27 • THE C PROGRAMMING LANGUAGE

Don 't usc these names as identifiers in C , or your code will not be portable to
C++. If you usc one or thesc names in a header file, that header won't be usefu l
from C++.

Some C++ kC)"\lords arc macros in C :

c ++ keywords that a re C macros

.nd

n01

biland

0'

bilar bool

true

campi

wchar_1

fa lse

'0'

In C, they a f C defined in <iso646.h> and <stdbool.h> (bool, true, false). Don' t
take advantage of the fact that they are macros in C.

27.3.3 Definitions
c++ allows definitions in more places than C. Fo r example:

fo r (int i = 0; kmax; Hi) xm = y[i] ;

while (stru cl S· p = nexl(q)) { ,-... -,
}

void f(int i)
{

/I definition of i nol allowed in C

1/ definition of p not al lowed in C

if (i< 0 II max<=i) e rro r(" range e rror");
int a[max); /I error: declaration after statement not allowed in C
r ,

}

C (C89) doesn' t aJlow declarations as initiaJizers in for-statements, as conditions,
or after a statement in a block. We have to vI/rite somcthing likc

int i;
for (i = 0; k max; ++i) x[ij = yl ij ;

struct S" p;
while (p = next(q» (

r ,
}

void f(int i)

{

if (k 0 II max<=i) error("range error");

27.3 M INOR LANGUAGE DIFFE REN CES

(

inl almaxl;

,-... *'
)

)

In C++, an uninitialized declaration is a definition ; in C, it is just a declaration so
that there can be twO of them:

inl X;
inl x; I" defines or declares a single integer called x in C; error in C++ *'

In C++, an entity must be defined exactly once. This gets a bit more interesting
if the two ints are in different translation units :

I" in file X.c: *'
int x;

'* in file y.c: *'
inl X;

No C or C++ compiler will fi nd any fault with either x.c or y.c. However, if x.c
and y.c arc compiled as C++, the linker will give a "double definition" error. If
x.c and y.c arc compiled as C, the linker accepts the program and (correctly ac·
cording to C niles) considers there to be just one x that is shared between code in
x.c and y.c. If you want a program where a global variable x is shared, say so
explicitly :

I" in file x.c: *'
inl x= O;

'* in file y.c: *'
extern int x;

'* the definition *'

'* a declaration, not a definition *'
Better still, lise a header fil e:

'* in file x.h: *'
extern int x;

I" in file x.c: *'
#include " x.h"
intx = O;

'* a declaration. not a definition *'

'* the definition *'

1005

1006

r in file y.c: 0'
#indude "x.h"

(HAPTER 27 • TH E C PRO GRAMM ING LANGUAGE

/* the declaration of x is in the header 0/

Belter still , avoid the global variable.

27.3.4 C·style casts
In C (and C++), you can explicitly convert a value v to a type T by this minimal
notation:

This "e -Style cast" OJ' "old-style cast" is beloved by poor typists and sloppy
thinkers because it 's minimal and you don't have to know what it takes to make
a T from v. On the other hand, this style of cast is rightfully fcared by mainte­
nance programmers because it is just about invisible and leaves no clue aboul the
writer's intcm. ~nlC C++ casts (lIew-Jt)'le CIlSIJ or template·style {(LlIJ; sec §A.5. 7) were
introduced to make explicit type conversion easy to spot (ugly) and specific. In
C , you have no choice:

intO p = (intO)7;

int x = (int)7.5;
' " reinterpret bit pattern: reinterpreccast<int">(O) 0'
' "truncate double: static_cast<int>(7.5) '"

typcdcf struct 51 { / * . .. "'} 51;
Iypcdcf stru ct 52 {' " ... "' } 52;
51 a;

const 52 b ;

51 " P = (51 ")&a;
52* q = (52")&b;
51" r = (51*)&a;

' * uninitialized consts arc allowed in C */

'" reinterprct bit piHtcrn: rcinlcrpreccasl<ST*>(&a) '"
, ,, cast away const const_cast<S2">(&b) '"
, . remove const and change type; probably a bug */

We hesitate to recommend a macro (§27.8) even in C , but it may be an idea lO ex­
press intent like this:

#define REINTERPRET_CAST(T,v) «THv»
#define CON5T_CA5T(T,v) ((T)(v))

S1" P = REINTERPRET_CAST (51* ,&a);
S2" q = CONST_CAST(S2*,&b);

27.3 M INOR LANGUAGE DIFFERENCES

lllis docs not give the type checking done by reinterpreccast and const_cast,
but it docs make these inherently ugly operations visible and the progranuner's
intent explicit

27.3.5 Conversion of void ·
In C, a void· may be used as the right-hand operand of an assignment to or ini­
tialization of a variable of any poimer type ; in C++ it may nol. For example:

void · alloe(si:ze_t Xli

void t (int n)
{

}

int - p = aUoc(n·sizeof(int»; , .. - -., , . OK in C; error in C++ ./

Here, the void· result of alloeO is implicitly converted to an inl- . In C++, we
would have to rewrite that line to

int O P = (int*)alloe(n*si:zeof(int j)i /* OK in C and C++ *'

We used the C-style cast (§27.3.4) so that it would be legal in both C and C++.
' >Vhy is the void · -to-T" implicit conversion illegal in C++? Because sllch con­

versions C<1Il be unsafe:

void to
{

}

chari=Oi
charj = Oi
char· p = &i ;
void · q = Pi
intO pp = q ;
. pp = - 1i

'* unsafe; legal in C, error in C++ .,
/* overwrite memory sltlrling at &i *'

Here we can't even be SUfe what memory is ovenvriuen. Maybe j and part of p?
Maybe SOllle memory used to manage lhe call of to (f' s Slack frame)? \oVhatever
data is being ovenvnlten here, a caU of fO is bad news.

Note lhal (the opposiLC) conversion of a 1* to a void* is perfectly safe - you
c..1.Il 't construct nasty examples like the one above for that - and those arc al­
lowed in both C and C++.

1007

1008 CHAPTER 2 7 • THE C PROGRAMMI N G LAN GUAG E

Unfortunately, implicit void*'IO-P conversions are common in C and possi·
bly the major C/C++ compatibility problem in real code (sec §27.4).

27.3.6 enum
In C, you can assign an int to an enum without a cast. For example:

e num color { red , blue, green };

int x = gree n; ' " O K in C and C++ "'
enum color col = 7; ' " O K in C; error in C++ .,

One implication of this is that we can use increment (++) and decrement (--) on
variables of enumeration type in C. 111at can be convenient but docs imply a
hazard:

enurn colo r x = blue;
++Xi r x becomes green; error in C++ "'
++Xi I" x becomes J; error in C++ "'

"F.·lIling olT the end" of the enumerators mayor may not have been whm we
wanted.

Note that like structure tags, the names of enumerations arc in their own
namespace, so you have to prefix them with the keyword enum each time you
lise them:

color c2 = blue;
en um colo r c3 = red ;

r error in C: color no! in scope; O K in C++ . /
/ . OK . /

27.3.7 Namespaces
111el1: arc no namespaces (in the C++ sense of the word) in C. So what do you
do when you want to avoid nallle clashes in large C programs? TypicaJly, people
lise prefixes or sufftxes. For example:

r in bs,h: . /
typedef struct bs_slring {/* . . . • / } bs_string;
typedef int bs_bool ;

/ * in pete.h: */
/* Pete's string */

r Bjarne's string . /
/ . Bjarne's Boolean type */

typedef char· pete_siri ng;
typedef char pe te_bool ; '* Pete's Boolean type */

~n1is technique is so popuhlr that it is usually a bad idea to lise one' o r two-letter
prefixes.

2 7.4 FREE STORE

27.4 Free store
C does not provide the new and dele te operaLOrs dealing with objects. To use
free SLOre, you use functions dealing wit.h memory. The most important functions
arc defined in the "general utilities" standard headcr <stdlib.h>:

void " malloc(si:z:e_1 S:Z:)i /* allocate sz bytes "'
vo id free(voidO pI; '0 deallocate the memory pointed to by p ./
void · ca lloc(size_1 n, size_t u); '0 allocilte n"sz bytes initialized to 0 °/
void · realloc(void O p, size_t u); ' " n!il liocilte the memory pointed to by p

to a space of size sz 0'
~nle typedef size_t is an unsigned type also defined in <stdlib .h>.

Why docs maliocO return a void · ? Because maliocO has no idea which type
of object YOll want to put in that memory. Initialization is your problem. For
example:

strucl Pair (

);

ca nst char" p;
int val ;

slru cl Pair p2 = ("apple",78);
slru cl Pair · pp = (slrue! Pair·) malloc(sizeof(Pair»;
pp->p = "pear";
pp->val = 42;

' " initialize 0/

Note that we cannot write

0pp = ("pear", 42 }i ' " error: not C or C++98 0'

in either C or C++. However, in C++, we would define a constructor for Pair
and write

Pair · pp = new Pair("pea r", 42);

In C (but not C++; see §27.3.4), you can leave out the cast before malloc() , but
we don't recommend thai :

intO p = malloc(sizeof(int)" n); '0 avoid this 0'
Leaving out the cast is quite popular because it saves some typing and because il
calches the rare error of (illegally) forgetting to include <sldlib.h> before using

1009

1010 CHAPTER 27 • THE C PR OGRAMMING LANGUAGE

maliocO. However, it can also remove a visual due that a size was wrongly
calculated:

p = malloc(s izeof(char)*m); r probably a bug - not room for mints *'

Don 't use malloc()'freeO in C++ programs; new' de lete require no casts, deill
with initialization (constructors) and cleanup (destructors), report mcmory allo­
cation errors (through an exception), and arc just as fast. Don't delete an object
allocated by maliocO or freeO an object allocated by new. For example:

int · p = new inI[200];
/I . ..
free(p); II error

X* q = (X*)malloc(n·sizeor(X»;
/I ..
delete q; /I error

This might work, but it is not portable code. Furthermore, for objects with con­
structors or destructors, mixillg C-style and C++-style frec-store management is
a recipe for disaster.

TIle real locO function is typically used for expanding buffers:

int max = 1000;
int count = 0;
int e;
char · p = (char·)malloc(max);
while «c=gclchar()) !=EOF) (r read: ignore chars all eaf line *'

if (count==max- 1) ('* need to expand buffer */
max += max; '* double the buffer size *'
p = (char·)realloc(p,max);
if (p==O) quitO;

)

p[count++J = c;
)

For an explanation of the C input operations, sec §27.6.2 and §B.IO.2.
TIle realloeO function mayor may not move the old allocation into newly al­

located memory. Don't even think of lIsing reallocO on memory allocated by new.
Using the C++ standard library, the (roughly) equivalent code is

veclor<char> buf;
char c;
whil e (cin.get(c)) buf.push_back(c);

2 7.5 C-STY l E ST RING S

Rerer to the paper "Lcamin g Standard C + + as a New Language" (see the refer·
ence list in §27. 1) ror a more lhorough discussion or input and allocation strategies.

27.5 C-style strings
In C, a string (orten cruled a C .string or a C-.sI)'k .shillg in C++ litc ra ture) is a zcro·
terminated alTay or characters. For example:

char· I> = "asdf";
char s[l= "asdf";

p: 9 l'a'I's' I'd'I'r l 0 I
s l'a'I's' I'd' I'f'l 0 I

In C, we call not have member runetions, we cannot overload runctions, and we
cannot defi ne an operator (such as ==) ror a slruct. It rollows that we need a set
or (nonmember) runctions to manipu late C-stylc soings. 111e C and C++ stan­
dard Iibr'lIies provide such runctions in <slring. h>:

sizc_t slrle n(consl char· s);
char· slrcat(char· s1, canst char· s2);
int strcmp(co nst char· s1, canst char· s2);
char" strcpy(char" sl ,const char" s2);

char" slrchr(consl char "s, int c);
char· slrslr(const char ·sl , consl char "s2);

char· strncpy(char", consl char", sizc_I nl ;
charo strncat(charO, canst char, sizc_t nl;

' " count the characters "/
/" copy s2 onto the end of sl . ,
r compare lexicographically "'
r copy s2 into 51 "/

I" find c in s "'
/" find s2 in s l 0/

' " strcpy, max n chars 0'
r strcat with max n chars .,

int slrncmp(const char", canst char", sizC_1 nl; '0 strcmp with max n chars "/

This is not the rull set, but these are the most lIserul and most llsed runctions. \tVe
will bricny illustrate their lise.

,"Ye can compare strings. TIle equality operator (==) compares pointer val·
ues: the standard library runction strcmpO compares C ·style string values:

canst char" s1 = "asdf";
canst char" s2 = "asdf";

if (sl ==s2) {

}

/0 do 51 and 52 point to the same array? 0'
/" (typi cally not what you want) 0/

1011

1012 C H A PTER 2 7 • T H E C PR OG RAM M ING LANG U AGE

if (stremp(sl,s2)==O) ('0 do s 1 and 52 hold the same characlers? 0'
)

TIle slremp() function docs a three-way comparison of its two arguments. Given
the values of sl and s2 above, slrcmp(sl ,s2) will retum 0, meaning a perfec t
match. If sl was lexicographically befo"e s2 it would retum a negative number,
and if sl was lexicographically after s2 it would retum a positive number. TIle
term lexicographical means roughly "as in a dictionary." For c. ample:

strcmp("dog", "dogn)==o
slrcmp("ape n, "dodo")<O /0 "ape" comes before "dodo" in a di ctionary */
slrcmp(" pig", "eow")>O /* "pig" comes after "cow" in a di ctionary *'

'nle value of the pointer comparison sl ==s2 is not guaranteed to be 0 (fal se). An
implementation may decide to use the same memory to hold all copies of a char­
acter literal, so we would get the answer I (tru e). Usually, strcmpO is the right
choice for comparing C -stylc strings.

We can find the length of a C -slyle string using strle nO:

int Igt = strlen(sl);

Note that strlen O counts characters excluding the terminating O. In this case.
strle n(sl)==4 and it takes 5 bytes to store "asdf". ' n l is little difference is the
source of many off-by-one errors .

We can copy one C -style string (including the tenllinating 0) into another:

strepy(sl ,s2); '0 copy characters from s2 into sl *'
It is your job to be sure that me target string (array) has enough space to hold the
characters from the source.

The strncpyO, strncal(), and strncmpO functions arc versions of strcpy(),
strcat(), and slrcmpO that will consider a maximum of n characters, where n is
their third argument. Note that if there arc more than n cha racters in the source
string, strncpyO will not copy a terminating 0, so that the result will not be a valid
C -style string.

~nle slrchrO and strslrO functions fmd their second argument ill the string
that is their first argument and retum a pointer to the fi rs t character of the match.
Like find () , tlley searcll from left to right in the string.

It. is amazing b0t11 how much GUI be done with these simple functions and how
easy it is to make minor mist.l.kcs . Consider a simple problem of concatell<uing a

27 .5 C~STYLE ST RI NG S

user name with an address, placing the @ character in between. Using std :string
lhis can be done like this:

siring s = id + '@' + add r;

Using the standard C -slyle string function we ea.n write t.hat as

char· cal(const char· id, const char· addr)
{

}

inl sz = strlen(id)+slrlen(addr)+2;
char· res = (char·) malloc(sz);
strcpy(res, id);
resislrlen(id)+l) = '@';
sl rcpy(res+strlen (id)+2,add r);
res[sz-1)=O;
return res;

Did we gel that right? Who will freeO the string relumed from catO?

TRY THI S

Test catO. Why 2? We left a beginner's performance error in catO; find it and
remove it. We '"'forgot" to conunem our code. Add comments suitable for
someone who can be assumed to know the standard C-string functions.

27.5.1 C.style strings and const
Consider:

char· p = "asdf";
pl21 = 'x';

rll1is is legal in C but not in C++. In C++, a string literal is a constant, an im­
mumble value, so p[2)='x' (to make the value pointed to "asxfM) is illegal. Unfor­
tunately, few compilers will c<Hch the assignment to p that leads to the problem.
If you arc lucky, a run-time error will occur, but don't rely on that. Instead, write

consl char· p = "asdf"; /I no you can't write to "asdf" through p

111is recommendation applies to both C and C++.

1013

1014 C H APTER 27 • THE C PROGR AMMING lA NGUAG E

TIle C strchrO has a similar but even harder-to-spot problem. Consider:

char" st rchr(const char" s, int C)i r fi nd c in constant s (not C++) .,

const char aa[] = "asdf";
char· q = slrchr(aa, 'd')i

. q = 'x';

r aa is an array of consta nts "'
'" finds 'd ' .,
r change 'd' in a to 'x' "'

Again, this is illegal in C and C++, but C compilers can't catch it. Sometimes this
is referred to as tr(lIlSlIIutatioll: it tums consts into non-cons15, violating reasonable
assumptions about code.

In C++, the problem is solved by the standard library declaring strchr()
diITerelllJy:

char canst · st rchr(const char" s, int c); II find c in consta nt s
char· strchr(char" s, int cl; /I find c in s

Similarly for slrstrO.

27.5.2 Byte operations
In the distant dark ages (the early 1980s), before the invention of void· , C (and
C++) programmers used the string operations to manipulate bytes . Now the
basic memory manipulation standard library functions have void" parameters
and rerum types to warn users about their direct manipulation of essentially un­
typed memory:

,. copy n bytes from s2 to s 1 (like strcpy): "'
void· memcpy(void" 51, const void · 52, 5ize_t n);

, . copy n bytes from s2 to s 1 ([s l :s 1 +n) may overlap with [s2 :s2 +n)): . ,
void · memmove(void · sl , canst void · s2, 5b:e_t nl;

r compa re n bytes from s2 to sl (like strcmp): ·'
int memcmp(consl void" sl , canst void · s2, sizc_t n);

' " find c (converted to an unsigned char) in the fi rst n bytes of s: . ,
void" memchr{const void" s, int c, size_t n);

' " copy c (converted to an unsigned char)
into each of the first n bytes that s points to: . ,

void · mem5ct(void" s, int c, size_l n);

27.5 C-STYLE ST RING S

Don't usc these functions in C++. In particular, memsetO typically interferes
with the guarantees offered by constructors.

27.5.3 An example: s!repyO
111e defi nition of slrcpyO is both famous and infamous as an example of the terse
style that C (and C++) is capable of:

char· strcpy(char· p, const char· q)

{

)

while (*p++ = *q++);
return p;

\"'e leave to you the explanation of why t.his actually copies the C-style string q
into p.

TRY THIS

Is tltis implementation of strepyO correct? Explain why.

If you can't explain why, we won't consider you a C programmer (however com­
petent you are at programming in otller languages). Every language has its own
idioms, and tllis is one of C 's .

27.5.4 A style issue
We have quietly taken sides in a long-standing, often furiously debated, and
largely irrelevant style issue. We declare a pointer like this:

char· p; /I P is a pointer to a char

and not like this:

char . 1'; r p is something that you can dereference to get a char . ,

11le placement of the whitespllce is completely in 'elevant to the compiler, but
programmers carc. Q UI' style (conunon in C++) emphasizes the type of the vari­
able being declared, whereas the other style (more common in C) emphasizes the
lise of the variable. Note that we don't recommend declaring many variables in a
single declaration:

char c, "p, a[177], · f(); , . legal , but confusing *'

1015

1016 C H APTER 27 • TH E C PROGRAMMING LANGUAGE

Such declarations are nOt uncommon in older code. Instead, usc multiple lines
and take advantage of the extra horizontal space for comments and initializers:

char c = 'a' ; , - termination characler for input using fO-'
char- p = OJ ,- last char read by fO -,
char a[177] ; ,- inpul buffer -,
char- fO; ,- read inlo buffer a; return pointer 10 first char read -,

Also, choose meaningful names.

27.6 InpuUoutput: stdio
There are no iostreams in C , so we usc the C standard I/O defined in <sldio.h>
and commonly referred to as stdio. The stdio equivalents to cin and coul arc
sldin and sldou!. Sldio and ioslream usc can be mixed in a single program (for
the same I/O streams), but we don't recommend that. If you feel the need to mix,
read up on stdio and iostreams (especially i~s_base : :sync_wilh_sldioO) 111 an
cxpcn -levcl textbook. See also §B.10.

27.6.1 Output
The most popular and usefu l function of stdio is printfO. The most basic usc of
printfO just prints a (C-style) string:

#include<stdio.h>

void f(consl char- p)
(

)

prinlf(II Hello, World!\n");
printf(p);

That's not particularly interesting. The intcresting bit is that printfO can take an
arbitrary number of arguments, and the initial string controls if and how those
extra arguments arc printed. The declaration of prinUO in C looks like this:

int printf(eonsl char· format , . . .)i

111C •• • means "and optionally more arguments." We t..1. 11 call printfO like this:

void f1 (double d, char- s, int i, char chI
(

printf(ndouble %g string %s int %d char %e\n", d, s, i, eh);
)

27. 6 INPUT/OUTPUT: STOIO

Here. %g means '" Print a noating-point number using the general formac ," %s
means "Prine a C-style string," %d means "Prim an integer using decimal digits,"
and %c means '" Print a character." Each such format specifier picks the next sa­
far-unused argu ment, so %g prints d , %s prints s , %d prints i, and %c prints ch .
You c..1n find the full list of printfO formats in §B.IO.2.

Unfortunately, printf() is not type safe . For example:

char an = { 'a', 'b ' }; / - no terminating 0 -,

void f2 (char- 5 , int i)
(

)

printWgoof %s\n", i);
printf("goof %d : %s\n" , i)i
prinlf("goof %s\n", a)i

/ - uncaught error -/
/ - uncaught error -/
/ - uncaught error -/

111e elTect of the last printfO is interesting: it prints every byte in memory fo llow­
ing al11 until it encounters a O. That could be a lot of characters.

111is lack of lype safety is one reason we prefer ioslreams over stdio even
though sedio works identically in C and C++. TIle other reason is that the stdio
functions arc not extensible: you cannot extend printfO to print values of your
own types, the way you can using iostreams_ For example, there is no way you
c.."ln define your own %Y to print some strucl Y.

TIlere is a useful version of printfO that takes a me descriptor as its first
argument:

int fprintf(FILP stream, const char- format, .. _);

For example:

fprintr(s tdo ut, "Helio, World!\n ");
FILE- ff = fopen("My_file", "W")i

fprintf(ff, "Hello, Worldl\n");

File handles arc described in §27.6.3.

27.6.2 Input

/I exactly like printf("Hello, World !\ n");
/1 open My_file (or writing
/1 write "Hello, World!\n" to My_fi le

111c most popular stdio functions include

int scanf(consl char- format , ...)i
int getchar(void)i

, - read from sidin using a (ormat -/
, - get a char (rom stdin -/

1017

1018 CHAPTER 27 • TH E C PROGRAMMING LANG UAGE

int getc(FILE* stream)i
char* gets(char* S) i

1* get a char from stream *'
/* gel characters from sIdin *'

The simplest way of reading a string of characters is using getsO. For example:

char a[12]i
gets(a); ' * read into char array poi nted to by a until a '\n ' is input *'

Never do that! Consider gels() poisoned. Togelher with its close COUSIll

scanf("o/os"), gelsO used to be the root cause o f about. a quarter of all successful
hacking atlempLS. It. is still a major security problem. In lhe trivial example
above, how would you know that at most I I characters would be input berore a
newline? You can't know that.. TI1US, getsO almost certainly leads to memory cor­
luption (of the bytes after the buffer), and memory corruption is a major tool of
crackers. Don' t think that you can guess a maximum bufTer size that is "large
enough for all uses." Maybe the "person" at the other end of the input stream is a
program that docs not meet your criteria for reasonableness.

The scanro function reads using a format just as printfO writes using a for­
mat. Like printfO it can be very convenient :

void fO
{

int ii
char Ci
double di
char* s = (char·)malloc(100)i
r read into variables passed as pointers: *'
scanf("%i %c %g %s", &i, &c, &d, s);
/* %s skips initia l whi tespace and is terminated by whitespace */

Like printfO, scanfO is not type safe. TIle fonnat characters and the arguments
(all pointers) must match exactly, or strange things will happen at run lime. Note
also that lhe %s read into s may lead to an overflow. Don 't ever use gelsO or
scanf(" %s") !

So how do we read characters safely? We can use a form of %s that places a
limit on the number of characters read. For example:

char bu[[20]i
scanf(" %19s" ,buO;

We need space for a terminating 0 (supplied by scanfO). so 19 is the maximum
number of characters we can read into buf. However, that leaves us with the

27.6 INPUT/ OUTPUT: STOIO

problem of what to do if someone docs type more than 19 characters. 11lC~
"exira" characters will be left in the input stream to be "found" by later input
operations.

111e problem with scanfO implies that it is often prudent and easier to lise
gelcharO. lllC typic1.l way of reading charactcrs wilh gelcharO is

while«"=getchar(»! =EOF) {
/ - ... -,

)

EOF is a stdio macro meaning '·end of file" ; sec also §27.4.
lllC C++ standard library rutemative to scanW%s") and gelsO doesn't suf­

fer from these problems:

Siring s;
dn » s; II read a word
gelline(dn,s); II read a line

27.6.3 Files
In C (or C++), files can be opened using fopenO and closed using fcloseO.
These functions, together with the representation of a file handle, FILE, and the
EOF (end-of-file) macro, arc found in <sldio.h>:

FILE ·fopen(consl char· filename, consl char· mode);
inl fclose(FllE ·stream);

Basically, YOll lise fLIes like this:

void f(const char· fn, consl char· fn2)
(

FllP (i = fopen(fn, "r");
FllP fo = fopen(fn2, " WH);

r open fn for reading *'
, - open in for writing *'

if (fi == 0) error("failed to open input file");
if (fo == 0) error("failed to open outpul file");

r read from filc using stdio input functions, c.g., getcO *'
r write from fi lc using stdio output functions, c.g., fpri ntfO· '

fclose(fo);
fclose(fi);

1019

1020 CHA PTER 27 • THE C PROGRAMMING LANGUAGE

Consider this: there are no exceptions in C, so how do we make sure that the
files are dosed whichever enor happens?

27.7 Constants and macros
In C, a eonsl is never a compile-time constant:

co nsl int max = 30;
consl int x; ' " canst nol initialized: O K in C (error in C++) · ,

void f(i nt v)

{

int al [max) ; , . error: array bound nOI a constanl (OK in C++) "'

' " (max is not allowed in a constant expression!) "'
int a2lx]; ' " error: array bound nol a constant "'

switch (v) {

case 1 :

'" ... '"
break;

case max:

}

'" ... "'
brea k;

' " error: case label not a constanl (OK in C++) " '

The technical reason in C (though not in C++) is thaI a const is implicitly acces­
sible from other lranslation units:

' " file x.c: "'
const inl x;

/ " file xx.c: "/
consl int x = 7;

/. initialize elsewhere . /

/" here is the real deiinition "/

In C++, that would be two different objects, each called x in its own file. Instead
of using const to represent symbolic constams, C programmers lend to lise
macros. For example:

#define MAX 30

27.8 MACROS

void f(int v)
(

)

int alfMAX);

switc h (v) (

case 1: , ,
break;

case MAX :

)

,,, ... '"
break;

/' OK . ,

~111e name of the macro MAX is replaced by the characters 30, which is the value
of the macro; that is , the number of elements of al is 30 and the value in the sec·
ond case label is 30. We usc all capital lelters for the MAX macro, as is conven·
tional . ~111is naming convention helps minimize errors caused by macros .

27.8 Macros
Beware of macros: in C there arc no really effective ways of avoiding macros, but
their usc has serious side effects because they don 't obey the usual C (or C++)
scope and t)1>e rules. Macros arc a form of text substitution. See also §A.I7.2.

How do we try to protect ourselves from the potential problems of macros
apart from (relying on C++ alternatives and) minimizing their use?

Give all macros we define ALL_CAPS names.

Don't give anything that isn't a macro an ALL....CAPS name.

Never give a macro a short or "cute" name, such as max or min .

Hope that everybody else follows this simple and common convention.

111e main uscs of macros arc

Definition of "constants"

Definition of function·like constructs

"Improvements" to the syma:1(

Comrol of conditional compilation

In addition, there is a wide variety of less common uses.
We consider macros seriously overused, but there arc no reasonable and

complete alternatives LO the use of macros in C programs. Xl can even be hard to

1021

1022 (HAPTER 27 • THE C PROGRAMMING LANG U AGE

avoid them in C++ programs (especially if you need to write programs that have
to be portable to very old compilers or to platforms with unusual constraints).

Apologies to people who cons ider the techniques described below "dirty
mcksn and believe such arc best not mentioned in polite company. However, we
believe that programmillg is to be done in the real world and that these (very
mild) examples of uses and misuses of macros can save hours of Kricf fo r the
novice programmer. Ignorance about macros is not bliss.

27.8.1 Function-like macros
Here is a rairly typical function-like macro:

#d efine MAX(x , y) « x» =(y)1(x):(y))

\·Ve use the capital MAX to distinguish it from the many functions called max (in
various programs). Obviously, this is very different from a function: there arc no
argument types, no block, no relUnl statement, etc. , aJld what are all those pa]1!n­
theses doing? Consider:

int aa = MAX(t ,2);
d ouble dd = MAX{aa++,2);
char cc = MAX(dd ,aa)+2;

111is expands 10

int aa = ((1» =(2)1(1):(2»;
d ouble dd = « aa++» =(2)?(aa++):(2»;
char cc = « dd» =(aa)?(dd):(aa»+2;

Had "all the parentheses" not been there, the last expansion would have ended
up as

char cc = dd>=aaldd :aa+2 ;

That is, ec could easily have gotten a different value from what you would rea­
sonably expect looking at the definition of ce. When you define a macro, remem­
ber to put every use of an argument as an expression in parentheses.

On the other hand , not all the parentheses in lhe world could save the sec­
ond expansion. The macro parameter x was given the value aa++ , and since x is
used twice in MAX, a can get incremented twice. Don't pass an argument with a
side effect to a macro.

As it happens, some genius did define a macro like that and sulck it in a pop­
ular header fil e. Unfortunately, he also called it max , rather than MAX, so when
the C++ standard header defines

2 7 .6 MAC RO S

template<class T> inline T max(1 a,T b) (return a<blb:a;)

the max gets expanded with the arguments T a and T b, and the compiler sees

template<class T> inline T «(1 a»=(T b)"f(T a):(T b» (return a<b?b:a;)

The compiler error messages are "interesting" and not very helpful. In an emer­
gency, you can "unddine" a macro:

#undef max

Fortunately, that macro was not all that important. However, there arc tens of
thousands of macros in popular header HIes; you can't undefine them all without
causing havoc.

Not all macro parameters are used as expressions. Consider:

#define AlLOC(T,n) «P)malloc(sizeof(T)· n»

-n lis is a real example that can be very useful for avoiding errors stemming from
a mismatch of the intended lype of an allocation and its lise in a sizeof:

double· p = malloc(sizeof(inW10); , . l ikely error . ,

Unfortunately, it is nontrivial to write a macro that also catches memory exhaus­
tion. TIlis might do, provided that YOll define erro r_var and errorO appropriately
somewhere :

#define AllOC(T,n) (error_va r = (P)malloc(sizeof(T)· n), \
(erro,_var==O)\
l(errof("memoryallocation failure "),O)\
:error_var)

-nle lines ending with \ arc not a typesetting problem; it is the way you break a
macro definition across lines. When writing C++, we prefer to usc new.

27.8.2 Syntax macros
YOlt can define macros that make the source code look more to your taste. For
example :

#define fo rever for(;;)
#define CASE break; case
#define begin {
#define end }

1023

1024 (HAPTER 27 • TH E (PROG RAMMING LANG UAGE

We strongly recommend against this. Mati) people have tried this idea. ·nley (or
the people who maintain their code) find that

Many people don't share their idea of what is a better syntax.

TIle "improved" syntax is nonstandard and surprising; others b'Ct confused.

There are uses of the "improved" syntax that cause obscure compi l e~time

errors.

What you see is not what the compiler sees, and the compiler reports er­
rors in the voc'-lbu lary it knows (and sees in source code), not in yours.

Don't write syntactic macros to "improve" the look of code. You and your best
friends might find it really nice, but experience shows that you'll be a tiny minor·
ity in the larger community, so that someone will have to rewrite your code (as·
suming it survives).

27.8.3 Conditional compilation
Imagine you have two versions of a header file, say, one for Linux and one for
Windows. How do you select in your code? Here is a common way:

#ifdef WINDOWS
#indude "my_windows_header.h"

#elsc
#indude "my_linux_hcader.h"

#endif

Now, if someone had defined WINDOWS before the compiler sees tills. tile effect is

#indude "my_windows_header.h"

Otherwise it is

111e #ifdef WINDOWS test doesn't care what WINDOWS is defined to be; it just
tests that it is defmed.

Most major systems (including all operating system variants) have macros
defined so that you can check. 111e check whether you are compiling as C++ or
com piling as C is

#ifdef _ cplusplus
/I in C++

#else
l" in C -/

#endif

2 7. 9 AN EXAMPLE: INTRUSIVE CONTAINERS

A similar construct, often called an inell/de guard, is commonly used LO prevent a
header fi le from being #included twice:

r my_wi ndows_hcadcr.h: "'
#ifndef MY_WINDOW S_HEADER
#define MY_W INDOWS_HEADER

'0 here is the header information "'
#endif

111C #ifndef tcst checks that somcthing is not defincd ; i.e., #ifndef is lhe opposite
of #ifdef. Logically, these macros used for source file control arc very different
from the macros we use for modifying source code. ~nley just happen to use the
same underlying mechanisms to do their job.

27.9 An example: intrusive containers
TIle C++ standard library containers, such as veclor and map, arc non·intrusive;
that is, they require no data in the types used as elements. ~Inat is how they gen­
eralize nicely to essentially all types (built-in or user-defined) as long as those
types can be copied. There is another kind of container, an intrusive container, that
is popular in both C and C++. We will use a non·intrusive list to illustrate C ­
style usc of structs, poimers, and free store.

Let's define a doubly-linkcd list with nine operations:

void inil(slruct lisl" lsi);
slrucl lisl" ereale();

'0 in il ialize 1st to empty 0'
void clear(slruct list O 151) ;
void destroy(slruct listO lsI) ;

'0 make a new empty list on free store 0'
' " free all elements of 1st 0'
' " free all elements of 1st. then free 1st 0'

void push_back(slrucl listO lsI, slruct link" p);
void push_fronl(slruct List". slruct lin k" p);

' " inscrt q before p in 1st: "'

'0 add p at end of 1st 0'
r add p at fronl of 1st 0'

void insert(strucl list" 151, slrucl lin k" p, slruct Link" q);
slru cllink" erase(slru cl Lisl" 151, slru ct link" P)i '0 remove p from 1st "'

' " return link n "hopsH before or after p: "'
slruct link" advance(slrucl Linko p, inl n);

The idea is to define these operations so that their users need only use List"s and
Link os. This implies that the implementation of these functions could be changed
radically without affecting those users. Obviously, the naming is inOucnccd by
the ST1... List and Link can be defined in the obvious and trivial manner:

1025

1026 CHA PTER 27 - THE C PROG RAMM ING LANGUAGE

struCi list {
stru ellink· firsl;
slru ellink· lasl;

);

slru Ci link { / - link for doubly-linked list */

);

shuet link- pre ;
struCi link- sue;

Here is a graphical representation of a list:

liSI:,.,-,:-__ -,
fl"t
last

link:r-_-''--_-,
pre pre

sue sue --------------'-'=-_----.J sue

It is nOt our aim to dcmonstrate clever representation techniqucs or clever algo­
rithms, so there arc none of those here. However, do notc that there is no men­
tion of any data held by the links (the e1emcnts of a lisl). Looking back at thc
fUIletions provided, we nOte that we are doing something very similar 10 defining
a pair of abstract classes link and list "nlc data for links will bc supplied later.
li nk - and list- are sometimes called handles to opaque types; that is, giving
link · s and list· s to our functions allows us to manipulate e1ement:s of a list with­
OUI knowing anything about the internal structure or a link or a list

To implement our list rUllctions, we fi rst #indude some standard library
headers:

#include<stdi o.h>
#include<stdlib. h>
#include<assert.h>

C doesn't have namespaces, so we need not worry about using declarations or
using direetives_ On the other hand, we should probably won)' that we have
grabbed some very common short names (link, insert, init , etc.), so this set or
rUllclions cannot be used "as is" outside a toy program.

Initializing is trivial, but note the usc or asse rtO:

2 7. 9 AN EXAMPLE: INTRUSIVE CONTAINERS

void init(strue! ListO lsI)
{

/0 initialize 0p to the empty lisl 0/

assert(lsl);
Ist->first = Ist->Iast = 0;

We decided not to deal with error handling for bad pointers to lists at nm time.
By using assertO, we simply give a (run-time) system error if a list pointer is null.
111e "system enor" will give the rue name and line number of the failed assertO;
assertO is a macro deflned in <aSserf.h> and the checking is enabled only during
debugging. In the absence of exccptions, it is not easy to k.now what to do with
bad pointers.

"n le createO fUllction simply mak.es a List on the free SLOrc. It is a sort of
combinauOIl of a constructor (initO initializes) and new (mallocO allocates):

strue! List" e, eateO
{

I" make a new empty list 0'

)

strue! List" 1st = (struet List")malloe(sizeof(stru ct list "»;
init(lst);
return 1st;

"nle dearO function assumes that all Links arc created on the free store and
frccOs them:

void dear(struet List" 1st) I" free all clements of 1st "'
{

)

assert(lst);
{

)

stru ct Linko curr = Ist->first;
while(curr) {

)

struet linko next = curr->suc;
free(eurr);
eurr = next ;

Ist->first = Ist->Iast = 0;

Note the \vay we traverse using the sue member of Unk. We can't safely access a
member of a struet object after that object has been freeOd, so we introduce the
variable next to hold our position in the List while we freeO a Link .

1027

1028 C H APTER 27 • THE C PROGRAMM IN G LANGUAGE

If we didn't allocate all of Ollf Links on the free store, we had better not call
clearO, or clear() will create havoc.

111C deslroyO function is essentially the opposite of createD. that is, a son of
combination of a dcstrucLOr and a delete :

void deslroy(slrucl Lisl * 151) '* free all elements of 151; then free 1st *'
(

assert(lst);
clear(lsl);
(ree(ls l) ;

Note tha t we are making no provisions for calling a cleanup function (destruc­
tor) for the clements represented by links. 111is design is not a completely faith­
fu l imitation of C++ techniques or generality - it couldn 't and probably
shouldn't be.

The push_backO function - adding a link as the new last link - is preuy
straightforward:

void push_back(stru ct list - 1st, slruct link- p) /* add p at end of 1st - /
(

)

asse rt{lsl) ;
(

)

slruct Link - lasl = Isl->lasl;
if (lasl) {

)

e lse {

)

lasl->suc = p;
p->pre = lasl ;

Ist->fifSt = p;
p->pre = 0;

Ist->Iast = p;
p->suc = 0;

/ . add p after last -/

r p is the first element -/

/ - P is the new last clement -/

However, we would never have gotten it right without drawing a few boxes and
armws on our doodle pad. Note that we "forgot" to cons ider the case where the
argument p was nulL Pass 0 instead of a poimer to a Link and this code will fail
miserably. Tllis is not inherently bad code, but it is 1/01 industrial strength. Its pur­
pose is to illustrate COillmon and useful techniques (and, in this casc, also a cam­
mon \\'caknessfbug).

27.9 AN EXAMPL E: INTRUSIVE CONTA INER S

The e raseO function can be written like this:

slruct Link · e rase(slru cl Lisl · lSI, slruct Link- p)
/ ,

' /
{

}

remove p from lSI;
return a pointer to the link after p

asserl (lsl)j
if (p==O) return OJ , - OK 10 erase(O) -,

if (p == Isl->fir st) {

}

if (p->suc) {

e lse {

Isl->firSI = p->suc;
p->suc->pre = OJ
return P->S UCj

r the successor becomes first -'

Isl->first = Ist->Iasl = OJ r the list becomes emply -,
return OJ

else if (p == Isl->lasl) {
if (p->pre) (

}

else {

}

}

else {

}

Ist->Iast = Il->pre ; '* the predecessor becomes last -,
p->pre->suc = 0;

Ist->fir sl = Ist->Iast = 0; , - the list becomes emply .,
return 0;

p->suc->pre = p->pre;
p->pre->s uc = p->suc ;
return p->suc;

We will leave the rest of the functions as an exercise, as we don' t need them for
our (all tOO simple) test. However, now we must face the cemral mystery of this
design: Where is the data in the clements of the list? How do we implement a
simple list of names represented by a C-slyJe string? Consider:

1029

1034) CH APTER 27 • TH E C PRO GRAMMING LANGUAG E

slruct Nam e {

) ;

struct Link Ink;
char· p;

'* the l ink required by list operations *'
,. the name string *'

So fa r, so good, though how we gel to use tha t Link member is a mystery ; but
since we know tha t a list likes its Links on the free store, we wr ite a fUll ction cre­
ating Names on the free store:

slruct Name- make_name(char* nl
{

)

slrucl Name· p = (stru el Name*) malloc(sizeof(slruct Name»;
p->p = n j

return Pi

Or graphic. ... Uy:

list -

first

Link :

/ WI
- I pre - pre I- pre

sue - sue ._-------.-- .. sue
n n n

Now let's lISC that :

int mai nO
{

struCllist names;
stru c' list - curT;
ini t(&nam es);

r make a few Names and add them to the l ist: *'
pu sh_back(& names,(shu (I link· lmake_ name(" Norah "» i
push_back(&names,(shuct Link *)make_name("Annemarie"))j
pu sh_back(& nam es,{struct Link -)make_name{ "Kris"));

, - remove the second name (with index 1): . ,

erase{&names ,ad vanceC names. first, 1));

-

CHAPTER 27 RE VIEW 1031

)

curr = names.first; ,- write out all names -,
inl count = 0;
for (; curr! =O; curr=curr->suc) {

count++;
printf("element %d: %s\n", count, «struct Name·)curr)->p);

)

So we "cheated." We used a cast to lfeat a Name- as a link- . in that way, the user
knows about the "library-type" link. However, the "'library" doesn't know about
the "application·type" Name. Is that allowed? Yes, it is: in C (and C++), you can
treat a poimer to a struct as a pointer to its first element and vice versa.

Obviously, this list example is also C++ exactly as written.

TRY THIS

A common refrain among C++ programmers talking with C programmers
is, "Everything you can do, I can do beuer!" So, rewrite the intrusive list ex­
ample in C++, showing how to make it shoner and easier to use without
making the code slower or the objects bigger.

~ Drill
I. Write a "'Hello, World!" program in C, compile it, and run it.
2. Define two variables holding "Hello" and "World!" respectively; concate­

nate them with a space in between; and output them as Hello, World!.
3. Define a C function that takes a char· parameter p and an int parameter

x and print out their values in this fonnat: p is "foo " and x is 7. Call it
with a few argument. pairs.

Review
Ll lhe following, assume that by C we mean ISO standard C89.

I. Is C++ a subset of C?
2. Who invclllcd C?
3. Name a highly regarded C textbook.
4. In what organization were C and C++ invcmed?
5. Why is C++ (almost) compatible with C?
6. Why is C++ only almast compatible with C?

, 1032

7.
8.
9.

10.
II.
12.

13.
14.
15.

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
3 1.
32.
33.
34.
35.

Terms

CHAPTE R 2 7 • THE C PROGRAMM ING LANGUAGE

List a dozen C++ fearures not presenl in C.
What organization "owns" C and C++?
List six C++ standard library components that crumot be used in C.
'Which C standard library components can be used in C++?
How do you achieve function argument type checking in C ?
What C++ features related to functions are missing in C? List at least
three. Give examples.
How do you call a C function from C++?
How do you call a C++ function from C?
Which types are layout compatible between C and C++? (just) give ex·
amples.
'What is a stmcture tag?
List 20 C++ keywords that are not keywords in C.
Is "int x;" a definition in C++? In C ?
What is a C-sty1c cast and why is it dangerous?
'What is void* and how docs it differ in C and C++?
H ow do enumerations differ in C and C++?
What do you do in C to avoid linkage problems from popular names?
What are the three most common C functions from free-store usc?
What is the definition of a C-style string?
How do == and strcmpO differ for C-style strings?
H ow do you copy C-style strings?
How do you lind the length of a C-style string?
How would you copy a large array of ints?
What's ruce about printf()? What arc its problemsnimitations?
Why should you never use gels()? 'What can you usc ins tead?
How do you open a file for reading in C?
What is the difference benveen const in C and const in C++ ?
Why don't we like macros?
What are common uses of macros?
What is an include guard?

#d efin e DelUlis Ritdue non-mtnlsive
#ifdef FILE opaquecypc
#ifndef fope nO overloading
Bell Labs fonnat string printfO
Brian Kernighan Lmrusivc strcpyO
C/C++ K&R structure tag
compatibility lexicographical three-way comparison
conditional compilation linkage void
C -style cast macro void·
C-style string maliocO

C HAI'TER 27 EXERCISES

Exercises
For these exercises it may be a good idea to compile all programs with both a C
and a C++ compiler. If you lise only a C++ compiler, you may accidentally use
non·C features . If YOll usc only a C compiler, type errors may remain undetected.

I . Implement versions of strlenO, strcmp() , and strcpyO.
2. Complete the intnlsive list example in §27.9 and test it using every

function.
3. "Pretty up" the intnlsive list example in §27.9 as best you can to make it

convenient to use. Do catch/handle as many errol's as you can. It. is fair
game to change the details of the slruct defInitions, to usc macros, whatevel'.

4. If you didn 't already, write a C++ version of the intrusive list example
in §27.9 and test it using every function.

S. Compare lhe results of exercises 3 and 4.
6. Change t.he representation of link and List from §27.9 without. changing

the lIser interface provided by the functions. AlIOC<"1tc Links in an array of
links and have the members first , last , pre, and sue be inls (indices into
the array).

7. What are the advantages and disadvantages of intrusive containers com·
pared to C++ standard (non·intrusive) containers? Make lists of pl'OS
and cons.

8. \¥hat is the lexicographical order on your machine? Write out every
character on your keyboard together with its integer value; then, write
the characters out in the order detennined by their integer value.

9. Using amy C facilities, including lhe C standard library, read a sequence
of words from stdin and write them to stdout in lexicographical order.
H.int : 111e C sort function is called qsort() ; look it up somewhere. Alter­
natively, insert the words into an ordered list as you read them. 111ere is
no C standard library list.

10. Make a list of C language features adopted from C++ or C with Classes
(§27.l).

11. Make a list of C language features not adopted by C++.
12. Implement a (C·style string, int) lookup table with operations such as

find(struct table -, const char-), insert(struct table -, const char -, in!),
and remove(st ruct table -, const char·). The representation of lhe table
could be an array of a struct pair or a pair of arrays (const char · 1l and
int -); you choose. Also choose return types fo r your functions. Docu·
ment your design decisions.

13. Write a program lhal does the equivalent of string s; cin»s; in C; that
is, define an input operation lhat reads an arbitrarily long sequence of
whitespace·terminated characters into a zero·terminated array of chars.

14. Write a function that takes an array of ints as its input and finds the
smallest and the largest clements. It should also compute the median and
mean. Usc a struct holding the results as the return value.

1033

1034 CHAPTER 27 • TH E C PROGRAMMING LANGUAGE

15. Simulate single inheritance in C. Let each "base class" contain a pointer
to an array of pointers to functions (to simulate virtual functions as free­
standing functions taking a pointer to a "base class" object as their first
argument); see §27.2.3. Implement "derivation" by making the "base
class" the type of the first member of the derived class. For each class, ini­
tialize lhe array of "virtual functions" appropriately. To test the ideas, im­
plement a version of "the old Shape example" with the base and derived
drawO just printing out the name of their class. Usc only language fea­
tures and library facilities available in standard C.

16. Use macros to obscure (simplify the nOtation for) the implementation in
the previous exercise.

Postscript
We did mention that compatibility issues arc not all that exciting. However, there
is a lot of C code "outlhere" (billions of lines of code), and if you have to read or
write it, this chapter prepares you to do so. Personally, we prefer C++, and the
information in this chapter gives part of the reason for that. And please dOIl 't
underestimate that "intrusive List" example - hOlh "intrusive Lists" and opaque
types arc important and powerful techniques (in both C and C++).

Part V
Appendices

el .
f'" A

Language Summary

"Be careful what you wish for ;
you might get it."

- Traditio nal

T his appendix summarizes key language elements or c++.
The summary is vcry selective and specifically geared lO

novices who want to explore a bit beyond the sequence or topics

in the book. The aim is conciseness, not completeness.

1037

'"'"
14..1 General

14. .1.1 Terminology
14. .1.2 Program start and termination
14. .1.3 Comments

A.2 Literals
14. .2.1 Inleger lite rals
14..2.2 floating-point·literals
A.2.3 Boole;an liter;llis
"'.2.4 Charade r lile rals
04 .2.5 Siring literals
A.2.6 The pointer lite ral

A.3 Identifiers

A.3.1 keywords

14..4 Scope, storage class, and lifetime
04 .4.1 Scope
A.4.2 SIOtJlge class
" .4.3 life time

A.S Expressions
A.5. t User-d efined operillo rs
04.5.2 Implicil'ype conve rs ion
A.5.3 Conslant expressions
A.S.4 sizeof
A.5.5 logical expressions
A.5.6 new and delete
14..5.7 Casts

14. .6 Statements

14. .7 Declarations
14..7.1 De finitions

A.8 Built-in types
14..8.1 Pointers
A.S.2 Arrays
14..8.3 References

A.l General

AP PENDIX A • LANGUAGE SUMMARY

A.9 Functio ns

14. .9.1 Overload resolution
A.9.2 Default arguments
A.9.3 Unspecified arguments
A.9.4 linkage specifications

1\.10 User·de fined types

A.l0. l Operator overloading

1\.11 Enumerations

1\.12 Classes

A.12.1 Member access
A. 12.2 Class member definitions
A.12.3 Construction, destruction, and

copy
A.12.4 Derived classes
A.12.5 Bitfields
A.12.6 Unions

1\.13 Templates

A.13.1 Template arguments
A.13.2 Template instantiation
A.n .3 Template member types

1\.14 Exceptions

A.15 Namespaces

A.16 Aliases

A.17 Pre pro cessor directives

A.17.1 . include
A.17.2 #define

111is appendix is a reference. It is not intended to be read fTO m beginning to end
like a chapter. II (morc or less) systematically describes key clements of the C++
language. It is not a complete reference, though; it is just a summary. Its focus
and emphasis were determined by student questions. Often, you will need to
look at the chapters for a more complete explanation. 'n tis summary docs Ilot at·
tempt to equal the precision and terminology of the standard. Instead, it attempts
to be accessible. For more information, see Stroustrup, The C++ Programming Lall-

A.I GENERAL

guage. ~111e defmition of C++ is the ISO C++ sla.ndard, but that document is nei·
ther intended fo r nor suitable for novices. Don't forget to usc your online docu­
mentation. If you look at this appendix while working on the early chapters,
expect much to be "mysterious," that is, explained in later chapters.

For standard library facilities, sec Appendi. ... B.
rnle standard for C++ is defined by a conunittee working under the auspices

of the ISO (the international organization for standards) in collaboration with na'
tional standards bodies, such as INCIT'S (United States), BSI (United Kingdom),
and AFNOR (France). llle current defmition is ISO/IEC 14882:2003 Slmuulrdfor
ItogTtlllllllillg umguage C++. It is available elccLrouically and as a book (on paper):
77le C++ Sialldard, published by Wliey, ISBN 0470846747.

A.l .l Terminology
rille C++ standard defines what a C++ program is and what the various con­
structs mean:

Cm!fimllillg: A program that is C++ according to the standard is called
(OI/onllillg (or colloquially, legal or valid).

Impleme1llation tlefinetl: A program can (and usually does) depend on fea­
tures (such as the size of an int and the numeric value of'a') that arc only
well defined on a given compiler, operating system, machine architecture,
etc. rIlle implementation-defined fealUres are listed in the standard and
must be documented in implementation documentation, and many are
reflected in standard headers, such as <limits> (sec §B.l.l). So, being con­
forming is not the same as being portable to all C++ implementations.

Ulupecifietl: rnle meaning of some constructs is lIIujJecjjied, U!u/4illetl, or 1101
wlfonnillg bul 1101 rtqllin·llg a diagnostic. Obviously, such features are best
avoided. rnlis book avoids them. The unspecified features to avoid
include

Inconsistent definitions in separate source files (use header files COIl­

sistently; see §8.3)

Reading (uul writing the same variable repeatedly in an expression
(the main example is a[il=++i;)

Many uses of explicit type convers ion (casts) , especially of reinter­
preCcasl

A.l .2 Program start and termination
A C++ program must have a single global function called mai nO. TIle program
starts by executing mainO. TIle rctum type of mai nO is int (void is 1101 a conform·
ing alternative). enle value returned by mainO is the progranl's return value to

1039

'040 APPEND IX A • LANG UAGE SUMMA RY

';thc system." Some systems ignore that value, but succcss fullcrmination is indi­
ca.tcd by returning zero and failu re by rCluming a nonzero value or by an un­
caught exception (bUl an unc.1.ught exception is considered poor style),

~nlC arguments to main O can be implementation defined, but every imple­
mentation must accept two versions (though only one per program):

inl main (); 1/ no arguments
int main (inl argc, char- argvl]); /I argvl! holds argc C-stylc wings

111c definition of mainO need not explicitly retum a value. If it doesn' t, "drop­
ping through the bottom," it returns a zero. 11lis is the minimal C++ program:

inl mainO { }

if you define a global (namcspacc) scope object with a constructor and a destruc­
tor, the constmcl'Or will logically be executed "before mainO" and the destructor
logically executed "after mainO" (technically, executing those constructors is parl
of invoking mainO and executing the dcstructors part of TCtuming from main O).
Whenever you can, avoid global objects, cspecially global objects requiring non·
trivial construction and destruction.

A.1.3 Comments
What C<'l.n be said in code, should be. However, C++ offers two comment styles
to allow the programmer to say things thal are not well expressed as code:

II this is a line comment

,.
this is a
block comment .,

Obviously, block comments arc mostly used for multi-line commelllS, though
some people prefer single-line commems even for multiple lines:

IIlhis is a
II multi -l ine comment
"expressed using three line comments

r and th is is a si ngle line of comment expressed using a block comment -,

Comm ents are essemial for documeming the illtCIll of code; sce also §7.6.4.

A.2 LITERAL S

A.2 literals
Literals represent valu es of various types . For example, the literal 12 represents
the integer value Mtwelve," "Morning" represents the character string value Mom­
il/g, and tru e represent the Boolean value fme.

A.2.1 Integer literals
/I/ttger Jiterau come in three varieties:

Decimal: a series of decimal digits
Decimal dibrits: 0, 1, 2, 3, 4, 5, 6,7,8, and 9

Octal: a series of octal digits starting with 0
Octal digits: 0, 1, 2, 3, 4, 5, 6, and 7

Hexadecimal : a series of hexadecimal digits starting with Ox or OX
Hexadecimal digits: 0, 1,2,3, 4, 5, 6, 7, 8, 9, a, b, c, d , e, f, A, 13, C , D, E,
and F

A suffix u or U makes an integer literal unsigned (§25.5.3), and a SUlTlX I o r L
makes it long; fo r example, 10u and 123456Ul.

A.2.1.1 Number systems

We usually write out numbers in decimal notation. 123 means 1 hundred plus 2
tens plus 3 ones, or 1°100+2·10+r 1, or (using " to mean "to the power or)
1"10112+rl011 1+3*101l0. Another word for decimal is base-IO. TIlere is nothing
really special about to here. What we have is 1*base Il2+2* baseIl1+3* base" O
where base==10. TIlere are lots of theories about why we use base-tO. One the­
ory has been "built into" SOUle natural languages: we have ten fingers and each
symbol, such as 0, I, and 2, that directly stands for a value in a positional num­
ber system is called a d igit. Digit is Latin ror "finger."

Occasionally, other bases are used. Typically, positive integer valu es in COIll ­

pUler memory are represented in base-2 (it is relatively casy to reliably represent
o and I as physical states in materials), and humans dealing with low-level hard­
ware issues sometimes usc base-8 and more often base-16 to rerer to the cOlllem
ormemOlY·

Consider hexadecimal. We need to name the 16 values rrom ° to 15. Usu­
ally, we Lise 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 13, C. D, E, F, where A has t.he decimal
value 10, 13 the decimal value 11 , and so on:

A==IO, 1l== 11, C==12, D==13, E==14, F==15

We can now write the decimal value 123 as 78 using the hexadecimal notation.
~Ib sec that, note that in the hexadecimal system 78 means '·16+11 , which IS

(decimal) 123. Conversely, hexadecimal 123 means "16"2+2·16+3, which is

1041

1042 APP ENDIX A • LAN GU AGE SU MMARY

"256+2"16+3, which is (decimal) 291 . U you have never deah with non-decimal
integer representations, we strongly recommend you try converting a few num­
bers LO and from decimal and hexadecimal. Note that a hcxadccimru digit has a
VCIY simple correspondence to a binary value :

Hexadecimal and binary

he>

binary

binary

o
0000

8

1000

1

0001

9

1001

2

0010

A

1010

3

0011

8

1011

4

0100

C

1100

5

0101

D

1101

•
0110

E

1110

7

0111

F

1111

This goes a long way toward explaining the popularity of hexadecimal notation.
In particular, the value of a byte is simply expressed as two hexadecimal digits.

In C++, (fortunately) numbers arc decimal unless we specify otherwise. To
say that a number is hexadecimal, we prcflX ox ("X for hex"), so 123==OX78 and
OX123==291 . We can equivalently use a lowercase x, so we also have 123==Ox78
and Ox123==291 . Similarly, we can use lowercase a, b, c, d , e, and f for the hexa­
decimal digits. For example, 123==Ox7b.

O ctal is base-8. We need onl y eight octal digits : 0, 1, 2, 3, 4, 5, 6, 7. In C++,
base-8 Ilumbers are represented starting with a 0, so 0123 is not the decimal num­
ber 123, but 1*8" 2+2*8+3, that is, 1*64+2*8+3, or (decimal) 83. Conversely, octal
83, that is, 083, is 8*8+3, which is (decimal) 67. Using C++ notation, we get
0123==83 and 083==67.

Binary is base-2. We need only two digits, 0 and 1. We cannot directly repre­
sent base-2 numbers as litcrals in C++. Only base-8 (OCtal), base-lO (decimal),
and base-16 (hexadecimal) are directly supported as literals and as input and out­
put formats for integers. H owever, binary numbers are useful to know even if we
cannOt directly represent them in C++ texl. For example, (decimal) 123 is

which is "64+"32+"16+1 *8+0*4+"2+1 , which is (binary) 1111011 .

A.2.2 Floating-point-lite,als
A jloaling-point-literal contains a decimal pOlll l (.), an exponem (e.g. , e3), or a
floating-point suffix (d or f). For example:

123 II int (no decimal point, suffix, or exponent)
123. II double: 123 .0

A2 LITERAL S

123.0 /I double
.123 /I double: 0.123
0.123 /I double
1.23eJ II double: 1230.0
1.23e-J II double: 0.00123
1.23e+J II double: 1230.0

l<'oating-po int-litcrals have type double unless a sufiix indicates otherwise. For
example:

1.23 /I double
1.23f /I float
1.2JL II long double

A.2.3 Boolean literals
rIne literals of lype bool arc true and false. The integer value o f lru e is 1 and the
itllcgcr value of false is O.

A.2.4 Character literals
A (hllT(Utu liteml is a character enclosed in single quotes, for example, 'a' and '@' .

In addition, there arc some "special characters" :

Name ASCII name C+. name

newl ine Nl In

horizontal tab HT " vertical tab VT Iv

oockspace BS Ib

carriage return CR I.-

form feed FF V

alert BEl I.

backslash I II

question mark 1 II

single quote I'

double quote " I"

octal number 000 1000

hexadecimal number hhh \xhhh

1043

1044 APPENDIX A • LANGUAGE SUM MARY

A special character is rtprcscmcd as its "C++ name" enclosed in single quotes,
for example, '\n ' (newline) and '\1' (tab).

The characLCr set includes the following visible characters:

abcdefghijklmnopqrsluvwxyz
ABCDEFGHIJKlMNOPQRSTUVWXYZ
0123456789
!@#S%"'&·(L +I-·u(]: n;'<>7,J

In portable code, you C<'l.nnOt rely on morc visible characters. 111e value of a
character, such as 'a' for a, is implementation dependent (but cas ily discovered,
for example, coul « int('a'»).

A.2.S String literals
A Jlrillg literal is a series of characters enclosed in double quotes, fo r example,
"Knuth " and "King Canute" , A newline c.'lnnot be part o f a string; instead lise the
special character \n to represelll newline in a string:

" King
Canute "
"King\nCanute"

II error: newline in string literal
/I OK: correct way to get a newline into a string literal

Two string literals separated only by whitespace arc taken as a single string lit~
eraJ. Fo r example:

" King" "Canute" II equivalent 10 "KingCanutc" (no space)

Note lhat special characters, such as \n , can appear in string literals.

A.2.6 The pointer literal
'TIlere is only one poi1ller lilira': tIle null poilller, O. Any constaIll expression lhat
evaluates to 0 can be used as the null pointer. For example:

l· p1=O;
inl · p2 = 2-2;
inl · p3= 1;
inI 2= O;
inl · p4 = 2;

IIOK : null pointer
II OK: null pointer
II error: 1 is an inl, not a pointer

II error: z is nol a conslant

What is happening here is that the value 0 is implicitly converted to the null
pointer. The null pointer is typically (but not always) represented as an all-r.eros
bit pauern, j ust like o.

A.3 IDENTIF IERS

In C++ (but not in C, so beware of C headers), NULL is defined to mean 0
so that you can write

int · p4 = NU LL; II (given the right definilion of NUll) Ihe null pointer

In C++Ox. the keyword nullplr will denote the null pointer. For now, we recom­
mend just using 0 for the null pointer.

A.3 Identifiers
An idnltjJier is a sequence of characters starting with a letter or an underscore fol­
lowed by zero or more (uppercase or lowercase) letters, digits, or underscores:

inl foo_bar;
inl FooDa r;
inl foo bar;
inl fooSbar ;

/10K
/10K
/I error: space can't be used in an identifier
/I error: S can't be used in an identifier

Identifiers starting with an underscore or containing a double underscore arc re­
served for lise by the implementation; don't use them. For example:

int _foe ;
int foo_bar ;
int foo_ bar ;
int foo_;

A.3.1 Keywords

/I don't
II O K
/I don't
/10K

KeYWOrtU arc identifiers lIsed by the language ilSelf to express language conStn.lClS.

Keywords (reserved identifiers)

.nd and_eq "m auto bitand bitor

bool break case catch char class

campi const consCcast continu e default dele te

do double dynamic_cast else enum explicit

export extern false float [0' friend

goto ;[in line int long mutable

namespace new not noCeq operator 0'

'045

'046 APPENDIX A • LANGUAGE SUMMARY

Keywords (reserved identifiers) (continued)

of_eq private protected public register reinterpret-cast

return shorl signed sizeof static stalic_cast

strucl switch template this throw true

" Y typedef Iypeid typename union unsigned

using virtual void volatile wchar_t while

'0' xor_eq

A.4 Scope, storage class, and lifetime
Every name in C++ (with the lamentable exception o f preprocessor namcs; sec
§A. 17) exists in a scope ; that is, the name belongs La a region of text in whidl it
can be used. Data (objects) are stored in memory somewhere; the kind of mem­
ory lIsed to store an object is called its slamge claJJ. -The lifetime of an object is
from the time it is fi rst initialized until it is finally destroyed.

A.4.1 Scope
-m ere arc five kinds of JCOjxJ (§8.4):

Global JrojJe: A name is in global scope unless it is declared inside some
language construct (e.g. , a class or a function) .

.Nillllesptue scojJe: A name is in a namespace scope if it is defined within a
namcspace and not inside some language construct (e.g., a class or a
fu nction). Technically, the global scope is a namespace scope with "the
empty name.n

Local JcojJe: A Ilame is in a local scope if it is declared inside a fu nction
(this includes fu ncliol1 parameters).

C/aJJ scope: A name is in a class scope if it is the nam e of a member of a
class.

Statelllent JrojJe: A I1mlle is in a statement scope if it is declared in the (...)
pan of a foro, while-, switch-, or if-statement.

111e scope of a variable extends (only) to the end o f the statement in which it is
defined . Fo r example:

for (int i = 0; i<v.size(); ++i) {
II i can be used here

}
if (i< 27) /I the i from the fOf-Statement is not in scope here

A.4 SCO PE , STORAGE ClASS, AND LIFETIME

Class and namcspacc scopes have names, so that we can refer to a member from
"elsewhere." For example:

void mj /I in global scope

names pace N {
void ro II in narnespace scope N
(

)

int v; /I in local scope
:: f() j Il calllhegloba lfO

void fO
(

N: :fO; /I call N's fO
)

What would happen if you called N: :f () or : :f()? See also §A.15.

A.4.2 Storage class
111erc arc three J/omge c!ruses (§ 17.4):

Au/omillic Jtomge: Variables defined in functions (including function pa·
r.unelers) arc placed in automatic storage (i.e., "on the stack"') unless ex'
plicitly declared to be static. Automatic storage is allocated when a
function is called and deallocated when a call retums; thus, if a function
is (directly or indirectly) called by itself, multiple copies of automatic
data C.-11l exist: one for each call (§8.5.8).
Stahc Jtomge: Variables declared in global and namespacc scope arc stored
in static storage, as are variables explicitly declared static in functions
and classes. The linker allocates static storage "before lhe program stans
nmning."

Fru Jtore ~leajJ}.· Objects created by new arc allocated in the free store.

For example:

veclor<inl> vg(10) ; /I constructed once at program start ("before mainO")

vector<inl>· f(int J()

{

static veclor<inl> vs(x)j
vector<inl> vf(J(H) j

/I constructed in first call of fO only
/I constructed in each ca II of fO

1047

'048

for (int i=l; i<10; ++i) {

vector<int> "I(i);
/I . ..

AP PEN D IX A • LANGUAGE SUMMARY

/I constructed in each iteration

} /1 v1 destroyed here (i n each iteration)

return new vector<int>(vO; II constructed on frcc store as a copy of vf
} II vf destroyed here

void ffO
{

)

vector<inp· I> = f(10);

/I ...
delete p;

/I get vector from fO

1/ delete the vector from f

111C slillica.lIy allocated variables vg and vs are dcstroyed at program tennination
("after main On

), provided they have been constructed.
Class members are nm allocated as such. When you allocate an object some­

where, lhc non-static members arc placed there also (with the same storage class
as the class object to which they belong).

Code is stored separately from dam. For example, a member function is 110/

stored in each object o f itS class ; one copy is slOred with the rest of the code for
the program.

Sec also §14.3 and §17.4.

A.4.3 lifetime
Before an object can be Oegally) used, it must be initialized. This initialization can
be explicit using an initializer or implicit using a constructor or a rule for default
initialization of built-in types. The lifetime of an object ends at a point determined
by its scope and storage class (e.g. , sec §17.4 and §B.4.2):

Lowl (alltomatic) objects are constructed if/when the thread of execution
geLS lo them and destroyed at end of scope.

Temporary oI!;ects are created by a specific sub-expression and destroyed at
the end of their full expression. A full expression is an expression that is
not a sub-expression of some other expression .

.N(wICspau objeds and stalic class mcmbm arc constructed at the start of the pro­
gram ("before mainO") and destroyed at the end of the progrnlll ("after
mainO").

Lo«d sialic objects arc constructed if/when the thread of execution gelS to
them and (if constructed) destroyed at lhe end of the program.

m e-store objects arc constructed by new and optionally destroyed using
delete .

A.S EXP RESSIONS

A temporary variable bound to a reference "lives'" as lo ng as the reference. For
example:

const char· slrins-Ibl[J = { "Mozart", "C rieg", "Haydn", "Chopin" };
const char· f(inl i) (return strins-tbl [i) ;)
void g(string s){}

void hO
(

canst slring& r = r(O);
g{I{' »;
string s = [(2);

coul « "r(3): " «[(3)
«"s: "« s

II bind temporary string to r
/I make a temporary str ing and pass it
/I initialize s from temporary string
/I make a temporary str ing and pass it

«" r: "« r« '\n';

111e result is

r(3): Chopin s : Haydn r : Mozart

111e string temporaries generated for the calls [(1), [(2) , and [(3) are destroyed at
the end o f the expression in which they were created. However, the temporary
generated for 1(0) is bound to r and "lives" untillhe end of hO.

A.S Expressions
This section summarizes C++'s operators. We usc abbreviations that we find
mnemonic, such as m for a member name, T for a type name, p for an expression
yielding a pointer, " for expression, v for an lvalue expression, and lSi for an ar­
gument list. TIle result type of the arithmetic operations is detennined by "the
usual arithmetic conversions" (§A.5.2.2). The descriptions in this section arc o f
the buill-in operators, not of any operator you might define on your own, though
when you define your own operators, you are encouraged to follow the semantic
rules described for built-in operations (§9.6).

Scope resolulion

N :: m

:: m

m is in the namespace N; N is the name of a namespace or a class.

m is in the global namespace.

Note that members can themselves nest, so that you can gel N: :C: : m; see also
§8.7.

'04'

10SO

Poslfix expressions

, . m

p-> rn

pix)

f(l st)

l(ls!) ...
.--
typeid(x)

type id m

d ynamic_casl<T>(x)

static_casl<T>(x)

consCcast<T>(x)

re inte rpreC cast<T>(x)

APPENDIX A • LANGUAGE SUMMARY

member access; x must be a class object

member access; p must point to a class object; e<luivalent to (· p). m

subscripting; equivalent to - (pH)

funCl ion ca ll: call f with the argument list 151

constructioo: construct a T with the argument list 1st

(post) increment; the value of v++ is the value of v before incrementing

(pasO decrement; the value of \1-- is Ihe value of \I before decrementing

run-l ime Iype identification for x

run-time type identification for T

run-time checked conversion of x to T

compile-time checked conversion of x 10 T

unchecked conversion to add or remove const from x's type to get T

unchecked conver'5ion of x to T by reinterpreting the bit pattern of x

"111C Iype id operator and its uses are not covered in this book; see an expert-level
reference. Note that casts do not modify their argument. Instead , they produce a
result o f their type, which somehow corresponds to the argument value; sec
§A.5.7.

Una ry expressions

sizeofm

sizeof(x) ... --.
!,

&.
' p

newT

new T(lst)

new(lsl) T

the size of a T in bytes

the size of an object of x's type in bytes

(pre) increment; equivalent to y+=1

(pre) decrement; equivalent to y-=1

complement of x; - is a bitwise operation

not x; returns true or false

address of y

contents of object pointed to by p

make a T on the free store

make a T on the free store and initialize it with Isf

construct a T at location determined by 151

A.S EXPRESSIONS

Unary expressions (continued)

new(lst) T(lst2)

delete p

deleteD p

m,

construct a T allocation determined by 1st and initialize it with Ist2

free the object pointed to by p

free the array of objects pointed to by p

C-style cast; convert x to T

Note lhat lhe objeet (s) pointed to by p in delete p and deJete[J p Illust be a llo­
cated using new; see §A.5.6. Note that (T)x is far less specific - and therefore
more error-prone - than the more specifi c cast operators ; see §A.5.7.

Member selection

x. ·ptm

p->·ptm

the member of x identified by the pointer-to-member ptm

the member of · p identified by the pointer-ta-member ptm

Not covered in this book; see an expert-level reference.

Multiplicative operators

x·y Multiply x by y.

xJy Divide x by y.

x'Yoy Modulo (remainder) of x by y (not for fl oating-point types).

-n ,c effect of x/y and x%y is undefi ned if y==O. TIle effect of x%y is im plementa­
tion defined if x or y is negative.

Additive operators

Hy Add x and y.

x- y Sublrad y from x.

Shift operators

x<<y Shift x left by y bit positions.

x»y Shift x right by y bit positions.

1051

1052 APPENDIX A • LANGUAG E SUMMARY

For the (built-in) use of » and « for shifti ng bits, see §25_5.4. Whcn their Icft­
most operators arc iostreams, these operalOrs are used for I/O; see Chaptcrs lO
and I I.

Relational operators

x<y x less than y; returns a bool

x<=y x less than or equal to y

Dy X greater than y

D=y X greater than or equa l to y

Thc result of a relational operator is a bool.

Equality operators

x==y x equals y; returns a bool

x!=y x nol equal to y

Note t.hat x!=y is !(x==y) . The result. of an cquality opera t.or is a bool.

Bitwise and

x&y bitwise and of x and y

Note that & (like " , I, - , » , and «) delivers a set of bits. Fo r eXillllple, if a and b
arc unsigned chars, a&b is an un signed char wit.h each bit being the result of ap­
plying & to t.he corresponding bits in a and b; sec §A.5.5.

Bitwise xor

x" y bitwise exclusive or of x and y

Bitwise or

'Iy bitwise or of x and y

Logical and

x&&y logica l and; returns true or false; evaluate y only if x is true

A .S EX PR ESS IONS

l ogical or

'Ii, logical or; returns tru e or fa lse; evaluate y only if x is false

See §A.5.5.

Conditional expression

xly :z if x the result is y; otherwise the resuli is z

For example:

templale<class T> T& max(T& a, T& b) { re turn (a>b)1a:b ; }

·111e '·question mark colon opcralOr" is explained in §8.4.

Assignments

v"=x

v!=x

v%=x

v+=x

v-=x

v>>=x

v<<=x

v&=x

v"=x

vj=x

assign x to v; resu lt is the resul ting v

roughly v=v"(x)

roughly v=v/(x)

roughly v=v%(x)

roughly v=v+(x)

roughly v=v-(x)

roughly v=v» (x)

roughly v=v« (x)

roughly v=v&(x)

roughly v=v"(x)

roughl y v=vj(x)

By "roughly v=v*(x)" we mean that v"=x has that value c.'{ccpt that v is evaluated
only once. For example v(++i] "=7+3 means (++i, v[i]=v[W (7+3)) rather than
(vl++i l=v[++W (7+3» (which would be undefmed ; see §8.6.1).

Throw expression

throw x thrrnv the value of x

111c type or II throw-expression is void .

1053

1054 APPENDIX A .. LANGUAGE SUMMARY

Comma expression

',Y Execute x then y; the result is y.

Each box holds operators with the same precedence. Operators in higher boxes
have higher precedence than operators in lower boxes. For example, a+b"c
means a+(b"c) rather man (a+b)"c because " has higher precedence than +. Simi­
larly, . p++ means "(p++), not (" p)++. Unary operators and assignment operators
arc right-associative ; all others arc Jeri-associative. For example, a=b=c means
a=(b=c) and a+b+c means (a+b)+c.

An lvalue is an expression that identifies an object that could in principle be
modified (but obviously an IvaIuc that has a const type is protected against mod­
ification by the type system) and have its address taken. TIle complement to
lvaluc is rvalue, that is, an expression that identifies something that may not be
modified o r have its address taken, such as a value returned from a function
(&f(x) is an error because f (x) is an rvalue).

A.S .l UserMdefined operators
"111e rules defined here are for built-in types. If a tIser·defined operator is used, an
expression is simply transfonned into a c.,11 of the appropriate user--defined opera­
tor function, and the niles for function call detennine what happens. For example:

classMine{ / */)i

bool operator==(Mine. Mine);

void f(Mine a. Mine b)
{

}

if (a==b) {
1/ . ..

}

II a==b means operator==(a,bl

A user-defined type is a class (§A12, C hapter 9) or an enumeration (§A.ll , §9.5).

A.S.2 Implici t type conversion
Integral and floating-point types (§A.8) can be mixed freely in assignments and
expressions. W herever possible, vaJues are converted so as not to lose infonna­
lion. Unfortunately, value-destroying conversions arc aJso perfOnlled implicitly.

A.S.2.1 Promotions
The implicit conversions that preserve values are comm only referred to as /Jroll/(}o

lio1LJ. Before an ari thmetic operation is perfonned, in/egral promo/ion is lIsed to cre-

A. 5 EXPRESS IONS

ate ints out o r shorter integer types. This reflects the o riginal purpose or these
promotions: to bring operands to the "natural" size ror arithmetic operations. In
addition, float to double is considered a promotion.

Promotions arc used as part or the usual arithmetic conversions (see
§A.5.2.2).

A.S.2 .2 Conversio ns

TIle rundamental types can be converted into each other in a bewildering num­
ber of ways. 'When writing code, you should always aim to avoid undefined be­
havior and conversions that quietl y throwaway information (see §3.g and
§25.5.3). A compiler can wam about many questionable conversions.

Integral amverJi01u: An integer can be converted to another integer type.
An enumeration value can be converted to an integer type. H thc desti­
nation type is unsigned, the resulting value is simply as many biLS from
the source as will fit in the destination (high-order bits are thrown away if
necessary)_ If the destination type is signed, the value is unchanged if it
can be represented in the destination type ; otherwise, the value is imple­
mentation defmed. NOte that bool and char are integer types.

Floating-jxJi1lt ((J1IfJ(1"Ji(J1u: A floating-point value can be converted to an­
other floating-point type. If the source value can be exacuy represented
in the destination type, the result is the original numeric value. H the
source value is between two adjacent destination values, the result is one
of those values. Otherwise, the behavior is undefined. Note that float to
double is considered a promotion.

fbilltu and rifuttla amVt:rJi01u: Any pointer to an object type can be implic·
itly converted to a void- (§17.8, §27.3.5). A pointer (reference) to a de­
rived class can be implicitly converted to a pointer (reference) to an
accessible and unambiguous base (§ 14.3). A constant expression (§A.5,
§4.3. 1) that evaluates to 0 can be implicitly converted to any pointer
type. A P can be implicitly converted to a canst P . Similarly, a T& can
be implicitly converted to a const T&.

Bookan C01IIJt'f"SiJms: Pointers, integrals, and floating·point values can be im­
plicitly converted to bool. A nonzero value converts to true ; a zero value
converts to fa lse.

Rooting-integral amVt:rJiom: When a floating-point value is converted to an
integer value, the fractional part is discarded. In other words, conversion
from a floating-point type to an integer type truncates. The behavior is
undefined if the truncated value cannot be represented in the destination
type. Conversions from integer to floating types are as mathematically
correct as the hardware allows. Loss of precision occurs if an integral
value cannot be represented exactly as a value of the floating type.

lOSS

1056 APPEND IX A • LANG U AGE SU MMARY

Usual arithmetic aJllutrsiom: These conversions are performed on lhe
operands o f a binary operator to bring them to a common type, which is
then used as the type o f the result :

1. If either operand is of type long double, the other is conven ed to
long doubl e. Otherwise, if either operand is double , lhe other is
converted to do uble . Otherwise, if either operand is float, lhe other
is converted to float. Otherwise, integral promotions arc perfonncd
on both operands.

2. Then, if either operand is unsigned long, the other is converted to
unsigned lo ng. Otherwise, if Olle operand is a long inl and lhe olher
is an unsigned int, then if a lo ng int can I'cprCSCill all the values of
an unsigned int, the unsigned int is converted to a lo ng int ; other­
wise, both operands arc converted to unsigned long int. Otherwise,
if either operand is long, the Olher is converted to lo ng. O therwise,
if either operand is unsigned, the other is conven ed to unsigned .
Omen vise, both operands are int.

Obviollsly, it is best not to rely too much on complicated mixtures of types, so as
to minimize me need for implicit conversions.

A.S.2.3 User-defined conversions
In addition to the standard promOlions and conversions, a programmer can de­
fine conversions for user-defined types. A constnlCtor that takes a single argu­
ment defines a conversion from its argument type to its type. If the constmctor is
explicil (sec §18.3. 1), the conversion happens only when me programmer explic­
itly requires the conversion. O thcn vise, the conversion can be implicit.

A.S.3 Constant express ions
A a)TIslalll ~xpmsi()n is an expression that can be evaluated at compile time and in­
volves only int operands. r 111at's a slight simplifi catio n, but good enough for
mOst purposes.) For example :

canst int a = 2·3;
consl int b = a+3;

Constant expressions are required in a few places, such as array bounds, case la­
bels, enumerator initializers, and int template arguments. For example :

int var = 7;

A.S EX PRE SS IONS

switch (x) (
case n :
case 41+2 :
case var:

1/ . ..
} ;

A.S.4 sizeof

/10K
/10K
II error (var is not a conSlant expression)

In sizeof(x), x can be a type or an expression. If x is an expression, the value of
sizeof(x) is me size of me resulting object. If x is a type, sizeof(x) is lhe size of an
object of type x. Sizes arc measured in bytes. By dermilion, sizeof(char)==1.

A.S.S logical expressions
c++ provides logical operators fo r integer types :

Bitwise logical operations

x&y bilwise and of x and y

xly bitwise or of x and y

xJ\y bit· ise exclusive or of x and y

Logical operations

x&&y logical and; returns true Of fa lse; evaluate y only jf x is true

xlly logical or; returns true or false; evaluate y only if x is false

TIle bitwise operators do their operation on each bit of their operands, whcreas
the logical operators (&& and II) treat a 0 as the value false and anything clse as
the value true . TIle definitions of the operations are:

&

o
1

o

o
o

1

o

A.5.6 new and delete

o
1

o

o

1

o
1

o 1

o
o

Memory o n the free store (d ynamic store, heap) is allocated using new and de­
allocated ("freed") using delete (for individual objects) or deleteO (for an array).

1057

1058 APPENDIX A • LANG UAGE SU MMAR Y

If memory is exhausted , new lhrows a bad_alloc exception. A successful new op­
eration allocmes at least 1 byte and rctums a pointer to the allocated object. The
type of object allocated is specified after new. For example:

inl- pl = new inti
inl- p2 = new int(7);
int- p3 = new int[l00] i
II ...

1/ allocate an (uninitialized) int
/I allocate an inl initialized to 7
/I allocate 100 (uninilialized) ints

delete p1;
delete p2;
deletell p3;

II deallocate individual object

/I deallocate array

If you allocate objectS of it built-in type using new, they will not be initialized un­
less you specify an initializcr. If you allocate objects of a class with a constructor
using new, a constructor is called; the default constIlictor is called unless you
specify an initializer (§17.4.4).

A delete invokes the destruclOr, if a.ny, for its operand. Note that a destructor
may be virNa! (§A.12.3.1).

A.S.7 Casts
lnere arc rour type·conversion operators:

Type-conversion operators

x=dynamic_cast<O*>(p)

x=dynamic_cast<O&>(*p)

x=slal ic_caSI<T>(y)

x=reinterpreCcast<T>(v)

x=consCcasl<T>(v)

x=(1)y

K=T(y)

Try to convert v into a 0* (may return 0).

Try to convert *p into a 0& (may throw bad_cast).

Convert v into a T if a T can be converted into v'5 type.

Convert v into a T represented by the same bit pattern.

Convert v into a T by addi ng or subtracting consl.

C-style cast: do any old cast.

Functional cast: do any old cast

TIle dynamic caSt is typ ically used ror class hierarchy navigation where p is a
pointer 10 a base class and 0 is derived rrom that base. It returns 0 ir v is not a
d° . Ir yOli want dynamic_cast to throw an exception (bad_cast) instead or retu rn·
ing 0, cast to a rere rence instead or to a pointer. TIle d ynamic cast is the onl y cast
that relies on run·time checking.

Static cast is used ror "reasonably well·behaved conversions," that is, where v
could have been the result or an implicit conversion rrom a T; see § 17.8.

A.6 STATEM ENTS

Rcinterpret cast is used for reinterpreting a bit patlcrn. h is not guaranteed to
be portable. In fact, it is best to assume that every use of reinlerpreCcasl is non­
portable. A typical example is an int-w-pointer conversion to get a machine ad­
dress into a prOhYTam; see §17.8 and §25.4. 1.

The C-slyle and functional casts can perform any conversion that can be
achieved by a slatic_cast or a reinterpreCcast, combined with a canst_cast.

Casts are best avoided. In most cases, consider their use a sign of poor pro­
gramming. Exceptions to this rule are presented in §17.8 and §25.4. 1. 111e C­
style cast and function-sty le casts have the nasty property that you don't have to
understand exactly what the cast is doing (§27.3.4). Prefer the named casts when
you cannot avoid an explicit type conversion.

A.6 Statements
Here is a grammar for C++'s statementS (~ means "optional"):

statelllent:

declaratioll

{ statement-lis/opt }
try { statnru:nl-list .. } lumcller-lisl

~xp,.r:ss;Ol/ .. ;
selectioll-statement

;terahon-slatelllt 1lt
(abele,J-S/(liemtllt

conirol -slaklll£nl

sele(tion-slatemenl:

if ((Oluli/;o1l) statemrol

if ((Ofulilion) slalemenl else slatemenl

switch ((o1ldi/;oll) Jlale7l/e1/t

;Ieral;oll-slalemm/:

while (conditiOi/) slale-l1Iml

do slal("1T1C711 while (exjJrt:ssioll) ;

for (jOr-;nil -slaIt7/1e111 (OIUJition .. ; exjm:JJiOl/.,.) slulnllc,I

ltlbclelJ-S/(IIe!lIn,/:

case coIIJ/IlIlI-exPrt:ssioll : sla/emml

d efault : J/Il/ell/eul
identifier : Jla/aTlC7II

1059

1060

control-statement:
break ;
continue;
return expreJSiQ11~ i

gOlo idclltjfier i

stale-l1Im/-/ul:
slatement Jlaletn£1II-!ul<l>l

rondihfJ1/:
(xprcJSioll

APPENDIX A • LA NG U AGE SU MMA RY

l;ype-speajier dec/arolor = rxpmsi()1l

j{Jl'-inil-s/a/emt'll/:
expression ;
iype-sp;;;" declarator = o:jJmJi01l ;

Iull/dleT-lisl:
catch (a«plion-licculraholl) { sta/e7lle1/t-{ist~ }

h"'l(lkr-fiJlllillUlIt:r-li.s/~

Note that a declaration is a statement and that there is no assignment statement
or procedure call statement ; assignments and function calls arc expressions.
More infommtion:

Iteratio n (for and while); sec §4.4.2.

Selection (if, switch, case, and break); see §4.4. 1. A break "breaks out of"
the nearest enclosing switch-sta tement, while-statement, do-sta tement, or
fo r-statement; that is, the next statement executed will be the statement
rollowing t.hat enclosing statement.

Expressions; see §A.5, §4.3.

Declarations; see §A.6, §B .2.
Exccptions (try and catch); see §5.6, § 19.4.

Here is an example concocted simply to demonstrate a variety or statements
(what docs it do?):

int - f(i nt p(J, int n)
(

if (p==O) throw Bad_p(n);
vecto r<inl> Vi

inl x;

A.7 D ECl ARATI O N S

)

while (cin»x) (

)

if (x==te rminato r) break; /I exit whi le loop
v.push_back(xl;

fo r (int i = 0; i<v.s ize() && i<ni H i) (
if (v(i]==" p)

re turn Pi
else

++p;
)

return 0;

A.7 Declarations
A dularahon consists of three pans:

11Ie name of the entity being declared

"n le type of the entity being declared

The ini tiaJ value of the entity being declared (optional in most cases)

We c.1n declare

Objects o f built· in types and uscr·dertncd types (§A.8)

User-dertned types (classes and enumerations) (§A.lO-ll , Chapter 9)

l cmplates (class templates and function templates) (§A. 13)

AI;a"" (§A. I 6)

Namespaces (§A.15, §B.7)

Functions (including member functions and operators) (§A.9. Chapter 8)

Enumerators (values fo r enumerations) (§A. II , §9.5)

Maceo, (§A.I7.2, §27.8)

A.7.1 Definitions
A declaration that initializes, sets aside memory, or in other ways provides all the in­
fommtion necessary for using a name in a program is called a tkfinitiml. Each type,
object, and function in a program must have exactly one defin.ition. Examples:

double to; /I a declaration
double fO {'" ... "' }; /I (also) a definition

1061

1062 APPENDIX A • LAN GUAG E SU MMARY

extern consl int Xi
int y;

/I a declaration
/I (also) a definition

int I = 10; /I a definition w ith an explicit initializer

A const must be initialized. lllis is achieved by requ iring an initializer for a consl
unless it has an explicit extern in ilS declaration (so that the initia lizer must be on
its defini tion elsewhere) o r it is of a type with a default constructor (§A.12.3).
Class members that are consts must be initialized in every constructor using a
member initializer (§A.1 2.3).

A.8 Built-in types
c++ has a host of fundamental types and types constructed from [undamental
types using modifiers:

Built-in types

bool x

char)(

short x

int x

float x

double x

void" P

T"p

T ·consl p

T alnJ

T& ,

T f(arguments)

consl T x

long T x

unsignedTx

signed T x

x is a Boolean (va lues true and fal se).

x is a character (usually 8 bits).

x is a short int (usually 16 bits).

x is the defaul t integer type.

x is a floating-point number (a ~short doubl e~)_

x is a r double-precision") floating-point number.

p is a pointer 10 raw memory (memory of unknown type).

p is a pointer 10 T.

P is a constant (immutable) pointer to T.

a is an array of n Ts.

, is a reference to T.

f is a fu ndion taking arguments and returning a T.

x is a constant (immutable) version of T.

x is a 10ngT.

x is an unsigned T.

x is a signed T.

H ere, T indicates "some type," so you can have a long unsigned int, a long
double, an unsigned char, and a canst char· (pointer to constant char). H owever,
this system is not perfectly general ; fo r example, there is no short double (that
would have been a float), no signed bool (that would have been m emullgless), no

A.B BUILT· IN TYPES

shorllong inl (that would havc been redundalll), and no long long long long inl.
Some compilers anticipate the C++Ox standard and accept long long inl (read that
as "very long intcger"). A long long is guaranteed to hold at least 64 bits .

"nlC jloaling-poilll typeJ are floal , double, and long double . They arc C++'s
approximation of real numbers.

"nlC illleg" IJpeJ (sometimes called intel:,'ral tyjKs) are baal, char, shari, inl,
long, and (in C++Ox) long long and thcir unsigned variams. Note that an enu­
meration type or valuc can often be used where an integer type or value is
needed.

In.e sizes of built· in types arc d iscussed in §3.B, §17.3.1, and §25.5.1. Pointers
and arrays arc discussed in Chapters 17 and lB. References arc discussed in
§8.5.4- 6.

A.S.l Pointers
A pointer is an address of an object or a function. Pointers arc stored in variables
of pointer types. A valid object pointer holds the address of an object:

inl x = 7;

inl· pi = &x ;

inl xx = ·pi ;
1/ pi points to x
1/ 'pi is the value of the object poi nted to by pi, that is, 7

An invalid pointer is a pointer that docs not hold me value of an object:

in'· pi2;
·pi2=7;
pi2 = 0;
·pi2=7;

1/ uninitial ized
1/ undefined behavior
1/ the nu ll pointer (pi2 is still inval id)
1/ undefined behavior

pi2 = new inlm ; 1/ now pi2 is va lid
inl xu = ·pi2; 1/ fine: xxx becomes 7

We try to have invalid pointers hold the null pointer (0), so that we can test it:

if (p2 == 0) (I/Nifinvalid~

1/ don't use ·p2

Or simply

if (p2) (II Nif valid"
1/ use ' p2

1063

1064 APPENDIX A • LANGUAGE SUMMARY

Sec § 17.4 and § 18.5.4.
111C operations on a (non-void) object poil1lcr are:

Pointer operations

'. dereferenccli ndi rectioo

p [ij derefercnceJsubscri pi i ng

p=q assignment and ini tialization

.==q equa li ty

p! : q inequa lity

p+i add integer

p-i subtract integer

.-q distance: subtract pointers ... pre-increment (move forward) ... post-increment (move forward)

--. pre-decrement (move backward)

.-- post-decrement (move backward)

p+=i move forward i elements

p-=i move backward i elements

Note that any form of pointer arithmetic (c.g. , ++p and p+=7) is allowed only fo r
pointers into an array and that the eITecI of dercfcfCncing a pointer poil1ling Out­
side the array is undefined (and most likely not checked by the compiler or the
language run-lime system).

~111C only operations on a void- pointer are copying (assignment or initializa­
tio n) and casting {type conversion}.

A pointer to function (§27.2.5) can only be copied and called. For example:

Iypedef void (·Handle_lype)(int) i
void my_handler(int);
Handle_type handle = my_handler;
handle(10); 1/ equivalent to my_handler(10)

A.8.2 Arrays
An amry is a fixed-length contiguous sequence of objects (clements) of a given type:

int a[10]; 1/ 10 ints

A.8 IW l lT- IN TYPES

If an array is global, its clements will be initialized to the appropriate default
value fo r the type. For example, the value of a[7] will be o. If the array is local (a
vm; able declared in a fu nction) o r a llocated using new, clements of built-in types
will be uninitialized and clements of class types will be initial ized as required by
the class's constll.lctors.

~l1le name of an array is implicitly convened to a pointer to its first clement.
For example:

inl O p =a; I/p points toalO)

An array or a pointer to an clement o f an array call be subscripted using the [J
operator. For example:

. 17J = 9;
inl xx = pI6];

Array clements arc numbered starting with 0; see §18.5.
Arrays arc not range checked, and since they arc often passed as pointers, the

information to range check them is not reliably available to users. Prefer vector.
~111e size of an array is the sum of the sizes of its elements. For example:

inl a(max]i II sizeo((a)==sizeof(a [OI)Omax:::::sizeof(int)*max

You can define mld lise an array of an array (a two-dimensional array), an array
of an aITay of an array, etc. (multidimensional arrays). For example:

double da[l00J[200)(300); 1/300 c lements of type
1/200 e lements of type
1/ , 00 type double

da[7][9J[11] = 0;

Nomrivial uses o f multidimensional arrays arc subtle and en ·or-prone; see §24.4.
If you have a cho ice, prtfer a Matrix library (such as the one in Chapter 24).

A.S.3 References
A /"Ift:rena is an alias (alternative name) for an object:

inta= 7;
int& r= ai
r = 8; 1/ a becomes 8

References arc most common as function parameters, where they are lIsed to
avoid copying:

1065

1066

vo id f(consl string& S)i
II ...

APPEND IX A • LANGUAGE SU MMARY

{("this string could be somewhat costly 10 copy, so we use a refe rence");

Sec §8.5.4-6.

A.9 Functions
A jimelioT! is a named piece of code taking a (possibly empty) set o f arguments and
optionally returning a value. A function is declared by giving the return type fo l­
lowed by its name followed by the parameter list:

char Hstring, inl) ;

So, f is a fu nction taking a string and an int returning a char. If the function is just
being declared, the declaration is terminated by a semicolon. If the functio n is
being defined, the argument declaration is followed by the function body:

char f(slring 5, inl i) (re turn s[i); }

TIle function body must be a block (§B.2) or a try-block (§5.6.3).
A function declared to return a value must return a value (using the relurn­

statement) :

char f(siring s , int i) { char c = s[i] ; } 1/ error: no value returned

The mainO function is the odd exception to that rule (§A.1.2). Except for main O,
if you don't want to return a value, declare the function void ; that is, use void as
the "return type":

void increme nl(inl& xl (++x;) 1/ OK: no return value required

A fUllction is called using the call operator (application operator), () , with an ac·
ceptable list of arguments :

char xl = f(1,2); II error: fO's first argument must be a string
siring s = "Bailie of Haslings";
char x2 = f(s); 1/ error: fO requires two arguments
char xl = f(s,2); 1/ OK

For more infonnation about functiolls, see C hapter 8.

A.9 f U N CTIO N S

A.9.1 Overload resolution
0ua(()(U1 resolulion is the process of choosing a function to call bascd on a set of ar­
guments. }<o r cxample:

void prinl(inl) ;
void prinl(double);
void prinl (consl sid : :slring&);

prinl(l23);
print(1.23);
print("123");

/I use print{int)
/I use print(double)
/I use print(const siri ng&)

It is the compiler's job to pick the right function according to the language n iles.
Unfortunately, in order to cope with complicated examples, the language lules
arc quite complicated. Here we present a simplified version.

Finding the right version to call from a set of overloaded funcLions is done by
look.ing for a best match between the type of the argument expressions ruld the
parameters (formal arguments) of the functions. To approximate our notions of
what is reasonable, a series of criteria is tried in order:

I. Exact match, that is, match using no or only trivial conversions (for ex­
ample, array name to pointer, function name to pointer to function, and
T to canst T)

2. Match using promotions, that is, integral promotions (bool to inl, char
to inl , shorl to int, and their unsigned counterparts; see §A.8) and float
to double

3. Match using standard conversions , for example, int to double, double to
int, double to long double, Derived· to Base (§ 14.3), T* to void· (§ 17.8),
int to unsigned int (§25.5.3)

4. Match using user-defined conversions (§A.5.2.3)

5. Match using the ellipsis .. . in a function declaration (§A.9.3)

If two matches arc found at the highest level where a match is found, the call is
rejected as ambiguous. The resolution rules are this elaborate primarily to take
into account the elaborate rules for built·in numeric types (§A.5.3).

For overload resolution based on multiple arguments , we first find the best
match for each argument. If one function is at least as good a match as all other
functions for every argument and is a better match than all other functions for
one argu ment, that function is chosen; otherwise the call is ambiguous. }<or
example:

1067

1068 APPENDIX A • LAN G UAGE SU MMARY

void f(int, const string&, do uble);
void {(int, const char*, intI;

f(1, "hello ", l)i
f(1 ,string(" he llo"), 1.0);
f(1, "he llo ", 1.0);

II OK: call {(jnt, consl char', int)
II OK: ca U mnl, consl string&, double)

II error: ambiguous

In the last call, the "hello " matches const char- without a conversion and consl
string& only with a conversion. On the other hand, 1.0 matches d ouble without
a conversion, but int only with a conversion, so neilher fO is a bener match limn
the olher.

If these simplified rules don' t agree with what your compiler says and what
you thought reasonable, please first consider if your code is more complicated
than necessary. If so, simplify your code; if nOl, consult an expert-level reference.

A.9.2 Default a rguments
A general function sometimes needs more arguments than arc needed for the most
common cases. To handle mat, a programmer may provide default arguments to

be used if a caller of a function doesn't specify an argumclll. For cxmnplc:

void f(int , inl=O, int=O);
((1,2,J);
f(1,2) ;

f(l);
/I ca lls f(1 ,2,0)

/I calls ((1 ,0,0)

Only trailing arguments call be defaulted and left Ollt in a call. For example:

void g(int, int =7, int) ;
f(1,,1);

1/ error: default for non-trail ing argument
/I error: S(.'Cond argument missing

O verloading can be an altcmativc to using default arguments (and vice versa).

A.9.3 Unspecified arguments
It is possible to specify a function without specifying t.he number o r types o f its
arguments. ~nllS is indicated by an ellipsis (.. .), meaning "and possibly more ar­
guments," For example, here is the declaration or and some calls lO whm is ar­
guably the most ramous C function, printfO (§27.6.1 , §B. IO.2):

void prinlf(const cha r ' fo rmat ...); II lakes a formal SIring tlnd maybe more

inl x = 'x' ;
prinlf("he llo , wo rld! ");

A. 1 0 USE R-D EF INED TYPES

J>rintH"J>rinl a char '%c'\o" ,x);
J>rintf(" print a si ring \"%s\"" ,x);

II print the int x as a char
/I shoot yourself in the foot

"111C "fomlat specifiers" in the fonnat string, such as %c and %s, detennine if and
how fu n her arguments arc used. As demonstrated, this Ct1.n lead to nasty type er­
rors. In C++, unspecified argu ments arc best avoided.

A.9.4 linkage specifications
C++ code is often used in the same program as C code; that is, pans of a pro­
gra m arc written in C++ (and compiled by a C++ compiler) and other parts in
C (and compiled by a C compiler). To case that, C++ a lTers linkage specifiwliQlIJ
for the progranuner to say that a fu nction obeys C linkage conventions. A C link­
age specification can be placed in front of a function declaration:

Alternatively it can apply to all dedaraLions in a block:

exte rn "C" {
void callable_from_C(i nl) ;
int and_this_one_also(double, int -);
r ... -/

For details of usc, sec §27.2.3.
C doesn 't alTer function overload ing, so you can put a C linkage specifica­

tion on at most one version of a C++ overloaded function.

A.l0 User-defined types
lnere arc twO ways for a programmer to defi ne a new (user-defined) type: as a
class (class, slruct, or union ; sec §A.12) and as an enumeration (enum; sec §A. I1).

A.l0.l Operator overloading
A programmer can define the meaning of most operators to take operands of one
or more user-defined types. It is not possible to change the standard meaning of
an operator for built-in types or to introduce a new operator. The name of a user­
defined operator ("overloaded operator") is the operator prefixed by the key·
word operator ; for example, the name of a function defining + is ope rator +:

Malrix operalor+(const Malrix&, const Matrix&);

,.69

1070 APP END IX A • LA NGUAGE SU MMARY

For examples, see sid : :oslream (Chapters 10- 11), sid : :vector (Chapters 17- 19,
§B.4), sld::complex (§B.9.3), and Matrix (Chapter 24).

All but the following operators can be user-defined:

1, • sizeof Iype id

Functions defining lhe following operators must be members of a class:

= II () ->

All other operators can be defined as member functions or as freestanding functions.
Note that every user-defined type has = (assignment and initialization), &

(address of) , and , (comma) defined by default
Be restrained and conventional with operator overloading.

A.11 Enumerations
An ellumeratiOIl defines a type with a set of named values (t:1IulIIeraJo/,,S):

enum Color (green, yellow, red };

By defauh the value of the first enumerator is 0, so that green==O, and the values
increase by one. so that yellow==l and red==2. It is also possible to expl icitly de­
fine the value of an enumerator:

e num Day { Monday=l , Tuesday, Wedn esday};

Here, we get Monday==l , Tuesday==2, and Wednesday==3.
NOle that enumerators arc not in the scope of their enumermion but belong

to its enclosing scope:

int x = green; /I OK
int y = Color: :green; /I error

Enumerato rs and enumeration values implicitly convert to integers, but integers
do not implicitly convert to enumeration lypes:

inl x = green;
Co lor c = green;
c = 2;
c = Color(2);
int y = C;

II OK: implicit Color-la-in! conversion
/10K
// error: no implicit int-to-Color conversion
II OK: (unchecked) cxplicit convcrsion
1/ OK: implicit Color-ta-int conversion

A.12 CLASSES

Fo r a discussion of the uses of enumerations, see §9.5.

A.12 Classes
A dms is a type fo r which the user defines the representation of iLS objeclS and the
operations allowed on those objecLS:

class X (
public:

/I user interface
private :

/I implementation
) ;

A variable, fu nction, or type defined within a class declaration is called a member
of lhe class. See C hapter 9 for class technicalities.

A.12.1 Member access
A publi c member can be accessed by users; a private member can be accessed
only by lhe class's own members:

class Date {
public :

/I.
int nexl_dayO;

private :
int y, m, d;

};

void Dale : :nexCdayO { return d+1 ; } /I OK

void f(Date d)
(

int nd = d .d+1;
1/ . . .

II error: Date::d is private

A strud is a class where members arc by default public:

slrud S {
/I members (public unless expl icitly declared private)

};

1071

10n APPENDIX A • LANGUAGE SU MMARY

For morc details of member access, including a discussion of protected , see §14.3.4.
Members of an object can be accessed through a variable or referenced using

the . (dot) operator or through a pointer using the -> (arrow) operator:

slru ct Date {
int d, m, y;
int darO const { return d ; } /I defined in-class
int month() const; /I just declared; defined elsewhere
int yea r() canst; II just declared; defined elsewhere

};

Date Xi

x.d = 15;
int y = x.dayO;
Date* p = &x;
p->m = 7;

/I access through variable
/I ca ll1hrough va riable

int z = p ->month();
1/ access through pointer
/I cal l through pointer

Members of a class can be referred to using the : : (scope resolution) opcramr:

int Date: :yearO const { return Yi } 1/ out-of-class definition

Within a member function , we can refer to other members by their unqualified
name:

struct Date (

};

int d , m, y;
int dayO consl (re turn d; }
/I .

Such unqualified names refcr to the member of the object for which the mcmber
fUIlClion was called:

void f(Date d1 , Date d2)
{

}

d1 .dayO;
d2.dayO;
/I . ..

1/ will access dl.d
I/will access d2.d

A.1 2 ClAS SES

A.12.1.1 The this pointer
If we wam to be explicit when referring to the object for which the member func­
cion is called, we ean use the predefined poilllcr this :

struct Date {
intd , m,y;

} ;

int monthO canst { return this->m; }
II ...

A mcmber function declared canst (a canst member function) cannOl modify the
value of a member of the object for which it is called :

struCi Date {

};

int d, m, Yi
int month O canst { ++m; } /I error: monlhO is canst
II ...

For more information about canst member functions, see §9.7.4.

A.12.1.2 friends
A function that is not a mcmber of a class can bc grallled access LO all members
through a friend declaration. For example:

II needs access to Matrix and Vector members:
Vector operator- (const Matrix&, consl Veclor&);

class Vector (
fri end

};

Vector ope rator -(const Matrix&, const Vector&); /I grant access
II ...

class Matrix {
friend

};

Veclor operator-(const Matrix&, const Veclor&)i II grant access
II ...

1073

1074 APP ENDIX A • LANGUAGE SU MMARY

As shown, this is usually done for functions that need to access two classes, An­
Olher usc of friend is to provide an access function that should not be c.'dled
using the member access syntax, For example:

class Iter {
public :

inl distance_to(const iter& a) canst;
friend int diHere nce(const Iter& a, const Iter& b);
II .

) ;

void f(lte r& p, lIer& q)

{

)

int x = p,d istance_to (q);
int y = differe nce(p,q);
1/ , , ,

II invoke using member syntax
II invoke using "mathemalical synlax"

Note that a function dcclared fri e nd cannot also be declarcd virtual.

A.12.2 Class member definitions
Class members that arc integer constants, functions, or types can be defincdlini­
tialized either ;1I-C1as.s or oul-o/-cIaJ.S:

slru ct S {

) ;

sialic const int c = 1;
static consl inl c2;

void fO { }
void f20 ;

struct SS { int a; };
slru ct SS2;

The members that were not defined in-class must be defined "elsewhere":

constint S::c2 =7;

void S: :f20 { }

slru ct S: :SS2 { int m; };

A.12 (LA SS ES

TIle stati c canst int members arc an odd special case. TIley just derUle sym bolic
integer constaills and do not take up memory in the object. Non·static data memo
bers do not require separate definition , cannot be separately defined, and cannot
have in·class initializers:

strucl X {

};

inl Xi

int y=7; /I error: non·slatic data members
/I cannot have in·elass initializers

sialic inlz = 7i /I error: non·const data members
1/ cannot have in-class initializers

Sialic consl string ae = "7" ; /I error: non.integrallypc
/I cannot have in-class initial izers

static const inl oe = 7; /I OK: slatic canst integral type

inl X::x = 7; /I error: non-stalic data members cannot be defined oul-of-class

If you want to ensure initialization of non-Siali c, non·consl data members, do it
in constJ"tlctoTS.

Function members do not occupy space in an object:

struct S {

};

int m;
void fO;

Here, sizcof(S)==sizof(i nt) . TIlat's not actually guaranteed by the standard, but it
is true for all implementations we know of. But nOte that a class with a virtual
function has one "hidden" member to allow virtual calls (§ 14.3. 1).

A.12.3 Construction, destruction, and copy
You can define the meaning of i.nitialization for an object of a class by defining
one or more amJ/rucJors. A constructor is a member function with the same name
as ilS class and no return type:

class Date {
public:

Oate(int yy, int mm, int dd) :y(yy), m(mm), d(dd) { }
II ...

private:
int y, m,d;

};

107S

1076 AP PENDIX A • LANGUAGE SUMMA RY

Date d1 (2006,11, 15);
Date d2;

II OK: initialization done by the constructor
/I error: no initializers

Date d3(11 ,15); /I error: bad initializers (three initia lizers required)

Note thai data members can be initialized by using an initializer list in the con­
structor (a base and member initializer list). Members will be initialized in the
order in which they arc declared in the class.

Constructors are typically used to establish a class's invanalll and to acquire
resources (§9.<k2-3).

Class objects arc constructed "from the bottom up," slarting with base class
objects (§14-.3.1) in declaration order, followed by members in declaration order,
followed by the code in the constructor itself. Unless the programmer docs some­
thing really strange, this ensures that every object is constructed before use.

Unless declared explicit. a single-argument constructor defines an implicit
conversion from its argument type to its class:

class Date (
public:

Date(string) ;
explicit Date (long); /I use an integer encoding of date
II ...

) ;

void f(Date);

Date dl = "June 5, 1848"; /I OK
f("June 5, 1848"); II OK

Date d2 = 2007-12-31+6-31+5;
f(2007-12-31+6-31 +5);

Date d3(2007-12-31+6"31+5);

II error: Date(longJ is explicit
II error: Date(long) is expl icit

Date d4 = Date (2007° 12°31 +6°31+5);
f(Date(2007 °12" 31 +6 ° 31 +5» ;

II OK
/10K
/10K

Unless a class has bases or members that require c."'plieit argumentS, and unless the
class has other constructors, a default conSlnictor is automatically generated . ~nlis

default constructor initializes each base or member that has a default constructor
(leaving members without default constructors uninitializcd). For example:

struct 5 (

) ;

string name, address;
int X;

A. 12 C LA SS ES

TIlis S has an implicit constructor SO iliat initializes name and address, but not x.

A.12.3.1 Destructors
YOll can define the meaning of an object being destroyed (e.g. , going out of scope)
by defining a lieS/nic/or. TIle name of a destructor is - (the complement operator)
followed by the class name:

class Vector (1/ vector of doubles
public :

explicit Vector(int s) : sz(s), p(new doubl e(s}) () /I constructor
- VeelorO (deletel) Pi } /I destructor
// ...

private:

);

inl SZi

double* Pi

void « int ss)
(

Vector V(S)i
II .

) 1/ v wi ll be destroyed upon exit from fO; Vector's dL'SlruClor will be called for v

DcsU1.1ctOrS that invoke the destructors of members of a class can be generated by
the compiler, and if a class is to be used as a base class, it usually needs a virtual
destructor; see §17.5.2.

A destructor is typically used to "'clean lip" and release resources.
C lass objects are destructed "from the LOp down" starling with the code in

the destructor itself, followed by members in declaration order, foUm ... ·ed by the
base class objects in declaration o rder, that is, in reverse order of construction
(§A.12.3.1).

A.12.3.2 Copying
You can dcfme the meaning of copying an object of a class:

class Vector (1/ vector of doubles
public :

explicit Vector(int s) : sz(s), p(new doublels» { }
- VectorO {deletell Pi }
Vector(const Vector&)i
Vector& operator-(eonst Vector&)i
// ...

1/ constructor
1/ destructor
/I copy constructor
/1 copy assignment

lOn

1078

private:

);

in! S1:;

double- Pi

void f(i nt 5S)

(

Vector V(5);

AP PENDIX A • LANG UAGE SUMMA RY

Vector v2 = Vi II use copy constructor
/I . ..
v = v2 ,
/I.

/I use copy assignment

By default (that is, unless you define a copy constmcLOr and a copy assignment),
the compiler will generate copy operations for you. The default meaning of copy
is mcmbcrwisc copy; sec also §14.2.4 and § 18.2.

A.12.4 Derived classes
A class can be defined as derived from Olher classes, in which case it inherits the
members or the classes from which it is derived (its base classes):

st ruct B (
int mb ;
void fbO { };

);

class 0 : B {
inl md i
void fdO;

);

Here 8 has twO members, mb and fbO, whereas 0 has four members, mb, fbO,
md, and fdO .

Like members, bases can be public or private :

Class DO : public 81 , private 82 {
/I . ..

);

So, me public members or 81 become public members or 00, whereas the public
members or 82 become private members or ~O. A derived class has no special ac·

A. 12 CLASSES

cess to members of its bases, so 00 docs not have access to the private members
of 81 or 82.

A class with more than one direct base class (such as 00) is said to usc mulli­
pie illlu:riltlllcc.

A pointer to a derived class, 0 , can be im pliciuy converted to a pointer to its
base class, 8 , provided 8 is accessible and is unambiguous in o. For example:

slru cl 8 {};
stru cl 81 : 8 ();
slru cl 82: 8 ();

slrucl C (};

II B is a public base of B I
II B is a public base of B2

slru cl 00 : 81 , 82, private C {};

00· p = new 00;
81 · pb1 = p ; /10K
8· pb = Pi /I error: ambiguous: 81 ::8 or B2 ::8
C· pc = p; /I error: DO::C is private

Similarly, a reference to a derived class can be implicitly converted to an unam­
biguous and accessible base class.

"'Or more information about derived classes , sec §14.3. For more infomlatio n
about protecled , sec an expert-level textbook or reference.

A.12.4.1 Virtua l functions

A virilia/fimction is a member function that defines a calling interface to functions
of the same name taking the same argument types in derived classes. When call·
ing a virtual function, the function invoked by ule call will be ule one defined for
ule most derived class . The derived class is said to override the virtual function
in the base class.

class Shape {
public:

virtual void drawO; /I "vinual" means "ca n be overridden"
virtual ShapeO { } /I virtual destructor
II ..

);

class Ci rcle : publ ic Shape (
public:

);

void drawO;
.... Circie() i
II ..

/I override Shape::draw
/I overr ide Shape::-Shapc()

1079

' 080 APPENDIX A • LANG UAGE SU MMA RY

Basically, the virtual functions of a base class (here, Shape) define a calling inter­
face for the derived class (here, Circle):

void f(S hape& s)
{

)

II . . .
s.draw();

vo id gO
{

Circle c(Po int(O,O). 4);
fCc); II wi ll call Circle's draw

)

Note that fO doesn't know about Circles, only about Shapes. An object of a class
with a virtual fUllCtion contains o lle extra pointer to allow it to find the set of
overriding functions; sec §14.3.

Note thai a class with virtual functions usually needs a virtual destmctor (as
Shape has); sec §17.5.2.

A.12.4.2 Abstract classes
An ahstrad ckus is a class tha t can be used only as a base class. You cannot make
an object of an abstract class:

Shape s; II error: Shape is abstract

class Circle: publ ic Shape (
publ ic:

void drawO; /I override Shape: :draw
II . ..

) ;

Ci rcle c(p,20); /I OK: Circle is not ,lbstract

The most common way of making a class abstract is to define at least one pure
virtual function. A pllrt: virtuaijmdiQ1l is a virtual function that requires overriding:

class Shape (
pu blic :

);

virtual void drawO = 0;
/I . ..

/I =0 means "pure"

A.12 CLAS SES

So, §14.3.5.
'11e rarer, but equally effective, way of making a class abstract is to declare

ail its constructors protected (§14_2.1).

A.12.4.3 Generated operations
When you define a class, it will by default have several operations defined for its
objects:

Default constructor

Copy operations (copy assignment and copy initialization)

Destructor

E..1.ch is (again by default) defined LO apply recursively to each of its base classes
and members. Construction is done "bottom-up," that is , base before members.
Destruction is done "top-down ," that is, members before bases. Members and
bases are constructed in order of appearance and destroyed in the opposite order_
TIlal way, constructor and destructor code always relies on well-defined base and
member objects_ For example:

struct 0 : 81 , 82 {
Ml ml ;
M2m2;

l;

Assuming that 81 , 82, Ml , and M2 arc defined, we can now write

void f()
{

o d; /I defauh inilializalion
o d2 = d; II copy inilializalion
d = DO; /I default inilializalion followed by copy assignmenl

} II d and dz are deslroyed here

For example, the default initialization of d invokes four default constructors (in
order): 81 :: 81 0 , 82 : : 82(), Ml : :Ml 0 , and M2: :M20 . If one of those doesn' t exist
or can't be called, the construction of d fails. The destruction of d invokes four
destruCLOrs (in order): M2: :- M20 , Ml : :-Ml 0 , 82 : :-820 , and 81 : :-81 0 . If one
of those doesn't exist or can't be called, the destruction of d fa ils. Each of these
constructors and destructors can be either user-defmed or generated.

"nle implicit (compiler-generated) default constructor is not defmed (gener­
ated) if a class has a user-defmed constructor.

1081

'082 APPENDIX A • LANGUAGE SUMMARY

A.12.5 Bilfields
A bi!fold is a mechanism for packing many small values into a word or to match
an extcmally imposed bit-layout format (such as a device register). For example:

slru ct PPN (
unsigned int PFN : 22;

inl : 3; 1/ UI'uscd
unsigned int CCAj
bool nonrcacheablCj
bool dirt y;
bool valid ;
bool global;

) ;

Packing lhe bitficlds into a word left to right leads to a layout of bits in a word
like this (sec §25.5.5):

posi tion: 31 : , ;
"]; " " "

PPN : In 1 3 1 3 I ' I ' I' I' I
name : .,. unused CC. I dirty I global

nonreilchable valid

A bitficld need not have a name, but ifit doesn't, you can't access it.
Surprisingly, packing many small values into a single word docs not neces'

sarily save space. tn fact, lIsing olle o f those values often wastes space compared
to us ing a char or an int LO represent even a single bit. The reason is lhat it takes
several instmctions (which have to be stored in memory somewhere) LO extract a
bit rrom a word and to write a single bit or a word without modirying other bits
or a word. Don't try to lise bitficlds to save space unless you need lots or objects
with tiny data fields.

A.12.6 Unions
A /llIioll is a class where aU members arc allocated starting at the same address. A
union can ho ld only one element at a time, and when a member is read it must
be the same as was last written. For example:

union U (

)

inl Xi

double di

U a;
a.x = 7;

A.1 3 TEMPLATE S

int xl = a.x: /I OK
a.d = 7.7:
int xl = a .x: /I oops

TIle ru[c rc([uiring consistent reads and writes is not checked by the compiler.
You have been wamed.

A.13 Templates
A lem/Jltlle is a class or a function paraJl1elerized by a set of types andlor integers:

template<class T>
class vecto r {
public:

1/ . . .
int sizeO const:

private:
int sz:
P Pi

} ;

template<class T>
int veclor<T>: :sizeO const
{

return sz:
}

In a template argu ment list, class means type ; typename is an equivalent altema­
tive. A member function of a template class is implicitly a tcmplate function with
thc samc template arguments as its class.

Integer template arguments must be constant expressions:

template<type name T, jnt sz>
class Fixed_array {
public:

T a[sz] ;
/I.
int sizeO const { return sz: }:

};

Fixed_array<char,256> xl :
int var = 226:
Fixed_array<char,var> x2;

/10K

/I error: non-const template argument

1083

1084 APPENDIX A • LANGUAGE SU MMARY

A.13.1 Template arguments
Arguments for a template class arc specified whenever its name is used:

veclor<int> v1 ;

vector v2 ;

veclor<int,2> v3;
ve ctor<2> v4;

II OK
II error: template argument missing
1/ error: too many template arguments

II error: type template argument expected

Arguments for template functions arc typically deduced from the function
arguments:

template<class T>
T find (vector<l>& v, int i)
{

return vii) ;
)

vector<inl> v1;

vector<double> v2;
II.
int x1 = find (v1,2) ;
int x2 = find (v2,2);

/I findO's Tis inl
II findO's T is double

It is possible to define a template function for which it is not possible (0 deduce
its template arguments from its function arguments. In that case we must specify
the missing template arguments explicitly (exactly as for class templates). For
example:

template<class T, class U> P rnake(co nSI U& u) { return new T(u)j }
int · pi = make<int>(2)j
Node · pn = make<Node>(make_pair(" hello", 17) j

This works if a Node can be initialized by a pair<const char· ,int> (§B.6.3). Only
trailing template arguments can be left out of an explicit argumelll specialization
(to be deduced).

A.13.2 Template instantiation
A version of a template for a specific set of template arguments is called a sjJecialiUl­
liol1. The process of generating specializations from a template and a set of argu­
ments is called template i,u/all/iahol/. Usually, the compiler generates a specialization
from a template and a set of template arguments, but the programmer can also de-

A. 1) TEMPLATE S

finc a specific specialization. "Illis is usually done when a gcncrallcmplate is un­
suitable for a particular sct of argumcnts. For examplc:

template<class T> stru et Compare { II general compare
bool operatorO(const T& a, canst T& b) eonst
{

return a<b;
)

) ;

template<> strucl Compare<eonst char· > { /I compare C-style strings
bool operator()(const char· a, consl char· b) consl
{

return slrcmp(a,b)==O;
)

) ;

Compare<inl:> e2; II general compare
Compare<const char·> c; II C-style string compare

bool b1 = c2(1,2); II use general compare
bool b2 = c("asd", "dfg"); II use C-style sIring compare

For functions, the rough equivalent is achieved through overloading:

templale<class T> bool compare(const T& a, canst T& b)
{

return a<b;
)

bool compare (const char· a, co nst char· b) II compare C·style strings
{

return strcmp(a,b)==O;
)

bool b3 = compare(2,3); /I usc general compare
bool b4 = compare("asd" . "dIg"); /I use C-style string compa re

Separate compilation of templates (i.e. , keeping declarations only in header files
and unique definitions in .cpp files) does not work portably, so if a template
nceds to be used in several .cpp files, put its complete defmition in a headcr fLie.

'085

'.86 AP PEND IX A • LANG UAGE SUMMARY

A.13.3 Template member types
A template can have members that are types and members that are not types (such
as data members and member functions). This means that in general, it can be
hard to tell whether a member name refers to a type or to a non-type. For language­
technical reasons, the compiler has to kll0W, so occasionally we must tell it. For
that, we usc t.he keyword Iypename. i<OT example:

)

lemplate<class T> strucl Vee (

);

typedef T value_type; /I a member type
sialic int count; II a data member
II . ..

template<dass T> void my_fcl (Vec<T>& v)
(

int x = Vec<T>: :count; II by default members names
1/ arc assumed to refer to non-types

v.count = 7; /I a simpler way to refer to a non.type member
type name Vec<T>: :valuc_type xx = Xj 1/ "Iypcnamc" is needed here
II .

For morc information aboullcmplatcs, sce Chaptcr 19.

A.14 Exceptions
An cxccption is uscd (with a throw statcmcnt) LO tcll a caJJcr about an CITor that
cannot bc handled locally. For example, move Bad_size Out of Vector :

struct Bad_size {
int sz;
Bad_size(int s) : ss(s) { }

);

class Vector {

);

Vector(int s) { if (s<O II maxsize<s) throw Bad_size(s); }
II . ..

Usually, we throw a type that is defined specifically to rcpresent a particular
crror. A caBer can catch an exccption :

A.14 EXCEPTIONS

void f(int x)
{

try (

)

Vector v(x); /I may throw
/I . ..

catch (Bad_size bs) (

)

cerr« "Vector with bad size (" «bs.sz« ")\n";
/I . ..

A <;catch all" clause can be used to catch every exception:

try {
/I .

) catch (,',) (/I catch all exceptions
/I . ..

)

Usually, the RAJ I ("Rcsource Acquisition Is Lutialization") techluque is bener (sim·
pier, easier, mor<: reliable) than using lots of explicit Irys and catchcs; sec § 19.5.

A throw without an argument (i.e., throw;) re-throws the cun-ent exception.
For example:

try {
/I.

} catch (Some_exception& e) (
II do local cleanup
throw; II let my ca ller do the rest

)

You can ddine your own types for usc as exceptions. "n le standard library de­
fines a few exception types that you can also usc; see §B.2. 1. Never use a built-in
type as an exception (someone else might have done that and yOll r exceptions
might be confused with those).

When an exception is thrown, the run-time support system for C++
searches "up the call stack" for a catch-clause with a type that matches the type of
the object thrown; that is, it looks through try-statements in the function that
threw, then through the fu nction that called the function that threw, then through
the function that called the fu nction that called, etc. , until it fi nds a match. If it
doesn't find a match, the program temunates. In eacll function encountered in

1087

1088 AP PENDIX A • LANGUAGE SUM MARY

this search of a matching catch-clause and in each scope on the way, dcstructors
arc called to clean up. This process is called stacie unwinding.

An object is considered constructed once its constructor has completed and
will then be destroyed during unwinding or any other exit from its scope. TIus
implies that partially constructed objects (with some members or bases COIl ­

structed and some not), arrays, and variables in a scope arc correctly handled.
SubobjcClS arc destroyed if and only if they have been COllSlruclCd.

Do nOl throw an exception so that it leaves a destructor. 111i5 implies that a
destructor should not fail. For example:

X: :-XO (if (in_a_reaCmess()) throw MessO;} /I never do Ihis!

The primary reason for this Draconian advice is that if a destructor throws (and
doesn' t itself catch the exception) during unwinding, we wouldn' t know which
exception to handle. It is worthwhile to go to great lengths to avoid a destructor
exiting by a throw because we know of no systematic way of writing correct code
where lhat can happen. In particular, no standard library facility is guaranteed to

work if that happens.

A.1S Namespaces
A lUlI1leJjJace groups related declarations together and is used to prevent name
clashes:

int aj

names pace Foo {
int a;
void f(int i)

(

a+= i; Ill hal'S Foo's <1 (Foo::a)

)

)

void f(int);

int mainO
(

a = 7;
f(2);

Foo: :f(J);

Ilrhat's rhe global a (::a)
Illhar's the global f (::0
/I that 's Foo's f

A . 16 ALIA SES

/I thaI's the global f (::f)
}

Names can be explicitly qualified by their namespace name (e.g. , Foo: :f(3») or by
:: (e.g., : :f(2»), indic.'l.l ing the global scope.

All names rrom a names pace (here, the standard library namespace, sid) can
be made accessible by a single namcspace directive:

using namespace sid;

Be restrained in the lise or using directives. The notational convenience offered
by a using d irective is achieved at the cost or potential name clashes. In particu'
lar, avoid using d irectives in header fi les. A single name rrom a namespace can be
made available by a namespace declaration:

using Foo: :g;
g(2); I/that's Foo's g (Foo::g)

For more infonnation about namcspaces , sec §8.l.

A.16 Aliases
Vi'e can define an alias ror a name; lhat is, we can define a symbolic name that
means exactly the same as what it rerers to (for most uses of the name):

typedef int- Pint ; /I Pint means pointer to int

namespace l ongJ ibrary_name { r ... -I}
namespace lib = l ons-library_name; /I Lib means longIibrary_''''lme

int x = 7;
int& r =x; /I r means x

A reference (§8.5.5, §A.8.3) is a run·time mechanism, referring to objects. The
typedef (§20.5, §27.3. 1) and namespace aliases arc compile-time mechanisms, re­
ferring to names_ In particular, a Iypedef docs not introduce a new type, JUSt a
new name for a type. For example:

typedef char- Pchar;
Pchar p = "Idefix ";
char· q = p;
int x = slrlen(p)i

/I Pchar is a name for char·
/I OK: p is a char·
/I OK: p and q are both char·s
II OK: p is a char·

'08'

1090 APPENDIX A • LAN GUAGE SU MM ARY

A.17 Preprocessor directives
Every C++ implementation includes a prtproa.ssor. In principle, the preprocessor
runs before the compiler proper and transforms the source code we wrotc into
what the compiler sees. In reality, this action is integrated into the compiler and
uninteresting except when it causes problems. Every line starting with # is a pre­
processor directive.

A.17.1 #include
We have used the preprocessor extensively to include headers. For example:

#indude "We .h"

This is a d irective that tells the preprocessor to include the contents of fil e .h at
the point o f the source text where the directive occurs. For standard headers, we
can ruso usc < ... > instead of " . . . ". For example:

#include<vecfol'>

11mt is lhe recommended notation for standard header inclusion.

A.1 7.2 #define
TIle preprocessor implements a form of character manipulation called mucro sub­
stitulio1/. For example, we can define a name for a character string:

#define FOO bar

Now, whenever FOO is seen, bar will be substituted:

int FOO = 7;
int FOOL = 9;

Given that, the compiler will see

int bar = 7;
inl fOOL = 9;

Note that the preprocessor knows enough about C++ names nOl to replace the
FOO that 's part o f FOOl.

You can also define macros that take parameters:

#defin e MAX(x,y) «(x»(y» l (x) : (y))

A.17 PREPROCE SSO R DIRECTIVES

And we can use it like this:

int xx = MAX(FOO+1 ,7);
int yy = MAX(++xx,9)i

This will expand to

int xx = «(bar+1»(7))?(b a r+1): (7)) ;
int yy = «(++xx»(9))?(++xx) : (9));

Note how the parentheses were necessary to get the right result for FOO+ 1. Also
note that xx was incremented twice in a very non-obvious way. Macros are im­
mensely popular - primarily because C programmers have few alternatives La

using them. Common header fil es define thousands of macros. You have been
warned!

If you must use macros, the convention is to name them using ALL_CAPI­
TAL_LETTERS. No ordinary name should be in all eapitallclters. Don't depend on
others to follow this sound advice. For example, we have found a macro called
max in an othenvise reputable header file.

See also §27.8.

, .. ,

'c!.
r -· B

Standard Library Summary

"All complexities should,
if possible,

be buried out of sight."

-David J. Wheeler

T his appendix sununarizes key C++ standard library facili­

ties. 111e summary is selective and geared to novices who

want to gel an overview of the standard library facilities and ex­

plon~ a bit beyond the sequence of topics in the book.

1093

1094 APPENDIX B • STANDARD LIBRARY SUMMARY

B.l

B.2

B.3

B.'

Overview
B.l .1 He~de,files
B.l .2 N",mcspace sid
8.1 .3 Description style

Error ha ndling

B.2.1 Exceptions

lIeralors
B.3. 1 lIer;llor model
B.3.2 lIerillo r categories

Containers
B.4.1 Overview
B.4.2 Member types
B.4.3 Conslruclors, deslruclors, and

assignments
B.4.4 lIeratars
B.4.5 Element access
B.4.6 Slack and queue operations
B.4.7 Ust operations
B.4.8 Si:l:c a nd capacity
8.4.9 Other operations
8.4.10 Associative container operations

8.5 Algorithms

B.S.l Nonmodifying sequence
algorithms

B.5.2 Modifying sequence algori thms
B.5.3 Utility algorithms
B.S.4 Sorl ing and searching
8.5.5 Sel algorithms
B.S.6 Heaps
B.5.7 Permutations
B.S.8 min and maJI

B.l Overview

B.6 STL utilities

B.6.1 Inserters
B.6.2 function obje cts
B.6.J pair

B.7 I/O s treams

B.7.1 110 streams hierarchy
B.7.2 Error handling
B.7.J Input operations
B.7.4 Output ope rations
B.7.5 Formatting
B.7.6 Standard manipulators

B.8 String manipulation

B.8.1 Characte r class ifkation
8.8.2 Siring
B.8.J Regular expression matching

B.9 Numerics

8.9.1 Numerical limits
B.9.2 Standard mathematkal functions
B.9.J Complex
B.9.4 valarray
B.9.5 Gene ralized numerical algorithms

B.1 0 C standa rd libra ry functions

8 .10.1 files
8 .10.2 The printfO family
8 . tO.J C-style strings
8 .10.4 Memory
8 .10.S Date a nd time
8 .10.6 Elc.

H.11 Other libra rie s

TIlis appendix is a reference. It is not intended to be read from beginn ing 10 end
like a chapter. II (more or less) systcmatically descr ibes key elements of tJle C++
standard library. h is not a complete reference, though; it is JUSt a su mmary with
a few key examples. Often, you will need to look at the chapters for a more com­
plete explanation. Note also that this summary docs nOt attempt to equallhe pre­
cision and terminology of the standard. For more information, sec StrouStn lp,
The C++ Programming umgut/gr:. TIle complete defi nition is the ISO C++ stan­
dard, but that document is not intended for or suitable fo r novices . Don't forget
to use your online documentation.

' Vhat usc is a selective (and therefore incomplete) summa ry? You can
quickly look for a known operation or quickly scan a section to sec what com-

3.1 OVERVIEW

mon operations are available. You may very well have to look elsewhere for a de­
tailed explanation, bUl that's fine: now you have a due as to what to look for.
Aiso, this summary contains cross-references to tutorial material in the chapters.
111is appendix provides a compact overview of standard library facilities. Please
do not try to melllOl;ze the information here; that's not what it is for. On the con­
trary, this appendix is a tool that can save you from spurious memorization.

111is is a place to look for useful facilities - instead of trying to invent them
yourself. Everything in the standard library (and especially everything featured
in tills appendix) has been useful to large groups of people. A standard library fa­
cility is almost cenainly better designed, better implemented , beller documented,
and more portable than anything you could design and implement in a hurry. So
whell you can, prefer a standard library facil ity over "home brew." Doing so will
also make your code easier for others to understand.

If you are a sensible person, you'll find the sheer mass of facilities intimidat­
ing. Don't worry; ignore what you don't need. If you are a "details person,"
you'll find much missing. However, completeness is what the expert-level guides
and your online documentation a fTer. In either c.1se, you'll find much that will
seem mysterious, and possibly interesting. Explore some of it!

B.1.1 Header files
TIle interfaces to standard library facilities are defmed in headers. The list below
contains a few headers that are not part of tile C++ 1998 ISO standard, but that
will be part of the next standard and are widely available. The latter ones are
marked "C++Ox," and their lise may require installation andlor use of a names pace
diffe rent from std (e.g., tr1 or boost). Usc this section to gain an overview of what
is available and to help guess where a facility might be defined and described:

The STL (containers, iterators, and algorithms)

<.algorilhm>

<.array>

<bilse!>

<deque>

<functional>

<iterator>

<list>

<map>

<memory>

<queue>

<s.1>

algorithms; sort(), findO, etc. (§ B.S, §2 1.1J

fixed-sized array (C++Ox) {§20.9J

array of bool (§2S.S.2J

double-ended queue

fu nction objects (§B.6.2J

ilerators (§BA.4)

doubly-l inked list (§B.4, §20.4)

(key, value) map and multimap (§B.4, §21.6.1 - 3)

allocators for containers

queue and priority_queue

sel and multiSCI (§B.4, §21.6.5J

1095

1096 APPEND IX B • STANDARD LIBRARY SUMMARY

The STL (containe rs, ile ralors, and algorithms) (continued)

<slack>

<unordered_map>

<unordered_set>

<utility>

stack

hash maps (C++Ox) (§21.6.4)

hash sets (C++Ox)

operators and pair (§B.6.3)

<vector>

I/O streams

<iostream>

dstream>

<sslream>

<iosfwd>

<ius>

<streambUD

<istream>

<ostream>

<iomanip>

vector (dynamically expandable) (§B.4, §20.8)

1/0 stream objects I§B.7)

file streams (§S.7.11

string streams (§ B.7. 1)

declare (but don', define) 110 stream fa ci li ties

I/O streams base classes

stream buffers

input streams I§B.7)

output streams (§B.7)

formatting and manipulators (§B.7.6)

String manipulation

<string>

<regex>

Numerics

<complex>

< random>

<valarray>

< numeric>

<limits>

string (§B.B.2)

regular expressions (C++O)() (Chapter 23)

complex numbers and arithmetic (§B.9.J)

random number generation (C++Ox)

numeric arrays

generalized numeric algorithms, e.g., accumulateO (§B.9.5)

numerical limits (§B.9.1)

3 . 1 OVERVIEW

Utility and language support

<exception:>

<sldexcept>

<locale:>

<typeinfo:>

<new:>

exception types (§B.2.1)

exception hierarchy (§B.2. 1)

culture-specific formatting

standard type information (from typeid)

allocation and deal location functions

C standard libraries

<cSlring> C-style string manipulation (§B. l 0.3)

<csldio:> C-style 1/0 (§B.l 0.2)

<ctime:> clockO, time(), etc. (§B. l 0.5)

<cmath:> standard floating-point math fu nd ions (§B.9.2)

<cstdlib:> elc. functions: abortO, abs(j, malloc(), qsorl(), etc. (Chapter 27)

<cerrno> C-style error handling (§24.8)

<cassert> assert macro (§27.9)

<clocale:> culture-specific formalling

<climils> C-style numerical limits (§8.9.1)

<dloal> C-style floating-poi nt limits (§B.9.1)

<cslddef> C language support; size_I, etc.

<csldarg:> macros for variable argument processing

<cseljmp:> slejmp() and longjmpO (never use those)

<csignal:> signal handling

<cwchar> wide characters

<cctype> character type classification (§B.8. 1)

<cwctype> wide character type classification

For each of the C standard librmy headers, there is also a version witholll the ini­
tial c in its name and with a trailing .h, such as <time. h> for <Cl ime>. 111e .h ver­
sions define global names rather than names in names pace std.

Some - but not all - of the facilities defined in these headers are described in
the sections below and in the chapters. If you need more information, look at
your online documentation or an expert·level C++ book.

'09'

1098 AP PENDIX B • STANDA RD LIBRARY SUMMARY

B.1.2 Namespace sId
The standard library facilities arc defined in namcspacc Sid, so to usc them, you
need an explicit qualification, a using declaration, or a using directive :

sid : :slring s;

using sid : :veclof;
veclor<inl>v(7);

using namespace sid ;
map<string,double> m;

/I explicit quali fication

II using declaration

II using directive

In this book, we have used the using dircClivc for sid . Be very fm gaJ with using
directives ; sec §A.15.

8.1.3 Description style
A fu ll description of even a simple standard library operation, such as a cons truc­
tor or an algorithm, can take pages. Consequently, we usc an extremely abbrevi­
ated sty le o f prcsemation. For example:

Examples of notatio n

p=op(b,e ,x)

foo(x)

bar(b ,e ,x)

op does something to the range Ib :e j and x, returning p .

foo doc'S something to x, but returns no result.

Does x have something to do with Ib :e jr

We cry to be mnemonic in our choice of idemifiers, so b,e will be iterators speci­
fying a range, p a poimer or an iterator, and x some value, all depending Oil COIl ­

text. In this notation, only the commentary distinguishes no result from a
Boolean result, so you can confuse those if you try hard enough. For an opera­
tion retuming bool, lhe explanation usually ends with a question mark.

Where an algorithm follows the usual pattem o f returning the end of an
inpm sequence to indicate "failure," "not found ," etc. (§B.3. 1), we do not mention
that explicitly.

B.2 Error handling
The standard library consists of components developed over a period of almost
40 years. 111l1s, their style and approaches to error handling are not consistent.

B.2 ERROR HANDLING

Gstyle libraries consist of functions, many of which set e rmo to indicate
that an error happened; see §24.8.

Many algorithms operating on a sequence of clements return an iterator
to the one-past-the-Iast clement to indicate "not found" or "fail ure."

The 110 streams library relies on a state in each stream to reflect errors
and may (if the user requests it) throw exceptions to indicate errors ; see
§'O.6, §B.7.2.
Some standard library components , such as vector, string, and bitset,
throw exceptions to indicate errors.

TIle standard library is designed so that all facilities obey "the basie guarantee'"
(sec §19.5.3); that is , even if an exception is thrown, no resource (such as mem­
ory) is leaked and no invariant for a standard library class is broken.

8,2,1 Exceptions
Some standard library faci lities rcpon errors by throwing exceptions:

Standard library exceptions

bitset

dynamic_cast

iostream

new

regex

string

typeid

vector

throws invalid_argument, ouCoCrange, overflow_error

throws bad_cast if it cannot perform a conversion

throws ios_base: :failure if exceptions are enabled

throws bad_alloc if it cannot allocate memory

throws regex_error

throws length_error, ouCoCrange

throws bad_typeid if it cannot deliver a type_info

throws ouCoCrange

"I11ese exceptions may be encountered in any code that directly o r indirccuy uses
these facilities. Unless you ImUla that no facility is used in a way that could throw
an exception, it is a good idea to always catch one of the root classes of the stan­
dard libnuy exception hierarchy (such as exception) somewhere (e.g. , in mainO).

We strongly recommend that yOLl do not throw built-in types, such as int and
C-slyle strings. Instead, throw objects of ty pes specifically defined to be used as
exceptions. A class derived from u1e standard library class exception can be used
for that:

class exce ption {
publi c:

1099

1100 APPEND IX B • STANDARD LI BR ARY SU MMARY

};

cxceplio n();
exceplio n(const exception&)i
exceplion& operator=(consl exception&);
vi rtual -exceptionO;
vi rtual const char· what() const ;

The whatO function can be used to obtain a string that is supposed to indicate
something about the error that caused the exception.

This hierarchy of standard exception classes may help by providing a classifi·
cation of exceptions:

Iensth-- - --

You can define an exception by deriving from a standard library exception like
this:

struet M y_erro r : run l ime_error {
M y_erro r(int x): interest in&-.value(x) ()
inl inlerestins-valuei
consl char· whatO const { re turn "My_error"; }

};

B.3 Iterators
Iteralors arc the glue that lics standard library algorithms to their data. Con­
versely, you can S3Y that iterators are the Illechanism used to minimize an algo­
rithm's dependence on the data structures on which it operates (§20.3):

B. 3 ITERATO RS

sort, find , search, copy, . .. , my_very_own _algorithm, your_code, ...

vector, list, map, array, ... , my_container, your_container, . . .

B.3.1 Iterator model
An iterator is akin to a poimer in tbat it provides operations for indirect access
(e.g., • for dercferencing) and for moving to a new clement (e.g., ++ for moving
to the next clement). A sequence of clements is defined by a pair of iterators defin­
ing a half-open range [begin: end):

TImt is, begin points to the first element of the sequence and end points to one be­
yond the last elemelll of the sequence. Never read from or write to ·end. Note that
the empty sequence has begin==end; that is, [p :p) is the empty sequence for any
iterator p.

To read a sequence, an algorithm usually takes a pair of iterators (b ,e) and it­
erates using ++ until the end is reached:

whi le (b!=e) { /I use! = rather than <
/I do something
++b; /I go to next element

)

Algorithms that search for something in a sequence usually return the end of the
sequence to indicate "not found"; for example:

p = find(v.begin(),v.end (),x);
if (p!=v.end(» {

II x found at p
)
else {

II look for x in v

1/ x nOt found in Iv.begin() :v.end())

)

1101

11 02 APPENDIX B • STANDARD llBRARY SUMMARY

So< §20.3.
Algorithms that write to a sequence orten arc given only an itcrator to its first

clement. In that case, it is the programmer's responsibility not to write beyond
the end of that sequence. Fo r example:

template<c1ass Iter> void (Iter p, int nl
{

while (n>O)" p = --n;
}

veclor<inl> v(10);
f(v.begin(), v.s ize());
f(v.beginO,1000);

/10K
/I big trouble

Some standard library implementations range check - that is, throw an exception
- for that last call o f (0 , but you can't rely on that for portable code; many im­
plementations don't check.

111C operations on iterators arc:

Iterator operations

++p

p++

--p

p--

' p

pin]

p- >rn

p==q

p!=q

Pre-increment: make p refer to the next element in the

sequence or to one-beyond·thc-Iast-elemcilt (~advance one
element"); the re§ulting value is p+1 .

Post-increment: make p refer to the next element in the

sequence or to one-beyond·the-Iast-element ("advance one

elemcnn; the resulting value is p (before the increment).

Pre-decrement; make p point to previous element ("go back

one element"); the resulting value is p - 1.

Post-decrement: make p point to previous element (~go b.lck

one element"); the re§uiting value is p (before the decrement).

Acce§s (dereference): "p refers to the clement pointed to by p .

Acce§s (subscripting); pin] refers to the element pointed to by

p+n; equivalent to "(p+n).

Acce§s (member access); equivalent to (·pl.m.

Equality: true if p and q point to the same element or both

point to one-beyond-the-Iast-element.

Inequality: ! (p==q).

B.3 lTERATORS

Iterator operations (continued)

p<q

p=q

p>q

p>=q

p+=n

p-=n

q=p+n

q=p-n

advance(p,n)

x=difference(p,q)

Does p point to an element before what q points to?

p<q II p==q

Does P point to an element after what q points to?

p>q II p==q

Advance n: make p point to the nth element after the one it
points to.

Advance - n: make p poinl to the nth element before the one it
points 10.

q points to the nth element after the one pointed to by p.

q points to the nth element before the one pointed to by p;
afterward, we have q+n==p.

Advance: like p+=n; advanceO can be used even if p is not .1

random-access iterator; it may take n steps (through a lis!).

Difference: like q-Pi differenceO can be used even if p is not
a random-access iterator; it may take n steps (through a list).

Note that nOI every kind of iterator (§B.3.2) supports every ileralor operation.

8.3.2 Iterator categories
TIle standard library provides five kinds of iterators (five I; iterator categories"):

Iterator categories

input iterator

output iterator

forward iterator

We can iterate forward using ++ and read each element
once only uSing · . We can compare iterators usi ng == and
!=. This is the kind of iterator that islream offers; see
§21.7.2.

We can iterate forward using ++ and write each element
once only using ' . This is the kind of iterator that ostream
offers; see §21 .7.2.

We can iterate forward repeatedly using ++ and rcad and
write (unless the elements are consl) elements using · . If it
points to a class object, it can use -> to access a member.

1103

1104 APPENDIX B • STANDARD LI BRARY SU MMARY

lIerato, categories (continued)

bidirectional iteratar We can iterate fOl'\va rd (using ++) and backward (using --)
and read and write (unless the elements arc const)

elements using *, This is the kind of iterator that list, map.
and set offer.

randomaccess iteratar We can iterate forwa rd (using ++ or +=) and backward
(using - or -=) and read and write (unless the elements
are consl) elements using · or n. We can subscript, add an
integer to a random-access iteralor using +. and subtract an
integer using - . We can find the distance between two
random-access iterators to the sa me sequence by
subtracting one from the other. We can compilre ilcrators

using <, <=, >, and >=.1his is the kind of iterator that

vector offers.

Logically, these iterators arc organized in a hierarchy (§20.8):

Input- -

_ -
Nme that since the iterator categories are not classes, this hierarchy is nm a class
hierarchy implemented using derivation. If you need to do something advanced
with iterator categories, look fo r ilerator_trails in an advanced reference.

Each container supplies iterators of a specified category:

vector - random access

list - bidirectional

deque - random access

bitsel - none

11.'1 CONTA INERS

set - bidirectional

mulliset - bidirectional

map - bidirectional

multimap - bidirectional

uno rdered_set - forward

uno rdered multiset - forward

unordered_map - fonvard

un ord ered_multimap - fonvard

B.4 Containers
A container holds a sequence o f objects. The clements of the sequence are of the
member type called value_type. The most commonly usefu l containers are:

Sequence containers

array<T,N:>

deque<T>

list<T:>

fixed-size array of N elements of type T (C .. Ox)

double-ended queue

doubly-l inked list

vector<T:> dynamic array of elements of type T

Associative containers

map<K,V:>

multimap<K, V:>

set<K:>

muJtiset<K:>

unordered_map<K, V:>

unordered_multi map<K, V:>

unordered_set<K:>

unordered_multiset<K:>

map from K to V; a sequence of (K,V) pairs

map from K to V; duplicate keys allowed

sel of K

set of K (duplicate keys allowed)

map from K to V usi ng a hash function (C++Oxj

map from K to V using a hash function; duplicate

keys allowed (C++Ox)

set of K using a hash function (C .. Ox)

set of K using a hash function; duplicate keys

allowed (C++Oxj

1105

1106 APPENDIX B • STA NDARD LIBRARY SUMMA RY

Container adaptors

priority_queue<T>

queue<T>

stack<T>

priority queue

queue with pushO and popO

stack with pushO and popO

111csc containers arc defined in <vedo!'>, <liSI>, elc. (sec §B. l.l). 111c sequence
containers are contiguously allocated or linked lists of elements of their
value_type (T in the notation lIsed above). The associative containers arc linked
stnlCturcs (trees) with nodes of their value_type (pair(K,V) in the notation used
above}. The sequence o f a set, map, or multimap is ordered by its key values (K).
111e sequence of an unordercd_· does not have a guaranteed order. A multimap
differs from a map in that a key value may occur many times. Container adap­
tors are containers with specialized operations constructed from otber containers.

If in doubt, use vector. Unless you have a solid reason not to, use vector.
A container uses an "allocator" to allocate and dealloc.:'lte memory (§19.3.6).

We do not cover allocators here; if necessary, see an expert-level reference. By de­
fauit, an allocator uses new and delete when it needs to acquire or release mem­
ory fo r its elements .

Where meaningful, an access operation exists in two versions : one for co nsl
and one for non-canst objects (§18.4).

This section lists the common and almost conUllon members of the standard
containers. For more details, sec Chapter 20. Mcmbers that arc peculiar to a spe·
cific container, such as list's spliceO, are not listed ; sec an expert-level reference.

Some data types provide much of what is required from a standard container,
but not all. We sometimes refer to those as "almost containers." The most inter·
esting o f those are:

HAl most containers"

T(n)

built-in array

string

valarray

no sizeO or other member functions; prefer a container, such as
vector, Siring, or array, over array when you have a choice

holds only characters but provides operations useful for text
manipulation, such as concatenation (+ and +=J; prefer the standard
string to other strings

a numerical vector with vector operations, but with many restrictions
to encourage high-performance implementations; use only if you do a
lot of vector arithmetic

BA CONTAINE RS

8.4.1 Overview
111e operations provided by the standard containers can be sUITUllanzed like lhis:

Container:
constructor, Copy constructor,
derault constructor, beginO, end(),
rbegin O, rendO, ==, !=, <, <=, >, >=,
=, swap(), size(), max....size(), empty(),
insert(), eraseO, dear()

Sequential container:
assignO, frontO, back(),
push_back() , pop_backO,
resizeO

list:
push_frontO,
pop_fronIO,
spliceO,
removeO,
remoye_ifO,
uniqueO,
merge(),
sortO,
reyerseO

vector:
operator[J,
at(),
capacilyO,
reserve()

deque :
opera lorn,
at(),
push_frontO,
pop3 roniO

~~ativecontainen:
key_compO,
value_compO, findO ,
countO, lower_boundO,
equal_rangeO

sel,
multiset,
and
multimap

array:
operator[],
at()

map:
operator[]

11 07

1108 APPEND IX B • STAN DARD LIBRARY SUMMAR Y

8.4.2 Member types
A container defi nes a set or member types:

Member types

value_lype

size_type

difference_type

ite rator

consCite rator

reverse_ite rator

consc ,eversc_ile rator

reference

cansl_reference

pointer

canst_pointer

key_lype

mapped_type

key_compare

a llocatof_type

type of element

type of subscripts, clement counts, etc.

type of difference between iteralors

behaves like valu e_type-

behaves like const value_lype­

behaves like valuc_type-

behaves like const value_lype­

valu c_lype&

consl value_lype&

behaves like value_type­

behaves like const value_type

type of key (assoc iative containers only)

type of mapped value (associative containers only)

type of comparison criterion (associative containers only)

type of memory manager

8.4.3 Constructors, destructors, and assignments
Containers provide a variety of constructors and assignment operations. For a
container callcd C (e.g., veclo r<d ouble> or map<Slring,int» we have:

ConslruCiors, destruCiors, and assignment

C c;

co
C ((n);

C c(n,x);

C c(b,e);

c is an empty container.

Make an empty container.

C initial ized with n elements with default element va lue (not (or

associative containers).

C initialized with n copies of x (not fOf associative containers).

(initial ized with elements from Ib :e).

6.4 CONTAINER S

ConstruClors, destructors, and assignment (continued)

C c(c2);

- CO
cl=c2

c.assign(n,x)

c.assign(b,e)

c is a copy of c2.

Destroy a C and all of its elements (usually invoked impl ici tly).

Copy assignment; copy all elements from c2 to cl ; after the

aSSignment cl==c2 .

Assign n copies of x (not for associative containers).

Assign from [b :e).

Note lhat for some containers and some clement types, a constructor or an cle­
ment copy may throw an exception.

B.4.4 Iterators
A container " 111 be viewed as a sequence either in the order defined by lhe con­
!ainer's ite rato r or in reverse order. For an associative container, lhe order is
based on the container's comparison criterion (by default <):

Iterators

p=c.begin()

p=c.endO

p=c. rbeginO

p=c. rend()

p points to first element of c.

p points to one past last element of c.

p points to first element of reverse sequence of c.

p points to one past last element of reverse sequence of c.

8.4.5 Element access
Some clements can be accessed directly:

Element access

c.b onlO

c.backO

cIi)

c.al(i)

reference to first element of c

reference to last element of c

reference to element i of c; unchecked access (not for list)

reference to element i of c; checked access (vector and deque only)

Some implementations - especially debug versions - always do range checking,
but you c.'mnot portably rely on that for correctness or on the absence of checking
for perfonnance. 'VVhere such issues are important, examine your implementations .

1109

1110 AP PEND IX B • STANDARD LIBRARY SU MMARY

B.4.6 Stack and queue operations
The standard vector and deque provide efficient operations at the end (back) of
their sequence of clements. In addition, list and dequ e provide the equivalent op­
erations on the Start (front) of their sequences:

Stack and queue operations

c.push_back(x)

c.pop_backO

c.push_front{x)

c.pop_frontO

Add x !o the end of c.

Remove last element from c.

Add x to c before first clemenl (list and deque only).

Remove fi rSI elemen! from c (list and deque only).

Note that push_frontO and push_backO copy an clement into a container. TIlis
implies that the size of the container increases (by one). If the copy constructor o f
the clement type can throw an exception, a push can fail.

Note that pop operations do not retum a value. Had they done so, a copy
constructor throwing an exception could have seriously complicated the imple­
mentation. Usc fro ntO and backO (§B.4.5) to access stack and queue clements.
We have not recorded the complete SCI of requirements here ; feci free to guess
(you r compiler will usually tell you if you guessed wrong) and to consult more
detailed documentation.

B.4.7 list operations
Containers provide list operations:

list operations

q=c.inserl(p,x)

q=c. in serl(p,n,ll)

q=c. i nserl(p, first,last)

q=c.erase(pl

q=c. erase(fi rs t, last)

c.clearO

Add x before p.

Add n copies of x before p.

Add elements from Ifirst:last) before p.

Remove element at p from c.

Erase Ifirst:lasl) of c.

Erase all clements of c.

Fo r inse rtO functions, the result, q, points to the last clement inserted . Fo r eraseO
functions, q points to the clement that followed the last clement erased .

8.4.8 Size and capacity
TIle size is lhe number of clements in the container; the capacity is the nu mber of
clements that a container can hold before allocating morc memory:

IJA CONTAINER S

Size and capacity

x=c.size()

c.emptyO

x=c. max_sizeO

x=c.capacityO

c. reserve(n)

c.resize(n)

x is the number of elements of c.

Is c empty?

x is the largesl possible number of elements of c.

x is the space allocated for c (vector and siring only).

Reserve space for n elements for c (vector and string only).

Change size of c to n (vector, string, list, and deque only).

When changing the size or the capacity, the clements may be moved to new stor­
age locations. That implies that iterators (and pointers and references) to ele­
ments may become invalid (e.g., point to the old clement locations).

8.4.9 Other operations
Containers can be copied (sec §BA.3), compared, and swapped:

Comparisons and swap

cl ==c2

c1 !=c2

cl <c2

c1<=c2

cbc2

c1>=c2

swap(c1,c2)

cl .swap(c2)

0 0 all corresponding elements of cl and c2 compare equal~

00 any corresponding elements of cl and c2 compare not equal?

Is c1 lexicographically before c2?

Is c1 lexicographically before or equal to c2?

Is c1 lexicographically after c2?

Is c1 lexicographically after or equal to c2?

Swap elements of cl and c2.

Swap elements of cl and c2.

When comparing containers with an operator (e.g. , <), their clements arc com­
pared using the equivalent clement operaLOr (i.e., <).

B.4.10 Associative container operations
Associative containers provide lookup based on keys:

Associa tive containe r operations

elkl

p=c.find(k)

Refers to the element with key k (containers with
unique keys).

p points to the first element with key k.

1111

1112 APPENDIX B • STANDARD LIBRARY SUMMARY

Associative container operalions (continued)

p=c.lower_bound(k)

p=c.upper_bound(k)

pai rep 1 ,p2)=c.eq uaCrange(k)

r=c.key_comp{)

r=c.value_compO

p points to the first element with key k.

p points to the first element with key greater than k.

[pl ,p2) are the elements with key k.

r is a copy of the key·comp<"tr ison object.

r is a copy of the mapped_value-comparison
object. If a key is not found, c.end{) is returned.

TIle first iterator of the pair returned by equaCrange is lowe r_bound and
the second is uppe r_bound. You can pl;m the value of all clements with the key
"Marian" in a muitimap<string,int> like this:

string k = "Marian";
typedef multimap<strin g, int>:: iterator MI ;
pair<MI ,MI> pp = m.equaCrange(k);
if (pp.first!=pp.second)

cout« "elements with value ' ''« k«" ':\n" ;
else

cout« "no element with value' " « k « " '\n";
for (MI p = pp.first; p!=pp.second; ++p) cout« p->second« '\n';

We could equivalently havc used:

pair<MI,MI> pp = make_pair(m.lower_bound(k),m.uppe r_bound(k»;

However, that would take about nvicc as long to execute. TIle equal_range,
lower_bo und, and upper_bound algorithms are also provided for sorted se­
quences (§B.5.4). TIle definition of pair is in § B.6.3 .

8.5 Algorithms
"There are about 60 standard algorithms defined in <algo rithm>. TI1CY all opel"
ate on sequences defi ned by a pair of iterators (for inputs) or a single iterator (for
outputs).

When copying, comparing, etc. two sequences, the first is represented by a
pair of iterators [b:e) but the second by just a single iterator, b2, which is consid·
ered the start of a sequence holding sufficient elements for the algorithm, for ex·
ample, as many clements as the first sequence : [b2:b2+(e-b»).

Some algorithms, such as sort, require random-access iterators, whereas
many, such as find , only read lheir elements in order so that they can make do
with a forward iterator.

B.5 ALGO RI THMS 1113

Many algorithms rollow the usual convention or returning the end or a se·
quence to represent "not round." We don' t mention that ror each algorithm.

B.S.l Nonmodifying sequence algorithms
A nonmO(:liryillg algolithm juSt reads the clements or a sequence; it does not re­
arrange the sequence and docs nOt change the value or the elements:

Nonmodify ing sequence algorithms

f=for_each(b,e,O

p=find (b,e,v)

p=find_if(b,e ,O

p=find_firsCof(b,e,b2,e2)

p=find_firscof(b,e,b2,e2,O

p=adjacenC find(b,e)

p=adjacenC find(b,e,O

equaHb,e ,b2)

equal(b,e,b2,f)

pair(pt ,p2)=mismatch(b,e,b2)

pair(p 1 ,p2)=mismatch(b,e, b2, f)

p=search(b,e, b2,e2)

p=search(b.e,b2,e2,f)

p=find_end(b,e, b2,e2)

p=find_end(b,e,b2,e2,f)

p=search_n(b,e, n,v)

p=search_n(b,e, n,v,f)

x=counl(b,e,v)

x=counC if(b,e,v,f)

Do f for each clement in [b :e); return f.

p points 10 Ihe first occurrence of v in [b :e).

p points to the first clement in [b :eJ so that W p).

p points 10 the first element in [b :e) so that "p=="q for some
q in [b2:e2).

p poi nts to the fi rst clement in [b :e) so that «. p, "q) for some
q in [b2:e2).

p points to the first p in [b :e) such that · p=="(p+l).

p points to the fi rst p in (b :e) such that f(·p,"(p+l » .

0 0 all elements of [b :e) and [b2: b2+(e-b)) compare equal ?

Do all elements of [b :e) and [b2: b2+(e-b») compare equal
using {(" p, "q) as the test?

(pl ,p2) points to the first pai r of elements in Ib :e) and
[b2: b2+(e- b» for which !("pl ==" p2).

(pl ,p2) points to the first pair of elements in Ib :e) and
(b2 :b2+(e-b» for which !Wpl , "p2).

P points to the first . p in [b :e) such that . p equals an element
in Ib2 :e2).

p points to the first . p in [b :e) such that {(- p, 0q) for an
element "q in Ib2: e2).

p points to the last · p in [b :e) such that · p equals an element
in Ib2:e2).

p points to the lasl . p in [b :e) such that f(- p: q) for an
element 0q in [b2: e2).

p points to the first element of Ib :e) such that each element in
Ip :p+n) has the value v.

p points to the first element of Ib :e) such that for each
element "q in [p :p+n) we have f(O q,v) .

)(is the number of occurrences of v in Ib :e).

x is the number of elements in Ib :e) SO that W p,v).

1114 APPEND IX B • STANDARD LIBRARY SUMMARY

Note that nothing stops the operation passed to fOf_each from modifying cle­
ments ; that's considered acceptable. Passing an operation that changes the cle­
ments it examines to some other algorithm (e.g. , count or ==) is not acceptable.

An example (of proper use):

bool odd(int xl { fe turn x&l ; }

int n_even(const vecto r<i nl>& v) /I count the number of even values in v
{

re turn v.s ize()-counUf(v.begin O,v.e ndO,odd);
}

B.5 .2 Modi fying sequence algorithms
The modifying algorililllls (also called /JIulaling Jequenu algorilhllu) can (and often
do) modify the clements of their argument sequences.

Modifying sequence algorithms

p=transform(b,e,out,f)

p=lransform(b,e, b2,out,f)

p=eopy(b,e,out)

p=copy_baekward(b,e,out)

p=unique(b,e)

p=unique(b,e, f)

p=unique_eopy(b,e,out)

p=uniquc3 0py(b,e,oul,f)

replaee(b,e,v,v2)

replaee(b,e,f,v2)

p=replace_eopy(b,e,out,v,v2)

Apply · p2=f(-p1) to every · pl in Ib :e) writing to the
corresponding · p2 in [o ut :out+(e- b)); p=out+(e- b)

Apply · p3=Wpl , · p2) to every element in "pl in Ib :e) and
the corresponding element "p2 in Ib2:b2+(e-b» , writing to
. pJ in [out :oul+(e-b»; p=oul+(e-b)

Copy [b :e) to [OUI :p).

Copy Ib: e) to loul :p) starting with its last element.

Move elements in [b :e) so that Ib :p) has adjacent duplicates
removed (== defines ~duplicale~).

Move elements in Ib: e) SO that Ib:p) has adjacent duplicates
removed (f defines "duplicate"').

Copy Ib:e) to 10ut :p); don't copy adjacent duplicates.

Copy [b:e) to lo ul :p); don't copy adjacent duplicates (f
defines "duplicate").

Replace elements "q in jb :e) for which °q==v with v2.

Replace elements 0q in Ib:e) for which f(·q) with v2.

Copy Ib:e) to [o ul :p), replacing elements "q in [b:e) for
which "q=v with v2.

B.5 ALGORIT HM S

Modifying sequence algorithms (continued)

p=replace_copy(b.e.out.f.v2)

p=remove(b,e.v)

p=remove(b,e.v,f)

Copy Ib :e) to lo ut :p), replacing clements *q in Ib:e) fOf
which Wq) with v2.

Move elemenls *q in Ib :e) so Ihal lb :p) becomes the
elements (Of" which W q==v).

Move elements *q in Ib :e) so that Ib :p) becomes the
elements (Of" which !Wq).

Copy elements from Ib:e) for which !(Oq==v) to 10ut :pJ.

Copy elements from Ib:eJ for which !f(*q,v) to lout :p).

Reverse the order of elements in [b :eJ.

Copy Ib:e) into lout: p) in reverse order.

1115

p=remove_copy{b,e.out,v)

p=remove_copy_if(b,e,out,O

reverse(b,e)

p=reverse_copy(b,e,out)

rotate(b,m,e) Rotate elements: treatlb :e) as a ci rcle with the first element
right after the last. Move °b to om and in general move "(b+i)
to "« b+(i+(e- m))%(e- b)) .

p=rotate_copy(b,m,e,out)

random_shuffle(b,e)

random_shuffle(b.e,O

Copy (b:e) into a rotated sequence lo ul :p).

Shuffle elements of lb :e) into a distribution using the default
uniform random number generator.

Shuffle elements of [b :c) into a distribution using f as a
random number generatOf".

A shu me algorithm shumes its sequence lUuch in the way we would shume a pack
of cards; that is, after a shume, the elements are in a random o rder, where «ran­
dom" is defi ned by the d istribution produced by the random number generator.

Please note that these algorithms do not k.now if their argument sequence is a
container, so they do not have the ability to add or remove clements. TIlliS, an al­
goritiuu such as re move cannot shorten its input sequence by deleting (eras ing)
clements; instead , it (re)moves the clements it k.eeps to the front of lhe sequence:

typcdef vecto r<in(> : :iterator VIi i

void p rin ,-d igits(co nst string& 5, VII b, VII e)
{

cout « Sj
while (b! =e) {cout « °b j ++b;}
cout « '\n';

111 6 APPENDIX B • STANDARD liBRARY SUMMARY

void ffO
{

)

int aU = { 1,1,1, 2,2, 3, 4,4,4, 3,3,3, 5,5,5,5, 1,1,1 };
vector<inl> v(a,a+sizeof{a)/sizeof(in I»;
print_digits("all : ",v.beginO, v.end{»;

vector<inl>: :iterator pp = unique(v.begin (),v.end{»;
prinCdigits(" head : II ,v.beginO,pp) ;
prinCdigits(" tail : ",pp,v.end());

Pl>= remove(v. begin (), pl>,4);
prinCdigits(" head: II ,v.beginO,pp);
I>rin Cdigits{" tail: ",pp,v. endO);

TIle resulting output is

all: 1112234443335555111
head : 1234351
tail : 443335555111
head : 123351
tail : 1443335555111

B.S.3 Utility algorithms
Technically, these utility algOli!.hms are also modifying sequence algorithms, but.
we thought it a good idea to list them separately, lcst they get overlooked.

Utility algorithms

swap()(,y) Swap)(and y.

iter_swal>(p,q) Swap .p and . q.

swap_,anges(b,e,b2) Swap Ihe elements of Ib:e) and [b2:b2+(e-b».

fill (b,e,v) Assign v to every element of [b:e).

fiICn(b,n,v) Assign v to every element of [b : b+n).

generate(b,e,f) Assign fO to every element of [b :e).

generate_n(b,n,f) Assign fO to every element of [b:b+n).

uninitialized_fill (b,e,v) Initialize all elements in [b:e) with v.

uninitialized_copy(b,e,out) Initialize all elements of loul :out+(e-b)) with the
corresponding element from Ib :e).

(l .S ALGORIT HM S 111 7

Note that uninitialized sequences should occur only at the lowest level of pro­
gramming, usually inside the implementation of containers. Elements that are
targets of uninitialized_fill or uninitialized_copy must be of built-in type or
uninitialil.ed.

B.5.4 Sorting and searching
Sorting and searching are fundamental and the needs of programmers arc quite
varied. Comparison is by default done using the < operator and equivalence of a
pair of values a and b is detennined by !(a<b)&& !(b<.a) rather than requiring op­
erator ==.

Sort ing and searching

sorUb,e)

sort(b ,e,f)

stable_sorUb,c)

stablc_sorl(b,c, f)

partial_sort(b,m,e)

partial_sorl(b,m,e,f)

partial_sorCcopy(b,e,b2,e2)

partial_sorCcopy(b ,e, b2,e2,f)

nth_elemenl(b,e)

nlh_clemenl(b,e,f)

p=lowcr _bou nd (b,c, v)

p=lower_bound(b,c,v,f)

p=u pper _bou nd(b,e, v)

p=upper_bound (b,e,v,f)

binary_scarch(b ,e,v)

bina ry _search(b,e, v,f)

pair(p 1, p2)=eq ual_range(b,e ,v)

Sonl b :e).

Son Ib :e) using W p, -q) as the sorting criterion.

Sort (b :e), mainIJining order of equivalent elements.

Son lb:e) using Wp, .q) as the sorting criterion, mainlaining

order of equivalent elements.

5onlb :c) to get Ib :m) inlo order; (m :c) need not be soned.

Sort Ib :e) using Wp, . q) as the sorting criterion 10 gel Ib :m)
into order; [m :e) need not be sorted.

Son enough of Ib:e) to copy the c2-b2 first elements to
[b2 :e2).

Sort enough of Ib:e) to copy the e2-b2 first elements to
[b2 :e2); use f as Ihe comparison.

Put the nth element of Ib :e) in its proper place.

Pul the nth element of Ib:e) in its proper place using f for
comparison.

p points to the first occurrence of v in [b:e).

p points to the first occurrence of v in [b :e) using f for
comparison.

p points to the first value larger than v in Ib: e).

p points 10 the first value larger than v in [b :e) using f for
comparison.

Is v in the sorted sequence Ib :e)?

Is v in the sorted sequence Ib:e) using f for comparison?

[pl ,p2) is the subsequence of [b:e) with the value v; basically,

a binary search for v.

1118 APPENDIX B • STANDARD LIBRARY SU MMARY

Sorting and searching (continued)

pair{p1 ,p2)=equal_,ange{b,e, v,f)

p=merge{b,e,b2,e2,out)

p=merge{b,e,b2,e2,out, f)

inplace_merge(b,m,e)

inplace_merge{b,m,e,f)

p=part it ion(b,c, f)

p=stablc_part it ion (b,e, f)

Fo r example:

vecto r<i nt> V;
lisl<double> 151;

Ip1 ,p2) is the subsequence of Ib:e) with the va lue v using f fOf'
comparison; baSically, a binary search for v.

Merge two sorted sequences Ib2:e2) and Ib :e) into lout :p).

Merge two sorted sequences Ib2:(2) and Ib:e) into
lo ut,out+p) using f as the comparison.

Merge two sorted subsequences Ib :m) and Im:e) into a sorted
sequence [b:e).

Merge two sorted subsequences Ib :m) and Im:e) into a sorted
sequence Ib:e) using f as the comparison .

Place elements for which W pl) in Ib :p) and other elements in
Ip:e).

Place elements for which f{*p1) in Ib: p) ancl other elements in
Ip : el. preserving relative order.

v.push_back(3); v.push_back(1);
v.push_back(4); v.push_back(2) ;
Ist.push_back(0.5); Ist .push_back(I.5);
Isl.push_back(2) ; Isl.push_back(2.5); II lsi is in oreler
so rl(v.begin O,v.e nd () ; /I put v in order
vector<do uble> v2;
me rge(v.beginO,v.end O, lst.begin O,lst .end(),back_inserter(v2»;
fo r (int i = 0; i<v2.sizeO; ++i) cout « v2[iJ« ", ";

For inserters, sec §B.6. 1. ~nle OUlp llt is

0.5, 1, 1.5, 2, 2, 2.5, 3, 4,

TIle equal_range, lower_bo und, and upper_bo und algoritluns a]"e used j ust
like lheir equivalents for associative containers; sec § B.4. 1O.

B.5.5 Set algorithms
These algorithms treat a sequence as a set of eicmellls and provide the basic SCt
operations. The input sequences arc supposed to be soned and the output se­
quences arc also sorted:

B. 5 ALGO RITHM S

Set algorithms

includes(h,e,h2,e2)

inciudes(b,e,b2,e2,O

p=seLunion{b,e,b2,e2,Out)

p=seLunion(b,e,b2,e2,out,O

p=seLinlersecl ion(b,e,b2,e2,oul)

p=seLintersecl io n(b,e,b2,e2,out,O

p=sel_diffe rence(b,e,b2,e2,oul)

p=seLdiffe rence(b,e,b2,e2,out,(J

p=seLsymmelric_diffe rence(b,e,b2,e2,oul)

p=seLsymmelric_difference(b,e, b2,e2,o ul,f)

B.5.6 Heaps

1119

Areall e lements of Ib2:e2) also in Ib: e)?

Areall clements of Ib2 :e2) also in Ib :e) using f
for comparison?

Construct a sorted sequence [oul :p) of
elements that are in either Ib :e) or Ib2:(2).

Construct a sorted sequence lo ul :p) of
elements that are in either Ib :e) or [h2:(2)
using f for comparison.

Construct a sorted sequence [o ul : p) of
e lements that are in both [b:e) and Ib2:(2).

Construct a sorted sequence [o ul : p) of
elements that are in both lb:e) and lb2:(2)
using f for comparison.

Construct a sorted sequence [o ul : p) of
elements that are in Ib:e) but not in Ib2:e2).

Construct a sorted sequence [o ul :p) of
elements that arc in [b :e) but not in Ib2:(2)
using f for comparison.

Construct a sorted sequence [o ul :p) of elements
that are in Ib :e) or [b2:e2) but not in both.

Construct a sorted sequence [o ul :p) of
elements that are in Ib :e) or [b2:(2) but not in
both using f for comparison.

A heap is a data StruclUre that keeps the clement with highest value first. 111C
heap algorithms allow a programmer to treat a random-access sequence as a heap:

Heap operations

make_heap{b,e)

make_heap(b,e,O

push_heap(b,e)

push_heap(b,e,(J

Make SC<luence ready to be used as a heap.

Make sequence ready to be used as a heap, usi ng f for
comparison.

Add element to heap (in its proper place).

Add element to heap, using f for comparison.

11 20 APPENDIX B • STANDARD LIBRARY SUMMARY

Heap operations (continued)

pop_heap(b,e)

pop_heap(b,e,O

sorCheap(b,e)

sorC heap(b,e,O

Remove largest (first) element from heap.

Remove element from heap, using f for comparison.

Sort the heap.

Sort the heap, using f for comparison.

111e point of a heap is to provide fast addition of clements and fast access to the
clement with the highest value. ~nlC main use of heaps is to implcmcill priority
queues.

B.S.7 Permutations
Pennutations arc used to generate combinations o f clements of a sequence. For
example, the permutations of abc are abc, acb, bac, bea, cab, and chao

Permutations

x=nexc permutation(b,e)

x=nexLpermutation(b,e ,f)

x=prev_permulalion(b,e)

x=prev_permutation(b,e ,O

Make (b:e) the next permutation in lexicographical

order.

Make [b:e) the next permutation in lexicographical
order, using f for comparison.

Make [b:e) the previous permutation in
lexicographical order.

Make [b:e) the previous permutation in
lexicographical order, using f for comparison.

111C rcturn valuc (x) for nexLpermulation is fal se if [b :e) alrcady contains thc
last permutation (cba in the cxample) ; in that case, it returns the first permutation
(abc in the cxample). The return value for prey_pe rmutation is false if [b :e) al­
ready contains the first pennutation (abc in the example) ; in that case, it returns
the last permutation (cba in the example),

8.5.8 min and max
Vailic comparisons arc uscful in many comexts:

8.6 STL UTI LITIES

min and max

lI=max(a,b)

lI=max(a,b,f)

lI=min(a,b)

lI=min(a,b,f)

p= max_elemenl(b,e)

p=m~element(b ,e , f)

p=min_element(b,e)

p=min_element(b,e,f)

lellicographical_compare(b,e,b2,e2)

lexicographical_compare(b,e,b2,e2,f)

B.6 STL utilities

x is the larger of a and b .

x is the larger of a and b using f for
comparison.

x is the smaller of a and b.

x is the smaller of a and b using r (or
comparison.

p points to the largest element of [b:e).

p points to the largest element of [b:e)

using f for the element comparison.

p poinl5to the smallest element o([b :e).

p points to the smallest element of [b :e)

using f for the element comparison.

Is Ib:el<[b2 :e2j?

Is [b:el<lb2:e2), using f for the element
comparison?

TIle standard library provides a few facilities for making it easier 10 lise standard
library algorithms.

8.6.1 Inserters
Producing output through an iterator into a container implies that clements
pointed to by the iterator and following it can be overwritten. This also implies
the possibility of overflow and consequent memory corruption. For example:

void f(vector<inl>& vi)
{

filCn(vi,begin O, 200,7 Ii /I assign 7 to viIOI .. ! 1991

If vi has fewer than 200 clements, we are in trouble.
In <iteratoD, the standard library provides three iterators to deal with this

problem by adding (inserting) clements to a container rather than overwriting old
clements. TIU"Cc functions are provided for generating those inserting ileralors:

1121

11 22

Inserte rs

r=backj nserter(c)

r=fronUnserter(c)

r=inserte r(c,p)

APPEND IX B • STANDARD LIBRARY SUMMARY

· r=x causes a c.push_back()!).

·r=x causes a c.pu sh_hont(x).

· r=x causes a c, inserl(p,x).

For inserte r(c, p), p must be a valid itcrator for the container c. Naturally, a con­
tainer grows by one clcmelll each time a value is written to it through an insert it­
eratOr. When wriuen to, an inserter inserts a new clement into a sequence using
push_back(x), c. push_iro ntO , or inse rtO rather than overwriting an existing cle­
ment. For example:

void g(veclor<in t>& vi)
(

fi IC n(back_inse rte r(vi), 200,7); /I add 200 7s to the end of vi
}

B.6.2 Function objects
Many of t.he standard algorithms lake function objecLS (o r functions) as argu­
mems to comrolthc way they work. Common lIses are comparison criteria, pred­
icates (functions returning bool), and a rithmetic operations. In <functional>. the
standard library supplies a few common function obj ects .

Predicates

p=equaUo<T>O

p=noCequaUo<T>()

p=grealef<T>O

p=less<T>()

p=Sfeale,_equakT>()

p=less_equakT>O

p=logical_and<T>O

p=logical_of<T>O

p=logical_not<T>O

For eXil.m plc:

p(x,y) means x==y when x and y are of type T.

p(x,y) means x!=y when x and y are of type T.

p(x,y) means x>y when x and y are of type T.

p(x,y) means xq when x and y are of type T.

p(x,y) means x>=y when x and y are of type T.

p(x,y) means x<=y when x and y are of type T.

p(x,y) means x&&y when x and y are of type T.

p{x,y) means xlly when x and y ,lre of type T.

p(x) means !x when x is of type T.

B.6 STL UT ILITIES

vector<inb v;
1/ . . .
SO rt(v. begi n (),,,.e nd (), greater<i nbO); II son v in decreasing order

Note that logical_and and logicaCor always evaluate both their arguments
(whereas && and II do not).

Arithmetic operations

f=plus<T>O

f=minus<T>O

f=multiplies<T>O

f=divides<T>()

(=modulus<T>()

f=negate<T>O

Adaptors

f(x,y) means Hy when x and y are of type T.

((x,y) means x-V when x and y are of type T.

f(x,y) means x·y when x and y are of type T.

f(x,y) means xly when x and y are of type T.

f(x.y) means x%y when x and y are of type T.

fIx) means -x when x is of type T.

f=bind2nd(g,y) f(x) means g(x,y).

f=bindlsl(g,x) f(y) means g(x,y).

(=mem_fun(mO f(p) means p->mfO.

f=mem_fun_ref(mfJ f(r) means r.mfO.

f=nol1(g) fIx) means 19(x).

f=nol2 (g) f(x,y) means !g(x,y).

B.6.3 pair
In <utility>, the standard library provides a few "utility components," including
pair :

template <class 11, class 12>
struct pair {

typedefTl firsUype;
typedef T2 second_type;
11 first;
12 second;

1123

1124

};

AP PENDIX B • STANDA RD LIBRARY SUMMARY

pair() i /I default constructor
pair(const T1& x , const T2& y);

// copy operations:
template<class U , class V > pair(eonst pair<U , V>& P l;

template <class T1 , class T2>
pair<T1 ,T2> make_pair(T1 x, T2 y) { return pair<Tl ,T2>(x,yl; }

111e make_pair function makes the usc of pairs sim plc. For example, hcrc is tllC
outline of a function that retums a value and an error indicaLOr:

pair<do uble,e rror_indicator> my_fcl(do uble d)

{

}

erma = 0; /I clear (-style global error indicator
/I do a lot of computation involving d computing x
erro r_ind icator ee = errnOi
crrno = 0; /I clear C-style global error indicator
rcturn make_pair(x,ee);

111is example of a uscful idiom can bc uscd like this:

pair<inl ,errorj ndicator> res = my_fct(123.456)i
if (res .seco nd==O) {

/I use res.first
}

else {
1/ oops: error

}

8.7 1/0 streams
111C 110 stream library provides formaued and unformattcd buffered 1/0 of tcxt
and numeric valucs. 111e definitions for I/O stream facilitics are found III

<istream>, <ostream>, etc.; sce §B.l . l .
An oslream converts typed objects to a stream of charaClers (bytes):

S.7 1/0 ST REAMS

Valucs Or various types Charactcr scqucnccs

"Somc\vhere"
(12,34) ostream

Buffer

An islream converts a strcam or characters (bytcs) to typed objects:

Valucs or various types Character scqucnces

"Somcwhere"
(12,34) istrum

BulTer

An ioslream is a strcam that can act as both an islream and an osl ream. The
buffcrs in the diagrams arc "so-cam buffers" (sireambufs) . Look them up in an
expen-lcvcl tcxtbook ir you ever need to define a mappi.ng rrom an ioslream to a
new kind or device, fUe, or memory.

111cre are lhrce standard streams:

Standard VO streams

cout the standard character output (often by default a screen)

cin the standard character input (often by default a keyboard)

eerr the standard character error output (unbuffered)

1125

11 26 APP ENDIX B • STA NDARD LIBRARY SUMMA RY

B.7.1 1/0 51 reams hierarchy
An IUr\!lUn can be connected to an input device (c. g., a keyboard), a [de, or a
li t ring. Similarly, an oslre:un ca.n be connected to an omplll device (c.g., a tcxt win­
dow), a me, or a slrlns . 111C 1/0 stream facilities are organizcd in a class hierarchy:

istream os

istrin tream ifstream iostrearn ostrin tl'Nlll ofslrearn

strin stream fstream

A srrcam can be opened either by a constructor or by an o j,..!nO call:

Siream types

Ilrlngill trlll\m(m) Make an empty string stream with mode m.

II lrlngIl IrCam(I,m) Make a string stream containing tiring I with mode m.

' . lrcftmO Make a file stream for later opening.

'1Ire;m(. ,m) Open file called i with mode m and make a file stream to refer
to it.

r.,opcn{i,m)

r..I. _opanO

Open file called II with mode m and have ' l refer to it.

Is r8 openr

For me streams, the file name is a C·style string.
You can open a file in one of several modes:

Stream modes

lo._baila ! tltPp append (i.e., add to the end of the file)

IOI_baSi! II IIi! "at end" (open and seek to end)

lo. _baiie l :blnary binary mode - beware of system-specific behavior

lu._blil iH :In for reading

lo. _bali t l :ou l for writing

lo._bAsall lrunt:: truncate file to 0 length

n.7 JlQ STR EAM S

In each case, the exact effect of opening a me may depend on the operating sys­
tem, and if an operating system cannot honor a request LO open a me in a certain
way, the result will be a stream that is not in the 8oodO Slate.

An example:

oi lrlng!ilrcant Oi; 1/ 0 for ~UU")lI , H
of8lre:ul1 of(ltmy_tIIl! lt);
II (Iof) crror("couldn" ol,en ' n'y~fUe' for wrIHng");
n,y_colle(oli)l 1/ usc .1 Mtlng
my~code(ol) ; 1/ usc dOle

See § 11.3.

0.7.2 Error handling
An I08tream can be in one of fou r states:

Stream slales

goodl)

I!of()

,,111)

b.dl)

The operations succeeded.

We hit end of inpu' ("end of file"').

Something unexpected happened (e.g., we looked fO(a digit and found ' /1 '1.

Something unexpected and serious happened (e .g., disk read erro r).

By using i ,ll/lcaplloM iO, a programmer can request an Iuslream to throw an ex­
ception if it rulTIS from MooliO inLO anOlher state (see §1O.6).

Any operation atlempLCd on a stream that is nOl in the goodO state has no ef­
fect; it is a "no op."

An lo. lream can be used as a condition. In that case, the condition is lnle
(succeeds) if ute stale of the IOi trm'm is good() . That is the basis for the common
idiom for reading a stream of values:

X III I/,In "Inpul buffer" (or huldllll:! une v,llue u(lypc X
whllt! (c:ln» /I) (

1/ du ~omc'hlnl:! whh x

II we gCI hcre whcn » tcJu ld.,'I re"d ,ulolhcr X (rum eln

1127

11 28 APPEND IX B • STANDARD LIBRARY SUMMARY

B.7 .3 Input operations
Input operations arc found in <istream> except for the ones reading imo a si ring ;
those arc found in <String>.:

Formatted input

in » .

getline(in, s)

Read from in into x acc()(ding to . 's Iype.

Read a line from in into the siring s .

Unless Olhcnvisc stated, an istrcam operation retums a reference LO its istream,
so that \ ... ·c Co:'11l "'chain" operations, for example, cin»x:» y; .

Unformatted input

x: in.getO

in.get(c)

in.gel{p,n)

in.gcl(p,o ,t)

in .getline(p,n)

in.gellinelp,n,t)

in.read(p, n)

x=in .gcountO

Read one character from in and return its integer va lue.

Read a character from in into c.

Read al most n characters from in into the array starting at p .

Read at most n characters from in into the array starting at Pi
consider I a terminator.

Read at most n characters from in into the array starting at P;
remove terminator from in .

Read at most n characters from in into the array starting at P;
consider I a terminator; remove terminator from in .

Read al most n characters from in into the array start ing at p .

)I is number of characters read by most recent unformatted input
operation on in .

TIle gel O and gellineO functions place a 0 at the end of the characters (if any)
written to plOJ ... ; gellineO removes the tenninator (I) from the input, if found ,
whereas gelO docs not. A read(p,n) does not write a 0 to the array after the char­
acters read. Obviously, the fonnaued input operators arc simpler to use and less
error-prone than the unformatted ones.

B.7.4 Output operations
Output operations are found in <oslream> except for the ones writing Out a
Siring ; those arc found in <SIring>:

B.7 IJO STR EAMS

Output operations

oul « /I Write /I to oul according to /I 'S type.

out.pul(t) Write the character t to out .

out .wrhtl(p,n) Write the characters pI0) .. pln- 11 to out.

Unless otherwise statcd, an 6I1 ft!!u" operation returns a reference to its ollircam,
so that we can "chain" operations, for example, Coui «x<<y; .

8.7.5 Formatting
"nle format of stream 110 is controlled by a combination of object type, stream
state, locale information (see <locale» , and explicit operations. Chapters lO and
L L explain much of this. Here, we just list the standard manipulators (operations
modifying lhe stale of a stream) because they provide the most straightforward
way of modifying fonnalling.

Locales are beyond thc scope of this book.

8.7.6 Standard manipulators
TI1C standard library provides manipulators corresponding to the various fonnat
states and state changes . The standard manipulators arc defined in <1011>,
<I ~ tr tlam>, c 08Ircam>, <Iostrcam>, and c lom3l'l lp> (for manipulators that take
a rguments) :

va manipulators

II<cboulnlphll

Iccnoboolalpha

Iccshowbaii tl

• ccnOl howbaUi

.ccilhowpolnl

ilccnol howpolnl

l«thowpo.

Iccnoilhowl>OiI

1» .klpWI

8» no8klllWil

Iccupptirc~jj i!

Use symbolic representation of trut! and tll l'tl (input and
output).

I.unilll tt(loil_bail tl t I boolall)ha) .

On output prefix oct by 0 and htx by Ox.

l .uni Cl tWol_bUu t t . hOwballc) .

Always show decimal point.

I ,Un l tl tt(lo. _b3Jtl! Ilhowl)o lnt).

Show + for positive numbers.

l.unl lltt(lol _b3iitl lllihowpOil) .

Skip whitespace.

I, Uniltl tf(lol_bau;ll l klpWI).

Use uppercase in numeric output, e.g., ·1.2E10 and OXIA2
rather than 1.2tl 10 and Oli 102.

"29

1130 APPENDIX B • STANDARD LIBRARY SU MMARY

VO manipulators (continued)

s« no uppercase

s<<i nterna l

s« le(t

s« right

s« dec

s« hex

s«ocl

s<<iixed

s<<scie nlific

s«endl

s«ends

s<<fIush

P>W5

s« resetiosflags(O

s<<set iosflags(O

s<<setbase(b)

s<<setfill(c)

s<<setprecision(n)

s<<setw(n)

x and e rather than X and E.

Pad where marked in formatting pattern.

Pad after value.

Pad before value.

Integer base is 10.

Integer base is 16.

Integer base is 8.

Floating-poi nt format dddd.dd.

Scientific format d.ddddEdd.

Put '\n' and flush.

Put '\0' .

Flush stream.

Eal whitespace.

Clear flags f.

Set flags f .

Output integers in base b .

Make c the fill character.

Precision is n digi ts.

Next field width is n characters.

Each of these operations retu rns a reference to its first (stream) operand, s.
For example:

coul « 1234« ',' « hex« 1234« ','« oct« 1234« endl;

produces

1234,4d2,2322

and

cout« ' I' «setw(4)« setrill ('#')« 12« ") (n «12« ")\n";

produces

(##12) (12)

B,B STRING MANIPULATION

1'0 explicitly set the general output fonnat for floating-point numbers use

b.setf(ios_base: :fmtflags(O), ios_base : :floatfieldl

See Chapter I I.

B.B String manipulation
111e standard library offers character classification operations in <cctype>,
strings with associated operations in <string>, regular expression matching in
<regell> (C++Ox), and support for C-sryle suings in <cslring>.

8.8.1 Character class ification
~n1e characters from the basic execution character set can be classified like this:

Charader classification

isspace(c)

isalpha(c)

isdigil(c)

isxdigil(c)

isupper(c)

islowe r(c)

isalnum(c)

iscntrl(c)

ispunct(c)

isprint(c)

isgraph(c)

Is c whitcspace (' " '\I ', '\n', etc.)?

Is c a reUer ('a ' .. 'z', 'A' ,, 'Z'J? (Note: not '_' .)

Is c a decimal digit ('O' .. '9')r

Is c a hexadecimal digit (decimal digit or 'a ' .'f' or 'A' .. 'F')?

Is c an uppercase lett err

Is c a lowercase letterr

Is c a leuer or a decimal digilr

Is c a control character (ASCI I 0 .. 31 and 127)?

Is c not a letter, digit, whitespace, or invisib le control character?

Is c printable (ASCII ' ' .. '-')r
Is c isalphaOlisdigitOlispunctO? (Note: not space.)

In addition, the standard library provides two usefu l functions for getting rid of
case differences:

Upper and lower case

touppe r(c) c or c's uppercase equivalent

lolower(c) c or c's 100vercase equivalent

Extended character sets, sucl1 as Unicode, are supported bu t are beyond the
scope of this book.

1131

1132 APPEND IX B • STANDARD LIBRARY SU MMARY

0.0.2 String
The standard library string class, siring, is a specialization of a general string tem­
plate hi'!l I Irln8 for the character type ChAt; that is, I Irl"8 is a sequence of t hars:

Siring operations

1>-.2

••• I:ttl()

Ii. ltl nglh()

I.C_IIfO

li.beglnO

l.tlndO

8. ln.l.lrUpOI,II)

8.al,p,md{p08,1I)

1,~'aI8(polI)

l. pu8h_backtc)

,.o8_ •• flnd(lI:)

11'1»'

Assign 82: to i ; 12 can be a string or a C-style string.

Append II: at end of I ; .It can be a character, a sIring. or a C-style
string

Subscripting.

Concatenation; the result is a new string with the chMacters from
• followed by the characters from 12.

Comparison of string values; 11 or ti2, but not both, can be a C­
style SIring.

Comparison of Siring values; • or d , but not both, can be a C­
style stri ng.

lexicographical comparison of string values; " or 12, but not

both, can be a C-style string.

l exicographical comparison of string values; • Of 12, bUI nOl
both, can be a C-style string.

lexicographical comparison of Siring values; l or 82, but not
bolh, can be a C-style string.

lexicographical comparison of string values; l or 82:, but not
both, can be a C-style str ing .

Number of charactCfS in 8.

Number of characters in • .

e-style string version (zero terminated) of characters in I .

Iterator to first character.

Iterator to one beyond the end of • .

Insert II before ' Ipo.); II can be a character, a string, or a C-style
string.

Insert JI after Ilpo.); II can be a character, a string.. or a C-style string.

Remove the character in ,11'011.
Append the character C.

Find JI in . ; II can be a character, a string. or a C-style string; P(U

is the index of the first character found, or "POI (a position off
the end of i l.

Read a word inlo . from In .

B.8 STRING MAN IPULATION

B.0.3 Rcgular c~prcll ion matching
Thc rcgular cxprcssion library is not yct part or the standard library, but it will
soon be and it is widely availablc, so wc list it hcrc. Sec Chapter 23 ror morc dc­
tailed explanations. TI1C main c re8"I(> runctions arc

Searchi1lg ror a string that matches a regular exprcssion in an (arbitrarily
long) stream or data - supported by rft8Cli_,etirc:hO

Matching a rcgular expression against a string (or known sizc) - sup­
ported by rCSCI(Jtl31ChO
ReplacCIlumt or matchcs - supported by r"scli terJlilc:e() ; not described in
tlus book; see an expert-level text or manual

TI1C result or a ,eSOli jeatc:hO or a tcg"" malc:hO is a collcction or matches, typi­
cally represented as an , ltuHch:

rliSli" row(HI\ I\\W I+{ IId.)(IId.1(IId .)$")1

wllll ll (gollln ll{ ln,lIntl)) { II t.hcdc d.11.1 li nt!
,m;}fch matches I
If (I n)se,, Jtlatch(lInc, miuchcj, row))

crror("bad IInc" I UncnO)1

1/ ChlXk ruw:
Inl flo ldl . lro l11 I lrlnsclnl>(nUHChoI11))!
IMI flc ld2 . frOM'_l ltlnsclnl>(matchti,ll ll l
Inlfleld3 . (rOlu_l lrlnsclnl>(nlIlIChcI13J)1
/I , , ,

rnlC syntax or rcgular cxpressions is based on characters with special meaning
(Chaptcr 23):

Regular expression special characters

I
•

•

any single character (a uwildcard")

character class

count

begin grouping

end grouping

next character has a special meaning

zero or more

one or more

1133

1134 AP PENDIX B • STANOARD LIBRARY SUMMARY

Regular expression special characters (continued)

l

$

Repetition

(n)

(n,)

(n,m)

+

l

optional (zero or one)

ahernative (or)

start of line; negation

end of line

exactly n times

n or more times

at least n and al most m times

zero Of more, that is, to,}

one or more, that is, {I ,}

optional (zero or one), that is (O, l)

Character classes

alnurn

alpha

blank

cntrl

d

digit

graph

lower

print

pund

,
space

upper

w

"digit

any alphanumeric character or the underscore

any alphabetic character

any whitespace character thaI is not a line separator

any control character

any decimal digit

any decimal digit

any graphical character

any lowercase character

any printable character

any punctuation character

any whilespace character

any whitespace character

any uppercase character

any word character (alphanumeric characters)

any hexadecimal digit character

0 .9 NUMERI CS

Several character classes are supported by shorthand notation :

Charader class abbrevialions

III a decimal digi t lI,dlglllll

~ a lowercase character II I lowtirt 11

" a space (space, lab, elc.) Ul8paftli U

Iu an uppercase character Ifl1lfJpa t ill

Iw a letter, a decimal digit, 0(an underscore Cl II hlll1l1m lll

III not \d 1' 111/1811 '11
11 not \I [AlllowClfllI

IS not \!! 1"(u pltc:tHII
IU not \u IAlluPP Ci rtlJ

IW nol \w l"IHtlnllm lll

B.9 Numerics
"n e c++ standard librmy provides the most basic building blocks for mathemat·
ical (sciemific, engincering, elc.) calculations.

B.9.1 Numcricailimiis
Each C++ implementation spccifies properties of the built·in types, so that pro·
grammers C'1n usc those properties to cl1eck against limiLS, set sentincls, etc.

From <lltnll8>, we get 1111nlerl cJlmili <1> for each built-in o r library type T.
In addition, a programmer can define num eric Ilmll i<X> for a user·d efmed nu·
meric type X. For example:

cia:,. nume,' J" .. Ilhic floal> {
I)ublici

' IMlc con i l booll j_i pl.lclall l{!d • "U{!J

, Ialic (on lll Itll rAdii, . 2; If b.1M.! o(CKlxJftcnt (hI thl ~ t t.lM.', blllJry)
. lililc cOl1 j l Inl dlghi • 24 ; If nUfni:lcr or t.ltll>: dll!1t~ In nhllltlu.1
j Ulllc onllllni dlglli10 . 6, If numher or b.l§c· 1 0 d igi ts 111 rtll1tlllss,1

j lililc con81 booll!l_i lg"tld • lruell
italic eM 81 bfu.lII!lJnltgt f . (A lu~,
8liulc con81 bool18~l! lIIe l • (ali e ,

1135

1136

);

APP ENDIX B • STANOARD LIBRARY SU MMARY

static float minO { return 1.17549435E-38F; }
static float maxO { return 3.40282347E+38F; }

/I example value
"example value

static float epsilonO { relurn 1.19209290E-07F; }
static float round_crrorO { return O.5F ; }

'I example value
II example value

static float inrinit yO { return , - some value -I; }
slatic float quieCNaN (} { return ,- some value -I; }
static float signaling.,NaN(} { return , - some value -I; }
sialic float denorm_min(} { return minO; }

static consl int min_exponent = -125;
static consl int min_exponent10 = -37;
static consl int max_exponent = +128;
slatic const inl max_exponenltO = +38;

stati c const bool hasj nfinity = true;
slatic const bool has_quieCNaN = true ;
static const bool has_signaling.,NaN = true ;

/I example value
/I example value
/I example value
/I example value

static co nsl floaCdenorm_style has_denorm = denorm_absent ;
static consl bool has_denorm_loss = false ;

static const bool isjec559 = true;
stati c co nsl bool is_bounded = true ;
static co nsl bool is_modulo = false;
slatic consl boo llraps = Iruc;

/I conforms to IEC·559

static const bool tinyness_bcfore = tru e;

From <Iimils .h> and dloat.h>, we gel macros specify ing key properties of inte'
gers and floating·point numbers, including:

limit macros

CHAR_8IT

CHAR_MIN

CHAR_MAX

number of bits in a char (usually 8)

minimum char value

maximum char va lue (usually 127 if char is signed and 255 if
char is unsigned)

smallest int value

largest int value

8.9 NUMERICS

Limit macros (continued)

LONG_MIN

LONG_MAX

FLY_M IN

FLY_MAX

FLY_DIG

FLT_MAX_10_EXP

D8L_MIN

DOL_MAX

DBL_EPSILON

smallest int value

largest int va lue

smallest positive float value (e.g., 1.175494351 e-38F)

largest float value (e.g., 3.402823466e+38F)

number of decimal digits of precision (e.g., 6)

largest decimal exponent (e.g., 38)

smallest double value

largest double value (e.g., 1.7976931348623158e+308)

smalleslsuch IhaI 1.0+D8L_EPSILON! = 1.0

B.9.2 Standard mathematical functions
'111C standard library provides the most common mathematical functions (de­
fined in <cmath> and <complex» :

Standard mathematical functions

abs(x)

ceil(x)

floor(x)

sqrt(x)

cos(x)

sin(x)

tan(x)

acos(x)

asin(x)

alan(x)

sinh(x)

cosh(x)

lanh(x)

exp(x)

log(x)

log10(x)

absolute value

smallest integer >= x

largest integer <= x

square root; x must be nonnegative

cosine

sine

tangent

arccosine; result is nonnegative

arcsine; result nearest to 0 returned

arctangenl

hyperbol ic sine

hyperbol ic cosine

hyperbolic tangent

base-e exponential

natural logarithm, base-e; x must be positive

base-l0 logarithm

1137

1138 APPENDIX B • STANDARD LIBRARY SUMMARY

There are versions taking flO i't. doublQ. 10118 doubl e, and c:on1J)IQ. arguments.
For each function , the retu rn type is t.he same as the argument type.

If a standard mathematical function cannot produce a mathematically valid
result, it sets the variable errno.

B.9.3 Complex
The standard library provides complex number types C:OmphHccfloilt>. eom­
I)ltlJlcdoubl@>, and c:oml)lell<lons double>. A C:ORlplelCcSe.illilF> where SC:ith., is
some other type supporting lhc lISUal arithmetic operations usually works but is
not guaranteed to be portable.

lenll)lillec dil!i!i SC:illilr> clit~1i eOml)hl. {
/I iI cOmplll \; 1, il pa ir flf ~({l l ilf vil l~WIi , 1 ~1i l{:i\ lI y il cO(Jrdlnil tn pll ir
StilllU re, Illll

I,·bll.,
c:ompIQx(c;:on!l1 !leillil," r, t onii t SCJlilf &- I) I re(r). 1",(1) ()
compIQ/II(cOn!i1 Seithn " rl I 'Q (r),lm (Se~ IDr ()) ~)
eom~lt,!Jl() tr@(S@litf()), hn (SeDIDr ()) ()

Seiliu rVilO (r@tufI1 rQI)
SeDI", Imil8() (,@1urn 1m.)

1I11'Il i PMt
II h1lilj\hwy ptH!

Ii olwratofl' ::: t '" ... ", 4", I""
),

In addition to the members of complex, Ce0I111)IQ olfers a host of useful operations:

Complex ope rators

11-+1l1

,1 - lll

11·1:1

11/1:1

, "lu ll

lllw;d

nOrm(l)

«lolt·I
IJOltu(K,yl

f@ill(ll

addition

subtraction

multiplication

division

equality

inequality

the square of ib§(l)

conjugate: if I is (f@,lm) then COHJ(I) is (rQ,- lm)

make a complex given polar coordinates (rho,theta)

real part

B.9 NUMERICS

Complex operators (confinued)

imag(z) imaginary part

abs(z) also known as rho

arg(z) also known as theta

out « z complex output

in » z complex input

TIle standard mathematical functions (see §B.9.2) arc also available for complex
numbers. Note: com plex does not provide < or %; sec also §24.9.

B.9.4 valarray
TIle standard valarray is a single-dimensional numerical array; that is , it provides
arithmetic operations for an array type (mudl as Matrix in Chapter 24) plus sup­
port for slices and stridcs_

B.9.5 Generalized numerical algorithms
11lese algorithms from <nume ric> provide general versions of common opera­
tions on sequences of llulllelic;i1 values:

Numerical algorithms

x = accumulate(b,e,i)

x = accumulate(b,e,i,O

x = inne' _producl(b,e,b2, i)

x = inner_product(b,e,b2,i,f,f2)

p=partia'-su m(b,e,out)

p=partiaCsu m (b,e ,out,O

p=adjacent_ d iffe rence(b ,e,out)

p=adjacenCdiffe rence(b ,e,ou t, 0

x is the sum of i and the elements of [b : e)_

Accumulate, but with f instead of +_

x is the inner pnxluct of [b:e) and Ib2: b2+(e-b)),
that is, the sum of i and (· pl)· (· p2) for all pl
in [b :e) and all corresponding p2 in
Ib2: b2+(e- b».

inner_producl, but with f and f2 instead of +
and *, respectively.

Element i of loul :p) is the sum of elements O.i
of [b :e).

partial_sum, using f instead of +.

Element i of lout :p) is *(b+i)-* (b+i- l) for i>l ;
if e- b>O then ·out is *b.

adjacent_diffe rence, using f instead of - .

1139

" 4<1 APPENDIX B • STANDARD LIBRARY SUMMARY

B.10 C standard library functions
~nc standard library for the C language is with very minor modifications incor­
porated into the C++ standard library. TIle C standard library provides quite a
few functions that have proved lIsefu l over the years in a wide variety of contexts
- especially for relatively low-level programming. Here, we have organized them
into a few conventional categories:

C-style I/O

C-stylc strings

Memory

Date and time

Etc.

There are more C standard library functions than we present here ; sec a good C
textbook, such as Kernighan and Ritchie, The C Programming Lal/gl/age (K&R), if
you need to know mort.

B.l0.l File.
The <Ci ldlo> 110 system is based on "mes." A me (a flU·) can refer to a file or lO

one of the standard input and output streams, i tdln , i ldoul, and litthm. l1le
SlaJldard streams are available by default; Olher files need to be opened :

File open and close

f. rOIH!Il (I.m)

I"deloi@U)

Open a file stream for a file named i with the mode m.

Close file stream f; return 0 if successful.

A "mode" is a string containing one or more directives specifying how a me is to
be opened:

File modes

"r" reading

"w'! writing (disca rd previous contents)

" il ft append (add at end)

", ." reading and writing

"w+" reading and writing (discard previous contents)

"bl! binary; use together with one or more other modes

B.IO C STAN DARD LIBRARY FUNCTIONS

'1lcrc may be (and usually are) more options on a specific system. Some options
can be combined; for examplc, tnlnm("too" , "rb ") tries to open a file c:.-tllcd too for
binary reading. TIle 110 modes should be the same for stdio and 1 00i tr~alUS (§B.7.1)

0.10.2 The prln!lO (~mlly
111C most popular C standard library functions are the 1/0 functions. Howeve r,
wc recommend IO li lre"llls because that library is type safe and extensible. The
fonnatted output function, ,Jrintf(), is widely used (also in C++ programs) and
widely imitated in other programming languages:

1),Io!'

n· l) rlnl r('m!,it rK~) Print the "format string" fml to I ldou! inserting the

arguments afSIi as appropriate.

Print the " format string" rOll to file r, inserting the arguments

a,s, as appropriate.

Printlhe "formal string" 'mi lo the (-style string I , inserting

the arguments ' fIJIi as appropriate.

Fo r each version, n is the number of characters written or a negative number if
the omput failed. The rclllrn value from prlnttO is essentially always ignored.

l1le declaration of 1l,lntfO is

InIIJflntf{cOI1li1 clllar· fo rmill ",)1

In other words, it takes a C·slylc string (typicaJly a string literal) followed by an
arbitrary number of arguments of arbitrary type. 111e meaning of those "extra
arguments" is controlled by conversion specifications, such as !)t,c (print as char·
acter) and 'l'Ld (print as decimal integer), in the fonnat string. For example:

Inl x • Sl
conlil I;;hi" · I) !IIi "Aidf",
,Hh,U("lhe v"IYe ot III Iii '')IJd' iIlnd Ihe VAIYQ or Ii Is '''''i ,,"'' , X, ~) I

A character following a % eOlllrols the handling of an argument. ~nle first % ap­
plies to the first "extra argument" (here, ~,d applies to x), the second % to the sec­
ond "extra argumenl" (here, %! applies to Ii), and so 0 11. In particular, the outpUl
of that call to IHlnlt() is

followed by a newline.

1141

1142 APPENDIX B • STANDARD LIBRARY SUMMARY

In general, the correspondence between a % conversion directive and the
type to which it is applied cannot be checked, and when it c.'l.n, it usually is not.
Fo r example:

printf("the value of x is '%5' and th e value of s is '%d '\n",x,s); II oops

The set o f conversion specifications is quite large and provides a great degree of
nexibility (and possibilities for confusion). Fo llowing the %, therc may be:

an optional minus sign that specifics left adjustment of the conven ed
value in the field.

+ an optional plus sign that specifics that a value o f a signcd type will al­
ways begin with a + or - sign.

o an optional zero that specifics that leading zcros arc used for padding o f
a numeric value. If - or a precision is specificd, this 0 is ignored.

an optional # that specifics that floating-point values will be printed with
a decimal point evcn if no nonzero digits follow, that trailing zeros will be
printed , that OCtal valucs will be printed with an initial 0, and lhat hexa­
decimal values will be printed with an initial Ox or OX.

d an optional d igit string specifying a field width; if the conven ed value
has fewer characters than the field wid th, it will be blank-padded on the
left (or right, if the left-adjustment indicator has been given) to make up
the field width; if the fi eld width begins with a zero, zero padding will be
done instead of blank padding.

an optional period that serves to separate the field width from the next
digit string.

dil an optional digit string specifying a precision that specifics the number of
digits to appear after the decimal poi.nt, for e- and f-conversion, or the
maximum number of characters to be printed from a string.

• a field width or precision may be • instead o f a digit string. In this case,
an integer argument supplies the fi eld width or precision.

h an optional character h, specifying that a fo Uowing d, 0 , x, or u corre­
sponds to a short integer argument.

an optio nal character I (the letter I), specifying that a fo llowing d , 0 , x, or
u corresponds to a long integer argument.

L an optional character L, specifying thal a following e, E, g, G, or f corrc­
sponds to a long double argu ment.

% indicatiJlg that the character % is to be printed ; no argument is used.

6.10 C STANDARD LIBR ARY FUNCT IONS

c a character t.hat indicates the type of conversion LO be applied. l 11e con·
version characters and their meanings are :

d TIle integer argument is converted to decimal notation.

"I1le integer argument is converted LO decimal notation.

o The integer argument is converted to OCtal notation.

x The integer argument is converted to hexadecimal notation.

X The integer argument is converted to hexadecimal notation.

TIle float or double argument is converted to decimal notation in
the style (-Jddd.ddd. The number of d's after the decimal point is
equal to the precis ion for the argument. If necessary, the number is
rounded. If the precision is missing, six digits are given; if the preci­
sion is explicitly 0 and # isn't specified, no decimal point is primed.

e "I1le float or double argument is converted LO decimal notation in
the scientific style (-Id.dtide+dd or (- Id.ddde-dd, where therc is one
digit before the decimal point and the number of digits aftcr the dec­
imal point is equal to the precision specification for the argument. If
necessary, the number is rounded. If the precision is missing, six dig­
its are given; if the precision is explicitly 0 and # isn 't specified, no
digits and no decimal point are printed.

E As e, but with an uppercase E used 10 idemify lhe exponent.

g TIle float or double argument is printed in style d, in style r, or in
slyle e, whichever gives the greatesl precision in minimum space.

G As S' but Wilh an uppercase E used 10 idemify the exponelll.

c TIle character argument is printed. Null characters are ignored.

s TIle argument is taken to be a string (character pointer), and charac­
ters from the string are printed until a null character or until the
number of characters indicated by the precision specification is
reached ; however, if the precision is 0 or missing, all characters up to
a null arc printed.

p TIle argument is taken to be a pointer. TIle representation printed is
implementation dependent.

u 111e unsigned integer argument is converted to decimal notation.

n 11le number of characters written so far by lhe caU of printf(),
fprintfO, or sprinlfO is written to the int pointed 10 by the pointer to
int argument.

In no case docs a nonexistent or small field width cause truncation of a
field ; padding takes place only if the specified field width exceeds the ac­
tual width.

1143

1144 APPENDIX 8 • STANDARD LIBRARY SUMMARY

Because C docs not have user-dcHncd types in the sense that C++ has, there afC

no provisions for dcfming Output fannats for user-defined types, such as cOlUplex,
vector, or t iring.

Tne C standard output, 8ldoul. corresponds to coul . The C standard inplll,
, Id ln, corresponds to cl n. The C standard error output, ' td tl n , corresponds to
ce rro TIus correspondence between C standard I/O and C++ 110 streams is so
close that C-style 110 and I/O streams can share a buffer. For example, a mix of
('oul and sidoul operations can be used to producc a single output stream (that's
not uncommon in mixed C and C++ code). 11lis flexibility carries a cosl. For
better perfomlancc, don't mix sldio and lost ream operations for a single stream
and call iOfl~ba fle :;lync~wllh_'tdio(fa l ,) before the first 110 operation.

TIle stdio library provides a function, IcanfO, that is an input operation with
a style that mimics ,)rlnItO. For c.'(ample:

Inl x;
chit' . lbuClll7.:el;
Inl l _ sCltnWthe value of x Is '%d' Imet Ihe v~lu e 01 , Is '%o,'\n" ,&X,I);

Here, ,canfO tries to read an integer into x and a sequence of non-whitespace
characters into . Non-format characters specify that the input should comain
that characler. For example,

Ihe y"hl e of x hi '123' and the Yl1lue of Ii III 'Itrlns '\n"

will read 12:1 into x and , trlnR foUowed by a 0 into I . If the call of ' CD I1f() succeeds,
the result vallie (I in the call above) will be the number of argument pointers as·
signed to (hopefully 2 in the example); otherwise, EOF. This way of specifying
input is error-prone (e.g., wbat would happen if you forgot the space after II I rinK
on that input line?). All arguments to , u nto must be pointers. We strongly rec­
ommend against the usc of , ca nfO.

So what c. ... n we do for input if we arc obliged to lise stdio? One popular an·
swer is, "Usc the standard library function selsO" :

/I wry diln"(,rou~ emit':
ch" r IilbuC,llel ;
char- IJ _ Rell (' " /I reild il line 11\10 s

The call I}- Ket' (I) reads dlaracters into , until a newline or an end of file is ell­
countered and a 0 character is placed after the last character written to Ii . If an
end of file is encountered or if an error accun'ed, p is set to NUI.L (that is, 0);

B. 1 0 C STANDARD LIBRARY FUNCTIONS

otherwise it is SCt to s. Ncver usc gets(s) or its rough equivalent (scanf(""Ios",s))!
For years, they werc thc favoritcs of virus writers: by providing an input that
overflows thc input buffer (s in the example), a program can bc corrupted and a
computer potcntially taken over by an attacker. Thc sprintfO function suffers
similar buffer·overflow problems.

111e stdio library also providcs simplc and useful charactcr read and write
functions:

sldio characler funclions

x=getc(st)

x=pulc(c,sl)

x=getchar()

x=pulchar(c)

x=ungetc(c,st)

Read a character from input stream sl; return the characters integer
value; x==EOF if end of file or an error occurred.

Write the character c to the output stream 51; return the integer
value of the character written; x==EOF if an error occurred .

Read a character from stdin; return the character's integer value;
x==EOF if end of file or an error occurred.

Write the character c to stdoul; return the integer value of the
character written; x==EOF if an error occurred.

Put c back onto the input stream st; return the integer value of the
character pushed; x==EOF if an error occurred.

Note lhat the result of these functions is an int (not a char, or EOF couldn't bc rc·
turned). For example, this is a typical C·style input loop:

inl Chi , . not char ch; -,
while «ch=getchar())! =EOF) { ' . do something O, }

Don't do two consccu tivc ungetchOs on a stream. '11C rcsult o f that is undefincd
and (therefore) non·pOItablc.

'11ere arc lUore stdio functions; sec a good C tcxtbook, such as K&R, if you
nced to know more.

8.10.3 C-slyle slrings
A C·stylc string is a zcro-terminated array of char. This notion of a string is sup­
poncd by a set of functions defined in <cstring.> (or <slring. h>; note: 111)/ <string.»
and <csldlib>. '11cse functions operate on C·style strings through char· pointers
(canst char· pointers for mcmory that 's only read):

1145

"46 APPENDIX B • STANDARD LIBRA RY SU MMARY

C-style string operations

• _,Irlan(,)

p_'lrcpy(",:Z)

p_' lrCIt(".:I)

x.,lrCm,)(I, , 2)

p.,lrncpy(t,t :Z, nJ

p.,lrnc.I(M 2, n)

•• , lrnc:mp(I,.2,n)

p_'lrchr("c)

p.,trrchr(l,c)

p.,I,. 'r("iZ)

p.'lrpbrk(",2)

lI_alof(,)

• _.101(.)

,,_alol(.)

1I.,lrIOd(" p)

Count the characters (excluding the terminating 0) .

Copy d into I; 1':II+n) and 1. 2112+") may not overlap; p.';
the terminat ing 0 is copied.

Copy , 2 onto the end of I; ,,_,; the terminating 0 is copied.

Compare lexicographically: if IcJ2 then II is negative; if •••• 2
then • • .0; if p.2 then li is posi tive.

IIrCPY; max n characters; may fail to copy terminating 0; p.,.

, Irclt; max n characters; may fail to copy term inating 0; p_'.

. lrCmp; max n characters .

Make p point to Ihe first c in •.

Make p point 10 the last c in I .

Make p point 10 the first character of , that starts a substring
equal to . 2.

Make p point to the first character of I also found in i l .

Extract a double from •.

Extract an Inl from j .

Extract a long Inl from , .

Extract a double from Ii set I' to the first character after the
doublet.
Extract a long Inl from Ii set p to the first character afler the
long.
Extract an unllsned lon8 1nl from I; set p to the first character
afler the Ions.

Note that in C++, ' tn:hrO and Ilrtll ' O arc duplicated to make lhem type safe (they
can't tum a con, l cha, · into a Chl1 f· the way the C equivalents can); see also §27.5.

An extraction function looks into its C·style string argument for a conven·
lionally formatted representation ofa number, such as "12411 and II 1.4". lf no
such representation is found, the extraction function retums O. For example:

Int I{ . alol(ll fortytwo") ;

B.l0.4 Memory
"Ine memory manipUlation functions operate on "raw memory" (no type known)
through void· pointers (con81 void · pointers for memory that's only read):

IUO C STANDARD LIBRARY FUNCTIONS

C-slyle memory operations

q_memmovc(p,p2,n)

lI_mement pip, I):/:,n)

q_mcmehr(p,(, n)

I)_ealloe(n,.)

free(pl

Copy n bytes from p2 to p (like f lrcpy); [p :p+n) and
Ip2: p2+n) may not overlap; (I- P.

Copy n bytes from p2 to p; (,_p.

Compare n bytes from p2 to the equivalenl n bytes from I)
(like I lremp).

find e (converted 10 an un 81gned char) in pI01 .. p ln- 1) and
lei q point to that element; q.o if c is not found.

Copy c (converted to an un"gncd char) into each of
1)IO) .. ln- 11; (,-p.
Allocate n-, bytes initialized to 0 on free store; 1)-0 if n-,
bytes could not be allocated.

Allocate l uninilialized bytes on free store; p_O if I bytes
could not be allocated.

Allocate I bytes on free store; p must be a pointer returned
by maliocO or e.tllocO; if possible reuse the space poinled
to by p; if thaI is not possible copy all bytes in the area
pointed to by p to a new area; q - O if . bytes could not be
allocated.

Deallocate the memory pointed 10 by p; p must be a
pointer returned by malloe(), calloeO, or realloeO.

Note that maliocO, etc. do not invoke constructors and heeO doesn't invoke de·
st.ructors. Do not usc these functions for types with constructors or destructors.
Also, mtlm~et () should never be used for any type with a constructor.

TIle mem'" functions are found in «lit ring> and the allocation rUllctions in
<cUcll lb>.

See also §27.5.2.

8.10.5 Date and time
In <clime>, yOli can find several types and runctions related to date and time.

Date and lime Iypes

IImtU

1m

an ari thmetic type for holding short ti me intervals (maybe just intervals
of a few minutes)

an arithmetic type for holding long time intervals (maybe centuries)

a , Iru el for holding date and time (since year t 900)

1147

1148 APPENDIX B • STAN OARO LIBR A RY SU MMAR Y

slruct 1m is defined like this:

slruct 1m {

J;

int 1m_sec; 1/ second of minute [0:61 I; 60 and 61 represent leap seconds
int 1m_min i /I minute of hour [0,591
int 1m_hour; 1/ hour of day 10,231
int Im_mday; 1/ day of month 11,3 1 J

int Im_mon; /I month of year (0,111; 0 means January (note: not [1 : 121)
int 1m_year; 1/ year si nce 1900; 0 means year 1900, and 102 means 2002
int tm_wdaYi 1/ days since Sunday 10,6]; a means Sunday
int Im_yday; /I days since January 1 [0,3651; 0 means January ,
int tmjsdsl j /I hours of Daylight Savings Time

Date and time functions :

clock_1 dockO; II number of clock ticks since the start of the program

lime_t time(time_t- pi); 1/ CUffent calendar time
d ouble diiftimeU ime_t 12, time_t 11); 1112- 11 in seconds

1m· locaUime(consl time_l - pI); II loca l time for the ·pt
Im* gmtime (consl lime_I· pt); II Greenwich Mean Time (GMn tm for 'Pt, or 0

lime_t mktime(tm* ptm);

cha r · asctime(const tm · plm); II C-style string representation for ·ptm
cha r · clime(consl time_l - I) (relurn asclime(iocallime(t));)

An example o r the result o r a call o r asclime() is "Sun Sep 16 01 :03:52 1973\0" .
H ere is an example o r how clock can be u sed to time a runction (do_some­

thing()) :

int main(int a rgc, char- a rgv[])
{

inl n = a lo i(argv[l l);

clock_I t1 = clockO; /I start time
if (tl == clock_t{- l)) (II clock_t(- I) means "clockO didn't work"

cerr « "sorry, no dock\n";
exit(1) ;

B.IO C STANDARD LIBRARY FUNCTIONS

)

for (int i = 0; i<n; i++) d o_somelhing(); /I timing loop

clock_t 12 = clock(); II end time
if (12 == clock_t{-1)) {

cerr « "sorry, clock overflow\n";
exiI(2);

cout« "do_something() " « n « " times took "
« double(t2-I1)1ClOCKS_PER_SEC« " seconds"
« " (measureme nt granularity: " «CLOCKS_PER_SEC
« " of a second)\n";

"111C explicit conversion double(t2-I1) before divid ing is necessary beC<"lusc
clock_1 might be an integer. For values t1 and t2 returned by clockO, double(t2-
11)/ClOCKS_PER_SEC is lhe system 's best approximation of the time in seconds
between the two c .. l.ils.

If clockO isn't provided for a processor or if a time interval was too long to
measure, clockO retums clock_t(-1).

B.l0.6 Etc.
In <cstdlib> we Hnd:

Etc. stdlib (unclions

aborlO

exil(n)

sysfem(s)

qsorl(b,n,s,cmp)

bsea rch(k,b,n,s,cmp)

d=randO

srand(d)

Terminate the program "abnorma ll y.~

Terminate the program with value n; n==O means
successfu l termination.

E)(ecute the C·style string as a command (system
dependent).

Sort array starling at b with n elements of size s using the
comparison function cmp.

Search for k in the soned array starting at b with n elements
of size s using the comparison funClion cmp.

d is a pseudo-random number in the range
IO : RAND_MAX].

Start a sequence of pseudo·random numbers using d as the
>Oed.

1149

1150 APPENDIX B • STAN DARD LIBRARY SUMMARY

TIle compmison function (emil) used by <IsoriO and btlca rch() must have the type

In' (" Cnl,J)(cunlt void" p, (ontl t void" q)i

111<lt is, 110 type infonnatioll is known to the sOrt funclion that simply "sees'" its
array as a sequence of bytes. The integer returned is

Negative if "Jl is considered less than "'I

Zero if · p is considered equal to "q

Positive if ",) is considered greater than "('

ate that eJcl l() and "bortO do not invoke destructors. If you want destructors
called for constructed automatic and static objects (§A.4.2), throw an exception.

For morc standard library functions sec K&R or some other reputable C lan­
guage reference.

B.11 Other libraries
Looking through the standard library facilities, you'll undoubtedly have failed to
find something you could use . Compared to the challenges faced by program­
mers and the number of libraries available in the world. the C++ standard li­
brary is minute. 111ere are many libraries for

Graphical user interfaces

Advanced math

Database access

Networking

XML

Date and time

Ftle system manipulation

3D graphics

Animation

Elc.

However, such libraries are not part of the standard. You c.'1n find them by
searching the web or by asking friends and colleagues. Please don't get the idea
thal the only usefu l libraries are those that are part of the standard library.

· .t
,. C

Getti ng Started with
Visual Studio

"The universe is not only queerer
than we imagine,

it's queerer than we can imagine."

-J. B. S. Haldane

T his appendix CXp11l i1l 1l Ihe steps YOII have to go 1-hrough to

tiller a pl'ogr:lm. compile it, and have it !'till using MicrOHort
Visual Srudio.

1151

1152 APPENDI X C • GETTING STARTED W IT H VI SUAL 5TUDIO

C.l Gelting a program to run

C.2 Installing Visual Studio

C.3 Creating and running a program
C l .1 Create a new project
(.l.2 Use the std_lib_facilili es.h header

file
Cl.l Add a C++ source file to the

project
C.l .4 Enter your source code
Cl.S Build an executable program
C l .6 b ecute the program
Cl.7 Save the program

C.4 later

C.l Getting a program to run
To gCt a program to run, you need to somehow place the fil es together (so that
when a fil c refers to another - e.g. , your source me refers to a header file - it
finds it). YOli then nced to invoke the compiler and the linker (if nothing else,
then to link to thc C++ standard library), and finally you need to run (execute)
the program. 111cre are several ways of doing that, and different systems (e.g.,
Windows and Linux) have differcm conventions and tool sets. However, you can
nm all of the examples from this book on all major systems lIsi ng any of the
major tool sets. This appendix explains how to do it for one popular system, Mi·
crosoft 's Visual Studio.

Personally, we find few exercises as frustrating as getting a first program to
work on a new and strange system. 111is is a task for which it makes sense to ask
for help. However, if you do get help, be sure lhat the helper teaches you how to

do it, rather than just doing it for yO Ll.

C.2 Installing Visual Studio
Visual Studio is an interactive development environment (I DE) for Windows. If
Visual Studio is not installed on your computer, you may purchase a copy and
follow the instructions that come with it, or download and install the free Visual
C++ Express from www.microsoft.comlexpress/down1oad.l1Ie description here
is based on Visual Studio 2005. Other versions may differ slightly.

C.3 CREATING AND RUNN ING A PRO GRAM

C.3 Creating and running a program
The steps arc:

1. Create a new project.

2. Add a C++ source file to the project.

3. Enter your source code.

4. Build an executable fIle.

5. Execute the program.
6. Save the program.

C.3.1 Cre~tc ~ new project
In Visual Studio, a "project" is a collection of files that together provide what it
takes to create and run a program (also called an apj)/ication) under Windows.

I. Opcn the Visual C++ IDE by clicking the Microsoft Visual Studio 2005
icon, or select it from Start > Programs> Microsoft Visual Studio
2005 > Microsoft VISUal Studio 2005.

2. Open the File menu , point to New, and click Project.

3. Under Project Types, select Visual C++.
4. In the Templates section, select Wm32 Console Application.

5. In the Name text box type the name of your project, for example,
Hello,World!.

6. Choose a directory for your project. The default, C :\Documents and
Scttings\Your Name\My Documents\Visual Studio 2005 Projects, is
usually a good choice.

7. Click OK.

8. TIle WI N32 Application Wizard should appear.

9. Select Application Settings on the left side of the dialog box.

10. Under Additional Options select Empty Project.

II . Click Fmish. All compiler settings should now be initialized for your
console project.

C.3.2 USC the stdJ lb_lacltitie .h hc~dcr file
For your fIrst programs, we strongly suggest that you use the custom header file
ii let IIb_'acllllle" h from WW\'1.stroustrup.com/progranuninglstd_libJacilities. h.

1153

1154 APPENDIX C • GETTING STARTED WITH VISUAL STU DIO

Place a copy of it in the directory you chose in §C.3.1, step 6. (Note: Save as text,
IlOt HTML.) To usc il, you need the line

#include " . .I.Jstd_lib_faci lilies. h"

in your program. The " .J . . r tells the compiler that you placed the header in
C:\Documents and Settings\Your Name\My Documents\Visual Studio 2005
Projects where it can be used by all of your projects, rather than right next to
your source file in a project where you would have to copy it for each project.

C.3 .3 Add a c++ source file to the project
You need at least one source fLle in your program (and often many):

I. Click the Add New Item icon on the menu bar (usually the second icoll
from the left). 'nmt will open the Add New Item dialog box. Select
Code under the VISUal C++ category.

2. Scicct the C++ HIe (.cpp) icon in the template window. Type the name
of your program file (HeUo,World!) in the Name text box and click
Add.

YOli have created an empty source code file. You arc now ready to type your
source code program.

C3.4 Enter your source code
At this poim you can either enter the source code by typing it directly into the
IDE, or you can copy and paste it from another source.

C3.5 Build an executable program
W hen you believe you have properly entered the source code for your program,
go to the Build menu and select Build Solution or hit the triangular icon point­
ing to the right on lhe list of icons near the top of the IDE window. 11\e IDE will
try to compile and link your program. If it is successful, the message

Build: 1 su cceeded, 0 fai led, 0 up·lo-dale, 0 skipped

should appear in the Output window. Otherwise a number of error messages
will appear. Debug the program to correct the errors and Build Solution again.

If you used the triangular icon, the program will automatically start rtmning
(executing) if there were no errors. If you used the Build Solution menu item,
you have to explicitly start the program, as described in §C.3.6.

C.4 LATER

C.3.6 Execute the program
Once al[errors have been eliminated, execute the program by going to the
Debug menu and selecting Start Wtthout Debugging.

C.3.? Save the program
Under the File menu , dick Save All.lfyo Li forget and try to dose the IDE, the
IDE will remind you.

C.4 later
TIle IDE has an apparent infinity of features and options. Don't worry about
those early on - or you'll get completely lost. If you manage to mess up a project
so that it "behaves odd[y," ask an experienced friend for help or build a new proj­
ect from scratch. Over time, slowly experimem with new features and options.

1155

\ t
. r 0

Installing FLTK

"If the code and the comments disagree,
then both are probably wrong."

-Norm Schryer

T his appendix describes how 10 download. i", .. ll . and link
to the FL1'K gl'ilphicl ond CUI toolki t.

1157

1158

0.1 Introduction

0.2 Downloading FLTK

D.) Installing FLTK

0.4 Using FLTK in Visual Studio

0.5 Testing if it all worke d

D.1 Introduction

APPENDIX 0 • INSTALLING FLTK

We chose FLTK, the Fast Light Tool Kit (pronounced "full lick"), as the base for
our presentation of graphics and CUI issues because it is portable, relatively sim­
ple, relatively conventional , and relatively casy to instalL We explain how to in­
stall FLTK under Microsoft Visual Studio because that 's what most of our
students use and because it is the hardest. U you usc some mher system (as some
of our students also do), juSt look in the main folder (directory) of the down­
loaded ftlcs (§D.3) for directions for yOllr favorite system.

'Whenever YOli lise a library mat is nal pan of the ISO C++ slalldard, you (or
someone else) have to download it, install it, and correctly use it from your own
code. 111at's rarely completely trivial, and installing FLTK is probably a good exer­
cise - because downloading and installing even the best library can be quite fru s­
trdting when you haven't tried before. Don't be tOO reluctan t to ask advice from
people who have tried before, but don't just let them do it for you: learn from tl1em.

Note that there might be slight differences in files and procedures from what
we describe here. For example, there may be a new version of FLTK or you may
be using a d ifferent version of Visual Studio from what we describe in §D.4 or a
completely different C++ implementation.

D.2 Downloading FLTK
Before doing anything, first see if FLTK is already installed on your machine; sec
§D.5. If it is not there, the first thing to do is to get the files onto your computer:

1. Go to http://ntk.org. (In an emergency, instead download a copy from
our book support website: www.stroustrup.comiProgramminglFLTK.)

2. C lick Download in the navigation menu.

3. Choose FLTK l.l.x in the drop-down and dick Show D ownload Loca­
tions.

4. Choose a download location and download the .zip file .

The file you gel will be in .zip formal. -nlat is a compressed format suitable for
transnuuing lots of files across the net. You' ll need a program on your mach ine to
"unzip" it into normal files ; on Windows, WinZip and 7-Zip are examples of
sllch programs.

0.4 US IN G FlTK IN VI SUAL STUDIO

0.3 Installing FLTK
Your main problem in following our insouctions is likely to be one of two: some­
thiJlg has changed since we wrote and tested them (it happens), or the tenmnol­
ogy is alien to you (we can't help with that ; sorry). In the latter case, find a friend
to translate.

I. Unzip the downloaded file and open the main folder, fllk-l.l. ? In a
Visual C++ folder (e.g. , vc2005 or venet), open fltk.dsw. If asked abOllt
updating old project files , choose Yes to All .

2. From the Build menu, choose Build Solution. "nlis may take a few min­
utes. TIle source code is being compiled into static link libraries so that
you do not have to recompile the FL'rK source code any time you make
a new project. When the process has finished , close Visual Studio.

3. From the main FLTK directory open the lib folder. Copy (not just
move/drag) all the .lib files except README.lib (there should be
scven) into C:\Prograrn Files\Microsoft Visual Studio\Vc\lib.

4. Go back to the FLTK main directory and copy the FL folder into
C:\Program Files\Microsoft Visual Studio\Vc\include.

Expens will tell you that there arc better ways to install than copying into
C:\Program Files\Microsoft Visual Studio\Vc\lib and C:\Program Files\Mi­
crosoft Visual Studio\Ve\include. TIley arc right, but we are nOt trying to make
you VS experts. If the experts insist, let lhem be responsible for showing you the
better alternative.

0.4 Using FLTK in Visual Studio
I. Create a new project in Visual Studio with one change to the usual pro­

cedure: creale a "\Vin32 project" instead of a "console application" when
choosing your project type. Be sure to create an "empty project"; other­
wise, some "software wizard" will add a lot of stuff to your project that
you arc unlikely lO need or understand.

2. In Visual Studio, clloose Project from the main (top) menu, and from
the drop-down menu choose Properties.

3. In lhe Properties dialog box, in the left menu, click the Linker folder.
This expands a sub-menu. In this sub-menu, click Input. In the Addi­
tional Dependencies text field on the right, enter the following text :

fltkd.1ib ws0ck32.Ub comctl32.lib fltkjpegd.lib fltkimagesd.lib

[The following step may be lIImecessary because il is now the default.]
In the Ignore Specific Library text field , enter the following text:

libcd.lib

1159

1164) APPEND IX D • I NSTAL LI NG FLT K

4. [Ths step may be unnecessary because IMDd is now the default.] In the
left menu of the same Properties window, dick C/C++ to c.xpand a dif­
ferent sub-menu. Click the Code Generation sub-menu item. In the right
menu , change the Runtime Library drop-down to Multi-threaded
Debug DLL (/ MDd). Click OK lO d ose the Properties window.

D.S Testing if it all worked
C reate a single new .cpp file in your newly created project and enter the follow­
ing code. It should compile without problems.

#include <FUFl. h>
#include <fVFI_Box,h>
#include <fl/FI_Window.h>

int main O
(

FI_Window window(200, 200, "Window title");
FeRo" box(O,O,200,200, "Hey, I mean, Hello, World! "l;
window.showO;
return FI: : run O;

If it did not work :

"Compiler error stating a .lib fil e could not be found": Your problem is
most likely in the installation section. Pay attention to step 3. which in­
volves putting the link libraries (.lib) fi les where your compiler can easily
find them.

"C ompiler error stating a.h file could not be opened": Your problem is
most likely in the installation section. Pay attention to step 4, which in­
volves putting the header (.h) flies where your compiler can easily find
lhem.

"Linker error involving unresolved external symbols": Your problem is
most likely in the project section.

If that didn' t help, fmd a friend to ask.

CUI Implementation

"When you finally understand
what you are doing,
things will go right."

-Bill Fa irbank

T his appendix presents implementatio n details of callbacks,

Window, Widget, and Vector_ref. In Chapter 16, we

couldn 't assume the knowledge of pointers and casts needed ror

a more complete explanation , so we banished that explanation to

tltis appendix.

1161

1162

E.1 Callback implementation

E.2 Wldjl@1 implementation

E.3 Window implementation

E.4 Vector_' ll '

E.5 An example: manipulating Wld8l!ls

APPENDIX E • GUI IMPLEMENTATION

E.l Callback implementation
We implemcnted callbacks like this:

\lo ld Slmpll!~wlndow ll cb_n Ci'.t(Addrcu . Addre" addr)
II LLlll ~ltfi l)lc_wlmluw:: IICX I () (Of IIII.' wln(tuw IOC,IIl'd ,II pw

Once you have understood C hapter 17, it is pretty obvious that an AdtlrC! j must
he a void · . And, of course, rctCl HHlecu ocSlniplc_wllldoW>('lthlr) must somehow
create a reference to a Slml)lc window from the void· called add, . However, un·
less you had previous programming experience, there was nothing "pretty obvi·
ous" or ;'of course" about that before you read C hapter 17, so let's look at the use
of addresses in detail.

As described in §A. 17, C++ offers a way of giving a name to a type. For
example:

TIlis means that the name AddrClIi can now be used instead of \lold · . Here, we
used Addrc" to emphasize that an address was passed, and also to hide the fact
that void · is the name of the type of pointer to an object for which we don' t
kllOW the type.

So cb_neJlfO receives a vo id · called iultlr as an argument and - somehow -
promptly convens it to a SltnIJl ll_wlndow&:

rThe rClll rlll\CtU O is a templatc function (§A.13):

IllnllJlalll<cliljj W> W& tc 'crenCc_IO(AddrcU pw)
II Ire,1t ,lt1 .ltldrl'~!.u.! ,dl'll'nLl' 10 .1 W

E.2 WIDGET IMP LEMENTATI ON

{

return 'stalic cast<W">(pw);
)

Here, we used a template function to write ourselves an operation that aeLS as a
cast from a void ' to a Simple_window&. The type conversion, staliccast, is de­
scribed in §17.8.

The compiler has no way of verifying our assertion that addr poinLS to a
Simple_window, but the language rule requires the compiler to lruSt the pro­
grammer here. Fo rtunately, we arc right. The way we know that we arc right is
that FL"TX is handing us back a pointer that we gave to it. Sillce we knew the
type of the pointer when we gave it to FLTK, we can usc refe rence_to to "get it
back." Illis is messy, unchecked , and not all that uncommon at the lower levels
of a system.

Once we have a reference to a Simple_window, we C.lll use it to call a mem­
ber function of Simple_window. For example (§16.3):

void Simple_window: :cb_ned (Addrcss, Address pw)
/I call Simplc_window::ncxtO for the windm¥ located at pw

referencc_to<Simplc_window>(pw), ncxtO;
)

"Ve usc the messy callback function cb_ned O simply to adjust the types as
needed to call a perfectly ordinary member function ned O.

E.2 Widget implementation
Our Widget interface class looks like this:

class Widget {
/lWidgel is a handle to a FI_widget - it is °not · a FI_widget
/I we try 10 keep our interface classes at arm's length from FLTK

public:

()

Widget(Point xy, inl w, int h, canst string& s, Callback cb)
:Ioc(xy), width(w), height(h), label(s), do_it(cb)

virlual - WidgetO { } /I destructor

virlual void move(inl dx, int dy)
(hid eO; pw- >posilio n(loc,x+=dx, loc.y+=dy); showO; }

1163

"64 AP PENDI X E a CUI IMPLEMENTATION

vl,lu. 1 void hldoO (pw-.hldoO,)
vl,tual void iihowO (pW->lhowOI)

vlrtunl void iUHICh(Wlridow&) . 0, /I c,llh Wltl»cl dcflt'l'~ .11 k"I~ 1
/1 (Jill! .KIIU!1 (ur ,I wlnduw

POlnllo(a
Ittl width ,
Inl holShl '
! lrlns lablllJ
Cillibiltk doJt /

prOICC:I\l t! 1

) ,
Window· own ,
il l_Wldget - (JWI

IlllVt'ty Wld!}!.'1 bdu"~~ 10 .1 Wlnduw
//.1 Widget "knuw!" It! FI_Wltlgcl

Note that our Widsci keeps track of its FLTK widget and the Window with
which it is associated. Note that we need pointers for that because a Wid SCI can
be associated with different Windows during its life. A reference or a named ob­
ject wouldn't suffice. (Why not?)

It has a location (Ioc), a rectangular shape (Width and heIShl), and a 13blll .
Where it gets interesting is that it also has a callback fu nction (do II) - it con­
nects a WldSClI's image on the screen to a piece of our code. TIle meaning of the
operations (nlOv~O, ii howO, hld.,O, and " lIithO) should be obvious.

Wldgel has a "half-fin ished" look to it. It was designed as an impicillcillation
class that users should not have to see very often. It is a good candidatc for a re­
design. We are suspicious about all of those public data membcrs, and "obvious"
operations typically need to be reexamined for unplanned subtlcties.

Wldscl has virtual function and can be used as a base class, so it has a vlrlual
destructor (§ 17.5.2).

E.3 Window implementation
When do we usc pointers and when do we use references instead? We examine
that gencral question in §8.5.6. Here, we'll just observe that somc programmers
like pointers and tllal we need pointers whcn \ ... ·c want to point to diffcrent objects
at different timcs in a program.

So far, we have not shown one of the central classes in our graphics and G U I
library, Window. The most significant reasons are lhat it uses a pointer and that

E.3 WINDOW IM PLEMEN TATION

its implementation using FLTK requires free store. As found in Wlndow.h, here
It IS:

cl lI.5!I Window I public ill Whldow {
I)ublle:

Illct the !y~tl'm plLk the IUL.l tIOI1:

Wlndow(hH w, Int Ii , (Onl l ll ltlng& Iltl tI) ,
IIlupldt LOlller In xy:
WlndowWolnl ky, It" WI Inl hi (0". 1111,1118& tlllel)1

VI ,IUill ... Wlndown {)

Inl lumur: () eonl l (ret urn W))
Inl y_,tlil Jl O eunll t (nHum h /)

vuld Il lHu:h(h"pe& I) {lhilIH,!II, ,-iJ ii h_bn k(&I»))
vuld iHMeh(Wldget&)1

vuld dtl taeh(S hll (ltl& 8)1

void dela h(Wldge l& w);
II f'ernUW w (ruin sh,lpe5
Illemuve w (rum whu.luw
II (tle.1Ulv,ltcS Lolllb,lt k:s)

void IJUI on IUI)(Shapc& I))
ptUt tletcd :

II put p Ul11UP of til her ~11tI 1)c'

void drawn)
1"lvale :

vCClorcShilpc·> 8hllpClIi
Inl w,h,

vultl lnltO;

II slMpe5 .JII.1elled It) Wlilduw
II wlmluw ~Ile

So, when we atMehO a ShlllHl we store a pointer in II hiiJl ti8 so that the Window
can draw it. Since we can later detac:ho that shape, we need a poimer. Basically,
all .,1111 hOed shape is still owned by our code; we just give the Winduw a refer­
ence to it. Window : tluln chO converts its argumem to a poimer so that it can
store it. As shown above, l'I lIaehO is trivial ; dtl tllchO is slightly less simple. look­
ing in Wlndow,cl)I), we find:

1165

" 66 APPENDIX E • CUI IM PLEMENTATION

void Window: :detach(Shape& s)
/I guess that the last anached will be first released

{

for (unsigned int i = shapes.sil-eO; (kij -- i)
if (shapes[i-l l==&s) shapes.erase(&shapes[i- l U;

T he eraseO member function removes ("crases") a value from a vector, decreas­
ing the vector's size by one (§20.7. 1).

Window is meant to be used as a base class, so it has a virtual destructor
(§17.5.2).

E.4 Vector_ref
Basically, Vectocref simu lates II vector of references. You c.m initialize it with ref·
erences or wilh pointers:

If an object is passed to Vector_ref as a reference, it is assumed to be
owned by the ca.llcr who is responsible for its life time (e.g. , the object is a
scoped variable).

If an object is passed to Vector_ref as a pointer, it is assumed to be allo­
c.1.ted by new and it is Vector_ref's rcsponsibility to delete it.

An clement is stored as a pointer - not as a copy or the object - into the
Vector_ref and has rererence semantics. For example, YOll c.1.1l put a Ci rcle into a
Vector_rekShape> without suffering slicing.

te mplate<class T> class Vector_ref {
vector<T·> v;
vector<T"> owned;

public :
Vector_,efO {}
Vector_,ef(T" a, T" b = 0, T· c = 0, T· d = 0);

-Vector_ref 0 { for (int i=O; i<owned.sizeO; ++i) delete owned!il; }

void push_back(T& s) { v.push_back(&sl;)
void push_back(T· p) { v.push_back(pl; owned.push_hack(pl ;)

T& o peratorI](i nt i) { return · vIil ;)

E.S AN EXAMPLE: MANIPULATING WIDGETS

consl T& o perator(](int i) canst (return ·v[i); }

int size() consl { return v.sizeO; }
} ;

Vector_rer's dCSlnlC10r de letes every object passed to it as a pointer.

E.S An example: manipulating Widgets
Here is a complete program. It exercises many o f the WidgetJWindow fea tures. It
is only minimally commented . Unfortunately, such insufficient commenting is
not uncommon. It is an exercise to get this program to nln and to explain it.

Basically, when you run it, it appears to define four buttons:

#include" .JGUl.h"
using namespace Graph_libi

class W7 : public Window (
/I four ways to make it appear that a button moves around :
// showlhide, change location, create new one, and attach/detach

public:
W7(int h, int w, const siring& I);

Bullon · pl;
BuUon· p2;
boo l sh_le£t i

Bullon* mvpi
bool mvJeft ;

Bullon* cdp ;
bool cd_left;

Bullon* adpl;
Bullon · adp2;
bool ad_left ;

void sh();
void mv();
void cd O;
void adO;

1/ show/hide

1/ move

/I creatcldcstroy

/I activate/deactivate

/I actions

1167

1168

} ;

APPEND IX E • CUI IM PLEMENTATION

Iitali c void cb~!ih(Atldrc8l, Addre.! add,) II c.lllb.ltks
(rctc rllnctUo<W7>(addr).lhOI)

I tAli c volll cb~n1V(Addrcjl, Addreu add,)
(fefcrtlnCC_loc W7>(addr).mv();)

, Mtle void cb_cd(AddrciII, Addre" :uJdr)
«rdere" c_loc W7>(adtlr) .cd() ;)

j llltle void cb_nd(Addrc:u, AddrciJII :uldr)
(rcftlrCllc4,uocW7>(atltlr).ad()1)

However, a W7 (Window experiment number 17) really has six buttons; it just
keeps two hidden:

W7= :W7(lnt h, I", w, (o"sI8trlng&! I)
:Wlndow(h,w,I),
I!lhJeh(lrue), mv)cfUlrue), CtUe fl(lruc), :,dJc'l(ltUc)

1,1 • new Ihlllon(Polnl(l00,l00),50,lO, "jhow" ,cb_l hl;
Ill. new Button(Polnl(104lt100),50,20,"hldc",cb_li h);

n'IVp • new BUllon(Pulnl(l00,200),50,20,"movc" ,cb_mv) ;

(tip . new SUllon(l'olnI(100,JOO),SO,lO, "c:reatu" ,cb~cd);

adp1 • new Uulloll{l'olnI(100,400),~O,lO."aC:llv:Uc" ,cb~"d);
adp2 • new UUllon(llolnI(200,400),80,lO,"deac:llvlile" ,cb~"d);

Mlach(- p1);
all"ch(-p2) ;
,UUl ch(- mvIJ)i
allach(-cdp);
pl->hld e();
alUtclW. dpl) ;

There are four callbacks. Each makes it appear that the buuon you press disap·
pears and a new o ne appears. However, this is achieved in four different ways:

void W1: :.hO
(

II hide .1 butlutl, ~huw .1nUll1ef

If (.hJcft) (
1,'I->hldtlO;
pl->!! hOw();

E.5 AN EXAMPLE : MAN IPULATING WIDG ET S

}

else (
pl->shOWOj
p2->hide();

}

shJeft = !shJeft ;

void W7:: mvO II move the button
{

}

if (mv_lefO (
mvp->move(l oo,O);

}

else {
mvp->move(- loo,O);

}

mv_left = !mvJeft j

void W7: :cd O /I de lete the button and create a new one
{

}

cdp- >hide();
d elete cdp j
string lab = "create " j
inl x = 100;
if (cdJ eft) (

lab = "delete ";
x = 200;

cdp = new Butto n(Point(x,JOO), SO, 20, lab, cb_cd)j
attach(-cdp)j
cdJeft = !cdJeft ;

void W7 : :ad O /I detach the button from the window and attach its replacement
{

if (ad_left) (
d etach (-adp1);
attach(·adp2);

}

else (
detach(*adp2);
attach (*adp1)j

}

1169

1170

ad lell - lldJelll

Inl malnO
i

W7 w(400,800, lI mulell);

rei urn gul_ntaln OJ

APPEN DI X E • CUI IMPLEMENTATION

111is program dcmonstrales the fundamental ways of adding and subtracting
widgcLS lolfrom a window - or just appearing to.

Glossary

"Often, a few well-chosen words
ar worth a thousand pictures."

-Anonymous

A glOJJdry is a brief explanation of words used in a text. TIlls is a rather shon glos­
sary of the tenns we thought most essential, especially in lhe earlier stages of
lcaming programming. The index and lhe "Terms" sections of the chapters
might also help. A morc extensive glossary, relating specifically to C++, can be
found at wv v.rescarch.atl.com/ -bs/glossary.html, and there is an incredible vari­
ety of specialized glossaries (of greatly valying quality) available o n the web .
Please nme that a term can have several related meanings (so we occasionally list
some) and that most terms we list have (of len weakly) rdated meanings in other
contexts; for example, we don't define abJtracl as it relates to modern paiming,
legal practice, or philosophy.

abstract class a class that camlot be directly used to create objects; often used to
define an interface to derived classes. A class is made abstract by having a pure
virtual funClion or a protected constructOr.

abstraction a description of something that selectively and deliberately ignores
~lides) details (e.g. , implementation details); selective ignorance.

addttss a value that allows us to find an object in a computer's memory.
algorithm a procedure or fonnula for solving a problem; a finite series of com·

putalional steps to produce a result.
alias an alternative way of referring to an object ; o f len a name, pointer, or refer·

ence.

1171

1172 GLOSSARY

application a program or a collection of programs that is considered an emily
by its users.

approximation something (e.g., a value or a design) that is d ose to the perfecl
or ideal (val ue or design). Often an approximation is a resuit of trade-offs
among ideals.

argument a value passed to a function or a template, in which it is accessed
through a parameter.

an'3.y a homogeneous sequence of clements, usually numbered , e.g., (O:max).
assertion a statement inserted into a program to state (assert) that something

must always be true at lhis point in the program.
base class a class used as the base of a class hierarchy. Typically a base class has

one or morc virtual func tions.
bit the basic unit of infonnation in a computer. A bit can have the value 0 or the

value I.
bug an error in a program.
byte the basic unit of addressing in most compu ters. Typically, a byte holds 8

bits.
class a user-defined type lhat may conlajn data members, function members,

and member lypes.
code a program or a part of a program; ambiguously used for both sou rce code

and object code.
compiler a program thatlums source code imo object code.
complexity a hard-to-preciscly-define notion or measure of the difficulty of con­

structing a solution to a problem or of the solution itsclf. Sometimes c07llpkxiJy
is used to (simply) mean an estimate of the number of operations needed to ex·
ecute an algorithm.

computation the execution of some code, usually taking some input and pro-
ducing some output.

concrete class class for which objects can be created.
constant a value that cannot be changed (in a given scope); not mutable.
constructor an operation that initializes ("constructs") an object. Typica.lly a con-

struCLOr establishes an invariam and often acquires resources needed for an ob­
ject LO be used (which arc then typically released by a destructor).

container an object that holds elelllents (other objects).
correctness a program or a piece of a program is correct if it meets its specifica­

tion. Unfortunately, a specification can be incomplete or inconsistent, or can
fai l to meet users' reasonable expectations. TItuS, to produce acceptable code,
we sometimes have to do more than just follow the fomlal specification.

cost the expense (e.g. , in programmer time, run time, or space) of producing a
program or of executing it. Ideally, cost should be a function of complexity.

data values lIsed in a compmation.
debugging the act of searching for and removing errors from a program; usually

far less systematic than testing.

GLOSSARY

declaration the specification of a name with its type in a program.
definition a declaration of an emity that supplies all infomlation necessary to

complete a program using the emilY. Simplified definition: a declaration that
allocates memory.

derived class a class derived from one or more base classes.
design an overall description of how a piece of software should operate to meet

its specification.
destructor an operation that is implicitly invoked (called) when an object is de­

stroyed (e.g. , at the end of a scope). Often, it releases resources.
error a mismatch between reasonable expectations of program behavior (often

expressed as a requirement or a users' guide) and what a program actually
does .

executable a program ready to be run (executed) on a computer.
feature creep a tendency to add excess fUllctionality to a program "just in case."
file a container of pellllanelU information ill a computer.
noating-point number a computer's approximation of a real number. such as

7.93 and 10.78e- 3.
function a named unit of code that C.·1.1l be invoked (called) from different parts

of a program; a logical unit of computation.
generic programming a style of progranuning focused 011 the dcsign and effi­

cient implementatioll o f algoritluns. A generic algorilhm will work for all arb'll­
ment types that meet its requirements. In C++, generic programming typically
uses templates.

header a file containing declarations used to share interfaces bet\veen parts of a
program.

hiding the act o f preveming a piece of information from being directly seen o r
accessed. For example, a name from a nested (inner) scope can prevem that
same name from an outer (enclosing) scope from being directly used.

ideal the perfect vers ion of something we arc striving for. Usually we have to
make trade-oITs and settle fo r an approximation.

implementation (1) tile act of writing and testing code; (2) tile code that imple­
ments a program.

infinite loop a loop where the termination condition never becomes true. Sec
iteration.

infinite recursion a recursion that doesn't end until the machine runs Out of
memory to hold the calls. In reality, such recursion is never infinite but is ter­
minated by some hardware error.

information hiding the act or separating interface and implementation, thus
hiding implementation details not mealll ror the user's attention and providing
an abstraction.

initia lize giving an object its first (initial) value.
input values used by a computation (e.g., function arguments and characters

typed on a keyboard).

1173

1174 GLOSSARY

integer a whole number, such as 42 and - 99.
interface a declaration or a set of declarations specifying how a piece of code

(such as a function or a class) can be called.
invariant something that must be always tn le at a given point (or points) of a

program; typically used to describe the state (SCI of values) of an object or t.he
state of a loop before entry into the repeated statement.

ileration the act of repeatedly executing a piece of code; sec recursion.
iterator an objcct that identifies an clemcnt of a sequence.
library a collection of types, functions, classes, etc. implementing a set of facilities

(absuactions) meant to be potentially used as prut of more that one program .
lifetime the time from the initialization of an object umil it becomes unusable

(goes out of scope, is deleted, or the program tenninatcs).
linker a program that combines object code files and libraries into an executable

program.
literal a notation that directly specifies a value, such as 12 specifying lhe integer

value "twelve ."
loop a piece of code executed repeatedly; in C++, typically a for-statement or a

while-statement.
mutable changeable; the opposite of immutable, constant, and variable.
object (I) an initialized region of memory of a kllown type which holds a vallie

of tim type ; (2) a region of memory.
object code output from a compiler intended as input for a linker (for the linker

to produce e. ecutable code).
object file a me containing object code.
object-oriented programming a slyle of programming focused on the design

and use of classes and class hierarchies.
operation something that can perform some action. such as a function and an

operator.
output values produced by a computation (e.g., a function resuit or lincs of char­

acters written on a screen).
overflow producing a value that calUlot be stored in its intended target.
overload defining two functions or operators with the same name blll dilTerelll

argumelll (opela nd) types.
override defining a runction in a derived class with the same name and argu­

mcnt types as a virtual function in the base class, thus making the function
callable through the interface defined by the base class.

paradigm a somewhat pretentious term for design or programming style; often
used with the (erroneous) implication that there exists a paradigm that is supe·
rior to all others.

parameter a declaration of an explicit input to a function or a template. When
called, a function can access lhe arguments passed through the nallles of its
parameters.

GLOSSARY

pointer (I) a value used to identify a typed object in memory; (2) a variable
holding such a value.

post-condition a condition that must hold upon exit from a piece of codc, such
as a function or a loop.

pre-condition a condilion that must hold upon elllry into a piece of codc, such
as a function or a loop.

program code (possibly with associatcd data) that is sufficiently complcte to be
executed by a computer.

programming the art of expressing solutions to problems as code.
programming language a language for expressing programs.
pseudo code a description of a computation written in an infomlal nalation

rather than a programming language.
pure virtual function a virtual function that must be overridden in a derived

class.
RAIl ("Resource Acquisition Is Initializationn) a basic tcdmique for resource

management based on scopes.
range a scqucnce of values that can be described by a start point and an end

point. For cxample, (0:5) means the values 0, 1, 2,3, and 4.
regular expression a notation for pattcOls in character strings.
recursion the act of a function calling itself; see also iteration.
reference (I) a value dcscribing the location of a typed value in memory; (2) a

variable holding SUell a valuc.
requirement (I) a description of the desired behavior of a program or part of a

program; (2) a desoiption of the assumptions a function or tcmplate makes of
its arguments.

resource something that is acquircd and must later be released, such as a file
handle, a lock, or memory.

rounding conversion of a value to the mathematically nearest value of a less pre­
cise type.

scope the region of program text (source code) in whiell a name can be referred
to .

sequence clcments that can bc visited in a linear order.
software a collection of pieces of code and associated data; often used inter­

changeably with program.
source code code as produced by a programmer and (in principle) readable by

other programmers.
source me a file containing source code.
specification a description of what a piece of code should do.
standard an officially agreed upon definition of something, such as a program­

ming language.
state a set of values.
string a sequence of characters.

1175

1176 GLOSSARY

style a set of techniques for programming leading to a consistent use of language
features; sometimes used in a very restricted sense to refer just to low-level
rules for naming and appearance of code.

subtype derived type; a type that has alIlhe propenies of a type and possibly more.
supertype base type ; a type t.hat has a subset of the propertics o f a type.
system (I) a progrnm or a set of programs for performing a task on a computer;

(2) a shorthand for "operating system;' that is, the fundamclllal execution en­
viromllCnt and tools for a computer.

template a class or a function parameterized by one or more types or (compile-
time) values ; the basic C++ language construct supponing generic programming.

testing a systematic search for errors in a progrnm.
trade-off the result of balancing several design and implementation criteria.
truncation loss of information in a conversion from a type into another that can-

not exactly represent the value to be converted.
type something that defines a set of possible values and a set o f operations fo r an

object
uninitialized the (undefined) state of an object before it is initialized.
unit (I) a standard measure that gives mcaning to a value (e.g. , km for a dis­

tance); (2) a distinguished (e.g. , named) part of a larger whole.
use case a specific (typically simple) lise of a program meaIll LO test its function-

ality and demonstrate its purpose.
value a set of bits in memory interpreted according to a type.
variable a named object of a given type; contains a value unless uninitialized.
virtual function a member function that can be overridden in a derived class.
word a basic unit of memory in a computer, usually the unit used to hold an

integer.

Bibliography

Aho, Alfred v., Monica S. Lam, Ravi Sethi, and J effrey D. Ullman. Compilers: P'll1cip/~J,
7'edllllf/UCS, {/lui roots, Second £Iilioll (usually called "TIle Dragon Book") . Addison-\Vcs]cy,
2007. ISBN 032 1547985.

Andrews, Mike, and Jruncs A. Whittaker. How to Brmfl. Siftware: Fundional mul Srom"ty Test­
ingo/"mh Applim/iQ1/J IIl1d fffb Servias. Addison-Wesley, 2006. ISBN 0321369440.

Austcrn, MatthelV H . Genmc Programming mui 1M STL: Using allll Exleuding lhe C++ Standmzl
7!:mplate [ibmry. Addison-V.'Cslcy, 1999. ISBN 0201309564.

Austcrn, Matt, cd. Dr41 7(chnim/ Rep0l1 011 C++ Siandard Library £r/msiolls. ISOIlEC
PDTR 19768. W\vw.opcn-std.orgljtc1 /sc22/w'(21/docsfpapcrs/2005/n 183 6.pdf.

Bergin, Thomas]., and Richard C. Gibson, cds. History rfProgramming Languages - Volume
2. Addison-vVcslcy, 1996. ISBN 0201895021.

Blanchctlc, J asmin, and Mark Summcrfield. C++ CUI Programmillg with QL 4. Prentice
Hall, 2006. ISBN 013 1872493.

Boost.org. ~A Rcpository for Libraries Meant 10 Wo rk V.'elI wilh the C++ Standard Li­
brary." www.boost.org.

Cox, Russ. ~RcguIar Expression Malching Can Be Simple and Fast (but Is Slow inJava,
Perl, PHP, PYlhon, Ruby, ... J." http ://swtch.com/ -rsdregexp/regexpl.html.

dmoz.org. http://dmoz.orgiComputersl ProgramminglLanguages.
Freeman, T L. , and CJllis Phillips. RlTa1le1 Numerical Algonihllls. Premice Hall, 1992. ISBN

0136515975.
Gamma, Erich, Richard Helm, Ralph Johnson, and John M. Vlissides. Jk.sigll Pattems: Ek­

///C1It.s o/"Rrmtlblr Olij"ecl-Oriell/ed Srf"twarr. Addison-Wesley, 1994. ISBN 0201633612.
Goldthwaite, Lois, cd. 71xhllical Repor/ QII C++ lbfonllmu:e. ISOIIEC PDTR 18015.

www.rescarch.all .cOlnl-bs/pcrformanecTR.pdf.
Gullberg, Jan. Ma/hell/(I/iCJ - From IIle Birth 0/" Jol/lmbers. W. W. Nonon, 1996. ISBN

039304002X.
Hailpcm, Brcnt, and B.1l"bara G. Ryder, eds. Ftrxeetiuw rj/lze 77tinl ACM SIGPLANCmgeretlU OIl

/lze HUJOI)' if" Programming Lmq;uage.s (HOPL-J!l). San Diego, CA, 2007. http://portal.acm.orgl
loc.cfm?id=1238844.

1177

1178 81BlIOGRAPHY

Hcnricson, Mats. and Erik Nyquist. huiustnal Sirmgth C++: Ruffs oml &rommnuulhans.
Prentice Hall, 1996. ISBN 013 1209655.

ISO/ lEG 9899: 1999. ProgrammuJg ulI/guagtJ - C. -nlc C standard.
ISOIIEC 14882:2003. Programming IAI'guogc; - C++. ll1c C++ standard.
Kernighan, Brian W .. and DClUlis M. Ritchie. 'rnc C Programming Lallgtlagt. Premiec Hall.

first edition, 1978; second edition, 1988. ISBN 013 1103628.
Knuth, Donald E. 1k Arl f/"Computer Programming, fIi"lII~ 2: Semllll/mmmi Algrmihms, 77u'rd

Edition. Addison·Wesley, 1998. ISBN 0201896842.
Koc::nig, Alldrcw. cd. 1M C++ SlamumJ. ISOfl EC 14882:2002. Wiley, 2003. ISBN

0470846747.
Koenig, Andrew, and Barbara E. Moo. Acctin-oled C++: Itacl/wl Programmillg by Examp/e.

Addison-Wesley, 2000. ISBN 020170353X.
Langer. Angdika. and Klaus Kreft. SlmU/(IIri C++ IOSITtalllS (lnd Ux(/ltS: At/w I/ad Program­

mtr; Guide (II/(I Rijtrel/a. Addison-Wesley, 2000. ISBN 020 11 8395 1.
Lippman, Stanley B., j osce Lajoie, and Barbara E. Moo. '{k C++ Primtr. Addison·\o'l'eslcy.

2005. ISBN 020 1721481. (Usc only the 4th edition.)
Lock.heed Martin Corporation. ':Joint Strike Fighter Air Vehicle Coding Standards ror the

System Development and Demonstration Program.~ Document Number 2RDUooOO I
Rev C. December 2005. Colloquially k.nown as "J SF++." www.rt:search.al.l.com/- bsi
j SF·AV·mles.pdr.

Lohr, Steve. Go 70: 1M Slory rflht Mnlh Mf!iqrs, 8ridgt Pfa)m, ~11tm, Chm WiUlnu, Mau­
mck &in/lisls (lnd Irotux:!iI.lls - 7'ht Programmrrs Who Crtaltd Iht Siflwart RroolllllfJ/!. Basic
Books, 2002. ISBN 9780465042265.

Maddoc. j . boost::rt:gcxp documentatio n. www.boosLorg and www.boost.orgldodlibs!
1_36_0Ilibslrt:gexldodh tmllindex.htmi.

Meyers. ScOtt. El1utilx S ri: 50 Sjxcjfo. Way'J 10 lmprout lollr Use 0/ lilt Slml(uml 7ellll)lalt Li·
bmry. Addison·Wesley, 2001. ISBN 0201749629.

Meyers, ScOtt. Iijf«tif~ C++: 55 Sjxcffic Wl)'s to Improut Yollr F'rogmllls alld Dt-figm, 7'hird &Ii­
tim,. Addison·' Vesley, 2005. ISBN 0321334876.

Musser, David R., eillmer J. Derge, and Atul Saini. S7L 'lillorial t/1111 Rijrrt7ll:t Gllitk: C++
Progrmlllning wilh Iht Slal/(umi 'ft,np/ale Libral)" S((ol/(I £ililioll. Addison·\Vesley, 2001.
ISBN 020 1379236.

Programming Research. Higll-inlegrily C++ Oxling Sla//(umi Mallllal Vmion 2.4. www.pro·
grammingresearch.com.

Richards, Martin. BCPL - 'nit IAngl/agt and lis Compiltr. Cambridge University Press.
1980. ISBN 0521 2 19655.

Ritchie, Dennis. M-nle Development of lhe C Programming Language." /trx:«r/ing'f f!!lht
ACM HiJlory 0/ Programmillg IAnguagr.s CoI!forrna (110PL·2). ACM SIGPLAN .NiJlim, Vol.
28 No.3, 1993.

Salus, Peter. A <1!!arltr O:lIlury rfUNIX. Addison·Wesley, 1994. ISBN 020 1547775.
Sammet, jean. Programming UlllguagtJ: HiJlory and FillllulT1I(1Ilals, Prentice Hall. 1969. IS I3 N

0 137299885.
Schmidl, Douglas C., and Stephen D. Huston. C++ Nrtwork Programmillg, VOlUlllt I : Masler­

ing Comp/txily l<!iJh ACE (/lid Rillml.f. Addison·Wesley, 2002. ISBN 020160'1647.
Schmidt, Douglas C., and Stephen D. Huston. C++ .Network Progrmlllllli/g, VoJlllllt 2: Splnn­

atic RtuM wilh ACE III/(i H(llIItWOrRs. Addison·Wesley, 2003. ISBN 0201795256.

BIBLIOGRAPH Y

Schwanz, Rand:al L., Tom Phoenix, :and Brian D. Fay: Leamjllg Perl, roUl'II, Etlilion.
O 'Reilly, 2005. ISBN 0596 101058.

ScOH. ~'Iiehacl L. Progrmnmjllg Lal/g/lagt Pragllwlia . Morgan Kaufmanll. 2000. ISBN
155860442 1.

Sebesta. Robert W. O)//(('I"S 0/ /togrml/lI/jllg Languages, Sixth Et/j/jl)ll. Addison·\Veslcy, 2003.
ISBN 032 1 193628.

Shcphcrd, Simon. "-nle -liny Encryption Algorithm rffiA) .~ w,vw.tay!oredge.com/rcfer·
cned Mathcmatic.srr EA· XrEA pdf and http://143.53.36.235:8080Itca.hun.

Stcp:anov, Alexander. www.stepanovpapcrs.eolll.
Stcwart , C. W. Millril Algolllhll/J, VoIUlllt I: &uit o«'ompruitiollJ. S IA.~ , 1998. ISBN

0898714141.
Stonc. Debbic, Caroline J anctt, Mark WoodroITe, and Shailey Minoc.ha. U$a' llIltifaa lJt·

sign (llId Evaluation. Morgan K.1ufmann, 2005. ISBN 0 120884364.
StroUSlnlP, Bjam c. ~A History of C++: 1979- 1991." Itocttdings '!Ilk ACM HUltJry '!I Pro­

gmmming LanguagtJ Cotjir(lll((HOPL-2). ACM SIGPLAJ{ Notiw, Vol. 28 No.3. 1993.
Slroustnlp, Bjarne. ~ CkJigll ami Evolution '!I C++. Addison·Wesley, 1994. ISBN

0201543303.
Stroustmp, Bjame. MLcaming Standard C++ as a Ncw L.11lguab'C.~ CIC++ UJe'S]ounwl,

May 1999.
Stroustrup. Bjame. 7k C++ Programmillg UlIIgJltl§ (SJXciaI Etiitio/~ . Addison·Wesley, 2000.

ISBN 020 1700735.
SlrOuStrup, Bjame. "C and C++: Siblings"; "C and C++: A Case for Compatjbility~;

and ~C and C++: Case Sludies in Compatibility."' -nit CIC++ UJe'S]ollrlud,july, Aug ..
and Sepl. 2002.

SlroUSlrup. Bjame. ~Evolving a Language in and for lhe Real World: C++ 1 991 -2006.~

PromdingJ o/Ik 7hird ACM SIGPLAN C()Iym:llu 011 lIlt NUIOIY 0/ Progmmmillg Languagts
(HOPL-Ill). San Diego, CA, 2007.lltlp:l/portal.aelll.orgftoc.efm?id= 1238844.

Stroustrup, Bjarne. Author's home page, www.researeh.att.eom/- bs.
Sutter, Herb. Exctj)liO/wl C++: 47 EIIg7l1u ring PuultS, ltogrammillg Problt1lU, tltlll Solutions.

Addison·Wesley, 2000. ISBN 0201615622.
Sutter, Herb, and Andrei Alexandreseu . C++ Coding Slmuum/s: !OI Rll/tJ, Guilit/ina, allli

Btsl Pf(lltias. Addison·Wesley, 2004. ISBN 0321 113586.
University of SI. Andrcws. TIle MaeTutor History of Malhematics archive. hup :J/ww,\,.

gap.des.st ·and.ac.uk/ - hislory.
Wexelblal, Richard L .. ed. HiJtory 0/ Programming Languagf!S. Academic Press, 1981. ISBN

0127450408.
Whittaker, James A. How 10 Br(aR Srfh~'Qrt: A Prtuti((lJ C/lid~ 10 '1t.slillg. Addison·Wesley,

2003. ISBN 032 1194330.
Wood, Alistair. Intrrx/uch'on 10 NUmnUa/ Alia/Jill. Addison·Wesley, 1999. ISBN 020134291X.

1179

!. &t Not, 1050
I::. StY Not equal (inequality), 67, 1052,

1064
M ••• " . &tString literal, 62
::. &t Preprocessor dirccti,'es, 1090-

1091
S. &t End of line, 837, 1134
%. &.

Output fonnat specifier, 1141
Remainder (modulo); 68

'Yo::. Sa Remainder and assign, 1053
&.&.

Address of, 574, 1050
Bitwise logical operations (and),

917, 1052,1057
Reference to (in declarations), 273-

277, 1062
&&. Sa Logical and, 1053, 1057
&::. Sa Bitwise logical operations (and

and assign), 1053
' ... '. Se(C har<lcter literals, 159, 1043-

1044
n.M-

Expression (grouping), 95, 831,
837, 840

Function call, 282, 735- 736
Function of (in declarations), 11 2-

114, 1062
Regular expression (grouping), 1133

Index

". &.
Contcnts of (dcreference), 579- 580
Multiply, 1051
Pointer to (in declarations), 573,

1062
Repetition (in regex), 832, 837-

838, 1133-Jt34 *' end of block comment, 237
. ::. Se(Multiply and assign (scale), 67
+. Se(

Add, 66, 1051
Concatenation (of strings), 68-69,

815, 11 32
Repetition in rcgCl(, 837-839,

1133-1134
++. &(Increment, 66, 695
+::. Sa

Add and assign, 1053
Move forward, 1064
Siring (add at end), 815, 1132

• (comma), &t
Comma operator, 1054
List separator, 1066, J084

- .&.
Minus (subtraction), 66, 1051
Regular c."prcssion (range), 84 1

- -. Sa Decrement, 66, 1102, 1050
- > (arrow). &t Member access, 593,

1050-1051. 1072, 1102

1181

'182

-=. Set
Move b;lekward, 1064
Subtract alld assib'll. 67, 1053, 1103

. (dot). &e
Member access. 302, 592-593,

1050-1051
Reb'lJlar expression, 837, 11 33

... (ellipsis). Sa
Arguments (unchecked), 1068-

1069
Catch all exceptions, 150

I. Se .. Divide, 66, 1051
II. Sa Line comment, 45
/ •...• ,. &e Block commcnt, 237
1=. & .. Divide and assib'll, 67, 1053
: (colon). &e

Base and member initializcrs, 310,
471, 543

Conditional expression, 266
Label, 104- 107,302,502, 1059

... &t Scope (reso[ution), 29 1, 310,
1049

; (semicolon). &t Statement (tennina­
tor), 50, 99

<. See Less than. 67, 1052
«. Se ..

Bitwise logical operations (left
shift). 917, 1051

Output,357-359, 1129
<=. S Less than or equal, 67, 1052
«=. &t Bitwise logical operations

(shift left and assign), 1053
< ... >. &trlcmplate (arguments and

paramcters), 15 1, 656- 657
:. Sa

Assignment, 66, 1053
Initialization, 69-73, 1173

==. &t Equal. 67, 1052
>. Sa

Greater than, 67, 1052
Input prompt, 221
Template (argument-list terminatOr),

656- 657
>=. &t Greater dIan or equal, 67. 1052
». Sa

Bitwise logical operations (right
shift), 917, 1051

INDEX

Input, 61,359
»=. &t Bitwise logical operations

(shift right and assign), 1053
, . Sa

Conditional expression ?:, 266,
1053

Regular expression, 83 1-832, 837,
838-839, 1134

I I. &t
Array of (in declaration), 627, 1062
Regular expression (character

class). 837, 1133
Subscripting, 579-590. 628, 1064

\ (backslash). Sa
C haracter literal, 1043
E SCH[>C character, 1133
Regular expression (escape charac­

ter). 830-831 , 837, 841
' . Sa

Bitwise logical operations (exclu·
sive or), 917- 918, 1052, 1057

Regular expression (not), 837,
11 34

A=, &t Bitwise logical operations (xor
and assign), 1053

_. &tUnderscore, 75, 76, 1045
1I.&t

Block delimiter, 47, 11 0
Regular expression (range), 83 1.

837-839, 11 33- 1134
I. Sa

Bitwise logical opemtions (bitwise
or), 91 7, 1052, \057

Regular expression (or), 83\ - 832.
837,840-84 1, 11 34

I =. Sa Bitwise logical operations (or
and assign). 1053

II. &t Logical or, 1053, 1057
- .Sa

Bitwise logical opera lions (comple­
ment), 91 7,1050

Destructors, 586-588
o (zero). &t

Null pointer, 583-584
PrerDc, 378, 380
prinlfO format sl>ccifier, 11 42

Ox. set l~rtx,378. 380

INDEX

A
ii, append ftle mode, 11 40
\ a alen, charnclcr lilcral. 1043
aOOrl(), 11 49
ab$(), absolUiC valuc, 879, 1137

complex. 88 1, 1139
AbslrnCI classes. 487. 11 71

class hiernrchies, 503
creating. 487. 503- 50'1, 1080-1081
Shape example, 487-488

Abstracl·fir.it approadl to progranuning,
10

Abstraclion, 92-93. 11 71
level, ideals, 778-779

Access cOlllrol. 302, '196. 50 1- 502
base classes. 501 - 502
encapsulation. 496
members. 484- 485
private, 496, 50 1- 502
private by default , 302- 303
private us. public, 302- 304
privale: label. 302
protcctcd. 496, 502
prolectc<i: label, 502
public. 302. 496, 50 1- 502
public by default , 303- 304. ,xt also

slrucl.
public: label. 302
Shape example, 488-49 1

accumulaleO. 729, 739-740, 1139
accumulator. 739
generalizing. 740-742

acosO, arccosine. 879, 1137
Action. 47
Activation record. 284. SaaJ.so Stacks.
Ad hoc polymorphism, 659- 661
Ada lallgua~. 796-798
Adaptors

bindl slO. 11 23
bind2ndO, 11 23
container, 1 106
funaion objects, 1123
mem_funO. 1123
mem_fun_refO, 1123
noll 0 . 11 23
noI2{), 1123

priority_queue, 1106
queue, 1106
5Iad:, 1106

addO. 445, 483-484, 600-602
Add (plus) +, 66, 1051
Add and assign +=, 66, 73 , 1053
Additive operators, 105 1
Address, 574, 11 71

unchecked conversions, 905
Address of (unary) &, 574, 1050
adjaeent_differeneeO, 739, 1139
adjaeenU indO, 1113
advanceO, 600-602, 708-710, 1103
AJTordability, software, 34
Age distribution example, 527-528
Alert markers, 3
Algol family of languages, 791-798
Algol60 language, 792-794
<algorithm>, 729, 1095
Algorithms, 11 71

and containers, 696
header liles, 1095-1096
numerical. 1139
passing arguments to. Sa Function

objccts.
Algorithms, numerical, 739, 1139

aeeumulateO, 729, 739-742, 1139
adjacenC difference{), 739, 1139
inner_produet(). 729, 739, 742-744,

1139
parlial_sumO, 739. 1139

Algorithms, sn... 1112- 111 3
<algorithm>, 729
binary_searchO, 764
comparing elements, 729
copyO, 728. 757-758
copy_ifO, 757
copying clements, 728
counlO, 728
count...,ifO,728
i!(luaIO, 729
equal_r;mgeO. 728, 763-764
find (), 728, 729- 732
fi nd_if 0 , 728, 732-734
heap, 111 9- 1120
luwer_boundO, 764
max, 1121

1183

1184

Algorithms, ST1. (tOIl/iliUM)
mergeO, 728
merging sOl'lcd sequences, 728
min, 11 2 1
modifying sequence, 1114- 11 16
mutating sequence, 11 14-1116
nonmodifying sequence, 1113-

1114
numerical. &t Algorithms, !lumeri-

aU.
pcmlll talions, 11 20
searchO. 763- 76,1
searching, 1117- 1118. &to (UJo

fi ndO; fi ndjfO.
sct, 111 8- 11 19
shumc. 1115- IIJ 6
5Or10, 728, 762- 763
soning. 728, 762- 763, 1117-

111 8
summing clements, 729
tcsting, 96 1- 968
unique_copyO, 728, 757, 760- 761
upper _ooundO, 764
utility, 1116- 111 7
value comparisons, 1120- 11 2 1

Aliases, 1089, 11 71. $«aho References.
Allocating memory

See aw Dcalloc;tling lllemory:
Memory.

alioca tor_lype, 1108
bad_alloc c.:'l:ccption, 1058
C++ and C , 1009- 10 iO
(allocO, 11 47
embedded systems, 897-898, 902-

904
free store, 578-579
mallocO. 1009, 11 47
new, 1057-1058
pools, 902-903
rea l1ocO, 101O
stacks, 903-904

allocatouype. 11 08
Almost containers, 721 -722, 11 06
alnurn, regex character class, 842,

1134
alpha, regex character class, 842. 1134

IN DE X

Alternation
patterns, 192- 193
regular exprcssions, 840- 84 1

Ambiguous function call , 1067- 1068
Analysis, 35, 174. 177
and, synonym for &. 1003, 100'1
and_t'q, synonym for &=, 1003, 100'1
app mode, 385, 1126
appendO. 8 15, 11 32
Append

files, 385. 1140
string +=, 815

Applic.;ttion
collection of programs. 11 72
operator 0 , 735- 736

Approximation. 52 1- 526, 1172
Arccosine. acosO, 879
Arcsine, asinO, 879
Arctangent, atanO, 879
argO, of complex number, them. 881.

11 39
Argumellt deduction. 664- 665
Argumellt errors

callee rcsl>Orls ibility. 141 - 143
caller responsibility, 140- 141
reasons for. 142- 143

Arguments, 270, 11 72
fonnal. & (Parameters.
fUlictions, 1068- 1069
passing. &t Passing argumcnts.
program input. 9 1
source of o:ccplions, 145- 1'16
tcmplatcs, 1083- 1084
l)'pCs, class interfaccs, 3 19-321
unchecked. 995- 996, 1068- 1069
unexpected. 134

Arithmetic if f :, 266. &(abo Condi­
tional expression.

Arithmetic operations. &t Numerics.
array standard library class, 718-719.

1105
<array>. 1095
Arrays, 627-628, 1172

Sa abo Containers: vector.
II declaration, 627
1 J dereferencing. 628

INDEX

accessing clements, 628. 863-865
assignment, 633
associative. &1: Associative contain·

ers.
built-in, 718- 719
C-style strings, 633-634
copying, 632
dereferencing. 628
clement numbering, 627
initializ.ing, 582-583, 633-634
multidimensional, 859-861. 1065
palindrome example, 638-640
passing pointers to arrays, 905-

912
pointers to clements, 628-631
range checking, 628
subscripting II . 628
tenninating z.ero. 633
vector alternative. 909- 912

Arrays and pointers, 630- 636
debugging, 634- 637

asinO, arcsine. 879, 1137
asm. assembler insert, 1003
Assemblers, 785
Assertions

assertO, \026- \027
<casser!:> , 1097
debugging. 161
definition, lin

assignO, 1 \09
Assignment =, 69- 73

alTays, 633
assignment and initializ..1tion, 69-

73
composite assignment operators,

73-74
containers, 1108-1109
Date example. 305- 306
enumerators, 3 14
c. prcssions, 1053
string, 815
vector, resizing, 653- 655

Assignmellt operators (composite), 66
%=, 73, 1053
&=, 1053
"=, 73, 1053

+=, 73, 1053, 1103
- =, 73, 1053. 1103
1=, 73, 1053
«=, 1053
»=, 1053
"=, 1053
1=, 1053

Associative arrays. &1: Associative con·
tainers.

Associative containers, 744, 1 \05
email example, 820- 824
header files. 744
map, 744
mullimap, 744 , 824- 825
multisel, 744
operations, 1111 - 1112
sel, 744
unordered_map, 744
unordered_multimap, 744
unordered_multisel, 744
unordered_set, 744

Assumptions, tcsting, 976-978
alO , range-checked subscripting, 668-

669, 1109
alanO, arctangent, 8i9, 1137
ate mode, 385, 11 26
alofO, string to double, 1146
aloiO, string to into 1146
alolO, string to long, 1146
AT&T Bell Labs, 803
AT&T L1bs, 803
aUachO lIS. addO example, 483-484
Automatic storage. 577
auto_ptr, 678
Axis example, 420-422, 439, 518- 521 ,

532- 534

B
b, binary file mode, 1140
Babbage, Charles, 797
backO, last clement, 708, 1109
backJ nserlerO , 1122
Backus, john, 788
Backus-Naur (BNF) Form, 788, 793
badO slre<UII slate, 349, 11 27

1185

1186

bad_aUoc exception. 1058
B.1lanced trees, 748-750
Base-2 number system (binary), 1042
Base-8 number system (octal). 1041 -

1042
Base-IO

logarithms, 879
number system (decimal), 104 1-

1042
Base-I 6 number system (hexadecimal),

104 1- 1042
Base and member inilial izers, 3 10, 471,

543
Base classes, 485- 488, 496-499, 11 72

abstract classes, 487, 503-504,
1080-1081

access COntrol. 50 1-502
derived classes, 1078-1079
description, 496- 497
initialization of, 41 7, 543
interface, 503-505
object layout, 497-499
overriding, 500-50 1
Shape example, 487-488
vinual function calls. 493. 498-

499
vplr, 498
viM, 498

Basc-c exponemials, 8i9
Basic guarantee, 677
basic_siring, 816
BCPL language, 803
begioo

itcr:l.Ior, 1109
numeric example, 12 1- 122
Siring, 8 15, 11 32
veclor, 695

Bell "Ie lephone Laboratories (Bell
~1bs), 801 , 803- 806, 988- 989

Bentley,J ohn, 895, 926
Bidirectional iterator, 1104
bidirectional iterators, 722-723
Big-O notation, complexity, 573
Binary 110 , 386-389
binary mode, 385, 1126
Binary number system, 1042

INDEX

Binary search, 728, 747, 763- 764
binary_searchO. 764 , 11 17
bindlstO adaptor, 11 23
bind2ndO adaptor, 1123
bitand, synonym for &, 1003, 1004
Bitlid ds. 917, 928- 930, 1082
bitor. synonym for I, 1003. 1004
Bits, 78, 9 16, 1172

bitlicids. 9 17
bool.9 17
char, 9 17
enumerations, 9 17
integer types, 9 17
manipulating, 926-928
signed. 922-926
size. 9 16-9 17
nvo's complement. 922
unsigned, 922- 926

<bilsel>, 1095
bilst't, 920-922

bitwise logical operations. 922
construction, 92 1
exceptions, 1099
110 .922

Bitwise logical operations. 9 17-920.
1057

and &, 9 17- 9 18, 1052, 1057
and and assign &=, 1053
complement -. 917
exclusive or " , 9 17- 9 18.1052,

1057
exclusive or and ,LSsib'll "=, 1053
left shift « . 9 17
left shift and assign « =. 1053
or 1, 91 7-918. 1052. 1057
or and ,LSsign, 1 =, 927
right shift » , 91 7
right shift and assi&"1 »=. 1053

Black·box testing. 952- 953
Blackboard, 36
blank, charactcr class, regell:. 842, 1134
Block, 1 JO

debugging. 159
delimiter 0 , 47, 1 JO
nes ting within functions, 268-269
try block, 144- 145

INDEX

Block comment /* ... */, 237
Blue marginal alerts, 3
BNF (Backus-Naur) Fonn, 788, 793
Body, functions, 113
bool, 63 , 66-67, 1062

bit space, 917
biLS in memory, 78
C++ and C. 992, 1003, 1004
silt, 78

boolalpha. manipulator, 1129
Boolean conversions, 1055
Borland, 796
Bottom·up approach, 9, 776-777
Bounds error, 147
Branching, tes ting, 966- 968. See abo

Conditional statements.
break, case label tel1nination, 104- 107
Broadcast functions, 867
bsearch(), 1149
Buffer, 342

nushing, 239- 240
iostream, 402
overnow, 639, 759, 966. &e abo

gctsO, scanf().
Bugs, 156, li n

See (lbo Dcbugging; -resting.
finding the last, 164- 165
first documenled, 790
regression testS, 953

Built-in types, 300, 1062
arrays, 718- 719, 1064- 1065
bool, 77, 1063
characters, 77, 855, 1063
default constructors, 323
exceptions, 1087
noating-poim, 77, 855-858, 1063
integers, 77,855-858,922- 926, 1063
poimers, 574-586, 1063- 1064
references, 277- 278, 1065- 1066

Button example, 439, 548-550
attaching to menus, 558
detecting a click, 544-546
"Next," 418-420, 54 1-542

Byte, 78, lin
operations, C-style strings, 1014-

1015

c
.e sufEx, 995
.cpp, suffIX, 48, 1154
G* language, 796
C++ language, 804-806

See abo Progranuuing; Programs;
Software.

coding standards, list of, 943
portability, II
usc fo r teaclling, xxiv, 6- 9

C++ and C, 988- 990
C functions , 994-998
C linkage convention, 999
C missing features , 991-993
calling one from !he other, 998- 1000
casts, 1006- 1007
compatibility, 990- 991
eonst, 1020- 1021
eonstanLS, 1020- 102 1
container example, 1025-103 1
definitions, 1004- 1006
cnum, 1008
cxlcrn "C", 999
family tree, 989
free·store, 1009- 10 11
input/output, 10 16- 1020
keywords, 1003- 1004
layout rules, 1000
macros, 1020-1025
malloc(), 1009
namespaces, 1008
nesting slrucls, 1003
old-style casLS, 1006
opaque types, 1026
perfonnance, 990
rcallocO, 10 10
structure tags, 1002-1003
type checking, 998- 999
void, 996
void", 1007- 1008

"C flfst " approach to programming, 9
C language, 800-804

See abo C standard library.
C++ compatibility, 988-990. &r

also C++ and C.

11B7

1188

C language (amlinlltd)
K&R. 802, 988-989
linkage collvention, 999
missing features. 991-993

C standard library
C -s tylc strings. 1145- 1146
header files, 1097
input/output. See C-stylc liD

(sldio).
memory, 1146- 11 47

C-sly le caSts, 1006-1007, 1051. 1058
C-sty lc: 110 (sidio)

%, conversion specification, 1141
conversion sf)(:cifiI:3tions, 1141 -

1143
file modes. 1140- 11 4 1
fues, opening and d osing, 1140-

1l4 !
fprintfO. 10 17, 1141
getchO. 1018, 11 45
getchar{). 1010, 1017- 1019, 1145
se150, 1018, 1144-1145
output [annaLS, user-defmed types,

11 44
padding, 1143
printfO, 1016- 1017, 1141
sc.anfO, 1017- 1019, 1144- 1145
stderr , 1144
stdin, 1144
stdoul. 1144
rnmc.1Iion, 11 43

C-stylc strings, 633-634, 1011 -1013,
1145

byte operations. 1014-1015
from str ing, c_slrO. 344, 8 15
consl, 1013-1014
copying. 10 12- 1013, 1015
cxccuting as a command, sys temO,

11 49
lexicographical comparison, 1012
operations, 1146
poimcr declaration, 1015- 1016
strcal(). concatenatc, 1012- 1013
strchrO, find character, 1014
strcmpO, comp<kTC, 10 11 - 10 13
strcpy() , cop}" 1012- 1013, 1015

strlenO, length of, 1012
slrncatO, 10 12- 10 13
slrncmp(), 1012- 10 13
slrncpyO. 1012-10 13
three-way comparison. 1012

CAD/CM-1, 27, 33

INDEX

Calculator cxamplc, 172. 185- 186
analysis and design. 174-177
expressiono , 194-198
geuokenO, 194
grammars and programming, 186-

193
parsing. 188- 191
primaryO, 194 , 206
symbol tablc, 246
termO, 194 , 195-200, 204-205
Token, 182- 183
Token_stream, 204- 212. 239- 240

Call stack, 287
C., lIIXtck functi ons, 544-546
Callback implementation, 1162- 11 63
Calling functions. &t Function calls.
calloeO, 1147
Cambridge U niversity. 803
capacityO, 65 1- 652, 1II 1
Capitallellefli. &t Case.
C ase (of ehal.leters)

fOnlltllling, 393-394
identifying, 393
islowerO,393. 11 3 1
map container. 750
in names, 74- 77
sensitivity, 393-394
lolower(), changing case, 394, 11 3 1
IOllpper(j, clmnging case, 394 ,

11 3 1
case labcls. 104- 107
<casseTb , 1097
Casting away canst. 594-595
Casts

Srt aJ.ro Type com'ersion.
C++ and C, 992 , 1003
C -style casts, 1006- 1007
casting away consl, 594
consl_cast, 1058
dynamic_cast, 894, 1058

INDEX

lexicaCcast example, 8 19
narrow_cast example. 151
reinterpre,-casl. 594
static cas!, 594 , 905, 1058
unrelated types, 594

CAT scans, 30
catch. 145, 1003
Catch all exceptions ... , 150
Catching exccptions, 144-150, 238-

240. 1087
cb_nexiO example. 544- 546
<cctype>, 1097. 113 1
edIO.879, 11 37
cerr, 149, 11 25, 114'1
<cerrno>, 1097
<dioal>, 1097
Chaining operations, 178-179
char type, 63, 66- 67, 78

oits, 9 17
ouih-in. 1062
propenics, 712-713
signed ur. unsigned, 858, 925

Character classes
list of, 1134- 11 35
in regular exprcssions, 837-838,

842
Character classification, 393- 394 ,

113 1
CharaCter literals, 159, 1043- 1O'~4
CHAR_HIT limit macro, 1136
CHAR_MAX limit macro. 1136
CHAR_MIN limit macro. 1136
d n. 61

C equivalent. Sa stdin.
standard character input, 61, 341.

11 25
Circle example, 464-467, 489

us. Ell ipse, 467
Cireular reference. See Reference (cir­

cular).
class, 181 , 1002-1003
Class

aostract, 487, 503-504, 1080- 108 1.
&t {/Lw Abstract class.

base, 496-497
coding standards, 941 - 942

concrete, 487-488, 1172
cons! member fu nctions. 1073
constructors, 1075- 1077, 108 1
copying. 1077- 1078, 1081
creating objects. Sa Concrcte

classes.
dcfault consm.tctors, 322- 325
defining, 210, 30 I , 1071, 1172
derived. 496
destructors, 1077. 1081
encapsulation, 496
friend declaration. 1073- 1074
generated operations. 1081
grouping related, 503-504
hierarchies, 503
history of, 799
implcmeillation, 302-304
inheritance, 496-497, 504- 505
interface, 504-505
member acccss. Sa Access COntrol.
naming. See Namespaces.
nesting. 268
ooject layout, 497-499
organizing. &t Namespaces.
parameterized. 659- 66 1. Sa aIJc

Templates.
priva te, 302-304, 496. 501 - 502,

1071 - 1072
protected, 487, 496, 501- 502
public, 302- 304. 496, 50 1-502,

1071 - 1072
nm-time polymorphism, 496
suoclasses, 496-497. See alw De­

rived class.
supcrclasses, 496-497. Sa aLw Base

class.
templates, 658- 661
testing. 973-976
this pointer, 1073
types as parameters. SaTem-

plates.
union, 1082-1083
unqualified name, 1072
uses for, 30 I

Class interfaces, 3 18, 1071
argument types, 319-32 1

1189

1190

const member functions, 325-326
constants, 325-326. &e abo const.
copying, 321-322
helper functions , 326-328
immutable: vaiues, 325, 326
initial izing objects, 322-325
members. 326-328
mutable values, 326-328
public w. private, 302-304
symbolic constants, defining, 32 1
uninitializcd variables. 322-325

C lass members, 301, 1071
-> (arrow), 1072
. (dot}, 302, 1072
:: (scope resolution), IOn
accessing, 302. Sa abo Access con-

trol.
allocated at same address, 1082-

1083
bidiclds, 1082
class imcrfaces, 326-328
data, 301
definitions. 1074- 1075
function. 309-3 13
in -class definition, 1074-1075
sialic const int members, 1075
Token example, 18 1- 182
Token_streilm example, 210
Out-or-class definition, 1074-1075

Class scope, 264 , 1046
Class template

parameterized class, 659- 66 1
param(:terized type, 659- 661
specialization, 658- 659
type generators. 658-659

classic_elimination() example, 874- 875
Cleaning up code

comments, 236-237
fu nctions, 233-234
layout, 234-236
logical separations, 233-234
revision history, 236- 237
scaffolding, 233-234
symbolic constants, 23 1-233

clearO, 349- 352, 1110
<climits>. 1097

<clocale>, 1097
clockO, 98 1-983
clock_t, 1147
cloneO example, 496
closeO rue, 346

INDEX

Closcd_I)Olyline example, 451 -453
us. Polygon, 453

<cmath>, 879, 1097, 1137
cnlrl, 842, 11 34
COBOL language, 788-790
Code

defini tion, 1172
layout, cleaning lip, 234-236
libraries, uses for. 175
stomge, 577
structure, ideals. 776
test coverage, 968

Coding standards, 935-936
C++, list of, 943
complexity, sources of. 935-936
ideals, 936-937
sample rules, 938- 943

Color example, 421 -422, 445-447
color chat example, 459- 461
fLlI, 427- 428, 456-458, 492
transparency, 447

Columns, matrices, 864-865, 870
Comments, 45-46

block ' •.. . · ', 237, 1040
C++ and C. 992
cleaning up, 236-237
w. code, 237
line II, 45-46, 1040
role in debugging, 157- 158

Common Lisp language. 790
Communication skills, programmers, 22
Compacting garb..1gc collection, 900-

901
CompMison, 67

S« abo ==: <.
C -stylc strings. 101 1- 1012
characters, 711
containers, 1111
key_compare. 1108
lexicographical. C-style srrinb'S,

1012

INDEX

lexicographicaCcompare(), 1121
minimax algori t.luns. 11 20-1121
string. 8 15
three-way. 10 12

Compatibility. &e C++ and C.
Compile-time errors. &e Errors,

compile-time.
Compiled languagcs, 47-48
Compilers. 48. 1172

compile· time errors. 51
conditional compilation, 1024-

1025
syllla.'I: checki.ng. 48-50

compl, synonym for - , 1003, 1045
complex

!=, nO(equal (inequality). 881.
1138

" multiply, 881 , 1138
+, add (plus), 881, 1138
- , subtract (minus), 88 1. 1138
« , output. 881 , 1139
==. equal, 881. 1138
», input. 881. 1139
I. divide, 881, 1138
alisO, absolute value, 881 , 1139
coniO, cOl~ugate, 881
Fortran language, 882
imagO, imaginary part, 881
normO, squarc of alisO, 88 1
number types. 1138-1 139
polarO, polar coordinate. 881
realO, real part, 881
rho. 881
square of absO, 881
theta, 88 1

<complex> 1096
complex operators. 881, 1138-1139
standard mat.h functions, 11 37

Complex numbers, 880-882
Complexit.y, 11 72

sources of, 935-936
Composite assiglUllelll operators, 73-74
Compound statements, 110
CompUL1.tion, 9 1

Sa abc Programs; Software.
corrcCUless, 92-94

data SU1.lctures, 90
efficiency, 92-94
inpuuoutput, 91
objeClives, 92-94
organizing programs, 92- 94
programmer ideals. 92- 94
simplicity, 92- 94
state, definition, 90

Computation UI. data, 691 - 693
Computer-assisted surgery, 30
Computer science, 12.24-25
Computers

CAT scans, 30
computer-assisted surgery, 30
i..n daily life, 19-21
i..nfOimation processing. 31 - 32
Mars Rover, 32-33
medicine, 30
pen-asivencss of, 19- 2 1
server fanns. 3 1
shipping, 26-28
space exploration, 32-33
telecommunications , 28-29
timekeeping, 26
world tmal. 19

Concatenation of strings. 66
+,68-69, 8 15. 1132
+=, 68-69, 815, 1132

Concept-based appro.1.ch to program­
ming, 6

Concrete classes, 487-488, 1172
Concrete-first appro..1.ch to program-

ming, 6
Concurrency, 894
Conditional compilation, 1024-1025
Conditional expression t: , 266, 1053
Conditional statements

Sa auo Branching. tcsting.
for , 110- 11 2
if, 101 - 103
switch, 104- 107
while, 108-109

Conforming progrnms, 1039
Confusing variable namcs, 77
coniO, complex conjugatc, 881. 11 38
CoI~ugatc, 88 1

1191

1192

Consistency. ideals, 780
Console, as user interface, 540
Console input/output, 540
Console window, displaying. 160
COoSI, 95-96

Sa also Constant ; SL1tic storage,
sialic coosl.

C++ and C, 992, 1020- 1021
C-style Strlngs, 1013-1014
class intcrfaces, 325-326
declarations, 260-261
initializing, 260
member functions. 325-326. 1073
overloading on, 626-627
passing arguments by, 273-276,

279-281
type, 1062

· coosl, immutable pointer, 1062
Constant

Sa alw consl.
expressions, 1056- 1057

consLcast, casting away const, 594, 1058
coosUleralor, 1108
Constraints, veclar range checking, 670
Constructors, 306- 309, 1075-1077

See abo Dcstructors; lnitializers.
containers, 1108- 1109
copy, 614- 616, 620-624
Dale example 307, 319-321
debugging, 622-624
default,322- 325,108 1
error handling 309, 675-677
esscmial operations, 620-624
exceptions, 675-677
explicit, 621 - 622
implicit coIlversions, 621 - 622
initializalion of bases and members,

310,471, 543
invariant, 309, 676-677
nced for default, 620- 621
Token example, J 82- 183
Token_stream example, 210

Container adaptors, 1106
Containers, 146, 720-72 1, 11 72

Sa also Arrays; lisl ; map ; vector.
and algorithms, 696

INDEX

almost containers, 72 1- 722. 1106
assignmcnts, 1108- 1109
associative, 1105, 1111 - 11 12
capacityO, 1110- 1111
of cllaracters. Set string.
comparing, III1
constructors, 1108- 1109
contiguous storage, 712
copying, 1111
destructors, 1108-1109
clement access, 1109
embedded systems. 9 12-9 16
header ftles , 1095- 1096
infonnation sources about, 720-721
iterator categories. 722- 723
iterators. I 109
list operations, 1110
member typcs, 1108
operations overview. 11 07
queue operations, 11 10
sequence. 1105
sizeO, 111O- 1111
stack operations. 1110
standard library, 1105- 1111
swapping, 1111
templatcs, 661-662

Contents of · (dereference. indirec'
tion), 579-580

Comiguous storage, 712
Comrol characters, iscntri () , 393
Comrol inversion, GUIs. 556-557
Control variables. 109
Comrols. Sa Widgets.
Conversion specifications. priotfO.

1141 - 1143
Convcrsion

Sa aJ.w 1}'pc conversion.
character c.1se, 394
representation, 368-370
unchecked. 905

Coordinates
Set also Poiot .
computcr screens. 111 5-'116
graphs, 422-423

copyO, 757- 758, 1114
Copy assignmenLS, 616- 6 18, 620-624

INDEX

Copy constructors. 614-616, 620-624
copy_backwardO, 1114
copy_if 0 .757
Copying, 613-6 19

arrays, 632
Cstyle strings, 1012-1013, 1015
class interfaces, 32 I -322
cont.tiners. I I I I
I/O streams. 758-761
objects, 494-496
sequences, 728, 757- 762
vector. 6 13-6 18, 1108-1109

Correctness
definition, 1172
ideals, 92-94, 775
importance:: of, 891-892
software, 34

cosO . cosine. 5 17-518, 879, 1137
coshO. hyperbolic cosine, 11 37
Cost, definition. 11 72
count(). 728. 1113
counUfO, 728, 1113
coul, 45

C equivalent. &to sidoul.
~Hdlo. World!n example. 45-46
printing error messages, 149. &e

abo cerro
st'lIldard output, 341 , 1125

Critical systems, coding standards,
942-943

<cslddef>. 1097
<csldio>. 1097
<csldlib>. 1097, 11 47, 1149
c_slrO. 11 32
<cslring>. 1097. 1131, 1147
<clime>, 1097, 1147
Current object, 3 12-3 13. &to also this

pointer.
Cursor. definition, 45
<cwchar>. 1097
<cwclype>. 1097

D
d, any decimal digit, regcx, 842, 1134
\ d. decimal digi t, regex. 837, 1135

\ 0 , not a decimal digit. regex, 838, 1135
d suffix, 1042
Dahl, Ole-johan, 798-800
Data

&to (llJo Containers; Sequences;
veclor ; map; lisl.

abstraction, 781
collections. &to Containers.
Uf. computation, 69 I -693
generalizing code, 688-690
in memory. &to Free store.
processing. overview, 686-690
separating from algorithms, 696
slOring. &to Containers.
structure. St(! Containers; sIrucl;

class.
traversing. See Iteration ; herators.
unifonn access and manipulation,

688-690. &to alJo STL.
Data member, 30 I , 484-485
Data structu re. &to Data; slrucl.
Data type. &toTypc.
Date and lime, 1147- 1149
Date example. Set Chapters 6-7.
DBl_EPSll0N limit macro, 1137
DBl_MAX limit macro, 11 37
DBl_MIN limit macro, 11 37
Deallocating memory, 584-586, 1057-

1058. &to alJo delete; delete[I.
Debugging, 52, 156, 11 72

&to also Errors; Testing.
arrays and pointers, 634- 637
assertions, 16 1
block tenninatioll. 159
bugs, 156
charac[er literal temlination, 159
commenting code, 157-158
compile-time errors, 159
consistent code layout, 158
conSlructors, 622- 624
declaring names, 159
displaying the console window,

160
expression tcmlinatioll, 159
fInding the last bug, 164-165
function size, 158

1193

1194

Debugging ((I}I!tillutd)
CUb, 562-564
input data, J 64
invariants, 160-161
keeping it simple, 158
logic errors, 152- 154
matching parentheses, 159
nanling convcntions, 158
post-conditions, 163- 164
pre-conditions. 161 - 163
process description, 156- 157
reporting errors, 157
stepping through code, 160
string literal tcnnination, 159
systematic approach, 164-165
test cases, 164 ,225
testing, 979
tracing code execution, 160- 161
transient bugs, 581
using library facilities, 158
widgets, 563-564

dec manipulator, 378-379. 1130
Decimal digits, isdigilO, 393
Decimal integer literals, 104 1
Decimal number system, 377- 379,

1041 - 1042
Deciphering (decryption), example,

930-935
Declaration operators, 1062

& reference lO, 273-277, 1062
() functiollof, 11 2- 11 4, 1062
• pointer to, 573, 1062
[I array of, 627, 1062

Declarations, 51, 1061- 1062
C++ and C, 992
c1asscs, 302
collections of. Sa Header files.
constants, 260-26 1
definition, 5 1, 77, 255, 11 73, 106 1-

1062
w. definilions, 257- 258
entitics used for, 259
ellern keyword. 257
forward, 259
fu nction, 255-256, 1066
funclion arguments, 270-271

INDEX

function retum lype, 270-271
grouping. Stt Namespaccs.
managing. Sa Header files.
need for, 259
order of, 2 13-2 14
parts of, 1061
subdividing programs, 258- 259
"undeclarcd idcmificr" errol'S, 256
uses for, 1061
variables, 258, 260- 261

Deeremeilling -- , 97- 98
iterator, 110 1- 1104
pointer, 630

Deep copy, 6 19
Default eonstntetors. 323-324

altemati \'cs fo r, 324-325
for built·in types. 323
initializing objects, 322-323
necd for, identifying, 620- 62 1
uscs for, 323-324

.:defin e, 1090- 1091
Definitions. 77, 256-257. 1173

Sa abo Declarations.
C++ and C, 1004- 1006
w. declarations, 257-258
fU llction, 112- 114,270-271

delete
C++ and C. 992, 1003
dealtocaullg free storc, 1057- 1058
dcstn lctors, 586-590
embeddcd systems, 894 , 898-90 1,

90 1-902
free ·store deallocation, 584-586
in unary exprcssions. 105 1

delelell , 585, 105 1. 1057-1058
Delphi language, 796
Dependencies, testing. 962- 963
Depth·first approach to programming.

6
dCllue, double ended queuc, 11 05
<deque>, 1095
Derefcrellcclilldirectioll

' ,579- 580. Set also COlltents of.
-> ,593. Sc.-e also Member access.
[I , 116- 11 7. &t(llso$ubscripting.

Derivation, classes, 496

INDEX

Derived classes, 496. 1173
access conlfOL 501-502
base classes, 1078- 1079
inhelilll.nce, 1078- 1079
multiple inheritance, 1079
object layout, '~97-499
overview, 496-497, 1078-1079
private bases and members, 501-

502
protected bases and members, 502
public bases and members, 502
specifying, 499
virtual functions , 1079- 1080

Design , 35. 174, 177, 1173
Design for testing, 978- 979
Destructors, 586-588, 1077, 1173

See abo Constructors.
containers, 1108-1109
debugging, 622-624
default, 1081
esscntial operations, 620-624
execptions. 675-677
and frec store, 589- 590
freeing resources, 3 18, 675- 677
generated. 588- 589
RAI l, 675-677
virtual, 589-590
where needed, 621

Device drivers. 340
Dictionary examples, 121 - 123, 756
differeneeO, 1103
difference_type. 1108
digi t, character class, 842 , 1134
Digi t, word origin, 1041
Dijkstra, Edsger, 792-793, 952
Dimensions, matrices, 862-865
Direct c."pressioll of ideas, ideals, 777-

778
Dispatch, 496
Display model, 409- 410
Divide I, 66,105 1
Divide lind assign 1=, 67, 1053
Divide and conquer, 93
Divide-by-zero error, 199- 200
dividesO , 1123
Domain knowledge, 896

Dot product. Set inner_producIO.
double floating-point type, 63, 66-67,

78, 1062
Doubly-linked lists, 598, 698. Set auo

list.
drawO example

fill color, 492
line visibility, 492
Shape, 491-494

draw_linesO example
Set auo drawO example_
Closed_polyline, 452
Marked_polyline, 469
Open_polyline, 451
Polygon, 454-455
Rectangle, 459
Shape, 491 - 494

Dynamic dispatch, 496_ Set auo Virtual
functions_

Dynamic memol)'_ Set Free store.
dynamiccast, type conversion, 1058

exceptions, 1099
predictability, 894

E
Efficiency

ideals, 92-9'~ , 775- 776
vector range checki.ng, 670

Einstein , Albert, 780
Elements

Set also vector.
numbering, 627
pointers to, 628- 63 1
variable number of, 628

Ellipse example, 466-468
m. Circle, 467

else, in if-s tatements, 102-103
Email example, 820-830
Embedded systems

coding standards, 935- 937, 943
concurrency, 894
containers, 912-9 16
correctness, 891 - 892
delete operator, 894
domain knowledge, 896

1195

,,%

Embedded systems (wlllillued)
dynamiccasl, 894
error handling, 895-897
examples of. 888-890
exceptions, 894
fault tolerance, 892
fragmentation , 898, 899
free-store, 898-902
hard real time, 893
ideals, 894- 895
maintenance, 891
mcmOly management, 902- 904
new operator, 894
predictability, 893, 894
real-time constraints, 893
real-time response, 890
reliability, 890
resource leaks, 893
resource limitations, 890
soft real time, 893
special concerns, 890- 891

Ellipsis ."
arguments (unchecked), 1068-

1069
catch all exceptions, 150

Empty
emplyO, is comainer empty?, 11 11
lists. 702
sequences, 702
statements, 100

Encapsulation, 496
Enciphering (Encryption), example,

930-935
endO

itcrator. 1109
Siring, 815, 1132
vector, 695

End of line $ (in regular expressions),
837, 1134

End of file
eorO, 349. 11 27
me streams, 360
lIO error. 349
stringstream, 390- 391

Ending programs. See Terminating.
programs.

endl manipulator, 1130
ends manipulator, 1130

INDEX

English grammar us. programming
grammar, 191- 192

cnum, 314-317, 1008. See alsQ Enumer­
ations.

Enumerations, 314-317. 1070
enum, 314-3 17, 1008
enumerators. 3 14-317, 1070- 1071

EOF macro. 10 19- 1020
cofO stream state, 349, 1127
cqualO, 729, 1113
Equal ==, 67, 1052
Equality operators, expressions, 1052
cqualJ angcO, 728, 763- 764
cquaUoO, 1122
e raseO

list, 713-715, 1110
list operations, 600- 602
string, 815. 11 32
vector, 715- 718

crrno, error indicator, 880, 1138
crrorO example, 140- 141

passing multiple strings, 150
~ ullcaught c. ... ception" elTor, 151

E rror diagnostics, templates, 661
Error handling

See alsQ Errors; Exceptions.
% for floaring-point numbers,

228-231
catching exceptions, 238- 240
fLies fail to open, 385
GU ls.563
hardware replication, 896
liD errors. See 110 errors.
liD streams, 1127
mathematical elTQrs, 880
modular systems. 896- 897
monitoring subsystems, 897
negative numbers, 227- 228
positioning in files , 389
predictable en-ors, 895
recovering from errors, 238- 240
regular expressions, 842- 844
resource leaks, 896
self-checking, 896

INDEX

SllJ (St:Uldard Template Library),
1098-1100

tcsting for errors, 224-227
transiclll errors, 895-896
vector resource exceptions, 677

Error messages
Sa a/.w I.'rroro ; Reponing errors;

runtime_error.
exceptions, printing, 148- 149
templates, 661
writing your OWI\, 140

Errors, 1173
oS« al.w D<:bugging; Tcsting.
classifying, 132
compile-time, 48-50, 132, 134-135
detection ideal. 133
crrorO, 140- 141
estimating resultS, 155- 156
incompletc prograIltS. 134
input format, 64-65
link·time, 132, 137-138
logic, 132, 152-154
poor sl>ccifications, 134
rcco\'ering from, 238-240. Set also

Exceptions.
sources of, 134
syntax, 135-136
translation units, 137- 138
type mismatch, 136-137
undcclared identifier. 256
unexpected argulllents, 134
unexpected input, 134
unexpected state, 134

Errors, nm-time, 132. 138-140
See also Exceptions.
callee responsibility, 141-143
caller responsibility, 140-141
hardware violations. 139
reasons for, 142- 143
reponing, 143-144

Estimating development resources, 175
Estimating results. 155- 156
Examples

age distribution. 527- 528
calculator. Sa C1.Iculator example.
Dale. Stt Date example.

deciphering, 930-935
deleting repeated words, 71-73
dictionary, 12 1- 123, 756
Dow J oncs tracking, 750-753
email analysis, 820-830
embedded systems, 888- 890
enciphering (encryption), 930-

935
exponential function, 5 17-5 18
finding largest elemcnt, 687-690,

696--697
fruits, 747-750
Gaussian climination, 874-876
graphics. 410-414, 432
graphing data, 527-528
graphing functions, 517-518
GUI (graphical user interface),

552-556, 560-561,563-564
Hello, World !, 45-46
intrusive containers, 1025-103 1
lines_window, 552-556, 560-561,

563-564
link, 598--607
list (doubly linked), 598-607
map container, 747-753
Matrix. 872-877
palindromcs, 637-641
Pool allocator, 902-903
Punccstream, 397-401
reading a single value, 353-357
reading a Structurcd me. 361-370
regular expressions, 844-849
school table. 844-849
searching, 828-836
sequences, 696--698
Stack allocator, 903- 904
TEA ('Iiny Encryption Algorithm),

930-935
tcxt editor, 704-711
vector. Sa vector example.
Widget manipulation. 552- 556,

1167- 1170
windows, 552-556
word frequency, 745-477
writing a program. Sa Calculator

example.

1197

11 98

Examples (continual)
writing rues, 346-348
Z I P code detection, 828-836

cc)(ception>, 1097
Exceptions, 144- 148, 1086

Sa abc Error handl ing: Errors.
bounds error, 147
C++ and C, 992
c .. tch, 145,238-240, 1087
cerr, 149
cout, 149
d CSlniClors, 1088
embedded systems, 894
error messages, printing, 148-149
exception, 150, 1099- 11 00
failure to catch, 15 1
GUIs,563
input, 148-151
narrow_casl example. 151
olT·by~nc error, 147
ouc oCrange, 147
overview, 144-145
RAJ I (Resource Acquisition ls Ini-

tialization), 1087
range errors, 146-148
fe-throwing, 677, 1087
runtime_erro r, 140, 149. 15 1
Slack unwinding, 1088
standard library exceptions. 1099-

1100
tcnninating a program. 140
throw, 145. 1086
truncation. 151
type conversion, 151
uncaught exception, 151
ust:r-dcrUlcd types. 1087
\'('clor range checking, 668-669
vector resources. Sa veclor.

E.,xecutable code, 48. 1173
Executing a program . II . 11 54
ellitO. terminating a program. 1149
ellplicit constructor. 62 1- 622. 1003
Expression, 94-95. 1049-1054

coding smlldards, 940-9;11
constant expressions. 1056-1057

conversiolU. 1054-1056
debugging, 159

INDEX

grouping 0 , 95, 83 1, 837. 840
lvaiue, 94-95, 1054
magic constants, 96, 141, 231-233,

697
memory management. 1057- 1058
mixing types. 98-99
non'obvious literals, 96
0l>crmor p!'(:cedellce, 95
opc.rators,97, 1049- 1059
order of opc.r.uiolls. 179
p!'(:cedellce, 1054
preserving values, 1054-1055
promotions, 98-99, 1054-1055
rvalue, 9'~-95, 1054
scol>C !'(:solution, 1049
I)'IX couversion, 98-99, 1058-

1059
usual arithmctic conversions. 1056

E;'(pression statement. 99
Empty statement. 1001
ell iern. 257, 999
Exlr.lCling text from files, 820-825.

828-830

F
f/f sufflX , 1042
fai l() stream state, 349,) 127
Falling through end of fu nctions. 2i2
faiSt' , 1003-1004
Fault tolerance, 892
fclosc(), 10 19- 1020, 1140
Feature ottp. 186, 199, 11 73
Feedback. programming, 36
l-icJds, fonnauing. 383-384
FILE, 10 19-1020
E le 110, 343-344

binary 110. 387
convening represcntations. 368-

370
c!oscO. 346
closingfiles, 346, 1140- 1141
modes, 11 40-1141

INDEX

open(), 346
opening flies. Su Opening files.
positioning in flies, 389
reading. Su Reading fIIcs.
writing. Sa Writing flies.

Eles, 11 73
&ealJo Etc 110 .
C++ and C, 1019-1020
opening and closing, C·sty[c lIO,

11 40-1 14 1
fi llO, 1116
Ell color cxamplc, 456-459, 492
fil CnO, 111 6
findO, 728-731

associativc containcr ol>cr,lIions,
1111

finding links, 600~602
generic usc, 731~732
non modifying sequencc alga·

rithms, 11 13
string operations, 815, 1132

find~endO , 1113
find_firsCof() , 1113
findjf(), 728, 732-734
Finding

Set abo Matching; Scarching.
associative container operations,

11 11
clcmcnts, 728
links, 600-602
pattcrns, 828- 830, 833-836
strinb'S, 815, 1132

fi xed format , 383
fi xed manipulator, 38 1, 1130
f10il l t)1>C, 1062
<float.h>, 858, 1136
Floating']>oint, 63, 855, 11 73

% remainder (modulo), 199
assigning integers to, 856-857
assigning to intcgcrs, 857
collvcrsions, 1055
fi xed fonnat, 383
generil l format, 383
input, 180, 199- 200
intCb JI convcrsions, 1055

li tcrals, 180, 1042- 1043
mantissa, 857
OUtput, formatting, 380- 38 1
prccision, 382-383
and fCill numbcrs, 855
rounding, 382-383
scientific format , 383
trullcation, 857
vector example, 11 9- 121

000rO, 879, 11 37
FLT_DlG limit mllCro, 11 37
FLTK (Fast Light "Ioolkit), 4 14, 11 58

code]>ortability, 414
color, 447, 459-461
current style, obtaining, 492
downloading, 1158
fill,459
in graphics code, 432
installing, 1159
lines, drawing, 449, 452-453
outlines, 459
rectangles, drawing, 459
tesling, 1160
in VISUal Studio, 1159-1160
waiting for user action, 547-548,

556-557
FLT_MAX limit macro, 1137
FLT_MAX~ 1 0_EXP limit macro, 1137
FLT_MIN limit macro, 11 37
flush manipulator, 1130
Hushing a buITer, 239-240
FOnlS for Graphics example, 463-464
fopenO, 1019-1020, 1140
for·stalement, 110-112
Ford, Henry, 772
for_each(), 1113
Formal arguments. Su Parameters.
Fonnatting

SaalJolIO strcams, 11 28-1129.
SaalJoC-style 110, 1016-10 19.
Saa/so Manipulators, 1129-1130.
case, 393-394
fields, 383-384
precisioll, 382-383
whitcspace, 393

1199

1200

Fortran language, 786-788
array indexing, 863
complel, 882
subscripting, 863

Forward declarations, 259
For-vard ilcrawrs, 722-723, 1103
fprintf() , 1017, 1141
Fragmclll.1Iion, embedded systems,

898, 899
free(), deallocate, 1009-1010, 1147
Free store (heap slOrage)

allocltion, 578-579
C++ and C, 1009- 10 II
deallocation, 584--586
delete, 584-586, 586-590
and dCSlruCIOf'S. Sa destructors.
embedded systems, 898-902
garbage collection, 585
leaks, 58.1- 586, 586-590
new, 578- 579
object lifetime, 1048

Freeing memory. Sa Dcallocating
memory.

friend , 1003, 1073-1074
from_slring() example, 817-818
fronl O, first clement, 1109
fronl_inserter(), 1122
fslream{) , 1126
dstream>, 1096
fst ream type, 344-346
Fully qualified names, 291-293
function example, 439, 5 15-518
FUllction, 47, 112- 114

Sa abo Member functions.
acccssingclass members, 1073- 1074
arguments. &e Function argu-

ments.
in base classes, 496
body, 47, 11 3
C++ and C , 994- 998
callback, CUls, 544-546
calling, 1066
cleaning up, 233- 234
coding standards, 940-94 1
common style, 482-483
debugging, 158

declarations, 115-116, 1066
ddinition, 11 2, 269,1 173
in derived classes, 493, 496
falling through, 2n

INDEX

fom)al arguments. See Function pa-
rameters.

fri end declaration, 1073-1074
generic code, 483
global variables, modifying, 267
graphing. Sa FunClion example.
inline. 3 12, 992
link.a~ specifications, 1069
naming. Sa Namespaces.
nesting, 267
organizing. Set Namespaces.
ovcrload resolution, 1067- 1068
overloading, 3 16-318, 516, 992
parameter, 11 3. Sa abo Function

parameters.
poimer to, 1000-1002
posHonditions, 163-164
prc-<:onditions, 161-163
pun:: virtual, 1175
requirements, 151 , Set abo Pre·

conditions.
return type, 47, 270-271
return, 112- 11 3,271-272, 1066
standard mathematical, 518, 1137-

1138
types as p.1rameters. Set Tcmplates.
uses for, 11 4-115
virtual, 1000- 1002. Set also Virtual

functions.
Function activation record, 284
Function argument

Sa aJ.w Function parameter :
Parameters.

chccking, 281 - 282
conversion, 28 1-282
declaring, 270- 271
fomlal. Set Parameters.
naming, 270- 27 1
omitting, 270
passing. Sa Function call.

FUllction call, 282
() operator, 735-736

IND EX

C<1.11 stack, 287
c:cpression() call example, 284-287
function activation record, 284
history of, 785
memory for. 577
pass by consl rderence, 273-276,

279-281
pass by lIon·consl reference, 279-

28 1
pass by rderence, 276-28 1
pass by value, 273, 279-28 1
recursive. 286
stack growth, 284-287. ~alJo

Function activation record.
temporary objects, 280

Function·like macros, 1022-1023
Function member

definition, 301 -302
same lIame as class. ~ Construc·

tors.
Function object, 734-736

o function call operator, 735-736
abstract view, 736- 737
adaptors, 11 23
arithmetic operations, 1123
parameterization, 736-737
predicates, 737-738, 1122-11 23

Function pammeter (fomlal argument)
... ellipsis, ullchecked arguments,

1068
pass by const referellce, 273-276,

279- 281
pass by Ilon-coost reference, 279-281
pass by reference, 276-28 1
pass by value, 273, 279-28 1
temporary objects, 280
unused, 270

Function template
algorithms, 659- 661
argument deduction, 664- 665
parameterized functions, 659- 661

<functional>, 1095, 11 22-1123
Functional cast, 1058
Functional programming, 788
Fused multiply·add, 868

G
Gadgets. Set Embedded systems.
Garbage collection, 585, 900-90 I
Gaussian elimination, 874-875
gcounl(), 1128
general fornlat, 383
general manipulator, 381
generate{), 111 6
generate_nO, 111 6
Generic code, 483
Generic programming, 659-66 1, 782,

1173
Geometric shapes, 423
gelO, 1128
gelc(), 1018, 11 45
getchar(), 1019, 1145
getline(), 391-392, 815, 819, 11 28
gets!), 1018

C++ alternative » , 1019
dangcrous, 1018
scanfO, I I44-11 45

geuokenO example, 194
G IF images, 473-475
Global scope, 264 , 267, 104-6
Global variables

functions modifying, 267
memory for, 577
order of initialization, 288-290

Coing 0 0l of scope, 266-267, 287
goodO stream state, 349, 11 27
GP. ~ Generic programming.
Grammar example

alternation, patten lS, 192-193
English granmIar, 191-192
Expression e.xample 186-191 , 195-

198,200-201
parsing, 188-19 1
repetition, pattcnlS, 192-193
rules w. tokens, 192- 193
sequencing rules, 192-193
terminals. Sa Tokens.
writing, 187, 192-193

Graph.h, 4 17-4 18
Graphical uscr intcrfaces. &t CUb.
Graphics, 408

1201

1202

Graphics (col/HI/ued)
See also Color; Graphics example ;

Shape.
display modeL 409-410
displaying, 472-475
drawing on screen, 419-420
encoding, 473
fIlling shapes, 427
fonnaLS, 473
geometric shapes, 423
G I F, 473-475
graphics libraries, 474-475
graphs, 422-423
images from files , 429-430
importance of, 408-409
j PEG, 473~475
line style, 427
loading from files, 429-430
screcn coordinates, 4 1 5~416

selecting a sub-picture from, 473
user interface. See G U Is (graphical

user interfaces).
Graphics example

Graph.h, 417-418
G U I system, giving control to,

419
header files, 417-418
mainO, 4 17-418
Poinl.h, 440
poinLS, 422~423
Simple~window.h , 440
wait~for_hu\tonO , 419
Window.h, 440

Graphics example, design principles
access control. See Access control.
a\tachO us. addO , 483~484
class diagram, 497
class size, 481 - 482
common style, 482-483
data modification access, 484-485
generic code, 483
inheritance, interface, 504-505
inheritances, implementation, 504~

505
mutability, 484-485
naming, 483-484

IND EX

object-oriented progranuning, ben-
efits of, 504~505

operations, 482-483
private data members, 484-485
protected data, 484-485
public data, 484-485
types, 480-482
width/height, specifying, 482

Graphics example, GUI classes, 438~
440

&e abo Graphics example (interlaces).
Bulton, 439
In~box , 439
Menu, 439
Out_box, 439
Simple~window , 418-420, 439
Widget, 548-550, 1163- 1164
Window, 439,1 164- 1166

Graphics example, interfaces, 438-
439

See aUQ Graphics example (G U I
classes).

Axis, 420- 422, 439, 518-52 1
Circle, 464-467, 489
Closed_polyline, 451-4-53
Color, 445-447
Ellipse, 466-468
Function, 439, 5 14-518
Image, 439, 472- 475
line, 441-444
lines, 443-445, 489
line_style, 448-450
Mark,470-472
Marked_polyline, 468-469
Marks, 469-470, 489
Open_polyline, 450-451 , 489
Point, 422-423 , 44 1
Polygon, 423- 424 , 453-455, '~89

Rectangle, 424-427, 455- 459, 489
Shape, 440-44 1, 445 , 485-499.

504- 505
Text, 427- 429, 462-464

Graphing data example, 527-534
Graphing functions example, 5 10-5 14,

52 1-526
GraphJih namcspace, 4 17-418

INDEX

Graph example
See also Grids.
Axis, 420--422
coordinates, 422--423
drawing, 422- 123
points. labeling. 468- 469

grealerO, 1122
Greater thilll >, 67, 1052
Greater than or equal >=. 1052
greater_equaIO, 11 22
Green marginal alerts, 3
Grids, drawing, 444- 445, 448-450
Grol'ping reglllar expressions, 831,

837, 840
Guaramees, 676- 678
GU I system, giving control to, 4 19
Guidelines. Sa Ideals.
GUls (graphical user interfaces), 540-

541
Sa abo Graphies CJlample (G U I

classes).
caUback functions, 544-546
callback implementation, 1162-

1163
ch_nexlO examplc, 544-546
common problems, 562- 564
control inversion, 556- 557
conlrols. Sa Wldgcts.
coordinates, eomputcr screens,

415--4 16
debugging, 562- 564
error handling, 563
examples, 552- 556, 560-56 1,

563- 564
exceptions, 563
Fr.:rK (Fast Light l oolkit), 4 14
layers of code, 544- 545
ne~tO CJlample, 546
pixels, 415- 416
portability, 4 14
standard library, 4 14-415
system tests, 969-973
toolki t, 4 14
veclor of references, simulaling,

1166- 11 67
vector Jcf example, 1166-1 167

H

wait loops, 547- 548
wail_for_bullonO examplc, 547- 548
waiting for user action, 547- 548,

556-557
Widget example, 548-556, 1163-

1164, 1167- 1170
Window example. 552- 556, 1164-

11 66

.h file suffix, 46
Half open sequenecs, 694- 695
Hard real-time, 893, 942
Hardware replication, error handling,

896
Hardware violations, 139
Hash function , 753-754
Hash tables, 753
Hash values, 753
Hashcd container. See unordered_map.
Hashing, 753
Header files , 46, 11 73

C standard libralY, 1097
declarations, managing, 261 - 262
definitions, managing, 261-262
graphics example, 417- 4 18
including in source files, 262-264,

1090- 109 1
multiple inclusion, 1025
standard library, 1095- 1097

Headers. See Headcr files.
Heap algorithm, 1119- 11 20
Heap memory, 897- 898. See (liso Free

store.
Hejlsberg, Anders, 796
~Hello, World!" program, 45- 47
Helper functions

!= inequality, 328
== equality, 328
class interfaces, 326-328
Dale example, 305-306, 327
namcspaces, 328
validity checking date values, 306

hex manipulator, 378- 379, 1130
Hexadecimal digits, 393

1203

1204

Hexadecimal number system. 377- 379,
1041 - 1042

Hiding information, 1173
Hopper. Grace Murray, 789- 790
Hyperbolic cosine, cosh(), 879
Hyperbolic sine, sinhO, 879
Hyperbolic tangent, lanh(), 879

I
1/0 errors

badO stream state, 349
dearO, 349-352
end of file, 349
eoiO stream state, 349
eITOr handling. 1127
fai tO stream state, 349
goodO stream state, 349
ios_base, 35 1
stream Stales. 349
recovering from, 349-352
unexpected errors, 349
ungetO, 349- 352

110 streams, 1124-- 11 25
« output opcr<lIor. 8 19
» input operator. 8 19
cerr, standard e lTOT output stream,

149, 11 25, 1144
do smndard input. 341
class hierarchy, 819, 11 26- 11 27
CQut standard OUtpUi. 341
error handling, 11 27
fomlauing, 1128- 1 J 29
fstream, 384-386, 389, 1126
ge10, 819
gell ioeO. 8 19
header files, 1096
ifstrcilm, 384-386, 1126
input operations, 1128
input streams, 34 1- 343
iostream library, 34 1- 343, 1124-

1125
islream, 34 1-343, 11 25-11 26
iSlringstream, 11 26
of sIre am, 384-386, 1126
oSlream, 341 -343. 11 24-11 6

INDEX

oSlringslream.384-386, 11 26
output operations, 1128- 11 29
Output streatns, 341 - 343
standard manipulators, 378. 1129-

11 3 1
standard streams, 11 25
states, 11 27
stream bc:havlor, changing. 378
stream buffers, slreamoufs , 1125
stl'eam lIlodes, 1126
sIring, 8 19
slringslream, 390- 39 1, 1126
throwing exceptions, 1127
unfonnatted input, 11 28

IBM, 786- 788
Ichbiah.J ean, 797
I DE (interactive development environ­

ment), 52
Ideals

abstraction level, 778- 779
boHom·up approach. 776- 777
class interfaces. 3 18
code SlrUcturc. 776
coding standards, 936- 937
consistency, 780
COlTeCt approaches. 776- 777
correctness. 775
definition, 11 73
direct expression of ideas. 777- 778
efficiency, 775-776
embedded systems, 894- 895
imponance o f, 8
KISS, 780
maintainability, 775
minimalism, 780
modularity. 779- 780
on·time delivery, 776
overview. 774-775
perfonnance, 775- 776
software. 34- 37
top·down appfO.1ch. 776-777

Identifiers. 1045. Sa abo Names.
reserved. 75- 76. See alw Keywords.

if-statements, 101-103
=ifdd, 1024-1025
::ifndef, 1025

INDEX

ifslream type, 344-346
imagO , imaginary pan, 881 , 1139
Image example, 439, 472-475
Images. Set Graphics.
Imaginary pan, 881
Immutable values, class interfaces,

325- 326
Implementation, 1173

class, 302-304
inheritance, 504-505
programs, 35

lmplementation·defined feature, 1039
Implicit conversions, 62 1-622
In·class member definition, 1074- 1075
in mode, 385, 11 26
In_box example, 439, 550-551
#include, 46, 262-264, 1090
Include guard, 1025
includes{), 111 9
Including headers, 1090- 1091 . Set olw

:tinclude.
Incremenling ++, 66, 695

iler.J.tors, 694-695, 721 , 1101-1104
pointers, 630
variables, 73-74, 97- 98

Indenting nested code, 269
Inequality != (not equal), 67, 1052,

1064
complex , 88 1, 1138
containers, 1111
helper function, 328
iteralors, 695, 1102
siring, 67, 8 15, 1132

Infinite loop, 11 73
Infinite rcolrsion, 196, 11 73
Infonn:lIion hiding, 1173
Infonn:uion processing, 31-32
Inheritancc

class diagr.un, 497
defiuition, 496
derivcd classes, 1078- 1079
embedded systems, 912- 916
history of, 799
implementation, 504-505
interface, 504-505
multiple, 1079

pointers tI.f. references, 598
tcmplates, 66 1-662

Initialization, 69-73. 11 73
arrays. 582-583. 633-634
constants, 260. 324-325, 1062
conSlmctors, 306-309
Dale example, 305-309
default. 26 1. 322-323, 1048
invariants, 309, 676-677
menus, 558
pointer targets, 582-583
pointers, 582-583, 635
Token example, 183

inJine, 1003
Inline

functions, 992
membcr functions, 3 12

inner-producl{), 729
Set olw Dot product.
description, 742-743
generalizing, 743- 744
matrices, 868
multiplying sequences, 1139
standard library, 729, 739

inplace_mergeO, 1118
Input, 60-62

Setolw 110 slrcams; Input ».
binary 110, 386-389
C++ and C, 1017-1019
calculator example, 177, 180, 183-

184, 199-200, 204-206
case sensitivity, 64
cin, standard input stream, 61
dividing functions logically, 353-

356
fLIes. Set FLle 110.
fomlat errors, 64-65
individual characters, 392-394
integers, 379-380
iSlringslream, 390
line-oriellled input, 39 1-392
newline character \ n, 61-62, 64
potemial problems, 352-357
prompting for, 61, 177
separating dialog from function ,

356-357

1205

1206

Input (rontinud)
a series of values, 350-352
a si.ngle value, 352-357
source of exceptions, 148-151
Slringslream, 390-39 1
tab character \ 1, 64
terminaring, 61 -62
type sensitivity, 64- 65
whitespacc, 64

Input » , 6 1
case sensitivity, 64
complex, 881, 1139
formatted input, 1128
multiple values per statement, 65
strings, 815, 1132
text input, 815, 819
uscr·dcfmcd, 359
whitcspace, ignoring, 64

Input devices, 340-341
Input itcrators, 722- 723, 1103
Input loops, 359-36\
Input/output, 34 1- 343

See abo InpUl : Outpm.
buffering, 342 , 402
C++ and C. See sldio.
computation overview, 91
device drivers, 340
errors. Sa liD errors.
files. Sa File 110 .
fOm1.1Uing. £r Manipulators; printfO.
iiTCgularity, 376
istream, 34 1-348
natural language differences, 402
ostream, 34 1-348
regularity, 376
streams. Sa 110 streams
strings, 8 19
text in GUIs, 550-55 1
whitespaee, 393, 394-401

Input prompt >, 221
Input streams, 34 1-343. Sa alw 110

streams.
Inputs, testing, 961
insertO

list, 600-602, 713-715

map container. 750, 75 1
string, 8 15, 1110, 11 32
... ector, 71 5-718

inserterO, 11 22
Inserters, 11 2 1- 11 22
Inserting

list clements, 713- 715
into strings. 8 15,1 110.1 132
... eclOT clements, 715-718

Installing

INDEX

FLTK (Fast Light Toolkit), 11 59
VISual Studio, 1152

Instantiation, templates, 658-659,
1084- 1085

int, integer type, 66-67, 78, 1062
bits in memory, 78. 9 17

Integers, 77-78. 854-855, 1174
assigning floating·point numbers

to, 857
assigning to floating·point num·

bers. 856-857
decinlal, 377-379
input, fom1:1tting, 379-380
largest, find ing, 879
literals, 104 1
number bases, 377-379
octal , 377-379
output, fomlatting, 377-379
reading, 379-380
smallest, rmding, 879

Integral conversions. 1055
Luegral promotion, 1054-1055
Interactive development environment

~DE), 52
Interrace das~. Sa Graphics example

(interfaces).
Interfaces, 1174

classes. S« C lass interfaces.
inheri1:1Jlce, 504-505
user. Sa User inte rfaces.

internal manipulator, 1130
INT~MAX limit l11:1cro. 1136
INT~MIN limit macro, 1136
Intrusive containers, example, 1025-

1031

INDEX

Invariants, 309, 1174
Su abo PosHonditions; Pre-condi-

tions.
assert ions, 161
debugging, 160-161
dcCault construclOrs, 620
documenting, 780
Dale example, 309
invention of. 793
Polygon example, 455

Invisible. See Tra nsparency.
<iomanip>, 1096, 1129
<ios> , 1096, 1129
<iosfwd >, 1096
ioslream

butTers, 402
C++ and C. 1016
exceptions, 1099
library, 341-343

<ioslream>, 1096, 1129
Irregularity, 376
is_openO, 1126
isalnumO classify character, 393, 1131
isalphaO classify character, 247, 393,

1131
iscnlrlO classify character, 393, 11 3 1
isdigilO classify character, 393, 11 3 1
isgraphO classify character, 393, 113 1
islowerO classify character, 393, 113 1
isprintO classify character, 393, 1131
ispunclO classify character, 393, 1131
isspaceO classify character, 393, 1131
islream, 341 - 343, 1125- 1126

» , text input, 815, 11 28
» , user·defined, 359
binary lIO, 386-389
connecting 10 input device, 1126
rue 110. fstream, 343-348,1126
gelO , get a single character, 393
gellineO, 391 - 392, 1128
siringstreams, 390- 391
unformatted input, 39 1- 393, 11 28
using IOgcther with stdio, 10 16-

1017
<islream>, 1096, 11 24 , 1128- 11 29

islream_iterator type, 758-761
iSl.ringslream, 390
isupperO classify character, 393, 1131
isxdigitO classify character, 393, 1131
Iteration

See abo lteralOrs.
control valiablcs, 109
defmition, 1174
example, 708-711
for·statements, 110- 112
linked lists, 701 - 703, 708- 711
loop variables, 109
Stri.Il~ , 815
through values. See vector.
while·statements, 108- 109

ilerator, 1108
<;Ieralor>, 1095, 1121
Itcrators, 694- 696, 1100- 11 01 , 11 74

See abo STL iterators.
bidirectional iterator, 722- 723
category, 722-723, 1103- 1105
containcrs, 1109, 1104-1105
cmpty list, 702
cxample, 708- 711
fonvard iterator, 722- 723
header files , 1095- 1096
input iterator, 722-723
operations, 695 , 1102- 1103
Output iterator, 722-723
VS. poimcrs, 1101
random-access iterator, 723
sequence of clements, 110 I- II 02

iter _swap(), 1116

J
japanese age distribution example,

527- 528
jPEG images, 473-475

K
Kernighan, Brian, 802-803, 988-989
key_compO, 1112
key_compare, 1108

1207

1208

ker_type. 11 08
Key,value p.1irs, cOlilainers for, 744
Keywords, 1003-1004, 1045- \046
KISS, 780
Knuth, Don, 774-775
K&R, 802, 988

l
III suffix, 104 1
\ 1, " lowercase character," rege)(, 837,

1135
\ l , "not lowerc.1se.~ rege)(, 939, 1135
Label

access control, 302, 502
caSC'. 104- \07
graph example. 5 18-521
of sta tement, 1059

L:u gcst imcgcr, findin g, 879
b.ws of optimization, 893
Layers of cooe. CUb, 544-545
Layout mles, 939-940, 1000
Leaks, memory, 584-586, 586-590,

899
Leap year, 305
left manipulator, 1130
Legal programs, 1039
lenglhO, 815, 11 32
Length of strings, finding, 8 15, 1012,

11 32
less(), 1122
Less than <, 1052
Less than or equal <::: , 67. 1052
less_equal (). 11 22
Leiters, identifying, 247, 393
Ic)(ical_east.8 19
LcxicOb'TIlphical comparison

< comparison. 8 15, 11 32
<::: comparison, 1132
> comparison, 11 32
>= comp.1rison, 1132
Gstyle strings, 1012
le.icographicaLcomparc(), 1121

Libraries, 51, 1174
&to alw Standard library.
role in debugging, 158

INDEX

uses fo r, 175
Lifctiml:, ObjCCls, 1048- 1049, 1174
Limit macros, 11 36- 1137
Limits, 858
<limits>, 858, 1096, 1135
<limits.b , 858, 11 36
Line comment II, 45
Line example, 44 1-443

w. Lines, 444
Linc-oricmcd input, 39 1-392
Linear equations example, 872-877

baclu ubstitulion(), 874-875
dassic climination(),874-875
Gaussian elimination, 874-875
pivoting, 875-876
testing, 876-877

Lines example, 443-445, 489
us. Line, 444

Lines (graphic), drawing
Saalw drawJ inesOi Graphics.
on graphs, 518-52 1
line slYles, 448-450
multiple lines, 443-445
single lines, 441-443
styles, 427, 449
visibili ty, 492

Lines (of text), identifying. 707 708
line_style example, 448--450
lines_window example, 552- 556, 560-

561, 563-564
link example. 598-607
Link-time errors. &t Errors, link·time.
Linkage convelilion, C. 999
Linkage specifications, 1069
Linked lists. 698. &to alw Lists.
Linkers , 51, 11 74
Linking programs, 5 1
Links, 598-602, 606-607, 699
Lint, consistency checking program, 801
Lisp language, 790- 791
lisl, 700, 1107-1 111

addO, 600-602
advanceO, 600-602
back(), 708
erase(), 600-602.7 13- 715
(indO, 600-602

INDEX

inserl O, 600~602 , 713-715
operations, 600-602
properties, 712-713
referencing last element, 708
sequence containers, 1105
subscripting, 700

disl>, 1095
Lists

containers, 1110
doubly linked. 598, 698
empty, 702
erasing clements, 713-715
examples, 598-600, 704-711
lindillg links, 600-602
getting the nth clemem, 600-602
inserting clements, 600-602, 713-

71 5
iteration, 701- 703, 708-71 1
link manipulation, 600-602
links, examples, 598-600. 606-607,

699
operations, 699-700
removing elements, 600-602
singly linked, 598, 698
this pointer, 603-605

Literals, 62, 104 1, 1174
character, 159, 1043-1044
decimal integer, 1041
in expressions, 96
f/F suffix, 1042
Ooating-point, 1042- 1043
hexadecimal integcr. 1041
integer, 1041
IlL suffix, 1041
magic constants, 96, 14 J, 23 I -233,

697
non-obvious, 96
null poimer, 0, 1044-1045
numbcr systems, 1041- 1042
octal integer, 1041
special characters, 1043- 1044
string, 159, 1044
tellllinalion, debugging, 159
for types, 63
u/u suffix, 1041
unsigned, 104 1

Local (automatic) objects, lifetime, 1048
Local classes, nesting, 268
Local functions, nesting, 268
Local scope, 265- 266, 1046
Local variables, army pointers, 636-637
Locale, 402
<locale>, 1097
logO, 879, 11 37
log100 , 879, 1137
Logic errors. Set Errors, logic.
Logical and &&, 1052, 1057
Logical operations, 1057
Logical or II , 1053, 1057
10gical_andO. 1122
logical_notO, 1122
logical_orO, 1122
Logs, graphing, 517-518
lo ng imegcr, 917, 1062
LONG_MAX limit macro, 1137
LONG_MIN limit macro, 1137
Look-ahead problem, 202-207
Loop, 109, 111 , 1174

examples, parser, 198
inlinite, 196, 1173
testing, 965-966
variable, 109, III

Lovelace, Augusta Ada, 797
lower, 842, 1134
10wer_boundO, 764 , 1112, 1117
Lower case. See Case.
Ll,celll Bell Labs, 803
Lvalue, 94-95, 1054

M
Machine code. Set Executable code.
Macro substitution, 1090-1091
Macros, 1021-1022

conditional compilation, 1024-
1025

t define, 1022-1024, 1090-1091
function·like , 1022-1023
.::'ifdef, 1024-1025
.::'ifndef, 1025
tinclude, 1024, 1090
include guard, 1025

1209

1210

Macros (continI/ell)
naming conventions, 102 1
syntax, 1023-1024
uses for, 1021

Maddoc.J ohn, 830
Magic constants, 96, 141 ,23 1-233,

697
Magical appro.leh 10 programming. 10
mainO, 46-47

arguments to, 1040
global objects, 1040
return values. 47, 1039-1040
starling a program, 1039- 1040

Mailllainability, sofnvare, 34, 775
Maintenance. 891
make_heapO. 11 19
make_pairO, 751 , 1124
nlake_vecO, 677
maliocO, 1009, 1147
Manipukllors, 378, 1129- 113 1

complete list of, 1129-1130
dec, 11 30
endl, 11 30
fi xed, 1130
hex. 1130
noskipws, 1129
oel, 11 30
resetiosilags{), 11 30
scientific, 1130
setiosflags(), 1130
setprecision(}, 1130
skipws. 11 29

Mantissa, 857
map, associative array. 744- 750

Sa (1iJO set; unordered_map.
I I, subscripting, 745, 1111
b..l lanced trees, 748- 750
binary search lI'ees, 747
case sensitivity, N03 ase example,

762- 763
counting words example. 745- 747
Dow J ones example, 750- 753
em:!il example, 820-836
eraseO, 749, 1110
finding clements in. 745. 749,

1111 - 1112

fruits example. 747- 750
inserlO, 750, 751. II 10
iterators, I 105
key storage, 745
make_pairO, 751

INDEX

N03 ase example, 750, 762-763
Node example. 747- 750
red·black trees, 747
14. set. 756
standard libralY, 1107- 111 2
tree structure, 747-750
without values. Sa sci.

<map>, 744 , 1095
mappefU yfX!, 1108
Marginal alerts, 3
M<lrk example, 470-472
Marked_polyline example. 468-4 69
M<lrks example, 469-470, 489
M ars Rover, 32-33
Matching

Sa abo Finding; Searching.
rcgu~kf e.xprcssions, regex, 1133-1135
te.Xt pattcms. &r Regular e.xprcssions.

Math functions, 5 18, 1137- 11 38
Mathematics. &t NUlllerics.
Mathematical functions, standard

amO. absolute value, 879
acosO, arccosine. 879
asinO, arcsine, 879
alanO, arctangent, 879
cei10 , 879
<cmath>. 879, 1096
<complex>, 88 1
cosO, cosine, 879
coshO, hyperbolic cosine, 879
erroo, error indicator, 880
error handling. 880
expO, natural exponent, 879
noorO, 879
logO, nalurallogarithm, 879
log I 00 , base· 10 logarithm. 879
sinO, s ine, 879
sinhO, hyperbolic sine, 879
sqrlO, square root, 879
tanO, tangent, 879
lanhO. hyperbolic tangent, 879

IND EX

Matriccs, 863- 865, 869
Malrix library cxample. 863-865, 869

0 , subscripting (Fonran style), 863
II , subscripting (C style), 860, 863
accessing array clemcllls, 863- 865
applyD, 867
broadcast functions, 867
dearJow, 870
columns, 864-865, 870
dimensions, 862-865
dot product, 868
fused multiply-add, 868
initializing, 870
inner_product, 868
inputloUlpUl, 870-871
linear equations example, 874- 877
multidimensional mauiccs, 862- 872
rows, 864- 865, 870
sca le_and_addO, 868
sliceO. 865- 866, 869
start_row. 870
subsClipting, 863-865, 869
swap_columnsO, 870
swap_fowsD, 870

maxO, 1120-11 21
max_elemenI D. 11 21
max_sizeO, I1 11
McCarthy, John, 791
Mcilroy, Doug, 802, 998
Medicine, computer usc, 30
Member, 30 1- 303

Sa also Class.
allocated at same address, 1082-

1083
class, nesting_ 268
definition, 107 1
defin itions, 1074-1075
in-class definition, 1074- 1075
out-or-class definition, 1074- 1075
sialic consl inl members, 1075

Member access
Set also Access control.
. (dot), 1072
-> (arrow), 593, 1072
:: scope resolution, 310, 1072
notation, 182

operators, 593
Ihis pointer, 1073
by unqualified name, 1072

Member function
Set aiJo Class members; Constructors;

Dcsmlctors; Date example.
calls, 118
nesting, 267
Token example, 182-183

Member initializer list, 183
Member selection, expressions, 1051
Member types

containers, 1108
templates, 1086

memchrO, 1147
memcmpO, 11 47
memcpyO, 1147
mem_fu nO adaptor, 1123
mem_funJefO adaptor, 1123
memmoveO , 11 47
Memory, 574- 576

addresses, 574
allocating. Set Allocating memory_
automatic storage, 577
bad3 110c exception, 1058
C standard library functions,

11 46-1147
for code, 577
deallocatillg, 584- 586
embedded systems, 902- 904
exhausting. 1058
free store, 577-579
freeing. Set Deallocating memory.
for function calls, 577
for global variables, 577
heap. See Free store.
layout, 577
object layout, 497-499
object size, getting, 576- 577
pointers to, 574- 576
sizeof, 576-577
stack storage, 577
static storage, 577
text storage, 577

<memory>, 1095
me mselO, 1147

1211

1212

Menu example, 439, 55 1, 557-562
mcrgeO, 728, 1118
Messages to the user, 55 1
minO, 1120-11 2 1
min_clementO, 11 21
Minimalism, ideals, 780
Minus - . Sa Subu<{ction.
minusO, 1123
Missing copies, 624
Mn~ 791 , 803
Modifying sequence algorithms, 1114-

1116
Modular systems, error handling,

896- 897
Modularity, ideals, 779- 780
Modulo (remainder) %, 66. Su abo

Remainder.
modulusO, 11 23
Monitoring subsystems, error hmldling,

897
moveO, 494, 549
Move backward - =, 1064
Move forward +=, 1064
Multi·parndigm progrnnulling irUlgtl<1gcs,

783
Multidimensional matrices, 862- 872
muliimap, 744, 824-825, 11 05
<muliimap>, 744
Multiplicative operators, expressions,

105 1
multiplies(), 1123
Multiply *, 66, 1051
Multiply and assign .=. 67
multiset, 744, 1105
<muliiset>, 744
Mutability, 484-485, 11 74

class interfaces, 326-328
and copying, 494-496

mutable, 1003
Mutating sequence algorithms, 1114-

111 6

N
\ n newline, cllaraCter literal , 61 - 62,

64 , 1043

I NDEX

Named character classes, in regular ex·
pressions, 841 - 842

Names, 74- 77
_ (underscore), 75, 76
capital letters, 76- 77
case sensitivity, 75
confusing, 77
conventions, 74- 75
declarations, 255-256
descriptive, 76
fu nction, 47
length, 76
overloaded, 138,500, 1067- 1068
reserved, 75-76. &t (Iiso Keywords.

namespace, 269, 1003
Namespaces, 290, 1088

Sa (liM! Scope.
:: scope resolution, 291
C++ and C, 1008
fully qualified names, 29 1-293
helper fu nctions, 328
objects, lifetime, 1048
scope, 264, 1046
Sld,29 1- 292
for the 5'11.., 1098
using declarations, 29 1- 293
using directives, 291-293, 1089
variables, order of initialization.

288-290
Naming conventions, 74-77

coding standards, 939-940
enumerators, 3 16
functions, 483-484
macros, 102 1
role in debugging, 158
scope, 267

narrow_cast example. 15 1
Narrowing conversions, 80-83
Narrowing errors, 15 1
Natural language d ilTcrc.nccs, 402
Natural logarithms, 879
Naur, Peter, 792- 793
negaleO, 1123
Neg-otive numbers, 227- 228
Nested blocks, 268- 269
Nested classes, 268

INDEX

Nested functions, 268
Nesting

blocks within functions, 268-269
classes within classes, 268
classes within funcLions , 268
functions within classcs, 267
functions within functions, 268
indenting nested codc, 269
local classes, 268
local func tions, 268
member classes, 268
member funcLions , 267
slrucls, 1003

new, 578, 582
C++ and C, 992 , 1003
and delete, 1057- 1058
embedded systems, 894, 898- 901 ,

901 - 902
example, 578-579
c.xceptions, 1099
types, constructing, 1050, 1051

<new>, 1097
New-style caslS, 1006
nexl_permulalionO, 1120
NO- Lhrow guarantee, 677
noboolalpha, 11 29
No_case example, 750
Node example, 747-750
Non-algorithms, testing. 961 - 968
Non-errors, 137
Non-imrusi\'e containers, 1025
Nonmodifying sequence algori thm,

11 13-1114
Nonstandard separators, 394-40 1
normO, 881, 1138
Norwegian Computing Cemer, 798-

800
noshowbase, 379, 1129
noshowpoint, 1129
noshowpos, 11 29
noskipws, 11 29
nol, synonym for !, 1003, 1004
Not·confoffiling constructs, 1039
Not !, 1050
notl 0 adaptor, 1123
nol20 adaptor, 1123

Notches, graphing data example, 5 18-
52 1,532-534

Not equal != (inequality), 67, 1052,
1064

nol_eq, synonym for !=, 1003, 1004
nocequaUoO, 11 22
nouppercase manipulator, 1130
nth_elemenIO, 1117
Null pointer, 583-584, 634- 635,

1044- 1045
Number example, 187
Number systems

basc·2, binary, 1042
base-8, octal, 377-380,1041 - 1042
base-10, decimal, 377-380, 1041 -

1042
base-16, hexadecimal. 377-380,

1041 - 1042
<numeric>, 1096, 1139
Numerical algorithms. See Algorithms,

numerical.
Numeries,854- 855

absolute values, 879
arithmetic function objects, 1123
arrays. See Malrix library example.
<cmath>, 879
columns, 859
comple)(, 88 1, 1138-1139
<complex>, 881
floating-poim rounding errors,

856-857
header fllcs. 1096
integer and floating·poim, 856-857
integer overflow, 854-857
largest imeger, finding, 879
limit macros, 1136- 1137
limits, 858
mantissa. 857
mathematical functions , 879-880
Malri)(library example, 86 1-872
multi-dimensional array, 859-86 1
numericJ imils, 1135-11 36
numerical algoritluns, 1139
overflow, 854- 858
precision, 854-858
rand O, random number, 878

1213

1214

Numerics (amnll/I(ll)
random numbers, 877- 879
real numbers, 855. Sa a1.w Hoating-

poim.
resul ts, plausibil ity checking, 855
rounding errors, 855
rows, 859
size, 854-858
sizeof{), 856
smallest imeb'Cr, fmding, 879
srand{), seed random number gen·

erator, 878
standard mathematical fu nctions,

879- 880, 1137-1138
lnlllcation, 857
vaiarray, 11 39
whole numbers. Sa Integers.

Nygaard, Kristen, 798- 800

o
.obj file sumx, 48
Object code, 48, 1174. Sit also Exe·

cutable code.
Object-orientcd progrolmming, 1174

"from day one.~ 10
us. generie programming, 660
for graphics. benefits of, 504- 505
history of, 781- 783. 798- 799

Object, 60. 1174
aliases. Sa References.
behaving like a fUllction. Sa Func-

Lion object.
constructing, 182- 183
copying, 1077- 1078, 108 1
cun'ent (this), 3 12-3 13
Date example. 328-332
initializing, 322-325. Sa alsQ COil-

stmctors .
layout in memory, 304, 497-499
lifetime, 1048- 1049
named. &t Variables.
Shape example, 487
sizf'OfO.576- 577
staLe, 30 I. Sa also Value.
type, 77- 78

INDEX

value. Sa Value.
ocl man.ipulator, 378-379. 11 30
Oclal number system, 377-379, 1041-

1042
Off·by-onc error, 147
of stream, 345-346
Old·style casts. 1006
O n'lime delivcry, ideals, 776
Onc-dimensional (10) matrices. 865-

868
\ 000 octal, character literal, 1043
OOP. £t Objcct-oriemcd PfOb"famming.
Opaque types, 1026
opcnO, 346, 11 26
Open modcs, 385-386
Open shapcs, 450-451
Opening files, 344-346

&t also File 110.
app mode (-append") , 385
ate mode ("at end"), 385
binary liles. 386-389
binary mode. 385
C·sly le 110, 11 40- 1141
failure to open, 385
rue streams, 344- 346
in mode ('"for reading"), 385
nOllexistcllt files, 385- 386
open modes, 385-386
out mode ("for Wtiling") . 385
tcsling after opening. 346
trunc mode ("tnlllcate"), 385

Opt'n_polyline example. 450-45 1, 489
OpelOltions, 66- 69, 30 I, 11 74

chaining. 178- 179
graphics classes, 482-483

operator, 1003
Operator overloading, 3 16

C++ Slandard opelOltors. 317-
3 18

fCStrictions. 3 17
tlser-defined operators. 3 17
uses for, 316-3 18

Operator, 97
! nOI, 1050
!: nOl·equal (inequality), 1052
& (unary) address of, 574 , 1050

INDEX

& (binary) bilwiS(: and, 917, \052,
1057

&& logical and, \052, \057
&= and and assign, 1053
% remainder (modulo), 105 1
%= remainder (modulo) and as-

sign, \053
° (binary) multiply, 105 1
° (unary) object COlllenlS, poillling

to, \050
0= multiply and assign. 1053
+ add (plus), 1051
++ incn:melll, \050
+= add and assign, \053
- subtract (minus), \051
-- decrement, 1050
-= subtract and assign , \053
- > (arrow) member access, 1050-

\05 1
_ (dOl) member access, 1050, \051
I divide. \051
1= divide and assign , \053
:: scope resolution. 1049
< less than, 1052
« shift left, 105 1. Su also oslream.
«= shift left and assign, 1053
<:- less than or equal, \052
:- assign , \053
:-= equal, 1052
> greater than, 1052
>= greater than or equal. \052
» shirl right, 105 1. Su (Usc

islream.
»= shift right and assign, 1053
f: conditional expression (ari th·

metic if) , \053
[I subscript, \050
" bitwise exclusive or, \052, 1057
"= xor and assign, 1053
I bitwise or. 1052, \057
I = or and assign, \053
II logic.11 or. \053, \057
~ complement. 1050
additive operators, 105 1
cons,-c.asl, \050, 1058
delete, 1051. \057- 1058

delelell, 105 1, 1057- 1058
derererence. Set ComenlS or.
dynamic_cast, 1050, \058
expressions, 1049- 1059
new, 1050, 105 1, 1057-1058
reinlerpre,-casl, 1050, 1058
si~ C<J f, 1050, 1057
slaticcast, 1050, 1058
throw, 1053
Iypeid, 1050

Optimization, laws of, 893
or, synonym ror I, 1003, 1004
Order or evaluation, 287-288
or_eq, synonym for 1=. 1003, 1004
ostream, 341-343, 11 24- 11 25

«, text output, 815, 819
«, user·derUled, 357-359
binary 110, 386- 389
connecting to output device, 1126
rue 110, fslre3m, 343-348, 11 26
stringslreams.390- 391
using together with sldio, 1016-

1017
<ostream>, \096, 1124, 11 29
ostream_iterator type, 758- 761
ostringslream, 390
oul mode, 385, 11 26
Out·or·class member derUlition, 1074-

\075
Out·of·range conditions, 581
Ou,-box example, 439, 550- 55 1
oul_oerange, 147
Output, 1174

Set also Input/output; 110 stn::ams.
devices, 340-341
to rue. Set Ftle 110, writing rues.
floating·point values, 380- 38 1
fomlat specifier %, 11 4 1
fonnalting. St(LlpUt/OutpUt (for-

matting).
integers, 3n-379
iterator, 722- 723. 1103
operations, 11 28- 1129
streams. Set 110 stream model.
10 string. See siringsiream.
tcsting, 96 1

1215

1216

Output « , 47, 67, 1129
complex, 881 , 1139
sIring, 81 5
text output, 815, 819
user-defined,357-359

Overflow, 854-858, 1174
Overloading, 1067- 1068, 1174

alternative to, 5 16
C++ and C, 992
on eonsl, 626- 627
linkage, 138
operators. Set OperatOr overloading.
and overriding 500
resolution, 1067-1068

Override, 500-50 1, 11 74

p
Padding, C-style 110, 11 43
pair. 1123-11 24

reading sequence elementS, 11 12-
1113

searching, 11 17-11 18
sorting, 1117- 1118

Palindromes, example, 637-638
Paradigm, 781- 783, 1174
l'arameteriz..1tioll. fu nction objects,

736-737
Parameterized type, 659- 661
Parameters, 1174

functions, 47, 113
list, 11 3
naming, 270-271
omitting, 270
templates, 656- 659, 662-664

Parametric polymorphism, 659-661
Parsers, 188, 193

fu nctions required , 194
granunar rules, 192-193
Expression example, 187, 195- 198,

200- 201
rules w. tokens. 192- 193

Parsing
exprcssions, 188- 191
grammar, English, 191- 192
grammar, progranuning, 188-191

tOkens, 188- 191
partial_sortO, 1117
parlial_sorCcopyO, 1117
parliaU um{), 739, 1139
parlilionO. 1118
Pascal language, 794-796
Passing arguments

INDEX

by eonst referencc, 273-276, 279- 28 1
copies of, 273
modified arguments, 276-279
by non-const reference, 279-28 1
by reference, 276-28 1
teml>Orary objects, 280
unmodified arguments, 275
by value, 273, 279-281

Patterns. Sa Regular expressions.
Pe rfonnanee

C++ and C, 990
ideals, 775- 776
tcsting, 979-981
tinung, 98 1- 983

Permutations, 1120
Petersen, Lawrence, 15
Pictures. Set Graphics.
Pivoting, 875-876
Pixels, 41 5-4 16
plusO, 11 23
Point example, 44 1 -423
poinler, 1108
Pointers, 579-580

S« aI.s6 Array; Iterators ; Memory.
• contents of, 579-580
• poillter to (in declarations), 573,

1062
- > (arrow) member access, 593,

1050-105 1
(J subscripting, 579-580
arithmctic, 630-631
array. S« Pointers and arrays.
casting. &t Type conversion.
to class objects, 59 1-593
conversion. Sa l "}rpc conversion.
to current object, th is, 603- 6005
debugging, 634-637
declaralion, C-style strings, 1015-

lOI6

INDEX

decrementing, 630
definition, 573-574, 1175
dcleted, 636
explicit type conversion. Set Typc

conversion.
to functions , 1000- 1002
incrementing, 630
initializing, 582-583, 635
!M. ilel'3tors, 110 1
literal (0),1044- 1045
10 local variables, 636-637
moving around, 630
to nonexistent elcmellts, 635-636
null, 0, 583-584, 634-635, 1044-

1045
NULL macro, 1144
lJJ. objects pointed to, 579
out-or-range conditions, 58 1
palindromes, example, 640-641
ranges, 580-582
reading and wri ting through, 579-

582
semantics, 6 19
size, getting, 576-577
subscripting Il , 579- 580
this, 654- 655
unknown, 593-595
void· , 593-595

Pointers and arrdys
converting array names to, 63 1-

633
pointc.rs to array clemc.nts, 628-

631
Poimers and inheritancc

polymorphism, 912-916
a problem 905- 909
a solution, 909- 912
uscr-derUlcd interface class, 909-9 12
vector a1ternativc, 909-912

Pointers and references
differences, 595-596
inheritance, 598
list example, 598-607
this pointc.r, 603- 605
parameters, 596-597

polar(), 88 1, 11 38

Polar coordinates, 88 1, 1138
Polygon example, 423-424 , 453-455,

48.
lJJ. Closed_polyline, 453
invariants, 455

Polyline example
closed, 451-453
marked, 468-469
open, 450-451
lJJ. rectangles. 425-427

Polymorphism
ad hoc, 659-661
embedded systems, 912- 916
paramctrie, 659-661
TUn·tinIc, 496
templates, 660-661

Poo ls, embedded systems, 902- 903
Po p·up menus, 559
pop_backO. 1110
pop_frontO, 1110
pop_heapO. 11 20
l>Onability, I I

C++, 1039
FLIT, 414 , 1158

l>Ositioning in files, 389
Post-conditions, 163- 164 , 961-962,

1175. Set abo Lwanants.
l>Ost-deeremelll - - , 1050, 1064
Post-incremcnt ++, 1050, 1064
l>Ostfix expressions, 1050
Pre-conditions, 161- 163, 961-962,

1175. See abo Invariants.
Pre-dcerelllelll -- , 1050, 1064
Prc-ineremc.1ll ++, 1050. 1064
Precedence, in expressions, 1054
Precision, numeric, 382-383, 854-858
Predicates, 733

on class members, 737-738
function objects, 1122-1123
passing. Set FunClion objects.
searching, 733-734

Predictability, 893
error handling, 895
features to avoid, 894
memory allocation, 898, 902

Preprocessing, 263

121 7

1218

Preprocessor din.:ctivcs
: define, macro substitution, 1090-

109 1
:ifdef, 1024
:ifndef, 1025
tinclude, including headers, 1090-

1091
Pn::: proccssor, 1090

coding standards, 939
prev_permutation(), 11 20
Princeton University, 803
print, chamcter class, 842, 1134
Printable chamcters, idemifying. 393
printfO family

%, conversion spc:cific.ation, 1141
conversion spc:cificatlons, 11 4 1-

1143
gelsO, 10 18, 1144-1145
output fonnalS, uscr-defined types.

1144
padding, 1143
printfO, 1016- 1017, 1141
scanfO, 1017- 1019, 1144-1145
slderr, 11 44
sldin, 1144
stdio. 11 44- 1145
stdout, 1144
synchronizing with 110 streams,

1016-1017
truncation, 1143

Printing
error messages, 148-149
variable valucs, 246

priority_queue comainer adaptor, 1106
Private, 308

base classes, 502
implcmcmation details, 208, 302-

304, 308-309
members, 484-485, 496, 501- 502
private: label, 302 , 1003

Problelll analysis, 173
de"clopment stages, 174
estimating resources, 175
problem statement, 174- 175
prototyping, 176
strategy, 174- 176

INDEX

Problem st.1tement, 174-175
Procedural progr.lmming languages,

781
Programmers

Sa (dso Programming.
commun.icmion skills, 22
computation ideals, 92-94
skills n:::quin.:ments, 22-23
stereotypes of, 2 1-22
worldwide numbers of, 807

Progranun ing, xxiii, 11 75
Sa al.w Computation ; Software.
abstract-first approadl, 10
analysis stage, 35
author's philosophy, 6-9
boltom-up approach, 9
C fi rst approach, 9
concept-baM:d appro.-tch, 6
concrete-first approach, 6
depth·first approach, 6
design stage, 35
environmenlS, 52
fcedb.1ck, 36
generic, 1173
implementation, 35
magical approacll, 10
object-oriented, 10, 1174
programming stage, 35
softwan.: engineering principles

first appro.1ch, 10
stages of, 35
testing stage, 35
top-down approach, 10
writing a program. Sa Calculator

example.
Progranuning languages, 783- 784 ,

786, 807
Ada, 796- 798
Algol family, 791 - 798
AlgoI60,792- 794
asM:mblers, 785
auto codes, 785
BCPL.803
C, 8OO- 804
Ct, 796
C++,804-806

INDEX

COBOL, 788-790
Common Lisp, 790
Delphi. 796
Fo rtran, 786- 788
Lisp. 790-791
Pascal, 794-796
Scheme, 790
Simula. 798-800
Turbo Pascal. 796

Programming philosophy, 772- 773, 1175.
Set aLso C++ programs; Program­

ming idcals; Programming lan­
guages.

Programming ideals
abstraClion level, 778- 779
aims_ 772- 774
bOllom-up approach, 776-777
code structure, 776
consistency, 780
correct approaches, 776- 777
correctncss, 775
data abstraction, 781
desirable propenies, 773
direct expression of ideas, 777-778
efficiency, 775-776
gencric programming, 782
KISS, 780
maintainability, 775
minimalism, 780
modularity. 779-780
multi-paradigm, 783
object-oriellied programming, 781 -

783
olHimc delivery, 776
ovel>'icw, 774-775
paradigms, 781- 783
pcrfonnancc, 775-776
philosophies, 772-774
procedural. 78 1
styles, 781 -783
top·down approach, 776-777

Programming, history. 783-784
Sa aLso Programming languages.
BNF (B.,ckus-Naur) Fo rnl, 788,

793
classes, 799

CODASYL committee, 789
early languages, 784-786
first documented bug. 790
first modern s tored program, 784-

786
first progmnuning book, 785
function calls, 785
functional programming, 788
inheritance, 799
K&R, 802
lim, 801
object-oriemed design, 798- 799
STL (Standard "Ie mplate Library).

805-806
virtual functions. 799

Programs, 44. 1175
Sa abo Computation; Software.
audiences for, 46
compiling. Sa Compilation.
computing values. S« Expressions.
confornling, 1039
experimental. S« Prototyping.
flow, u-acing, 72
implementation defmed, 1039
legal, 1039
linki.ng, 51
not-confonning constructs. 1039
run. Sa VISUal Studio; Command

line.
startingc.'lccution, 46-47, 1039- 1040
slOred on a com pUler, 108
subdividing, 175-176
terminating, 206-207, 1039-1040
text of. S« Source codc.
translation units, 51
troubleshooting. S« Debugging.
unspecified constructs, 1039
valid, 1039
writing, example. S« CaiUllator

example.
,mung your first , 45-47

Program organization
Sa abo Progranuning ideals.
abstraction, 92-93
divide and conquer, 93

Projects, Visual Studio, 11 53-1154

1219

1220

Promotions, 98-99, 1054-1055
Prompting ror input, 6 1

>, input prompt, 221
calculator example, 177
sample code, 220-223

Proofs, testing, 952
protected, 484-485, 496, 502, 1003
Prototyping, 176
Pseudo code, 177, 1175
Public, 302, 1003

base class, 500-501
interface, 208, 488-49 1
member, 302
public by default , shuet, 303
public: label, 302

punct, punctuation character elass,
842, 1134

Punet_stream example, 397-401
Pure virtual functions, 487, 1175
push_bacl<O

growing a vector, 118-11 9
queue operations, 11 10
resizing vector, 652-653
stack operations, 1110
string operations, 1132

push_irontO, 1110
push_heapO, 1119
putO, 1129
putbackO

nanung convention, 209
putting tokens back, 204-205
return value, disabling, 2 10

pulcO . 1145
putcharO, 1145
Putting back input, 204-206

Q
qsorlO, 1149
<queue>, 1095
queue container adaptor, 1106
~Icue operations, 111 0

R
\ r calTiage return, character liteml.

1043

INDEX

r, reading fue mode, 11 40
r+, reading and writing fue mode, 1140
RAI l (Resource Acquisition Is Initial-

izalion)
definition, 1175
exceptions, 675-676, 1087
testing, 964-965
for vector, 678- 680

randO, 878, 1149
<random>, 1096
Random numbers, 877-879
Random-access itcrators, 723, 1104
Range

definition, 11 75
errors, 146-148
pointers, 580-582
regular expressions, 841 - 842

Range dlcckillg
1), 628-631 , 668- 671
arrays, 628- 63 1
alO, 668-669
compatibility, 670
constraintS, 670
design considerations, 670- 671
efficienc)" 670
c;>;:ccplions, 668- 669
macros, 671 - 672
optional checking, 671
overview, 668- 669
pointer, 628-63 1
vector, 668-671

rbeginO, 1109
RC-lhrowing exceptions, 677, 1087
rcadO, unfonnattcd input, 11 28
Readability

expressions, 95
indenting nested code, 269
nestcd code, 269

Reading
dividing functions logically, 353-

356
files . See Rcading files.
with iterators, 1101 - 1102
numbers. 212- 213
potential problems, 352-357
separating dialog from function ,

356- 357

INDEX

<I series of values, 350-352
a single value, 352-357
into Slrings, 815
tokens, 183- 184

Reading flies
binary 110, 387
convening n:presentalions, 368-

370
to end of file, 360
example. 346-348
fstream type. 344-346
ifstream typ<:, 344- 346
in-memory reprcsemation, 362-

364
input loops, 359-361
iSlream type. 343-348, 387
oslream type, 387
process steps, 344
structured files, 361-370
structured values, 36'~-368
symbolic reprcsclltations, 368-370
temlinator cl13racter, specifying,

360
realO, 881 , 1138
Real numbers, 855
Real part, 881
Real-time constraints, 893
Re'll-tillle response, 890
reallocll. 1010, 11 47
Recovering frolll errors, 238-240, 349-

352. 5« aOO Error handling;
Exceptions.

R« tangle example, 424-427, 455-459.
489

Recursion
definition. 1175
infinite, 196, 1173
looping, 198

Recursive funct ion calls, 286
Red-black trees. 747. S« aOO Associative

containers; map_
Red margin alerts, 3
Reference scmantics, 6 19
References. 227, 1175

Sa aOO Aliases.
& in decl:u~llions. 273-277
to arguments. 274--276

circular. See Circular referencc_
to last veclor clement, baekO, 708
UJ. pointers. 5« llointers and refer-

ences.
<regell>. 1096, 1131
regex. Su Regular expressions.
regell_error exception, 1099
regell_malehO, 11 33

w. regex_searehO, 847
regell_searchO, 1133

w. regell_malehO, 847
Regression tests, 953
Regular expressions, 830- 832, 836.

11 75
Sa alJo regell pattem matching.
character classes, 837-838
error handling. 842- 844
grouping, 83 1, 837. 840
syntax. S« regex operators.
uses for, 830
ZI P code example, 844-849

regex pattem matching, 830-832
$ end of line, 837, 1134
o grouping, 83 1, 837. 840
• zero or more occurrences, 832,

837-838
+ one or more occurrences, 837.

838-839
- range specification. 841
. wildcard, 837
? optional occurrence, 83 1-832,

837, 838-839
[I charaCter class, 837
\ escape charactcr. 830-831. 837
\ as literal, 8'11
" ncgation, 837
II start of line, 837
{} count, 83 1, 837-839
I altemative (or), 831 -832, 837.

840-84 1
altemalion, 840-841
characlcr classes. Set reg charac·

ler classes.
character sets, 841 - 842
definition, 834
grouping. 840
malches. 834

1221

222

regcx pattem matching «(()1!tilUl((I)
pattem matching, 836-837
ranges, 841 - 842
regcl_rnatchO, 1133
regex_scarchO, 11 33
repealing patterns, 838-840
searching with, 833-836. 844
smatch,834
special characters . ..s:a- regc .. opera·

tors.
sub'paucms. 83 1, 834
regex operators, 837, 1133-1134

regex character classes, 84 1-842
alnum, 842
alpha. 842
blank, 842
enlrl, 842
d,842
\ 0 , 838
\ d, 837
digit, 842
graph. 842
\ l , 838
\1, 837
lower. 842
print, 842
plmcl, 842
regclcmalchO us. regelcsearchO, 847
5, 842
\5, 838
\ 5,837
space, 842
\ U, 838
\ U, 837
upper, 842
w.842
\w ,837
\ w.837
xdigil, 842

Regularity. 376
reinierpreccast, 594- 595, 1058

casting unrelated types, 594
hardware access, 905

Relational operators. 1052
Reliability, software, 34. 890
Remainder and assign %=. 1053

INDEX

Remainder % (modulo), 66, 105 1
correspondence to • and I, 68
flo.1ting·point, 199, 228-23 1
integer and floating·point. 66

removeO, 1115
remove_copyO, 111 5
remove_copyjfO, 1115
rendO, 1109
Repeated words examples. 71- 74
Repeating patterns, 192-193
Repetition, 1134. Sa also Iterming: regex.
replaceO, 111 4
replace_copyO, 111 4- 1115
Reporting elTOrs

Date example, 313-3 \4
debugging, 157
errorO, 140-141
n Ul·time, 143-144
syntax errors, 135- 136

Representation, 30 I. 649-651
Rcquirements, 11 75

&talJo Invariants : Post-conditions:
Pre-conditions.

for functions, l SI
reserveO, 651 - 652, 717, 111 1
Reserved names, 75-76. Sa abo Key·

words.
reseliosnagsO manipulator, 1130
resizeO, 652, 111I
Rcsoura::, 1175

leaks, 893, 896
limitat ions, 890
management. Sa Resource man·

agement.
tcsting, 962
vector example, 672- 673

Resource Acquisition Is Initialization
(RAI Q, 11 75

exccptions, 675-676, 1087
testing, 964-965
for vector. 678- 680

Resource management. 672-677
Sa abo vector example.
allto_ptr, 678
basic b'Uarantee, 677
error handling, 677

INDEX

guarantees, 676-678
make_vecO, 677
no·throw b'u:tr.tntee, 677
problems, 673- 675
RAi l, 675-676, 678- 680
resources, examples, 672-673
strong guarantee, 677
tcsting, 964- 965

Results, 91 . Sn flUo Return valucs.
rl.'turn statemem, 271 - 272
Return types, functions, 47, 270- 271
Return values, 11 2

fUlletions, 1066
110 return value, void, 2 10
omitting. 11 3
retuming.271- 272

rc\·crseO. 1115
reverses opyO, 11 15
revcrsejlcralor, 1108
Revision history, 236-237
Rho, 881
Richards, Marlin, 803
right manipulator, 1130
Ritchie, Dennis, 801, 806, 988- 989.

998
Robot·assisted surgery, 30
rolate(), 1115
rolate_copyO, 1115
Rounding, 382, 1175

Set abo rln mcation.
errors, 855
floating·point values, 382-383

Rows, matrices, 864- 865, 870
Rules, for programming. Sa Ideals.
Rules, b'Tammatical, 192- 193
Run·time d ispatch, 496. Sa abo Vinual

functions.
Run·time errors. Sa Errors, run·time.
Run·time polymorphism, 496
runlimc_crror, 140, 149, 151
R" aiues. 94- 95, 1054

s
5, character class, 842, 1134
\ S, "not space,~ regc., 838, 1135

\ 5, "space," regex, 837, 1135
Safe collversions, 79- 80
Safety, type. Sa Typc, safety.
Scaffolding, cleaning up, 233-234
Kalc_and_addO example, 868
scale_and_mul liplyO example, 876
Scaling data, 531
scanfO, 1018, 1144- 1145
Scenarios. Sa Use cases.
Scheme language, 790
K ientifi c fonnat, 383
scientific manipulator. 381, 1130
Scope, 264-265, 1046- 1047, 11 75

class, 264, 1046
enumerators, 3 16
global, 264 , 267, 1046
gOlng OUi of, 266-267
kinds of, 264-265
local, 265- 266, 1046
namespace, 264, 269, 1046
resolution ::, 291 , 1049
statement, 265, 1046

Scope ,lIld ncsting
blocks \vilhin functions, 268-269
classes within classcs, 268
classes within functions, 268
fu nctions within classes, 267
functions \vithul functions, 268
indenting nested code, 269
local classes, 268
local fun ctions, 268
member classes. 268
member functions, 267
nested blocks, 268-269
nested classes, 268
nested fUllctiolls, 268

Scope and object lifctimc, 1048-1049
free·store objects, 1048
local (automatic) objects, 1048
namespaee objects, 1048
SlattC class members, 1048
temporary objects, 1048

Scope and storage class, 1047- 1048
automatic storage, 1047
free ston:: Qleap), 1047
slatie storage, 1047

1223

122'

Screens

Sa abo GU ls (graphical user inter·
faces).

data graph layout. 530-531
drawing on, 419-420
labeling, 421

searrnO. 763-764 , 1113
Searching

Sa also find O; find_if 0 ; Hnding;
Matching.

algorithms for, 11 17-111 8
binary searches, 747, 763-764
in C , 1149
for characters, 711
(kcy,valuc) pairs. by key. &(Asso-

ciativc containers.
for links, 600- 602
molp clements. Sa unordered_map.
prcdicatcs, 733
wi th regular expressions, 833-836,

844- 849, 11 33- 1135
search_nO, 11 13
Self reference. Sa Ihis.
Self assib'llITlCnt, 654
Self-checking, error handling, 896
Separators. nonstandard, 394-401
Sequence containers. 1105
Sequences, 694, 11 75

algorithms. Sa standard library al­
gorithms.

diffcrcntts between adjacent cle-
ments, 739

empty, 702
example, 696-698
half open, 694- 695

Sequencing rules. 192- 193
Server farms, 31
WI, 744 , 755-757

iterntors, 11 05
ill. map, 756
subscripting, 756

wtO. 590- 591
<set>. 744, 1095
Sct algorithms, 11 18- 11 19
selbase{) manipulator. 1130
se,-diffel1'nce{), 111 9

selfiliO manipulator, I 130
seUnler!teClionO, 1119

INDEX

seliosilags() manipulator, 1130
selprecisionO manipulator, 382- 383,

1130
se,-symme1ric differenceO, 11 19
sel_unionO. 1119
setwO manipulator, 1130
Shallow copies, 619
Shape example, 485-486

abs tract classes, 487-488
access controL 488-491
attaching to Window, 533-534
as base class, 441, 487-488
c1oneO, 496
copying objects, 494-496
drawo , 491-494-
draw_linesO, 491 -494
fill color. 492
implemelltmion inhcriCIllCC. 504-505
interface inheritance, 504-505
line vis ibility, 492
moveO, 494
mutability, 494-496
number_oCpoints{), 445
object layout, 497-499
object-oriented programming, 50'~-

505
point t) , 445
slicing shapes. 495
vinual functioll calls , 493, 498-

499
Shifl operators, 105 1
Shipping, computer usc. 26- 28
short , 917, 1062
Shonhand notation, regular expres·

sions, 11 35
showbase, manipulator, 379, 11 29
showpoint, manipulator. 11 29
showpos, manipulator, 11 29
Shume algorithm, 11 15- 11 16
Signed and unsigned integers, 922-

926
signed type, 1062
Simple_window, 418-420, 439
Simplicity ideal, 92- 94

INDEX

Simula language, 798-800
sin O, sine, 879, 1137
Singly-linked lists, 598, 698
sinhO, hyperbolic sine, 879, 11 37
Size

bit strings, 916- 917
containers, litO- III I
getting, sizeofO, 576-577
of numbers, 854-858
veclors, gctting, 118-1 I9

sizeO
containcr capacity, IIII
number of clcments, 118, 815
stringlcngth, 815, 1132
veclors, 118, 121

sizeofO, 576-577, 1057
object size, t050
value size, 856

size_lype, 704 , 1108
skipws, 11 29
sliceO, 865-866, 869
Slicing

matrices, 865-866, 869
objects, 495

Smallest integer, finding, 879
smalch,834
Soft real-time, 893
Software, 19, 1175

Set: also Programming; Programs.
alTordability,34
correctness, 34
ideals, 34-37
mai.ntainability, 34
reliability, 34
troubleshooting. Set: Debugging.
useful design, 34
uses for, 19-32

"Software engineering principles first "
approach to progranulling, 10

Software layers, GU ls, 544-545
sorlO, 728, 762-763, 1117
sorcheapO, 11 20
Sorting

algorithms for, 1117- 1118
in C, qsorlO, 1149
sorlO, 728, 762-763, 1117

Source code
definition, 48, 1175
elllering, 1154

Source files , 48, 1175
adding to projects, 1154

space, 842, 1134
Space exploration, computer usc, 32- 33
Special characters, 1043-1044

regular expressions, 1133- 11 34
Specialization, 658- 659, 1084-1085
Specifications

definition, I J 75
source of errors, 134

Speed of light, 96
sprinlfO, 114 1
sqrtO, square root, 879, 1137
Square of absO, norm, 881
srandO, 878, 1149
<sslream>, 1096
stable_parlitionO, 1118
stable_sortO, 1117
<slacb, 1096
slack container adaptor, 1106
Stack of activation records, 284
Stack storage, 577
Stacks

container operations, 111 0
embedded systems, 902, 903-904,

897-898
growth , 284-287
unwinding, 1088

Stages of programming, 35
Standard

confonnancc , 801 , 935, 1039
ISO, 1039, 1175
manipulators. See Manipulators.
mathematical functions , 879- 880

Standard library
See also C standard library; STL

(Standard Template Library).
algorithms. Set: Algori thms.
comple". See comple".
containers. See Containers.
C·stylc 110. &t: printfO family.
C·style mings. &t: C·stylc suings.
date and time, 1147- 1149

1225

1226

Standard library (col/tinlled)
function objects. See Function ob­

jccts.
110 strmlllS. St:t Input; Input/output;

Output.
ilcrators. See lter-HOrs.
mathematical functions . .S« Mathe·

matical fu nctions (s tandard).
nume rical algorithms. Sa Algo-

rillullS (numerical); Numerics.
string. Sa string.
lime, 982-983, 1147-1149
valarray. &e vala rray.

Standard library header files , 1095-
1097

algorithms, 1095-1096
C standard libraries, 1097
containers, 1095- 1096
110 streams, 1096
itcralors, 1095-1096
numerics, 1096
string manipulation, 1096
utility and language support , 1097

Standard library 1/0 streams, 11 24-
1125. See 000 110 streams.

Standard library string manipulation
character classification, 113 1
conL1.incrs. &t vector; map ; sci :

unordered_map.
input/output. Sa lIO streams.
regular expressions. Sa regcx.
string manipulation. Sa siring.

Stanford University, 791
Starting programs, 1039- 1040, Sa alw

mainO·
State, 90, 1175

lIO stream, 1127
of objects, 30 I
source of errors, 134
testing, 961
valid state, 309
validity checking, 309

Statement scope, 265, 1046
Statements, 47

grammar, 1059-1061
named sequence of, Sa Functions.

INDEX

temunator ; (senucolon), 50, 99
Static storage, 577, 1047

class members, lifetime, 1048
embedded systems, 897- 898. 905
sialic, 1047
sta tic consl, 32 1. &t aIJo consl.
Sialic consl inl members, 1075
slatic local variables, order of ini·

tialization, 290
sid namespace, 29 1- 292,1098
slderr, 1144
<stde)(ccpl:>, 1097
sldin, 1016, 1144. Sa abo stdio.
stdio, standard CliO, 1016, 1144-

1145
EOF macro, 10 19-1020
errno, error indicator, 880
fc loseO, 1019- 1020
fILE , 10 19- 1020
fopenO, 10 19-1020
getcharO, 1019, 1044
ge150 . 1018, 1144·- 1145
input, 1017-1019
output, 10 16- 10 17
printf(), 10 16- 1017, 1141- 1144
SCilnfO, 1018, 11 44
slderr, cerr equivalent. 114,l
sldin, cin equivalent. 1016. 1144
sldoul, caul equivalent, 1016, 1144

std_'ib_facililies.h header file , 1153-
1154

sldou!. 1016, 1144. Saabostdio.
Stepanov, Alexander, 694 , 696, 805-

80G
Stepping through code, 160
Stereotypes of programmers. 2 1- 22
sn . (Standard "Icmplate Library),

690.11 10-1124
..w abo C standard library ; Stan·

dard library.
algorithms. &t S11.. algolithms.
containers . ..w S11 .. containers.
fUllction objects. Sa STL function

objects.
history of, 805- 806
ideals, 690- 694

INDEX

iterators. Set STL iterators.
namesp:lce, sid, 1098

STL algorithms, 11 12-1121
&e Algorithms (STL).
alternati\'es to, 1150
built·in arrays, 718-719
computation UJ. data, 691 - 693
heap, 111 9-11 20
maxO. 1120- 11 21
minO, 1120- 1121
modifying sequence. 1114- 1116
mutating SC(llience, 1114- 1116
nonmodifying sequence. 1113-

11 14
pcnnutations, 11 20
searching, 111 7-1118
set, 1118- 1119
shumc, 1115-11 16
sorting, 1117-1118
utility, 111 6- 11 17
value comparisons, 11 20- 11 2 1

S"TLcont.1incrs, 720- 72 1, 1105- 11 12
almost. 72 1- 722, 1106
assignlllents, 1 108-1109
associative. 11 05, 1111- 111 2
capacity, 1110- 111 1
comparing. 1III
constntClOrs. 11 08- 1109
container adaptors, 1106
copying. 1111
destnlctors, 1108-1109
c!emelll access, 1109
information sources about, 720-

721
iterator categories for, 722- 723,

1104-1105, 1109
list ol>crations, II 10
membcr tYl>Cs, I 108
opcr..uions o\'efview. I 107
qucue operations. 11 10
sequence, 1105
5;1.e. 111O- 111 1
st;!ck operations, 1110
swapping, 1111

Sl"L function objects. 1122- 11 23
adaptors, 11 23

arithmctic operations, 1123
inserters, 1121-1 122
prcdicates. 738-738, 1122-11 23

STL iterators. 1100-1105
basic OI>Cntlions, 695
categories, 1103-1105
definition, 694, 11 00-1101
description, 695-696
cmpty lists, 702
example. 708-7 11
operations, 1102- 1103
Uf. pointers, 110 I
sequence of clemcnts, 1101- 1102

Storage class, 1047- 1048
automatic storage, 1047
frec storc (heap), 104 7
slatic storage, 1047

Storing data. Sa Containers.
slrO. Siring extractor, 390-391
SlrcalO, 101 2-10 13, 1146
slrchrO, 1014, 1146
slrcmpO, 1012- 1013, 11 46
slrcpyO, 1012-10 13, 1015, 11 '~6

Stn::am
buffers, 1125
iterators, 758-76 1
modes, 1126
states, 349
t}1>Cs, 1126

slreambuf, 402 , 11 25
<streambuf>, 1096
<string>, 1096, 11 28
String literal, 62, 1044
siring, 66, 815, 11 75

Sa aI.w l ex!.
+ concatcnation, 68-69, 815. 1132
+'" append, 8 15
< lexicographical comp;uison, 815
« Output. 815
'" assign, 815
== equal, 8 15
» input, 8 15
II subscripting, 815
almost container, 1106
appendO,8 15
basicstring. 8 16

1227

1228

string (amtinutd)
C++ to C Slyle conversion, 815
c_slrO. C++ to Cstylc COllversion.

345, S15
eraseO, removing characters, SIS
exceptions, 1099
findO. SIS
from_slringO, S17-S18
getlineO. SIS
input temlinator (whitesp.lce), 65
InserlO, adding characters, SIS
lenglhO, number of characters, SIS
lexicaCcast example, S I9
literals, debugging, 159
operations, SIS, 11 32
operators, 66- 67, 6S
palindromes. example, 637- 638
pattelll matching. Set Regular ex-

prcsslons.
properties, 712- 713
size, 78
sizeO, number of characters, SIS
standard library, S I6
siring to value conversion, 817- 818
slringslream, 816- S1S
subscripting il, SIS
lo_stringO example, 816- S18
values to string conversion, 8 16
V.i . vector, 715
whitespace, 8 1S-S 19

slringslream. 390- 391 , S I6-S18, 11 26
SlrlenO, 1012, 1146
SlrncalO, 1012-1013, 1146
slrncmpO, 1012-10 13, 1146
slrncpyO, 1012-1013, 1146
Strong guarantee, 677
Stroustrup, Bjallle

advisor, 785
biography, 14-15
Bell L.lbs colleagues. 80 1- S04, 989
education on invariants, 793
inventor of C++, 804-S06
Kristen Nygaard. 799

slrpbrlcO. 11 46
slrrchrO. 11 46
slrslr(). 11 46

strtod(), 1146
5Irtol(), 1146
5lrloul0 , 1146

INDEX

slruct, 303- 304. Sat/Iso Data stnJclUrcs.
SlruCI tag namespaee, 1002- 1003
Structure

of data. Set Data stntctures.
o f programs, 213- 2 14

Structured liles, 361- 370
Style, definition. 1176
Sub· patterns, 83 1, S34
Subclasses, 496, 1116. Sa also Derived

classes.
Subdividing programs, 175- 176
Subscripting, 116-117

o Fortran style, 863
II C Sty lc, 669, 863
arrays, 628. S63
atO, eheckcd subscripting. 669,

11 09
Malr;)(exam pic. 863-865, S69
po inters, 1064
string, 815. 1132
veclor, 579-580, 592-593. 625-

626
Substrings. S27
Subtract and assign - =, 67, 1053. 1103
Subtraction - (minus)

comple .. , S81, 11 38
definitio n, 1051
integers. 1064
iterators, 1104
pointers, 1064

Subtype, definition, 11 76
Summing valucs. Set accumulateO.
Superclasses, 496, 1176. Sa also Base

classes.
swapO. 279, 1111 , 1116
Swapping

columns, 870
containers, 1I11
ranges. 1116
rows, 870, S76

swapJ"nses{). 1116
switeh-statelllcll lS

break, case tcrmination, 104- 107

INDEX

nse labels, 104-107
most comlllon error, 107
Uf. str ing·based selection, 105

Symbol tables, 246
Symbolic COnStantS

5« also Enumcrations.
clcaning up, 23 1-233
defining, wiLh slatic consl, 32 1

Symbolic names, tokens, 232
S),mbolic rcpresentations, read ing,

368-370
Syntax analyzers, 188
Syntax checking, 48-50
Syntax errors

examples, 48-50
overview, 135-136
reponing. 135-136

Syntax macros, 1023- 1024
systcmO, 11 49
Systcm, definition, 1176
System tests, 969-973

T
\I tab character, 108, 1043
lanO, t<Ulgelll, 879, 11 37
tanhO, hyperbolic tangent, 879, J 137
TI~A (liny Encryption Algorithm),

785. 930- 935
l echnical University of Copenhagen,

793
-telecolllllJunications, 28-29
-Ie mperature data, example, 119- J 2 J
template, 1003
-Ie mplatc, 656, 1083, 11 76

argumcnts, 1083- 1084
class, 658- 661. Sa abo Class tem·

plate.
compiling, 66 1
containers, 661 - 662
crror diagnostics, 66 1
runction, 659- 665, &'t' aiJo FUllc,

tion tcmplate.
generic programming, 659-66 1
inheritance, 66 1- 662
inst.1ntialioll, 658- 659, 1084-1085

illlcgcr parameters, 662- 664
member types, 1086
parameters, 656- 659, 662- 664
parametric polymorphism, 659-

661
specialization, 1084- 1085
type parameters, 656-659
Iypename, 1086
weaknesses, 66 1

-rb nplate·stylc casts, 1006
Temporary objects, 280, 1048
Tenninals, in grammars. Su -rOkcns.
Tennillation

abortO a progrrun, 1149
on exceptions, 140
exitO a program, 1149
input, 61- 62, 177
normal program termination.

1039- 1040
fo r Siring input, 65
zcro, for C·style strings, 633

-Ic nninator character. specifying, 360
Tcsting, 952-953, 1176

Sa aJ.w Debugging.
algorithms, 961 -968
fo r bad input, 102- 103
black box, 952- 953
branch ing, 966-968
bug rel>orlS, retention period, 953
calculator example, 223-227
classes, 973-976
code coverage, 968
debugging, 979
dependencies, 962-963
designing for, 978-979
faul ty assumptions, 976-978
Iiles. after opening, 346
FL"I"K, 1160
inputs, 961
loops, 965- 966
non·algorithms, 96 I -968
outputs, 961
pcrrom13llce, 979-983
pre· and post-conditions, 961 - 962
proofs, 952
RAI l, 964- 965

1229

'23{)

Testing (conhium:l)
~grcss ion tests, 953
rcsoura: management, 964-965
resources, 962
stage of programming, 35
Slate, 961
system tests, 969- 973
tCSt cases, definition, 164
leSt harness, 957-959
liming, 98 1-983
white box, 952-953

l ating units
fomlai specification, 954-955
random sequences, 959-96 1
stra tegy for, 955- 957
systematic tcsting, 954- 955
test harness, 957-959

Text
character strings. See siring: C-stylc

strings.
email example. 820-825, 828-830
extracting text (rom fdes, 820-825.

828- 830
find ing patterns, 828-830, 833-

836
in graphics. Set Text.
implementation details, 826-828
inputloutput, GU Is, 550-551
maps. Su map.
storage. 577
substrings, 827
vector example, 121- 123
words frequency example, 745-

7'17
Text example, 427- 429, 462-464
Text editor example. 708- 711
111ela, 881
this pointer, 603-605, 654- 655
Tnompson, Ken, 801-803
-!luee-wa), comp.1rison, 101 2
lluowing exceptions, 145, 1086

110 stream, 1127
fe -throwing. 677
standard library. 1099-11 00
throw, 145. 1053. 1086- 1088
\lector, 672-673

Time
date and time, 1147-11 49
measuring, 981 -983

1i mekccping. computer usc, 26
time_I, 1147

I NDEX

T Ul), Encryption Algorithm (ll~A),

785, 930-935
1m, 11 47
Token example, 181- 184
Token_strt'am example, 204-2 12
tolowerO, 394.113 1
Top·down approach, 10, 776- 777
to_slringO example. 816-8 18
loupJJC!r{), 394 , 11 3 1
Tracing code execution, 160- 16 1
T rade-off, defini tion, 1176
transformO. 1114
Transient errors, handling, 895- 896
Translation units, 51. 137- 138
TransparcnC)', '~ 47. 457
Tree smlClurc, map container, 747-750
true. 1003, 1004
trunc mode, 385. 11 26
Truncation, 82, 1176

C·stylc 110, 11 43
c.xceplions, 15 1
floating·point numbers, 857

try-catch. 144-150, 668- 669, 1003
Tu rbo Pascal language. 796
Two·dimensional m,uriccs, 868-870
1\\"0'5 complcmetlt, 922
1}'}>C convcrsiOIl

casting, 594- 595
consLcast, casting awa), eonst,

594-595
exceptions, 151
explicit, 594
in expressions, 98- 99
fu nction arguments, 281- 282
implicit, 621-622
int to pointer. 576
opcratOI'S, 1058-1059
poimers, 576, 594-595
reinlerpreLcasl,594
safety, 79- 83
static_cast, 594

INDEX

siring to valuc, 817-818
tnlllcation, 82
valuc to string, 816

-rypc conversion, implicit, 621-622
bool, 1055
compiler warnings, 1055- 1056
fioating-poilll and illlcgral, 1055
illlegral promotion, 1054-1055
pointcr and refcrcncc, 1055
preserving values, 1054- 1055
prolllOlions, 1054- 1055
user-dcfincd, 1056
usual arithmetic, 1056

"lyPc safety, 78- 79
implicit convcrsions, 80-83
narrowing convcrsions, 80-83
poimers, 580- 583, 634-637
range error, 146-148.580- 582
safc conversions, 79-80
unsafc conversions, 80- 83

typedef, 703
Iypeid, 1003, 1050, 1099
<lypeinfo> , 1097
Iypename, 1003, 1086
Type, 60, 77, 1176

aliases, 703
buill-in. &e Built-in types.
chccking, C++ and C , 998- 999
generators, 658- 659
graphics classes, 480-482
mislJ},l(eh errors, 136-137
mixing ill expressions, 98- 99
naming. &e Namcspaces.
objccts. 77- 78
operations, 30 I
organizing. &e Namespaces.
paramcterized, 659- 661. Su aiJo

"Ie mplatcs.
as parameters. &e Tcmplates.
poimers. &e Poimer.
promotion, 98- 99
representation of objcct, 304, 497-

499
safety, 78- 79, 82
subtype, 1176
supcrtype, 1176

u

tmncm.ion, 82
user-defincd. &e UDTs_
uses fo r, 300
values, 77
variables. Set Variables, types.

ufu suffIX. lO,n
\U , "not uppercase," regex, 838, 1135
\ u, "uppercase character," regex, 837,

1135
UDT (User-defined type). SetClass;

Enumeration.
U nary expressions, 1050-1051
"Uncaught exception" crror, 15 1
U nehccked conversions, 905
"Undeclared idcntifier" error, 256
Undcfulcd ordcr of cvaluation, 261
ungel(), 349- 352
ungelcO, 1145
Uninitia1ized variables, 322-325, 11 76
uninilialized_copyO, 1116- 111 7
uninilialized_fiIl O, 1116- 1117
union, 1082- 1083
uniqueO, 1114
unique_copyO, 728, 757, 760- 761 , 1114
UnittesLS

formal spccificluion, 954- 955
random sequences, 959-961
strategy for, 955-957
systematic testing, 954-955
test harness, 957-959

Unnamed objecLS, 459-461
<unordered_map>, 744, 1096
unordered_map, 744

See also map.
finding ciemenlli, 753- 755
hash tables, 753
hash values, 753
hashing, 753
itcrators, I 105

unordered_mullimap, 744 , 1105
unordered_mullisel, 744 , 1105
<unordere<Cse1>, 744, 1096
unordered_scI, 744, 1105

1231

1232

Unsafe conversions, 80-83
un5elfO, 380
Unsigned and signed, 922-926
unsigned type, 1062
Unspecified constructs, 1039
upper, character class, 842, 11 34
upper_boundO, 764,1112, 1117
U ppercase. S« Case.
uppercaS4', 1129
U.S. Department of Defense, 796
U.S. Navy, 789-790
Usc cases, 177, 1176
User-defined conversions, 1056
User·defined operators, 1054
User·defined types (U D,}'s), 300

Sa al.w C lass; Enumeration.
exceptions. 1087
operator overloading, 1069-1070
operators, 1070
standard library types, 300

User interfaces
console inpuuoutpUl. 540
graphical. &t GUJ.
web browser, 540-541

using declarations, 29 1-293
using directives, 29 1-293, 1089
Usual arithmetic conversions, 1056
U tili ties, STL

function objects, 1122- 11 23
inserters, 11 2 1- 11 22
make-pairO, 11 24
pair, 1123- 11 24

<utility> , 1096, 1123-11 24
U tility algorithms, 1116- 1117
Utili ty and language support, header

files, 1097

v
\ v vertical ("b, character li teral, 1043
valarray, 1106, 1139
<valarray>, 1096
Valid programs, 1039
Valid state, 309
Validity checking, 309

constmctors, 309

ellumerations.3 15
invariants, 309
n iles for. 309

Value semantics, 619
value_compO, 11 12
Values, 77-78, 11 76

INDEX

symbolic constants for. Set: Enu­
merations.

and variables, 62, 73-74, 242
value_type. 1108
Variables, 62-63, 116- 117, 106 1- 1062

++ increment. 73-74
= assignment, 69-73
cllanging values, 73-74
com]>osite assignment operators,

73-74
constructing. 287- 288
declarations, 258. 260-26 1
going out of scope, 287
incrementing ++, 73-74
initia lizatioll. 69- 73
input, 60
naming, 74-77
type of, 66-67
uninitialized, class interfaces. 322-

325
value of, 73-74

<vector>, 1096
vector example, 570-573, 6 12-618,

646-656
-> access through poimer. 593
. (dot) access, 592-593
= assignment, 653
[I subscripting, 625-626, 668-672
a!locators. 666
atO, checked subscripting, 669
changing size, 646-656
copying, 6 13- 618
destructor, 506-590
dement type as p..1rameter, 656-

659
eraseO (removing clements). 715-

718
exceptions. 668- 669, 678-680
e~plicil constmctors, 621-622
inheritance. 661-662

INDEX

insertO (addingclemems), 715-718
ovcrloading on consl, 626- 627
push_bacKO, 652- 653, 667
representation, 650-65 1
reset'\-'e(), 65 1, 667, 679- 680
resizeO, 652, 668
subscripting, 579- 580, 592- 593,

625-626
veclor, standard library, 1107- 1111

< lcss than, I I 1 1
= assign ment, 1109
== c(lualit}', 1111
II subscripting, 1109
assignO, 1109
alO, checked subscripting, 1109
back(), rcfcrencc 10 last clement,

1109
begin(), itcra lOl' to first clcmcnt,

11 09
C<lpacilyO, 111 1
consUleralor, 1108
COIlStm ctors, 1108- 1 t 09
destmctor, 1109
difference_type, 11 08
end(), one beyond last clement,

1109
eraseO, removing clcmenLS, 1110
front O, reference to first clcment,

1109
insert O, adding clemellts , 1110
iterator, 1108
member functions, lis LS o f. 1108-

111 1
mcmber t)-pt:s, list of, 1108
Ilush_badl:O, add clcmem at end,

111 0
sizeO, numbcr of clements, 11 1 1
size_type, 1108
valu~Uype , 1108

vecior of references, simulating, 1166-
1167

VectorJ d examplc, 440, 1[66- 1167
vi rtual, 1003
Vin ual dcstructors, 590. Sa a/sc De­

structors.
Vin ual fu nction, 493, 498-499

dcclaring, 499- 500
defi nition, 493, 11 76
history of, 799
object la),out, 497-499
ovcniding, 500- 50 1
pure, 502-504
Shape example, 493, 498-499
"plr, 498-499
vlbl, 498

Visibility
Su also Scope; Transparency.
menus, 560-56 1
of namcs, 264- 269, 290- 293
widgcts, 549

Visual Studio
FLTK (Fast Light Toolkit), 11 59-

11 60
installing, 1152
m nning programs, 11 53- 11 54

void, 113
function rcsults, 11 3, 270, 272
pointcr to, 593- 595
putbac" !), 2 10

void', 593-595, 1007- 1008, 1062
vptr, virtual fUllction poimcr, 498-499
vlbl, vi rtual function table, 498

w
w, writing file mode, 84 2, 1134, 1140
W+ , writing and reading file mode, 1140
\ W, "not word characterr rege. , 837,

11 35
\ w , "word character,~ regell, 837, 1135
waitO, 547-548, 556-557
Wait loops, 547- 548
waiUor_bultonO example, 547- 548
Waiting for user action, 547- 548, 556-

557
wchar_t, 1003, 1004
"'~b browser, as user interface, 540- 54 1
Wheeler, David, 108, 785, 930
while-statements, 108- 109
White-box tcsling, 952- 953
"Whites pace

formatt ing, 393, 394-40 1

1233

234

vVhitcspacc (contilllled)
idcmifying, 393
in inpUl, 64
Siring, 8 18-819
ws, manipulator, 1130

Widget example, 548-549
Bullon, 4 18-420, 54 1-550
contTOI inversion, 556-557
debugging, 563-564
hideO,549
implementation, 1163- 1164
In_box-O,550-55 1
line drawing example, 552-556
Menu , 55 1, 557-562
moveO, 549
OUI_boxO, 550-55 1
put_on_topO,1165
showo,549
technical example, 1167- 1170
text input/output, 550-55 1
visibility, 549

Wild cards, regular expressions, 1133
Wilkes, Maurice, 785
Window c;>;ample, 416, 439

canvas, 416
creating, 4 18- 420, 542-544
disappearing, 563
drawing area, 416
implementation, 11 64-1166
line drawing example, 552-556

INDEX

puCOIl_10pO, 1165
with "Next" button, 4 18-420

Willdow.h example, 417- 41 8
Wirth, Niklaus, 794-795
Word frequency, eXillllp1c, 745
Words (of memory), 1176
wri le () , unfomlatted output, 11 29
Writing files, 344

Set: also File 110.
appending to, 385
binary 110, 387
example, 346-348
fsJream type, 344-346
of stream type, 345-346
ostream type, 343-348, 387

ws manipulator, 1130

x
xdigit, 842 , 1134
\ xh hh, hexadecimal character lite"I),

1043
xor, synonym for " , 1003, 1004
xor_eq, synonym for "=, 1003. 1004

z
lcro-temlinated array. 1011 . Sec also C·

style string.
ZIP code example, 844-849

Page 14.
Page 15.

Page 26.
Page 26.
Page 26.

Page 26.

Page 28.
Page 28.

Page 29.

Page 29.

Page 30.
Page 30.

I~ge 3 1.

I~ge 31.
I~ge 33.
I~ge 785.

Page 785.

Photo Citations and Credits

Photo of Bjame StrouStrup, 2005. Source : Bjam e StrouStrup.
Photo of Lawrence '"Pete" Petersen, 2006. Source: Dept. of Computer Science,
Texas A&1I'1 University.
Photo of digital watch from Casio. Source: ww casio.com.
Photo of analog watch from G.1sio. Source: w'\f\".casio.com.
MAN marine diesel engine 12K98ME: MAN Burgmeister & Waine. Source:
MAN Diesel AlS, Copenhagen, Denmark.
Emma Maersk; the world 's largest container ship; home port Arhus, Den"
mark. Source: Ccny Lnages.
Digilal telephone switchboard. Source: Alamy Images.
Sony-Ericsson \V·920 cell phone with music system, cell phone, and web COIl­

nectivity. Source: \\f\\f\v.sonyericsson.com.
Trading floor of the New York Stock Exchange in Wall Strcet. Source: A1amy
Images.
A represemation of parts of the internet backbone by Stephen C . Eick.
Source: S. C . Eick.
CAT scanner. Source: A1amy Images.
Computer-aided surgery. Source: Da Vinci Surgical Systems, \\f\vw.intu­
itivcsurgical.com.
Ordinary computer setup (the lert-hand screen is connC<:tcd to a Unix desktop
box, the right"hand sercen is a \¥indows laptop). Source: Bjarne StrouStrup.
Computer rack from a server farm. Source: lstoc.kpholO.
View rrom a Mars rover. Source: NASA, w\\f\v. nasa.gov.
11le EDSAC team 1949_ Maurice \Vilkc::s center, David Wheeler without a
tic. Source: TIle Cambridge Univcrsity Computer Laboratory.
David Wheeler lecturing circa 1974. Source: Uni,'ersity of Cambridgc Com­
pliler Laboratory.

1235

1236

Page 787.

P-J.gc 789.
Page 790.
Page 791.
Page 79 1.
Page 792.

Page 792.

P"dgC 793.
Page 795.
Page 795.
P"dgC 797.
Page 797.
Page 799.
Page 800.
Page 800.
Page 801.

Page 801.
Page 802.
P"dgC 802.
Page 804.
Page 805.
P-dgC 989.

PHOTO CI TATION S AND CREDITS

John Backus 1996. Copyright: Louis Fabian Bachrach. For a collection orpha­
tographs of compUler pioneers, sec Chris topher Morgan: H'iumu mm Ihar
WOI/(/.m: portraits ill rompuh"lIg. AC M Press. 1997. ISBN 0-8979\-960-2
Crace Murray Hopper. Source: Computer History Muscum.
Grace Murray Hopper's bug. Source: Computer History Museum.
J ohn C. McCarthy, 1967, at Stanford. Source: Stanford U niversity.
John C . McCarthy, 1996. Copyrigh t: Louis Fabian Bachrach.
Peter Naur photographed by Brian Randell in Munich ill 1968 when they to­

gether edited the report that launched the field of Software Engineering. Rc<
produced by pcmlission from Brian Randell.
Peter Naur, from oil painting by Duo Duo Zhuang 1995. Reproduced by per·
mission from Erik Frokja!r.
Edsger Dijkstra. Source: Wikimcdia Commons.
Niklaus Wlrth. Source : N. 'Wirth.
Niklaus 'Wirth. Source: N. Wlrth.

J ean Ichbi .. h. Source: Ada Infonnation CIc .. ringholise.
Lady Lovelace, 1838. Vintage print. Source: Ada Information C learinghouse.
Kristen Nygaard and Olejohan Dahl, circa 1968. Source: University of Oslo.
Kristen Nygaard, circa 1996. Source: University of Oslo.
Olelohan Dahl, 2002. Source: University of Oslo.
Dennis M. Ritchie and Ken 1nomp501l, approx. 1978. Copyright: AT&T Bell
Labs.
Dennis M. Ritchie, 1996. Copyright: Louis Fabian Bachrach.
Doug Mdlroy, circa 1990. Source : Gerard Holzmann.
Brian W. Kernighan. circa 2004. Source: Brian Kernighan.
Bjarne Stroustrup, 1996. Source: Bjame StrouSlrup.
Alex Stepanov, 2003. Source: Bjarne Stroustrup.
AT&T Bell Labs' Murray Hill Research celller, approx. 1990. Copyright:
AT&T Bell Labs.

An Introduction to Programming
by the Irwentor oj C++

.:. Pre/)(lralion for Programming ill the Real fYorLd
T ne book assumes that you aim c\'c ntu<l Uy co ",rill: non- tr ivia l program$, whether for work in ~fIW.ln·

no'dopn~nl Or ill $OfTlC other lcdlll ica l field .

. :. Focus on FundamentaL Concepts and Techlliques
'fhe book explains fimdamelll.lt conccJllj a nd l ech llique~ in gn::llterdl!pl h than troiditiooaJ int roducI;OIl$.
Th is appro;,,: h will gi~)'ou a .wIid fouooai ion for writing USl! fut , COCfeCl, maintainabk, and dTlCknl code .

. :. Programming wilh Today's C++
The book U lin int roduc tion 10 programming in gt:nc.r .. l. including objccl-onc:mcd progrnmming alld
generic programming. [I ;$ ll lw a :JOlid introduction 10 the C ++ p"lSr.lmminglangll .lb"t';, oncofthc n~l

w;del)· uliCd language:! for n;:tl-world :lOftwarc. "11)C bo<* prcscnt$ rn()(krn C++ progrl'wuning teehniqua
from the sian. im roducing ,I~ C++ 51:mdan:l libr.HY to simplify prop:mmming ,;uk, .

. ;. For Beginners-And An)'one Who Wanls 10 Learn Somelhing New
T he book iJ primuiJr dc... igned for people who havc 11(:11:r programmL..,.j before. :Ind i, has ocen to ted

wj[h marc ,hall 1,000 fir.tt-yc;,. r un il Ni, y s' lIdelll ~. HowL'VCr. p r:u;, i. ioncl"$:' lId adl'<lnced $Iuden t.s , .. ill

gain new in~igh l aud gu id;lIlce by Stting how ;t rccogniud master appro;lches . he r lcm C"nu orhis " n

.:. Provides a Broad View
r ile fm. halfofthc IJ.ook (OVC N a ,,'ide ~nge ofl'Wl11ill l concq:JIJ. design and prognullming tedl11 i<lllU.
lallgu:.gefc:twl1";$, and librnria. T hose will clla!>]c rOll 10 wrile programs involving input. ouq xil. compu­
'ation. :lnd ~jmplc J.:r:tphio. The second hll l(C"I']OO::S morc $pcci:..li:....-.d topics. soch ;u lex, proceS$ing ;lIId

(r~ting, and providd abund~nl rd.;~ncc 1I101teri.11. Source code aoo suppMt ~upplemcnu :m~ :1\~.il;,lJIc
from the alidllX's wcruite.

ABOUT THE AUTHOR
Dr. Rj:lrne Slmustrup is [he designer and original impkmen.cr of C++ _'00 the ;'Ul horoC
TIll C++ ' 'rfJ!7l1J11millg UJNglllW (AddioSo n-WClky). He il lhe College ofEngi[)(cring Ch"ir
in Computer Scicocc Profeuor ;l. TCXlU ."\&M Uni".;ni .),.;\ memhCf 0([11 (: U. S. N.lliol.1aJ
r\catkmr of l::.n)l:i ut CTing, ~"d :In AT&T f"ellow. Ur l"on- mo-.·ing to Ilcadem ia . hc "" orkcd for
rlaadCl' in AT&T Bell Grohs. J.Jc is a founding IlIcmUer ofl he ISO C++ stand;uds 1'00um;w:c.

lolcflM_Com/lW
www.strcustrup.coaVPrll.il.lnvntng

C-""'''Y'-.oAol.­
c-IIhoiOf:ISJlICI"'-"'OdIrltI~1Ia

·t~Addison-Wesley
Pearson EdUcatiOn

569.99 U.S. I S76.99 CANADA

	image00001
	image00001_
	image00002
	image00002_
	image00003
	image00003_
	image00004
	image00004_
	image00005
	image00005_
	image00006
	image00006_
	image00007
	image00007_
	image00008
	image00008_
	image00009
	image00009_
	image00010
	image00010_
	image00011
	image00011_
	image00012
	image00012_
	image00013
	image00013_
	image00014
	image00014_
	image00015
	image00015_
	image00016
	image00016_
	image00017
	image00017_
	image00018
	image00018_
	image00019
	image00019_
	image00020
	image00020_
	image00021
	image00021_
	image00022
	image00022_
	image00023
	image00023_
	image00024
	image00024_
	image00025
	image00025_
	image00026
	image00026_
	image00027
	image00027_
	image00028
	image00028_
	image00029
	image00029_
	image00030
	image00030_
	image00031
	image00031_
	image00032
	image00032_
	image00033
	image00033_
	image00034
	image00034_
	image00035
	image00035_
	image00036
	image00036_
	image00037
	image00037_
	image00038
	image00038_
	image00039
	image00039_
	image00040
	image00040_
	image00041
	image00041_
	image00042
	image00042_
	image00043
	image00043_
	image00044
	image00044_
	image00045
	image00045_
	image00046
	image00046_
	image00047
	image00047_
	image00048
	image00048_
	image00049
	image00049_
	image00050
	image00050_
	image00051
	image00051_
	image00052
	image00052_
	image00053
	image00053_
	image00054
	image00054_
	image00055
	image00055_
	image00056
	image00056_
	image00057
	image00057_
	image00058
	image00058_
	image00059
	image00059_
	image00060
	image00060_
	image00061
	image00061_
	image00062
	image00062_
	image00063
	image00063_
	image00064
	image00064_
	image00065
	image00065_
	image00066
	image00066_
	image00067
	image00067_
	image00068
	image00068_
	image00069
	image00069_
	image00070
	image00070_
	image00071
	image00071_
	image00072
	image00072_
	image00073
	image00073_
	image00074
	image00074_
	image00075
	image00075_
	image00076
	image00076_
	image00077
	image00077_
	image00078
	image00078_
	image00079
	image00079_
	image00080
	image00080_
	image00081
	image00081_
	image00082
	image00082_
	image00083
	image00083_
	image00084
	image00084_
	image00085
	image00085_
	image00086
	image00086_
	image00087
	image00087_
	image00088
	image00088_
	image00089
	image00089_
	image00090
	image00090_
	image00091
	image00091_
	image00092
	image00092_
	image00093
	image00093_
	image00094
	image00094_
	image00095
	image00095_
	image00096
	image00096_
	image00097
	image00097_
	image00098
	image00098_
	image00099
	image00099_
	image00100
	image00100_
	image00101
	image00101_
	image00102
	image00102_
	image00103
	image00103_
	image00104
	image00104_
	image00105
	image00105_
	image00106
	image00106_
	image00107
	image00107_
	image00108
	image00108_
	image00109
	image00109_
	image00110
	image00110_
	image00111
	image00111_
	image00112
	image00112_
	image00113
	image00113_
	image00114
	image00114_
	image00115
	image00115_
	image00116
	image00116_
	image00117
	image00117_
	image00118
	image00118_
	image00119
	image00119_
	image00120
	image00120_
	image00121
	image00121_
	image00122
	image00122_
	image00123
	image00123_
	image00124
	image00124_
	image00125
	image00125_
	image00126
	image00126_
	image00127
	image00127_
	image00128
	image00128_
	image00129
	image00129_
	image00130
	image00130_
	image00131
	image00131_
	image00132
	image00132_
	image00133
	image00133_
	image00134
	image00134_
	image00135
	image00135_
	image00136
	image00136_
	image00137
	image00137_
	image00138
	image00138_
	image00139
	image00139_
	image00140
	image00140_
	image00141
	image00141_
	image00142
	image00142_
	image00143
	image00143_
	image00144
	image00144_
	image00145
	image00145_
	image00146
	image00146_
	image00147
	image00147_
	image00148
	image00148_
	image00149
	image00149_
	image00150
	image00150_
	image00151
	image00151_
	image00152
	image00152_
	image00153
	image00153_
	image00154
	image00154_
	image00155
	image00155_
	image00156
	image00156_
	image00157
	image00157_
	image00158
	image00158_
	image00159
	image00159_
	image00160
	image00160_
	image00161
	image00161_
	image00162
	image00162_
	image00163
	image00163_
	image00164
	image00164_
	image00165
	image00165_
	image00166
	image00166_
	image00167
	image00167_
	image00168
	image00168_
	image00169
	image00169_
	image00170
	image00170_
	image00171
	image00171_
	image00172
	image00172_
	image00173
	image00173_
	image00174
	image00174_
	image00175
	image00175_
	image00176
	image00176_
	image00177
	image00177_
	image00178
	image00178_
	image00179
	image00179_
	image00180
	image00180_
	image00181
	image00181_
	image00182
	image00182_
	image00183
	image00183_
	image00184
	image00184_
	image00185
	image00185_
	image00186
	image00186_
	image00187
	image00187_
	image00188
	image00188_
	image00189
	image00189_
	image00190
	image00190_
	image00191
	image00191_
	image00192
	image00192_
	image00193
	image00193_
	image00194
	image00194_
	image00195
	image00195_
	image00196
	image00196_
	image00197
	image00197_
	image00198
	image00198_
	image00199
	image00199_
	image00200
	image00200_
	image00201
	image00201_
	image00202
	image00202_
	image00203
	image00203_
	image00204
	image00204_
	image00205
	image00205_
	image00206
	image00206_
	image00207
	image00207_
	image00208
	image00208_
	image00209
	image00209_
	image00210
	image00210_
	image00211
	image00211_
	image00212
	image00212_
	image00213
	image00213_
	image00214
	image00214_
	image00215
	image00215_
	image00216
	image00216_
	image00217
	image00217_
	image00218
	image00218_
	image00219
	image00219_
	image00220
	image00220_
	image00221
	image00221_
	image00222
	image00222_
	image00223
	image00223_
	image00224
	image00224_
	image00225
	image00225_
	image00226
	image00226_
	image00227
	image00227_
	image00228
	image00228_
	image00229
	image00229_
	image00230
	image00230_
	image00231
	image00231_
	image00232
	image00232_
	image00233
	image00233_
	image00234
	image00234_
	image00235
	image00235_
	image00236
	image00236_
	image00237
	image00237_
	image00238
	image00238_
	image00239
	image00239_
	image00240
	image00240_
	image00241
	image00241_
	image00242
	image00242_
	image00243
	image00243_
	image00244
	image00244_
	image00245
	image00245_
	image00246
	image00246_
	image00247
	image00247_
	image00248
	image00248_
	image00249
	image00249_
	image00250
	image00250_
	image00251
	image00251_
	image00252
	image00252_
	image00253
	image00253_
	image00254
	image00254_
	image00255
	image00255_
	image00256
	image00256_
	image00257
	image00257_
	image00258
	image00258_
	image00259
	image00259_
	image00260
	image00260_
	image00261
	image00261_
	image00262
	image00262_
	image00263
	image00263_
	image00264
	image00264_
	image00265
	image00265_
	image00266
	image00266_
	image00267
	image00267_
	image00268
	image00268_
	image00269
	image00269_
	image00270
	image00270_
	image00271
	image00271_
	image00272
	image00272_
	image00273
	image00273_
	image00274
	image00274_
	image00275
	image00275_
	image00276
	image00276_
	image00277
	image00277_
	image00278
	image00278_
	image00279
	image00279_
	image00280
	image00280_
	image00281
	image00281_
	image00282
	image00282_
	image00283
	image00283_
	image00284
	image00284_
	image00285
	image00285_
	image00286
	image00286_
	image00287
	image00287_
	image00288
	image00288_
	image00289
	image00289_
	image00290
	image00290_
	image00291
	image00291_
	image00292
	image00292_
	image00293
	image00293_
	image00294
	image00294_
	image00295
	image00295_
	image00296
	image00296_
	image00297
	image00297_
	image00298
	image00298_
	image00299
	image00299_
	image00300
	image00300_
	image00301
	image00301_
	image00302
	image00302_
	image00303
	image00303_
	image00304
	image00304_
	image00305
	image00305_
	image00306
	image00306_
	image00307
	image00307_
	image00308
	image00308_
	image00309
	image00309_
	image00310
	image00310_
	image00311
	image00311_
	image00312
	image00312_
	image00313
	image00313_
	image00314
	image00314_
	image00315
	image00315_
	image00316
	image00316_
	image00317
	image00317_
	image00318
	image00318_
	image00319
	image00319_
	image00320
	image00320_
	image00321
	image00321_
	image00322
	image00322_
	image00323
	image00323_
	image00324
	image00324_
	image00325
	image00325_
	image00326
	image00326_
	image00327
	image00327_
	image00328
	image00328_
	image00329
	image00329_
	image00330
	image00330_
	image00331
	image00331_
	image00332
	image00332_
	image00333
	image00333_
	image00334
	image00334_
	image00335
	image00335_
	image00336
	image00336_
	image00337
	image00337_
	image00338
	image00338_
	image00339
	image00339_
	image00340
	image00340_
	image00341
	image00341_
	image00342
	image00342_
	image00343
	image00343_
	image00344
	image00344_
	image00345
	image00345_
	image00346
	image00346_
	image00347
	image00347_
	image00348
	image00348_
	image00349
	image00349_
	image00350
	image00350_
	image00351
	image00351_
	image00352
	image00352_
	image00353
	image00353_
	image00354
	image00354_
	image00355
	image00355_
	image00356
	image00356_
	image00357
	image00357_
	image00358
	image00358_
	image00359
	image00359_
	image00360
	image00360_
	image00361
	image00361_
	image00362
	image00362_
	image00363
	image00363_
	image00364
	image00364_
	image00365
	image00365_
	image00366
	image00366_
	image00367
	image00367_
	image00368
	image00368_
	image00369
	image00369_
	image00370
	image00370_
	image00371
	image00371_
	image00372
	image00372_
	image00373
	image00373_
	image00374
	image00374_
	image00375
	image00375_
	image00376
	image00376_
	image00377
	image00377_
	image00378
	image00378_
	image00379
	image00379_
	image00380
	image00380_
	image00381
	image00381_
	image00382
	image00382_
	image00383
	image00383_
	image00384
	image00384_
	image00385
	image00385_
	image00386
	image00386_
	image00387
	image00387_
	image00388
	image00388_
	image00389
	image00389_
	image00390
	image00390_
	image00391
	image00391_
	image00392
	image00392_
	image00393
	image00393_
	image00394
	image00394_
	image00395
	image00395_
	image00396
	image00396_
	image00397
	image00397_
	image00398
	image00398_
	image00399
	image00399_
	image00400
	image00400_
	image00401
	image00401_
	image00402
	image00402_
	image00403
	image00403_
	image00404
	image00404_
	image00405
	image00405_
	image00406
	image00406_
	image00407
	image00407_
	image00408
	image00408_
	image00409
	image00409_
	image00410
	image00410_
	image00411
	image00411_
	image00412
	image00412_
	image00413
	image00413_
	image00414
	image00414_
	image00415
	image00415_
	image00416
	image00416_
	image00417
	image00417_
	image00418
	image00418_
	image00419
	image00419_
	image00420
	image00420_
	image00421
	image00421_
	image00422
	image00422_
	image00423
	image00423_
	image00424
	image00424_
	image00425
	image00425_
	image00426
	image00426_
	image00427
	image00427_
	image00428
	image00428_
	image00429
	image00429_
	image00430
	image00430_
	image00431
	image00431_
	image00432
	image00432_
	image00433
	image00433_
	image00434
	image00434_
	image00435
	image00435_
	image00436
	image00436_
	image00437
	image00437_
	image00438
	image00438_
	image00439
	image00439_
	image00440
	image00440_
	image00441
	image00441_
	image00442
	image00442_
	image00443
	image00443_
	image00444
	image00444_
	image00445
	image00445_
	image00446
	image00446_
	image00447
	image00447_
	image00448
	image00448_
	image00449
	image00449_
	image00450
	image00450_
	image00451
	image00451_
	image00452
	image00452_
	image00453
	image00453_
	image00454
	image00454_
	image00455
	image00455_
	image00456
	image00456_
	image00457
	image00457_
	image00458
	image00458_
	image00459
	image00459_
	image00460
	image00460_
	image00461
	image00461_
	image00462
	image00462_
	image00463
	image00463_
	image00464
	image00464_
	image00465
	image00465_
	image00466
	image00466_
	image00467
	image00467_
	image00468
	image00468_
	image00469
	image00469_
	image00470
	image00470_
	image00471
	image00471_
	image00472
	image00472_
	image00473
	image00473_
	image00474
	image00474_
	image00475
	image00475_
	image00476
	image00476_
	image00477
	image00477_
	image00478
	image00478_
	image00479
	image00479_
	image00480
	image00480_
	image00481
	image00481_
	image00482
	image00482_
	image00483
	image00483_
	image00484
	image00484_
	image00485
	image00485_
	image00486
	image00486_
	image00487
	image00487_
	image00488
	image00488_
	image00489
	image00489_
	image00490
	image00490_
	image00491
	image00491_
	image00492
	image00492_
	image00493
	image00493_
	image00494
	image00494_
	image00495
	image00495_
	image00496
	image00496_
	image00497
	image00497_
	image00498
	image00498_
	image00499
	image00499_
	image00500
	image00500_
	image00501
	image00501_
	image00502
	image00502_
	image00503
	image00503_
	image00504
	image00504_
	image00505
	image00505_
	image00506
	image00506_
	image00507
	image00507_
	image00508
	image00508_
	image00509
	image00509_
	image00510
	image00510_
	image00511
	image00511_
	image00512
	image00512_
	image00513
	image00513_
	image00514
	image00514_
	image00515
	image00515_
	image00516
	image00516_
	image00517
	image00517_
	image00518
	image00518_
	image00519
	image00519_
	image00520
	image00520_
	image00521
	image00521_
	image00522
	image00522_
	image00523
	image00523_
	image00524
	image00524_
	image00525
	image00525_
	image00526
	image00526_
	image00527
	image00527_
	image00528
	image00528_
	image00529
	image00529_
	image00530
	image00530_
	image00531
	image00531_
	image00532
	image00532_
	image00533
	image00533_
	image00534
	image00534_
	image00535
	image00535_
	image00536
	image00536_
	image00537
	image00537_
	image00538
	image00538_
	image00539
	image00539_
	image00540
	image00540_
	image00541
	image00541_
	image00542
	image00542_
	image00543
	image00543_
	image00544
	image00544_
	image00545
	image00545_
	image00546
	image00546_
	image00547
	image00547_
	image00548
	image00548_
	image00549
	image00549_
	image00550
	image00550_
	image00551
	image00551_
	image00552
	image00552_
	image00553
	image00553_
	image00554
	image00554_
	image00555
	image00555_
	image00556
	image00556_
	image00557
	image00557_
	image00558
	image00558_
	image00559
	image00559_
	image00560
	image00560_
	image00561
	image00561_
	image00562
	image00562_
	image00563
	image00563_
	image00564
	image00564_
	image00565
	image00565_
	image00566
	image00566_
	image00567
	image00567_
	image00568
	image00568_
	image00569
	image00569_
	image00570
	image00570_
	image00571
	image00571_
	image00572
	image00572_
	image00573
	image00573_
	image00574
	image00574_
	image00575
	image00575_
	image00576
	image00576_
	image00577
	image00577_
	image00578
	image00578_
	image00579
	image00579_
	image00580
	image00580_
	image00581
	image00581_
	image00582
	image00582_
	image00583
	image00583_
	image00584
	image00584_
	image00585
	image00585_
	image00586
	image00586_
	image00587
	image00587_
	image00588
	image00588_
	image00589
	image00589_
	image00590
	image00590_
	image00591
	image00591_
	image00592
	image00592_
	image00593
	image00593_
	image00594
	image00594_
	image00595
	image00595_
	image00596
	image00596_
	image00597
	image00597_
	image00598
	image00598_
	image00599
	image00599_
	image00600
	image00600_
	image00601
	image00601_
	image00602
	image00602_
	image00603
	image00603_
	image00604
	image00604_
	image00605
	image00605_
	image00606
	image00606_
	image00607
	image00607_
	image00608
	image00608_
	image00609
	image00609_
	image00610
	image00610_
	image00611
	image00611_
	image00612
	image00612_
	image00613
	image00613_
	image00614
	image00614_
	image00615
	image00615_
	image00616
	image00616_
	image00617
	image00617_
	image00618
	image00618_
	image00619
	image00619_
	image00620
	image00620_
	image00621
	image00621_
	image00622
	image00622_
	image00623
	image00623_
	image00624
	image00624_
	image00625
	image00625_
	image00626
	image00626_
	image00627
	image00627_
	image00628
	image00628_
	image00629
	image00629_
	image00630
	image00630_
	image00631
	image00631_
	image00632
	image00632_
	image00633
	image00633_
	image00634
	image00634_

