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Preface

“Damn the torpedoes!

Full speed ahead.”

—Admiral Farragut

Programming is the art of expressing solutions to problems so that a computer
can execute those solutions. Much of the effort in programming is spent finding
and refining solutions. Often, a problem is only fully understood through the
process of programming a solution for it.

This book is for someone who has never programmed before but is willing
to work hard to learn. It helps you understand the principles and acquire the
practical skills of programming using the C++ programming language. My aim
is for you to gain sufficient knowledge and experience to perform simple useful
programming tasks using the best up-to-date techniques. How long will that
take? As part of a first-year university course, you can work through this book in
a semester (assuming that you have a workload of four courses of average diffi-
culty). If you work by yourself, don’t expect to spend less time than that (maybe
15 hours a week for 14 weeks).

Three months may seem a long time, but there’s a lot to learn and you'll be
writing your first simple programs after about an hour. Also, all learning is grad-
ual: each chapter introduces new useful concepts and illustrates them with exam-
ples inspired by real-world uses. Your ability to express ideas in code — getting a
computer to do what you want it to do — gradually and steadily increases as you
go along. I never say, “Learn a month’s worth of theory and then see if you can
use it.”
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PREFACE

Why would you want to program? Our civilization runs on software. With-
out understanding software you are reduced to believing in “magic” and will be
locked out of many of the most interesting, profitable, and socially useful techni-
cal fields of work. When I talk about programming, I think of the whole spec-
trum of computer programs from personal computer applications with GUIs
(graphical user interfaces), through engineering calculations and embedded sys-
tems control applications (such as digital cameras, cars, and cell phones), to text
manipulation applications as found in many humanities and business applica-
tions. Like mathematics, programming — when done well — is a valuable intellec-
tual exercise that sharpens our ability to think. However, thanks to feedback
from the computer, programming is more concrete than most forms of math, and
therefore accessible to more people. It is a way to reach out and change the world
— ideally for the better. Finally, programming can be great fun.

Why C++? You can't learn to program without a programming language.
and C++ directly supports the key concepts and techniques used in real-world
software. C++ is one of the most widely used programming languages, found in
an unsurpassed range of application areas. You find C++ applications every-
where from the bottom of the oceans to the surface of Mars. C++ is precisely
and comprehensively defined by a nonproprietary international standard. Qual-
ity and/or free implementations are available on every kind of computer. Most of
the programming concepts that you will learn using C++ can be used directly in
other languages, such as C, C#, Fortran, and Java. Finally, I simply like C++ as
a language for writing elegant and efficient code.

This is not the easiest book on beginning programming; it is not meant to
be. I just aim for it to be the casiest book from which you can learn the basics of
real-world programming. That's quite an ambitious goal because much modern
software relies on techniques considered advanced just a few years ago.

My fundamental assumption is that you want to write programs for the use
of others, and to do so responsibly, providing a decent level of system quality;
that is, I assume that you want to achieve a level of professionalism. Conse-
quently, I chose the topics for this book to cover what is needed to get started
with real-world programming, not just what is easy to teach and learn. If you
need a technique to get basic work done right, I describe it, demonstrate concepts
and language facilities needed to support the technique, provide exercises for it,
and expect you to work on those exercises. If you just want to understand toy
programs, you can get along with far less than I present. On the other hand, 1
won’t waste your time with material of marginal practical importance. If an idea
is explained here, it’s because you'll almost certainly need it.

If your desire is to use the work of others without understanding how things
are done and without adding significantly to the code yourself, this book is not
for you. If so, please consider whether you would be better served by another
book and another language. If that is approximately your view of programming,
please also consider from where you got that view and whether it in fact is ade-
quate for your needs. People often underestimate the complexity of program-
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ming as well as its value. I would hate for you to acquire a dislike for program-
ming because of a mismatch between what you need and the part of the software
reality I describe. There are many parts of the “information technology” world
that do not require knowledge of programming. This book is aimed to serve
those who do want to write or understand nontrivial programs.

Because of its structure and practical aims, this book can also be used as a
second book on programming for someone who already knows a bit of C++ or
for someone who programs in another language and wants to learn C++. If you
fit into one of those categories, I refrain from guessing how long it will take you
to read this book, but I do encourage you to do many of the exercises. This will
help you to counteract the common problem of writing programs in older, famil-
iar styles rather than adopting newer techniques where these are more appropri-
ate. If you have learned C++ in one of the more traditional ways, you’'ll find
something surprising and useful before you reach Chapter 7. Unless your name
is Stroustrup, what I discuss here is not “your father’s C++.

Programming is learned by writing programs. In this, programming is similar
to other endeavors with a practical component. You cannot learn to swim, to play
a musical instrument, or to drive a car just from reading a book — you must prac-
tice. Nor can you learn to program without reading and writing lots of code. This
book focuses on code examples closely tied to explanatory text and diagrams. You
need those to understand the ideals, concepts, and principles of programming and
to master the language constructs used to express them. That’s essential, but by it-
self, it will not give you the practical skills of programming. For that, you need to
do the exercises and get used to the tools for writing, compiling, and running pro-
grams. You need to make your own mistakes and learn to correct them. There is
no substitute for writing code. Besides, that’s where the fun is!

On the other hand, there is more to programming — much more — than fol-
lowing a few rules and reading the manual. This book is emphatically not fo-
cused on “the syntax of C++." Understanding the fundamental ideals, principles,
and techniques is the essence of a good programmer. Only well-designed code
has a chance of becoming part of a correct, reliable, and maintainable system.
Also, “the fundamentals” are what last: they will still be essential after today’s
languages and tools have evolved or been replaced.

What about computer science, software engineering, information technol-
ogy, etc.? Is that all programming? Of course not! Programming is one of the
fundamental topics that underlie everything in computer-related fields, and it has
a natural place in a balanced course of computer science. I provide brief intro-
ductions to key concepts and techniques of algorithms, data structures, user in-
terfaces, data processing, and software engineering. However, this book is not a
substitute for a thorough and balanced study of those topics.

Code can be beautiful as well as useful. This book is written to help you see
that, to understand what it means for code to be beautiful, and to help you to
master the principles and acquire the practical skills to create such code. Good
luck with programming!
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A note to students

Of the 1000+ first-year students we have taught so far using drafts of this book at
Texas A&M University, about 60% had programmed before and about 40% had
never seen a line of code in their lives. Most succeeded, so you can do it, too.

You don’t have to read this book as part of a course. I assume that the book
will be widely used for self-study. However, whether you work your way through
as part of a course or independently, try to work with others. Programming has
an — unfair — reputation as a lonely activity. Most people work better and learn
faster when they are part of a group with a common aim. Learning together and
discussing problems with friends is not cheating! It is the most efficient — as well
as most pleasant — way of making progress. If nothing else, working with friends
forces you to articulate your ideas, which is just about the most efficient way of
testing your understanding and making sure you remember. You don’t actually
have to personally discover the answer to every obscure language and program-
ming environment problem. However, please don't cheat yourself by not doing
the drills and a fair number of exercises (even if no teacher forces you to do
them). Remember: programming is (among other things) a practical skill that
you need to practice to master. If you don’t write code (do several exercises for
each chapter), reading this book will be a pointless theoretical exercise.

Most students — especially thoughtful good students — face tmes when they
wonder whether their hard work is worthwhile. When (not if) this happens to you,
take a break, reread the preface, and look at Chapter 1 (*Computers, People, and
Programming”) and Chapter 22 (“Ideals and History”). There, I try to articulate
what I find exciting about programming and why I consider it a crucial tool for
making a positive contribution to the world. If you wonder about my teaching phi-
losophy and general approach, have a look at Chapter 0 (“Notes to the Reader”).

You might find the weight of this book worrying, but it should reassure you
that part of the reason for the heft is that I prefer to repeat an explanation or add an
example rather than have you search for the one and only explanation. The other
major part of the reason is that the second half of the book is reference material and
“additional material” presented for you to explore only if you are interested in
more information about a specific area of programming, such as embedded sys-
tems programming, text analysis, or numerical computation.

And please don’t be too impatient. Learning any major new and valuable
skill takes time and is worth it.

A note to teachers

No. This is not a traditional Computer Science 101 course. It is a book about
how to construct working software. As such, it leaves out much of what a com-
puter science student is traditionally exposed to (Turing completeness, state ma-
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chines. discrete math, Chomsky grammars, etc.). Even hardware is ignored on
the assumption that students have used computers in various ways since kinder-
garten. This book does not even try to mention most important CS topics. It is
about programming (or more generally about how to develop software), and as
such it goes into more detail about fewer topics than many traditional courses. It
tries to do just one thing well, and computer science is not a one-course topic. If
this book/course is used as part of a computer science, computer engineering,
electrical engineering (many of our first students were EE majors). information
science, or whatever program, I expect it to be taught alongside other courses as
part of a well-rounded introduction.

Please read Chapter 0 (“Notes to the Reader”) for an explanation of my
teaching philosophy, general approach, etc. Please try to convey those ideas to
your students along the way.

Support
The book’s support website, www.stroustrup.com/Programming, contains a va-
riety of materials supporting the teaching and learning of programming using
this book. The material is likely to be improved with time, but for starters, you
can find:

= Slides for lectures based on the book

* An instructor’s guide

* Header files and implementations of libraries used in the book

* Code for examples in the book

*  Solutions to selected exercises

+ Potentially useful links

* Errata

Suggestions for improvements are always welcome.
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Notes to the Reader

“When the terrain disagrees with the map,

trust the terrain.”

—Swiss army proverb

his chapter is a grab bag of information; it aims to give you

an idea of what to expect from the rest of the book. Please
skim through it and read what you find interesting. A teacher
will find most parts immediately useful. If you are reading this
book without the benefit of a good teacher, please don’t try to
read and understand everything in this chapter; just look at “The
structure of this book” and the first part of the “A philosophy of
teaching and learning” sections. You may want to return and
reread this chapter once you feel comfortable writing and execut-

ing small programs.



CHAPTER 0 « NOTES TO THE READER

0.1 The structure of this book 0.3 Programming and computer science
0.1.1 General approach 0.4 Creativity and problem solving
0.1.2 Drills, exercises, etc.
0.1.3 What comes after this book? 0.5 Request for feedback
0.2 A philosophy of teaching and 0.6 References
learning 0.7 Biographies

0.2.1 The order of topics
0.2.2 Programming and programming

language

0.2.3 Portability

0.1 The structure of this book

This book consists of four parts and a collection of appendices:

Fart I, “The Basics,” presents the fundamental concepts and techniques of
programming together with the C++ language and library facilities
needed to get started writing code. This includes the type system, arith-
metic operations, control structures, error handling, and the design, im-
plementation, and use of functions and user-defined types.

Part 11, “Input and Output,” describes how to get numeric and text data
from the keyboard and from files, and how to produce corresponding
output to the screen and to files. Then, it shows how to present numeric
data, text, and geometric shapes as graphical output, and how to get
input into a program from a graphical user interface (GUI).

Fart 111, “Data and Algorithms,” focuses on the C++ standard library’s con-
tainers and algorithms framework (the STL, standard template library).
It shows how containers (such as vector, list, and map) are implemented
(using pointers, arrays, dynamic memory, exceptions, and templates)
and used. It also demonstrates the design and use of standard library al-
gorithms (such as sort, find, and inner_product).

Part IV, “Broademing the View,” offers a perspective on programming
through a discussion of ideals and history, through examples (such as
matrix computation, text manipulation, testing, and embedded systems

programming), and through a brief description of the C language.

Appendices provide useful information that doesn’t fit into a tutorial presen-
tation, such as surveys of C++ language and standard library facilities,
and descriptions of how to get started with an integrated development en-
vironment (IDE) and a graphical user interface (GUI) library.
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Unfortunately, the world of programming doesn’t really fall into four cleanly sep-
arated parts. Therefore, the “parts™ of this book provide only a coarse classifica-
tion of topics. We consider it a useful classification (obviously, or we wouldn’t
have used it), but reality has a way of escaping neat classifications. For example,
we need to use input operations far sooner than we can give a thorough explana-
tion of C++ standard I/O streams (input/output streams). Where the set of topics
needed to present an idea conflicts with the overall classification, we explain the
minimum needed for a good presentation, rather than just referring to the com-
plete explanation elsewhere. Rigid classifications work much better for manuals
than for tutorials.

The order of topics is determined by programming techniques, rather than
programming language features; see §0.2. For a presentation organized around
language features, see Appendix A.

To ease review and to help you if you miss a key point during a first reading
where you have yet to discover which kind of information is crucial, we place
three kinds of “alert markers” in the margin:

*  Blue: concepts and techniques (this paragraph is an example of that)
*  Green: advice

*  Red: warning

0.1.1 General approach

In this book, we address you directly. That is simpler and clearer than the con-
ventional “professional” indirect form of address, as found in most scientific pa-
pers. By “you” we mean “you, the reader,” and by “we” we refer cither to
“ourselves, the author and teachers,” or to you and us working together through
a problem, as we might have done had we been in the same room.

This book is designed to be read chapter by chapter from the beginning to
the end. Often, you'll want to go back to look at something a second or a third
time. In fact, that’s the only sensible approach, as you'll always dash past some
details that you don’t yet see the point in. In such cases, you'll eventually go back
again. However, despite the index and the cross-references, this is not a book that
you can open on any page and start reading with any expectation of success.
Each section and each chapter assume understanding of what came before.

Each chapter is a reasonably self-contained unit, meant to be read in “one sit-
ting” (logically, if not always feasible on a student’s tight schedule). That’s one
major criterion for separating the text into chapters. Other criteria include that a
chapter is a suitable unit for drills and exercises and that cach chapter presents
some specific concept, idea, or technique. This plurality of criteria has left a few
chapters uncomfortably long, so please don’t take “in one sitting” too literally. In
particular, once you have thought about the review questions, done the drill, and
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worked on a few exercises, you'll often find that you have to go back to reread a
few sections and that several days have gone by. We have clustered the chapters
into “parts” focused on a major topic, such as input/output. These parts make
good units of review.

Common praise for a textbook is “It answered all my questions just as I
thought of them!” That's an ideal for minor technical questions, and early read-
ers have observed the phenomenon with this book. However, that cannot be the
whole ideal. We raise questions that a novice would probably not think of. We
aim to ask and answer questions that you need to consider to write quality soft-
ware for the use of others. Learning to ask the right (often hard) questions is an
essential part of learning to think as a programmer. Asking only the easy and ob-
vious questions would make you feel good, but it wouldn’t help make you a pro-
grammer.

We try to respect your intelligence and to be considerate about your time. In
our presentation, we aim for professionalism rather than cuteness, and we'd
rather understate a point than hype it. We try not to exaggerate the importance
of a programming technique or a language feature, but please don’t underesti-
mate a simple statement like “This is often useful.” If we quietly emphasize that
something is important, we mean that you’'ll sooner or later waste days if you
don’t master it. Our use of humor is more limited than we would have preferred,
but experience shows that people’s ideas of what is funny differ dramatically and
that a failed attempt at humor can be confusing.

We do not pretend that our ideas or the tools offered are perfect. No tool, li-
brary, language, or technique is “the solution” to all of the many challenges fac-
ing a programmer. At best, it can help you to develop and express your solution.
We try hard to avoid “white lies”; that is, we refrain from oversimplified explana-
tions that are clear and easy to understand, but not true in the context of real lan-
guages and real problems. On the other hand, this book is not a reference; for
more precise and complete descriptions of C4++, see Bjarne Stroustrup, The C++
Programming Language, Special Edition (Addison-Wesley, 2000), and the ISO C++
standard.

0.1.2 Drills, exercises, etc.

Programming is not just an intellectual activity, so writing programs is necessary
to master programming skills. We provide two levels of programming practice:

*  Dnlls: A drill is a very simple exercise devised to develop practical, al-
most mechanical skills. A drill usually consists of a sequence of modifica-
tions of a single program. You should do every drill. A drill is not asking
for deep understanding, cleverness, or initiative. We consider the drills
part of the basic fabric of the book. If you haven’t done the drills, you
have not “done” the book.
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*  Exerases: Some exercises are trivial and others are very hard, but most
are intended to leave some scope for initiative and imagination. If you
are serious, you'll do quite a few exercises. At least do enough to know
which are difficult for you. Then do a few more of those. That’s how
you'll learn the most. The exercises are meant to be manageable without
exceptional cleverness, rather than to be tricky puzzles. However, we
hope that we have provided exercises that are hard enough to challenge
anybody and enough exercises to exhaust even the best student’s avail-
able time. We do not expect you to do them all, but feel free to try.

In addition, we recommend that you (every student) take part in a small project
(and more if time allows for it). A project is intended to produce a complete useful
program. Ideally, a project is done by a small group of people (e.g., three people)
working together for about a month while working through the chapters in Part
ITI. Most people find the projects the most fun and what ties everything together.
Some people like to put the book aside and try some examples before read-
ing to the end of a chapter; others prefer to read ahead to the end before trying to
get code to run. To support readers with the former preference, we provide sim-
ple suggestions for practical work labeled “Try this:” at natural breaks in the
text. A Try this is generally in the nature of a drill focused narrowly on the topic
that precedes it. If you pass a Try this without trying — maybe because you are
not near a computer or you find the text riveting — do return to it when you do
the chapter drill; a Try this either complements the chapter drill or is a part of it.
At the end of each chapter you'll find a set of review questions. They are in-
tended to point you to the key ideas explained in the chapter. One way to look at
the review questions is as a complement to the exercises: the exercises focus on the
practical aspects of programming, whereas the review questions try to help you ar-
ticulate the ideas and concepts. In that, they resemble good interview questions.
The “Terms” section at the end of each chapter presents the basic vocabulary
of programming and of C++. If you want to understand what people say about
programming topics and to articulate your own ideas, you should know what
each means.
Learning involves repetition. Our ideal is to make every important point at
least twice and to reinforce it with exercises.

0.1.3 What comes after this book?

At the end of this book, will you be an expert at programming and at C++? Of
course not! When done well, programming is a subtle, deep, and highly skilled
art building on a variety of technical skills. You should no more expect to be an
expert at programming in four months than you should expect to be an expert in
biology, in math, in a natural language (such as Chinese, English, or Danish), or
at playing the violin in four months — or in half a year, or a year. What you
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should hope for, and what you can expect if you approach this book seriously, is
to have a really good start that allows you to write relatively simple useful pro-
grams, to be able to read more complex programs, and to have a good concep-
tual and practical background for further work.

The best follow-up to this initial course is to work on a real project develop-
ing code to be used by someone else. After that, or (even better) in parallel with a
real project, read either a professional-level general textbook (such as Stroustrup,
The C++ Programming Language), a more specialized book relating to the needs of
your project (such as Qt for GUI, or ACE for distributed programming), or a
textbook focusing on a particular aspect of C++ (such as Koenig and Moo, Aecel-
erated C++; Sutter’s Exceptional C++; or Gamma et al., Design Fatterns). For com-
plete references, see §0.6 or the Bibliography section at the back of the book.

Eventually, you should learn another programming language. We don’t con-
sider it possible to be a professional in the realm of software — even if you are not
primarily a programmer — without knowing more than one language.

0.2 A philosophy of teaching and learning

What are we trying to help you learn? And how are we approaching the process
of teaching? We try to present the minimal concepts, techniques, and tools for
you to do effective practical programs, including

* Program organization

* Debugging and testing

+ Class design

+ Computation

*+ Function and algorithm design

*  Graphics (two-dimensional only)

*  Graphical user interfaces (GUIs)

* lext manipulation

* Regular expression matching

* Files and stream input and output (I/0O)

* Memory management

* Scientific/numerical/engineering calculations

* Design and programming ideals

* The C++ standard library

* Software development strategies

* Clanguage programming techniques
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Working our way through these topics, we cover the programming techniques
called procedural programming (as with the C programming language), data ab-
straction, object-oriented programming, and generic programming. The main
topic of this book is programming, that is, the ideals, techniques, and tools of ex-
pressing ideas in code. The C++ programming language is our main tool, so we
describe many of C++'s facilities in some detail. But please remember that C++
is just a tool, rather than the main topic of this book. This is “programming using
C++," not “C++ with a bit of programming theory.”

Each topic we address serves at least two purposes: it presents a technique,
concept, or principle and also a practical language or library feature. For exam-
ple, we use the interface to a two-dimensional graphics system to illustrate the use
of classes and inheritance. This allows us to be economical with space (and your
time) and also to emphasize that programming is more than simply slinging code
together to get a result as quickly as possible. The C++ standard library is a
major source of such “double duty” examples — many even do triple duty. For
example, we introduce the standard library vector, use it to illustrate widely use-
ful design techniques, and show many of the programming techniques used to
implement it. One of our aims is to show you how major library facilities are im-
plemented and how they map to hardware. We insist that craftsmen must under-
stand their tools, not just consider them “magical.”

Some topics will be of greater interest to some programmers than to others.
However, we encourage you not to prejudge your needs (how would you know
what you'll need in the future?) and at least look at every chapter. If you read this
book as part of a course, your teacher will guide your selection.

We characterize our approach as “depth-first.” It is also “concrete-first” and
“concept-based.” First, we quickly (well, relatively quickly, Chapters 1-11) assem-
ble a set of skills needed for writing small practical programs. In doing so, we
present a lot of tools and techniques in minimal detail. We focus on simple con-
crete code examples because people grasp the concrete faster than the abstract.
That’s simply the way most humans learn. At this initial stage, you should not
expect to understand every little detail. In particular, you'll find that trying some-
thing slightly different from what just worked can have “mysterious™ effects. Do
try, though! And please do the drills and exercises we provide. Just remember
that early on you just don’t have the concepts and skills to accurately estimate
what'’s simple and what’s complicated; expect surprises and learn from them.

We move fast in this initial phase — we want to get you to the point where
you can write interesting programs as fast as possible. Someone will argue, “We
must move slowly and carefully; we must walk before we can run!” But have you
ever watched a baby learning to walk? Babies really do run by themselves before
they learn the finer skills of slow, controlled walking. Similarly, you will dash
ahead, occasionally stumbling, to get a feel of programming before slowing down
to gain the necessary finer control and understanding. You must run before you
can walk!
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It is essential that you don’t get stuck in an attempt to learn “everything”
about some language detail or technique. For example, you could memorize all of
C++'s built-in types and all the rules for their use. Of course you could, and
doing so might make you feel knowledgeable. However, it would not make you a
programmer. Skipping details will get you “burned” occasionally for lack of
knowledge, but it is the fastest way to gain the perspective needed to write good
programs. Note that our approach is essentially the one used by children learning
their native language and also the most effective approach used to teach foreign
languages. We encourage you to seek help from teachers, friends, colleagues, in-
structors, Mentors, etc. on the inevitable occasions when you are stuck. Be as-
sured that nothing in these early chapters is fundamentally difficult. However,
much will be unfamiliar and might therefore feel difficult at first.

Later, we build on the initial skills to broaden your base of knowledge and
skills. We use examples and exercises to solidify your understanding, and to pro-
vide a conceptual base for programming.

We place a heavy emphasis on ideals and reasons. You need ideals to guide
you when you look for practical solutions — to know when a solution is good and
principled. You need to understand the reasons behind those ideals to under-
stand why they should be your ideals, why aiming for them will help you and the
users of your code. Nobody should be satisfied with “because that’s the way it is™
as an explanation. More importantly, an understanding of ideals and reasons al-
lows you to generalize from what you know to new situations and to combine
ideas and tools in novel ways to address new problems. Knowing “why” is an es-
sential part of acquiring programming skills. Conversely, just memorizing lots of
poorly understood rules and language facilities is limiting, a source of errors, and
a massive waste of time. We consider your time precious and try not to waste it.

Many C++ language-technical details are banished to appendices and manu-
als, where you can look them up when needed. We assume that you have the ini-
tiative to search out information when needed. Use the index and the table of
contents. Don't forget the online help facilities of your compiler, and the web. Re-
member, though, to consider every web resource highly suspect until you have
reason to believe better of it. Many an authoritative-looking website is put up by
a programming novice or someone with something to sell. Others are simply out-
dated. We provide a collection of links and information on our support website:
www.stroustrup.com/Programming.

Please don't be too impatient for “realistic” examples. Our ideal example is
the shortest and simplest code that directly illustrates a language facility, a con-
cept, or a technique. Most real-world examples are far messier than ours, yet do
not consist of more than a combination of what we demonstrate. Successful com-
mercial programs with hundreds of thousands of lines of code are based on tech-
niques that we illustrate in a dozen 50-line programs. The fastest way to
understand real-world code is through a good understanding of the fundamentals.
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On the other hand, we do not use “cute examples involving cuddly animals”
to illustrate our points. We assume that you aim to write real programs to be
used by real people, so every example that is not presented as language-technical
is taken from a real-world use. Our basic tone is that of professionals addressing
(future) professionals.

0.2.1 The order of topics

There are many ways to teach people how to program. Clearly, we don’t sub-
scribe to the popular “the way I learned to program is the best way to learn” the-
ories. To ease learning, we early on present topics that would have been
considered advanced only a few years ago. Our ideal is for the topics we present
to be driven by problems you meet as you learn to program, to flow smoothly
from topic to topic as you increase your understanding and practical skills. The
major flow of this book is more like a story than a dictionary or a hierarchical
order.

It is impossible to learn all the principles, techniques, and language facilities
needed to write a program at once. Consequently, we have to choose a subset of
principles, techniques, and features to start with. More generally, a textbook or a
course must lead students through a series of subsets. We consider it our respon-
sibility to select topics and to provide emphasis. We can't just present everything,
so we must choose; what we leave out is at least as important as what we leave in
— at each stage of the journey.

For contrast, it may be useful for you to see a list of (severely abbreviated)
characterizations of approaches that we decided not to take:

*  “C first”: This approach to learmng C++ is wasteful of students’ time
and leads to poor programming practices by forcing students to ap-
proach problems with fewer facilities, techniques, and libraries than nec-
essary. C++ provides stronger type checking than C, a standard library
with better support for novices, and exceptions for error handling.

*  Bottom-up: This approach distracts from learning good and effective pro-
gramming practices. By forcing students to solve problems with insuffi-
cient support from the language and libraries, it promotes poor and
wasteful programming practices.

* “If you present something, you must present it fully”: This approach implies a
bottom-up approach (by drilling deeper and deeper into every toplc
touched). It bores novices with technical details they have no interest in
and quite likely will not need for years to come. Once you can program,
you can look up technical details in a manual. Manuals are good at that,
whereas they are awful for initial learning of concepts.
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*  Top-down: This approach, working from first principles toward details,
tends to distract readers from the practical aspects of programming and
force them to concentrate on high-level concepts before they have any
chance of appreciating their importance. For example, you simply can’t
appreciate proper software development principles before you have
learned how easy it is to make a mistake in a program and how hard it
can be to correct it.

*  “Abstract first”: Focusing on general principles and protecting the student
from nasty real-world constraints can lead to a disdain for real-world
problems, languages, tools, and hardware constraints. Often, this ap-
proach is supported by “teaching languages™ that cannot be used later
and (deliberately) insulate students from hardware and system concerns.

*  Software engineering principles first: This approach and the abstract-first ap-
proach tend to share the problems of the top-down approach: without
concrete examples and practical experience, you simply cannot appreci-
ate the value of abstraction and proper software development practices.

*  “Object-oriented from day one”: Object-oriented programming is one of the
best ways of organizing code and programming efforts, but it is not the
only effective way. In particular, we feel that a grounding in the basics of
types and algorithmic code is a prerequisite for appreciation of the design
of classes and class hierarchies. We do use user-defined types (what some
people would call “objects”) from day one, but we don’t show how to de-
sign a class until Chapter 6 and don’t show a class hierarchy until Chap-
ter 12.

*  “Just believe in magic”: This approach relies on demonstrations of power-
ful tools and techniques without introducing the novice to the underly-
ing techniques and facilities. This leaves the student guessing — and
usually guessing wrong — about why things are the way they are, what it
costs to use them, and where they can be reasonably applied. This can
lead to overrigid following of familiar patterns of work and become a
barrier to further learning.

Naturally, we do not claim that these other approaches are never useful. In fact,
we use several of these for specific subtopics where their strengths can be appre-
ciated. However, as general approaches to learning programming aimed at real-
world use, we reject them and apply our alternative: concrete-first and depth-first
with an emphasis on concepts and techniques.

0.2.2 Programming and programming language

We teach programming first and treat our chosen programming language as sec-
ondary, as a tool. Our general approach can be used with any general-purpose
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programming language. Our primary aim is to help you learn general concepts,
principles, and techniques. However, those cannot be appreciated in isolation.
For example, details of syntax, the kinds of ideas that can be directly expressed,
and tool support differ from programming language to programming language.
However, many of the fundamental techniques for producing bug-free code, such
as writing logically simple code (Chapters 5 and 6), establishing invariants
(§9.4.3), and separating interfaces from implementation details (§9.7 and
§14.1-2), vary little from programming language to progmmmmg language.

Progmmmmg and design tcchmqucs must be learned using a programming
language. Design, code organization, and debugging are not skills you can ac-
quire in the abstract. You need to write code in some programming language and
gain practical experience with that. This implies that you must learn the basics of
a programming language. We say “the basics™ because the days when you could
learn all of a major industrial language in a few weeks are gone for good. The
parts of C++ we present were chosen as the subset that most directly supports
the production of good code. Also, we present C++ features that you can’t avoid
encountering either because they are necessary for logical completeness or are
common in the C++ community.

0.2.3 Portability

It is common to write C++ to run on a variety of machines. Major C++ applica-
tions run on machines we haven’t ever heard of! We consider portability and the use
of a variety of machine architectures and operating systems most important. Essen-
tially every example in this book is not only ISO Standard C++, but also portable.
Unless specifically stated, the code we present should work on every C++ imple-
mentation and has been tested on several machines and operating systems.

The details of how to compile, link, and run a C++ program differ from system
to system. It would be tedious to mention the details of every system and every
compiler each time we need to refer to an implementation issue. In Appendix E, we
give the most basic information about getting started using Visual Studio and
Microsoft C++ on a Windows machine.

If you have trouble with one of the popular, but rather elaborate, IDEs (inte-
grated development environments), we suggest you try working from the com-
mand line; it's surprisingly simple. For example, here is the full set of commands
needed to compile, link, and execute a simple program consisting of two source
files, my_file1l.cpp and my_file2.cpp, using the GNU C++ compiler, g++, on a
Unix or Linux system:

g++ -0 my_program my_filel.cpp my_file2.cpp
my_program

Yes, that really is all it takes.

1
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0.3 Programming and computer science

Is programming all that there is to computer science? Of course not! The only
reason we raise this question is that people have been known to be confused
about this. We touch upon major topics from computer science, such as algo-
rithms and data structures, but our aim is to teach programming: the design and
implementation of programs. That is both more and less than most accepted no-
tions of computer science:

*  More, because programming involves many technical skills that are not
usually considered part of any science

* Less, because we do not systematically present the foundation for the
parts of computer science we use

The aim of this book is to be part of a course in computer science (if becoming a
computer scientist is your aim), to be the foundation for the first of many courses
in software construction and maintenance (if your aim is to become a program-
mer or a software engineer), and in general to be part of a greater whole.

We rely on computer science throughout and we emphasize principles, but
we teach programming as a practical skill based on theory and experience, rather
than as a science.

0.4 Creativity and problem solving

The primary aim of this book is to help you to express your ideas in code, not to
teach you how to get those ideas. Along the way, we give many examples of how
we can address a problem, usually through analysis of a problem followed by
gradual refinement of a solution. We consider programming itself a form of prob-
lem solving: only through complete understanding of a problem and its solution
can you express a correct program for it, and only through constructing and test-
ing a program can you be certain that your understanding is complete. Thus,
programming is inherently part of an effort to gain understanding. However, we
aim to demonstrate this through examples, rather than through “preaching” or
presentation of detailed prescriptions for problem solving,

0.5 Request for feedback

We don’t think that the perfect textbook can exist; the needs of individuals differ
too much for that. However, we’d like to make this book and its supporting ma-
terials as good as we can make them. For that, we need feedback; a good text-
book cannot be written in isolation from its readers. Please send us reports on
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errors, typos, unclear text, missing explanations, etc. We'd also appreciate sug-
gestions for better exercises, better examples, and topics to add, topics to delete,
etc. Constructive comments will help future readers and we'll post errata on our
support website: www.stroustrup.com/Programming.
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0.7 Biographies

You might reasonably ask, “Who are these guys who want to teach me how to
program?” So here is some biographical information. I, Bjarne Stroustrup, wrote
this book, and together with Lawrence “Pete” Petersen, I designed and taught the
university-level beginner’s (first-year) course that was developed concurrently

with the book, using drafts of the book.

Bjarne Stroustrup

[ : I'm the designer and original implementer of the
C++ programming language. I have used the lan-
guage, and many other programming languages.
for a wide variety of programming tasks over the
last 30 years or so. I just love elegant and efficient
code used in challenging applications, such as
robot control, graphics, games, text analysis, and
networking. I have taught design, programming,
and C++ to people of essentially all abilities and
interests. I'm a founding member of the ISO stan-
dards committee for C++ where I serve as the
chair of the working group for language evolution.

This is my first introductory book. My other books, such as The C++ Pro-
gramming Language and The Design and Evolution of C++, were written for experi-
enced programmers.

I was born into a blue-collar (working-class) family in Arhus, Denmark, and
got my master’s degree in mathematics with computer science in my hometown
university. My Ph.D. in computer science is from Cambridge University, Eng-
land. I worked for ATXT for about 25 years, first in the famous Computer Sci-
ence Research Center of Bell Labs — where Unix, C, C++, and so much else
were invented — and later in AT&T Labs-Research.

I'm a member of the U.S. National Academy of Engineering, a Fellow of the
ACM, an IEEE Fellow, a Bell Laboratories Fellow, and an AT&T Fellow. As the



0.7 BIOGRAPHIES

first computer scientist ever, I received the 2005 William Procter Prize for Scien-
tific Achievement from Sigma Xi (the scientific research society).

I do have a life outside work. I'm married and have two children, one a med-
ical doctor and one a Ph.D. student. I read a lot (including history, science fiction,
crime, and current affairs) and like most kinds of music (including classical, rock,
blues, and country). Good food with friends is an essential part of life, and 1
enjoy visiting interesting places and people, all over the world. To be able to
enjoy the good food, I run.

For more information, see my home pages: www.research.att.com/~bs and
www.cs.tamu.edu/people/faculty/bs. In particular, there you can find out how to
pronounce my name.

Lawrence “Pete” Petersen

In late 2006, Pete introduced himself as follows: “I
am a teacher. For almost 20 years, I have taught
programming languages at Texas A&M. I have
been selected by students for Teaching Excellence
Awards five times and in 1996 received the Distin-
guished Teaching Award from the Alumni Associ-
ation for the College of Engincering. I am a
Fellow of the Wakonse Program for Teaching Ex-
cellence and a Fellow of the Academy for Educa-
tor Development.

As the son of an army officer, I was raised on
the move. After completing a degree in philosophy at the University of Washing-
ton, I served in the army for 22 years as a Field Artillery Officer and as a Research
Analyst for Operational Testing. I taught at the Field Artillery Officer’s Advanced
Course at Fort Sill, Oklahoma, from 1971 to 1973. In 1979 I helped organize a
Test Officer’s Training Course and taught it as lead instructor at nine different lo-
cations across the United States from 1978 to 1981 and from 1985 to 1989.

In 1991 I formed a small software company that produced management soft-
ware for university departments until 1999. My interests are in teaching, design-
ing, and programming software that real people can use. I completed master’s
degrees in industrial engineering at Georgia Tech and in education curriculum
and instruction at Texas A&M. I also completed a master’s program in micro-
computers from NTS. My Ph.D. is in information and operations management
from Texas A&M.

My wife, Barbara, and I live in Bryan, Texas. We like to travel, garden, and
entertain; and we spend as much time as we can with our sons and their families,
and especially with our grandchildren, Angelina, Carlos, Tess, Avery, Nicholas,
and Jordan.”

Sadly, Pete died of lung cancer in 2007. Without him, the course would never
have succeeded.
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Postscript

Most chapters provide a short “postscript” trying to give some perspective on the
information presented in the chapter. We do that in the realization that the infor-
mation can be — and often is — daunting and will only be fully comprehended
after doing exercises, reading further chapters (which apply the ideas of the chap-
ter), and a later review. Don't panic. Relax; this is natural and expected. You
won’t become an expert in a day, but you can become a reasonably competent
programmer as you work your way through the book. On the way, you'll en-
counter much information, many examples, and many techniques that lots of
programmers have found stimulating and fun.



Computers, People, and
Programming

“Specialization 1s for insects.”

—R. A. Heinlein

n this chapter, we present some of the things that we think
Imakc programming important, interesting, and fun. We also
present a few fundamental ideas and ideals. We hope to debunk
a couple of popular myths about programming and program-
mers. This is a chapter to skim for now and to return to later
when you are struggling with some programming problem and
wondering if it’s all worth it.

17
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1.1 Introduction

1.2 Software

1.3 People

1.4 Computer science

1.5 Computers are everywhere

1.5.1 Screens and no screens
1.5.2 Shipping

1.5.3 Telecommunications
1.5.4 Medicine

1.5.5 Information

1.5.6 A vertical view

1.5.7 So what?

1.6 Ideals for programmers

1.1 Introduction

Like most learning, learning how to program is a chicken and egg problem: We
want to get started, but we also want to know why what we are about to learn
matters. We want to learn a practical skill, but also make sure it is not just a pass-
ing fad. We want to know that we are not going to waste our time, but don’t
want to be bored by still more hype and moralizing. For now, just read as much
of this chapter as seems interesting and come back later when you feel the need
to refresh your memory of why the technical details matter outside the class-
room.

This chapter is a personal statement of what we find interesting and impor-
tant about programming. It explains what motivates us to keep going in this field
after decades. This is a chapter to read to get an idea of possible ultimate goals
and an idea of what kind of person a programmer might be. A beginner’s techni-
cal book inevitably contains much pretty basic stuff. In this chapter, we lift our
eyes from the technical details and consider the big picture: Why is programming
a worthwhile activity? What is the role of programming in our civilization?
Where can a programmer make contributions to be proud of? Where does pro-
gramming fit into the greater world of software development, deployment, and

n W

maintenance? When people talk about “computer science,” “software engineer-
ing,” “information technology,” etc., where does programming fit into the pic-
ture? What does a programmer do? What skills does a good programmer have?

To a student, the most urgent reason for understanding an idea, a technique,
or a chapter may be to pass a test with a good grade — but there has to be more
to learning than that! To someone working in the software industry, the most ur-

gent reason for understanding an idea, a technique, or a chapter may be to find
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something that can help with the current project and that will not annoy the boss
who controls the next paycheck, promotions, and firings — but there has to be
more to learning than that! We work best when we feel that our work in some
small way makes the world a better place for people to live in. For tasks that we
perform over a period of years (the “things” that professions and careers are
made of), ideals and more abstract ideas are crucial.

Our civilization runs on software. Improving software and finding new uses
for software are two of the ways an individual can help improve the lives of
many. Programming plays an essential role in that.

1.2 Software

Good software is invisible. You can’t see it, feel it, weigh it, or knock on it. Soffware
is a collection of programs running on some computer. Sometimes, we can see
the computer. Often, we can see only something that contains the computer, such
as a telephone, a camera, a bread maker, a car, or a wind turbine. We can see
what that software does. We can be annoyed or hurt if it doesn’t do what it is
supposed to do. We can be annoyed or hurt if what it is supposed to do doesn’t
suit our needs.

How many computers are there in the world? We don’t know: billions at
least. There may be more computers in the world than people. A 2004 estimate
from ITU (International Telecommunication Union, a UN agency) lists 772 mil-
lion PCs and most computers are not PCs.

How many computers do you (more or less directly) use every day? There
are more than 30 computers in my car, two in my cell phone, one in my MP3
player, and one in my camera. Then there is my laptop (on which the page you
are reading is being written) and my desktop machine. The air-conditioning con-
troller that keeps the summer heat and humidity at bay is a simple computer.
There is one controlling the computer science department’s elevator. If you use a
modern television, there will be at least one computer in there somewhere. A bit
of web surfing gets you into direct contact with dozens — possibly hundreds — of
servers through a telecommunications system consisting of many thousands of
computers — telephone switches, routers, and so on.

No, I do not drive around with 30 laptops on the backseat of my car! The
point is that most computers do not look like the popular image of a computer
(with a screen, a keyboard, a mouse, etc.); they are small “parts” embedded in
the kind of equipment we use. So, that car has nothing that looks like a computer,
not even a screen to display maps and driving directions (though such gadgets
are popular in other cars). However, its engine contains quite a few computers,
doing things like fuel injection control and temperature monitoring. The power-
assisted steering involves at least one computer, the radio and the security system
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contain some, and we suspect that even the open/close controls of the windows
are computer controlled. Newer models even have computers that continuously
monitor tire pressure.

How many computers do you depend on for what you do during a day? You
eat; if you live in a modern city, getting the food to you is a major effort requiring
minor miracles of planning, transport, and storage. The management of the dis-
tribution networks is of course computerized, as are the communication systems
that stitch them all together. Modern farming is highly computerized: next to the
cow barn you find computers used to monitor the herd (ages, health, milk pro-
duction, etc.), farm equipment is increasingly computerized, and the number of
forms required by the various branches of government can make any honest
farmer cry. If something goes wrong, you can read all about it in your newspa-
per; of course, the articles in that paper were written on computers, set on the
page by computers, and (if you still read the “dead tree edition”) printed by com-
puterized equipment — often after having been electronically transmitted to the
printing plant. Books are produced in the same way. If you have to commute, the
traffic flows are monitored by computers in a (usually vain) attempt to avoid traf-
fic jams. You prefer to take the train? That train will also be computerized; some
even operate without a driver, and the train’s subsystems, such as announce-
ments, braking, and ticketing, involve lots of computers. Today’s entertainment
industry (music, movies, television, stage shows) is among the largest users of
computers. Even non-cartoon movies use (computer) animation heavily; music
and photography also tend to be digital (i.e., using computers) for both recording
and delivery. Should you become ill, the tests your doctor orders will involve
computers, the medical records are often computerized, and most of the medical
equipment you'll encounter if you are sent to a hospital to be cured contains
computers. Unless you happen to be staying in a cottage in the woods without
access to any electrically powered gadgets (including light bulbs), you use energy.
Oil is found, extracted, processed, and distributed through a system using com-
puters every step along the way, from the drill bit deep in the ground to your
local gas (petrol) pump. If you pay for that gas with a credit card, you again exer-
cise a whole host of computers. It is the same story for coal, gas, solar, and wind
power.

The examples so far are all “operational”; they are directly involved in what
you are doing. Once removed from that is the important and interesting area of
design. The clothes you wear, the telephone you talk into, and the coffee ma-
chine that dispenses your favorite brew were designed and manufactured using
computers. The superior quality of modern photographic lenses and the exqui-
site shapes in the design of modern everyday gadgets and utensils owe almost
everything to computer-based design and production methods. The crafts-
men/designers/artists/engineers who design our environment have been freed
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from many physical constraints previously considered fundamental. If you get ill,
the medicines given to cure you will have been designed using computers.

Finally, research — science itself — relies heavily on computers. The tele-
scopes that probe the secrets of distant stars could not be designed, built, or oper-
ated without computers, and the masses of data they produce couldn’t be
analyzed and understood without computers. An individual biology field re-
searcher may not be heavily computerized (unless, of course, a camera, a digital
tape recorder, a telephone, etc. are used), but back in the lab, the data has to be
stored, analyzed, checked against computer models, and communicated to fellow
scientists. Modern chemistry and biology — including medical research — use
computers to an extent undreamed of a few years ago and still unimagined by
most people. The human genome was sequenced by computers. Or — let’s be
precise — the human genome was sequenced by humans using computers. In all
of these examples, we sece computers as something that enables us to do some-
thing we would have had a harder time doing without computers.

Every one of those computers runs software. Without software, they would
just be expensive lumps of silicon, metal, and plastic: doorstops, boat anchors,
and space heaters. Every line of that software was written by some individual.
Every one of those lines that was actually executed was minimally reasonable, if
not correct. It’s amazing that it all works! We are talking about billions of lines of
code (program text) in hundreds of programming languages. Getting all that to
work took a staggering amount of effort and involved an unimaginable number
of skills. We want further improvements to essentially every service and gadget
we depend on. Just think of any one service and gadget you rely on; what would
you like to see improved? If nothing else, we want our services and gadgets
smaller (or bigger), faster, more reliable, with more features, easier to use, with
higher capacity, better looking, and cheaper. The likelihood is that the improve-
ment you thought of requires some programming,

1.3 People

Computers are built by people for the use of people. A computer is a very generic
tool; it can be used for an unimaginable range of tasks. It takes a program to
make it useful to someone. In other words, a computer is just a piece of hardware
until someone — some programmer — writes code for it to do something useful.
We often forget about the software. Even more often, we forget about the pro-
grammer.

Hollywood and similar “popular culture” sources of disinformation have as-
signed largely negative images to programmers. For example, we have all seen
the solitary, fat, ugly nerd with no social skills who is obsessed with video games
and breaking into other people’s computers. He (almost always a male) is as
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likely to want to destroy the world as he is to want to save it. Obviously, milder
versions of such caricatures exist in real life, but in our experience they are no
more frequent among software developers than they are among lawyers, police
officers, car salesmen, journalists, artists, or politicians.

Think about the applications of computers you know from your own life.
Were they done by a loner in a dark room? Of course not; the creation of a suc-
cessful piece of software, computerized gadget, or system involves dozens, hun-
dreds, or thousands of people performing a bewildering set of roles: for example,
programmers, (program) designers, testers, animators, focus group managers, ex-
perimental psychologists, user interface designers, analysts, system administra-
tors, customer relations people, sound engincers, project managers, quality
engineers, statisticians, animators, hardware interface engineers, requirements
engincers, safety officers, mathematicians, sales support personnel, troubleshoot-
ers, network designers, methodologists, software tools managers, software librar-
ians, etc. The range of roles is huge and made even more bewildering by the titles
varying from organization to organization: one organization’s “engincer” may be
another organization’s “programmer” and yet another organization’s “devel-
oper,” “member of technical staff.” or “architect.” There are even organizations
that let their employees pick their own titles. Not all of these roles directly involve
programming. However, we have personally seen examples of people performing
each of the roles mentioned while reading or writing code as an essential part of
their job. Additionally, a programmer (performing any of these roles, and more)
may over a short period of time interact with a wide range of people from appli-
cation areas, such as biologists, engine designers, lawyers, car salesmen, medical
researchers, historians, geologists, astronauts, airplane engineers, lumberyard
managers, rocket scientists, bowling alley builders, journalists, and animators
(yes, this is a list drawn from personal experience). Someone may also be a pro-
grammer at times and fill non-programming roles at other stages of a professional
career.

The myth of a programmer being isolated is just that: a myth. People who
like to work on their own choose areas of work where that is most feasible and
usually complain bitterly about the number of “interruptions” and meetings. Peo-
ple who prefer to interact with other people have an easier time because modern
software development is a team activity. The implication is that social and com-
munication skills are essential and valued far more than the stereotypes indicate.
On a short list of highly desirable skills for a programmer (however you realisti-
cally define programmer), you find the ability to communicate well — with people
from a wide variety of backgrounds — informally, in meetings, in writing, and in
formal presentations. We are convinced that until you have completed a team
project or two, you have no idea of what programming is and whether you really
like it. Among the things we like about programming are all the nice and interest-
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ing people we meet and the variety of places we get to visit as part of our profes-
sional lives.

One implication of all this is that people with a wide variety of skills, inter-
ests, and work habits are essential for producing good software. Our quality of
life depends on those people — sometimes even our life itself. No one person
could fill all the roles we mention here; no sensible person would want every
role. The point is that you have a wider choice than you could possibly imagine:
not that you have to make any particular choice. As an individual you will “drift”
toward areas of work that match your skills, talents, and interests.

We talk about “programmers™ and “programming,” but obviously program-
ming is only part of the overall picture. The people who design a ship or a cell
phone don't think of themselves as programmers. Programming is an important
part of software development, but not all there is to software development. Simi-
larly, for most products, software development is an important part of product
development, but not all there is to product development.

We do not assume that you — our reader — want to become a professional
programmer and spend the rest of your working life writing code. Even the best
programmers — especially the best programmers — spend most of their time nof
writing code. Understanding problems takes serious time and often requires sig-
nificant intellectual effort. That intellectual challenge is what many programmers
refer to when they say that programming is interesting. Many of the best pro-
grammers also have degrees in subjects not usually considered part of computer
science. For example, if you work on software for genomic research, you will be
much more effective if you understand some molecular biology. If you work on
programs for analyzing medieval literature, you could be much better off reading
a bit of that literature and maybe even knowing one or more of the relevant lan-
guages. In particular, a person with an “all I care about is computers and pro-
gramming” attitude will be incapable of interacting with his or her
non-programmer colleagues. Such a person will not only miss out on the best
parts of human interactions (i.e., life) but also be a bad software developer.

So, what do we assume? Programming is an intellectually challenging set of
skills that are part of many important and interesting technical disciplines. In ad-
dition, programming is an essential part of our world, so not knowing the basics
of programming is like not knowing the basics of physics, history, biology, or lit-
erature. Someone totally ignorant of programming is reduced to believing in
magic and is dangerous in many technical roles. If you read Dilbert, think of the
pointy-haired boss as the kind of manager you don’t want to meet or (far worse)
become. In addition, programming can be fun.

But what do we assume you might use programming for? Maybe you will
use programming as a key tool in your further studies and work without becom-
ing a professional programmer. Maybe you will interact with other people profes-
sionally and personally in ways where a basic knowledge of programming will be
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an advantage, maybe as a designer, writer, manager, or scientist. Maybe you will
do programming at a professional level as part of your studies or work. Even if
you do become a professional programmer it is unlikely that you will do nothing
but programming.

You might become an engineer focusing on computers or a computer scien-
tist, but even then you will not “program all the time.” Programming is a way of
presenting ideas in code — a way of aiding problem solving. It is nothing — ab-
solutely a waste of time — unless you have ideas that are worth presenting and
problems worth solving.

This is a book about programming and we have promised to help you learn
how to program, so why do we emphasize non-programming subjects and the
limited role of programming? A good programmer understands the role of code
and programming technique in a project. A good programmer is (at most times)
a good team player and tries hard to understand how the code and its production
best support the overall project. For example, imagine that I worked on a new
MP3 player and all that I cared about was the beauty of my code and the num-
ber of neat features I could provide. I would probably insist on the largest, most
powerful computer to run my code. I might disdain the theory of sound encod-
ing because it is “not programming.” I would stay in my lab, rather than go out to
meet potential users, who undoubtedly would have bad tastes in music anyway
and would not appreciate the latest advances in GUI (graphical user interface)
programming. The likely result would be disaster for the project. A bigger com-
puter would mean a costlier MP3 player and most likely a shorter battery life.
Encoding is an essential part of handling music digitally, so failing to pay atten-
tion to advances in encoding techniques could lead to increased memory require-
ments for each song (encodings differ by as much as 100% for the same-quality
output). A disregard for users’ preferences — however odd and archaic they may
seem to you — typically leads to the users choosing some other product. An es-
sential part of writing a good program is to understand the needs of the users and
the constraints that those needs place on the implementation (i.e., the code). To
complete this caricature of a bad programmer, we just have to add a tendency to
deliver late because of an obsession with details and an excessive confidence in
the correctness of lightly tested code. We encourage you to become a good pro-
grammer, with a broad view of what it takes to produce good software. That’s
where both the value to society and the keys to personal satisfaction lie.

1.4 Computer science

Even by the broadest definition, programming is best seen as a part of something
greater. We can see it as a subdiscipline of computer science, computer engineer-
ing, software engineering, information technology, or any other software-rclated
discipline. We see programming as an enabling technology for those computer
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and information fields of science and engineering, as well as for physics, biology,
medicine, history, literature, and any other academic or research field.

Consider computer science. A 1995 U.S. government “blue book” defines it
like this: “The systematic study of computing systems and computation. The
body of knowledge resulting from this discipline contains theories for under-
standing computing systems and methods; design methodology, algorithms, and
tools; methods for the testing of concepts; methods of analysis and verification;
and knowledge representation and implementation.” As we would expect, the
Wikipedia entry is less formal: “Computer science, or computing science, is the
study of the theoretical foundations of information and computation and their
implementation and application in computer systems. Computer science has
many sub-fields; some emphasize the computation of specific results (such as
computer graphics), while others (such as computational complexity theory) re-
late to properties of computational problems. Stll others focus on the challenges
in implementing computations. For example, programming language thcory
studies approaches to describing computations, while computer programming ap-
plies specific programming languages to solve specific computational problems.”

Programming is a tool; it is a fundamental tool for expressing solutions to
fundamental and practical problems so that they can be tested, improved through
experiment, and used. Programming is where ideas and theories meet reality.
This is where computer science can become an experimental discipline, rather
than pure theory, and impact the world. In this context, as in many others, it is
essential that programming is an expression of well-tried practices as well as the
theories. It must not degenerate into mere hacking: just get some code written,
any old way that meets an immediate need.

1.5 Computers are everywhere

Nobody knows everything there is to know about computers or software. This
section just gives you a few examples. Maybe you’ll see something you like. At
least you might be convinced that the scope of computer use — and through that,
programming — is far larger than any individual can fully grasp.

Most people think of a computer as a small gray box attached to a screen
and a keyboard. Such computers tend to hide under tables and be good at
games, messaging and email, and playing music. Other computers, called lap-
tops, are used on planes by bored businessmen to look at spreadsheets, play
games, and watch videos. This caricature is just the tip of the iceberg. Most com-
puters work out of our sight and are part of the systems that keep our civilization
going. Some fill rooms; others are smaller than a small coin. Many of the most in-
teresting computers don’t directly interact with a human through a keyboard,
mouse, or similar gadget.
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1.5.1 Screens and no screens

The idea of a computer as a fairly large square box with a screen and a keyboard
is common and often hard to shake off. However, consider these two computers:

Both of these “gadgets™ (which happen to be watches) are primarily computers.
In fact, we conjecture that they are essentially the same model computer with dif-
ferent I/O (input/output) systems. The left one drives a small screen (similar to
the screens on conventional computers, but smaller) and the second drives little
electric motors controlling traditional clock hands and a disk of numbers for day-
of-month readout. Their input systems are the four buttons (more easily seen on
the right-hand watch) and a radio receiver, used for synchronization with very
high-precision “atomic” clocks. Most of the programs controlling these two com-
puters are shared between them.

1.5.2 Shipping

These two photos show a large marine diesel engine and the kind of huge ship
that it may power:
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Consider where computers and software play key roles here:

Design: Of course, the ship and the engine were both designed using
computers. The list of uses is almost endless and includes architectural
and engineering drawings, general calculations, visualization of spaces
and parts, and simulations of the performance of parts.

Construction: A modern shipyard is heavily computerized. The assembly
of a ship is carefully planned using computers, and the work is done
guided by computers. Welding is done by robots. In particular, a modern
double-hulled tanker couldn’t be built without little welding robots to do
the welding from within the space between the hulls. There just isn't
room for a human in there. Cutting steel plates for a ship was one of the
world’s first CAD/CAM (computer-aided design and computer-aided

manufacture) applications.

The engine: The engine has electronic fuel injection and is controlled by a
few dozen computers. For a 100,000-horsepower engine (like the one in
the photo), that’s a nontrivial task. For example, the engine management
computers continuously adjust fuel mix to minimize the pollution that
would result from a badly tuned engine. Many of the pumps associated
with the engine (and other parts of the ship) are themselves computer-
ized.

Management: Ships sail where there is cargo to pick up and to deliver. The
scheduling of fleets of ships is a continuing process (computerized, of
course) so that routings change with the weather, with supply and de-
mand, and with space and loading capacity of harbors. There are even
websites where you can watch the position of major merchant vessels at
any time. The ship in the photo happens to be a container vessel (the
largest such in the world; 397m long and 56m wide). but other kinds of
large modern ships are managed in similar ways.

Monitoring: An oceangoing ship is largely autonomous; that is, its crew
can handle most contingencies likely to arise before the next port. How-
ever, they are also part of a globe-spanning network. The crew has ac-
cess to reasonably accurate weather information (from and through —
computerized — satellites). They have GPS (global positioning system)
and computer-controlled and computer-enhanced radar. If the crew
needs a rest, most systems (including the engine, radar, etc.) can be mon-
itored (via satellite) from a shipping-line control room. If anything un-
usual is spotted, or if the connection “back home” is broken, the crew is

notified.

Consider the implication of a failure of one of the hundreds of computers explic-
itly mentioned or implied in this brief description. Chapter 25 (“Embedded Sys-
tems Programming”) examines this in slightly more detail. Writing code for a
modern ship is a skilled and interesting activity. It is also useful. The cost of
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transport is really amazingly low. You appreciate that when you buy something
that wasn’t manufactured locally. Sea transport has always been cheaper than
land transport; these days one of the reasons is serious use of computers and
information.

1.5.3 Telecommunications

These two photos show a telephone switch and a telephone (that also happens to

be a camera, an MP3 player, an FM radio, and a web browser):

Consider where computers and software play key roles here. You pick up a tele-
phone and dial, the person you dialed answers, and you talk. Or maybe you get
to talk to an answering machine, or maybe you send a photo from your phone
camera, or maybe you send a text message (hit “send” and let the phone do the
dialing). Obviously the phone is a computer. This is especially obvious if the
phone (like most mobile phones) has a screen and allows more than traditional
“plain old telephone services,” such as web browsing. Actually, such phones tend
to contain several computers: one to manage the screen, one to talk to the phone
system, and maybe more.

The part of the phone that manages the screen, does web browsing, etc. is
probably the most familiar to computer users: it just runs a graphical user inter-
face to “all the usual stuff.” What is unknown to and largely unsuspected by most
users is the huge system that the little phone talks to while doing its job. I dial a
number in Texas, but you are on vacation in New York City, yet within seconds
your phone rings and I hear your “Hello!” over the roar of city traffic. Many
phones can perform that trick for essentially any two locations on earth and we

just take it for granted. How did my phone find yours? How is the sound trans-

mitted? How is the sound encoded into data packets? The answer could fill
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many books much thicker than this one, but it involves a combination of hard-
ware and software on hundreds of computers scattered over the geographical
area in question. If you are unlucky, a few telecommunications satellites (them-
selves computerized systems) are also involved — “unlucky” because we cannot
perfectly compensate for the 20,000-mile detour out into space; the speed of light
(and therefore the speed of your voice) is finite (light fiber cables are much better:
shorter, faster, and carrying much more data). Most of this works remarkably
well; the backbone telecommunications systems are 99.9999% reliable (for exam-
ple, 20 minutes of downtime in 20 years — that’s 20/20*365*24*60). The trouble
we have tends to be in the communications between our mobile phone and the
nearest main telephone switch.

There is software for connecting the phones, for chopping our spoken words
into data packets to be sent over wires and radio links, for routing those mes-
sages, for recovering from all kinds of failures, for continuously monitoring the
quality and reliability of the services, and of course for billing. Even keeping
track of all the physical pieces of the system requires serious amounts of clever
software: What talks to what? What parts go into a new system? When do you
need to do some preventive maintenance?

Arguably the backbone telecommunications system of the world, consisting
of semi-independent but interconnected systems, is the largest and most compli-
cated man-made artifact. To make things a bit more real: remember, this is not
just boring old telephony with a few new bells and whistles. The various infra-
structures have merged. They are also what the internet (the web) runs on, what
our banking and trading systems run on, and what carry our television programs
to the broadcasting stations. So, we can add another couple of photos to illustrate
telecommunications:

The room is the “trading floor” of the American stock exchange on New York’s
Wall Street and the map is a representation of parts of the internet backbones (a
complete map would be too messy to be useful).

As it happens, we also like digital photography and the use of computers to
draw specialized maps to visualize knowledge.
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1.5.4 Medicine

These two photos show a CAT (computed axial tomography) scanner and an op-
erating theater for computer-aided surgery (also called “robot-assisted surgery”
or “robotic surgery”):

e

Consider where computers and software play key roles here. The scanners basi-
cally are computers; the pulses they send out are controlled by a computer, and
the readings are nothing but gibberish until quite sophisticated algorithms are ap-
plied to convert them to something we recognize as a (three-dimensional) image of
the relevant part of a human body. To do computerized surgery, we must go sev-
cral steps further. A wide variety of imaging techniques are used to let the surgeon
see the inside of the patient, to see the point of surgery with significant enlarge-
ment or in better light than would otherwise be possible. With the aid of a com-
puter a surgeon can use tools that are too fine for a human hand to hold or in a
place where a human hand could not reach without unnecessary cutting. The use
of minimally invasive surgery (laparoscopic surgery) is a simple example of this
that has minimized the pain and recovery time for millions of people. The com-
puter can also help steady the surgeon’s “hand” to allow for more delicate work
than would otherwise be possible. Finally, a “robotic” system can be operated re-
motely, thus making it possible for a doctor to help someone remotely (over the
internet). The computers and programming involved are mind-boggling, com-
plex, and interesting. The user-interface, equipment control, and imaging chal-
lenges alone will keep thousands of researchers, engineers, and programmers
busy for decades.

We heard of a discussion among a large group of medical doctors about
which new tool had provided the most help to them in their work: The CAT
scanner? The MRI scanner? The automated blood analysis machines? The high-
resolution ultrasound machines? PDAs? After some discussion, a surprising
“winner” of this “competition” emerged: instant access to patient records. Know-
ing the medical history of a patient (earlier illnesses, medicines tried earlier, aller-
gies, hereditary problems, general health, current medication, etc.) simplifies the
problem of diagnosis and minimizes the chance of mistakes.
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1.5.5 Information

These two photos show an ordinary PC (well, two) and part of a server farm:
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We have focused on “gadgets” for the usual reason: you cannot see, feel, or hear
software. We cannot present you with a photograph of a neat program, so we
show you a “gadget” that runs one. However, much software deals directly with
“information.” So let’s consider “ordinary uses” of “ordinary computers” running
“ordinary software.”

A “server farm” is a collection of computers providing web services. By using
Google (a web search engine), we found the following information supplied by
Wikipedia (a web dictionary). In 2004 it was estimated that Google's server farm
had the following specs:

* 719 racks

* 63,272 machines

« 126,544 CPUs

* 253THz of processing power
§

« 126,544GB of RAM

* 5,062TB of hard drive space

A GB is a gigabyte, that is, about 1,000,000,000 characters. A TB, a terabyte, is
about 1,000GB, that is, about 1,000,000,000,000 characters. These days, the
“farms” are much bigger. This is a pretty extreme example, but every major com-
pany runs programs on the web to interact with its users/customers. Examples
are Amazon (book and other sales), Amadeus (airline ticketing and automobile
rental), and eBay (online auctions). Millions of little companies, organizations,
and individuals also have a presence on the web. Most don’t run their own soft-
ware, but many do and much of that is not trivial.

The other, and more traditional, massive computing effort involves account-
ing, order processing, payroll, record keeping, billing, inventory management,
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personnel records, student records, patient records, etc. — the records that essen-
tially every organization (commercial and noncommercial, governmental and pri-
vate) keeps. These records are the backbone of their respective organizations. As
a computing effort, processing such records seems simple: mostly some informa-
tion (records) is just stored and retrieved and very little is done to it. Examples
include

* Is my 12:30 flight to Chicago still on time?

* Has Gilbert Sullivan had the measles?

* Has the coffeemaker that Juan Valdez ordered been shipped?

*  What kind of kitchen chair did Jack Sprat buy in 1996 (or so)?

* How many phone calls originated from the 212 area code in August of
2006?

*  What was the number of coffeepots sold in January and for what total
price?

The sheer scale of the databases involved makes these systems highly complex.
To that add the need to respond quickly (often in less than two seconds for indi-
vidual queries) and to be correct (at least most of the time). These days, it is not
uncommon for people to talk about terabytes of data (a byte is the amount of
memory needed to hold an ordinary character). That’s traditional “data process-
ing” and it is merging with “the web” because most access to the databases is
now though web interfaces.

This kind of computer use is often referred to as iformation processing. It fo-
cuses on data — often lots of data. This leads to challenges in the organization
and transmission of data and lots of interesting work on how to present vast
amounts of data in a comprehensible form: “user interface™ is a very important
aspect of handling data. For example, think of analyzing a work of older litera-
ture (say, Chaucer’s Canterbury Tales or Cervantes’ Don Quixote) to figure out what
the author actually wrote by comparing dozens of versions. We need to search
through the texts with a variety of criteria supplied by the person doing the
analysis and to display the results in a way that aids the discovery of salient
points. Thinking of text analysis, publishing comes to mind: today, just about
every article, book, brochure, newspaper, etc. is produced on a computer. De-
signing software to support that well is for most people still a problem that lacks a
really good solution.

1.5.6 A vertical view

It is sometimes claimed that a paleontologist can reconstruct a complete dinosaur
and describe its lifestyle and natural environment from studying a single small
bone. That may be an exaggeration, but there is something to the idea of looking
at a simple artifact and thinking about what it implies. Consider this photo show-
ing the landscape of Mars taken by a camera on one of NASA's Mars Rovers:



1.5 COMPUTERS ARE EVERYWHERE

If you want to do “rocket science,” becoming a good programmer is one way.
The various space programs employ lots of software designers, especially ones
who can also understand some of the physics, math, electrical engineering, me-
chanical engineering, medical engineering, etc. that underlie the manned and un-
manned space programs. Getting those two Rovers to drive around on Mars for
over four years (their estimated design life was three months) is one of the great-
est technological triumphs of our civilization.

The photo was transmitted to earth through a communication channel with
a 25-minute transmission delay each way; there is a lot of clever programming
and advanced math to make sure that the picture is transmitted using the mini-
mal number of bits without losing any of them. On earth, the photo is then ren-
dered using algorithms to restore color and minimize distortion due to the optics
and electronic sensors.

The control programs for the Mars Rovers are of course programs — the
Rovers drive autonomously for 24 hours at a time and follow instructions sent
from earth the day before. The transmission is managed by programs.

The operating systems used for the various computers involved in the
Rovers, the transmission, and the photo reconstruction are programs, as are the
applications used to write this chapter. The computers on which these programs
run are designed and produced using CAD/CAM (computer-aided design and
computer-aided manufacture) programs. The chips that go into those computers
are produced on computerized assembly lines constructed using precision tools,
and those tools also use computers (and software) in their design and manufac-
ture. The quality control for those long construction processes involves serious
computation. All that code was written by humans in a high-level programming
language and translated into machine code by a compiler, which is itself such a
program. Many of these programs interact with users using GUI and exchange
data using input/output streams.

Finally, a lot of programming goes into image processing (including the pro-
cessing of the photos from the Mars Rovers), animation, and photo editing (there
are versions of the Rover photos floating around on the web featuring “Martians”).
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1.5.7 So what?

What do all these “fancy and complicated” applications and software systems
have to do with learning programming and using C++? The connection is sim-
ply that many programmers do get to work on projects like these. These are the
kinds of things that good programming can help achieve. Also, every example
used in this chapter involved C++ and at least some of the techniques we de-
scribe in this book. Yes, there are C++ programs in MP3 players, in ships, in
wind turbines, on Mars, and in the human genome project. For more applications
using C++, see www.research.att/~bs/applications.html.

1.6 Ideals for programmers

What do we want from our programs? What do we want in general, as opposed
to a particular feature of a particular program? We want correctness and as part of
that, reliability. If the program doesn’t do what it is supposed to do, and do so in a
way so that we can rely on it, it is at best a serious nuisance, at worst a danger.
We want it to be well designed so that it addresses a real need well; it doesn’t really
matter that a program is correct if what it does is irrelevant to us or if it correctly
does something in a way that annoys us. We also want it to be affordable; 1 might
prefer a Rolls-Royce or an executive jet to my usual forms of transport, but un-
less I'm a zillionaire, cost will enter into my choices.

These are aspects of software (gadgets, systems) that can be appreciated from
the outside, by non-programmers. They must be ideals for programmers and we
must keep them in mind at all times, especially in the early phases of develop-
ment, if we want to produce successful software. In addition, we must concern
ourselves with ideals related to the code itself: our code must be mamtaimable; that
is, its structure must be such that someone who didn’t write it can understand it
and make changes. A successful program “lives” for a long time (often for
decades) and will be changed again and again. For example, it will be moved to
new hardware, it will have new features added, it will be modified to use new I/O
facilities (screens, video, sound), to interact using new natural languages, etc.
Only a failed program will never be modified. To be maintainable, a program
must be simple relative to its requirements, and the code must directly represent
the ideas expressed. Complexity — the enemy of simplicity and maintainability —
can be intrinsic to a problem (in that case we just have to deal with it), but it can
also arise from poor expression of ideas in code. We must try to avoid that
through good coding style — style matters!

This doesn’t sound too difficult, but it is. Why? Programming is fundamen-
tally simple: just tell the machine what it is supposed to do. So why can program-
ming be most challenging? Computers are fundamentally simple; they can just
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do a few operations, such as adding two numbers and choosing the next instruc-
tion to execute based on a comparison of two numbers. The problem is that we
don’t want computers to do simple things. We want “the machine” to do things
that are difficult enough for us to want help with them, but computers are nit-
picking, unforgiving, dumb beasts. Furthermore, the world is more complex than
we'd like to believe, so we don’t really know the implications of what we request.
We just want a program to “do something like this” and don’t want to be both-
ered with technical details. We also tend to assume “common sense.” Unfortu-
nately, common sense isn’t all that common among humans and is totally absent
in computers (though some really well-designed programs can imitate it in spe-
cific, well-understood cases).

This line of thinking leads to the idea that “programming is understanding”:
when you can program a task, you understand it. Conversely, when you under-
stand a task thoroughly, you can write a program to do it. In other words, we can
see programming as part of an effort to thoroughly understand a topic. A pro-
gram is a precise representation of our understanding of a topic.

When you program, you spend significant time trying to understand the task
you are trying to automate.

We can describe the process of developing a program as having four stages:

*  Analysis: What's the problem? What does the user want? What does the
user need? What can the user afford? What kind of rehability do we
need?

*  Design: How do we solve the problem? What should be the overall struc-
ture of the system? Which parts does it consist of? How do those parts
communicate with each other? How does the system communicate with
its users?

*  Programming: Express the solution to the problem (the design) in code.
Write the code in a way that meets all constraints (time, space, money,
reliability, and so on). Make sure that the code is correct and maintain-
able.

*  Testing: Make sure the system works correctly under all circumstances re-
quired by systematically trying it out.

Programming plus testing is often called mmplementation. Obviously, this simple split
of software development into four parts is a simplification. Thick books have been
written on each of these four topics and more books still about how they relate to
each other. One important thing to note is that these stages of development are
not independent and do not occur strictly in sequence. We typically start with
analysis, but feedback from testing can help improve the programming; problems
with getting the program working may indicate a problem with the design; and
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working with the design may suggest aspects of the problem that hitherto had
been overlooked in the analysis. Actually using the system typically exposes weak-
nesses of the analysis.

The crucial concept here is_feedback. We learn from experience and modify
our behavior based on what we learn. That’s essential for effective software de-
velopment. For any large project, we don’t know everything there is to know
about the problem and its solution before we start. We can try out ideas and get
feedback by programming, but in the earlier stages of development it is easier
(and faster) to get feedback by writing down design ideas, trying out those design
ideas, and using scenarios on friends. The best design tool we know of is a black-
board (use a whiteboard instead if you prefer chemical smells over chalk dust).
Never design alone if you can avoid it! Don’t start coding before you have tried
out your ideas by explaining them to someone. Discuss designs and program-
ming techniques with friends, colleagues, potential users, and so on before you
head for the keyboard. It is amazing how much you can learn from simply trying
to articulate an idea. After all, a program is nothing more than an expression (in
code) of some ideas.

Similarly, when you get stuck implementing a program, look up from the
keyboard. Think about the problem itself, rather than your incomplete solution.
Talk with someone: explain what you want to do and why it doesn’t work. It’s
amazing how often you find the solution just by carefully explaining the problem
to someone. Don’t debug (find program errors) alone if you don’t have to!

The focus of this book is implementation, and especially programming. We
do not teach “problem solving” beyond giving you plenty of examples of prob-
lems and their solutions. Much of problem solving is recognizing a known prob-
lem and applying a known solution technique. Only when most subproblems are
handled this way will you find the time to indulge in exciting and creative “out-
of-the-box thinking.” So, we focus on showing how to express ideas clearly in
code.

Direct expression of ideas in code is a fundamental ideal of programming.
That’s really pretty obvious, but so far we are a bit short of good examples. We'll
come back to this, repeatedly. When we want an integer in our code, we store it
in an int, which provides the basic integer operations. When we want a string of
characters, we store it in a string, which provides the most basic text manipula-
tion operations. At the most fundamental level, the ideal is that when we have an
idea, a concept, an entity, something we think of as a “thing,” something we can
draw on our whiteboard, something we can refer to in our discussions, some-
thing our (non-computer science) textbook talks about, then we want that some-
thing to exist in our program as a named entity (a type) providing the operations
we think appropriate for it. If we want to do math, we want a complex type for
complex numbers and a Matrix type for linear algebra. If we want to do graphics,
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we want a Shape type, a Circle type, a Color type, and a Dialog_box. When we
want to deal with streams of data, say from a temperature sensor, we want an
istream type (“i” for input). Obviously, every such type should prowdc the ap-
propriate operations and only the appropriate operations. These are just a few
examples from this book. Beyond that, we offer tools and techniques for you to
build your own types to directly represent whatever concepts you want in your
program.

Programming is part practical, part theory. If you are just practical, you will
produce non-scalable, unmaintainable hacks. If you are just theoretical, you will
produce unusable (or unaffordable) toys.

For a different kind of view of the ideals of programming and a few people
who have contributed in major ways to software through work with program-
ming languages, see Chapter 22, “Ideals and History.”

Review

Review questions are intended to point you to the key ideas explained in a chap-
ter. One way to look at them is as a complement to the exercises: the exercises
focus on the practical aspects of programming, whereas the review questions try
to help you articulate the ideas and concepts. In that, they resemble good inter-
view questions.

1. What is software?

2. Why is software important?

3. Where is software important?

4. What could go wrong if some software fails? List some examples.

5. Where does software play an important role? List some examples.
6. What are some jobs related to software development? List some.

7. What's the difference between computer science and programming?
8. Where in the design, construction, and use of a ship is software used?
9. What is a server farm?

10. What kinds of queries do you ask online? List some.

11. What are some uses of software in science? List some.

12. What are some uses of software in medicine? List some.

13. What are some uses of software in entertainment? List some.

14. What general properties do we expect from good software?

15. What does a software developer look like?

16. What are the stages of software development?

17. Why can software development be difficult? List some reasons.

18. What are some uses of software that make your life easier?

19. What are some uses of software that make your life more difficult?
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CHAPTER 1 = COMPUTERS, PEOPLE, AND PROGRAMMING

These terms present the basic vocabulary of programming and of C++. If you
want to understand what people say about programming topics and to articulate
your own ideas, you should know what each means.

affordability customer programmer
analysis design programming
blackboard feedback software
CAD/CAM GUI stereotype
communications ideals testing
correctness implementation user

Exercises

1.

Pick an activity you do most days (such as going to class, eating dinner,
or watching television). Make a list of ways computers are directly or in-
directly involved.

. Pick a profession, preferably one that you have some interest in or some

knowledge of. Make a list of activities done by people in that profession
that involve computers.

. Swap your list from exercise 2 with a friend who picked a different pro-

fession and improve his or her list. When you have both done that, com-
pare your results. Remember: There is no perfect solution to an
open-ended exercise; improvements are always possible.

. From your own experience, describe an activity that would not have

been possible without computers.

. Make a list of programs (software applications) that you have directly

used. List only examples where you obviously interact with a program
(such as when selecting a new song on an MP3 player) and not cases
where there just might happen to be a computer involved (such as turn-
ing the steering wheel of your car).

. Make a list of ten activities that people do that do not involve computers

in any way, even indirectly. This may be harder than you think!

Idendfy five tasks for which computers are not used today, but for which
you think they will be used for at some time in the future. Write a few
sentences to elaborate on each one that you choose.

. Write an explanation (at least 100 words, but fewer than 500) of why

you would like to be a computer programmer. If, on the other hand, you
are convinced that you would not like to be a programmer, explain that.
In either case, present well-thought-out, logical arguments.
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9. Write an explanation (at least 100 words, but fewer than 500) of what
role other than programmer you'd like to play in the computer industry
(independently of whether “programmer” is your first choice).

10. Do you think computers will ever develop to be conscious, thinking be-
ings, capable of competing with humans? Write a short paragraph (at
least 100 words) supporting your position.

11. List some characteristics that most successful programmers share. Then
list some characteristics that programmers are popularly assumed to
have.

12. Identify at least five kinds of applications for computer programs men-
tioned in this chapter and pick the one that you find the most interesting
and that you would most likely want to participate in someday. Write a
short paragraph (at least 100 words) explaining why you chose the one
you did.

13. How much memory would it take to store (a) this page of text, (b) this
chapter, (c) all of Shakespeare’s work? Assume one byte of memory
holds one character and just try to be precise to about 20%.

14. How much memory does your computer have? Main memory? Disk?

Postscript

Our civilization runs on software. Software is an area of unsurpassed diversity
and opportunities for interesting, socially useful, and profitable work. When you
approach software, do it in a principled and serious manner: you want to be part
of the solution, not add to the problems.

We are obviously in awe of the range of software that permeates our techno-
logical civilization. Not all applications of software do good, of course, but that is
another story. Here we wanted to emphasize how pervasive software is and how
much of what we rely on in our daily lives depends on software. It was all written
by people like us. All the scientists, mathematicians, engineers, programmers, etc.
who built the software briefly mentioned here started like you are starting.

Now, let’s get back to the down-to-earth business of learning the technical
skills needed to program. If you start wondering if it is worth all your hard work
(most thoughtful people wonder about that sometime), come back and reread this
chapter, the Preface, and bits of Chapter 0 (“Notes to the Reader”). If you start
wondering if you can handle it all, remember that millions have succeeded in be-
coming competent programmers, designers, software engineers, etc. You can, too.

A
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Hello, World!

“Programming is learned
by writing programs.”

—Brian Kernighan

Hcrc, we present the simplest C++ program that actually
does anything. The purpose of writing this program is to

* Let you try your programming environment
* Give you a first feel of how you can get a computer to do
things for you
Thus, we present the notion of a program, the idea of trans-
lating a program from human-readable form to machine instruc-
tions using a compiler, and finally executing those machine

mstructions.
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2.1 Programs
2.2 The classic first program

2.3 Compilation

2.4 Linking

2.5 Programming environments

2.1 Programs

To get a computer to do something, you (or someone else) have to tell it exactly
— in excruciating detail — what to do. Such a desmptlon of “what to do” is called
a program, and programming is the activity of writing and testing such programs.

In a sense, we have all programmed before. After all. we have given descrip-
tions of tasks to be done, such as “how to drive to the nearest cinema,” “how to
find the upstairs bathroom,” and “how to heat a meal in the microwave.” The dif-
ference between such descriptions and programs is one of degree of precision:
humans tend to compensate for poor instructions by using common sense, but
computers don’t. For example, “turn right in the corridor, up the stairs, it'll be on
your left” is probably a fine description of how to get to the upstairs bathroom.
However, when you look at those simple instructions, you'll find the grammar
sloppy and the instructions incomplete. A human easily compensates. For exam-
ple, assume that you are sitting at the table and ask for directions to the bath-
room. You don’t need to be told to get up from your chair to get to the corridor,
somehow walk around (and not across or under) the table, not to step on the cat,
etc. You'll not have to be told not to bring your knife and fork or to remember to
switch on the light so that you can see the stairs. Opening the door to the bath-
room before entering is probably also something you don’t have to be told.

In contrast, computers are really dumb. They have to have everything de-
scribed precisely and in detail. Consider again “turn right in the corridor, up the
stairs, it'll be on your left.” Where is the corridor? What's a corridor? What is
“turn right”? What stairs? How do I go up stairs? (One step at a time? Two
steps? Slide up the banister?) What is on my left? When will it be on my left? To
be able to describe “things™ precisely for a computer, we need a precisely defined
language with a specific grammar (English is far too loosely structured for that)
and a well-defined vocabulary for the kinds of actions we want performed. Such
a language is called a programming language, and C++ is a programming language
designed for a wide selection of programming tasks.

If you want greater philosophical detail about computers, programs, and pro-
gramming, (rejread Chapter 1. Here, let’s have a look at some code, starting with
a very simple program and the tools and techniques you need to get it to run.
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2.2 The classic first program

Here is a version of the classic first program. It writes “Hello, World!” to your screen:
/I This program outputs the message “Hello, World!” to the monitor
#include "std_lib_facilities.h"

intmain()  / C++ programs start by executing the function main
{
cout << "Hello, World!\n";  // output “Hello, World!”
return 0;

}

Think of this text as a set of instructions that we give to the computer to execute,
much as we would give a recipe to a cook to follow, or as a list of assembly in-
structions for us to follow to get a new toy working. Let’s discuss what each line
of this program does, starting with the line

cout << "Hello, World!\n";  // output “Hello, World!”

That’s the line that actually produces the output. It prints the characters Hello,
World! followed by a newline; that is, after writing Hello, World!, the cursor will
be placed at the start of the next line. A aursor is a little blinking character or line
showing where you can type the next character.

In C++, string literals are delimited by double quotes ("); that is, "Hello,
World!\n" is a string of characters. The \n is a “special character” indicating a
newline. The name cout refers to a standard output stream. Characters “put into
cout” using the output operator << will appear on the screen. The name cout is
pronounced “see-out” and is an abbreviation of “character output stream.” You'll
find abbreviations rather common in programming. Naturally, an abbreviation
can be a bit of a nuisance the first time you see it and have to remember it, but
once you start using abbreviations repeatedly, they become second nature, and
they are essential for keeping program text short and manageable.

The end of that line
N output “Hello, World!”

is a comment. Anything written after the token // (that’s the character /, called
“slash,” twice) on a line is a comment. Comments are ignored by the compiler
and written for the benefit of programmers who read the code. Here, we used the
comment to tell you what the beginning of that line actually did.
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Comments are written to describe what the program is intended to do and in
general to provide information useful for humans that can’t be directly expressed
in code. The person most likely to benefit from the comments in your code is
you — when you come back to that code next week, or next year, and have for-
gotten exactly why you wrote the code the way you did. So, document your pro-
grams well. In §7.6.4, we'll discuss what makes good comments.

A program is written for two audiences. Naturally, we write code for com-
puters to execute. However, we spend long hours reading and modifying the
code. Thus, programmers are another audience for programs. So, writing code is
also a form of human-to-human communication. In fact, it makes sense to con-
sider the human readers of our code our primary audience: if they (we) don't
find the code reasonably easy to understand, the code is unlikely to ever become
correct. So, please don’t forget: code is for reading — do all you can to make it
readable. Anyway, the comments are for the benefit of human readers only: the
computer doesn’t look at the text in comments.

The first line of the program is a typical comment; it simply tells the human
reader what the program is supposed to do:

/I This program outputs the message “Hello, World!” to the monitor

Such comments are useful because the code itself says what the program does,
not what we meant it to do. Also, we can usually explain (roughly) what a pro-
gram should do to a human much more concisely than we can express it (in de-
tail) in code to a computer. Often such a comment is the first part of the program
we write. If nothing else, it reminds us what we are trying to do.

The next line

#tinclude "std _lib_facilities.h"

is an “#include directive.” It instructs the computer to make available (“to in-
clude”) facilities from a file called std_lib_facilities.h. We wrote that file to simplify
use of the facilities available in all implementations of C++ (“the C++ standard li-
brary”). We will explain its contents as we go along. It is perfectly ordinary stan-
dard C++, but it contains details that we’d rather not bother you with for another
dozen chapters. For this program, the importance of std_lib_facilities.h is that we
make the standard C++ stream 1/O facilities available. Here, we just use the stan-
dard output stream, cout, and its output operator, <<. A file included using
#include usually has the suffix .h and is called a header or a header file. A header
contains definitions of terms, such as cout, that we use in our program.

How does a computer know where to start executing a program? It looks for
a function called main and starts executing the instructions it finds there. Here is
the function main of our “Hello, World!” program:
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int main() // C++ programs start by executing the function main
{
cout << "Hello, World!\n";  // output “Hello, World!”
return 0;

}

Every C++ program must have a function called main to tell it where to start ex-
ecuting. A function is basically a named sequence of instructions for the com-
puter to execute in the order in which they are written. A function has four parts:

* A return bype, here int (meaning “integer”), which specifies what kind of
result, if any, the function will return to whoever asked for it to be exe-
cuted. The word int is a reserved word in C++ (a keyword), so int cannot
be used as the name of anything else (see §A.3.1).

* A name, here main.
* A parameter list enclosed in parentheses (see §8.2 and §8.6), here (); in this
case, the parameter list is empty.

* A function body enclosed in a set of “curly braces,” { }, which lists the ac-
tions (called statements) that the function 1s to perform.

It follows that the minimal C++ program is simply
int main() {}

That’s not of much use, though, because it doesn’t do anything. The main() (“the
main function”) of our “Hello, World!” program has two statements in its body:

cout << "Hello, World!\n"; // output “Hello, World!”
return 0;

First it’ll write Hello, World! to the screen, and then it will return a value 0 (zero)
to whoever called it. Since main() is called by “the system,” we won’t use that re-
turn value. However, on some systems (notably Unix/Linux) it can be used to
check whether the program succeeded. A zero (0) returned by main() indicates
the program terminated successfully.

A part of a C++ program that specifies an action and isn’t an #include direc-
tive (or some other preprocessor directive; see §4.4 and §A.17) is called a statement.

2.3 Compilation

C++ is a compiled language. That means that to get a program to run, you must
first translate it from the human-readable form to something a machine can
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“understand.” That translation is done by a program called a compuler. What you
read and write is called source code or program text, and what the computer executes
is called executable, object code, or machine code. Typically C++ source code files are
given the suffix .cpp (e.g., hello_world.cpp) or .h (as in std_lib_facilities.h), and
object code files are given the suffix .obj (on Windows) or .0 (Unix). The plain
word code is therefore ambiguous and can cause confusion: use it with care only
when it is obvious what's meant by it. Unless otherwise specified, we use code to
mean “source code” or even “the source code except the comments,” because
comments really are there just for us humans and are not seen by the compiler
generating object code.

The compiler reads your source code and tries to make sense of what you wrote.
It looks to see if your program is grammatically correct, if every word has a de-
fined meaning, and if there is anything obviously wrong that can be detected
without trying to actually execute the program. You'll find that computers are
rather picky about syntax. Leaving out any detail of our program, such as an
#include file, a semicolon, or a curly brace, will cause errors. Similarly, the com-
piler has absolutely zero tolerance for spelling mistakes. Let us illustrate this with
a series of examples that each have a single small error. Each error is an example
of a kind of mistake we often make:

/ no Zinclude here

int main()

{
cout << "Hello, World!\n";
return 0;

}

We didn't include something to tell the compiler what cout was, so the compiler
complains. To correct that, let’s add a header file:

#include "std_facilities.h"

int main()

{
cout << "Hello, World!\n";
return 0;
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Unfortunately, the compiler again complains: we misspelled std_lib_facilities.h.
The compiler also objects to this:

#include "std_lib_facilities.h"
int main()
{
cout << "Hello, World!\n;
return 0;

}
We didn’t terminate the string with a ". The compiler also objects to this:

#include "std_lib_facilities.h"
integer main()
{
cout << "Hello, World!\n";
return 0;

}

The abbreviation int is used in C++ rather than the word integer. The compiler
doesn'’t like this either:

#include "std_lib_facilities.h"
int main()
{
cout < "Hello, World!\n";
return 0;

}

We used < (the less-than operator) rather than << (the output operator). The
compiler also objects to this:

#include "std_lib_facilities.h"
int main()

{
cout << 'Hello, World!\n';
return 0;

}

We used single quotes rather than double quotes to delimit the string. Finally, the
compiler gives an error for this:
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#include "std_lib_facilities.h"
int main()
{
cout << "Hello, World!\n"
return 0;

}

We forgot to terminate the output statement with a semicolon. Note that many
C++ statements are terminated by a semicolon (;). The compiler needs those
semicolons to know where one statement ends and the next begins. There is no
really short, fully correct, and nontechnical way of summarizing where semi-
colons are needed. For now, just copy our pattern of use, which can be summa-
rized as: “Put a semicolon after every expression that doesn’t end with a right
curly brace (})."

Why do we spend two pages of good space and minutes of your precious
time showing you examples of trivial errors in a trivial program? To make the
point that you — like all programmers — will spend a lot of time looking for errors
in program source text. Most of the time, we look at text with errors in it. After
all, if we were convinced that some code was correct, we'd typically be looking at
some other code or taking the time off. It came as a major surprise to the early
computer pioneers that they were making mistakes and had to devote a major
portion of their time to finding them. It is still a surprise to most newcomers to
programming.

When you program, you'll get quite annoyed with the compiler at times.
Sometimes it appears to complain about unimportant details (such as a missing
semicolon) or about things you consider “obviously right.” However, the com-
piler is usually right: when it gives an error message and refuses to produce ob-
ject code from your source code, there is something not quite right with your
program; that is, the meaning of what you wrote isn’t precisely defined by the
C++ standard.

The compiler has no common sense (it isn’t human) and 1s very picky about
details. Since it has no common sense you wouldn't like it to try to guess what
you meant by something that “looked OK” but didn’t conform to the definition
of C++. If it did and its guess was different from yours, you could end up spend-
ing a lot of time trying to figure out why the program didn’t do what you thought
you had told it to do. When all is said and done, the compiler saves us from a lot
of self-inflicted problems. It saves us from many more problems than it causes.
So, please remember: the compiler is your friend; possibly, the compiler is the
best friend you have when you program.
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2.4 Linking

A program usually consists of several separate parts, often developed by different
people. For example, the “Hello, World!” program consists of the part we wrote
plus parts of the C++ standard library. These separate parts (sometimes called
translation units) must be compiled and the resulting object code files must be
linked together to form an executable program. The program that links such
parts together is (unsurprisingly) called a lnker:
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Object code: // C++ standard library:
hello_world.obj ostream.obj
hello_world.exe

Please note that object code and executables are nof portable among systems. For
example, when you compile for a Windows machine, you get object code for
Windows that will not run on a Linux machine.

A library is simply some code — usually written by others — that we access
using declarations found in an #included file. A declaration is a program statement
specifying how a piece of code can be used; we'll examine declarations in detail
later (e.g., §4.5.2).

Errors found by the compiler are called compile-time errors, errors found by the
linker are called link-time errors, and errors not found until the program is run are
called run-time errors or logic errors. Generally, compile-time errors are easier to un-
derstand and fix than link-time errors, and link-time errors are often easier to
find and fix than run-time errors and logic errors. In Chapter 5 we discuss errors

and the ways of handling them in greater detail.
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2.5 Programming environments
To program, we use a programming language. We also use a compiler to trans-

late our source code into object code and a linker to link our object code into an
executable program. In addition, we use some program to enter our source code
text into the computer and to edit it. These are just the first and most crucial
tools that constitute our programmer’s tool set or “program development envi-
ronment.”

If you work from a command-line window, as many professional program-
mers do, you will have to issue the compile and link commands yourself. If in-
stead you use an IDE (“interactive development environment™ or “integrated
development environment”), as many professional programmers also do, a sim-
ple click on the correct button will do the job. See Appendix D for a description
of how to compile and link on your C++ implementation.

IDEs usually include an editor with helpful features like color coding to help
distinguish between comments, keywords, and other parts of your program
source code, plus other facilities to help you debug your code, compile it, and run
it. Debugging 1s the activity of finding errors in a program and removing them:
you'll hear a lot about that along the way.

In this book, we use Visual C++ from Microsoft as our example program
development environment. If we just say “the compiler” or refer to parts of “the
IDE.” that’s the system we are referring to. However, you can use any system
that provides an up-to-date, standards-conforming implementation of C++. Most
of what we say will, with very minor modifications, be true for all implementa-
tions of C++, and the code will run everywhere. In our work, we use several dif-
ferent implementations.

Drill

So far we have talked about programming, code, and tools (such as compilers).
Now you have to get a program to run. This is a crucial point in this book and in
learning to program. This is where you start to develop practical skills and good
programming habits. The exercises for this chapter are focused on getting you ac-
quainted with your software development environment. Once you get the
“Hello, World!” program to run, you will have passed the first major milestone
as a programmer.

The purpose of a drill is to establish or reinforce your practical programming
skills and give you experience with programming environment tools. Typically, a
drill is a sequence of modifications to a single program, “growing” it from some-
thing completely trivial to something that might be a useful part of a real pro-
gram. A traditional set of exercises is designed to test your initiative, cleverness,
or inventiveness. In contrast, a drill requires little invention from you. Typically,
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sequencing is crucial, and each individual step should be easy (or even trivial).
Please don’t try to be clever and skip steps; on average that will slow you down
or even confuse you.

You might think you understand everything you read and everything your
Mentor or instructor told you, but repetition and practice are necessary to de-
velop programming skills. In this regard, programming is like athletics, music,
dance, or any skill-based craft. Imagine people trying to compete in any of those
fields without regular practice. You know how well they would perform. Con-
stant practice — for professionals that means lifelong constant practice — is the
only way to develop and maintain a high-level practical skill.

So, never skip the drills, no matter how tempted you are; they are essential to
the learning process. Just start with the first step and proceed, testing each step as
you go to make sure you are doing it right.

Don’t be alarmed if you don’t understand every detail of the syntax you are
using, and don’t be afraid to ask for help from instructors or friends. Keep going,
do all of the drills and many of the exercises, and all will become clear in due
time.
So, here is your first drill:

1. Go to Appendix D and follow the steps required to set up a project. Set
up an empty, console C++ project called hello_world.

2. Type in hello_world.cpp, exactly as specified below, save it in your prac-
tice directory, and include it in your hello_world project.

#include "std_lib_facilities.h"

int main() /f C++ programs start by executing the function main

{
cout << "Hello, World!\n"; // output “Hello, World!”
keep_window_open(); N wait for a character to be entered
return 0;

}

The call to keep_window_open() is needed on some Windows ma-
chines to prevent them from closing the window before you have a
chance to read the output. This is a peculiarity/feature of Windows, not
of C++. We defined keep_window_open() in std_lib_facilities.h to sim-
plify writing simple text programs.

How do you find std_lib_facilities.h? If you are in a course, ask your
instructor. If not, download it from our support sitc www.stroustrup.com/
Programming. But what if you don’t have an instructor and no access
to the web? In that case (only), replace the #include directive with:

#include<iostream>
#include<string>
#include<vector>
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#include<algorithm>

#include<cmath>

using namespace std;

inline void keep_window_open() { char ch; cin>>ch; }

This uses the standard library directly, will keep you going until Chapter 5,
and will be explained in detail later (§8.7).

3. Compile and run the “Hello, World!” program. Quite likely, something
didn’t work quite right. It very rarely does for a first attempt to use a
new programming language or a new programming environment. Find
the problem and fix it! This is a point where asking for help from a more
experienced person is sensible, but be sure to understand what you are
shown so that you can do it all by yourself before proceeding further.

4. By now, you have probably encountered some errors and had to correct
them. Now is the time to get a bit better acquainted with your compiler’s
error-detection and error- rcportmg facilities! Try the six errors from §2.3
to see how your programming environment reacts. Think of at least five
more errors you might have made typing in your program (e.g., forget
keep_window_open(), leave the Caps Lock key on while typing a word,
or type a comma instead of a semicolon) and try each to see what hap-
pens when you try to compile and run those versions.

Review

' \ The basic idea of these review questions is to give you a chance to see if you have
Z) noticed and understood the key points of the chapter. You may have to refer back
to the text to answer a question; that’s normal and expected. You may have to
reread whole sections; that too is normal and expected. However, if you have to
reread the whole chapter or have problems with every review question, you
should consider whether your style of learning is effective. Are you reading too
fast? Should you stop and do some of the Try this suggestions? Should you study

with a friend so that you can discuss problems with the explanations in the text?

What is the purpose of the “Hello, World!” program?

Name the four parts of a function.

Name a function that must appear in every C++ program.

In the “Hello, World!” program, what is the purpose of the line return 0;?
What is the purpose of the compiler?

What is the purpose of the #include directive?

What does a .h suffix at the end of a file name signify in C++?

What does the linker do for your program?

What is the difference between a source file and an object file?

What is an IDE and what does it do for you?

If you understand everything in the textbook, why is it necessary to
practice?
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Most review questions have a clear answer in the chapter in which they appear.
However, we do occasionally include questions to remind you of relevant infor-
mation from other chapters and sometimes even relating to the world outside this
book. We consider that fair; there is more to writing good software and thinking
about the implications of doing so than fits into an individual chapter or book.

Terms

These terms present the basic vocabulary of programming and of C++. If you
want to understand what people say about programming topics and to articulate
your own ideas, you should know what each means.

" executable main()

<< function object code
C++ header output
comment IDE program
compiler #include source code
compile-time error library statement
cout linker

You might like to gradually develop a glossary written in your own words. You
can do that by repeating exercise 4 below for each chapter.

Exercises

We list drills separately from exercises; always complete the chapter drill before
attempting an exercise. Doing so will save you time.

1. Change the program to output the two lines

Hello, programming!
Here we go!

2. Expanding on what you have learned, write a program that lists the in-
structions for a computer to find the upstairs bathroom, discussed in
§2.1. Can you think of any more steps that a person would assume, but
that a computer would not? Add them to your list. This is a good start in
“thinking like a computer.” Warning: For most people, “go to the bath-
room” is a perfectly adequate instruction. For someone with no experi-
ence with houses or bathrooms (imagine a stone-age person, somehow
transported into your dining room) the list of necessary instructions
could be very long. Please don’t use more than a page. For the benefit of
the reader, you may add a short description of the layout of the house
you are imagining.

3. Write a description of how to get from the front door of your dorm room,
apartment, house, whatever, to the door of your classroom (assuming you
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are attending some school; if you are not, pick another target). Have a
friend try to follow the instructions and annotate them with improve-
ments as he or she goes along. To keep friends, it may be a good idea to
“field test” those instructions before giving them to a friend.

. Find a good cookbook. Read the instructions for baking blueberry
muffins (if you are in a country where “blueberry muffins™ is a strange,
exotic dish, use a more familiar dish instead). Please note that with a bit
of help and instruction, most of the people in the world can bake deli-
cious blueberry muffins. It is not considered advanced or difficult fine
cooking. However, for the author, few exercises in this book are as diffi-
cult as this one. It is amazing what you can do with a bit of practice.

* Rewrite those instructions so that each individual action is in its own
numbered paragraph. Be careful to list all ingredients and all kitchen
utensils used at each step. Be careful about crucial details, such as
the desired oven temperature, preheating the oven, the preparation
of the baking sheet, the way to time the cooking, and the need to

protect your hands when removing the muffins from the oven.

* Consider those instructions from the point of view of a cooking
novice (if you are not one, get help from a friend who does not know
how to cook). Fill in the steps that the book’s author (almost cer-
tainly an experienced cook) left out for being obvious.

* Build a glossary of terms used. (What's a muffin pan? What does
preheat do? What do you mean by “oven™?)

* Now bake some muffins and enjoy your results.

. Write a definition for each of the terms from “Terms.” First try to see if you
can do it without looking at the chapter (not likely), then look through the
chapter to find definitions. You might find the difference between your first
attempt and the book’s version interesting. You might consult some suit-
able online glossary, such as www.research.att.com/~bs/glossary.html. By
writing your own definition before looking it up, you reinforce the learning
you achieved through your reading. If you have to reread a section to form
a definition, that just helps you to understand. Feel free to use your own
words for the definitions, and make the definitions as detailed as you think
reasonable. Often, an example after the main definition will be helpful. You
may like to store the definitions in a file so that you can add to them from
the “Terms” sections of later chapters.
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Postscript

What's so important about the “Hello, World!” program? Its purpose is to get us
acquainted with the basic tools of programming. We tend to do an extremely
simple example, such as “Hello, World!,” whenever we approach a new tool.
That way, we separate our learning into two parts: first we learn the basics of our
tools with a trivial program, and later we learn about more complicated pro-
grams without being distracted by our tools. Learning the tools and the language
simultancously is far harder than doing first one and then the other. This ap-
proach to simplifying learning a complex task by breaking it into a series of small
(and more manageable) steps is not limited to programming and computers. It is
common and useful in most areas of life, especially in those that involve some
practical skill.
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Objects, Types, and Values

“Fortune favors the prepared mind.”

—Louis Pasteur

T his chapter introduces the basics of storing and using data
in a program. To do so, we first concentrate on reading in
data from the keyboard. After establishing the fundamental no-
tions of objects, types, values, and variables, we introduce several
operators and give many examples of use of variables of types

char, int, double, and string.
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3.1 Input 3.6 Composite assignment operators
3.2 Variables 3.6.1 An example: count repeated words
3.3 Input and type 3.7 Names
3.4 Operations and operators 3.8 Types and objects
3.5 Assignment and initialization 3.9 Type safety

3.5.1 An example: delete repeated 3.9.1 Safe conversions

words 3.9.2 Unsafe conversions

3.1 Input

The “Hello, World!” program just writes to the screen. It produces output. It
does not read anything; it does not get input from its user. That’s rather a bore.
Real programs tend to produce results based on some input we give them, rather
than just doing the same thing each time we execute them.

To read something, we need somewhere to read into; that is, we need some-
where in the computer’s memory to place what we read. We call such a “place”
an object. An object is a region of memory with a #ype that specifies what kind of
information can be placed in it. A named object is called a variable. For example,
character strings are put into string variables and integers are put into int vari-
ables. You can think of an object as a “box” into which you can put a value of the
object’s type:

int:
are:

This would represent an object of type int named age containing the integer
value 42. Using a string variable, we can read a string from input and write it out
again like this:

// read and write a first name
#include "std_lib_facilities.h"

int main()
{
cout << "Please enter your first name (followed by 'enter'):\n";
string first_name;  //first_name is a variable of type string
cin >> first_name; // read characters into first_name
cout << "Hello, " << first_name << "!\n";
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The #include and the main() are familiar from Chapter 2. Since the #include is
needed for all our programs (up to Chapter 12), we'll leave it out of our presen-
tation to avoid distraction. Similarly, we'll sometimes present code that will work
only if it is placed in main() or some other function by itself, like this:

cout << "Please enter your first name (followed by 'enter'):\n";

We assume that you can figure out how to put such code into a complete pro-
gram for testing.

The first line of main() simply writes out a message encouraging the user to
enter a first name. Such a message is typically called a prompt because it prompts
the user to take an action. The next lines define a variable of type string called
first_name, read input from the keyboard into that variable, and write out a
greeting. Let’s look at those three lines in turn:

string first_name; //first_name is a variable of type string

This sets aside an area of memory for holding a string of characters and gives it
the name first_name:

string:
first_name: :I

A statement that introduces a new name into a program and sets aside memory
for a variable is called a definition.
The next line reads characters from input (the keyboard) into that variable:

cin >> first_name; // read characters into name

The name cin refers to the standard input stream (pronounced “see-in,” for
“character input”) defined in the standard library. The second operand of the >>
operator (“get from”) specifies where that input goes. So, if we type some first
name, say Nicholas, followed by a newline, the string "Nicholas" becomes the
value of first_name:

string:

first_name:

The newline is necessary to get the machine’s attention. Until a newline is en-
tered (the Enter key is hit), the computer simply collects characters. That “delay”
gives you the chance to change your mind, erase some characters, and replace
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them with others before hitting Enter. The newline will not be part of the string
stored in memory.
Having gotten the input string into first_name, we can use it:

cout << "Hello, " << first_name << "!I\n";

This prints Hello, followed by Nicholas (the value of first_name) followed by !
and a newline ("\n') on the screen:

Hello, Nicholas!

If we had liked repetition and extra typing, we could have written three separate
output statements instead:

cout << "Hello, ";
cout << first_name;
cout << "!\n";

However, we are indifferent typists, and — more importantly — strongly dislike
needless repetition (because repetition provides opportunity for errors), so we
combined those three output operations into a single statement.

Note the way we use quotes around the characters in "Hello, " but not in
first_name. We use quotes when we want a literal string. When we don’t quote,
we refer to the value of something with a name. Consider:

cout << "first_name" << " is " << first_name;

Here, "first_name" gives us the ten characters first_name and plain first_name
gives us the value of the variable first_name, in this case, Nicholas. So, we get

first_name is Nicholas

3.2 Variables

Basically, we can do nothing of interest with a computer without storing data in
memory, the way we did it with the input string in the example above. The
“places”™ in which we store data are called objects. To access an object we need a
name. A named object is called a variable and has a specific fpe (such as int or
string) that determines what can be put into the object (e.g., 123 can go into an
int and "Hello, World!\n" can go into a string) and which operations can be ap-
plied (e.g., we can multiply ints using the * operator and compare strings using
the <= operator). The data items we put into variables are called values. A state-
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ment that defines a variable i1s (unsurprisingly) called a definition, and a definition
can (and usually should) provide an initial value. Consider

string name = "Annemarie";
int number_of_steps =39;

You can visualize these variables like this:

int: string:

You cannot put values of the wrong type into a variable:

string name2 = 39; / error: 39 isn't a string
int number_of_steps = "Annemarie";  // error: “Annemarie” is not an int

The compiler remembers the type of each variable and makes sure that you use
it according to its type, as specified in its definition.

C++ provides a rather large number of types (see §A.8). However, you can
write perfectly good programs using only five of those:

int number_of_steps = 39; // int for integers

double flying_time =3.5; /l double for floating-point numbers
char decimal_point="."; /I char for individual characters
string name = "Annemarie"; // string for character strings

bool tap_on = true; /' bool for logical variables

The reason for the name double is historical: double is short for “double-
precision floating point.” Floating point is the computer’s approximation to the
mathematical concept of a real number.

Note that each of these types has its own characteristic style of literals:

39 /int: an integer

35 /l double: a floating-point number

b /I char: an individual character enclosed in single quotes
"Annemarie" //string: a sequence of characters delimited by double quotes
true /l bool: either true or false

That is, a sequence of digits (such as 1234, 2, or 976) denotes an integer, a single
character in single quotes (such as '1', '@, or 'x') denotes a character, a sequence
of digits with a decimal point (such as 1.234, 0.12, or .98) denotes a floating-point
value, and a sequence of characters enclosed in double quotes (such as "1234",
"Howdy!", or "Annemarie") denotes a string. For a detailed description of literals
sce §A.2.
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3.3 Input and type

C) The input operation >> (“get from”) is sensitive to type; that is, it reads according
to the type of variable you read into. For example:

// read name and age

int main()

{
cout << "Please enter your first name and age\n";
string first_name;  //string variable

int age; // integer variable
cin >> first_name;  //read a string
cin >> age; / read an integer

cout << "Hello, " << first_name << " (age " << age << ")\n";

}

So, if you type in Carlos 22 the >> operator will read Carlos into first_name, 22
into age, and produce this output:

Hello, Carlos (age 22)

Why won't it read (all of) Carlos 22 into first_name? Because, by convention,
reading of strings is terminated by what is called whitespace, that is, space, newline,
and tab characters. Otherwise, whitespace by default is ignored by >>. For exam-
ple, you can add as many spaces as you like before a number to be read; >> will
just skip past them and read the number.

If you type in 22 Carlos, you'll see something that might be surprising until
you think about it. The 22 will be read into first_name because, after all, 22 is a
sequence of characters. On the other hand, Carlos isn’t an integer, so it will not
be read. The output will be 22 followed by some random number, such as -96739
or 0. Why? You didn’t give age an initial value and you didn’t succeed in reading
a value into it. Therefore, you get some “garbage value” that happened to be in
that part of memory when you started executing. In §10.6, we look at ways to
handle “input format errors.” For now, let’s just initialize age so that we get a pre-
dictable value if the input fails:

/l read name and age (2nd version)
int main()
{

cout << "Please enter your first_name and age\n";
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string first_name = "22?"; //string variable

M (“222” means “don’t know the name”)
intage=-1;  //integer variable (-1 means “don’t know the age”)
cin >> first_name >> age; / read a string followed by an integer
cout << "Hello, " << first_name << " (age " << age << ")\n";

}
Now the input 22 Carlos will output
Hello 22 (age -1)

Note that we can read several values in a single input statement, just as we can write
several values in a single output statement. Note also that << is sensitive to type, just

as >> is, 50 we can output the int variable age and the character literal \n' as well as

the string variable first_name and the string literals "Hello, " and " (age ".

A string read using >> is (by default) terminated by whitespace; that is, it ()

reads a single word. But sometimes, we want to read more than one word. There

are of course many ways of doing this. For example, we can read a name consist-

ing of two words like this:

int main()
{
cout << "Please enter your first and second names\n";
string first;
string second;
cin >> first >> second; /l read two strings
cout << "Hello, " << first <<'' << second << '\n';

}

We simply used >> twice, once for each name. When we want to write the names
to output we must insert a space between them.

TRY THIS

Get the “name and age” example to run. Then, modify it to write out the age
in months: read the input in years and multiply (using the * operator) by 12.
Read the age into a double to allow for children who can be very proud of
being 5.5 years old rather than just 5.
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3.4 Operations and operators

In addition to specifying what values can be stored in a variable, the type of a
variable determines what operations we can apply to it and what they mean. For
example:

int count;

cin >> count; /l >> reads an integer into count
string name;

cin >> name; /l >> reads a string into name
int ¢2 = count+2; /I + adds integers

string s2=name + " Jr. "; /I + appends characters

int ¢3 = count-2; /l = subtracts integers

string s3 = name - "Jr. "; /l error: — isn’t defined for strings

By “error” we mean that the compiler will reject a program trying to subtract
strings. The compiler knows exactly which operations can be applied to each vari-
able and can therefore prevent many mistakes. However, the compiler doesn’t
know which operations make sense to you for which values, so it will happily ac-
cept legal operations that yield results that may look absurd to you. For example:

int age = ~-100;
It may be obvious to you that you can’t have a negative age (why not?) but no-

body told the compiler, so it'll produce code for that definition.
Here is a table of useful operators for some common and useful types:

bool char int double string
assignment = = = = =
addition + +
concatenation +
subtraction - -
multiplication = .
division / /
remainder (modulo) %
increment by 1 ++ ++

decrement by 1 . _—
increment by n +=n +=n
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bool char int double string
add to end +=
decrement by n -=n -=n
multiply and assign *= *=
divide and assign = /=
remainder and assign %=
read from s into x §>>X §>> X §>> X §>>X §>>X
write X to § s << X §<<X §<<X §s<<X s<<X
equals == == == == ==
not equal I= = I= I= I=
greater than > > > > >
greater than or equal >= >= >= >= >=
less than < < < <
less than or equal <= <= <= <= <=

A blank square indicates that an operation is not directly available for a type
(though there may be indirect ways of using that operation; see §3.7). We'll ex-
plain these operations, and more, as we go along. The key points here are that
there are a lot of useful operators and that their meaning tends to be the same for

similar types.

Let's try an example involving floating-point numbers:

/ simple program to exercise operators

int main()
{
cout << "Please enter a floating-point value:
double n;
cin>>n;
cout<<"n=="<<n
<< "\nn+1 == " << n+1
<< "\nthree times n == " << 3*n
<< "\ntwice n == " << n+n
<< "\nn squared == " <<n*n

<< "\nhalf of n ==" << n/2
<< "\nsquare root of n ==" << sqrt(n)

<< endl; /I another name for newline (“end of line”)

Obviously, the usual arithmetic operations have their usual notation and mean-
ing as we know them from primary school. Naturally, not everything we might
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want to do to a floating-point number, such as taking its square root, is available
as an operator. Many operations are represented as named functions. In this case,
we use sqrt() from the standard library to get the square root of n: sqrt(n). The
notation is familiar from math. We’ll use functions along the way and discuss

them in some detail in §4.5 and §8.5.

TRY THIS

Get this little program to run. Then, modify it to read an int rather than a
double. Note that sqrt() is not defined for an int so assign n to a double and
take sqrt() of that. Also, “exercise” some other operations. Note that for ints /
is integer division and % is remainder (modulo), so that 5/2 is 2 (and not 2.5
or 3) and 5%2 is 1. The definitions of integer *, /, and % guarantee that for
two positive ints a and b we have a/b * b + a%b ==a.

Strings have fewer operators, but as we'll see in Chapter 23, they have plenty of
named operations. However, the operators they do have can be used convention-
ally. For example:

/I read first and second name

int main()

{
cout << "Please enter your first and second names\n";
string first;
string second;
cin >> first >> second; /I read two strings
string name = first + ' ' + second;  // concatenate strings
cout << "Hello, " << name << '\n';

}

For strings + means concatenation; that is, when s1 and s2 are strings, s1+s2 is a
string where the characters from s1 are followed by the characters from s2. For
example, if s1 has the value "Hello" and s2 the value "World" then s1+s2 will
have the value "HelloWorld". Comparison of strings is particularly uscful:

// read and compare names

int main()
{
cout << "Please enter two names\n";
string first;
string second;
cin >> first >> second; /I read two strings

if (first == second) cout << "that's the same name twice\n";
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if (first < second)

cout << first << " is alphabetically before " << second <<'\n';
if (first > second)

cout << first << " is alphabetically after " << second <<"\n';

}

Here, we used an if-statement, which will be explained in detail in §4.4.1.1, to se-
lect actions based on conditions.

3.5 Assignment and initialization

In many ways, the most interesting operator is assignment, represented as =. It O
gives a variable a new value. For example:

inta=3; // a starts out with the value 3

x ST
a=4; /l a gets the value 4 (“becomes 4”)

« AT
inth =a; /' b starts out with a copy of a’s value (that is, 4)

b = a+5; // b gets the value a+5 (that is, 9)
b o]

a=a+7; // a gets the value a+7 (that is, 11)

That last assignment deserves notice. First of all it clearly shows that = does not O

mean equals — clearly, a doesn’t equal a+7. It means assignment, that is, to place
a new value in a variable. What is done for a=a+7 is the following:

1. First, get the value of a; that’s the integer 4.
2. Next, add 7 to that 4, yielding the integer 11.
3. Finally, put that 11 into a.
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We can also illustrate assignments using strings:

string a="alpha";

a="beta";

stringb =a;

b = a+"gamma";

a=a+"delta";

/1 a starts out with the value “alpha”

a: | alpha !

/! a gets the value “beta” (becomes “beta”)

i

a:

// b starts out with a copy of a’s value (that is, “beta”)

a:
b:

i

/b gets the value a+“gamma” (that is, “betagamma”)

a:

b: Ibetagamma ]

// a gets the value a+“delta” (that is, “betadelta”)

a: | betadelta |
b:|betagamma I

Above, we use “starts out with” and “gets” to distinguish two similar, but logi-

cally distinct, operations:

* Initialization (giving a variable its initial value)

« Assignment (giving a variable a new value)

These operations are so similar that C++ allows us to use the same notation (the

=) for both:

inty=8;
x=9;

string t = "howdy!";
§= llGl’daYII;

/ initialize y with 8
/l assign 9 to x

/ initialize t with “howdy!”
/ assign “G'day” to s

However, logically assignment and initialization are different. You can tell the two
apart by the type specification (like int or string) that always starts an initializa-
tion; an assignment does not have that. In principle, an initialization always finds
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the variable empty. On the other hand, an assignment (in principle) must clear
out the old value from the variable before putting in the new value. You can
think of the variable as a kind of small box and the value as a concrete thing,
such as a coin, that you put into it. Before initialization, the box is empty, but
after initialization it always holds a coin so that to put a new coin in, you (i.e., the
assignment operator) first have to remove the old one (“destroy the old value”) —
and you cannot leave the box empty. Things are not quite this literal in the com-
puter’s memory, but it’s not a bad way of thinking of what's going on.

3.5.1 An example: delete repeated words

Assignment is needed when we want to put a new value into an object. When
you think of it, it is obvious that assignment is most useful when you do things
many times. We need an assignment when we want to do something again with a
different value. Let’s have a look at a little program that detects adjacent repeated
words in a sequence of words. Such code is part of most grammar checkers:

int main()
{
string previous=""; / previous word; initialized to “not a word”
string current; / current word
while (cin>>current) { // read a stream of words
if (previous == current) /! check if the word is the same as last
cout << "repeated word: " << current <<"\n';
previous = current;
}
)

This program is not the most helpful since it doesn’t tell where the repeated word
occurred in the text, but it'll do for now. We will look at this program line by line

starting with
string current; /I current word

This is the string variable into which we immediately read the current (i.e., most
recently read) word using

while (cin>>current)

This construct, called a while-statement, is interesting in its own right, and we'll ex-
amine it further in §4.4.2.1. The while says that the statement after (cin>>current)
is to be repeated as long as the input operation cin>>current succeeds, and
cin>>current will succeed as long as there are characters to read on the standard
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mput. Remember that for a string, >> reads whitespace-separated words. You ter-
minate this loop by giving the program an end-of-input character (usually referred
to as end of file). On a Windows machine, that’s Ctrl+Z (Control and Z pressed to-
gether) followed by an Enter (return). On a Unix or Linux machine that’s Ctrl+D
(Control and D pressed together).

So, what we do is to read a word into current and then compare it to the pre-
vious word (stored in previous). If they are the same, we say so:

if (previous == current) /l check if the word is the same as last
cout << "repeated word: " << current <<'\n';

Then we have to get ready to do this again for the next word. We do that by
copying the current word into previous:

previous = current;

This handles all cases provided that we can get started. What should this code do
for the first word where we have no previous word to compare? This problem is
dealt with by the definition of previous:

string previous="";  // previous word; initialized to “not a word”

The " " contains only a single character (the space character, the one we get by
hitting the space bar on our keyboard). The input operator >> skips whitespace,
so we couldn’t possibly read that from input. Therefore, the first time through
the while-statement, the test

if (previous == current)

fails (as we want it to).

One way of understanding program flow is to “play computer,” that is, to fol-
low the program line for line, doing what it specifies. Just draw boxes on a piece
of paper and write their values into them. Change the values stored as specified
by the program.

TRY THIS

»  Execute this program yourself using a piece of paper. Use the input “The cat cat

jumped”. Even experienced programmers use this technique to visualize the ac-
tions of small sections of code that somehow don’t seem completely obvious.
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TRY THIS

Get the “repeated word detection program” to run. Test it with the sentence
“She she laughed He He He because what he did did not look very very
good good”. How many repeated words were there? Why? What is the defi-
nition of word used here? What is the definition of repeated word? (For exam-
ple, is “She she” a repetition?)

3.6 Composite assignment operators

Incrementing a variable (that is, adding 1 to it) is so common in programs that
C++ provides a special syntax for it. For example:

++counter
means
counter = counter + 1

There are many other common ways of changing the value of a variable based on
its current value. For example, we might like to add 7 to it, to subtract 9, or to mul-
tiply it by 2. Such operations are also supported directly by C++. For example:

a+=7; // means a = a+7
b-=9; //meansb=b-9
e¥=2: // means ¢ = c*2

In general, for any binary operator oper, a oper= b means a = a oper b (§A.5).
For starters, that rule gives us operators +=, -=, *=, /=, and %=. This provides a
pleasantly compact notation that directly reflects our ideas. For example, in many
application domains /= and %= are referred to as “scaling”

3.6.1 An example: count repeated words

Consider the example detecting repeated adjacent words above. We could im-
prove that by giving an idea of where the repeated word was in the sequence. A
simple variation of that idea simply counts the words and outputs the count for
the repeated word:

int main()

{
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int number_of_words = 0;
string previous="";  //not a word
string current;
while (cin>>current) {
++number_of_words; //increase word count
if (previous == current)
cout << "word number " << number_of_words
<< " repeated: "<< current <<"\n';
previous = current;

We start our word counter at 0. Each time we see a word, we increment that
counter:

++number_of words;

That way, the first word becomes number 1, the next number 2, and so on. We
could have accomplished the same by saying

number_of words +=1;
or even
number_of_words = number_of words+1;

but ++number_of_words is shorter and expresses the idea of incrementing directly.

Note how similar this program is to the one from §3.5.1. Obviously, we just
took the program from §3.5.1 and modified it a bit to serve our new purpose.
That’s a very common technique: when we need to solve a problem, we look for
a similar problem and use our solution for that with suitable modification. Don’t
start from scratch unless you really have to. Using a previous version of a pro-
gram as a base for modification often saves a lot of time, and we benefit from
much of the effort that went into the original program.

3.7 Names

We name our variables so that we can remember them and refer to them from
other parts of a program. What can be a name in C++? In a C++ program, a
name starts with a letter and contains only letters, digits, and underscores. For
example:
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X
number_of elements
Fourier_transform

z2

Polygon

The following are not names:

2x /l a name must start with a letter
timeStoSmarket  // $ is not a letter, digit, or underscore
Start menu / space is not a letter, digit, or underscore

When we say “not names” we mean that a C++ compiler will not accept them as
names.

If you read system code or machine-generated code, you might see names ()
starting with underscores, such as _foo. Never write those yourself; such names
are reserved for implementation and system entities. By avoiding leading under-
scores, you will never find your names clashing with some name that the imple-
mentation generated.

Names are case sensitive; that is, uppercase and lowercase letters are distinct,
so x and X are different names. This little program has at least four errors:

#include "std_lib_facilities.h"

int Main()

{
String s = "Goodbye, cruel world! ";
cOut << S <<"\n';

It is usually not a good idea to define names that differ only in the case of a char-
acter, such as one and One; that will not confuse a compiler, but it can easily
confuse a programmer.

TRY THIS

Compile the “Goodbye, cruel world!” program and examine the error mes-
sages. Did the compiler find all the errors? What did it suggest as the prob-
lems? Did the compiler get confused and diagnose more than four errors?
Remove the errors one by one, starting with the lexically first, and see how
the error messages change (and improve).
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The C++ language reserves many (about 70) names as “keywords.” We list them
in §A.3.1. You can’t use those to name your variables, types. functions, etc. For
example:

intif=7; / error: “if” is a keyword

You can use names of facilities in the standard library, such as string, but you
shouldn’t. Reuse of such a common name will cause trouble if you should ever
want to use the standard library:

intstring=7;  //this will lead to trouble

When you choose names for your variables, functions, types, etc., choose mean-
ingful names; that is, choose names that will help people understand your pro-
gram. Even you will have problems understanding what your program is
supposed to do if you have littered it with variables with “easy to type” names
like x1, x2, s3, and p7. Abbreviations and acronyms can confuse people, so use
them sparingly. These acronyms were obvious to us when we wrote them, but we
expect you'll have trouble with at least one:

mtbf
TLA

myw
NBV

We expect that in a few months, we'll also have trouble with at least one.

Short names, such as x and i, are meaningful when used conventionally; that
is, x should be a local variable or a parameter (see §4.5 and §8.4) and i should be
a loop index (see §4.4.2.3).

Don't use overly long names; they are hard to type, make lines so long that
they don't fit on a screen, and are hard to read quickly. These are probably OK:

partial_sum
element_count
stable_partition

These are probably too long:

the_number_of_elements
remaining_free_slots_in_symbol_table

Our “house style” is to use underscores to separate words in an identifier, such as
element_count, rather than alternatives, such as elementCount and Element-
Count. We never use names with all capital letters, such as ALL_CAPITAL_LETTERS,
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because that’s conventionally reserved for macros (§27.8 and §A.17.2), which we
avoid. We use an initial capital letter for types we define, such as Square and
Graph. The C++ language and standard library don’t use capital letters, so it’s int
rather than Int and string rather than String. Thus, our convention helps to mini-
mize confusion between our types and the standard ones.

Avoid names that are easy to mistype, misread, or confuse. For example: C/
Name names nameS

foo 00 fl

f1 fl fi

The characters 0, o, O, 1, I, I are particularly prone to cause trouble.

3.8 Types and objects

The notion of type is central to C++ and most other programming languages.
Let’s take a closer and slightly more technical look at types, specifically at the
types of the objects in which we store our data during computation. It'll save time
in the long run, and it may save you some confusion.

* A hpe defines a set of possible values and a set of operations (for an object). b

*  An object is some memory that holds a value of a given type.

* A valueis a set of bits in memory interpreted according to a type.

* A variable is a named object.

* A declaration is a statement that gives a name to an object.

* A definition is a declaration that sets aside memory for an object.
Informally, we think of an object as a box into which we can put values of a given
type. An int box can hold integers, such as 7, 42, and -399. A string box can hold

character string values, such as "Interoperability”, "tokens: !@#$%"&*", and
"Old McDonald had a farm". Graphically, we can think of it like this:

intb=9; b:

inta=7;

charc="a"; [
double x =1.2; X: I 1.2 ]
string s1 = "Hello, World!"; st: [ 13 | Hello, World! |

string s2 = "1.2"; s2: | 3 [ 1.2 |
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The representation of a string is a bit more complicated than that of an int be-
cause a string keeps track of the number of characters it holds. Note that a
double stores a number whereas a string stores characters. For example, x stores
the number 1.2, whereas s2 stores the three characters '1', '.", and '2'. The quotes
for character and string literals are not stored.

Every int is of the same size; that is, the compiler sets aside the same fixed
amount of memory for each int. On a typical desktop computer, that amount is 4
bytes (32 bits). Similarly, bools, chars, and doubles are fixed size. You'll typically
find that a desktop computer uses a byte (8 bits) for a bool or a char and 8 bytes
for a double. Note that different types of objects take up different amounts of
space. In particular, a char takes up less space than an int, and string differs from
double, int, and char in that different strings take up different amounts of space.

Q The meaning of bits in memory is completely dependent on the type used to
access it. Think of it this way: computer memory doesn’t know about our types;
it’s just memory. The bits of memory get meaning only when we decide how that
memory is to be interpreted. This is similar to what we do every day when we use
numbers. What does 12.5 mean? We don’t know. It could be $12.5 or 12.5¢cm or
12.5gallons. Only when we supply the unit does the notation 12.5 mean anything,

For example, the very same bits of memory that represent the value 120 when
looked upon as an int would be 'x' when looked upon as a char. If looked at as a
string, it wouldn’t make sense at all and would become a run-time error if we tried
to use it. We can illustrate this graphically like this, using 1 and 0 to indicate the
value of bits in memory:

| 00000000 00000000 00000000 01111000 |

This is the setting of the bits of an area of memory (a word) that could be read as
an int (120) or as a char ('x', looking at the rightmost 8 bits only). A bit is a unit
of computer memory that can hold the value 0 or 1. For the meaning of binary
numbers, see §A.2.1.1.

3.9 Type safety

Every object is given a type when it is defined. A program — or a part of a pro-
gram — is type-safe when objects are used only according to the rules for their
type. Unfortunately, there are ways of doing operations that are not type-safe. For
() example, using a variable before it has been initialized is not considered type-safe:

int main()
{
double x; /f we “forgot” to initialize:
// the value of x is undefined
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double y = x; // the value of y is undefined
double z = 2.0+x; /l the meaning of + and the value of z are undefined

}

An implementation is even allowed to give a hardware error when the uninitialized
x is used. Always initialize your variables! There are a few — very few — exceptions
to this rule, such as a variable we immediately use as the target of an input opera-
tion, but always to initialize is a good habit that'll save you a lot of grief.

Complete type safety is the ideal and therefore the general rule for the lan-
guage. Unfortunately, a C++ compiler cannot guarantee complete type safety,
but we can avoid type safety violations through a combination of good coding
practice and run-time checks. The ideal is never to use language features that the
compiler cannot prove to be safe: static type safety. Unfortunately, that’s too re-
strictive for most interesting uses of programming. The obvious fallback, that the
compiler implicitly generates code that checks for type safety violations and
catches all of them, is beyond C++. When we decide to do things that are (type)
unsafe, we must do some checking ourselves. We'll point out such cases, as we
get to them.

The ideal of type safety is incredibly important when writing code. That’s why
we spend time on it this early in the book. Please note the pitfalls and avoid them.

3.9.1 Safe conversions

In §3.4, we saw that we couldn’t directly add chars or compare a double to an
int. However, C++ provides an indirect way to do both. When needed, a char is
converted to an int and an int is converted to a double. For example:

charc="x";
intil=c¢;
inti2=""s

Here both i1 and i2 get the value 120, which is the integer value of the character
'x" in the most popular 8-bit character set, ASCII. This is a simple and safe way
of getting the numeric representation of a character. We call this char-to-int con-
version safe because no information is lost; that is, we can copy the resulting int
back into a char and get the original value:

charc2 =il;
cout<<c<< ' "<<il << "<< 2 << "\n';

This will print

x 120 x
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In this sense — that a value is always converted to an equal value or (for doubles)
to the best approximation of an equal value — these conversions are safe:

bool to char
bool to int
bool to double
char to int
char to double
int to double

The most useful conversion is int to double because it allows us to mix ints and
doubles in expressions:

double d1 =2.3;

double d2=d1+2;  //2 is converted to 2.0 before adding

if (d1<0) /1 0 is converted to 0.0 before comparison
error("d1 is negative");

For a really large int, we can (for some computers) suffer a loss of precision when
converting to double. This is a rare problem.

3.9.2 Unsafe conversions

C) Safe conversions are usually a boon to the programmer and simplify writing
code. Unfortunately, C++ also allows for (implicit) unsafe conversions. By un-
safe, we mean that a value can be implicitly turned into a value of another type

that does not equal the original value. For example:

int main()

{
int a = 20000;
charc=a; //try to squeeze a large int into a small char
inthb=c;
if (al=h) /l '= means “not equal”
cout << "oops!: "<<a<<"l="<<b <<\n';
else
cout << "Wow! We have large characters\n";
}

Such conversions are also called “narrowing” conversions, because they put a
value into an object that may be too small (“narrow”) to hold it. Unfortunately,
few compilers warn about the unsafe initialization of the char with an int. The
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problem is that an int is typically much larger than a char, so that it can (and in
this case does) hold an int value that cannot be represented as a char. Try it to
see what value b gets on your machine (32 is a common result); better still,
experiment:

int main()
{
double d =0;
while (cin>>d) {  // repeat the statements below
// as long as we type in numbers

inti=d; / try to squeeze a double into an int
charc=i; /try to squeeze an int into a char
inti2=c; /I get the integer value of the character
cout << "d=="<<d // the original double
<<"i=="<<i // converted to int
<<"i2=="<<i2 / int value of char

<< " char(" << c<<")\n"; //the char

}

The while-statement that we use to allow many values to be tried will be ex-
plained in §4.4.2.1.

TRY THIS

Run this program with a variety of inputs. Try small values (e.g., 2 and 3);
try large values (larger than 127, larger than 1000); try negative values; try
56; try 89; try 128; try non-integer values (e.g., 56.9 and 56.2). In addition to
showing how conversions from double to int and conversions from int to
char are done on your machine, this program shows you what character (if
any) your machine will print for a given integer value.

You'll find that many input values produce “unreasonable” results. Basically, we
are trying to put a gallon into a pint pot (about 4 liters into a 500ml glass). All of
the conversions

double to int
double to char
double to bool
int to char
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int to bool
char to bool

are accepted by the compiler even though they are unsafe. They are unsafe in the
sense that the value stored might differ from the value assigned. Why can this be
a problem? Because often we don’t suspect that an unsafe conversion is taking
place. Consider:

double x=2.7;
/ lots of code
inty=x; /l'y becomes 2

By the time we define y we may have forgotten that x was a double, or we may
have temporarily forgotten that double-to-int conversion truncates (always
rounds down) rather than using the conventional 4/5 rounding. What happens is
perfectly predictable, but there is nothing in the int y = x; to remind us that infor-
mation (the .7) is thrown away.

Conversions from int to char don’t have problems with truncation — neither
int nor char can represent a fraction of an integer. However, a char can hold only
very small integer values. On a PC, a char is 1 byte whereas an int is 4 bytes:

char: D

So, we can’t put a large number, such as 1000, into a char without loss of infor-
mation: the value is “narrowed.” For example:

inta=1000;
charb=a; //bbecomes-24 (on some machines)

Not all int values have char equivalents, and the exact range of char values de-
pends on the particular implementation. On a PC the range of char values is
[-128:127], but only [0,127] can be used portably because not every computer is
a PC, and different computers have different ranges for their char values, such as
[0:255].

Why do people accept the problem of narrowing conversions? The major
reason is history: C++ inherited narrowing conversions from its ancestor lan-
guage, C, so from day one of C++, there existed much code that depended on
narrowing conversions. Also, many such conversions don’t actually cause prob-
lems because the values involved happen to be in range, and many programmers
object to compilers “telling them what to do.” In particular, the problems with un-
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safe conversions are often manageable in small programs and for experienced
programmers. They can be a source of errors in larger programs, though, and a
significant cause of problems for novice programmers. However, compilers can
warn about narrowing conversions — and many do.

So what should you do if you think that a conversion might lead to a bad
value? You simply check the value before assigning as we did in the first example
in this section. See §5.6.4 and §7.5 for a simplified way of doing such checking.

J Drill

After each step of this drill, run your program to make sure it is really doing what
you expect it to. Keep a list of what mistakes you make so that you can try to
avoid those in the future.

1. This drill is to write a program that produces a simple form letter based
on user input. Begin by typing the code from §3.1 prompting a user to
enter his or her first name and writing “Hello, first_ name” where
first_name is the name entered by the user. Then modify your code as
follows: change the prompt to “Enter the name of the person you want
to write to” and change the output to “Dear first_name,”. Don’t forget
the comma.

2. Add an introductory line or two, like “How are you? I am fine. I miss
you.” Be sure to indent the first line. Add a few more lines of your choos-
ing — it’s your letter.

3. Now prompt the user for the name of another friend, and store it in
friend_name. Add a line to your letter: “Have you seen friend_name
lately?”

4. Declare a char variable called friend_sex and initialize its value to 0.
Prompt the user to enter an m if the friend is male and an f if the friend is
female. Assign the value entered to the variable friend_sex. Then use
two if-statements to write the following:

If the friend is male, write “If you see friend_name please ask him to call

»”

me.

If the friend is female, write “If you see friend_name please ask her to
call me.”

5. Prompt the user to enter the age of the recipient and assign it to an int
variable age. Have your program write “I hear you just had a birthday
and you are age years old.” If age is 0 or less or 110 or more, call
error("you're kidding!").
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Add this to your letter:
If your friend is under 12, write “Next year you will be age+1.”
If your friend is 17, write “Next year you will be able to vote.”

If your friend is over 70, write “I hope you are enjoying retirement.”

Check your program to make sure it responds appropriately to each kind
of value.

7. Add “Yours sincerely,” followed by two blank lines for a signature, fol-

lowed by your name.

Review

SRS O

14,
15.
16.
i 74
18.

. What is meant by the term prompf?

. Which operator do you use to read into a variable?

If you want the user to input an integer value into your program for a
variable named number, what are two lines of code you could write to
ask the user to do it and to input the value into your program?

What is \n called and what purpose does it serve?

What terminates input into a string?

What terminates input into an integer?

How would you write

cout << "Hello, ";
cout << first_name;
cout<<"I\n";

as a single line of code?

. What is an object?
. What is a literal?

10.
i (5
12.
13.

What kinds of literals are there?

What is a variable?

What are typical sizes for a char, an int, and a double?

What measures do we use for the size of small entities in memory, such
as ints and strings?

What is the difference between = and ==?

What is a definition?

What is an initialization and how does it differ from an assignment?
What is string concatenation and how do you make it work in C++?
Which of the following are legal names in C++? If a name is not legal,
why not?

This_little_pig This_1_is fine 2 _For_1_special
latest thing the $12_method _this_is_ok
MiniMineMine number correct?
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19.

20.
21
22.
23.

Terms

Give five examples of legal names that you shouldn’t use because they
are likely to cause confusion.

What are some good rules for choosing names?

What is type safety and why is it important?

Why can conversion from double to int be a bad thing?

Define a rule to help decide if a conversion from one type to another is
safe or unsafe.

assignment definition operation

cin

increment operator

concatenation initialization type
conversion name type safety
declaration narrowing value
decrement object variable

Exercises

1.

2.

If you haven’t done so already, do the Try this exercises from this chap-
ter.

Write a program in C++ that converts from miles to kilometers. Your
program should have a reasonable prompt for the user to enter a number
of miles. Hint: There are 1.609 kilometers to the mile.

. Write a program that doesn’t do anything, but declares a number of vari-

ables with legal and illegal names (such as int double = 0;), so that you
can see how the compiler reacts.

. Write a program that prompts the user to enter two integer values. Store

these values in int variables named val1 and val2. Write your program to
determine the smallest, largest, sum, difference, product, and ratio of
these values and report them to the user.

. Modify the program above to ask the user to enter floating-point values

and store them in double variables. Compare the outputs of the two pro-
grams for some inputs of your choice. Are the results the same? Should
they be? What's the difference?

. Write a program that prompts the user to enter three integer values, and

then outputs the values in numerical sequence separated by commas. So,
if the user enters the values 10 4 6, the output should be 4, 6, 10. If two
values are the same, they should just be ordered together. So, the input 4
5 4 should give 4, 4, 5.

Do exercise 6, but with three string values. So, if the user enters the val-

ues “Steinbeck”, “Hemingway”, “Fitzgerald”, the output should be
“Fitzgerald, Hemingway, Steinbeck”.
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Write a program to test an integer value to determine if it is odd or even.
As always, make sure your output is clear and complete. In other words,
don’t just output “yes” or “no.” Your output should stand alone, like
“The value 4 is an even number.” Hint: See the remainder (modulo) op-
erator in §3.4.

. Write a program that converts spelled-out numbers such as “zero” and

“two” into digits, such as 0 and 2. When the user inputs a number, the
program should print out the corresponding digit. Do it for the values 0,
1, 2, 3, and 4 and write out “not a number I know” if the user enters
something that doesn’t correspond, such as “stupid computer!”

Write a program that takes an operation followed by two operands and
outputs the result. For example:

+ 100 3.14
*45

Read the operation into a string called operation and use an if-statement
to figure out which operation the user wants, for example, if (opera-
tion=="+"). Read the operands into variables of type double. Implement
this for operations called +, -, *, /, plus, minus, mul, and div with their
obvious meanings.

Write a program that prompts the user to enter some number of pennies
(I-cent coins), nickels (5-cent coins), dimes (10-cent coins), quarters (25-
cent coins), half dollars (50-cent coins), and one-dollar coins (100-cent
coins). Query the user separately for the number of each size coin, e.g.,
“How many pennies do you have?” Then your program should print
out something like this:

You have 23 pennies.
You have 17 nickels.
You have 14 dimes.
You have 7 quarters.
You have 3 half dollars.

The value of all of your coins is 573 cents.

You may have to use your imagination to get the numbers to add up
right-justified, but try; it can be done. Make some improvements: if only
one of a coin is reported, make the output grammatically correct, e.g.,
“14 dimes” and “1 dime” (not “1 dimes”). Also, report the sum in dollars
and cents, i.c., $5.73 instead of 573 cents.
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Postscript

Please don’t underestimate the importance of the notion of type safety. Types are
at the center of most notions of correct programs, and some of the most effective
techniques for constructing programs rely on the design and use of types — as
you'll see in Chapters 6 and 9, Parts II, III, and IV.
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Computation

“If it doesn’t have to produce correct results,
I can make it arbitrarily fast.”

—Gerald M. Weinberg

T his chapter presents the basics of computation. In particular,
we discuss how to compute a value from a set of operands
(exprression), how to choose among alternative actions (selection), and
how to repeat a computation for a series of values (iteration). We
also show how a particular sub-computation can be named and
specified separately (a_function). Our primary concern is to express
computations in ways that lead to correct and well-organized pro-
grams. To help you perform more realistic computations, we in-

troduce the vector type to hold sequences of values.
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4.1 Computation 4.5 Functions
4.2 Objectives and tools 4.5.1 Why bother with functions?
- 4.5.2 Function declarations
4.3 Expressions P
4.3.1 Constant expressions s
4.3.2 Operators 4.6.1 Growing a vector
4.3.3 Conversions 4.6.2 A numeric example

4.6.3 A text example
4.4 Statements

4.4.1 Selection
4.4.2 Iteration

4.7 Language features

4.1 Computation

From one point of view, all that a program ever does is to compute; that is, it
takes some inputs and produces some output. After all, we call the hardware on
which we run the program a computer. This view is accurate and reasonable as
long as we take a broad view of what constitutes input and output:

( Code B
Input (OﬁtandC) ( ’lll:pl.‘ll:
Data
J b,

The input can come from a keyboard, from a mouse, from a touch screen, from
files, from other input devices, from other programs, from other parts of a pro-
gram. “Other input devices” is a category that contains most really interesting
input sources: music keyboards, video recorders, network connections, tempera-
ture sensors, digital camera image sensors, etc. The variety is essentially infinite.

To deal with input, a program usually contains some data, sometimes re-
ferred to as its data structures or its state. For example, a calendar program may
contain lists of holidays in various countries and a list of your appointments.
Some of that data is part of the program from the start; other data is built up as
the program reads input and collects useful information from it. For example, the
calendar program will probably build your list of appointments from the input
you give it. For the calendar, the main inputs are the requests to see the months
and days you ask for (probably using mouse clicks) and the appointments you
give it to keep track of (probably by typing information on your keyboard). The
output is the display of calendars and appointments, plus the buttons and
prompts for input that the calendar program writes on your screen.
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Input comes from a wide variety of sources. Similarly, output can go to a
wide variety of destinations. Output can be to a screen, to files, to other output
devices, to other programs, and to other parts of a program. Examples of output
devices include network interfaces, music synthesizers, electric motors, light gen-
erators, heaters, etc.

From a programming point of view the most important and interesting cate-
gories are “to/from another program” and “to/from other parts of a program.”
Most of the rest of this book could be seen as discussing that last category: how
do we express a program as a set of cooperating parts and how can they share
and exchange data? These are key questions in programming. We can illustrate
that graphically:

The abbreviation /0 stands for “input/output.” In this case, the output from one
part of code is the input for the next part. What such “parts of a program” share
is data stored in main memory, on persistent storage devices (such as disks), or
transmitted over network connections. By “parts of a program™ we mean entities
such as a function producing a result from a set of input arguments (e.g., a square
root from a floating-point number), a function performing an action on a physical
object (e.g., a function drawing a line on a screen), or a function modifying some
table within the program (e.g., a function adding a name to a table of customers).

When we say “input” and “output” we generally mean information coming
into and out of a computer, but as you see, we can also use the terms for infor-
mation given to or produced by a part of a program. Inputs to a part of a pro-
gram are often called arguments and outputs from a part of a program are often
called results.

By computation we simply mean the act of producing some outputs based on
some inputs, such as producing the result (output) 49 from the argument (input) 7
using the computation (function) square (see §4.5). As a possibly helpful curios-
ity, we note that until the 1950s a computer was defined as a person who did
computations, such as an accountant, a navigator, or a physicist. Today, we sim-
ply delegate most computations to computers (machines) of various forms, of
which the pocket calculator is among the simplest.

7



CHAPTER 4 = COMPUTATION

4.2 Objectives and tools
Our job as programmers is to express computations

+  Correctly
*  Simply
* Efficienty

Please note the order of those ideals: it doesn’t matter how fast a program is if it
gives the wrong results. Similarly, a correct and efficient program can be so com-
plicated that it must be thrown away or completely rewritten to produce a new
version (release). Remember, useful programs will always be modified to accom-
modate new needs, new hardware, etc. Therefore a program — and any part of a
program — should be as simple as possible to perform its task. For example, as-
sume that you have written the perfect program for teaching basic arithmetic to
children in your local school, and that its internal structure is a mess. Which lan-
guage did you use to communicate with the children? English? English and Span-
ish? What if I'd like to use it in Finland? In Kuwait? How would you change the
(natural) language used for communication with a child? If the internal structure
of the program is a mess, the logically simple (but in practice almost always very
difficult) operation of changing the natural language used to communicate with
users becomes insurmountable. '

Concerns about correctness, simplicity, and efficiency become ours the
minute we start writing code for others and accept the responsibility to do that
well; that is, we must accept that responsibility when we decide to become pro-
fessionals. In practical terms, this means that we can’t just throw code together
until it appears to work: we must concern ourselves with the structure of code.
Paradoxically, concerns for structure and “quality of code™ are often the fastest
way of getting something to work. When programming is done well, such con-
cerns minimize the need for the most frustrating part of programming: debug-
ging: that is, good program structure during development can minimize the
number of mistakes made and the time needed to search for such errors and to
remove them.

Our main tool for organizing a program — and for organizing our thoughts
as we program — is to break up a big computation into many little ones. This
technique comes in two variations:

*  Abstraction: Hide details that we don’t need to use a facility (“implementa-
tion details”) behind a convenient and general interface. For example,
rather than considering the details of how to sort a phone book (thick
books have been written about how to sort), we just call the sort algo-
rithm from the C++ standard library. All we need to know to sort is how
to invoke (call) that algorithm, so we can write sort(b,e) where b and e
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refer to the beginning and the end of the phone book, respectively. An-
other example is the way we use computer memory. Direct use of mem-
ory can be quite messy, so we access it through typed and named
variables (§3.2), standard library vectors (§4.6, Chapters 17-19), maps
(Chapter 21), etc.

*  “Divide and conquer”: Here we take a large problem and divide it into sev-
eral little ones. For example, if we need to build a dictionary, we can sep-
arate that job into three: read the data, sort the data, and output the data.
Each of the resulting problems is significantly smaller than the original.

Why does this help? After all, a program built out of parts is likely to be slightly
larger than a program where everything is optimally merged together. The rea-
son is that we are not very good at dealing with large problems. The way we ac-
tually deal with those — in programming and elsewhere — is to break them down
into smaller problems, and we keep breaking those into even smaller parts unul
we get something simple enough to understand and solve. In terms of program-
ming, you'll find that a 1000-line program has far more than ten times as many
errors as a 100-line program, so we try to compose the 1000-line program out of
parts with fewer than 100 lines. For large programs, say 10,000,000 lines, apply-
ing abstraction and divide-and-conquer is not just an option, it’s an essential re-
quirement. We simply cannot write and maintain large monolithic programs.
One way of looking at the rest of this book is as a long series of examples of
problems that need to be broken up into smaller parts together with the tools and
techniques needed to do so.

When we consider dividing up a program, we must always consider what
tools we have available to express the parts and their communications. A good li-
brary, supplying useful facilities for expressing ideas, can crucially affect the way
we distribute functionality into different parts of a program. We cannot just sit
back and “imagine” how best to partition a program; we must consider what li-
braries we have available to express the parts and their communication. It is early
days yet, but not too soon to point out that if you can use an existing library,
such as the C++ standard library, you can save yourself a lot of work, not just on
programming but also on testing and documentation. The iostreams save us
from having to directly deal with the hardware’s input/output ports. This is a first
example of partitioning a program using abstraction. Every new chapter will pro-
vide more examples.

Note the emphasis on structure and organization: you don’t get good code
just by writing a lot of statements. Why do we mention this now? At this stage
you (or at least many readers) have little idea about what code is, and it will be
months before you are ready to write code upon which other people could de-
pend for their lives or livelihood. We mention it to help you get the emphasis of
your learning right. It is very tempting to dash ahead, focusing on the parts of
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programming that — like what is described in the rest of this chapter — are con-
crete and immediately useful and to ignore the “softer.” more conceptual parts of
the art of software development. However, good programmers and system de-
signers know (often having learned it the hard way) that concerns about struc-
ture lie at the heart of good software and that ignoring structure leads to
expensive messes. Without structure, you are (metaphorically speaking) building
with mud bricks. It can be done, but you'll never get to the fifth floor (mud
bricks lack the structural strength for that). If you have the ambition to build
something reasonably permanent, you pay attention to matters of code structure
and organization along the way, rather than having to come back and learn them
after failures.

4.3 Expressions

The most basic building block of programs is an expression. An expression com-
putes a value from a number of operands. The simplest expression is simply a lit-
eral value, such as 10, 'a', 3.14, or "Norah".

Names of variables are also expressions. A variable represents the object of
which it is the name. Consider:

/l compute area:

int length = 20; // a literal integer (used to initialize a variable)
int width = 40;

intarea = length*width;  //a multiplication

Here the literals 20 and 40 are used to initialize the variables length and width.
Then, length and width are multiplied; that is, we multiply the values found in
length and width. Here, length is simply shorthand for “the value found in the
object named length.” Consider also

length =99; // assign 99 to length

Here, as the lefthand operand of the assignment, length means “the object
named length,” so that the assignment expression is read “Put 99 into the object
named by length.” We distinguish between length used on the left-hand side of
an assignment or an initialization (“the Ivalue of length” or “the object named by
length™) and length used on the right-hand side of an assignment or initialization
(“the rvalue of length,” “the value of the object named by length.” or just “the
value of length”). In this context, we find it useful to visualize a variable as a box
labeled by its name:

ength:
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That is, length is the name of an object of type int containing the value 99. Some-
times (as an lvalue) length refers to the box (object) and sometimes (as an rvalue)
length refers to the value in that box.

We can make more complicated expressions by combining expressions using
operators, such as + and *, in just the way that we are used to. When needed, we
can use parentheses to group expressions:

int perimeter = (length+width)*2; // add then multiply
Without parentheses, we'd have had to say
int perimeter = length*2+width*2;
which is clumsy, and we might even have made this mistake:
int perimeter = length+width*2;  // add width*2 to length

This last error is logical and cannot be found by the compiler. All the compiler
sees is a variable called perimeter initialized by a valid expression. If the result of
that expression is nonsense, that’s your problem. You know the mathematical
definition of a perimeter, but the compiler doesn’t.

The usual mathematical rules of operator precedence apply, so length+
width*2 means length+(width*2). Similarly a*b+c/d means (a*b)+(c/d) and not
a*(b+c)/d. See §A.5 for a precedence table.

The first rule for the use of parentheses is simply “If in doubt, parenthesize,”
but please do learn enough about expressions so that you are not in doubt about
a*b+c/d. Overuse of parentheses, as in (a*b)+(c/d), decreases readability.

Why should you care about readability? Because you and possibly others
will read your code, and ugly code slows down reading and comprehension.
Ugly code is not just hard to read, it is also much harder to get correct. Ugly
code often hides logical errors. It is slower to read and makes it harder to con-
vince yourself — and others — that ugly code is correct. Don’t write absurdly
complicated expressions such as

a*b+d/d*(e-f/g)/h+7 /[ too complicated

and always try to choose meaningful names.

4.3.1 Constant expressions

Programs typically use a lot of constants. For example, a geometry program
might use pi and an inch-to-centimeter conversion program will use a conversion
factor such as 2.54. Obviously, we want to use meaningful names for those con-
stants (as we did for pi; we didn’t say 3.14159). Similarly, we don’t want to
change those constants accidentally. Consequently, C++ offers the notion of a
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symbolic constant, that is, a named object to which you can’t give a new value
after it has been initialized. For example:

const double pi = 3.14159;
pi=7; / error: assignment to const
int v=2%pi/r; // OK: we just read pi; we don't try to change it

Such constants are useful for keeping code readable. You might have recognized
3.14159 as an approximation to pi if you saw it in some code, but would you have
recognized 2997924582 Also, if someone asked you to change some code to use pi
with the precision of 12 digits for your computation, you could search for 3.14 in
your code, but if someone incautiously had used 22/7, you probably wouldn’t
find it. It would be much better just to change the definition of pi to use the more
appropriate value:

const double pi = 3.14159265359;

Consequently, we prefer not to use literals (except very obvious ones, such as 0
and 1) in most places in our code. Instead, we use constants with descriptive
names. Non-obvious literals in code (outside const definitions) are derisively re-
ferred to as magic constants.

In some places, such as case labels (§4.4.1.3), C++ requires a constant expres-
ston, that is, an expression with an integer value composed exclusively of con-
stants. For example:

constintmax =17; //a literal is a constant expression
intval = 19;

max+2 /l a constant expression (a const int plus a literal)
val+2 // not a constant expression: it uses a variable

And by the way, 299792458 is one of the fundamental constants of the universe:
the speed of light in vacuum measured in meters per second. If you didn’t in-
stantly recognize that, why would you expect not to be confused and slowed
down by other constants embedded in code? Avoid magic constants!

4.3.2 Operators

We just used the simplest operators. However, you will soon need more as you
want to express more complex operations. Most operators are conventional, 50
we'll just explain them later as needed and you can look up details if and when
you find a need. Here is a list of the most common operators:
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Name Comment
f(a) function call pass a to f as an argument
++lval pre-increment increment and use the incremented value
~=Ival pre-decrement decrement and use the decremented value
la not result is bool
-a unary minus
a*b multiply
a/b divide
a%b modulo (remainder) only for integer types
a+b add
a-b subtract
out<<b write b to out where out is an ostream
in>>b read from in into b where in is an istream
a<b less than result is bool
a<=b less than or equal result is bool
a>h greater than result is bool
a>=b greater than or equal result is bool
a== equal not to be confused with =
al=b not equal result is bool
a&&b logical and result is bool
allb logical or result is bool
Ival =a assignment not to be confused with ==
Ival *=a compound assignment Ival = Ival*a; also for /, %, +, -

We used Ival (short for “value that can appear on the left-hand side of an assign-
ment”) where the operator modifies an operand. You can find a complete list in
§A5.

For examples of the use of the logical operators && (and), || (or), and ! (not),
see §5.5.1, §7.7, §7.8.2, and §10.4.

Note that a<b<c means (a<b)<c and that a<b evaluates to a Boolean value: O
true or false. So, a<b<c will be equivalent to either true<c or false<c. In particu-
lar, a<b<c does not mean “Is b between a and ¢?” as many have naively (and not
unreasonably) assumed. Thus, a<b<c is basically a useless expression. Don’t
write such expressions with two comparison operations, and be very suspicious if
you find such an expression in someone else’s code — it is most likely an error.

An increment can be expressed in at least three ways:

++a
a+=1
a=a+1
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Which notation should we use? Why? We prefer the first version, ++a, because it
more directly expresses the idea of incrementing. It says what we want to do (in-
crement a) rather than how to do it (add 1 to a and then write the result to a). In
general, a way of saying something in a program is better than another if it more
directly expresses an idea. The result is more concise and easier for a reader to
understand. If we wrote a=a+1, a reader could casily wonder whether we really
meant to increment by 1. Maybe we just mistyped a=b+1, a=a+2, or even a=a-1;
with ++a there are far fewer opportunities for such doubts. Please note that this is
a logical argument about readability and correctness, not an argument about effi-
ciency. Contrary to popular belief, modern compilers tend to generate exactly
the same code from a=a+1 as for ++a when a is one of the built-in types. Simi-
larly, we prefer a *= scale over a = a*scale.

4.3.3 Conversions

We can “mix” different types in expressions. For example, 2.5/2 is a double di-
vided by an int. What does this mean? Do we do integer division or floating-
point division? Integer division throws away the remainder; for example, 5/2 is 2.
Floating-point division is different in that there is no remainder to throw away;
for example, 5.0/2.0 is 2.5. It follows that the most obvious answer to the question
“Is 2.5/2 integer division or floating-point division?” is “Floating-point, of course:
otherwise we'd lose information.” We would prefer the answer 1.25 rather than 1,
and 1.25 is what we get. The rule (for the types we have presented so far) is that
if an operator has an operand of type double, we use floating-point arithmetic
yielding a double result; otherwise, we use integer arithmetic yielding an int re-
sult. For example:

5/2 s 2 (not 2.5)
2.5/2 means 2.5/double(2). that is, 1.25
'a'+1 means int('a")+1

In other words, if necessary, the compiler converts (“promotes”) int operands to
doubles or char operands to int. Once the result has been calculated, the com-
piler may have to convert it (again) to use it as an initializer or the right hand of
an assignment. For example:

double d = 2.5;
inti=2;

doubled2=d/i; //d2==1.25
inti2=dﬁ; fi2 ==1
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d2 = d/i; f1d2 ==1.25
i2=dfi; Hi2==1

Beware that it is easy to forget about integer division in an expression that also
contains floating-point operands. Consider the usual formula for converting de-
grees Celsius to degrees Fahrenheit: /= 9/5 * ¢ + 32. We might write

double dc;
cin >> dc;
double df = 9/5*dc+32; /! beware!

Unfortunately, but quite logically, this does not represent an accurate tempera-
ture scale conversion: the value of 9/5 is 1 rather than the 1.8 we might have
hoped for. To get the code mathematically correct, either 9 or 5 (or both) will
have to be converted into a double. For example:

double dc;
cin>>dc;
double df =9.0/5*dc+32; // better

4.4 Statements

An expression computes a value from a set of operands using operators like the
ones mentioned in §4.3. What do we do when we want to produce several val-
ues? When we want to do something many times? When we want to choose
among alternatives? When we want to get input or produce output? In C++, as
in many languages, you use language constructs called statements to express those
things.

So far, we have seen two kinds of statements: expression statements and dec-
larations. An expression statement is simply an expression followed by a semi-
colon. For example:

a=b;
++b;

Those are two expression statements. Note that the assignment = is an operator
so that a=b is an expression and we need the terminating semicolon to make
a=b; a statement. Why do we need those semicolons? The reason is largely tech-
nical. Consider

a=b++b; //syntaxerror: missing semicolons
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Without the semicolon, the compiler doesn’t know whether we mean a=b++; b;
or a=b; ++b;. This kind of problem is not restricted to computer languages: con-
sider the exclamation “man eating tiger!” Who is eating whom? Punctuation ex-
ists to eliminate such problems, for example, “man-cating tiger!”

When statements follow each other, the computer executes them in the order
in which they are written. For example:

intas7;
cout<<a<<'\n';

Here the declaration, with its initialization, is executed before the output expres-
sion statement.

In general, we want a statement to have some effect. Statements without ef-
fect are typically useless. For example:

1+2;  //do an addition, but don’t use the sum
a*b;  //do a multiplication, but don’t use the product

Such statements without effects are typically logical errors, and compilers often
warn against them. Thus, expression statements are typically assignments, I/O
statements, or function calls.

We will mention one more type of statement: the “empty statement.” Con-
sider the code:

if (x ==5);
{y=3;})

This looks like an error, and it almost certainly is. The ; in the first line is not
supposed to be there. But, unfortunately, this is a legal construct in C++. It is
called an empty statement, a statement doing nothing. An empty statement before a
semicolon is rarely useful. In this case, it has the unfortunate consequence of al-
lowing what is almost certainly an error to be acceptable to the compiler, so it will
not alert you to the error and you will have that much more difficulty finding it.
What will happen if this code is run? The compiler will test x to see if it has
the value 5. If this condition is true, the following statement (the empty state-
ment) will be executed, with no effect. Then the program continues to the next
line, assigning the value 3 to y (which is what you wanted to have happen if x
equals 5). If, on the other hand, x does not have the value 5, the compiler will not
execute the empty statement (still no effect) and will continue as before to assign
the value 3 to y (which is not what you wanted to have happen unless x equals 5).
In other words, the if-statement doesn’t matter; y is going to get the value 3 re-
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gardless. This is a common error for novice programmers, and it can be difficult
to spot, so watch out for it.

The next section is devoted to statements used to alter the order of evalua-
tion to allow us to express more interesting computations than those we get by
Just executing statements in the order in which they were written.

4.4.1 Selection

In programs, as in life, we often have to select among alternatives. In C++, that is
done using either an if-statement or a switch-statement.

4.4.1.1 if-statements

The simplest form of selection is an if-statement, which selects between two alter-
natives. For example:

int main()

{
inta=0;
inth=0;

cout << "Please enter two integers\n";
cin>>a>>b;

if (a<b) // condition
// 1st alternative (taken if condition is true):
cout << "max("<<a<<","<<b<<")is"<<b<<"\n";

else
// 2nd alternative (taken if condition is false):
cout << "max("<<a<<","<<b<<")is"<<a<<"\n";

An if-statement chooses between two alternatives. If its condition is true, the first
statement is executed; otherwise, the second statement is. This notion is simple.
Most basic programming language features are. In fact, most basic facilities in a
programming language are just new notation for things you learned in primary
school — or even before that. For example, you were probably told in kinder-
garten that to cross the street at a traffic light, you had to wait for the light to turn
green: “If the traffic light is green, go” and “If the traffic light is red, wait.” In
C++ that becomes something like

if (traffic_light==green) go();
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and
if (traffic_light==red) wait();

So, the basic notion is simple, but it is also easy to use if-statements in a too
simpleminded manner. Consider what’s wrong with this program (apart from
leaving out the #include as usual):

// convert from inches to centimeters or centimeters to inches
/l a suffix 'i* or 'c' indicates the unit of the input

int main()

{
const double cm_per_inch =2.54; // number of centimeters in an inch
int length =1; // length in inches or centimeters
char unit = 0;
cout<< "Please enter a length followed by a unit (c or i):\n";
cin >> length >> unit;

if (unit=="")

cout << length << "in == " << cm_per_inch*length << "cm\n";
else

cout << length << "cm == " << length/cm_per_inch << "in\n";

Actually, this program works roughly as advertised: enter 1i and you get 1in ==
2.54cm; enter 2.54c and you'll get 2.54cm == Tin. Just try it; it’s good practice.

The snag is that we didn’t test for bad input. The program assumes that the
user enters proper input. The condition unit=="i' distinguishes between the case
where the unit is 'i' and all other cases. It never looks for a 'c'.

What if the user entered 15f (for feet) “just to see what happens”? The condi-
tion (unit == "i') would fail and the program would execute the else part (the sec-
ond alternative), converting from centimeters to inches. Presumably that was not
what we wanted when we entered 'f'.

We must always test our programs with “bad” input, because someone will
eventually — intentionally or accidentally — enter bad input. A program should
behave sensibly even if its users don’t.

Here is an improved version:

/l convert from inches to centimeters or centimeters to inches
/I a suffix 'i' or 'c' indicates the unit of the input
/l any other suffix is an error
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int main()

{
const double cm_per_inch =2.54; // number of centimeters in an inch
int length=1; / length in inches or centimeters
char unit=""; /f a space is not a unit

cout<< "Please enter a length followed by a unit (c or i):\n";
cin >> length >> unit;

if (unit=="i")

cout << length << "in == " << cm_per_inch*length << "cm\n";
else if (unit =='c')
cout << length << "cm ==" << length/cm_per_inch << "in\n";
else
cout << "Sorry, | don’t know a unit called '" << unit << ""\n";
}
We first test for unit=="i' and then for unit=='c' and if it isn’t (either) we say.

“Sorry.” It may look as if we used an “else-if-statement,” but there is no such
thing in C++. Instead, we combined two if-statements. The general form of an if-
statement is

if ( expression ) statement else statement

That is, an if followed by an expression in parentheses followed by a statement fol-
lowed by an else followed by a statement. What we did was to use an if-statement
as the else-part of an if-statement:

if ( expression ) statement else if ( expression ) statement else statement
For our program that gives this structure:

if (unit =="i")
aiv // 1st alternative
else if (unit=="'c")
// 2nd alternative
else
// 3rd alternative

In this way. we can write arbitrarily complex tests and associate a statement with
each alternative. However, please remember that one of the ideals for code is sim-
plicity, rather than complexity. You don’t demonstrate your cleverness by writing
the most complex program. Rather, you demonstrate competence by writing the
simplest code that does the job.
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TRY THIS

Use the example above as a model for a program that converts yen, euros,
and pounds into dollars. If you like realism, you can find conversion rates on
the web.

4.4.1.2 switch-statements

Actually, the comparison of unit to 'i' and to 'c' 1s an example of the most com-
mon form of selection: a selection based on comparison of a value against several
constants. Such selection is so common that C++ provides a special statement for
it: the switch-statement. We can rewrite our example as

int main()

|
const double cm_per_inch = 2.54; // number of centimeters in an inch
int length =1; /! length in inches or centimeters
char unit="a’;
cout<< "Please enter a length followed by a unit (c or i):\n";
cin >> length >> unit;
switch (unit) {

case 'i':
cout << length << "in == " << cm_per_inch*length << "cm\n";
break;

case 'c':
cout << length << "cm ==" << length/cm_per_inch << "in\n";
break;

default:
cout << "Sorry, | don’t know a unit called '" << unit << "'\n";
break;

}

The switch-statement syntax is archaic but still clearer than nested if-statements,
especially when we compare against many constants. The value presented in
parentheses after the switch is compared to a set of constants. Each constant is
presented as part of a case label. If the value equals the constant in a case label,
the statement for that case is chosen. Each case is terminated by a break. If the
value doesn’t match any of the case labels, the statement identified by the default
label is chosen. You don’t have to provide a default, but it is a good idea to do so
unless you are absolutely certain that you have listed every alternative. If you
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don’t already know, programming will teach you that it’s hard to be absolutely
certain (and right) about anything.

4.4.1.3 Switch technicalities
Here are some technical details about switch-statements:

1,

The value on which we switch must be of an integer, char, or enumera-
tion (§9.5) type. In particular, you cannot switch on a string.

The values in the case labels must be constant expressions (§4.3.1). In
particular, you cannot use a variable in a case label.

You cannot use the same value for two case labels.
You can use several case labels for a single case.

Don’t forget to end each case with a break. Unfortunately, the compiler
won’t warn you if you forget.

For example:

intmain()  // you can switch only on integers, etc.

{

}

cout << "Do you like fish?\n";
string s;
cin >>s;
switch (s) {  / error: the value must be of integer, char, or enum type
case "no":
W
break;
case "yes'":
n...
break;

To select based on a string you have to use an if-statement or a map (Chapter 21).

A switch-statement generates optimized code for comparing against a set of
constants. For larger sets of constants, this typically yields more-efficient code
than a collection of if-statements. However, this means that the case label values
must be constants and distinct. For example:

int main() // case labels must be constants

{

/l define alternatives:
inty="y'"; // this is going to cause trouble
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const charn="'n";
const charm="'?";
cout << "Do you like fish?\n";

char a;
cin>>a;
switch (a) {
case n:
/(-
break;
case y: /l error: variable in case label
in...
break;
case m:
iz
break;
case 'n': / error: duplicate case label (n's value is 'n’)
I/
break;
default:
in...
break;
}

Often you want the same action for a set of values in a switch. It would be te-
dious to repeat the action so you can label a single action by a set of case labels.
For example:

int main() //you can label a statement with several case labels

{

cout << "Please enter a digit\n";
char a;
cin>>a;

switch (a) {

case '0': case '2': case '4': case '6': case '8':
cout << "is even\n";
break;

case '1": case '3': case '5': case '7': case '9":
cout << "is odd\n";
break;
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default:
cout << "is not a digif\n";
break;

}

}

The most common error with switch-statements is to forget to terminate a case C)
with a break. For example:

int main() // example of bad code (a break is missing)

{
const double cm_per_inch =2.54; // number of centimeters in an inch
intlength=1; M/ length in inches or centimeters
char unit='a";
cout << "Please enter a length followed by a unit (c or i):\n";
cin >> length >> unit;
switch (unit) {
case 'i":
cout << length << "in ==" << cm_per_inch*length << "cm\n";
case 'c':
cout << length << "ecm ==" << length/cm_per_inch << "in\n";
}
}

Unfortunately, the compiler will accept this, and when you have finished case 'i’
you'll just “drop through” into case 'c', so that if you enter 2i the program will
output

2in == 5.08cm
2cm == 0.787402in

You have been warned!

TRY THIS

“»  Rewrite your currency converter program from the previous Try this to use
a switch-statement. Add conversions from yuan and kroner. Which version
of the program is easier to write, understand, and modify? Why?
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4.4.2 Iteration

We rarely do something only once. Therefore, programming languages provide
convenient ways of doing something several times. This is called repetition or —
especially when you do something to a series of elements of a data structure —

4.4.2.1 while-statements

As an example of iteration, consider the first program ever to run on a stored-
program computer (the EDSAC). It was written and run by David Wheeler in
the computer laboratory in Cambridge University, England, on May 6, 1949, to
calculate and print a simple list of squares like this:

W =0
- L - D

6
98 9604
99 9801

Each line is a number followed by a “tab” character ('\t'), followed by the square
of the number. A C++ version looks like this:

// calculate and print a table of squares 0-99
int main()

{
inti=0; // start from 0
while (i<100) {
cout << i << '\t' << square(i) << '\n';
++i;  //increment i (that is, i becomes i+1)
}
}

The notation square(i) simply means the square of i. We'll later explain how it
gets to mean that (§4.5).

No, this first modern program wasn’t actually written in C++, but the logic
was as is shown here:

*  We start with 0.
*  We see if we have reached 100, and if so we are finished.
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*  Otherwise, we print the number and its square, separated by a tab ('),
increase the number, and try again.

Clearly, to do this we need

* A way to repeat some statement (to loop)

* A variable to keep track of how many times we have been through the
loop (a loop variable or a control variable), here the int called i

* An initializer for the loop variable, here 0

* A termination criterion, here, that we want to go through the loop 100
times

* Something to do each time around the loop (the body of the loop)

The language construct we used is called a while-statement. Just following its dis-
tinguishing keyword, while, it has a condition “on top” followed by its body:

while (i<100) / the loop condition testing the loop variable i
{

cout << i << '\t' << square(i) << "\n';

++i ; / increment the loop variable i

}

The loop body is a block (delimited by curly braces) that writes out a row of the
table and increments the loop variable, i. We start each pass through the loop by
testing if i<100. If so, we are not yet finished and we can execute the loop body. If
we have reached the end, that is, if i is 100, we leave the while-statement and exe-
cute what comes next. In this program the end of the program is next, so we
leave the program.

The loop variable for a while-statement must be deﬁned and initialized out-
side (before) the while-statement. If we fail to define it, the compiler will give us
an error. If we define it, but fail to initialize it, most compilers will warn us, saying
something like “local variable i not set,” but would be willing to let us execute the
program if we insisted. Don't insist! Compilers are almost certainly right when
they warn about uninitialized variables. Uninitialized variables are a common
source of errors. In this case, we wrote

inti=0; /! start from 0

so all is well.

Basically, writing a loop is simple. Getting it right for real-world problems
can be tricky, though. In particular, it can be hard to express the condition cor-
rectly and to initialize all variables so that the loop starts correctly.
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TRY THIS

»  The character 'b' is char('a'+1), 'c' is char('a'+2), etc. Use a loop to write out
a table of characters with their corresponding integer values:

a 97
b 98
z 122

4.4.2.2 Blocks
Note how we grouped the two statements that the while had to execute:

while (i<100) {
cout << i << '\t' << square(i) << '\n';
++i; //increment i (that is, i becomes i+1)

}

O A sequence of statements delimited by curly braces { and } is called a block or a
compound statement. A block is a kind of statement. The empty block { } is some-
times useful for expressing that nothing is to be done. For example:

if (a<=b) { /l do nothing
}
else { / swap a and b
intt=a;
a=b;
b=t;
}

4.4.2.3 for-statements

Iterating over a sequence of numbers is so common that C++, like most other
programming languages, has a special syntax for it. A for-statement is like a
while-statement except that the management of the control variable is concen-
trated at the top where it is easy to see and understand. We could have written
the “first program” like this:

// calculate and print a table of squares 0-99
int main()

{
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for (inti=0; i<100; ++i)
cout << i << "\t' << square(i) << "\n';
}

This means “Execute the body with i starting at 0 incrementing i after each exe-
cution of the body until we reach 100.” A for-statement is always equivalent to
some while-statement. In this case

for (int i = 0; i<100; ++i)
cout << i << '\t' << square(i) << '\n';

means
{
int=0; // the for-statement initializer
while (i<100) { // the for-statement condition
cout << i<< '\t' << square(i) << '\n';  // the for-statement body
++i; // the for-statement increment
}
}

Some novices prefer while-statements and some novices prefer for-statements. 0
However, using a for-statement yields more easily understood and more main-
tainable code whenever a loop can be defined as a for-statement with a simple ini-
ualizer, condition, and increment operation. Use a while-statement only when
that’s not the case.

Never modify the loop variable inside the body of a for-statement. That C)
would violate every reader’s reasonable assumption about what a loop is doing.
Consider:

int main()
{
for (inti=0; i<100; ++i) { / for i in the [0:100) range
cout << i << '\t' << square(i) << "\n';
++i;  // what’s going on here? It smells like an error!

}

Anyone looking at this loop would reasonably assume that the body would be exe-
cuted 100 times. However, it isn't. The ++i in the body ensures that i is incremented
twice each time around the loop so that we get an output only for the 50 even values
of i. If we saw such code, we would assume it to be an error, probably caused by a
sloppy conversion from a while-loop. If you want to increment by 2, say so:
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/l calculate and print a table of squares of even numbers in the [0:100) range
int main()
{
for (inti=0; i<100; i+=2)
cout << i << '\t' << square(i) <<'\n';

}

() Please note that the cleaner, more explicit version is shorter than the messy one.
That's typical.

TRY THIS

Rewrite the character value example from the previous Try this to use a for-
loop. Then modify your program to also get a table of the integer values for
uppercase letters and digits.

4.5 Functions

In the program above, what was square(i)? It is a call of a function. In particular,
it is a call of the function called square with the argument i. A _function is a named
sequence of statements. A function can return a result (also called a return value).
The standard library provides a lot of useful functions, such as the square root
function sqrt() that we used in §3.4. However, we write many functions our-
selves. Here is a plausible definition of square:

int square(intx)  //return the square of x
{
return x*x;

}

The first line of this definition tells us that this is a function (that's what the
parentheses mean), that it is called square, that it takes an int argument (here,
called x), and that it returns an int (the type of the result always comes first in a
function declaration); that is, we can use it like this:

int main()

{
cout << square(2) <<'\n'; //print 4
cout << square(10) << "\n'; // print 100
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We don't have to use the result of a function call (but if we didn’t want the result,
why would we call it?), but we do have to give a function exactly the arguments
it requires. Consider:

square(2); /l probably a mistake: unused return value

int vl = square(); / error: argument missing

int v2 = square; /l error: parentheses missing

int v3 = square(1,2); / error: too many arguments

int vd = square("two"); / error: wrong type of argument — int expected

Many compilers warn against unused results, and all give errors as indicated.
You might think that a computer should be smart enough to figure out that by
the string "two" you really meant the integer 2. However, a C++ compiler delib-
erately isn’t that smart. It is the compiler’s job to do exactly what you tell it to do
after verifying that your code is well formed according to the definition of C++.
If the compiler guessed about what you meant, it would occasionally guess
wrong, and you — or the users of your program — would be quite annoyed. You'll
find it hard enough to predict what your code will do without having the com-
piler “help you” by second-guessing you.
The_function body is the block (§4.4.2.2) that actually does the work.

{

return x*x;  // return the square of x

}

For square, the work is trivial: we produce the square of the argument and return
that as our result. Saying that in C++ is easier than saying it in English. That’s
typical for simple ideas. After all, a programming language is designed to state
such simple ideas simply and precisely.

The syntax of a_function definition can be described like this:

type identifier ( parameter-list ) function-body

That is, a type (the return type), followed by an identifier (the name of the func-
tion), followed by a list of parameters in parentheses, followed by the body of the
function (the statements to be executed). The list of arguments required by the
function is called a parameter list and its elements are called parameters (or_formal ar-
guments). The list of parameters can be empty, and if we don’t want to return a re-
sult we give void (meaning “nothing”) as the return type. For example:

void write_sorry()  //take no argument; return no value

{

cout << "Sorry\n";

}
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The language-technical aspects of functions will be examined more closely in
Chapter 8.

4.5.1 Why bother with functions?

We define a function when we want a separate computation with a name because
doing so

* Makes the computation logically separate
* Makes the program text clearer (by naming the computation)

* Makes it possible to use the function in more than one place in our
program
* Eases testing

We'll see many examples of each of those reasons as we go along, and we'll occa-
sionally mention a reason. Note that real-world programs use thousands of func-
tions, some even hundred of thousands of functions. Obviously, we would never
be able to write or understand such programs if their parts (e.g., computations)
were not clearly separated and named. Also, you’ll soon find that many functions
are repeatedly useful and you’d soon tire of repeating their definitions. For exam-
ple, you might be happy writing x*x and 7*7 and (x+7)*(x+7), etc. rather than
square(x) and square(7) and square(x+7), etc. However, that’s only because
square is a very simple computation. Consider square root (called sqrt in C++):
you prefer to write sqrt(x) and sqrt(7) and sqrt(x+7), etc. rather than repeating
the (somewhat complicated and many lines long) code for computing square
root. Even better: you don’t have to even look at the computation of square root
because knowing that sqrt(x) gives the square root of x is sufficient.

In §8.5 we will address many function technicalities, but for now, we’ll just
give another example.

If we had wanted to make the loop in main() really simple, we could have
written

void print_square(int v)

{
cout <<v<<'\t' <<v*v<<'\n';
}
int main()
{
for (int i = 0; i<100; ++i) print_square(i);
}

Why didn’t we use that version using print_square()? That version is not signifi-
cantly simpler than the version using square(), and note that



4.5 FUNCTIONS 115

* print_square() is a rather specialized function that we could not expect to
be able to use later, whereas square() is an obvious candidate for other
uses

* square() hardly requires documentation, whereas print_square() obvi-
ously needs explanation

The underlying reason for both is that print_square() performs two logically sep-
arate actions:

* It prints.
* It calculates a square.

Programs are usually easier to write and to understand if each function performs
a single logical action. Basically, the square() version is the better design.

Finally, why did we use square(i) rather than simply i*i in the first version of
the problem? Well, one of the purposes of functions is to simplify code by sepa-
rating out complicated calculations as named functions, and for the 1949 version
of the program there was no hardware that directly implemented “multiply.”
Consequently, in the 1949 version of the program, i*i was actually a fairly com-
plicated calculation, similar to what you'd do by hand using a piece a paper. Also,
the writer of that original version, David Wheeler, was the inventor of the func-
tion (then called a subroutine) in modern computing, so it seemed appropriate to
use it here.

TRY THIS

»  Implement square() without using the multiplication operator; that is, do the
x*x by repeated addition (start a variable result at 0 and add x to it x times).
Then run some version of “the first program” using that square().

4.5.2 Function declarations

Did you notice that all the information needed to call a function was in the first
line of its definition? For example:

int square(int x)
Given that, we know enough to say
int x = square(44);

We don’t really need to look at the function body. In real programs, we most
often don’t want to look at a function body. Why would we want to look at the
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body of the standard library sqrt() function? We know it calculates the square
root of its argument. Why would we want to see the body of our square() func-
tion? Of course we might just be curious. But almost all of the time, we are just
interested in knowing how to call a function — seeing the definition would just be
distracting. Fortunately, C++ provides a way of supplying that information sepa-
rate from the complete function definition. It is called a_function declaration:

int square(int); /I declaration of square
double sqrt(double);  // declaration of sqrt

Note the terminating semicolons. A semicolon is used in a function declaration
instead of the body used in the corresponding function definition:

int square(int x)  / definition of square
{

return x*x;

}

So, if you just want to use a function, you simply write — or more commonly
#include — its declaration. The function definition can be elsewhere. We'll dis-
cuss where that “elsewhere™ might be in §8.3 and §8.7. This distinction between
declarations and definitions becomes essential in larger programs where we use
declarations to keep most of the code out of sight to allow us to concentrate on a
single part of a program at a time (§4.2).

4.6 Vector

To do just about anything of interest in a program, we need a collection of data to
work on. For example, we might need a list of phone numbers, a list of members
of a football team, a list of courses, a list of books read over the last year, a cata-
log of songs for download, a set of payment options for a car, a list of the weather
forecasts for the next week, a list of prices for a camera in different web stores,
etc. The possibilities are literally endless and therefore ubiquitous in programs.
We'll get to see a variety of ways of storing collections of data (a variety of con-
tainers of data; see Chapters 20 and 21). Here we will start with one of the sim-
plest, and arguably the most useful, ways of storing data: a vector.

A vector is simply a sequence of elements that you can access by an index.
For example, here is a vector called v:

size()

vi0] v[1] v[2] v[3] v[4] vI5]
vselements: Y5 |7 |94 |6 |8 |
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That is, the first element has index 0, the second index 1, and so on. We refer to
an element by subscripting the name of the vector with the element’s index, so
here the value of v[0] is 5, the value of v[1] is 7, and so on. Indices for a vector al-
ways start with 0 and increase by 1. This should look familiar: the standard li-
brary vector is simply the C++ standard library’s version of an old and
well-known idea. I have drawn the vector so as to emphasize that it “knows its
size”; that is, a vector doesn’t just store its elements, it also stores its size.
We could make such a vector like this:

vector<int> v(6); // vector of 6 ints

v[0] =5;
v(11=7;
vi2l=9;
vi3]=4;
v[4] = 6;
v[5] = 8;

We see that to make a vector we need to specify the type of the elements and the
initial number of elements. The element type comes after vector in angle brack-
ets (<>), here <int>, and the initial number of elements comes after the name in
parentheses, here (6). Here is another example:

vector<string> philosopher(4); // vector of 4 strings
philosopher [0] = "Kant";

philosopher [1] = "Plato";

philosopher [2] = "Hume";

philosopher [3] = "Kierkegaard";

Naturally, a vector will only accept elements of its declared element type:

philosopher[2] = 99; /l error: trying to assign an int to a string
v[2] = "Hume"; /l error: trying to assign a string to an int

When we define a vector of a given size, its elements are given a default value ac-
cording to the element type. For example:

vector<int> v(6); /l vector of 6 ints initialized to 0
vector<string> philosopher(4); // vector of 4 strings initialized to "

If you don’t like the default, you can specify another. For example:
vector<double> vd(1000,-1.2);  // vector of 1000 doubles initialized to —1.2

Please note that you cannot simply refer to a nonexistent element of a vector:
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vd[20000] = 4.7; // run-time error

We will discuss run-time errors and subscripting in the next chapter.

4.6.1 Growing a vector

Often, we start a vector empty and grow it to its desired size as we read or com-
pute the data we want in it. The key operation here is push_back(), which adds a
new element to a vector. The new element becomes the last element of the
vector. For example:

vector<double>v;  //start off empty; that is, v has no elements

v.push_back(2.7); // add an element with the value 2.7 at end (“the back”) of v
// v now has one element and v|0]==2.7

vi 1] 3-{27]

v.push_back(5.6);  //add an element with the value 5.6 at end of v
// v now has two elements and v|1]==5.6

vi [2] —+{2.7]56]

v.push_back(7.9);  // add an element with the value 7.9 at end of v
/v now has three elements and v[2]==7.9

v: |3 ] —}——|2.7!5.6

Note the syntax for a call of push_back(). It is called a member function call,
push_back() is a member function of vector and must be called using this dot
notation:

7.9

member-function-call:
object_name . member-function-name ( argument-list )

The size of a vector can be obtained by a call to another of vector’s member
functions: size(). Initially v.size() was 0, and after the third call of push_back(),
v.size() has become 3. Size makes it easy to loop through all elements of a vector.
For example:

for(int i=0; i<v.size(); ++i)
cout << "V[" << i << "]==" <<v[i] << "\n';
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Given the definition of v and the push_back()s above, this for-loop will print

v[0]==2.7
v[1]==5.6
v[2]==7.9

If you have programmed before, you will note that a vector is similar to an array
in C and other languages. However, you need not specify the size (length) of a
vector in advance, and you can add as many elements as you like. As we go
along, you'll find that the C++ standard vector has other useful properties.

4.6.2 A numeric example

Let’s look at a more realistic example. Often, we have a series of values that we
want to read into our program so that we can do something with them. The
“something” could be producing a graph of the values, calculating the mean and
median, finding the largest element, sorting them, combining them with other
data, searching for “interesting” values, comparing them to other data, etc. There
is no limit to the range of computations we might perform on data, but first we
need to get it into our computer’s memory. Here is the basic technique for getting
an unknown — possibly large — amount of data into a computer. As a concrete
example, we chose to read in floating-point numbers representing temperatures:

/l read some temperatures into a vector

int main()

{
vector<double> temps; // temperatures
double temp;
while (cin>>temp) /l read

temps.push_back(temp); // put into vector
/. .. dosomething . . .

}

So, what goes on here? First we declare a vector to hold the data and a variable
into which we can read each number as it comes from input:

vector<double> temps; // temperatures
double temp;

This is where the type of input we expect is mentioned. We read and store
doubles.
Next comes the actual read loop:
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while (cin>>temp) / read
temps.push_back(temp); // putinto vector

The cin>>temp reads a double, and that double is pushed into the vector
(placed at the back). We have seen those individual operations before. What's
new here is that we use the input operation, cin>>temp, as the condition for a
while-loop. Basically, cin>>temp is true if a value was read correctly and false
otherwise, so that while-loop will read all the doubles we give it and stop when
we give it anything else. For example, if you typed

1.23.45.67.89.0|

then temps would get the five elements 1.2, 3.4, 5.6, 7.8, 9.0 (in that order, for ex-
ample, temps[0]==1.2). We used the character '|' to terminate the input — any-
thing that isn’t a double can be used. In §10.6 we discuss how to terminate input
and how to deal with errors in input.

Once we get data into a vector we can easily manipulate it. As an example,
let’s calculate the mean and median temperatures:

// compute mean and median temperatures

int main()

{
vector<double> temps; // temperatures
double temp;
while (cin>>temp) I/ read

temps.push_back(temp); // put into vector

/f compute mean temperature:

double sum =0;

for (inti = 0; i< temps.size(); ++i) sum += tempslil;

cout << "Average temperature: " << sum/temps.size() << endl;

/l compute median temperature:
sort(temps.begin(),temps.end()); // sort temps

/l “from the beginning to the end”
cout << "Median temperature: " << temps[temps.size()/2] << end|;

}

We calculate the average (the mean) by simply adding all the elements into sum,
and then dividing the sum by the number of elements (that is, temps.size()):

/l compute average temperature:
double sum = 0;
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for (inti=0; i< temps.size(); ++i) sum += tempslil;
cout << "Average temperature: " << sum/temps.size() << endl;

Note how the += operator comes in handy.
To calculate a median (a value chosen so that half of the values are lower and
the other half are higher) we need to sort the elements. For that, we use the stan-

dard library sort algorithm, sort():

/l compute median temperature:
sort(temps.begin(),temps.end()); //sort “from the beginning to the end”
cout << "Median temperature: " << temps[temps.size()/2] << endl;

The standard library sort() takes two arguments: the beginning of the sequence
of elements that it is to sort and the end of that sequence. We will explain the
standard library algorithms much later (Chapter 20), but fortunately, a vector
“knows” where its beginning and end are, so we don’t need to worry about de-
tails: temps.begin() and temps.end() will do just fine. Note that begin() and
end() are member functions of vector, just like size(), so we call them for their
vector using dot. Once the temperatures are sorted, it's easy to find the median:
we just pick the middle element, the one with index temps.size()/2. If you feel
like being picky (and if you do, you are starting to think like a programmer), you
could observe that the value we found may not be a median according to the def-
inition we offered above. Exercise 2 at the end of this chapter is designed to solve
that little problem.

4.6.3 A text example

We didn’t present the temperature example because we were particularly inter-
ested in temperatures. Many people — such as meteorologists, agronomists, and
oceanographers — are very interested in temperature data and values based on it,
such as means and medians. However, we are not. From a programmer’s point of
view, what’s interesting about this example is its generality: the vector and the
simple operations on it can be used in a huge range of applications. It is fair to
say that whatever you are interested in, if you need to analyze data, you'll use
vector (or a similar data structure; see Chapter 21). As an example, let’s build a
simple dictionary:

/ simple dictionary: list of sorted words
int main()
{
vector<string> words;
string temp;
while (cin>>temp) / read whitespace-separated words
words.push_back(temp); // put into vector

121



122

CHAPTER 4 » COMPUTATION

cout << "Number of words: " << words.size() << endl;
sort(words.begin(),words.end()); // sort “from beginning to end”

for (int i = 0; i< words.size(); ++i)
if (i==0 || words[i-1]!=wordsl[i]) / is this a new word?
cout << words[i] << "\n";

}

If we feed some words to this program, it will write them out in order without re-
peating a word. For example, given

a man a plan panama
it will write

a
man
panama
plan

How do we stop reading string input? In other words, how do we terminate the
input loop?

while (cin>>temp) /l read
words.push_back(temp); // put into vector

When we read numbers (in §4.6.2), we just gave some input character that
wasn't a number. We can’t do that here because every (ordinary) character can
be read into a string. Fortunately, there are characters that are “not ordinary.” As
mentioned in §3.5.1, Curl+Z terminates an input stream under Windows and
Cul+D does that under Unix.

Most of this program is remarkably similar to what we did for the tempera-
tures. In fact, we wrote the “dictionary program” by cutting and pasting from the
“temperature program.” The only thing that’s new is the test

if (i==0 || words[i-1]!=words[i]) /l is this a new word?
If you deleted that test the output would be

a
a
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man
panama
plan

We didn’t like the repetition, so we eliminated it using that test. What does the
test do? It looks to see if the previous word we printed is different from the one
we are about to print (words[i-1]!=words[i]) and if so, we print that word; other-
wise, we do not. Obviously, we can't talk about a previous word when we are
about to print the first word (i==0), so we first test for that and combine those
two tests using the || (or) operator:

if (i==0 || words[i-1]!=wordsli]) /l is this a new word?

Note that we can compare strings. We use != (not equals) here; == (equals), <
(less than), <= (less than or equal), > (greater than), and >= (greater than or
cqual) also work for strings. The <, >, etc. operators use the usual lexicographical
ordering, so "Ape" comes before "Apple" and "Chimpanzee".

TRY THIS

Write a program that “bleeps” out words that you don’t like; that is, you
read in words using cin and print them again on cout. If a word is among a
few you have defined, you write out BLEEP instead of that word. Start with
one “disliked word” such as

string disliked = "Broccoli";

When that works, add a few more.

4.7 Language features

The temperature and dictionary programs used most of the fundamental lan-
guage features we presented in this chapter: iteration (the for-statement and the
while-statement), selection (the if-statement), simple arithmetic (the ++ and +=
operators), comparisons and logical operators (the ==, !=, and || operators), vari-
ables, and functions (e.g., main(), sort(), and size()). In addition, we used stan-
dard library facilities, such as vector (a container of elements), cout (an output
stream), and sort() (an algorithm).

If you count, you'll find that we actually achieved quite a lot with rather few fea-
tures. That’s the ideal! Each programming language feature exists to express a fun-

damental idea, and we can combine them in a huge (really, infinite) number of ways
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to write useful programs. This is a key notion: a computer is not a gadget with a
fixed function. Instead it is a machine that we can program to do any computation
we can think of, and given that we can attach computers to gadgets that interact
with the world outside the computer, we can in principle get it to do anything.

J Drill

Go through this drill step by step. Do not try to speed up by skipping steps. Test
each step by entering at least three pairs of values — more values would be better.

I

10.

Write a program that consists of a while-loop that (each time around the
loop) reads in two ints and then prints them. Exit the program when a
terminating '|' is entered.

Change the program to write out the smaller value is: followed by the
smaller of the numbers and the larger value is: followed by the larger value.

. Augment the program so that it writes the line the numbers are equal

(only) if they are equal.

Change the program so that it uses doubles instead of ints.

Change the program so that it writes out the numbers are almost equal
after writing out which is the larger and the smaller if the two numbers
differ by less than 1.0/10000000.

Now change the body of the loop so that it reads just one double each
time around. Define two variables to keep track of which is the smallest
and which is the largest value you have seen so far. Each time through
the loop write out the value entered. If it’s the smallest so far, write the
smallest so far after the number. If it is the largest so far, write the largest
so far after the number.

Add a unit to each double entered; that is, enter values such as 10ecm,
2.5in, 5ft, or 3.33m. Accept the four units: cm, m, in, ft. Assume conver-
sion factors 1m == 100cm, Tin == 2.54cm, 1ft == 12in. Read the unit indi-
cator into a string,

Reject values without units or with “illegal” representations of units, such
as y, yard, meter, km, and gallons.

Keep track of the sum of values entered (as well as the smallest and the
largest) and the number of values entered. When you see the final '|'
print the smallest, the largest, the number of values, and the sum of val-
ues. Note that to keep the sum, you have to decide on a unit to use for
that sum; use meters.

Keep all the values entered (converted into meters) in a vector. At the
end, write out those values.
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11.

Before writing out the values from the vector, sort them (that’ll make
them come out in increasing order).

Review

I
2.
3.

o

[Er—

17.

18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29,

I o

What is a computation?

What do we mean by inputs and outputs to a computation? Give examples.
What are the three requirements a programmer should keep in mind
when expressing computations?

What does an expression do?

. What is the difference between a statement and an expression, as de-

scribed in this chapter?

What is an lvalue? List the operators that require an lvalue. Why do
these operators, and not the others, require an Ivalue?

What is a constant expression?

What is a literal?

What is a symbolic constant and why do we use them?

What is a magic constant? Give examples.

What are some operators that we can use for integers and floating-point
values?

. What operators can be used on integers but not on floating-point numbers?
13.
14.
15.
16.

What are some operators that can be used for strings?

When would a programmer prefer a switch-statement to an if-statement?
What are some common problems with switch-statements?

What is the function of each part of the header line in a for-loop, and in
what sequence are they executed?

When should the for-loop be used and when should the while-loop be
used?

How do you print the numeric value of a char?

Describe what the line char foo(int x) means in a function definition.
When should you define a separate function for part of a program? List
reasons.

What can you do to an int that you cannot do to a string?

What can you do to a string that you cannot do to an int?

What is the index of the third element of a vector?

How do you write a for-loop that prints every element of a vector?
What does vector<char>alphabet(26); do?

Describe what push_back() does to a vector.

What do vector’s member functions begin(), end(), and size() do?
What makes vector so popular/useful?

How do you sort the elements of a vector?
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Terms
abstraction for-statement push_back()
begin() function repetition
computation if-statement rvalue
conditional statement increment selection
declaration input size()
definition iteration sort()
divide and conquer loop statement
else lvalue switch-statement
end() member function vector
expression output while-statement
Exercises
1. If you haven't already, do the Try this exercises from this chapter.

2.

E.:!

If we define the median of a sequence as “the number for which exactly
half of the elements of the sequence come before it and exactly half come
after it,” fix the program in §4.6.2 so that it always prints out a median.
Hint: A median need not be an element of the sequence.

Read a sequence of double values into a vector. Think of each value as
the distance between two cities along a given route. Compute and print
the total distance (the sum of all distances). Find and print the smallest
and greatest distance between two neighboring cities. Find and print the
mean distance between two neighboring cities.

Write a program to play a numbers guessing game. The user thinks of a
number between 1 and 100 and your program asks questions to figure
out what the number is (e.g., “Is the number you are thinking of less
than 50?7). Your program should be able to identify the number after
asking no more than seven questions. Hint: Use the < and <= operators
and the if-else construct.

Write a program that performs as a very simple calculator. Your calcula-
tor should be able to handle the five basic math operations — add, sub-
tract, multiply, divide, and modulus (remainder) — on two input values.
Your program should prompt the user to enter three arguments: two
double values and a character to represent an operation. If the entry ar-
guments are 35.6, 24.1, and '+, the program output should be “The sum
of 35.6 and 24.1 is 59.7.” In Chapter 6 we look at a much more sophisti-
cated simple calculator.

. Make a vector holding the ten string values "zero", "one", . . . "nine".

Use that in a program that converts a digit to its corresponding spelled-
out value; e.g., the input 7 gives the output seven. Have the same pro-
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7

8.

gram, using the same input loop, convert spelled-out numbers into their
digit form; e.g., the input seven gives the output 7.

Modify the “mini calculator” from exercise 5 to accept (just) single-digit
numbers written as either digits or spelled out.

There is an old story that the emperor wanted to thank the inventor of
the game of chess and asked the inventor to name his reward. The in-
ventor asked for one grain of rice for the first square, 2 for the second, 4
for the third, and so on, doubling for each of the 64 squares. That may
sound modest, but there wasn’t that much rice in the empire! Write a
program to calculate how many squares are required to give the inventor
at least 1000 grains of rice, at least 1,000,000 grains, and at least
1,000,000,000 grains. You'll need a loop, of course, and probably an int
to keep track of which square you are at, an int to keep the number of
grains on the current square, and an int to keep track of the grains on all
previous squares. We suggest that you write out the value of all your vari-
ables for each iteration of the loop so that you can see what's going on.

9. Try to calculate the number of rice grains that the inventor asked for in

10.

1T

exercise 8 above. You'll find that the number is so large that it won't fit in
an int or a double. Observe what happens when the number gets too
large to represent as an int and as a double. What is the largest number
of squares for which you can calculate the exact number of grains (using
an int)? What is the largest number of squares for which you can calcu-
late the approximate number of grains (using a double)?

Write a program that plays the game “Rock, Paper, Scissors.” If you are
not familiar with the game do some research (e.g., on the web using
Google). Research is a common task for programmers. Use a switch-
statement to solve this exercise. Also, the machine should give random
answers (i.e., select the next rock, paper, or scissors randomly). Real ran-
domness is too hard to provide just now, so just build a vector with a se-
quence of values to be used as “the next value.” If you build the vector
mnto the program, it will always play the same game, so maybe you
should let the user enter some values. Try variations to make it less easy
for the user to guess which move the machine will make next.

Create a program to find all the prime numbers between 1 and 100. One
way to do this is to write a function that will check if a number is prime
(i.e., see if the number can be divided by a prime number smaller than it-
self) using a vector of primes in order (so that if the vector is called
primes, primes[0]==2, primes[1]==3, primes[2]==5, etc.). Then write a
loop that goes from 1 to 100, checks each number to see if it is a prime,
and stores each prime found in a vector. Write another loop that lists the
primes you found. You might check your result by comparing your
vector of prime numbers with primes. Consider 2 the first prime.
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13.

14.

15.

16.

17.

18.

19.

20.
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Modify the program described in the previous exercise to take an input
value max and then find all prime numbers from 1 to max.

Create a program to find all the prime numbers between 1 and 100.
There is a classic method for doing this, called the “Sieve of Eratos-
thenes.” If you don’t know that method, get on the web and look it up.
Write your program using this method.

Modify the program described in the previous exercise to take an input
value max and then find all prime numbers from 1 to max.

Write a program that takes an input value n and then finds the first n
primes.

In the drill, you wrote a program that, given a series of numbers, found
the max and min of that series. The number that appears the most times
in a sequence is called the mode. Create a program that finds the mode of
a set of positive integers.

Write a program that finds the min, max, and mode of a sequence of
strings.

Write a program to solve quadratic equations. A quadratic equation is of
the form

ax2+bx+c=0

If you don’t know the quadratic formula for solving such an expression,
do some research. Remember, researching how to solve a problem is
often necessary before a programmer can teach the computer how to
solve it. Use doubles for the user inputs for a, b, and c. Since there are
two solutions to a quadratic equation, output both x1 and x2.

Write a program where you first enter a set of name-and-value pairs,
such as Joe 17 and Barbara 22. For each pair, add the name to a vector
called names and the number to a vector called scores (in corresponding
positions, so that if names[7]=="Joe" then scores[7]==18). Terminate
input by the line No more (“more” will make the attempt to read another
integer fail). Check that each name is unique and terminate with an error
message if a name is entered twice. Write out all the (name,score) pairs,
one per line.

Modify the program from exercise 19 so that when you enter a name,
the program will output the corresponding score or “name not found”.
Modify the program from exercise 19 so that when you enter an integer,
the program will output all the names with that score or “score not
found”.
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Postscript

From a philosophical point of view, you can now do everything that can be done
using a computer — the rest is details! Among other things, this shows the value
of “details” and the importance of practical skills, because clearly you have barely
started as a programmer. But we are serious. The tools presented in this chapter
do allow you to express every computation: you have as many variables (includ-
ing vectors and strings) as you want, you have arithmetic, comparisons, and you
have selection and iteration. Every computation can be expressed using those
primitives. You have text and numeric input and output, and every input or out-
put can be expressed as text (even graphics). You can even organize your compu-
tations as sets of named functions. What is left for you to do is “just” to learn to
write good programs, that is, to write programs that are correct, maintainable,
and reasonably efficient. Importantly, you must try to learn to do so with a rea-
sonable amount of effort.
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B 5

Errors

“I realized that from now on a large part
of my life would be spent finding and
correcting my own mistakes.”

—Maurice Wilkes, 1949

In this chapter, we discuss correctness of programs, errors, and
error handling. If you are a genuine novice, you'll find the dis-
cussion a bit abstract at times and painfully detailed at other
times. Can error handling really be this important? It is, and
you'll learn that one way or another before you can write pro-
grams that others are willing to use. What we are trying to do is
to show you what “thinking like a programmer™ is about. It com-
bines fairly abstract strategy with painstaking analysis of details

and alternatives.
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5.1 Introduction 5.7 Logic errors
5.2 Sources of errors 5.8 Estimation
5.3 Compile-time errors 5.9 Debugging
5.3.1 Syntax errors 5.9.1 Practical debug advice

5.3.2 Type errors
5.3.3 Non-errors

5.10 Pre- and post-conditions
5.10.1 Post-conditions

5.4 Link-time errors

5.5 Run-time errors

5.11 Testing

5.5.1 The caller deals with errors
5.5.2 The callee deals with errors
5.5.3 Error reporting

5.6 Exceptions

5.6.1 Bad arguments
5.6.2 Range errors
5.6.3 Bad input

5.6.4 Narrowing errors

5.1 Introduction

We have referred to errors repeatedly in the previous chapters, and — having
done the drills and some exercises — you have some idea why. Errors are simply
unavoidable when you develop a program, yet the final program must be free of
errors, or at least free of errors that we consider unacceptable for it.

There are many ways of classifying errors. For example:

Compile-time errors: Errors found by the compiler. We can further classify
compile-time errors based on which language rules they violate, for
example:

+ Syntax errors

* 'Type errors

Link-time errors: Exrrors found by the linker when it is trying to combine
object files into an executable program.

Run-time ervors: Errors found by checks in a running program. We can
further classify run-time errors as

* Errors detected by the computer (hardware and/or operating system)
* Errors detected by a library (e.g., the standard library)

* Errors detected by user code

Loguc errors: Errors found by the programmer looking for the causes of er-
roncous results.



5.1 INTRODUCTION

It is tempting to say that our job as programmers is to eliminate all errors. That is
of course the ideal, but often that’s not feasible. In fact, for real-world programs it
can be hard to know exactly what “all errors™ means. If we kicked out the power
cord from your computer while it executed your program, would that be an error
that you were supposed to handle? In many cases, the answer is “Obviously not,”
but what if we were talking about a medical monitoring program or the control
program for a telephone switch? In those cases, a user could reasonably expect
that something in the system of which your program was a part will do some-
thing sensible even if your computer lost power or a cosmic ray damaged the
memory holding your program. The key question becomes: “Is my program
supposed to detect that error?” Unless we specifically say otherwise, we will as-
sume that your program

Should produce the desired results for all legal inputs
Should give reasonable error messages for all illegal inputs
Need not worry about misbehaving hardware

o

Need not worry about misbehaving system software

5. Is allowed to terminate after finding an error

Essentially all programs for which assumptions 3, 4, or 5 do not hold can be con-
sidered advanced and beyond the scope of this book. However, assumptions 1
and 2 are included in the definition of basic professionalism, and professionalism
is one of our goals. Even if we don’t meet that ideal 100% of the time, it must be
the ideal.

When we write programs, errors are natural and unavoidable; the question
is: how do we deal with them? Our guess is that avoiding, finding, and correcting
errors takes 90% or more of the effort when developing serious software. For
safety-critical programs, the effort can be greater still. You can do much better for
small programs; on the other hand, you can easily do worse if you're sloppy.

Basically, we offer three approaches to producing acceptable software:

* Organize software to minimize errors.
+ Eliminate most of the errors we made through debugging and testing.

* Make sure the remaining errors are not serious.

None of these approaches can completely eliminate errors by itself; we have to
use all three.

Experience matters immensely when it comes to producing reliable pro-
grams, that is, programs that can be relied on to do what they are supposed to do
with an acceptable error rate. Please don't forget that the ideal is that our pro-
grams always do the right thing. We are usually able only to approximate that
ideal, but that’s no excuse for not trying very hard.
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5.2 Sources of errors

Here are some sources of errors:

*  Poor speafication: If we are not specific about what a program should do,
we are unlikely to adequately examine the “dark corners™ and make sure
that all cases are handled (i.e., that every input gives a correct answer or
an adequate error message).

*  Incomplete programs: During development, there are obviously cases that
we haven't yet taken care of. That’s unavoidable. What we must aim for
is to know when we have handled all cases.

¢ Unexpected arguments: Functions take arguments. If a function is given an
argument we don’t handle, we have a problem. An example is calling the
standard library square root function with -1.2: sqrt(-1.2). Since sqrt()
of a double returns a double, there is no possible correct return value.
§5.5.3 discusses this kind of problem.

*  Unexpected iput: Programs typically read data (from a keyboard, from
files, from GUIs, from network connections, etc.). A program makes
many assumptions about such input, for example, that the user will
input a number. What if the user inputs “aw, shut up!” rather than the
expected integer? §5.6.3 and §10.6 discuss this kind of problem.

*  Unexpected state: Most programs keep a lot of data (“state”) around for use
by different parts of the system. Examples are address lists, phone direc-
tories, and vectors of temperature readings. What if such data is incom-
plete or wrong? The various parts of the program must still manage.
§26.3.5 discusses this kind of problem.

*  Logical errors: That is, code that simply doesn’t do what it was supposed
to do; we'll just have to find and fix such problems. §6.6 and §6.9 give
examples of finding such problems.

This list has a practical use. We can use it as a checklist when we are considering
how far we have come with a program. No program is complete until we have
considered all of these potential sources of errors. In fact, it is prudent to keep
them in mind from the very start of a project, because it is most unlikely that a
program that is just thrown together without thought about errors can have its
errors found and removed without a serious rewrite.

5.3 Compile-time errors

When you are writing programs, your compiler is your first line of defense
against errors. Before generating code, the compiler analyzes code to detect syntax
errors and type errors. Only if it finds that the program completely conforms to
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the language specification will it allow you to proceed. Many of the errors that the
compiler finds are simply “silly errors” caused by mistyping or incomplete edits of
the source code. Others result from flaws in our understanding of the way parts of
our program interact. To a beginner, the compiler often seems petty, but as you
learn to use the language facilities — and especially the type system — to directly
express your ideas, you'll come to appreciate the compiler’s ability to detect prob-
lems that would otherwise have caused you hours of tedious searching for bugs.
As an example, we will look at some calls of this simple function:

int area(int length, int width);  // calculate area of a rectangle

5.3.1 Syntax errors
What if we were to call area() like this:

int s1 = area(7; / error: ) missing

int s1 = area(7) /l error: ; missing

Ints3 =area(7); //error: Intis not a type

intsd =area('7); //error: non-terminated character (' missing)

Each of those lines has a syntax error; that is, they are not well formed according
to the C++ grammar, so the compiler will reject them. Unfortunately, syntax er-
rors are not always easy to report in a way that you, the programmer, find easy to
understand. That's because the compiler may have to read a bit further than the
error to be sure that there really is an error. The effect of this is that even though
syntax errors tend to be completely trivial (you'll often find it hard to believe you
have made such a mistake once you find it), the reporting is often cryptic and oc-
casionally refers to a line further on in the program. So, for syntax errors, if you ()
don’t see anything wrong with the line the compiler points to, also look at previ-
ous lines in the program.

Note that the compiler has no idea what you are trying to do, so it cannot re-
port errors in terms of your intent, only in terms of what you did. For example,
given the error in the declaration of s3 above, a compiler is unlikely to say

“You misspelled int; don't capitalize the i.”
Rather, it'll say something like

"

“syntax error: missing ‘;’ before identifier ‘s3
“*'s3" missing storage-class or type identifiers”
*‘Int’ missing storage-class or type identifiers”

Such messages tend to be cryptic, until you get used to them, and to use a vocab-
ulary that can be hard to penetrate. Different compilers can give very different-
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looking error messages for the same code. Fortunately, you soon get used to read-
ing such stuff. After all, a quick look at those cryptic lines can be read as

“There was a syntax error before s3,
and it had something to do with the type of Int or §3.”

Given that, it’s not rocket science to find the problem.

TRY THIS

Try to compile those examples and see how the compiler responds.

5.3.2 Type errors

Once you have removed syntax errors, the compiler will start reporting type er-
rors; that is, it will report mismatches between the types you declared (or forgot
to declare) for your variables, functions, etc. and the types of values or expres-
sions you assign to them, pass as function arguments, etc. For example:

int x0 = arena(7); /l error: undeclared function
int x1 = area(7); / error: wrong number of arguments
int x2 = area("seven",2);  //error: 1st argument has a wrong type

Let’s consider these errors.

1. For arena(7), we misspelled area as arena, so the compiler thinks we
want to call a function called arena. (What else could it “think"? That’s
what we said.) Assuming there is no function called arena(), you'll get an
error message complaining about an undeclared function. If there is a
function called arena, and if that function accepts 7 as an argument, you
have a worse problem: the program will compile but do something you
didn’t expect it to (that’s a logical error; see §5.7).

2. For area(7), the compiler detects the wrong number of arguments. In
C++, every function call must provide the expected number of argu-
ments, of the right types, and in the right order. When the type system is
used appropriately, this can be a powerful tool for avoiding run-time er-
rors (see §14.1).

3. For area("seven",2), you might hope that the computer would look at
"seven" and figure out that you meant the integer 7. It won't. If a func-
tion needs an integer, you can't give it a string. C++ does support some
implicit type conversions (see §3.9) but not string to int. The compiler
does not try to guess what you meant. What would you have expected
for area("Hovel lane",2), area("7,2"), and area("sieben","zwei")?
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These are just a few examples. There are many more errors that the compiler will
find for you.

TRY THIS

Try to compile those examples and see how the compiler responds. Try
thinking of a few more errors yourself, and try those.

5.3.3 Non-errors

As you work with the compiler, you'll wish that it was smart enough to figure out
what you meant; that is, you'd like some of the errors it reports not to be errors.
That's natural. More surprisingly, as you gain experience, you'll begin to wish
that the compiler would reject more code, rather than less. Consider:

int x4 = area(10,-7); // OK: but what is a rectangle with a width of minus 7?
int x5 = area(10.7,9.3); /1 OK: but calls area(10,9)
char x6 = area(100, 9999); // OK, but truncates the result

For x4 we get no error message from the compiler. From the compiler’s point of
view, area(10,-7) is fine: area() asks for two integers and you gave them to it; no-
body said that those arguments had to be positive.

For x5, a good compiler will warn about the truncation of the doubles 10.7
and 9.3 into the ints 10 and 9 (see §3.9.2) However, the (ancient) language rules
state that you can implicitly convert a double to an int, so the compiler is not al-
lowed to reject the call area(10.7,9.3).

The initialization of x6 suffers from a variant of the same problem as the call
area(10.7,9.3). The int returned by area(100,9999), probably 999900, will be as-
signed to a char. The most likely result is for x6 to get the “truncated” value -36.
Again, a good compiler will give you a warning even though the (ancient) lan-
guage rules prevent it from rejecting the code.

As you gain experience, you'll learn how to get the most out of the com-
piler’s ability to detect errors and to dodge its known weaknesses. However,
don’t get overconfident: “my program compiled” doesn’t mean that it will run.
Even if it does run, it typically gives wrong results at first until you find the flaws
in your logic.

5.4 Link-time errors

A program consists of several separately compiled parts, called transiation units.
Every function in a program must be declared with exactly the same type in
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every translation unit in which it is used. We use header files to ensure that; see
§8.3. Every function must also be defined exactly once in a program. If either of
these rules is violated, the linker will give an error. We discuss how to avoid link-
time errors in §8.3. For now, here is an example of a program that might give a

typical linker error:
int area(int length, int width);  // calculate area of a rectangle

int main()
{
int x = area(2,3);

}

Unless we somehow have defined area() in another source file and linked the
code generated from that source file to this code, the linker will complain that it
didn’t find a definition of area().

The definition of area() must have exactly the same types (both the return
type and the argument type) as we used in our file, that is:

intarea(intx, inty) {/*...*} //"our” areal)

Functions with the same name but different types will not match and will be
ignored:

double area(double x, doubley) {/*...*/}  //not “our” areal)
int area(int x, inty, char unit) {/* .. . */} /l not “our” areal)

Note that a misspelled function name doesn’t usually give a linker error. How-
ever, the compiler gives an error immediately when it sees a call to an undeclared
function. That’s good: compile-time errors are found earlier than link-time errors
and are typically easier to fix.

The linkage rules for functions, as stated above, also hold for all other enti-
ties of a program, such as variables and types: there has to be exactly one defini-
tion of an entity with a given name, but there can be many declarations, and all
have to agree exactly on its type.

5.5 Run-time errors

If your program has no compile-time errors and no link-time errors, it'll run.
This is where the fun really starts. When you write the program you are able to
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detect errors, but it is not always easy to know what to do with an error once you
catch it at run ime. Consider:

int area(int length, int width) /l calculate area of a rectangle

{

return length*width;

}
int framed_area(int x, int y) // calculate area within frame
{
return area(x-2,y-2);
}
int main()
{
intx=-1;
inty=2;
intz=4;
/...
int areal = area(x,y);
int area2 = framed_area(1,z);
int area3 = framed _area(y,z);
double ratio = double(areat)/area3; // convert to double to get
// floating-point division
}

We used the variables x, y, z (rather than using the values directly as arguments) to
make the problems less obvious to the human reader and harder for the compiler
to detect. However, these calls lead to negative values, representing areas, being as-
signed to areal and area2. Should we accept such erroneous results, which violate
most notions of math and physics? If not, who should detect the errors: the caller
of area() or the function itself? And how should such errors be reported?

Before answering those questions, look at the calculation of the ratio in the
code above. It looks innocent enough. Did you notice something wrong with it?
If not, look again: area3 will be 0, so that double(areat)/area3 divides by zero.
This leads to a hardware-detected error that terminates the program with some
cryptic message relating to hardware. This is the kind of error that you — or your
users — will have to deal with if you don’t detect and deal sensibly with run-time
errors. Most people have low tolerance for such “hardware violations” because to
anyone not intimately familiar with the program all the information provided is
“Something went wrong somewhere!” That's insufficient for any constructive ac-
tion, so we feel angry and would like to yell at whoever supplied the program.
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So, let’s tackle the problem of argument errors with area(). We have two ob-
vious alternatives:

a. Let the caller of area() deal with bad arguments.
b. Let area() (the called function) deal with bad arguments.

5.5.1 The caller deals with errors

Let’s try the first alternative (“Let the user beware!”) first. That’s the one we'd
have to choose if area() was a function in a library where we couldn’t modify it.
For better or worse, this is the most common answer.

Protecting the call of area(x,y) in main() is relatively easy:

if (x<=0) error("non-positive x");
if (y<=0) error("non-positive y");
int areal = area(x,y);

Really, the only question is what to do if we find an error. Here, we have called a
function error() which we will assume will do something sensible. In fact, in
std_lib_facilities.h we supply an error() function that by default terminates the
program with a system error message plus the string we passed as an argument
to error(). If you prefer to write out your own error message or take other ac-
tions, you catch runtime_error (§5.6.2, §7.3, §7.8, §B.2.1). This suffices for most
student programs and is an example of a style that can be used for more sophisti-
cated error handling.

If we didn’t need separate error messages about each argument, we would
simplify:

if (x<=0 || y<=0) error("non-positive area() argument"); /|| means “or”
int areal = area(x,y);

To complete protecting area() from bad arguments, we have to deal with the calls
through framed_area(). We could write:

if (z<=2)
error("non-positive 2nd area() argument called by framed_area()");
int area2 = framed_area(1,2);
if (y<=2|| z<=2)
error("non-positive area() argument called by framed_area()");
int area3 = framed_areal(y,z);

This is messy, but there is also something fundamentally wrong. We could write
this only by knowing exactly how framed_area() used area(). We had to know
that framed_area() subtracted 2 from each argument. We shouldn’t have to know
such details! What if someone modified framed_area() to use 1 instead of 2?
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Someone doing that would have to look at every call of framed_area() and modify
the error-checking code correspondingly. Such code is called “brittle” because it
breaks easily. This is also an example of a “magic constant” (§4.3.1). We could
make the code less brittle by giving the value subtracted by framed_area() a name:

const int frame_width = 2;
int framed _area(int x, inty)  // calculate area within frame
{
return area(x-frame_width,y-frame_width);
}

That name could be used by code calling frame_area():

if (1-frame_width<=0 || z-frame_width<=0)
error("'non-positive 2nd area() argument called by framed_area()");
int area2 = framed_area(1,z);
if (y-frame_width<=0 || z-frame_width<=0)
error("non-positive area() argument called by framed _area()");
int area3 = framed_area(y,z);

Look at that code! Are you sure it is correct? Do you find it pretty? Is it easy to
read? Actually, we find it ugly (and therefore error-prone). We have more than tre-
bled the size of the code and exposed an implementation detail of frame_area().
There has to be a better way!

Look at the original code:

int area2 = framed_area(1,z);
int area3 = framed_area(y,z);

It may be wrong, but at least we can see what it is supposed to do. We can keep
this code if we put the check inside framed _area().

5.5.2 The callee deals with errors

Checking for valid arguments within framed_area() is casy, and error() can still
be used to report a problem:

int framed_area(int x, inty)  // calculate area within frame
{
const int frame_width = 2;
if (x-frame_width<=0 || y-frame_width<=0)
error("'non-positive area() argument called by framed_area()");
return area(x-frame_width,y-frame_width);
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This is rather nice, and we no longer have to write a test for each call of
frame_area(). For a useful function that we call 500 times in a large program, that
can be a huge advantage. Furthermore, if anything to do with the error handling
changes, we only have to modify the code in one place.

Note something interesting: we almost unconsciously slid from the “caller
must check the arguments” approach to the “function must check its own argu-
ments” approach (also called “the callee checks” because a called function is often
called “a callee”). One benefit of the latter approach is that the argument-checking
code is in one place. We don't have to search the whole program for calls. Further-
more, that one place is exactly where the arguments are to be used, so we have all
the information needed easily available to do the check.

Let’s apply this solution to area():

int area(int length, int width) // calculate area of a rectangle

{
if (length<=0 || width <=0) error("non-positive area() argument");
return length*width;

}

This will catch all errors in calls to area(), so we no longer need to check in
framed_area(). We might want to, though, to get a better — more specific — error
message.

Checking arguments in the function seems so simple, so why don't people
do that always? Inattention to error handling is one answer, sloppiness is another,
but there are also respectable reasons:

*  We can’t modify the function definition: The function is in a library that for
some reason can’t be changed. Maybe it’s used by others who don't
share your notions of what constitutes good error handling. Maybe it’s
owned by someone else and you don’t have the source code. Maybe it’s
in a library where new versions come regularly so that if you made a
change, you’d have to change it again for each new release of the library.

* The called funciion doesn’t know what to do in case of error: This is typically the
case for library functions. The library writer can detect the error, but
only you know what is to be done when an error occurs.

« The called function doesn’t know where it was called from: When you get an
error message, it tells you that something is wrong, but not how the exe-
cuting program got to that point. Sometimes, you want an error message
to be more specific.

*  Performance: For a small function the cost of a check can be more than the
cost of calculating the result. For example, that’s the case with area(),
where the check also more than doubles the size of the function (that is,
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the number of machine instructions that need to be executed, not just
the length of the source code). For some programs, that can be critical,
especially if the same information is checked repeatedly as functions call
each other, passing information along more or less unchanged.

So what should you do? Check your arguments in a function unless you have a ()
good reason not to.
After examining a few related topics, we'll return to the question of how to

deal with bad arguments in §5.9.

5.5.3 Error reporting

Let’s consider a slightly different question: once you have checked a set of argu-
ments and found an error, what should you do? Sometimes you can return an
“error value.” For example:

/I ask user for a yes-or-no answer;
/ return 'b' to indicate a bad answer (i.e., not yes or no)
char ask_user(string question)

{
cout << question << "? (yes or no)\n";
string answer="";
cin >> answer;
if (answer =="y" || answer=="yes") return 'y';
if (answer =="n" || answer=="no") return 'n';
return'b';  //'b' for “bad answer”

}

// calculate area of a rectangle;

// return =1 to indicate a bad argument

int area(int length, int width)

{
if (length<=0 || width <=0) return -1;
return length*width;

}

That way, we can have the called function do the detailed checking, while letting
cach caller handle the error as desired. This approach seems like it could work,
but it has a couple of problems that make it unusable in many cases:

* Now both the called function and all callers must test. The caller has
only a simple test to do but must still write that test and decide what to

do if it fails.
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* A caller can forget to test. That can lead to unpredictable behavior fur-
ther along in the program.

* Many functions do not have an “extra” return value that they can use to
indicate an error. For example, a function that reads an integer from
input (such as, cin’s operator >>) can obviously return any int value, so
there is no int that it could return to indicate failure.

The second case above — a caller forgetting to test — can easily lead to surprises.
For example:

int f(int x, int y, int z)

{
int areal = area(x,y);
if (areal<=0) error("non-positive area");
int area2 = framed_area(1,z);
int area3 = framed_area(y,z);
double ratio = double(areal)/area3;
n...

}

Do you see the errors? This kind of error is hard to find because there is no ob-
vious “wrong code” to look at: the error is the absence of a test.

TRY THIS

Test this program with a variety of values. Print out the values of areat,
area2, area3, and ratio. Insert more tests until all errors are caught. How do
you know that you caught all errors? This is not a trick question; in this par-
ticular example you can give a valid argument for having caught all errors.

There is another solution that deals with that problem: using exceptions.

5.6 Exceptions

Like most modern programming languages, C++ provides a mechanism to help
deal with errors: exceptions. The fundamental idea is to separate detection of an
error (which should be done in a called function) from the handling of an error
(which should be done in the calling function) while ensuring that a detected
error cannot be ignored; that is, exceptions provide a mechanism that allows us
to combine the best of the various approaches to error handling we have ex-
plored so far. Nothing makes error handling easy, but exceptions make it easier.
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The basic idea is that if a function finds an error that it cannot handle, it does
not return normally; instead, it throws an exception indicating what went wrong.
Any direct or indirect caller can catch the cxccpuon that is, specify what to do if
the called code used throw. A function expresses interest in exceptions by using a
try-block (as described in the following subsections) listing the kinds of excep-
tions it wants to handle in the catch-parts of the try-block. If no caller catches an
exception, the program terminates.

We'll come back to exceptions much later (Chapter 19) to see how to use
them in slightly more advanced ways.

5.6.1 Bad arguments

Here is a version of area() using exceptions:
class Bad_area{}; //a type specifically for reporting errors from area()

/l calculate area of a rectangle;
// throw a Bad_area exception in case of a bad argument
int area(int length, int width)
{
if (length<=0 || width <=0) throw Bad_area();
return length*width;
)

That is, if the arguments are OK, we return the area as always; if not, we get out
of area() using the throw, hoping that some catch will provide an appropriate re-
sponse. Bad_area is a new type we define with no other purpose than to provide
something unique to throw from area() so that some catch can recognize it as the
kind of exception thrown by area(). User-defined types (classes and enumeration)
will be discussed in Chapter 9. The notation Bad_area() means “Make an object
of type Bad_area,” so throw Bad_area() means “Make an object of type Bad_area
and throw it.”
We can now write

int main()
try {
intx=-1;
inty=2;
intz=4;
...
int areal = area(x,y);
int area2 = framed_area(1,z);
int area3 = framed_areal(y,z);
double ratio = areal/area3;
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catch (Bad_area) {
cout << "Oops! bad arguments to area()\n";

}

First note that this handles all calls to area(), both the one in main() and the two
through framed_area(). Second, note how the handling of the error is cleanly sep-
arated from the detection of the error: main() knows nothing about which func-
tion did a throw Bad_area(), and area() knows nothing about which function (if
any) cares to catch the Bad_area exceptions it throws. This separation is espe-
cially important in large programs written using many libraries. In such pro-
grams, nobody can “just deal with an error by putting some code where it’s

needed,” because nobody would want to modify code in both the application and
in all of the libraries.

5.6.2 Range errors

Most real-world code deals with collections of data; that is, it uses all kinds of ta-
bles, lists, etc. of data elements to do a job. In the context of C++, we often refer
to “collections of data”™ as containers. The most common and useful standard li-
brary container is the vector we introduced in §4.6. A vector holds a number of
elements, and we can determine that number by calling the vector’s size() mem-
ber function. What happens if we try to use an element with an index (subscript)
that isn’t in the valid range [0:v.size())? The general notation [low:high) means
indices from low to high-1, that is, including low but not high:

low: high:

"
"
.. ]

Before answering that question, we should pose another question and answer it:

“Why would you do that?” After all, you know that a subscript for v should
be n the range [0,v.size()), so just be sure that’s so!

As it happens, that’s easy to say but sometimes hard to do. Consider this plausi-
ble program:

vector<int> v; /] a vector ints

inti;

while (cin>>i) v.push_back(i);  // get values

for (inti = 0; i<=v.size(); ++i) // print values
cout << "v[" << i<<"] == " << v[i] << endl;

Do you see the error? Please try to spot it before reading on. It's not an uncom-
mon error. We have made such errors ourselves — especially late at night when
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we were tired. Errors are always more common when you are tired or rushed.
We use 0 and size() to try to make sure that i is always in range when we do viil.

Unfortunately, we made a mistake. Look at the for-loop: the termination
condition is i<=v.size() rather than the correct i<v.size(). This has the unfortunate
consequence that if we read in five integers we’ll try to write out six. We try to
read v[5], which is one beyond the end of the vector. This kind of error is so
common and “famous” that it has several names: it is an example of an off-by-one
error, a range ervor because the index (subscript) wasn'’t in the range required by
the vector, and a bounds error because the index was not within the limits (bounds)
of the vector.

Here is a simpler version that produces the same effect:

vector<int> v(5);
int x = v[5];

However, we doubt that you'd have considered that realistic and worth serious
attention.

So what actually happens when we make such a range error? The subscript
operation of vector knows the size of the vector, so it can check (and the vector
we are using does; see §4.6 and §19.4). If that check fails, the subscript operation
throws an exception of type out_of_range. So, if the off-by-one code above had
been part of a program that caught exceptions, we would at least have gotten a
decent error message:

int main()
try {
vector<int> v; // a vector ints
int x;
while (cin>>x) v.push_back(x); // set values
for (int i = 0; i<=v.size(); ++i) /l print values

cout << "v[" << i<<"] == " << v[i] << endl;
} catch (out_of_range_error) {
cerr << "Oops! Range error\n";

return 1;

} catch (...) { /l catch all other exceptions
cerr << "Exception: something went wrong\n";
return 2;

Note that a range error is really a special case of the argument errors we discussed
in §5.5.2. We didn’t trust ourselves to consistently check the range of vector in-
dices, so we told vector’s subscript operation to do it for us. For the reasons we

147

©



148

CHAPTER 5 = ERRORS

outline, vector’s subscript function (called vector: :operator(]) reports finding an
error by throwing an exception. What else could it do? It has no idea what we
would like to happen in case of a range error. The author of vector couldn’t even
know what programs his or her code would be part of.

5.6.3 Bad input

WEe'll postpone the detailed discussion of what to do with bad input until §10.6.
However, once bad input is detected, it is dealt with using the same techniques
and language features as argument errors and range errors. Here, we'll just show
how you can tell if your input operations succeeded. Consider reading a floating-
point number:

double d =0;
cin>>d;

We can test if the last input operation succeeded by testing cin:

if (cin) {
/ all is well, and we can try reading again
}
else {
// the last read didn’t succeed, so we take some other action
}

There are several possible reasons for that input operation’s failure. The one that
should concern you right now is that there wasn’t a double for >> to read.

During the early stages of development, we often want to indicate that we
have found an error but aren’t yet ready to do anything particularly clever about
it; we just want to report the error and terminate the program. Later, maybe,
we’ll come back and do something more appropriate. For example:

double some_function()

{
double d = 0;
cin>>d;
if (!cin) error("couldn't read a double in 'some_function()'");
// do something useful
}

The string passed to error() can then be printed as a help to debugging or as a
message to the user. How can we write error() so as to be useful in a lot of pro-
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grams? It can’t return a value because we wouldn't know what to do with that
value; instead error() is supposed to terminate the program after getting its mes-
sage written. In addition, we might want to take some minor action before exit-
ing, such as keeping a window alive long enough for us to read the message.
That’s an obvious job for an exception (see §7.3).

The standard library defines a few exceptions, such as the out_of_range
thrown by vector. It also supplies runtime_error which is pretty ideal for our
needs because it holds a string that can be used by an error handler. So, we can
write our simple error() like this:

void error(string s)

{

throw runtime_error(s);

When we want to deal with runtime_error we simply catch it. For simple pro-
grams, catching runtime_error in main() is ideal:

int main()
try {
/l our program
return 0; /1 0 indicates success
}
catch (runtime_error& e) {
cerr << "runtime error: " << e.what() << "\n';
keep_window_open();
return 1; // 1 indicates failure

The call e.what() extracts the error message from the runtime_error. The & in
catch(runtime_error& e) {

is an indicator that we want to “pass the exception by reference.” For now, please
treat this as simply an irrelevant technicality. In §8.5.4-6, we explain what it
means to pass something by reference.

Note that we used cerr rather than cout for our error output: cerr is exactly
like cout except that it is meant for error output. By default both cerr and cout
write to the screen, but cerr isn’t optimized so it is more resilient to errors, and on
some operating systems it can be diverted to a different target, such as a file.
Using cerr also has the simple effect of documenting that what we write relates to
errors. Consequently, we use cerr for error messages.
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As it happens, out_of_range is not a runtime_error, so catching runtime_error
does not deal with the out_of_range crrors that we might get from misuse of
vectors and other standard library container types. However, both out_of_range
and runtime_error are “exceptions,” so we can catch exception to deal with both:

int main()
try {
/l our program
return 0; /0 indicates success
}
catch (exception& e) {
cerr << "error: " << e.what() <<'\n';
keep_window_open();

return 1; /11 indicates failure
}
catch (...) {
cerr << "Oops: unknown exception!\n";
keep_window_open();
return 2; // 2 indicates failure
}

We added catchl...) to handle exceptions of any type whatsoever.

Dealing with exceptions of both type out_of_range and type runtime_error
through a single type exception, said to be a common base (supertype) of both, is
a most useful and general technique that we will explore in Chapters 13-16.

Note again that the return value from main() is passed to “the system” that
invoked the program. Some systems (such as Unix) often use that value, whereas
others (such as Windows) typically ignore it. A zero indicates successful comple-
tion and a nonzero return value from main() indicates some sort of failure.

When you use error(), you'll often wish to pass two pieces of information
along to describe the problem. In that case, just concatenate the strings describing
those two pieces of information. This is so common that we provide a second
version of error() for that:

void error(string s1, string s2)

{

throw runtime_error(s1+s2);

}

This simple error handling will do for a while, until our needs increase signifi-
cantly and our sophistication as designers and programmers increases corre-
spondingly. Note that we can use error() independently of how many function
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calls we have done on the way to the error: error() will find its way to the nearest
catch of runtime_error, typically the one in main(). For examples of the use of ex-
ceptions and error(), see §7.3 and §7.7. If you don't catch an exception, you'll get
a default system error (an “uncaught exception™ error).

TRY THIS

»  To see what an uncaught exception error looks like, run a small program that
uses error() without catching any exceptions.

5.6.4 Narrowing errors

In §3.9.2 we saw a nasty kind of error: when we assign a value that’s “too large
to fit” to a variable, it is implicitly truncated. For example:

intx=2.9;
char c = 1066;

Here x will get the value 2 rather than 2.9, because x is an int and ints don’t have 0
values that are fractions of an integer, just whole integers (obviously). Similarly, if
we use the common ASCII character set, ¢ will get the value 42 (representing the
character *), rather than 1066, because there is no char with the value 1066 in that
character set.

In §3.9.2 we saw how we could protect ourselves against such narrowing by
testing. Given exceptions (and templates; see §19.3) we can write a function that
tests and throws a runtime_error exception if an assignment or initialization
would lead to a changed value. For example:

int x1 = narrow_cast<int>(2.9); /! throws
int x2 = narrow_cast<int>(2.0); // OK
char c1 = narrow_cast<char>(1066);  // throws
char ¢2 = narrow_cast<char>(85); // OK

The <. ..> brackets are the same as are used for vector<int>. They are used
when we need to specify a type, rather than a value, to express an idea. They are
called template arguments. We can use narrow_cast when we need to convert a
value and we are not sure “if it will fit”; it is defined in std_lib_facilities.h and im-
plemented using error(). The word cast means “type conversion” and indicates
the operation’s role in dealing with something that’s broken (like a cast on a bro-
ken leg). Note that a cast doesn't change its operand; it produces a new value cor-
responding to its operand of the required type.
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5.7 Logic errors

Once we have removed the initial compiler and linker errors, the program runs.
Typically, what happens next is that no output is produced or that the output that
the program produces is just wrong. This can occur for a number of reasons.
Maybe your understanding of the underlying program logic is flawed; maybe
you didn’t write what you thought you wrote; or maybe you made some “silly
error” in one of your control statements, or whatever. Logic errors are usually
the most difficult to find and eliminate, because at this stage the computer does
what you asked it to. Your job now is to figure out why that wasn’t really what
you meant. Basically, a computer is a very fast moron. It does exactly what you
tell it to do, and that can be most humbling.

Let us try to illustrate this with a simple example. Consider this code for
finding the lowest, highest, and average temperature values in a set of data:

int main()
{

vector<double> temps;  // temperatures

double temp = 0;
double sum = 0;
double high_temp =0;
double low_temp =0;

while (cin>>temp) /f read and put into temps
temps.push_back(temp);

for (inti = 0; i<temps.size(); ++i)

{
if(temps[i] > high_temp) high_temp = tempsli]; //find high
if(tempsli] < low_temp) low_temp = temps[il; /l find low
sum += tempslil; // compute sum

}

cout << "High temperature: " << high_temp<< endl;
cout << "Low temperature: " << low_temp << endl;
cout << "Average temperature: " << sum/temps.size() << endl;

}

We tested this program by entering the hourly temperature values from the
weather center in Lubbock, Texas, for February 16, 2004 (Texas still uses
Fahrenheit):
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-16.5, -23.2, -24.0, -25.7,
7.5, 12,6, 23.8, 253,
40.3, 42,6, 39.7, 354,

The output was
High temperature: 42.6

Low temperature: —26.1
Average temperature: 9.3
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-26.1, -18.6, -9.7, -24,
28.0, 34.8, 36.7, 41.5
12.6, 6.5, -=3.7, =143

A naive programmer would conclude that the program works just fine. An irre-
sponsible programmer would ship it to a customer. It would be prudent to test it
again with another set of data. This time use the temperatures from July 23, 2004:

76,5, 73.5, 710, 73.6,
8.5 9.7, 959, 992,
110.2, 103.6, 949, 91.7,

This time, the output was
High temperature: 112.4

Low temperature: 0.0
Average temperature: 89.2

70.1, 73.5, 77.6, 853,
98.2, 100.6, 106.3, 1124,
88.4, 85.2, 85.4, 87.7

Oops, something is not quite right. Hard frost (0.0°F is about -18°C) in Lubbock
in July would mean the end of the world! Did you spot the error? Since low_temp
was initialized at 0.0, it would remain 0.0 unless one of the temperatures in the

data was below zero.

TRY THIS

Get this program to run. Check that our input really does produce that out-
put. Try to “break” the program (i.c., get it to give wrong results) by giving it
other input sets. What is the least amount of input you can give it to get it to

fail?

Unfortunately, there are more errors in this program. What would happen if all
of the temperatures were below zero? The initialization for high_temp has the
cquivalent problem to low_temp: high_temp will remain at 0.0 unless there is a
higher temperature in the data. This program wouldn’t work for the South Pole

in winter either.
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These errors are fairly typical; they will not cause any errors when you com-
pile the program or cause wrong results for “reasonable™ inputs. However, we
forgot to think about what we should consider “reasonable.” Here is an improved

program:

int main()

{
double temp = 0;
double sum =0;
double high_temp ==1000; //initialize to impossibly low
double low_temp = 1000; /l initialize to “impossibly high”
int no_of_temps = 0;

while (cin>>temp) { / read temp
++no_of_temps; /l count temperatures
sum += temp; /I compute sum
if (temp > high_temp) high_temp = temp; /! find high
if (temp < low_temp) low_temp = temp; / find low
}

cout << "High temperature: " << high_temp<< endl;
cout << "Low temperature: " << low_temp << endl;
cout << "Average temperature: " << sum/no_of_temps << endl;

}

Does it work? How would you be certain? How would you precisely define
“work™ Where did we get the values 1000 and -1000? Remember that we
warned about “magic constants” (§5.5.1). Having 1000 and —1000 as literal values
in the middle of the program is bad style, but are the values also wrong? Are
there places where the temperatures go below -1000°F (-573°C)? Are there
places where the temperatures go above 1000°F (538°C)?

TRY THIS

» Look it up. Check some information sources to pick good values for the
min_temp (the “minimum temperature”) and max_temp (the “maximum
temperature”) constants for our program. Those values will determine the
limits of usefulness of our program.
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5.8 Estimation

Imagine you have written a program that does a simple calculation, say, comput-
ing the area of a hexagon. You run it and it gives the area -=34.56. You just know
that’s wrong. Why? Because no shape has a negative area. So, you fix that bug
(whatever it was) and get 21.65685. Is that right? That's harder to say because
we don’t usually keep the formula for the area of a hexagon in our heads. What
we must do before making fools of ourselves by delivering a program that pro-
duces ridiculous results is just to check that the answer is plausible. In this case,
that’s easy. A hexagon is much like a square. We scribble our regular hexagon on
a piece of paper and eyeball it to be about the size of a 3-by-3 square. Such a
square has the area 9. Bummer, our 21.65685 can't be right! So we work over
our program again and get 9.65685. Now, that just might be right!

The general point here has nothing to do with hexagons. The point is that
unless we have some idea of what a correct answer will be like — even ever so ap-
proximately — we don’t have a clue whether our result is reasonable. Always ask
yourself this question:

1. Is this answer to this particular problem plausible?
You should also ask the more general (and often far harder) question:
2. How would I recognize a plausible result?

Here, we are not asking, “What's the exact answer?” or “What's the correct an-
swer?” That's what we are writing the program to tell us. All we want is to know
that the answer is not ridiculous. Only when we know that we have a plausible
answer does it make sense to proceed with further work.

Estimation is a noble art that combines common sense and some very simple
arithmetic applied to a few facts. Some people are good at doing estimates in their
heads, but we prefer scribbles “on the back of an envelope” because we find we
get confused less often that way. What we call estimation here is an informal set
of techniques that are sometimes (humorously) called guesstimation because they
combine a bit of guessing with a bit of calculation.

TRY THIS

Our hexagon was regular with 2cm sides. Did we get that answer right? Just
do the “back of the envelope” calculation. Take a piece a paper and scribble
on it. Don’t feel that’s below you. Many famous scientists have been greatly
admired for their ability to come up with an approximate answer using a
pencil and the back of an envelope (or a napkin). This is an ability — a simple
habit, really — that can save us a lot of time and confusion.
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Often, making an estimate involves coming up with estimates of data that are
needed for a proper calculation, but that we don’t yet have. Imagine you have to
test a program that estimates driving times between cities. Is a driving time of 15
hours and 33 minutes plausible for New York City to Denver? From London to
Nice? Why or why not? What data do you have to “guess” to answer these ques-
tions? Often, a quick web search can be most helpful. For example, 2000 miles is
not a bad guess on the road distance from New York City to Denver, and it
would be hard (and illegal) to maintain an average speed of 130m/hr, so 15 hours
is not plausible (15*130 is just a bit less than 2000). You can check: we overesti-
mated both the distance and the average speed, but for a check of plausibility we
don’t have to be exactly right; we just have to guess well enough.

TRY THIS

Estimate those driving times. Also, estimate the corresponding flight times
(using ordinary commercial air travel). Then, try to verify your estimates by
using appropriate sources, such as maps and timetables. We'd use online
sources.

5.9 Debugging
When you have written (drafted?) a program, it'll have errors. Small programs

do occasionally compile and run correctly the first time you try. But if that hap-
pens for anything but a completely trivial program, you should at first be very,
very suspicious. If it really did run correctly the first time, go tell your friends
and celebrate — because this won’t happen every year.

So, when you have written some code, you have to find and remove the er-
rors. That process is usually called debugging and the errors bugs. The term bug is
often claimed to have originated from a hardware failure caused by insects in the
electronics in the days when computers were racks of vacuum tubes and relays
filling rooms. Several people have been credited with the discovery and the appli-
cation of the word bug to errors in software. The most famous of those is Grace
Murray Hopper, the inventor of the COBOL programming language (§22.2.2.2).
Whoever invented the term more than 50 years ago, bug is evocative and ubiqui-
tous. The activity of deliberately searching for errors and removing them is
called debugging.

Debugging works roughly like this:

1. Get the program to compile.
2. Get the program to link.
3. Get the program to do what it is supposed to do.
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Basically, we go through this sequence again and again: hundreds of times, thou-
sands of times, again and again for years for really large programs. Each time
something doesn’t work we have to find what caused the problem and fix it. I
consider debugging the most tedious and time-wasting aspect of programming
and will go to great lengths during design and programming to minimize the
amount of time spent hunting for bugs. Others find that hunt thrilling and the
essence of programming — it can be as addictive as any video game and keep a
programmer glued to the terminal for days and nights (I can vouch for that from
personal experience also).
Here is how nof to debug:

while (the program doesn’t appear to work) { /l pseudo code
Randomly look through the program for something that “looks odd”
Change it to look better

}

Why do we bother to mention this? It’s obviously a poor algorithm with little
guarantee of success. Unfortunately, that description is only a slight caricature of
what many people find themselves doing late at night when feeling particularly
lost and clueless, having tried “everything else.”

The key question in debugging is

How would I know if the program actually worked correctly?

If you can’t answer that question, you are in for a long and tedious debug ses-
sion, and most likely your users are in for some frustration. We keep returning to
this point because anything that helps answer that question minimizes debugging
and helps produce correct and maintainable programs. Basically, we'd like to de-
sign our programs so that bugs have nowhere to hide. That’s typically too much
to ask for, but we aim to structure programs to minimize the chance of error and
maximize the chance of finding the errors that do creep in.

5.9.1 Practical debug advice

Start thinking about debugging before you write the first line of code. Once you
have a lot of code written it’s too late to try to simplify debugging.

Decide how to report errors: “Use error() and catch exception in main()” will
be your default answer in this book.

Make the program easy to read so that you have a chance of spotting the bugs:

«  Comment your code well. That doesn’t simply mean “Add a lot of com-
ments.” You don’t say in English what is better said in code. Rather, you
say in the comments — as clearly and briefly as you can — what can’t be
said clearly in code:
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*  The name of the program

* The purpose of the program

*  Who wrote this code and when

* Version numbers

*  What complicated code fragments are supposed to do
*  What the general design ideas are

*  How the source code is organized

*  What assumptions are made about inputs

*  What parts of the code are still missing and what cases are still not
handled

* Use meaningful names.

* That doesn’t simply mean “Use long names.”

* Use a consistent layout of code.

* Your IDE tries to help, but it can’t do everything and you are the
one responsible.

* The style used in this book is a reasonable starting point.

* Break code into small functions, each expressing a logical action.

* Try to avoid functions longer than a page or two; most functions
will be much shorter.

* Avoid complicated code sequences.

* Ty to avoid nested loops, nested if-statements, complicated condi-
tions, etc. Unfortunately, you sometimes need those, but remember
that complicated code is where bugs can most easily hide.

*  Use library facilities rather than your own code when you can.

* A library is likely to be better thought out and better tested than
what you could produce as an alternative while busily solving your
main problem.

This is pretty abstract just now, but we'll show you example after example as we
go along.

Get the program to compile. Obviously, your compiler is your best help here.
Its error messages are usually helpful — even if we always wish for better ones —
and, unless you are a real expert, assume that the compiler is always right; if you
are a real expert, this book wasn’t written for you. Occasionally, you will feel that
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the rules the compiler enforces are stupid and unnecessary (they rarely are) and
that things could and ought to be simpler (indeed, but they are not). However, as
they say, “a poor craftsman curses his tools” A good craftsman knows the
strengths and weaknesses of his tools and adjusts his work accordingly. Here are
some common compile-time errors:

* Is every string literal terminated?

cout << "Hello, << name << "\n'; N oops!
*» Is every character literal terminated?

cout << "Hello, " << name << "\n; / oops!
* Is every block terminated?

int f(int a)
{

if (@>0) {/* do something */ else { /* do something else */}
} I oops!

* Is every set of parentheses matched?
if (a<=0 // oops!
x = fly);
The compiler generally reports this kind of error “late”; it doesn’t know
you meant to type a closing parenthesis after the 0.
* Is every name declared?
* Did you include needed headers (for now, #include "std_lib_facili-
ties.h")?
+ Is every name declared before it’s used?
* Did you spell all names correctly?

int count; /*...*/ ++Count; /f oops!
charch; /*...*/ Cin>>c; /f double oops!

* Did you terminate each expression statement with a semicolon?

x = sqri(y)+2 /f oops!
= x+3;

We present more examples in this chapter’s drills. Also, keep in mind the classifi-
cation of errors from §5.2.

After the program compiles and links, next comes what is typically the hardest
part: figuring out why the program doesn’t do what it’s supposed to. You look at
the output and try to figure out how your code could have produced that. Actually,
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first you often look at a blank screen (or window), wondering how your program
could have failed to produce any output. A common first problem with a Windows
console mode program is that the console window disappears before you have had
a chance to see the output (if any). One solution is to call keep_window_open()
from our std_lib_facilities.h at the end of main(). Then the program will ask for
input before exiting and you can look at the output produced before giving it the
mput that will let it close the window.

When looking for a bug, carefully follow the code statement by statement
from the last point that you are sure it was correct. Pretend you're the computer
executing the program. Does the output match your expectations? Of course not,
or you wouldn’t be debugging.

* Often, when you don’t see the problem, the reason is that you “see”
what you expect to see rather than what you wrote. Consider:

for (inti = 0; i<=max; ++j) { // oops! (twice)
for (int i=0; 0D<max; ++i); // print the elements of v
cout << "v[" << i << "]==" << v[i] << "\n';

This last example came from a real program written by experienced pro-
grammers (we expect it was written very late some night).

* Often when you do not see the problem, the reason is that there is too
much code being executed between the point where the program pro-
duced the last good output and the next output (or lack of output). Most
programming environments provide a way to execute (“step through”)
the statements of a program one by one. Eventually, you’ll learn to use
such facilities, but for simple problems and simple programs, you can
Just temporarily put in a few extra output statements (using cerr) to help
you see what'’s going on. For example:

int my_fct(int a, double d)

{
intres=0;
cerr << "my_fct(" <<a<<"," <<d <<")\n";
/. . . misbehaving code here . . .
cerr << "my_fct() returns " <<res <<'\n';
return res;

}

* Insert statements that check invariants (that is, conditions that should al-
ways hold; see §9.4.3) in sections of code suspected of harboring bugs.
For example:

int my_complicated_function(int a, int b, int ¢)
// the arguments are positiveanda <b < ¢
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if (!(0<a && a<b && b<c)) /! means “not” and && means “and”
error("bad arguments for mcf");
in...
}

« If that doesn’t have any effect, insert invariants in sections of code not
suspected of harboring bugs: if you can’t find a bug, you are almost cer-
tainly looking in the wrong place.

A statement that states (asserts) an invariant is called an assertion (or just an assert).
Interestingly enough, there are many effective ways of programming. Different
people successfully use dramatically different techniques. Many differences in de-
bugging technique come from differences in the kinds of programs people work
on; others seem to have to do with differences in the ways people think. To the best
of our knowledge, there is no one best way to debug. One thing should always be
remembered, though: messy code can easily harbor bugs. By keeping your code as
simple, logical, and well formatted as possible, you decrease your debug time.

5.10 Pre- and post-conditions

Now, let us return to the question of how to deal with bad arguments to a func-
tion. The call of a function is basically the best point to think about correct code
and to catch errors: this is where a logically separate computation starts (and
ends on the return). Look at what we did in the piece of advice above:

int my_complicated_function(int a, int b, int c)
// the arguments are positive anda<b <c
{
if (!(0<a && a<b && b<c)) // ! means “not” and && means “and”
error("bad arguments for mcf");
[/
}

First, we stated (in a comment) what the function required of its arguments, and
then we checked that this requirement held (throwing an exception if it did not).

This is a good basic strategy. A requirement of a function upon its argument
is often called a pre-condition: it must be true for the function to perform its action
correctly. The question is just what to do if the pre-condition is violated (doesn'’t
hold). We basically have two choices:

1. Ignore it (hope/assume that all callers give correct arguments).
2. Check it (and report the error somehow).
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Looking at it this way, argument types are just a way of having the compiler
check the simplest pre-conditions for us and report them at compile time. For
example:

int x = my_complicated_function(1, 2, "horsefeathers");

Here, the compiler will catch that the requirement (“pre-condition”) that the third
argument be an integer was violated. Basically, what we are talking about here is
what to do with the requirements/pre-conditions that the compiler can’t check.
Our suggestion is to always document pre-conditions in comments (so that a
caller can see what a function expects). A function with no comments docu-
mented will be assumed to handle every possible argument value. But should we
believe that callers read those comments and follow the rules? Sometimes we
have to, but the “check the arguments in the callee” rule could be stated “Let a
function check its pre-conditions.” We should do that whenever we don’t see a
reason not to. The reasons most often given for not checking pre-conditions are:

* Nobody would give bad arguments.
+ It would slow down my code.
+ It is too complicated to check.

The first reason can be reasonable only when we happen to know “who”
calls a function — and in real-world code that can be very hard to know.

The second reason is valid far less often than people think and should most
often be ignored as an example of “premature optimization.” You can always re-
move checks if they really turn out to be a burden. You cannot casily gain the
correctness they ensure or get back the nights’ sleep you lost looking for bugs
those tests could have caught.

The third reason is the serious one. It is easy (once you are an experienced
programmer) to find examples where checking a pre-condition would take signif-
icantly more work than executing the function. An example is a lookup in a dic-
tionary: a pre-condition is that the dictionary entries are sorted — and verifying
that a dictionary is sorted can be far more expensive than a lookup. Sometimes, it
can also be difficult to express a pre-condition in code and to be sure that you ex-
pressed it correctly. However, when you write a function, always consider if you
can write a quick check of the pre-conditions, and do so unless you have a good
reason not to.

Writing pre-conditions (even as comments) also has a significant benefit for
the quality of your programs: it forces you to think about what a function re-
quires. If you can’t state that simply and precisely in a couple of comment lines,
you probably haven’t thought hard enough about what you are doing. Experi-
ence shows that writing those pre-condition comments and the pre-condition tests
helps you avoid many design mistakes. We did mention that we hated debug-
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ging: explicitly stating pre-conditions helps in avoiding design errors as well as
catching usage errors early. Writing

int my_complicated_function(int a, int b, int c)
/ the arguments are positive anda<b < ¢
{
if (!(0<a && a<b && b<c)) /1! means “not” and && means “and”

error("bad arguments for mcf");
Biiin

}
saves you time and grief compared with the apparently simpler

int my_complicated_function(int a, int b, int ¢)
{
/-

}

5.10.1 Post-conditions

Stating pre-conditions helps us improve our design and catch usage errors early.
Can this idea of explicitly stating requirements be used elsewhere? Yes, one more
place immediately springs to mind: the return value! After all, we typically have
to state what a function returns; that is, if we return a value from a function we
are always making a promise about the return value (how else would a caller
know what to expect?). Let’s look at our area function (from §5.6.1) again:

// calculate area of a rectangle;
// throw a Bad_area exception in case of a bad argument
int area(int length, int width)
{
if (length<=0 || width <=0) throw Bad_area();
return length*width;
}

It checks its pre-condition, but it doesn’t state it in the comment (that may be OK
for such a short function) and it assumes that the computation is correct (that’s

probably OK for such a trivial computation). However, we could be a bit more
explicit:

int area(int length, int width)
/ calculate area of a rectangle;
/l pre-conditions: length and width are positive
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/l post-condition: returns a positive value that is the area

{
if (length<=0 || width <=0) error("area() pre-condition");
inta = length*width;
if (a<=0) error("area() post-condition");
return a;
}

We couldn’t check the complete post-condition, but we checked the part that said
that it should be positive.

TRY THIS

»  Find a pair of values so that the pre-condition of this version of area holds,

©

but the post-condition doesn’t.

Pre- and post-conditions provide basic sanity checks in code. As such they are
closely connected to the notion of invariants (§9.4.3), correctness (§4.2, §5.2),
and testing (Chapter 26).

5.11 Testing

How do we know when to stop debugging? Well, we keep debugging until we
have found all the bugs — or at least we try to. How do we know that we have
found the last bug? We don’t. “The last bug” is a programmers’ joke: there is no
such creature; we never find “the last bug” in a large program. By the time we
might have, we are busy modifying the program for some new use.

In addition to debugging we need a systematic way to search for errors. This
is called testing and we'll get back to that in §7.3, the exercises in Chapter 10, and
in Chapter 26. Basically, testing is executing a program with a large and system-
atically selected set of inputs and comparing the results to what was expected. A
run with a given set of inputs is called a fest case. Realistic programs can require
millions of test cases. Basically, systematic testing cannot be done by humans typ-
ing in one test after another, so we’ll have to wait a few chapters before we have
the tools necessary to properly approach testing. However, in the meantime, re-
member that we have to approach testing with the attitude that finding errors is
good. Consider:

Attitude 1:  I'm smarter than any program! I'll break that @#$%”" code!
Attitude 2: I polished this code for two weeks. It’s perfect!
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Who do you think will find more errors? Of course, the very best is an experi-
enced person with a bit of “attitude 17 who coolly, calmly, patiently, and system-
atically works through the possible failings of the program. Good testers are
worth their weight in gold.

We try to be systematic in choosing our test cases and always try both cor-
rect and incorrect inputs. §7.3 gives the first example of this.

J Drill

Below are 25 code fragments. Each is meant to be inserted into this “scaffolding™:
#include "std_lib_facilities.h"

int main()

try {
<<your code here>>
keep_window_open();
return 0;

}

catch (exception& e) {
cerr << "error: " << e.what() << \n';
keep_window_open();

return 1;
}
catch (...) {
cerr << "Oops: unknown exception!\n";
keep_window_open();
return 2;
}

Each has zero or more errors. Your task is to find and remove all errors in each
program. When you have removed those bugs, the resulting program will com-
pile, run, and write “Success!” Even if you think you have spotted an error, you
still need to enter the (original, unimproved) program fragment and test it; you
may have guessed wrong about what the error is, or there may be more errors in
a fragment than you spotted. Also, one purpose of this drill is to give you a feel
for how your compiler reacts to different kinds of errors. Do not enter the scaf-
folding 25 times — that’s a job for cut and paste or some similar “mechanical”
technique. Do not fix problems by simply deleting a statement; repair them by
changing, adding, or deleting a few characters.
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Cout << "Success!\n";

cout << "Success!\n;

cout << "Success" << !I\n"

cout << success << endl;

string res = 7; vector<int> v(10); v[5] = res; cout << "Success!\n";
vector<int> v(10); v(5) = 7; if (v(5)!=7) cout << "Success!\n";

if (cond) cout << "Success!\n"; else cout << "Fail!\n";

bool c = false; if (c) cout << "Success!\n"; else cout << "Fail!\n";
string s = "ape"; boo c = "fool"<s; if (c) cout << "Success!\n";
string s = "ape"; if (s=="fool") cout << "Success!\n";

string s = "ape"; if (s=="fool") cout < "Success!\n";

string s = "ape"; if (s+"fool") cout < "Success!\n";

vector<char> v(5); for (int i=0; O<v.size(); ++i) ; cout << "Success!\n";
vector<char> v(5); for (int i=0; i<=v.size(); ++i) ; cout << "Success!\n";
string s = "Success!\n"; for (int i=0; i<6; ++i) cout << s[i];

if (true) then cout << "Success!\n"; else cout << "Fail!\n";

int x = 2000; char c = x; if (c==2000) cout << "Success!\n";

string s = "Success!\n"; for (int i=0; i<10; ++i) cout << s[i];

vector v(5); for (int i=0; i<=v.size(); ++i) ; cout << "Success!\n";
int i=0; int j = 9; while (i<10) ++j; if (j<i) cout << "Success!\n";

int x = 2; double d = 5/(x-2); if (d==2*x+0.5) cout << "Success!\n";
string<char> s = "Success!\n"; for (int i=0; i<=10; ++i) cout << s[i];
int i=0; while (i<10) ++j; if (j<i) cout << "Success!\n";

int x = 4; double d = 5/(x-2); if (d=2*x+0.5) cout << "Success!\n";
cin << "Success!\n";

Review

PR BES

[ —

12.

13.

s 10 el

Name four major types of errors and briefly define each one.

What kinds of errors can we ignore in student programs?

What guarantees should every completed project offer?

List three approaches we can take to eliminate errors in programs and
produce acceptable software.

Why do we hate debugging?

What is a syntax error? Give five examples.

What is a type error? Give five examples.

What is a linker error? Give three examples.

What is a logic error? Give three examples.

List four potential sources of program errors discussed in the text.

How do you know if a result is plausible? What techniques do you have
to answer such questions?

Compare and contrast having the caller of a function handle a run-time
error vs. the called function’s handling the run-time error.

Why is using exceptions a better idea than returning an “error value™?
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14. How do you test if an input operation succeeded?
15. Describe the process of how exceptions are thrown and caught.
16. Why, with a vector called v, is v[v.size()] a range error? What would be
the result of calling this?
17. Define pre-condition and post-condition; give an example (that is not the
area() function from this chapter), preferably a computation that requires
a loop.
18. When would you nof test a pre-condition?
19. When would you nof test a post-condition?
20. What are the steps in debugging a program?
21. Why does commenting help when debugging?
22. How does testing differ from debugging?
Terms
argument error exception requirement
assertion invariant run-time error
catch link-time error syntax error
compile-time error logic error testing
container post-condition throw
debugging pre-condition type error
error range error
Exercises
1. If you haven't already, do the Try this exercises from this chapter.
2. The following program takes in a temperature value in Celsius and con-

verts it to Kelvin. This code has many errors in it. Find the errors, list
them, and correct the code.

double ctok(double c) /f converts Celsius to Kelvin

{
intk =c+ 273.15;

return int

}

int main()
{
doublec=0;  //declare input variable

cin>>d; / retrieve temperature to input variable
double k = ctok("c"); /I convert temperature
Cout<<k<<endl ; // print out temperature
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3. Absolute zero is the lowest temperature that can be reached; it is -273.15°C,
or OK. The above program, even when corrected, will produce erroneous
results when given a temperature below this. Place a check in the main pro-
gram that will produce an error if a temperature is given below -273.15°C.

4. Do exercise 3 again, but this time handle the error inside ctok().

5. Add to the program so that it can also convert from Kelvin to Celsius.

6. Write a program that converts from Celsius to Fahrenheit and from
Fahrenheit to Celsius (formula in §4.3.3). Use estimation (§5.8) to see if
your results are plausible.

7. Quadratic equations are of the form

ax*+b-x+c=0

To solve these, one uses the quadratic formula:

ol —bxb -4dac

2a
There is a problem though: if 4’-4ac is less than zero, then it will fail.

Write a program that can calculate x for a quadratic equation. Create a
function that prints out the roots of a quadratic equation, given 4, b, ¢,
and have it throw an exception if ’~4acis less than zero. Have the main
function of the program call the function, and catch the exception if there
is an error. When the program detects an equation with no real roots,
have it print out a message. How do you know that your results are plau-
sible? Can you check that they are correct?

8. Write a program that reads a series of numbers and stores them in a
vector<int>, After the user inputs all the numbers he or she wishes to,
ask how many of the numbers the user wants to sum. For an answer N,
print the sum of the first N elements of the vector. For example:

“Please enter some numbers (press '|' at prompt to stop):”

1223132415

“Please enter how many of the numbers you wish to sum, starting
from the first:”

3
“The sum of the first 3 numbers: 12, 23, and 13 is 48.”

Handle all inputs. For example, make sure to give an error message if the
user asks for a sum of more numbers than there are in the vector.
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9.

10.

11.

125

13.

14.

Modify the program from exercise 6 to write out an error if the result
cannot be represented as an int.

Modify the program from exercise 8 to use double instead of int. Also,
make a vector of doubles containing the N-1 differences between adja-
cent values and write out that vector of differences.

Write a program that writes out the first so many values of the Fibonacci
series, that 1s, the series that starts with 1 1 2 3 5 8 13 21 34. The next
number of the series is the sum of the two previous ones. Find the largest
Fibonacci number that fits in an int.

Implement a little guessing game called (for some obscure reason) “Bulls
and Cows.” The program has a vector of four integers in the range 0 to 9
and it is the user’s task to discover those numbers by repeated guesses.
Say the number to be guessed is 1234 and the user guesses 1359; the re-
sponse should be “1 bull and 1 cow” because the user got one digit (1)
right and in the right position (a bull) and one digit (3) right but in the
wrong position (a cow). The guessing continues until the user gets four
bulls, that is, has the four digits correct and in the correct order.

The program is a bit tedious because the answer is hard-coded into the
program. Make a version where the user can play repeatedly (without
stopping and restarting the program) and each game has a new set of
four digits. You can get four random digits by calling the random num-
ber generator randint(10) from std_lib_facilities.h four times. You will
note that if you run that program repeatedly, it will pick the same se-
quence of four digits each time you start the program. To avoid that, ask
the user to enter a number (any number) and call srand(n) where n is the
number the user entered before calling randint(10). Such an n is called a
seed, and different seeds give different sequences of random numbers.
Read (day-of-the-week,value) pairs from standard input. For example:

Tuesday 23 Friday 56 Tuesday —3 Thursday 99

Collect all the values for each day of the week in a vector<int>. Write out
the values of the seven day-of-the-week vectors. Print out the sum of the
values in cach vector. Ignore illegal days of the week, such as Funday, but
accept common synonyms such as Mon and monday. Write out the num-
ber of rejected values.

Postscript

Do you think we overemphasize errors? As novice programmers we would have
thought so. The obvious and natural reaction is “It simply can’t be that bad!”
Well, it is that bad. Many of the world’s best brains have been astounded and
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confounded by the difficulty of writing correct programs. In our experience,
good mathematicians are the people most likely to underestimate the problem of
bugs, but we all quickly exceed our natural capacity for writing programs that
are correct the first time. You have been warned! Fortunately, after 50 years or so,
we have a lot of experience in organizing code to minimize problems, and tech-
niques to find the bugs that we — despite our best efforts — inevitably leave in our
programs as we first write them. The techniques and examples in this chapter are
a good start.



Writing a Program

“Programming 1s understanding.”

—Kristen Nygaard

Writing a program involves gradually refining your ideas
of what you want to do and how you want to express it.

In this chapter and the next, we will develop a program from a
first vague idea through stages of analysis, design, implementa-
tion, testing, redesign and re-implementation. Our aim is to give
you some idea of the kind of thinking that goes on when you de-
velop a piece of code. In the process, we discuss program organi-

zation, user-defined types, and input processing.
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6.3 Back to the calculator!

6.3.1 First attempt

6.3.2 Tokens

6.3.3 Implementing tokens
6.3.4 Using tokens

6.3.5 Back to the drawing board

6.4 Grammars

6.4.1 A detour: English grammar
6.4.2 Writing a grammar
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6.5 Turning a grammar into code

6.5.1 Implementing grammar rules
6.5.2 Expressions

6.5.3 Terms

6.5.4 Primary expressions

6.6 Trying the first version
6.7 Trying the second version

6.8 Token streams

6.8.1 Implementing Token_stream
6.8.2 Reading tokens
6.8.3 Reading numbers

6.9 Program structure

Writing a program starts with a problem; that is, you have a problem that you’d
like a program to help solve. Understanding that problem is key to a good pro-
gram. After all, a program that solves the wrong problem is likely to be of little
use to you, however elegant it may be. There are happy accidents when a pro-
gram just happens to be useful for something for which it was never intended,
but let’s not rely on such rare luck. What we want is a program that simply and
cleanly solves the problem we decided to solve.
At this stage, what would be a good program to look at? A program that

* Illustrates design and programming techniques

*  Gives us a chance to explore the kinds of decisions that a programmer
must make and the considerations that go into such decisions

* Doesn’t require too many new programming language constructs

* Is complicated enough to require thought about its design

* Allows for many variations in its solution

* Solves an easily understood problem

* Solves a problem that’s worth solving

* Has a solution that is small enough to completely present and com-

pletely comprehend

We chose “Get the computer to do ordinary arithmetic on expressions we type
in"; that is, we want to write a simple calculator. Such programs are clearly use-
ful; every desktop computer comes with such a program, and you can even buy
computers specially built to run nothing but such programs: pocket calculators.
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For example, if you enter
2+3.1*4

the program should respond
14.4

Unfortunately, such a calculator program doesn’t give us anything we don’t al-
ready have available on our computer, but that would be too much to ask from a
first program.

6.2 Thinking about the problem

So how do we start? Basically, think a bit about the problem and how to solve it.
First think about what the program should do and how you'd like to interact
with it. Later, you can think about how the program could be written to do that.
Try writing down a brief sketch of an idea for a solution, and see what’s wrong
with that first idea. Maybe discuss the problem and how to solve it with a friend.
Trying to explain something to a friend is a marvelous way of figuring out what’s
wrong with ideas, even better than writing them down; paper (or a computer)
doesn’t talk back at you and challenge your assumptions. Ideally, design isn't a
lonely activity.

Unfortunately, there isn’t a general strategy for problem solving that works
for all people and all problems. There are whole books that claim to help you be
better at problem solving and another huge branch of literature that deals with
program design. We won't go there. Instead, we'll present a page’s worth of sug-
gestions for a general strategy for the kind of smaller problems an individual
might face. After that, we'll quickly proceed to try out these suggestions on our
tiny calculator problem.

When reading our discussion of the calculator program, we recommend that
you adopt a more than usually skeptical attitude. For realism, we evolve our pro-
gram through a series of versions, presenting the reasoning that leads to each ver-
sion along the way. Obviously, much of that reasoning must be incomplete or
even faulty, or we would finish the chapter early. As we go along, we provide ex-
amples of the kinds of concerns and reasoning that designers and programmers
deal with all the time. We don’t reach a version of the program that we are happy
with untl the end of the next chapter.

Please keep in mind that for this chapter and the next, the way we get to the
final version of the program — the journey through partial solutions, ideas, and mis-
takes — is at least as important as that final version and more important than the lan-
guage-technical details we encounter along the way (we will get back to those later).
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6.2.1 Stages of development

Here is a bit of terminology for program development. As you work on a prob-
lem you repeatedly go through these stages:

o -

Analysis: Figure out what should be done and write a description of your
(current) understanding of that. Such a description is called a sef of re-
quirements or a specfication. We will not go into details about how such re-
quirements are developed and written down. That’s beyond the scope of
this book, but it becomes increasingly important as the size of problems
increases.

Design: Create an overall structure for the system, deciding which parts
the implementation should have and how those parts should communi-
cate. As part of the design consider which tools — such as libraries — can
help you structure the program.

Implementation: Write the code, debug it, and test that it actually does
what it is supposed to do.

6.2.2 Strategy

b Here are some suggestions that — when applied thoughtfully and with imagina-
tion — help with many programming projects:

What is the problem to be solved? The first thing to do is to try to be
specific about what you are trying to accomplish. This typically involves
constructing a description of the problem or — if someone else gave you
such a statement — trying to figure out what it really means. At this point
you should take the user’s point of view (not the programmer/imple-
menter’s view); that is, you should ask questions about what the pro-
gram should do, not about how it is going to do it. Ask: “What can this
program do for me?” and “How would I like to interact with this pro-
gram?” Remember, most of us have lots of experience as users of com-
puters on which to draw.

* Is the problem statement clear? For real problems, it never is. Even
for a student exercise, it can be hard to be sufficiently precise and
specific. So we try to clarify it. It would be a pity if we solved the
wrong problem. Another pitfall is to ask for too much. When we try
to figure out what we want, we easily get too greedy/ambitious. It is
almost always better to ask for less to make a program easier to spec-
ify, easier to understand, easier to use, and (hopefully) easier to im-
plement. Once it works, we can always build a fancier “version 2.0”
based on our experience.
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Does the problem seem manageable, given the time, skills, and tools
available? There is little point in starting a project that you couldn’t
possibly complete. If there isn’t sufficient time to implement (includ-
ing testing) a program that does all that is required, it is usually wise
not to start. Instead, acquire more resources (especially more time)
or (best of all) modify the requirements to simplify your task.

* ’Iry breaking the program into manageable parts. Even the smallest pro-
gram for solving a real problem is large enough to be subdivided.

Do you know of any tools, libraries, etc. that might help? The answer
is almost always yes. Even at the earliest stage of learning to program,
you have parts of the C++ standard library. Later, you'll know large
parts of that standard library and how to find more. You'll have
graphics and GUI libraries, a matrix library, etc. Once you have
gained a little experience, you will be able to find thousands of Ii-
braries by simple web searches. Remember: There is little value in
reinventing the wheel when you are building software for real use.
When learning to program it is a different matter; then, reinventing
the wheel to see how that is done is often a good idea. Any time you
save by using a good library can be spent on other parts of your
problem, or on rest. How do you know that a library is appropriate
for your task and of sufficient quality? That’s a hard problem. Part of
the solution is to ask colleagues, to ask in discussion groups, and to
try small examples before committing to use a library.

Look for parts of a solution that can be separately described (and po-
tentially used in several places in a program or even in other pro-
grams). To find such parts requires experience, so we provide many
examples throughout this book. We have already used vector, string,
and iostreams (cin and cout). This chapter gives the first complete
examples of design, implementation, and use of program parts pro-
vided as user-defined types (Token and Token_stream). Chapters 8
and 13-15 present many more examples together with their design
rationales. For now, consider an analogy: If we were to design a car,
we would start by identifying parts, such as wheels, engine, seats,
door handles, etc., on which we could work separately before assem-
bling the complete car. There are tens of thousands of such parts of a
modern car. A real-world program is no different in that respect, ex-
cept of course that the parts are code. We would not try to build a car
directly out of raw materials, such as iron, plastics, and wood. Nor
would we try to build a major program directly out of (just) the ex-
pressions, statements, and types provided by the language. Designing
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and implementing such parts is a major theme of this book and of
software development in general; see user-defined types (Chapter 9),
class hierarchies (Chapter 14), and generic types (Chapter 20).

*  Build a small, limited version of the program that solves a key part of the
problem. When we start, we rarely know the problem well. We often
think we do (don’t we know what a calculator program is?), but we
don’t. Only a combination of thinking about the problem (analysis) and
experimentation (design and implementation) gives us the solid under-
standing that we need to write a good program. So, we build a small,
limited version

* To bring out problems in our understanding, ideas, and tools.

* To see if details of the problem statement need changing to make the
problem manageable. It is rare to find that we had anticipated every-
thing when we analyzed the problem and made the initial design.
We should take advantage of the feedback that writing code and
testing give us.

Sometimes, such a limited initial version aimed at experimentation is
called a prototype. If (as is likely) our first version doesn’t work or is so
ugly and awkward that we don’t want to work with it, we throw it away
and make another limited version based on our experience. Repeat until
we find a version that we are happy with. Do not proceed with a mess;
messes just grow with time.

* Build a full-scale solution, ideally by using parts of the initial version.
The ideal is to grow a program from working parts rather than writing
all the code at once. The alternative is to hope that by some miracle an
untested idea will work and do what we want.

6.3 Back to the calculator!

How do we want to interact with the calculator? That’s easy: we know how to
use cin and cout, but graphical user interfaces (GUIs) are not explained until
Chapter 16, so we'll stick to the keyboard and a console window. Given expres-
sions as input from the keyboard, we evaluate them and write out the resulting
value to the screen. For example:

Expression: 242
Result: 4
Expression: 2+2*3
Result: 8
Expression: 2+3-25/5
Result: 0
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The expressions, e.g., 2+2 and 2+2*3, should be entered by the user; the rest is pro-
duced by the program. We chose to output “Expression: ” to prompt the user. We
could have chosen “Please enter an expression followed by a newline” but that
scemed verbose and p0111tlcss On the other hand a pleasantly short prompt, such
as >, seemed too cryptic. Sketching out such examples of use early on is important.
They provide a very practical definition of what the program should minimally do.
When discussing design and analysis, such examples of use are called use cases.

When faced with the calculator problem for the first time, most people come
up with a first idea like this for the main logic of the program:

read_a line
calculate /l do the work
write_result

This kind of “scribbles™ clearly isn’t code; it’s called pseudo code. We tend to use it
in the early stages of design when we are not yet certain exactly what our nota-
tion means. For example, is “calculate” a function call? If so, what would be its
arguments? It is simply too early to answer such questions.

6.3.1 First attempt

At this point, we are not really ready to write the calculator program. We simply
haven’t thought hard enough, but thinking is hard work and — like most pro-
grammers — we are anxious to write some code. So let’s take a chance, write a
simple calculator, and see where it leads us. The first idea is something like

#include "std _lib_facilities.h"

int main()
{
cout << "Please enter expression (we can handle + and -): ";
intlval =
int rval;
char op;
int res;
cin>>lval>>op>>rval; // read something like 1 + 3

if (op=="+")

res = lval + rval; // addition
else if (op=="-")

res = Ival - rval; // subtraction

cout << "Result: " << res <<"\n';
keep_window_open();
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return 0;

}

That is, read a pair of values separated by an operator, such as 2+2, compute the
result (in this case 4), and print the resulting value. We chose the variable names
Ival for left-hand value and rval for right-hand value.

This (sort of) works! So what if this program isn’t quite complete? It feels
great to get something running! Maybe this programming and computer science
stuff is easier than the rumors say. Well, maybe, but let’s not get too carried away
by an early success. Let’s

1. Clean up the code a bit
2. Add multiplication and division (e.g., 2*3)
3. Add the ability to handle more than one operand (e.g., 1+2+3)

In particular, we know that we should always check that our input is reasonable
(in our hurry, we “forgot”) and that testing a value against many constants is best
done by a switch-statement rather than an if-statement.

The “chaining” of operations, such as 1+2+3+4, we will handle by adding the
values as they are read; that is, we start with 1, see +2 and add 2 to 1 (getting an in-
termediate result 3), see +3 and add that 3 to our intermediate result (3), and so on.
After a few false starts and after correcting a few syntax and logic errors, we get:

#include "std_lib_facilities.h"

int main()
{
cout << "Please enter expression (we can handle +, -, *, and /): ";
int Ival = 0;
int rval;
char op;
cin>>lval; / read leftmost operand
if (!cin) error("no first operand");
while (cin>>op) { // read operator and right-hand operand repeatedly
cin>>rval;
if (!cin) error("no second operand");
switch(op) {
case '+':
Ival +=rval; // add: Ival = Ival + rval
break;
case '-'":
Ival == rval; // subtract: Ival = Ival — rval
break;
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case '*":
Ival *=rval; // multiply: Ival = Ival * rval
break;
case /"
Ival /= rval; // divide: Ival = Ival / rval
break;
default: // not another operator: print result
cout << "Result: " << lIval <<'\n';
keep_window_open();
return 0;
}
}
error("bad expression");

}

This isn’t bad, but then we try 1+2*3 and see that the result is 9 and not the 7 our
arithmetic teachers told us was the right answer. Similarly, 1-2*3 gives -3 rather
than the -5 we expected. We are doing the operations in the wrong order: 14+2*3
is calculated as (142)*3 rather than as the conventional 14(2*3). Similarly, 1-2*3 is
calculated as (1-2)*3 rather than as the conventional 1-(2*3). Bummer! We might
consider the convention that “multiplication binds tighter than addition” as a silly
old convention, but hundreds of years of convention will not disappear just to
simplify our programming,.

6.3.2 Tokens

So (somehow), we have to “look ahead” on the line to see if thereisa * (ora/). If
so, we have to (somchow) adjust the evaluation order from the simple and obvi-
ous left-to-right order. Unfortunately, trying to barge ahead here, we immediately
hit a couple of snags:

1. We don’t actually require an expression to be on one line. For example:

1
+
2
works perfectly with our code so far.

2. How do we search for a * (or a /) among digits and plusses on several
input lines?

3. How do we remember where a * was?
4. How do we handle evaluation that’s not strictly left-to-right (e.g., 1+2*3)?

Having decided to be super-optimists, we'll solve problems 1-3 first and not
worry about 4 until later.
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Also, we'll ask around for help. Surely someone will know a conventional
way of reading “stuff,” such as numbers and operators, from input and storing it
in a way that lets us look at it in convenient ways. The conventional and very
useful answer is “tokenize™: first input characters are read and assembled into
lokens, so if you type in

45+11.5/7
the program should produce a list of tokens representing

45

A loken is a sequence of characters that represents something we consider a unit,
such as a number or an operator. That’s the way a C++ compiler deals with its
source. Actually, “tokenizing” in some form or another is the way most analysis
of text starts. Following the example of C++ expression, we see the need for

three kinds of tokens:

*+ Floating-point-literals: as defined by C++, e.g., 3.14, 0.274e2, and 42
* Operators: e.g., +, =, *,/, %
» Parentheses: (, )

The floating-point-literals look as if they may become a problem: reading 12
seems much easier than reading 12.3e-3, but calculators do tend to do floating-
point arithmetic. Similarly, we suspect that we’ll have to accept parentheses to
have our calculator deemed useful.

How do we represent such tokens in our program? We could try to keep
track of where each token started (and ended), but that gets messy (especially if
we allow expressions to span line boundaries). Also, if we keep a number as a
string of characters, we later have to figure out what its value is; that is, if we see
42 and store the characters 4 and 2 somewhere, we then later have to figure out
that those characters represent the numerical value 42 (i.c., 4*10+2). The obvious
— and conventional — solution is to represent each token as a (kind,value) pair.
The kind tells us if a token is a number, an operator, or a parenthesis. For a num-
ber, and in this example only for a number, we use its numerical value as its value.

So how do we express the idea of a (kind,value) pair in code? We define a type
Token to represent tokens. Why? Remember why we use types: they hold the
data we need and give us useful operations on that data. For example, ints hold
integers and give us addition, subtraction, multiplication, division, and remain-
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der, whereas strings hold sequences of characters and give us concatenation and
subscripting. The C++ language and its standard library give us many types
such as char, int, double, string, vector, and ostream, but not a Token type. In
fact, there is a huge number of types — thousands or tens of thousands — that we
would like to have, but the language and its standard library do not supply them.
Among our favorite types that are not supported are Matrix (see Chapter 24),
Date (see Chapter 9), and infinite precision integers (try searching the web for
“Bignum”). If you think about it for a second, you'll realize that a language can-
not supply tens of thousands of types: who would define them, who would im-
plement them, how would you find them, and how thick would the manual have
to be? Like most modern languages, C++ escapes that problem by letting us de-
fine our own types (user-defined types) when we need them.

6.3.3 Implementing tokens

What should a token look like in our program? In other words, what would we
like our Token type to be? A Token must be able to represent operators, such as +
and -, and numeric values, such as 42 and 3.14. The obvious implementation is
something that can represent what “kind” a token is and hold the numeric value
for tokens that have one:

Token: Token:
kind: plus kind: number
value: | value: 3.14

There are many ways that this idea could be represented in C++ code. Here is
the simplest that we found useful:

class Token { / a very simple user-defined type
public:

char kind;

double value;
b

A Token is a type (like int or char), so it can be used to define variables and hold
values. It has two parts (called members): kind and value. The keyword class
means “user-defined type”; it indicates that a type with zero or more members is
being defined. The first member, kind, is a character, char, so that it conveniently
can hold '+' and "*' to represent + and *. We can use it to make types like this:

Token t; //tis a Token
t.kind ='+"; / t represents a +
Token t2; /1 12 is another Token
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t2.kind='8';  // we use the digit 8 as the “kind” for numbers
t2.value = 3.14;

We use the member access notation, object_name . member_name, to access a mem-
ber. You can read t.kind as “t’s kind” and t2.value as “12’s value.” We can copy
Tokens just as we can copy ints:

Token tt=t; /l copy initialization
if (tt.kind != t.kind) error("impossible!");
t=02; /I assignment

cout << t.value;  // will print 3.14

Given Token, we can represent the expression (1.5+4)*11 using seven tokens like
this:

e ) 7 O
SR o e A 5 T

Note that for simple tokens, such as +, we don't need the value, so we don’t use
its value member. We needed a character to mean “number™ and picked '8' just
because '8' obviously isn’t an operator or a punctuation character. Using '8' to
mean “number” is a bit cryptic, but it'll do for now.

Token is an example of a C++ user-defined type. A user-defined type can
have member functions (operations) as well as data members. There can be
many reasons for defining member functions. Here, we'll just provide two mem-
ber functions to give us a more convenient way of initializing Tokens:

class Token {

public:
char kind; /f what kind of token
double value; /f for numbers: a value

Token(char ch) / make a Token from a char
:kind(ch), value(0) { }
Token(char ch, double val)  // make a Token from a char and a double
:kind(ch), value(val) { }
b1

These two member functions are of a special kind called constructors. They have
the same name as their type and are used to initialize (“construct”) Token objects.
For example:

Token t1('+"); // initialize 11 so that t1.kind = '+'
Token t2('8',11.5); // initialize 12 so that t2.kind = '8' and t2.value = 11.5
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In the first constructor, :kind(ch), value(0) means “Initialize kind to ch and set
value to 0.” In the second constructor, :kind(ch), value(val) means “Initialize kind
to ch and set value to val.” In both cases, nothing more needs to be done to con-
struct the Token, so the body of the function is empty: { }. The special initializer
syntax (a member inttializer list) starting with a colon is used only in constructors.
Note that a constructor does not return a value. No return type is required
(or allowed) for a constructor. For more about constructors, see §9.4.2 and §9.7.

6.3.4 Using tokens

So, maybe now we can complete our calculator! However, maybe a small amount
of planning ahead would be worthwhile. How would we use Tokens in the calcu-
lator? We can read out input into a vector of Tokens:

Token get_token(); //read a token from cin
vector<Token> tok; // we'll put the tokens here

int main()
{
while (cin) {
Token t = get_token();
tok.push_back(t);

Wi
}

Now we can read an expression first and evaluate later. For example, for 11*12,

we get

We can look at that to find the multiplication and its operands. Having done that,
we can easily perform the multiplication because the numbers 11 and 12 are
stored as numeric values and not as strings.

Now let’s look at more complex expressions. Given 1+2*3, tok will contain
five Tokens:
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Now we could find the multiply operation by a simple loop:

for (inti = 0; i<tok.size(); ++i) {
if (tok[il.kind=="*") { /l we found a multiply!
double d = tok[i-1].value*tok[i+1].value;
/l now what?

}

Yes, but now what? What do we do with that product d? How do we decide in
which order to evaluate the sub-expressions? Well, + comes before * so we can’t
just evaluate from left to right. We could try right-to-left evaluation! That would
work for 1+2*3 but not for 1*2+3. Worse still, consider 1+2*3+4. This example
has to be evaluated “inside out™: 1+(2*3)+4. And how will we handle parentheses,
as we eventually will have to do? We seem to have hit a dead end. We need to
back off, stop programming for a while, and think about how we read and un-
derstand an input string and evaluate it as an arithmetic expression.

So, this first enthusiastic attempt to solve the problem (writing a calculator) ran
out of steam. That’s not uncommon for first tries, and it serves the important role
of helping us understand the problem. In this case, it even gave us the useful notion
of a token, which itself is an example of the notion of a (name,value) pair that we will
encounter again and again. However, we must always make sure that such rela-
tively thoughtless and unplanned “coding” doesn’t steal too much time. We should
do very little programming before we have done at least a bit of analysis (under-
standing the problem) and design (deciding on an overall structure of a solution).

TRY THIS

On the other hand, why shouldn’t we be able to find a simple solution to this
problem? It doesn’t seem to be all that difficult. If nothing else, trying would
give us a better appreciation of the problem and the eventual solution. Con-
sider what you might do right away. For example, look at the input 12.5+2.
We could tokenize that, decide that the expression was simple, and compute
the answer. That may be a bit messy, but straightforward, so maybe we
could proceed in this direction and find something that’s good enough! Con-
sider what to do if we found both a + and a * in the line 2+3*4? That too can
be handled by “brute force.” How would we deal with a complicated expres-
sion, such as 14+2*3/4%5+(6-7*(8))? And how would we deal with errors,
such as 2+*3 and 2&3? Consider this for a while, maybe doodling a bit on a
piece of paper trying to outline possible solutions and interesting or impor-
tant input expressions.
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6.3.5 Back to the drawing board

Now, we will look at the problem again and try not to dash ahead with another
half-baked solution. One thing that we did discover was that having the program
(calculator) evaluate only a single expression was tedious. We would like to be
able to compute several expressions in a single invocation of our program; that is,
our pseudo code grows to

while (not_finished) {
read_a_line
calculate /! do the work
write_result

}

Clearly this is a complication, but when we think about how we use calculators,
we realize that doing several calculations is very common. Could we let the user
invoke our program several times to do several calculations? We could, but pro-
gram startup is unfortunately (and unreasonably) slow on many modern operat-
ing systems, so we'd better not rely on that.

As we look at this pseudo code, our early attempts at solutions, and our ex-
amples of use, several questions — some with tentative answers — arise:

1. If we type in 45+5/7, how do we find the individual parts 45, +, 5, /, and 7
in the input? (Tokenize!)

2. What terminates an input expression? A newline, of course! (Always be
suspicious of “of course™: “of course” is not a reason.)

3. How do we represent 45+5/7 as data so that we can evaluate it? Before
doing the addition we must somehow turn the characters 4 and 5 into
the integer value 45 (i.c., 4*10+5). (So tokenizing is part of the solution.)

4. How do we make sure that 45+5/7 is evaluated as 45+(5/7) and not as
(45+5)/7?

5. What's the value of 5/7? About .71, but that’s not an integer. Based on
experience with calculators, we know that people would expect a
floating-point result. Should we also allow floating-point inputs? Sure!

6. Can we have variables? For example, could we write
v=7
m=9
v'm
Good idea, but let's wait until later. Let’s first get the basics working.

Possibly the most important decision here is the answer to question 6. In
§7.8, you'll see that if we had said yes we'd have almost doubled the size of the
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initial project. That would have more than doubled the time needed to get the ini-
tial version running. Our guess is that if you really are a novice, it would have at
least quadrupled the effort needed and most likely pushed the project beyond
your patience. It is most important to avoid “feature creep” early in a project. In-
stead, always first build a simple version, implementing the essential features
only. Once you have something running, you can get more ambitious. It is far
casier to build a program in stages than all at once. Saying yes to question 6
would have had yet another bad effect: it would have made it hard to resist the
temptation to add further “neat features” along the line. How about adding the
usual mathematical functions? How about adding loops? Once we start adding
“neat features” it is hard to stop.

From a programmer’s point of view, questions 1, 3, and 4 are the most both-
ersome. They are also related, because once we have found a 45 or a +, what do
we do with them? That is, how do we store them in our program? Obviously, to-
kenizing is part of the solution, but only part.

What would an experienced programmer do? When we are faced with a
tricky technical question, there often is a standard answer. We know that people
have been writing calculator programs for at least as long as there have been
computers taking symbolic input from a keyboard. That is at least for 50 years,
There has to be a standard answer! In such a situation, the experienced program-
mer consults colleagues and/or the literature. It would be silly to barge on, hop-
ing to beat 50 years of experience in a morning.

6.4 Grammars

There is a standard answer to the question of how to make sense of expressions:
first input characters are read and assembled into tokens (as we discovered). So if
you type in

45+11.5/7
the program should produce a list of tokens representing

45

+

11.5

7

A token is a sequence of characters that represents something we consider a unit,
such as a number or an operator.
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After tokens have been produced, the program must ensure that complete
expressions are understood correctly. For example, we know that 45+11.5/7
means 45+(11.5/7) and not (45+11.5)/7, but how do we teach the program that
useful rule (division “binds tighter” than addition)? The standard answer is that
we write a grammar defining the syntax of our input and then write a program
that implements the rules of that grammar. For example:

/I a simple expression grammar:

Expression:

Term

Expression "+" Term /l addition

Expression "-" Term / subtraction
Term:

Primary

Term "*" Primary /l multiplication

Term "/" Primary / division

Term "%" Primary /l remainder (modulo)
Primary:

Number

"(" Expression ")" // grouping
Number:

floating-point-literal

This is a set of simple rules. The last rule is read “A Number is a floating-point-
literal.” The next-to-last rule says, “A Primary is a Number or (' followed by an
Expression followed by ')'.” The rules for Expression and Term are similar; each
is defined in terms of one of the rules that follow.

As seen in §6.3.2, our tokens — as borrowed from the C++ definition — are

* floating-point-literal (as defined by C++, e.g., 3.14, 0.274e2, or 42)
* +,-, %/, % (the operators)
* (,) (the parentheses)

From our first tentative pseudo code to this approach using tokens and a gram-
mar is actually a huge conceptual jump. It’s the kind of jump we hope for but
rarely manage without help. This is what experience, the literature, and Mentors
arc for.

At first glance, a grammar probably looks like complete nonsense. Technical
notation often does. However, please keep in mind that it is a general and elegant
(as you will eventually appreciate) notation for something you have been able to
do since middle school (or earlier). You have no problem calculating 1-2*3 and
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142-3 and 3*2+4/2. It seems hardwired in your brain. However, could you ex-
plain how you do it? Could you explain it well enough for someone who had
never seen conventional arithmetic to grasp? Could you do so for every combi-
nation of operators and operands? To articulate an explanation in sufficient detail
and precisely enough for a computer to understand, we need a notation — and a
grammar is a most powerful and conventional tool for that.

How do you read a grammar? Basically, given some input. you start with the
“top rule,” Expression, and search through the rules to find a match for the to-
kens as they are read. Reading a stream of tokens according to a grammar is
called parsing, and a program that does that is often called a parser or a syntax ana-
lyzer. Our parser reads the tokens from left to right, just like we type them and
read them. Let’s try something really simple: Is 2 an expression?

1. An Expression must be a Term or end with a Term. That Term must be a
Primary or end with a Primary. That Primary must start with a (or be a
Number. Obviously, 2 is not a (, but a floating-point-literal. which is a
Number, which is a Primary.

2. That Primary (the Number 2) isn’t preceded by a /, *, or %, so it is a
complete Term (rather than the end of a/, *, or % expression).

3. That Term (the Primary 2) isn't preceded by a + or -, so it is a complete
Expression (rather than the end of a + or - expression).

So yes, according to our grammar, 2 is an expression. We can illustrate the pro-
gression through the grammar like this:




6.4 GRAMMARS

This represents the path we followed through the definitions. Retracing our path,
we can say that 2 is an Expression because 2 is a floating-point-literal, which is a
Number, which is a Primary, which is a Term, which is an Expression.

Let’s try something a bit more complicated: Is 2+3 an Expression? Naturally,
much of the reasoning is the same as for 2:

1. An Expression must be a Term or end with a Term, which must be a
Primary or end with a Primary, and a Primary must start with a ( or be a
Number. Obviously 2 is not a (, but it is a floating-point-literal, which is
a Number, which is a Primary.

2. That Primary (the Number 2) isn’t preceded by a /, *, or %, so it is a com-
plete Term (rather than the end of a /, *, or % expression).

3. That Term (the Primary 2) is followed by a +, so it is the end of the first
part of an Expression and we must look for the Term after the +. In ex-
actly the same way as we found that 2 was a Term, we find that 3 is a
Term. Since 3 1s not followed by a + or a - it is a complete Term (rather
than the first part of a + or - Expression). Therefore, 2+3 matches the
Expression + Term rule and is an Expression.

Again, we can illustrate this reasoning graphically (again leaving out the floating-
point-literal to Number rule to simplify):

This represents the path we followed through the definitions. Retracing our path,
we can say that 243 is an Expression because 2 is a term which is an Expression, 3
is a Term, and an Expression followed by + followed by a Term is an Expression.
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The real reason we are interested in grammars is that they can solve our
problem of how to correctly parse expressions with both + and *, so let’s try
45+11.5*7. However, “playing computer” following the rules in detail as we did
above is tedious, so let’s skip some of the intermediate steps that we have already
gone through for 2 and 2+3. Obviously, 45, 11.5, and 7 are all floating-point-
literals which are Numbers, which are Primarys, so we can ignore all rules below
Primary. So we get:

1. 45 is an Expression followed by a +, so we look for a Term to finish the
Expression+Term rule.

2. 11.51s a Term followed by *, so we look for a Primary to finish the Term*
Primary rule.

3. 7 is Primary, so 11.5*7 is a Term according to the Term*Primary rule.
Now we can see that 45+11.5*7 is an Expression according to the
Expression*Term rule. In particular, it is an Expression that first does the
multiplication 11.5*7 and then the addition 45+11.5*7, just as if we had
written 45+(11.5*7).

Again, we can illustrate this reasoning graphically (again leaving out the floating-
point-literal to Number rule to simplify):

Again, this represents the path we followed through the definitions. Note how the
Term * Primary rule ensures that 11.5 is multiplied by 7 rather than added to 45.
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You may find this logic hard to follow at first, but many humans do read
grammars, and simple grammars are not hard to understand. However, we were
not really trying to teach you to understand 2+2 or 45+11.5*7. Obviously, you
knew that already. We were trying to find a way for the computer to “under-
stand” 45+11.5*7 and all the other complicated expressions you might give it to
evaluate. Actually, complicated grammars are not fit for humans to read, but
computers are good at it. They follow such grammar rules quickly and correctly
with the greatest of ease. Following precise rules is exactly what computers are
good at.

6.4.1 A detour: English grammar

If you have never before worked with grammars, we expect that your head is
now spinning. In fact, it may be spinning even if you have seen a grammar be-

fore, but take a look at the following grammar for a very small subset of English:

Sentence :
Noun Verb /le.g., C++ rules
Sentence Conjunction Sentence  // e.g., Birds fly but fish swim

Conjunction :
"and"
Ilor"
Ilbu‘"

Noun :
"birds"
"fish"
tlc++ll

Verb :
"rules"
H’fIyll
'l!swimll

A sentence is built from parts of speech (e.g., nouns, verbs, and conjunctions). A
sentence can be parsed according to these rules to determine which words are
nouns, verbs, etc. This simple grammar also includes semantically meaningless
sentences such as “C++ fly and birds rules,” but fixing that is a different matter
belonging in a far more advanced book.

Many have been taught/shown such rules in middle school or in foreign lan-
guage class (e.g., English classes). These grammar rules are very fundamental. In
fact, there are serious neurological arguments for such rules being hardwired into
our brains!
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Now look at a parsing tree as we used above for expressions, but used here

for simple English:

This is not all that complicated. If you had trouble with §6.4 then please go back
and reread it from the beginning: it may make more sense the second time
through!

6.4.2 Writing a grammar
How did we pick those expression grammar rules? “Experience” is the honest
answer. The way we do it is simply the way people usually write expression
grammars. However, writing a simple grammar is pretty straightforward: we
need to know how to

0 1. Distinguish a rule from a token

Put one rule after another (sequencing)

Express alternative patterns (alternation)

Express a repeating pattern (repetition)

Recognize the grammar rule to start with

A ol ol
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Different textbooks and different parser systems use different notational conven-
tions and different terminology. For example, some call tokens ferminals and rules
non-termmals or productions. We simply put tokens in (double) quotes and start with
the first rule. Alternatives are put on separate lines. For example:

List:

"{" Sequence "}"
Sequence:

Element

Element " ," Sequence
Element:

I'IA"

"BH

So a Sequence 1s cither an Element or an Element followed by a Sequence using
a comma for separation. An Element is cither the letter A or the letter B. A List is
a Sequence in “curly brackets.” We can generate these Lists (how?):

{A}

{B}

{AB}
{A/AAAB}

However, these are not lists (why not?):

{}

A
{AAAAB
{AlAlcfA?B }
{ABC}
{AAAAB, }

This sequence rule is not one you learned in kindergarten or have hardwired
into your brain, but it is still not rocket science. See §7.4 and §7.8.1 for examples
of how we work with a grammar to express syntactic ideas.

6.5 Turning a grammar into code

There are many ways of getting a computer to follow a grammar. We'll use the
simplest one: we simply write one function for each grammar rule and use our
type Token to represent tokens. A program that implements a grammar is often
called a parser.
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6.5.1 Implementing grammar rules
To implement our calculator, we need four functions: one to read tokens plus one

for each rule in our grammar:
get_token() /l read characters and compose tokens
/I uses cin

expression()  // deal with + and -
/ calls term() and get_token()

term() // deal with *, /, and %
/l calls primary() and get_token()
primary() // deal with numbers and parentheses

// calls expression() and get_token()

b Note: Each function deals with a specific part of an expression and leaves every-
thing else to other functions; this radically simplifies each function. This is much
like a group of humans dealing with problems by letting each person handle
problems in his or her own specialty, handing all other problems over to
colleagues.

What should these functions actually do? Each function should call other
grammar functions according to the grammar rule it is implementing and
get_token() where a token is required in a rule. For example, when primary()
tries to follow the (Expression) rule, it must call

get_token() // to deal with ( and )
expression()  //to deal with Expression

What should such parsing functions return? How about the answer we really
wanted? For example, for 2+3, expression() could return 5. After all, the informa-
tion is all there. That's what we'll try! Doing so will save us from answering one
of the hardest questions from our list: “How do I represent 45+5/7 as data so that
I can evaluate it?” Instead of storing a representation of 45+5/7 in memory, we
simply evaluate it as we read it from input. This little idea is really a major break-
through! It will keep the program at a quarter of the size it would have been had
we had expression() return something complicated for later evaluation. We just
saved ourselves about 80% of the work.

The “odd man out” is get_token(): because it deals with tokens, not expres-
sions, it can’t return the value of a sub-expression. For example, + and ( are not
expressions. So, it must return a Token. We conclude that we want

/l functions to match the grammar rules:
Token get_token()  //read characters and compose tokens
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double expression() // deal with + and -
double term() /! deal with *, /, and %
double primary() /I deal with numbers and parentheses

6.5.2 Expressions
Let’s first write expression(). The grammar looks like this:

Expression:
Term
Expression '+' Term
Expression '-' Term

Since this is our first attempt to turn a set of grammar rules into code, we'll pro-
ceed through a couple of false starts. That's the way it usually goes with new
techniques, and we learn useful things along the way. In particular, a novice pro-
grammer can learn a lot from looking at the dramatically different behavior of
similar picces of code. Reading code is a useful skill to cultivate.

6.5.2.1 Expressions: first try

Looking at the Expression '+' Term rule, we try first calling expression(), then
looking for + (and -) and then term():

double expression()

{
double left = expression();  // read and evaluate an Expression
Token t = get_token(); /l get the next token
switch (t.kind) { /! see which kind of token it is
case '+':
return left + term(); // read and evaluate a Term,
// then do an add
case '-':
return left — term(); /l read and evaluate a Term,
// then do a subtraction
default:
return left; /l return the value of the Expression
}
}

It looks good. It is almost a trivial transcription of the grammar. It is quite simple,
really: first read an Expression and then see if it is followed by a + or a—, and if it
is, read the Term.
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Unfortunately, that doesn’t really make sense. How do we know where the ex-
pression ends so that we can look for a + or a -? Remember, our program reads left
to right and can’t peek ahead to see if a + is coming. In fact, this expression() will
never get beyond its first line: expression() starts by calling expression() which
starts by calling expression() and so on “forever” This is called an mfinile recursion
and will in fact terminate after a short while when the computer runs out of mem-
ory to hold the “never-ending” sequence of calls of expression(). The term recursion
is used to describe what happens when a function calls itself. Not all recursions are
infinite, and recursion is a very useful programming technique (see §8.5.8).

6.5.2.2 Expressions: second try

So what do we do? Every Term is an Expression, but not every Expression is a
Term; that is, we could start looking for a Term and look for a full Expression
only if we found a + or a -. For example:

double expression()

{
double left = term(); // read and evaluate a Term
Token t = get_token(); // get the next token
switch (t.kind) { // see which kind of token that is
case '+':
return left + expression(); // read and evaluate an Expression,
breav // then do an add
case '-';
return left — expression(); // read and evaluate an Expression,
KiCa I // then do a subtraction
default:
return left; /l return the value of the Term
}
}

This actually — more or less — works. We have tried it in the finished program
and it parses every correct expression we throw at it (and no illegal ones). It even
correctly evaluates most expressions. For example, 142 is read as a Term (with
the value 1) followed by + followed by an Expression (which happens to be a
Term with the value 2) and gives the answer 3. Similarly, 14243 gives 6. We could
go on for quite a long time about what works, but to make a long story short:
How about 1-2-3? This expression() will read the 1 as a Term, then proceed to
read 2-3 as an Expression (consisting of the Term 2 followed by the Expression
3). It will then subtract the value of 2-=3 from 1. In other words, it will evaluate
1-(2-3). The value of 1-(2-3) is 2 (positive two). However, we were taught (in
primary school or even earlier) that 1-2-3 means (1-2)-3 and therefore has the
value -4 (negative four).
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So we got a very nice program that just didn’t do the right thing. That’s dan-
gerous. It is especially dangerous because it gives the right answer in many cases.
For example, 14243 gives the right answer (6) because 1+(2+3) equals (1+2)+3.
What fundamentally, from a programming point of view, did we do wrong? We
should always ask ourselves this question when we have found an error. That
way we might avoid making the same mistake again, and again, and again.

Fundamentally, we just looked at the code and guessed. That’s rarely good
enough! We have to understand what our code is doing and we have to be able
to explain why it does the right thing.

Analyzing our errors is often also the best way to find a correct solution.
What we did here was to define expression() to first look for a Term and then, if
that Term is followed by a + or a -, look for an Expression. This really imple-
ments a slightly different grammar:

Expression:
Term
Term '+' Expression /l addition
Term '-' Expression // subtraction

The difference from our desired grammar is exactly that we wanted 1-2-3 to be
the Expression 1-2 followed by - followed by the Term 3, but what we got here
was the Term 1 followed by - followed by the Expression 2-3; that is, we wanted
1-2-3 to mean (1-2)-3 but we got 1-(2-3).

Yes, debugging can be tedious, tricky, and time-consuming, but in this case
we are really working through rules you learned in primary school and learned
to avoid without too much trouble. The snag is that we have to teach the rules to
a computer — and a computer is a far slower learner than you are.

Note that we could have defined 1-2-3 to mean 1-(2-3) rather than (1-2)-3
and avoided this discussion altogether. Often, the trickiest programming prob-
lems come when we must match conventional rules that were established by and
for humans long before we started using computers.

6.5.2.3 Expressions: third time lucky

So, what now? Look again at the grammar (the correct grammar in §6.5.2): any
Expression starts with a Term and such a Term can be followed by a + or a -. So,
we have to look for a Term, see if it is followed by a + or a -, and keep doing that
until there are no more plusses or minuses. For example:

double expression()

{
double left = term(); // read and evaluate a Term
Token t = get_token(); // get the next token
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while ( t.kind=="+'|| t.kind=="-") { //look fora + ora -
if (t.kind =="'+")

left += term(); // evaluate Term and add
else
left —= term(); /l evaluate Term and subtract
t = get_token();
}
return left; /f finally: no more + or —; return the answer

}

This is a bit messier: we had to introduce a loop to keep looking for plusses and
minuses. We also got a bit repetitive: we test for + and - twice and twice call
get_token(). Because it obscures the logic of the code, let’s just get rid of the du-
plication of the test for + and -:

double expression()

{
double left = term(); // read and evaluate a Term
Token t = get_token(); // get the next token
while(true) {
switch(t.kind) {
case '+':
left += term(); /l evaluate Term and add
t = get_token();
break;
case '-':
left —= term(); /l evaluate Term and subtract
t = get_token();
break;
default:
return left; // finally: no more + or —; return the answer
}
}
}

Note that — except for the loop — this is actually rather similar to our first try
(§6.5.3.1). What we have done is to remove the mention of expression() within
expression() and replace it with a loop. In other words, we translated the
Expression in the grammar rules for Expression into a loop looking for a Term
followed by a + or a -.

6.5.3 Terms
The grammar rule for Term is very similar to the Expression rule:
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Term:
Primary
Term '*' Primary
Term '/' Primary
Term '%' Primary

Consequently, the code should be very similar also. Here is a first try:

double term()

{
double left = primary();
Token t = get_token();
while(true) {
switch (t.kind) {
case '*';
left *= primary();
t = get_token();
break;
case '/":
left /= primary();
t = get_token();
break;
case '%'":
left %= primary();
t = get_token();
break;
default:
return left;
}
}
}

Unfortunately, this doesn’t compile: the remainder operation (%) is not defined O
for floating-point numbers. The compiler kindly tells us so. When we answered
question 4 above — “Should we also allow floating-point inputs?” — with a confi-

dent “Sure!” we actually hadn’t thought the issue through and fell victim to
Jeature creep. That always happens! So what do we do about it? We could at run-

time check that both operands of % are integers and give an error if they are not.

Or we could simply leave % out of our calculator. Let’s take the simplest choice

for now. We can always add % later; see §7.5.

After we eliminate the % case, the function works: terms are correctly parsed
and evaluated. However, an experienced programmer will notice an undesirable
detail that makes term() unacceptable. What would happen if you entered 2/0? You
can't divide by zero. If you try, the computer hardware will detect it and terminate
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your program with a somewhat unhelpful error message. An inexperienced pro-
grammer will discover this the hard way. So, we'd better check and give a decent

EITOr message:

double term()
{
double left = primary();
Token t = get_token();
while(true) {
switch (t.kind) {
case '*'":
left *= primary();
t = get_token();
break;
case '/":
{ double d = primary();
if (d == 0) error("divide by zero");
left /= d;
t = get_token();
break;
}
default:
return left;

}

}

Why did we put the statements handling / into a block? The compiler insists. If
you want to define and initialize variables within a switch-statement, you must
place them inside a block.

6.5.4 Primary expressions
The grammar rule for primary expressions is also simple:

Primary:
Number
'(' Expression ')’

The code that implements it is a bit messy because there are more opportunities
for syntax errors:
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double primary()
{
Token t = get_token();
switch (t.kind) {
case'('s  //handle (" expression ')’
{ double d = expression();
t = get_token();
if (t.kind !=")") error("")' expected");

return d;
}
case '8': /] we use '8' to represent a number
return t.value; // return the number’s value
default:

error("primary expected");
}
}

Basically there is nothing new compared to expression() and term(). We use the
same language primitives, the same way of dealing with Tokens, and the same
programming techniques.

6.6 Trying the first version

To run these calculator functions, we need to implement get_token() and provide
a main(). The main() is trivial: we just keep calling expression() and printing out
its result:

int main()

try {
while (cin)

cout << expression() << "\n';

keep_window_open();

}

catch (exception& e) {
cerr << e.what() << endl;
keep_window_open ();
return 1;

}

catch (...) {
cerr << "exception\n";
keep_window_open ();
return 2;
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The error handling is the usual “boilerplate™ (§5.6.3). Let us postpone the de-
scription of the implementation of get_token() to §6.8 and test this first version of
the calculator.

TRY THIS

~»  This first version of the calculator program (including get_token()) is avail-

able as file calculator00.cpp. Get it to run and try it out.

Unsurprisingly, this first version of the calculator doesn’t work quite as we ex-
pected. So we shrug and ask, “Why not?” or rather, “So, why does it work the
way it does?” and “What does it do?” Type a 2 followed by a newline. No re-
sponse. Try another newline to see if it’s asleep. Still no response. Type a 3 fol-
lowed by a newline. No response! Type a 4 followed by a newline. It answers 2!
Now the screen looks like this:

2

3
4
2

We carry on by typing 5+6+7. The program responds with a 5, so that the screen
looks like this:

2

3
4
2
5+6+7
5

Unless you have programmed before, you are most likely very puzzled! In fact,
even an experienced programmer might be puzzled. What's going on here? At
this point, you try to get out of the program. How do you do this? We “forgot” to
program an exit command, but an error will cause the program to exit, so you
type an x and the program prints Bad token and exits. Finally, something worked
as planned!

However, we forgot to distinguish between input and output on the screen.
Before we try to solve the main puzzle, let’s just fix the output to better see what
we are doing. Adding an = to indicate output will do for now:
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while (cin) cout << "=" << expression() << '\n'; //version 1
Now, entering the exact sequence of characters as before, we get
2

3

4

=2

5+6+7

=5

X

Bad token

Strange! Ty to figure out what the program did. We tried another few examples,
but let’s just look at this. This is a puzzle:

Why didn’t the program respond after the first 2 and 3 and the newlines?
Why did the program respond with 2, rather than 4, after we entered 4?
Why did the program answer 5, rather than 18, after 5+6+7?

There are many possible ways of proceeding from such mysterious results. We'll
examine some of those in the next chapter, but here, let’s just think. Could the
program be doing bad ar%LPmetic? That’s most unlikely; the value of 4 isn’t 2,
and the value of 5+647 s 18 rather than 5. Consider what happens when we
enter 12 3 445 6+7 8+9 10 11 12 followed by a newline. We get

1234+56+78+9101112

=6
=8
=10

Huh? No 2 or 3. Why 4 and not 9 (that is, 4+5)? Why 6 and not 13 (that is, 6+7)?
Look carefully: the program is outputting every third token! Maybe the program
“eats” some of our input without evaluating it? It does. Consider expression():

double expression()
{
double left = term(); /l read and evaluate a Term
Token t = get_token(); /I get the next token
while(true) {
switch(t.kind) {



CHAPTER 6 « WRITING A PROGRAM

case '+':
left += term(); /f evaluate Term and add
t=get_token();
break;
case '-':
left == term(); // evaluate Term and subtract
t = get_token();
break;
default:
return left; / finally: no more + or —; return the answer
¥

When the Token returned by get_token() is not a '+' or a '=' we just return. We
don’t use that token and we don’t store it anywhere for any other function to use
later. That’s not smart. Throwing away input without even determining what it is
can’t be a good idea. A quick look shows that term() has exactly the same prob-
lem. That explains why our calculator ate two tokens for each that it used.

Let us modify expression() so that it doesn’t “eat” tokens. Where would we
put that next token (t) when the program doesn’t need it? We could think of
many elaborate schemes, but let’s jump to the obvious answer (“obvious™ once
you see it): that token is going to be used by some other function that is reading
tokens from the input, so let’s put the token back into the input stream so that it
can be read again by some other function! Actually, you can put characters back
into an istream, but that’s not really what we want. We want to deal with tokens,
not mess with characters. What we want is an input stream that deals with to-
kens and that you can put an already read token back into.

So, assume that we have a stream of tokens — a “Token_stream” — called ts. As-
sume further that a Token_stream has a member function get() that returns the next
token and a member function putback(t) that puts a token t back into the stream.
We'll implement that Token_stream in §6.8 as soon as we have had a look at how it
needs to be used. Given Token_stream, we can rewrite expression() so that it puts a
token that it does not use back into the Token_stream:

double expression()
{
double left = term(); // read and evaluate a Term
Token t = ts.get(); / get the next Token from the Token stream

while(true) {
switch(t.kind) {
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case '+":
left += term(); // evaluate Term and add
t=1ts.get();
break;
case '-':
left —= term(); /l evaluate Term and subtract
t =ts.get();
break;
default:
ts.putback(t); //putt back into the token stream
return left; // finally: no more + or —; return the answer

}
In addition, we must make the same change to term():

double term()
{
double left = primary();
Token t = ts.get(); /I get the next Token from the Token stream

while(true) {
switch (t.kind) {
case '*':
left *= primary();
t = ts.get();
break;
case '/':
{ double d = primary();
if (d == 0) error("divide by zero");

left /= d;
t=ts.get();
break;
}
default:
ts.putback(t); // put t back into the Token stream
return left;
}
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For our last parser function, primary(), we need just to change get_token() to
ts.get(): primary() uses every token it reads.

6.7 Trying the second version

So, we are ready to test our second version. Type 2 followed by a newline. No re-
sponse. Try another newline to see if it’s asleep. Still no response. Type a 3 fol-
lowed by a newline and it answers 2. Try 242 followed by a newline and it
answers 3. Now your screen looks like this:

Hmm. Maybe our introduction of putback() and its use in expression() and
term() didn’t fix the problem. Let’s try another test:

2342+32%3
=2
=3
=4
=5

Yes! These are correct answers! But the last answer (6) is missing. We still have a
token-look-ahead problem. However, this time the problem is not that our code
“eats” characters, but that it doesn’t get any output for an expression untl we
enter the following expression. The result of an expression isn’t printed immedi-
ately; the output is postponed until the program has seen the first token of the
next expression. Unfortunately, the program doesn’t see that token until we hit
Return after the next expression. The program isn’t really wrong; it is just a bit
slow responding.

How can we fix this? One obvious solution is to require a “print command.”
So, let’s accept a semicolon after an expression to terminate it and trigger output.
And while we are at it, let’s add an “exit command” to allow for graceful exit.
The character q (for “quit”) would do nicely for an exit command. In main(), we
have

while (cin) cout << "=" << expression() <<"\n';  //version 1
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We can change that to the messier but more useful
double val = 0;
while (cin) {

Token t = ts.get();

if (t.kind =="q") break; /'q" for “quit”

if (t.kind==";") /' for “print now”
cout << "=" << val << "\n';

else
ts.putback(t);

val = expression();

}

Now the calculator is actually usable. For example, we get

2;

=12
243;
=h
3+4*5;
=23

q

At this point we have a good initial version of the calculator. It’s not quite what
we really wanted, but we have a program that we can use as the base for making
a more acceptable version. Importantly, we can now correct problems and add
features one by one while maintaining geworking program as we go along.

6.8 Token streams

Before further improving our calculator, let us show the implementation of
Token_stream. After all, nothing — nothing at all — works until we get correct input.
We implemented Token_stream first of all but didn’t want too much of a digression
from the problems of calculation before we had shown a minimal solution.

Input for our calculator is a sequence of tokens, just as we showed for
(1.5+4)*11 above (§6.5.1). What we need is something that reads characters from
the standard input, cin, and presents the program with the next token when it
asks for it. In addition, we saw that we — that is, our calculator program — often
read a token too many, so that we must be able to put it back for later use. This is
typical and fundamental; when you see 1.5+4 reading strictly left to right, how
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could you know that the number 1.5 had been completely read without reading
the +? Until we see the + we might be on our way to reading 1.55555. So, we
need a “stream” that produces a token when we ask for one using get() and
where we can put a token back into the stream using putback(). Everything we
use in C++ has a type, so we have to start by defining the type Token_stream.
You probably noticed the public: in the definition of Token above. There, it
had no apparent reason. For Token_stream, we need it and must explain its func-
tion. A C++ user-defined type often consists of two parts: the public interface (la-
beled “public:”) and the implementation details (labeled “private:”). The idea is to
separate what a user of a type needs for convenient use from the details that we
need in order to implement the type, but that we'd rather not have users mess with:

class Token_stream {
public:
// user interface
private:
// implementation details
// (not directly accessible to users of Token_stream)

Y

Obviously, users and implementers are often just us “playing different roles,” but
making the distinction between the (public) interface meant for users and the
(private) implementation details used only by the implementer is a powerful tool
for structuring code. The public interface should contain (only) what a user
needs, which is typically a set of functions, including constructors to initialize ob-
jects. The private implementation contains what is necessary to implement those
public functions, typically data and functions dealing with messy details that the
users need not know about and shouldn’t directly use.

Let’s elaborate the Token_stream type a bit. What does a user want from it?
Obviously, we want get() and putback() functions — that’s why we invented the
notion of a token stream. The Token_stream is to make Tokens out of characters
that it reads for input, so we need to be able to make a Token_stream and to de-
fine it to read from cin. Thus, the simplest Token_stream looks like this:

class Token_stream {

public:
Token_stream(); /I make a Token_stream that reads from cin
Token get(); / get a Token
void putback(Token t); // put a Token back

private:

M implementation details

};
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That’s all a user needs to use a Token_stream. Experienced programmers will
wonder why cin is the only possible source of characters, but we decided to take
our input from the keyboard. We'll revisit that decision in a Chapter 7 exercise.

Why do we use the “verbose” name putback() rather than the logically suffi-
cient put()? We wanted to emphasize the asymmetry between get() and putback();
this is an input stream, not something that you can also use for general output.
Also, istream has a putback() function: consistency in naming is a useful property
of a system. It helps people remember and helps people avoid errors.

We can now make a Token_stream and use it:

Token_stream ts; /! a Token_stream called ts
Token t = ts.get(); // get next Token from ts
/L

ts.putback(t); /I put the Token t back into ts

That's all we need to write the rest of the calculator.

6.8.1 Implementing Token_stream

Now, we need to implement those three Token_stream functions. How do we repre-
sent a Token_stream? That is, what data do we need to store in a Token_stream for
it to do its job? We need space for any token we put back into the Token_stream. "To
simplify, let’s say we can put back at most one token at a time. That happens to be
sufficient for our program (and for many, many similar programs). That way, we
just need space for one Token and an indicator of whether that space is full or

empty:

class Token_stream {

public:
Token_stream(); // make a Token_stream that reads from cin
Token get(); // get a Token (get() is defined elsewhere)
void putback(Tokent); //puta Td®en back

private:
bool full; / is there a Token in the buffer?

Token buffer; // here is where we keep a Token put back using putback()

| H

Now we can define (“write”) the three member functions. The constructor and
putback() are easy, because they do so little, so we will define those first.
The constructor just sets full to indicate that the buffer is empty:

P i

Token_stream::Token_stream() Y w ode A4S "
:full(false), buffer(0) /! no Token in buffer
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{
}

When we define a member of a class outside the class definition itself, we have to
mention which class we mean the member to be a member of. We use the notation

class_name :: member_name

for that. In this case, we define Token_stream’s constructor. A constructor is a
member with the same name as its class.

Why would we define a member outside its class? The main answer is clar-
ity: the class definition (primarily) states what the class can do. Member function
definitions are implementations that specify how things are done. We prefer to
put them “elsewhere” where they don’t distract. Our ideal is to have every logical
entity in a program fit on a screen. Class definitions typically do that if the mem-
ber function definitions are placed elsewhere, but not if they are placed within the
class definition (“in-class”).

We initialize the class members in a member initializer list (§6.3.3); full(false)
sets a Token_stream’s member full to false and buffer(0) initializes the member
buffer with a “dummy token” we invented just for that purpose. The definition
of Token (§6:5 1 ) says that every Token must be initialized, so we couldn’t just ig-
nore Token_stream: :buffer.

The putback() member function puts its argument back into the Token_stream’s
buffer:

void Token_stream: : putback(Token t)
{
buffer=t;  // copy t to buffer
full = true; // buffer is now full

}
The keyword void (meaning “nothing”) is used to indicate that putback() doesn’t
return a value. If we wanted to make sure that we didn’t try to use putback() twice

without reading what we put back in between (using get()). we could add a test:

void Token_stream: : putback(Token t)

{
if (full) error("putback() into a full buffer");
buffer=t;  // copy t to buffer
full = true;  // buffer is now full

}

The test of full checks the precondition “There is no Token in the buffer.”
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6.8.2 Reading tokens

All the real work is done by get(). If there isn’t alrcady a Token in Token_stream::
buffer, get() must read characters from cin and compose them into Tokens:

Token Token_stream::get()
{
if (full) { /] do we already have a Token ready?
/l remove Token from buffer
full=false;
return buffer;
}

char ch;
cin>>ch;  / note that >> skips whitespace (space, newline, tab, etc.)

switch (ch) {
case';": / for “print”
case 'q': / for “quit”

case '(': case ")': case '+': case '-': case '*': case '/': case '%':
return Token(ch); // let each character represent itself

case '.":

case '0': case '1': case '2': case '3': case '4":

case '5': case '6': case '7': case '8': case '9':

{ cin.putback(ch); / put digit back into the input stream
double val;
cin >> val; /l read a floating-point number
return Token('8',val); /l let '8' represent “a number”

}

default:
error("Bad token");

}

} &

Let's examine get() in detail. First we check if we already have a Token in the
buffer. If so, we can just return that:

if (full) { /I do we already have a Token ready?
// remove Token from buffer
full=false;
return buffer;
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Only if full is false (that is, there is no token in the buffer) do we need to mess
with characters. In that case, we read a character and deal with it appropriately.
We look for parentheses, operators, and numbers. Any other character gets us
the call of error() that terminates the program:

default:
error("Bad token");

The error() function is described in §5.6.3 and we make it available in std_lib_fa-
cilities.h.

We had to decide how to represent the different kinds of Tokens; that is, we
had to choose values for the member kind. For simplicity and case of debugging,
we decided to let the kind of a Token be the parentheses and operators them-
selves. This leads to extremely simple processing of parentheses and operators:

case '(': case ')': case '+': case '-': case '*': case '/':
return Token(ch); / let each character represent itself

To be honest, we had forgotten ';' for “print” and 'q' for “quit” in our first ver-
sion. We didn’t add them untl we needed them for our second solution.

6.8.3 Reading numbers

Now we just have to deal with numbers. That's actually not that easy. How do
we really find the value of 123? Well, that’s 100+20+3, but how about 12.34, and
should we accept scientific notation, such as 12.34e5? We could spend hours or
days to get this right, but fortunately, we don’t have to. Input streams know what
C++ literals look like and how to turn them into values of type double. All we
have to do is to figure out how to tell cin to do that for us inside get():

case '.":
case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7":
case '8':case '9":

{ cin.putback(ch); // put digit back into the input stream
double val;
cin >>val; / read a floating-point number

return Token('8',val);  // let '8' represent “a number”

}

We — somewhat arbitrarily — chose '8' to represent “a number” in a Token.

How do we know that a number is coming? Well, if we guess from experi-
ence or look in a C++ reference (e.g., Appendix A), we find that a numeric literal
must start with a digit or . (the decimal point). So, we test for that. Next, we want
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to let cin read the number, but we have already read the first character (a digit or
dot), so just letting cin loose on the rest will give a wrong result. We could try to
combine the value of the first character with the value of “the rest” as read by
cin; for example, if someone typed 123, we would get 1 and cin would read 23
and we’d have to add 100 to 23. Yuck! And that’s a trivial case. Fortunately (and
not by accident), cin works much like Token_stream in that you can put a char-
acter back into it. So instead of doing any messy arithmetic, we just put the initial
character back into cin and then let cin read the whole number.

Please note how we again and again avoid doing complicated work and in-
stead find simpler solutions — often relying on library facilities. That’s the essence ()
of programming: the continuing search for simplicity. Sometimes that’s — some-
what facetiously — expressed as “Good programmers are lazy.” In that sense (and
only in that sense), we should be “lazy”; why write a lot of code if we can find a
way of writing far less?

6.9 Program structure

Sometimes, the proverb says, it's hard to see the forest for the trees. Similarly, it is
easy to lose sight of a program when looking at all its functions, classes, etc. So,
let’s have a look at the program with its details omitted:

#include "std_lib_facilities.h"

class Token {/* .. . */};
class Token_stream {/* ... */};

Token_stream::Token_stream() :full(false), buffer(0) {/*...*/}
void Token_stream:: putback(Token t) {/* . . . */}
Token Token_stream::get() {/*...*/}

Token_stream ts; N provides get() and putback()

double expression(); N declarakon so that primary() can call expression()
double primary() {/*...*/} / deal with numbers and parentheses
double term() {/* ... */} / deal with *, /, and %

double expression() {/*...*/} // deal with + and -

int main() {/* ... %/} /I main loop and deal with errors

The order of the declarations is important. You cannot use a name before it has Q
been declared, so ts must be declared before ts.get() uses it, and error() must be
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declared before the parser functions because they all use it. There is an interest-
ing loop in the call graph: expression() calls term() which calls primary() which
calls expression().

We can represent that graphically (leaving out calls to error() — everyone calls
error()):

This means that we can't just define those three functions: there is no order that al-
lows us to define every function before it is used. We need at least one declaration
that isn’t also a definition. We chose to declare (“forward declare”) expression().
But does this work? It does, for some definition of “work.” It compiles, runs,
correctly evaluates expressions, and gives decent error messages. But does it
work in a way that we like? The unsurprising answer is “Not really.” We tried the
first version in §6.6 and removed a serious bug. This second version (§6.7) is not
much better. But that’s fine (and expected). It is good enough for its main pur-
pose, which is to be something that we can use to verify our basic ideas and get
feedback from. As such, it is a success, but try it: it'll (still) drive you nuts!

TRY THIS

\ »  Get the calculator as presented above to run, see what it does, and try to fig-
ure out why it works as it does.
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V/ Drill

This drill involves a series of modifications of a buggy program to turn it from
something useless into something reasonably useful.

L5

a2

Take the calculator from the file calculator02buggy.cpp. Get it to com-
pile. You need to find and fix a few bugs. Those bugs are not in the text
in the book.

Change the character used as the exit command from q to x.

Change the character used as the print command from ; to =.

Add a greeting line in main():

“Welcome to our simple calculator.
Please enter expressions using floating-point numbers.”

Improve that greeting by mentioning which operators are available and
how to print and exit.

Find the three logic errors deviously inserted in calculator02buggy.cpp
and remove them so that the calculator produces correct results.

Review

b —

LN W

What do we mean by “Programming is understanding™?

The chapter details the creation of a calculator program. Write a short
analysis of what the calculator should be able to do.

How do you break a problem up into smaller manageable parts?

Why is creating a small, limited version of a program a good idea?

Why is feature creep a bad idea?

What are the three main phases of software development?

What is a “use case”?

What is the purpose of testing?

According to the outline in the chapter, describe the difference between a
Term, an Expression, a Number, and a Primary.,

. In the chapter, an input was broken down into its component Terms, Ex-

pressions, Primarys, and Numbers. Do this for (17+4)/(5-1).

. Why does the program not have a function called number()?

. What is a token?

. What is a grammar? A grammar rule?

. What is a class? What do we use classes for?

. What is a constructor?

. In the expression function, why is the default for the switch-statement to

“put back” the token?
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17. What is “look-ahead™?
18. What does putback() do and why is it useful?
19. Why is the remainder (modulus) operation, %, difficult to implement in
the term()?
20. What do we use the two data members of the Token class for?
21. Why do we (sometimes) split a class’s members into private and public
members?
22. What happens in the Token_stream class when there is a token in the
buffer and the get() function is called?
23. Why were the ';' and 'q' characters added to the switch-statement in the
get() function of the Token_stream class?
24. When should we start testing our program?
25. What is a “user-defined type”? Why would we want one?
26. What is the interface to a C++ “user-defined type™?
27. Why do we want to rely on libraries of code?
Terms
analysis grammar prototype
class implementation pseudo code
class member interface public
data member member function syntax analyzer
design parser token
divide by zero private use case
Exercises

1. If you haven’t already, do the Try this exercises from this chapter.

2. Add the ability to use {} as well as () in the program, so that {(4+5)*6} /
(3+4) will be a valid expression.

3. Add a factorial operator: use a suffix ! operator to represent “factorial.”
For example, the expression 7! means 7*6*5*4*3*2* 1. Make ! bind
tighter than * and /; that is, 7*8! means 7*(8!) rather than (7*8)!. Begin
by modifying the grammar to account for a higher-level operator. To
agree with the standard mathematical definition of factorial, let 0! evalu-
ateto 1.

4. Define a class Name_value that holds a string and a value. Give it a con-
structor (a bit like Token). Rework exercise 19 in Chapter 4 to use a
vector<Name_value> instcad of two vectors.

5. Add the article the to the “English” grammar in §6.4.1, so that it can de-

scribe sentences such as “The birds fly but the fish swim.”
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6.

=

10.

Write a program that checks if a sentence is correct according to the
“English” grammar in §6.4.1. Assume that every sentence is terminated
by a full stop (.) surrounded by whitespace. For example, birds fly but
the fish swim . is a sentence, but birds fly but the fish swim (terminating
dot missing) and birds fly but the fish swim. (no space before dot) are
not. For each sentence entered, the program should simply respond
“OK” or “not OK.” Hint: Don’t bother with tokens; just read into a
string using >>.

Write a grammar for logical expressions. A logical expression is much
like an arithmetic expression except that the operators are ! (not), ~
(complement), & (and), | (or), and A (exclusive or). ! and ~ are prefix
unary operators. A A binds tighter than a | (just as * binds tighter than +)
so that x|yAz means x|(y*z) rather than (xJy)*z. The & operator binds
tighter than A so that xAy&z means x* (y&z).

Redo the “Bulls and Cows” game from exercise 12 in Chapter 5 to use
four letters rather than four digits.

Write a program that reads digits and composes them into integers. For
example, 123 is read as the characters 1, 2, and 3. The program should
output “123 is 1 hundred and 2 tens and 3 ones”. The number should be
output as an int value. Handle numbers with one, two, three, or four
digits. Hint: To get the integer value 5 of the character '5' subtract '0',
that is, '5'-'0'==5.

A permutation is an ordered subset of a set. For example, say you wanted
to pick a combination to a vault. There are 60 possible numbers, and you
need three different numbers for the combination. There are 260,3) per-
mutations for the combination, where Pis defined by the formula

al

P(a,b)= (a, Ak
where ! is used as a suffix factorial operator. For example, 4! is 4*3*2*1.
Combinations are similar to permutations, except that the order of the
objects doesn’t matter. For example, if you were making a “banana split™
sundae and wished to use three different flavors of ice cream out of five
that you had, you wouldn’t care if you used a scoop of vanilla at the be-
ginning or the end; you would still have used vanilla. The formula for

combinations is:

P(a+b)
C(a,b)=%.
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Design a program that asks users for two numbers, asks them whether
they want to calculate permutations or combinations, and prints out the
result. This will have several parts. Do an analysis of the above require-
ments. Write exactly what the program will have to do. Then, go into
the design phase. Write pseudo code for the program, and break it into
sub-components. This program should have error checking. Make sure
that all erroneous inputs will generate good error messages.

Postscript

Making sense of input is one of the fundamental programming activities. Every
program somchow faces that problem. Making sense of something directly pro-
duced by a human is among the hardest problems. For example, many aspects of
voice recognition are still a research problem. Simple variations of this problem,
such as our calculator, cope by using a grammar to define the input.



Completing a Program

“It ain’t over till the fat lady sings.”

—Opera proverb

riting a program involves gradually refining your ideas
Wof what you want to do and how you want to express it.
In Chapter 6, we produced the initial working version of a calcu-
lator program. Here, we'll refine it. Completing the program —
that is, making it fit for users and maintainers — involves improv-
ing the user interface, doing some serious work on error han-
dling, adding a few useful features, and restructuring the code for

ease of understanding and modification.
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7.1 Introduction 7.7 Recovering from errors

7.2 Input and output 7.8 Variables

7.3 Error handling 7.8.1 Variables and definitions
: 7.8.2 Introducing names

7.4 Negative numbers 7.8.3 Predefined names

7.5 Remainder: % 7.8.4 Are we there yet?

7.6 Cleaning up the code

7.6.1 Symbolic constants
7.6.2 Use of functions
7.6.3 Code layout

7.6.4 Commenting

7.1 Introduction

When your program first starts running “reasonably,” you're probably about
halfway finished. For a large program or a program that could do harm if it mis-
behaved, you will be nowhere near halfway finished. Once the program “basi-
cally works,” the real fun begins! That’s when we have enough working code to
experiment with ideas.

In this chapter, we will guide you through the considerations a professional
programmer might have trying to improve the calculator from Chapter 6. Note
that the questions asked about the program and the issues considered here are far
more interesting than the calculator itself. What we do is to give an example of
how real programs evolve under the pressure of requirements and constraints
and of how a programmer can gradually improve code.

7.2 Input and output

If you look back to the beginning of Chapter 6, you'll find that we decided to
prompt the user with

Expression:
and to report back answers with
Result:

In the heat of getting the program to run, we forgot all about that. That’s pretty
typical. We can’t think of everything all the time, so when we stop to reflect, we
find that we have forgotten something.

For some programming tasks, the initial requirements cannot be changed.
That’s usually too rigid a policy and leads to programs that are unnecessarily
poor solutions to the problems that they are written to solve. So, let's consider



7.2 INPUT AND OUTPUT 2

what we would do, assuming that we can change the specification of what exactly
the program should do. Do we really want the program to write Expression: and
Result:? How would we know? Just “thinking” rarely helps. We have to try and
see what works best.

2+3; 5%7; 249;

currently gives

=35
=11

If we added Expression: and Result:, we'd get

Expression: 2+3; 5*7; 2+49;
Result : 5

Expression: Result: 35
Expression: Result: 11
Expression:

We are sure that some people will like one style and others will like the other. In
such cases, we can consider giving people a choice, but for this simple calculator
that would be overkill, so we must decide. We think that writing Expression: and
Result: is a bit too “heavy” and distracting. Using those, the actual expressions
and results are only a minor part of what appears on the screen, and since ex-
pressions and results are what matters, nothing should distract from them. On
the other hand, unless we somehow separate what the user types from what the
computer outputs, the result can be confusing. During initial debugging, we
added = as a result indicator. We would also like a short “prompt” to indicate that
the program wants input. The > character is often used as a prompt:

> 243;
=5

-
=35
=

This looks much better, and we can get it by a minor change to the main loop of
main():

double val = 0;
while (cin) {
cout<<">";  // print prompt
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Token t = ts.get();
if (t.kind =='q') break;
if (tL.kind==";")
cout<<"="<<val<<\n';  //print result
else
ts.putback(t);
val = expression();

}

Unfortunately, the result of putting several expressions on a line is still messy:

>243; 5*7; 249;
=5

>=35

>=1

>

The basic problem is that we didn’t think of multiple expressions on a line when
we started out (at least we pretended not to). What we want is

>243; 5*7; 249;
=5

=35

=1

>

This looks right, but unfortunately there is no really obvious way of achieving it.
We first looked at main(). Is there a way to write out > only if it is not immedi-
ately followed by a =? We cannot know! We need to write > before the get(), but
we do not know if get() actually reads new characters or simply gives us a Token
from characters that it had already read from the keyboard. In other words, we
would have to mess with Token_stream to make this final improvement.

For now, we decide that what we have is good enough. If we find that we
have to modify Token_stream, we'll revisit this decision. However, it is unwise to
make major structural changes to gain a minor advantage, and we haven't yet

thoroughly tested the calculator.

7.3 Error handling

The first thing to do once you have a program that “basically works” is to try to
break it; that is, we try to feed it input in the hope of getting it to misbehave. We

say “hope” because the challenge here is to find as many errors as possible, so
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that you can fix them before anybody else finds them. If you go into this exercise
with the attitude that “my program works and I don’t make errors!” you won’t
find many bugs and you'll feel bad when you do find one. You'd be playing head
games with yourself! The right attitude when testing is “I'll break it! I'm smarter
than any program — even my own!” So, we feed the calculator a mix of correct
and incorrect expressions. For example:

14+243+4+5+6+7+8
1-2-3-4

142

ire

(143;

(1+);
1*2/3%4+5-6;

0;

1+;

+1

T4+;

1/0

1/0;

1++2;

_2;

247
1234567890123456;

TRY THIS

Feed a few such “problematic” expressions to the calculator and try to figure
out in how many ways you can get it to misbehave. Can you get it to crash,
that is, to get it past our error handling and give a machine error? We don’t
think you can. Can you get it to exit without a useful error message? You
can.

Technically, this is known as testing. There are people who do this — break pro-
grams — for a living. Testing is a very important part of software development
and can actually be fun. Chapter 26 examines testing in some detail. One big
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question is: “Can we test the program systematically, so that we find all of the er-
rors?” There is no general answer to this question; that is, there is no answer that
holds for all programs. However, you can do rather well for many programs
when you approach testing seriously. You try to create test cases systematically,
and just in case your strategy for selecting tests isn’t complete, you do some “un-
reasonable” tests, such as

Mary had a little lamb

srtvrqtiewcbet7rewaewre-wqcntrretewru754389652743nvcqnwq;
{@H#$% N &* ()~:;

Once, when testing compilers, I got into the habit of feeding email reporting com-
piler errors straight to the compiler — mail headers, user’s explanation, and all.
That wasn’t “sensible” because “nobody would do that.” However, a program
ideally catches all errors, not just the sensible ones, and soon that compiler was
very resilient against “strange input.”

The first really annoying thing we noticed when testing the calculator was
that the window closed immediately after inputs such as

+1;
0
142

A little thought (or some tracing of the program’s execution) shows that the prob-
lem is that the window is closed immediately after the error message has been
written. This happens because our mechanism for keeping a window alive was to
wait for you to enter a character. However, in all three cases above, the program
detected an error before it had read all of the characters, so that there was a char-
acter left on the input line. The program can’t tell such “leftover” characters from
a character entered in response to the Enter a character to close window prompt.
That “leftover” character then closed the window.
We could deal with that by modifying main() (see §5.6.3):

catch (runtime_error& e) {
cerr << e.what() << endl;
N keep_window_open():
cout << "Please enter the character ~ to close the window\n";
char ch;
while(cin >> ch)  // keep reading until we find a ~
if (ch=="~') return 1;
return 1;



7.3 ERROR HANDLING

Basically, we replaced keep_window_open() with our own code. Note that we
still have our problem if a ~ happens to be the next character to be read after an
error, but that’s rather unlikely.

When we encountered this problem we wrote a version of keep_win-
dow_open() that takes a string as its argument and closes the window only when
you enter that string after getting the prompt, so a simpler solution is:

catch (runtime_error& e) {
cerr << e.what() << endl;
keep_window_open("~~");
return 1;

}
Now examples such as

+1
{1 B

0

will cause the calculator to give the proper error messages. then say
Please enle*--v to exit

and not exit untl you enter the string ~~,

The calculator takes input from the keyboard. That makes testing tedious:
each time we make an improvement, we have to type in a lot of test cases (yet
again!) to make sure we haven’t broken anything. It would be much better if we
could store our test cases somewhere and run them with a single command. Some
operating systems (notably Unix) make it trivial to get cin to read from a file with-
out modifying the program, and similarly to divert the output from cout to a file. If
that's not convenient, we must modify the program to use a file (see Chapter 10).

Now consider:

1+2; q
and
1+2q

We would like both to print the result (3) and then exit the program. Curiously
enough,

142 q

225
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does that, but the apparently cleaner
142; q

clicits a Primary expected error. Where would we look for this error? In main()
where ; and q are handled, of course. We added those “print” and “quit” com-
mands rather quickly to get the calculator to work (§6.6). Now we are paying for
that haste. Consider again:

double val = 0;
while (cin) {
cout<<">";
Token t = ts.get();
if (t.kind =="q') break;
if (Lkind ==";")
cout << "=" << val <<'\n';
else
ts.putback(t);
val = expression();
}

If we find a semicolon, we straightaway proceed to call expression() without
checking for q. The first thing that expression does is to look for a primary(), and
now it finds q. The letter q isn’t a primary so we get our error message. So, we
should test for q after testing for a semicolon. While we were at it, we felt the
need to simplify the logic a bit, so the complete main() reads:

int main()
try
{
while (cin) {
cout<<">";
Token t = ts.get();
while (t.kind ==";') t=ts.get(); //eat';
if (t.kind =="'q') {
keep_window_open();
return 0;
}
ts.putback(t);
cout << "=" << expression() << endl;
}
keep_window_open();
return 0;
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catch (exception& e) {
cerr << e.what() << endl;
keep_window_open("~~");
return 1;

}

catch (...) {
cerr << "exception \n";
keep_window_open("~~");
return 2;

}

This makes for reasonably robust error handling. So we can start considering
what else we can do to improve the calculator.

7.4 Negative numbers

If you tested the calculator, you found that it couldn’t handle negative numbers
clegantly. For example, this is an error:

-1/2
We have to write

(0-1)2
a8
That’s not acceptable.

Finding such problems during late debugging and testing is common. Only ()
now do we have the opportunity to see what our design really does and get the
feedback that allows us to refine our ideas. When planning a project, it is wise to
try to preserve time and flexibility to benefit from the lessons we learn here. All
too often, “release 1.0" is shipped without needed refinements because a tight
schedule or a rigid project management strategy prevents “late” changes to the
specification; “late” addition of “features” is especially dreaded. In reality, when a
program is good enough for simple use by its designers but not yet ready to ship,
it isn’t “late” in the development sequence; it’s the earliest time when we can ben-
efit from solid experience with the program. A realistic schedule takes that into
account.

In this case, we basically need to modify the grammar to allow unary minus.
The simplest change seems to be in Primary. We have

Primary:
Number
"(" Expression ")"
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and we need something like

Primary:

Number

"(" Expression ")"
"—" Primary

"+" Primary

We added unary plus because that's what C++ does. When we have unary
minus, someone always tries unary plus and it’s easier just to implement that
than to explain why it is useless. The code that implements Primary becomes

double primary()
{
Token t = ts.get();
switch (t.kind) {
case'(':  //handle '(' expression ')’
{

}

double d = expression();
t=ts.get();
if (t.kind !=")') error("")' expected");

return d;
}
case '8": /f we use '8' to represent a number
return t.value; /l return the number’s value
case '-':
return - primary();
case '+':
return primary();
default:

error("primary expected");

That’s so simple that it actually worked the first time.

7.5 Remainder: %

When we first analyzed the ideals for a calculator, we wanted the remainder
(modulo) operator: %. However, it is not defined for floating-point numbers, so
we backed off. Now we can consider it again. It should be simple:
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1. We add % as a Token.

2. We convert the doubles to ints so that we can use % on those ints.

Here is the added code in term():

case '"%":

{ double d = term();
intil = int(left);
inti2 = int(d);
return i1%i2;

}

The int(d) is an explicit notation for turning the double into an int by truncating
(that is, by throwing away whatever was after the decimal point). Unfortunately,
it's redundant (see §3.9.2), but we prefer to indicate that we know a conversion is
happening, that is, that we didn’t just accidentally and implicitly convert a dou-
ble to an int. This works in that we now get the correct results for integer
operands. For example:

> 2%3;
=0
> 3%2;

How should we handle operands that are not integers? What should be the result
of

>6.7%3.3;

There is no really good answer, so we'll prohibit the use of % on a floating-point
argument. We check if the floating-point operands have fractional parts and give
an error message if they do. Here is the resulting term():

double term()

{
double left = primary();
Token t = ts.get(); /I get the next token from Token_stream

while(true) {
switch (t.kind) {
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case '™ ]
left *= term();
t=ts.get();
break;
case '/': SELpTR
{ double d = term();
if (d == 0) error("divide by zero");
left /= d;
=ts.get();
break;
}
case '%'": 2
{ double d = term();
int i1 = int(left);
if (i1 != left) error ("left-hand operand of % not int");
inti2 = int(d);
if (12 !=d) error ("right-hand operand of % not int");
if (i2 == 0) error("%: divide by zero");
left = i11%i2;
t=ts.get();

break;

}

default:
ts.putback(t); // put t back into the Token_stream
return left;

}

}

What we do here is to use != to check if the double to int conversion changed
the value. If not, all is well and we can use %.

The problem of ensuring int operands for % is a variant of the narrowing
problem (§3.9.2 and §5.6.4). so we could solve it using narrow_cast:

case '%":
{ int i1 = narrow_cast<int>(left);
int i2 = narrow_cast<int>(term());
 (i2 == 0) error("%: divide by zero");
left = i1°/oi2;
t=ts.get();
break;
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That’s certainly shorter, and arguably clearer, but it doesn’t give quite as good
CITOr Messages.

7.6 Cleaning up the code

We have made several changes to the code. They are, we think, all improve-
ments, but the code is beginning to look a bit messy. Now is a good time to re-
view the code to see if we can make it clearer and shorter, add and improve
comments, etc. In other words, we are not finished with the program untl we
have it in a state suitable for someone else to take over maintenance. Except for
the almost total absence of comments, the calculator code really isn't that bad,
but let’s do a bit of cleanup.

7.6.1 Symbolic constants

Looking back, we find the use of '8' to indicate a Token containing a numeric
value odd. It doesn’t really matter what value is used to indicate a number Token
as long as the value is distinct from all other values indicating different kind of
Tokens. However, the code looks a bit odd and we had to keep reminding our-
selves in comments:

case '8': /l we use '8' to represent a number
return t.value; // return the number’s value
case '-':
return — primary();
1

To be honest, we also made a few mistakes, typing '0' rather than '8', because we
forgot which value we had chosen to use. In other words, using '8' directly in the
code manipulating Tokens was sloppy, hard to remember, and error-prone; '8' is one
of those “magic constants” we warned against in §4.3.1. What we should have done
was to introduce a symbolic name for the constant we used to represent number:

const char number ='8';  //t.kind==number means that t is a number Token

The const modifier simply tells the compiler that we are defining a number that
is not supposed to change: number='0' would cause the compiler to give an error
message. Given that definition of number, we don’t have to use '8' explicitly any-
more. The code fragment from primary above now becomes:

case number:

return t.value; / return the number’s value
case '-'":

return — primary();

231
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This requires no comment. We should not say in comments what can be clearly

() and directly said in code. Repeated comments explaining something are often an
indication that the code should be improved.

Similarly, the code in Token_stream: :get() that recognizes numbers becomes

case '.":
case '0': case '1': case '2': case '3': case '4":
case '5': case '6': case '7': case '8': case '9'":

{ cin.putback(); // put digit back into the input stream
double val;
cin >>val; /l read a floating-point number

return Token(number,val);

We could consider symbolic names for all tokens, but that seems overkill. After
all, '(" and '+' are about as obvious a notation for ( and + as anyone could come
up with. Looking through the tokens, only ';' for “print” (or “terminate expres-
sion”) and 'q' for “quit” seem arbitrary. Why not 'p' and 'e'? In a larger pro-
gram, it is only a matter of time before such obscure and arbitrary notation
becomes a cause of a problem, so we introduce

const charquit="q';  // tkind==quit means that t is a quit Token
const char print=";';  //tkind==print means that tis a print Token

Now we can write main()’s loop like this:

while (cin) {

cout<<">";

Token t = ts.get();

while (t.kind == print) t=ts.get();

if (t.kind == quit) {
keep_window_open();
return 0;

}

ts.putback(t);

cout << "=" << expression() << end|;

Introducing symbolic names for “print” and “quit” makes the code casier to read.
In addition, it doesn’t encourage someone reading main() to make assumptions
about how “print” and “quit” are represented on input. For example, it should
come as no surprise if we decide to change the representation of “quit” to 'e' (for
“exit”). That would now require no change in main().
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Now the strings "> " and "=" stand out. Why do we have these “magical” lit-
erals in the code? How would a new programmer reading main() guess their pur-
pose? Maybe we should add a comment? Adding a comment might be a good
idea, but introducing a symbolic name is more effective:

const string prompt = "> ";
const string result="="; /! used to indicate that what follows is a result

Should we want to change the prompt or the result indicator, we can just modify
those consts. The loop now reads

while (cin) {

cout << prompt;

Token t = ts.get();

while (t.kind ==print) t=ts.get();

if (t.kind == quit) {
keep_window_open();
return 0;

}

ts.putback(t);

cout << result << expression() << endl;

7.6.2 Use of fungtions

The functions we use should reflect the structure of our program, and the names
of the functions should identify the logically separate parts of our code. Basically,
our program so far is rather good in this respect: expression(), term(), and
primary() directly reflect our understanding of the expression grammar, and get()
handles the input and token recognition. Looking at main(), though, we notice
that it does two logically separate things:

1. main() provides general “scaffolding™: start the program, end the pro-
gram, and handle “fatal” errors.
2. main() handles the calculation loop.
Ideally, a function performs a single logical action (§4.5.1). Having main() per- C)

form both of these actions obscures the structure of the program. The obvious
solution is to separate out the calculation loop in a separate function calculate():

void calculate() /l expression evaluation loop

{
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while (cin) {
cout << prompt;
Token t = ts.get();
while (t.kind == print) t=ts.get();  // first discard all “prints”
if (t.kind == quit) return; // quit
ts.putback(t);
cout << result << expression() << endl;

}

int main()
try {
calculate();
keep_window_open(); /l cope with Windows console mode
return 0;
}
catch (runtime_error& e) {
cerr << e.what() << endl;
keep_window_open("~~");

return 1;

}

catch (...){
cerr << "exception \n";
keep_window_open("~~");
return 2;

}

This reflects the structure much more directly and is therefore casier to under-
stand.

7.6.3 Code layout
Looking through the code for ugly code, we find

switch (ch) {
case '(': case ';': case '%': case '(': case ')': case '+': case '-': case '*': case '/":
return Token(ch); // let each character represent itself

This wasn’t too bad before we added 'q'. ';', and '%', but now it’s beginning to
become obscure. Code that is hard to read is where bugs can more easily hide.
And yes, a potential bug lurks here! Using one line per case and adding a couple
of comments help. So, Token_stream’s get() becomes
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Token Token_stream::get()
/l read characters from cin and compose a Token

{

if (full) { // check if we already have a Token ready
full=false;
return buffer;

}

char ch;

cin>>ch;  // note that >> skips whitespace (space, newline, tab, etc.)

swilch (ch) {

case quit:

case print:

case '(':

case')":

case '+':

case '-':

case '*';

case '/":

case '"%'":
return Token(ch); /! let each character represent itself

case '.": /! a floating-point-literal can start with a dot

case '0': case '1': case '2': case '3': case '4":

case '5': case '6': case '7': case '8': case'9':  //numeric literal

{ cin.putback(ch); /l put digit back into the input stream
double val;
cin >> val; /l read a floating-point number
return Token(number,val);

}

default: 4
error("Bad token");

}

}

We could of course have put each digit case on a separate line also, but that
didn’t seem to buy us any clarity. Also, doing so would prevent get() from being
viewed in its entirety on a screen at once. Our ideal is for each function to fit on
the screen; one obvious place for a bug to hide is in the code that we can’t see be-
cause it’s off the screen horizontally or vertically. Code layout matters.

Note also that we changed the plain 'q' to the symbolic name quit. This im-
proves readability and also guarantees a compile-time error if we should make
the mistake of choosing a value for quit that clashes with another token name.
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When we clean up code, we might accidentally introduce errors. Always
retest the program after cleanup. Better still, do a bit of testing after each set of
minor improvements so that if something went wrong you can still remember ex-
actly what you did. Remember: Test early and often.

7.6.4 Commenting

We added a few comments as we went along. Good comments are an important
part of writing code. We tend to forget about comments in the heat of program-
ming. When you go back to the code to clean it up is an excellent time to look at
each part of the program to see if the comments you originally wrote are

1. Sl valid (you might have changed the code since you wrote the comment)
2. Adequate for a reader (they usually are not)
3. Not so verbose that they distract from the code

To emphasize that last concern: what is best said in code should be said in code.
Avoid comments that repeat an action that’s perfectly clear to somecone who
knows the programming language. For example:

x = b+c; // add b and ¢ and assign the result to x

You'll find such comments in this book, but only when we are trying to explain
the use of a language feature that might not yet be familiar to you.

Comments are for things that code expresses poorly. An example is intent:
code says what it does, not what it was intended to do (§5.9.1). Look at the cal-
culator code. There is something missing: the functions show how we process ex-
pressions and tokens, but there is no indication (except the code) what we meant
expressions and tokens to be. The grammar is a good candidate for something to
put in comments or into some documentation of the calculator.

;‘
Simple calculator

Revision history:

Revised by Bjarne Stroustrup May 2007
Revised by Bjarne Stroustrup August 2006
Revised by Bjarne Stroustrup August 2004
Originally written by Bjarne Stroustrup
(bs@cs.tamu.edu) Spring 2004.

This program implements a basic expression calculator.
Input from cin; output to cout.
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The grammar for input is:

Statement:
Expression
Print

Quit

Print:

Quit:
q

Expression:
Term
Expression + Term
Expression — Term
Term:
Primary
Term * Primary
Term / Primary
Term % Primary
Primary:
Number
( Expression )
- Primary
+ Primary
Number:
floating-point-literal

Input comes from cin through the Token_stream called ts,

%

Here we used the block comment, which starts with a /* and continues until a */.
In a real program, the revision history would contain indications of what correc-
tions and improvements were made.

Note that the comments are not the code. In fact, this grammar simplifies a
bit: compare the rule for Statement with what really happens (e.g., have a peek at
the code in the following section). The comment fails to explain the loop in
calculate() that allows us to do several calculations in a single run of the pro-
gram. We'll return to that problem in §7.8.1.

237
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7.7 Recovering from errors

Why do we exit when we find an error? That seemed simple and obvious at the
time, but why? Couldn’t we just write an error message and carry on? After all,
we often make little typing errors and such an error doesn’t mean that we have
decided not to do a calculation. So let’s try to recover from an error. That basi-
cally means that we have to catch exceptions and continue after we have cleaned
up any messes that were left behind.

Until now, all errors have been represented as exceptions and handled by
main(). If we want to recover from errors, calculate() must catch exceptions and
try to clean up the mess before trying to evaluate the next expression:

void calculate()

{
while (cin)
try {
cout << prompt;
Token t = ts.get();
while (t.kind == print) t=ts.get();  //first discard all “prints”
if (t.kind == quit) return; N quit
ts.putback(t);
cout << result << expression() << end|;
}
catch (exception& e) {
cerr << e.what() << endl; /[ write error message
clean_up_mess();
}
}

We simply made the while-loop’s block into a try-block that writes an error mes-
sage and cleans up the mess. Once that’s done, we carry on as always.

What would “clean up the mess” entail? Basically, getting ready to compute
again after an error has been handled means making sure that all our data is in a
good and predictable state. In the calculator, the only data we keep outside an in-
dividual function is the Token_stream. So what we need to do is to ensure that
we don't have tokens related to the aborted calculation sitting around to confuse
the next calculation. For example,

1++2%3; 4+5;

will cause an error, and 2*3; 4+5 will be left in the Token_stream’s buffer after the
second + has triggered an exception. We have two choices:
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1. Purge all tokens from the Token_stream.

2. Purge all tokens from the current calculation from the Token_stream.

The first choice discards all (including 4+45;), whereas the second choice just dis-
cards 2*3;, leaving 4+5 to be evaluated. Either could be a reasonable choice and
cither could surprise a user. As it happens, both are about equally simple to im-
plement. We chose the second alternative because it simplifies testing.

So we need to read input until we find a semicolon. This seems simple. We
have get() to do our reading for us so we can write a clean_up_mess() like this:

void clean_up_mess() / naive
{
while (true) { /I skip until we find a print
Token t = ts.get();
if (t.kind == print) return;

}
Unfortunately, that doesn’t work all that well. Why not? Consider this input:
1@z; 1+3;

The @ gets us into the catch-clause for the while-loop. Then, we call clean_up_
mess() to find the next semicolon. Then, clean_up_mess() calls get() and reads
the z. That gives another error (because z is not a token) and we find ourselves
in main()’s catch(...) handler, and the program exits. Oops! We don’t get a
chance to evaluate 1+3. Back to the drawing board!

We could try more elaborate trys and catches, but basically we are heading
into an even bigger mess. Errors are hard to handle, and errors during error han-
dling are even worse than other errors. So, let’s try to devise some way to flush
characters out of a Token_stream that couldn’t possibly throw an exception. The
only way of getting input into our calculator is get(), and that can — as we just
discovered the hard way — throw an exception. So we need a new operation. The
obvious place to put that is in Token_stream:

class Token_stream {

public:
Token_stream(); // make a Token_stream that reads from cin
Token get(); /l get a Token

void putback(Token t); / put a Token back
void ignore(char c); /l discard characters up to and including a c
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private:
bool full; // is there a Token in the buffer?
Token buffer; //here is where we keep a Token put back using putback()

Y

This ignore() function needs to be a member of Token_stream because it needs
to look at Token_stream’s buffer. We chose to make “the thing to look for™ an ar-
gument to ignore() — after all, the Token_stream doesn’t have to know what the
calculator considers a good character to use for error recovery. We decided that
argument should be a character because we don’t want to risk composing Tokens
— we saw what happened when we tried that. So we get

void Token_stream::ignore(char c)
// ¢ represents the kind of Token
{
// first look in buffer:
if (full && c==buffer.kind) {
full = false;
return;
}

full = false;

/! now search input:
charch=0;
while (cin>>ch)

if (ch==c) return;

}

This code first looks at the buffer. If there is a ¢ there, we are finished after dis-
carding that ¢; otherwise, we need to read characters from cin until we find a c.
We can now write clean_up_mess() rather simply:

void clean_up_mess()
{
ts.ignore(print);

}

Dealing with errors is always tricky. It requires much experimentation and test-
ing because it is extremely hard to imagine what errors can occur. Trying to
make a program foolproof is always a very technical activity; amateurs typically
don’t care. Quality error handling is one mark of a professional.
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7.8 Variables

Having worked on style and error handling, we can return to looking for im-
provements in the calculator functionality. We now have a program that works
quite well; how can we improve it? The first wish list for the calculator included
variables. Having variables gives us better ways of expressing longer calcula-
tions. Similarly, for scientific calculations, we'd like built-in named values, such as
pi and e, just as we have on scientific calculators.

Adding variables and constants is a major extension to the calculator. It will
touch most parts of the code. This is the kind of extension that we should not
embark on without good reason and sufficient time. Here, we add variables and
constants because it gives us a chance to look over the code again and try out
some more programming techniques.

7.8.1 Variables and definitions

Obviously, the key to both variables and built-in constants is for the calculator
program to keep (name,value) pairs so that we can access the value given the
name. We can define a Variable like this:

class Variable {
public:
string name;
double value;
Variable (string n, double v) :name(n), value(v) { }

Y

We will use the name member to identify a Variable and the value member to
store the value corresponding to that name. The constructor is supplied simply
for notational convenience.

How can we store Variables so that we can search for a Variable with a given
name string to find its value or to give it a new value? Looking back over the
programming tools we have encountered so far, we find only one good answer: a
vector of Variables:

vector<Variable> var_table;

We can put as many Variables as we like into the vector var_table and search for
a given name by looking at the vector elements one after another. We can write a
get_value() function that looks for a given name string and returns its correspon-
ding value:

4
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double get_value(string s)
// return the value of the Variable named s

{
for (int i = 0; i<var_table.size(); ++i)
if (var_table[i].name == s) return var_table[i].value;
error("get: undefined variable ", s);
}

The code really is quite simple: go through every Variable in var_table (starting
with the first element and continuing undl the last) and see if its name matches
the argument string s. If that is the case, return its value.

Similarly, we can define a set_value() function to give a Variable a new value:

void set_value(string s, double d)
/! set the Variable named s to d

i
for (int i = 0; i<var_table.size(); ++i)
if (var_table[il.name == s) {
var_table[i].value = d;
return;
}
error("set: undefined variable ", s);
}

We can now read and write “variables” represented as Variables in var_table.
How do we get a new Variable into var_table? What does a user of our calculator
have to write to define a new variable and later to get its value? We could con-
sider C++'s notation

double var = 7.2;

That would work, but all variables in this calculator hold double values, so say-
ing “double” would be redundant. Could we make do with

var =7.2;

Possibly, but then we would be unable to tell the difference between the declara-
tion of a new variable and a spelling mistake:

varl =7.2;  // define a new variable called var1
var1 =3.2; //define a new variable called var2
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Oops! Clearly, we meant var2 = 3.2; but we didn’t say so (except in the com-
ment). We could live with this, but we'll follow the tradition in languages, such as
C++, that distinguish declarations (with initializations) from assignments. We
could use double, but for a calculator we’d like something short, so — drawing
on another old tradition — we choose the keyword let:

let var = 7.2;
The grammar would be

Calculation:
Statement
Print
Quit

Calculation Statement

Statement:
Declaration
Expression

Declaration:
"let" Name "=" Expression

Calculation is the new top production (rule) of the grammar. It expresses the loop
(in calculate()) that allows us to do several calculations in a run of the calculator

gprogram. It relies on the Statement production to handle expressions and decla-
rations. We can handle a statement like this:

double statement()
{
Token t = ts.get();
switch (t.kind) {
case let:
return declaration();
default:
ts.putback(t);
return expression();

}

We can now use statement() instead of expression() in calculate():



CHAPTER 7 » COMPLETING A PROGRAM

void calculate()

{
while (cin)
try {
cout << prompt;
Token t = ts.get();
while (t.kind == print) t=ts.get();  /first discard all “prints”
if (t.kind == quit) return; /I quit
ts.putback(t);
cout << result << statement() << endl;
}
catch (exception& e) {
cerr << e.what() << endl; /] write error message
clean_up_mess();
}
}

We now have to write declaration(). What should it do? It should make sure that
what comes after a let is a Name followed by a = followed by an Expression.
That's what our grammar says. What should it do with the name? We should
add a Variable with that name string and the value of the expression to our
vector<Variable> called var_table. Once that’s done we can retrieve the value
using get_value() and change it using set_value(). However, before writing this,
we have to decide what should happen if we define a variable twice. For example:

letvli=7;
let vl = 8;

We chose to consider such a redefinition an error. Typically, it is simply a spelling
mistake. Instead of what we wrote, we probably meant

letvi=7;
letv2=8;

There are logically two parts to defining a Variable with the name var with the
value val:

1. Check whether there already is a Variable called var in var_table.

2. Add (var,val) to var_table.

We have no use for uninitialized variables. We defined the functions is_declared()
and define_name() to represent those two logically separate operations:
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bool is_declared(string var)
// is var already in var_table?

{
for (inti = 0; i<var_table.size(); ++i)
if (var_table[i]l.name == var) return true;
return false;
}

double define_name(string var, double val)
// add (var,val) to var_table

{
if (is_declared(var)) error(var," declared twice");
var_table.push_back(Variable(var,val));
return val;

}

Adding a new Variable to a vector<Variable> is easy; that’s what vector’s
push_back() member function does:

var_table.push_back(Variable(var,val));

The Variable(var,val) makes the appropriate Variable and push_back() then adds
that Variable to the end of var_table. Given that, and assuming that we can han-
dle let and name tokens, declaration() is straightforward to write:

double declaration()
/l assume we have seen “let”
// handle: name = expression
/ declare a variable called “name” with the initial value “expression”

Token t = ts.get();
if (t.kind != name) error ("name expected in declaration");
string var_name = t.name;

Token 12 = ts.get();
if (t2.kind !="=') error("= missing in declaration of ", var_name);

double d = expression();
define_name(var_name,d);
return d;
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Note that we returned the value stored in the new variable. That’s useful when
the initializing expression is nontrivial. For example:

let v = d/(12-t1);

This declaration will define v and also print its value. Additionally, printing the
value of a declared variable simplifies the code in calculate() because every state-
ment() returns a value. General rules tend to keep code simple, whereas special
cases tend to lead to complications.

This mechanism for keeping track of Variables is what is often called a symbol
table and could be radically simplified by the use of a standard library map; sce
§21.6.1.

7.8.2 Introducing names

This is all very good, but unfortunately, it doesn’t quite work. By now, that
shouldn’t come as a surprise. Our first cut never — well, hardly ever — works.
Here, we haven’t even finished the program — it doesn’t yet compile. We have no
‘=" token, but that’s easily handled by adding a case to Token_stream::get()
(§7.6.3). But how do we represent let and name as tokens? Obviously, we need to
modify get() to recognize these tokens. How? Here is one way:

const char name ='a'; /l name token
const char let ='L"; /l declaration token
const string declkey = "let"; /l declaration keyword

Token Token_stream::get()
{
if (full) { full=false; return buffer; }
char ch;
cin >> ch;
switch (ch) {
/I as before

default:

if (isalpha(ch)) {
cin.putback(ch);
string s;
cin>>s;
if (s == declkey) return Token(let); // declaration keyword
return Token(name,s);

}

error("Bad token");
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Note first of all the call isalpha(ch). This call answers the question “Is ch a letter?”;
isalpha() is part of the standard library that we get from std_lib_facilities.h. For
more character classification functions, see §11.6. The logic for recognizing
names is the same as that for recognizing numbers: find a first character of the
right kind (here, a letter), then put it back using putback() and read in the whole
name using >>.

Unfortunately, this doesn’t compile; we have no Token that can hold a string,
s0 the compiler rejects Token(name,s). Fortunately, that’s casily fixed by adding
that possibility to the definition of Token:

™

struct Token { glags I
char kind; whlic -
double value;
string name;
Token(char ch) :kind(ch), value(0) { }
Token(char ch, double val) :kind(ch), value(val) { }
Token(char ch, string n) :kind(ch), name(n) {}

4

We chose 'L' as the representation of the let token and the string let as our key-
word. Obviously, it would be trivial to change that keyword to double, var, #, or
whatever by changing the string declkey that we compare s to.

Now we try the program again. If you type this, you'll see that it all works:

let x = 3.4;
lety=2;
x+y*2;

However, this doesn’t work:

let x = 3.4;
lety=2;
x+y*2;

What's the difference between those two examples? Have a look to see what
happens.

The problem is that we were sloppy with our definition of Name. We even
“forgot” to define our Name production in the grammar (§7.8.2). What charac-
ters can be part of a name? Letters? Certainly. Digits? Certainly, as long as they
are not the starting character. Underscores? Eh? The + character? Well? Eh?
Look at the code again. After the initial letter we read into a string using >>. That
accepts every character until it sees whitespace. So, for example, x+y*2; is a single
name — cven the trailing semicolon is read as part of the name. That’s unin-
tended and unacceptable.

247
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What must we do instead? First we must specify precisely what we want a
name to be and then we must modify get() to do that. Here is a workable specifi-
cation of a name: a sequence of letters and digits starting with a letter. Given this
definition,

a
ab

al

Z12
asdsddsfdfdasfdsa4d34RTHTD12345dfdsa8fsd888fadsf

are names and

1a
as_s
#
as*
a car

are not. Except for leaving out the underscore, this is C++'s rule. We can imple-
ment that in the default case of get():

default:
if (isalpha(ch)) {
string s;
s += ch;
while (cin.get(ch) && (isalpha(ch) || isdigit(ch))) s+=ch;
cin.putback(ch);
if (s == declkey) return Token(let); // declaration keyword
return Token(name,s);

}

error("Bad token");

Instead of reading directly into the string s, we read characters and put those into
s as long as they are letters or digits. The s+=ch statement adds (appends) the
character ch to the end of the string s. The curious statement

while (cin.get(ch) && (isalpha(ch) || isdigit(ch)) s+=ch;
reads a character into ch (using cin’s member function get()) and checks if it is a

letter or a digit. If so, it adds ch to s and reads again. The get() member function
works just like >> except that it doesn’t by default skip whitespace.
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7.8.3 Predefined names

Now that we have names, we can easily predefine a few common ones. For ex-
ample, if we imagine that our calculator will be used for scientific calculations,
we'd want pi and e. Where in the code would we define those? In main() before
the call of calculate() or in calculate() before the loop. We'll put them in main()
because those definitions really aren’t part of any calculation:

int main()

try {
/l predefine names:
define_name("pi",3.1415926535);
define_name("e",2.7182818284);
calculate();
keep_window_open(); /l cope with Windows console mode
return 0;

}

catch (exception& e) {
cerr << e.what() << endl;
keep_window_open("~~");

return 1;

}

catch (...) {
cerr << "exception\n";
keep_window_open("~~");
return 2;

}

7.8.4 Are we there yet?

Not really. We have made so many changes that we need to test everything
again, clean up the code, and review the comments. Also, we could do more def-
initions. For example, we “forgot” to provide an assignment operator (see exer-
cise 2), and if we have an assignment we might want to distinguish between
variables and constants (exercise 3).

Initially, we backed off from having named variables in our calculator. Looking
back over the code that implements them, we may have two possible reactions:

1. Implementing variables wasn’t all that bad; it took only about three
dozen lines of code.
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Implementing variables was a major extension. It touched just about
every function and added a completely new concept to the calculator. It
increased the size of the calculator by 45% and we haven’t even imple-
mented assignment!

In the context of a first program of significant complexity, the second reaction is
the correct one. More generally, it’s the right reaction to any suggestion that adds
something like 50% to a program in terms of both size and complexity. When
that has to be done, it is more like writing a new program based on a previous
() one than anything else, and it should be treated that way. In particular, if you can
build a program in stages as we did with the calculator, and test it at each stage,
you are far better off doing so than trying to do the whole program all at once.

J Drill
1

No o

10.
11

. Starting from the file calculator08buggy.cpp, get the calculator to compile.
. Go through the entire program and add appropriate comments.
. As you commented, you found errors (deviously inserted especially for

you to find). Fix them; they are not in the text of the book.

Testing: prepare a set of inputs and use them to test the calculator. Is
your list pretty complete? What should you look for? Include negative
values, 0, very small, very large, and “silly” inputs.

Do the testing and fix any bugs that you missed when you commented.
Add a predefined name k meaning 1000.

. Give the user a square root function sqrt(), for example, sqrt(2+6.7). Nat-

urally, the value of sqrt(x) is the square root of x; for example, sqrt(9) is
3. Use the standard library sqrt() function that is available through the
header std_lib_facilities.h. Remember to update the comments, includ-
ing the grammar.

Catch attempts to take the square root of a negative number and print an
appropriate error message.

Allow the user to use pow(x,i) to mean “Multiply x with itself i times”:
for example, pow(2.5,3) is 2.5%2.5*2.5. Require i to be an integer using
the technique we used for %.

Change the “declaration keyword” from let to #.

Change the “quit keyword” from q to exit. That will involve defining a
string for “quit” just as we did for “let” in §7.8.2.

Review

1.

What is the purpose of working on the program after the first version
works? Give a list of reasons.
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. 0

. Why does “1+2; q" typed into the calculator not quit after it receives an

error?

Why did we choose to make a constant character called number?

We split main() into two separate functions. What does the new function
do and why did we split main()?

Why do we split code into multiple functions? State principles.

What is the purpose of commenting and how should it be done?

What does narrow_cast do?

What is the use of symbolic constants?

Why do we care about code layout?

10. How do we handle % (remainder) of floating-point numbers?
11. What does is_declared() do and how does it work?
12. The input representation for let is more than one character. How is it ac-
cepted as a single token in the modified code?
13. What are the rules for what names can and cannot be in the calculator
program?
14. Why is it a good idea to build a program incrementally?
15. When do you start to test?
16. When do you retest?
17. How do you decide what should be a separate function?
18. What is the use of symbolic constants?
19. Why do you add comments?
20. What should be in comments and what should not?
21. When do we consider a program finished?
Terms
code layout maintenance scaffolding
commenting recovery symbolic constant
error handling revision history testing

feature creep

Exercises

1.
2.

3.

Allow underscores in the calculator’s names.

Provide an assignment operator, =, so that you can change the value of a
variable after you introduce it using let.

Provide named constants that you really can’t change the value of. Hint:
You have to add a member to Variable that distinguishes between con-
stants and variables and check for it in set_value(). If you want to let the
user define constants (rather than just having pi and e defined as con-
stants), you'll have to add a notation to let the user express that, for ex-
ample, const pi =3.14;.

251
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. The get value(), set_value(), is_declared(), and declare_name() func-

tions all operate on the global variable var_table. Define a class called
Symbol_table with a member var_table of type vector<Variable> and
member functions get(), set(), is_declared(), and declare(). Rewrite the
calculator to use a variable of type Symbol_table.

. Modify Token_stream::get() to return Token(print) when it sees a new-

line. This implies looking for whitespace characters and treating newline
("\n') specially. You might find the standard library function isspace(ch),
which returns true if ch is a whitespace character, useful.

. Part of what every program should do is to provide some way of helping

its user. Have the calculator print out some instructions for how to use
the calculator if the user presses the H key.
Change the q and h commands to be quit and help, respectively.

. The grammar in §7.6.4 is incomplete (we did warn you against overre-

liance on comments); it does not define sequences of statements, such as
4+4; 5-6; and it does not incorporate the grammar changes outlined in
§7.8. Fix that grammar. Also add whatever you feel is needed to that
comment as the first comment of the calculator program and its overall
comment.

. Define a class Table that contains a vector<Variable> and provides mem-

ber functions get(), set(), and declare(). Replace the var_table in the cal-
culator with a Table called symbol_table.

Suggest three improvements (not mentioned in this chapter) to the calcu-
lator. Implement one of them.

Modify the calculator to operate on ints (only); give errors for overflow
and underflow.

Implement an assignment operator, so that we can change the value of a
variable after its initialization. Discuss why that can be useful and how it
can be a source of problems.

Revisit two programs you wrote for the exercises in Chapter 4 or 5.
Clean up that code according to the rules outlined in this chapter. See if
you find any bugs in the process.

Postscript

As it happens, we have now seen a simple example of how a compiler works.
The calculator analyzes input broken down into tokens and understood accord-
ing to a grammar. That’s exactly what a compiler does. After analyzing its output
a compiler then produces a representation (object code) that we can later execute.
The calculator immediately executes the expressions it has analyzed; programs
doing that are called interpreters rather than compilers.
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Technicalities:
Functions, etc.

“No amount of genius can overcome
obsession with detail.”

—Traditional

In this chapter and the next, we change our focus from pro-
gramming to our main tool for programming: the C++ pro-
gramming language. We present language-technical details to give
a slightly broader view of C++'s basic facilities and to provide a
more systematic view of those facilitics. These chapters also act as
a review of many of the programming notions presented so far
and provide an opportunity to explore our tool without adding

new programming techniques or concepts.
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8.1 Technicalities 8.5.4 Pass-by-const-reference
: e 8.5.5 Pass-by-reference
2 Declarfmons and definitions 8.5.6 Pass-by-value vs. pass-by-reference
8.2.1 Kinds of declarations 8.5.7 Argument checking and
8.2.2 Variable and constant declarations conversion
8.2.3 Default initialization 8.5.8 Function call implementation
8.3 Header files 8.6 Order of evaluation
8.4 Scope 8.6.1 Expression evaluation
2.5 Functlon call and retim 8.6.2 Global initialization
8.5.1 Declaring arguments and return 8.7 Namespaces
type 8.7.1 using declarations and using
8.5.2 Returning a value directives

8.5.3 Pass-by-value

8.1 Technicalities

Given a choice, we'd much rather talk about programming than about program-
ming language features; that is, we consider how to express ideas as code far
more interesting than the technical details of the programming language that we
use to express those ideas. To pick an analogy from natural languages: we'd
much rather discuss the ideas in a good novel and the way those ideas are ex-
pressed than study the grammar and vocabulary of English. What matters are
ideas and how those ideas can be expressed in code, not the individual language
features.

However, we don't always have a choice. When you start programming,
your programming language is a foreign language for which you need to look at
“grammar and vocabulary.” This is what we will do in this chapter and the next,
but please don’t forget:

*  Our primary study is programming.
* Ouwur output is programs/systems.
* A programming language is (only) a tool.

Keeping this in mind appears to be amazingly difficult. Many programmers come
to care passionately about apparently minor details of language syntax and se-
mantics. In particular, too many get the mistaken belief that the way things are
done in their first programming language is “the one true way.” Please don't fall
into that trap. C++ is in many ways a very nice language, but it is not perfect;
neither is any other programming language.

Most design and programming concepts are universal, and many such con-
cepts are widely supported by popular programming languages. That means that
the fundamental ideas and techniques we learn in a good programming course
carry over from language to language. They can be applied — with varying de-
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grees of ease — in all languages. The language technicalities, however, are specific
to a given language. Fortunately, programming languages do not develop in a
vacuum, so much of what you learn here will have reasonably obvious counter-
parts in other languages. In particular, C++ belongs to a group of languages that
also includes C (Chapter 27), Java, and C#, so quite a few technicalities are
shared with those languages.

Note that when we are discussing language-technical issues, we deliberately
use nondescriptive names, such as f, g, X, and y. We do that to emphasize the
technical nature of such examples, to keep those examples very short, and to try
to avoid confusing you by mixing language technicalities and genuine program
logic. When you see nondescriptive names (such as should never be used in real
code), please focus on the language-technical aspects of the code. Technical ex-
amples typically contain code that simply illustrates language rules. If you com-
piled and ran them, you'd get many “variable not used” warnings, and few such
technical program fragments would do anything sensible.

Please note that what we write here is not a complete description of C++'s
syntax and semantics — not even for the facilides we describe. The ISO C++ stan-
dard is 756 pages of dense technical language and The C++ Programming Language
by Stroustrup is 1000+ pages of text aimed at experienced programmers. We do
not try to compete with those in completeness and comprehensiveness; we com-
pete with them in comprehensibility and value for time spent reading.

8.2 Declarations and definitions
A declaration is a statement that introduces a name into a scope (§8.4)

+ specifying a type for what is named (e.g., a variable or a function)

* optionally, specifying an initializer (e.g., an initializer value or a function
body)

For example:

inta=7; // an int variable
const double cd =8.7; /I a double-precision floating-point constant
double sqrt(double); / a function taking a double argument

// and returning a double result
vector<Token> v; // a vector-of-Tokens variable

Before a name can be used in a C++ program, it must be declared. Consider:

int main()

{
cout << (i) << "\n';
}
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The compiler will give at least three “undeclared identifier” errors for this: cout,
f, and i are not declared anywhere in this program fragment. We can get cout de-
clared by including the header std_lib_facilities.h,which contains its declaration:

#include "std_lib_facilities.h"  // we find the declaration of cout in here

int main()
{
cout << f(i) << "\n';

}

Now, we get only two “undefined” errors. As you write real-word programs,
you'll find that most declarations are found in headers. That's where we define
interfaces to useful facilities defined “elsewhere.” Basically, a declaration defines
how something can be used: it defines the interface of a function, variable, or
class. Please note one obvious but invisible advantage of this use of declarations:
we didn’t have to look at the details of how cout and its << operators were de-
fined; we just #included their declarations. We didn’t even have to look at their
declarations; from textbooks, manuals, code examples, or other sources, we just
know how cout is supposed to be used. The compiler reads the declarations in
the header that it needs to “understand” our code.
However, we still have to declare f and i. We could do that like this:

#include "std_lib_facilities.h"  // we find the declaration of cout in here
int f(int); // declaration of f

int main()

{
inti=7; /! declaration of i
cout << f(i) <<"\n';

}

This will compile because every name has been declared, but it will not link
(§2.4) because we have not defined f(); that is, nowhere have we specified what
f() actually does.

A declaration that (also) fully specifies the entity declared is called a definition.
For example:

inta=7;
vector<double> v;
double sqrt(double d) {/*...*/}
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Every definition is (by definition ©) also a declaration, but only some declara-
tions are also definitions. Here are some examples of declarations that are not
definitions; each must be matched by a definition elsewhere in the code:

double sqrt(double);  //no function body here
extern int a; /l “extern plus no initializer” means “not definition”

When we contrast definitions and declarations, we follow convention and use
declarations to mean “declarations that are not definitions” even though that’s
slightly sloppy terminology.

A definition specifies exactly what a name refers to. In particular, a definition
of a variable sets aside memory for that variable. Consequently, you can’t define
something twice. For example:

double sqrt(doubled) {/* ... */} // definition
double sqrt(double d) {/* ... */} //error: double definition

inta; // definition
inta; // error: double definition

In contrast, a declaration that isn’t also a definition simply tells how you can use
a name; it is just an interface and doesn’t allocate memory or specify a function
body. Consequently, you can declare something as often as you like as long as
you do so consistently:

intx=7; // definition

extern int x; /f declaration

extern int x; /I another declaration

double sqrt(double); // declaration

double sqrt(double d) {/* ... */} // definition

double sqrt(double); /l another declaration of sqrt

double sqrt(double); /I yet another declaration of sqrt

int sqrt(double); / error: inconsistent declarations of sqrt

Why is that last declaration an error? Because there cannot be two functions
called sqrt taking an argument of type double and returning different types (int
and double).

The extern keyword used in the second declaration of x simply states that
this declaration of x isn’t a definition. It is rarely useful. We recommend that you
don’t use it, but you'll see it in other people’s code, especially code that uses too
many global variables (see §8.4 and §8.6.2).
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Declarations: Definitions:
double sqrt(double d)

double sqrt(double d)
{
\ // calculate the

double sqrt(doubled) — | 1 square root of d

extern int x; \
intx=7;

extern int x; i

Why does C++ offer both declarations and definitions? The declaration/def-
inition distinction reflects the fundamental distinction between what we need to
use something (an interface) and what we need for that something to do what it is
supposed to (an implementation). For a variable, a declaration supplies the type
but only the definition supplies the object (the memory). For a function, a decla-
ration again provides the type (argument types plus return type) but only the def-
inition supplies the function body (the executable statements). Note that function
bodies are stored in memory as part of the program, so it is fair to say that func-
tion and variable definitions consume memory, whereas declarations don’t.

The declaration/definition distinction allows us to separate a program into
many parts that can be compiled separately. The declarations allow each part of a
program to maintain a view of the rest of the program without bothering with
the definitions in other parts. As all declarations (including the one definition)
must be consistent, the use of names in the whole program will be consistent.
We'll discuss that further in §8.3. Here, we'll just remind you of the expression
parser from Chapter 6: expression() calls term() which calls primary() which calls
expression(). Since every name in a C++ program has to be declared before it is
used, there is no way we could just define those three functions:

double expression();  //just a declaration, not a definition

double primary()

{
T/ -
expression();
/G

}

double term()

{
Wi
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primary();
'
}
double expression()
{
'
term();
) -
}

We can order those four functions any way we like; there will always be one call
to a function defined below it. Somewhere, we need a “forward” declaration.
Therefore, we declared expression() before the definition of primary() and all is
well. Such cyclic calling patterns are very common.

Why does a name have to be declared before it is used? Couldn’t we just re-
quire the language implementation to read the program (just as we do) and find
the definition to see how a function must be called? We could, but that would
lead to “interesting” technical problems, so we decided against that. The C++
definition requires declaration before use (except for class members; see §9.4.4).
After all, this is already the convention for ordinary (non-program) writing: when
you read a textbook, you expect the author to define terminology before using it;
otherwise, you have to guess or go to the index all the time. The “declaration be-
fore use” rule simplifies reading for both humans and compilers. In a program,
there is a second reason that “declare before use” is important. In a program of
thousands of lines (maybe hundred of thousands of lines), most of the functions
we want to call will be defined “elsewhere.” That “elsewhere” is often a place we
don’t really want to know about. Having to know the declarations only of what
we use saves us (and the compiler) from looking through huge amounts of pro-
gram text.

8.2.1 Kinds of declarations

There are many kinds of entities that a programmer can define in C++. The
most interesting are

« Variables

+  Constants

+  Functions (see §8.5)

+ Namespaces (see §8.7)

+ Types (classes and enumerations; see Chapter 9)
* Templates (see Chapter 19)
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8.2.2 Variable and constant declarations

The declaration of a variable or a constant specifies a name, a type, and option-
ally an initializer. For example:

inta; // no initializer
doubled =7; /l initializer using the = syntax
vector<int>vi(10);  //initializer using the () syntax

You can find the complete grammar in The C++ Programming Language by Stroustrup
or in the ISO C++ standard.

Constants have the same declaration syntax as variables. They differ in hav-
ing const as part of their type and requiring an initializer:

constintx=7; /l initializer using the = syntax
constintx2(9);  //initializer using the () syntax
constinty; /l error: no initializer

The reason for requiring an initializer for a const is obvious: how could a const
be a constant if it didn’t have a value? It is almost always a good idea to intialize
variables also; an uninitialized variable is a recipe for obscure bugs. For example:

void f(int z)
{
intx; //uninitialized
/... no assignment to x here . . .
x=7; [/l give x avalue
B s
)

This looks mmnocent enough, but what if the first . . . included a use of x? For
example:

void f(int z)
{
intx; //uninitialized
// . .. no assignment to x here . . .
if (>x) {
M i
}
...
x=7; [/l give x a value
s
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Because x is uninitialized, executing z>x would be undefined behavior. The com-
parison z>x could give different results on different machines and different results
in different runs of the program on the same machine. In principle, z>x might
cause the program to terminate with a hardware error, but most often that doesn’t
happen. Instead we get unpredictable results.

Naturally, we wouldn’t do something like that deliberately, but if we don’t
consistently initialize variables it will eventually happen by mistake. Remember,
most “silly mistakes” (such as using an uninitialized variable before it has been
assigned to) happen when you are busy or tired. Compilers try to warn, but in
complicated code — where such errors are most likely to occur — compilers are
not smart enough to catch all such errors. There are people who are not in the
habit of initializing their variables, often because they learned to program in lan-
guages that didn't allow or encourage consistent initialization; so you'll see exam-
ples in other people’s code. Please just don’t add to the problem by forgetting to
initialize the variables you define yourself.

8.2.3 Default initialization

You might have noticed that we often don’t provide an initializer for strings,
vectors, ctc. For example:

vector<string>v;
string s;
while (cin>>s) v.push_back(s);

This is not an exception to the rule that variables must be initialized before use.
What is going on here is that we have defined string and vector to be initialized
with a default value whenever we don’t supply one explicitly. Thus, v is empty (it
has no elements) and s is the empty string ("") before we reach the loop. The
mechanism for guaranteeing default initialization is called a default constructor; see
§9.7.3.

Unfortunately, the language doesn’t allow us to make such guarantees for
built-in types. A global variable is default initialized to 0, but you should mini-
mize the use of global values. The most useful variables, local variables and class
members, are uninitialized unless you provide an initializer (or a default con-
structor). You have been warned!

8.3 Header files

How do we manage our declarations and definitions? After all, they have to be
consistent, and in real-world programs there can be tens of thousands of declara-
tions; programs with hundreds of thousands of declarations are not rare. Typi-
cally, when we write a program, most of the definitions we use are not written by
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us. For example, the implementations of cout and sqrt() were written by someone
else many years ago. We just use them.

The key to managing declarations of facilities defined “elsewhere” in C++ is
the header. Basically, a header is a collection of declarations, typically defined in a
file, so a header is also called a feader file. Such headers are then #included in our
source files. For example, we might decide to improve the organization of the
source code for our calculator (Chapters 6 and 7) by separating out the token
management. We could define a header file token.h containing declarations
needed to use Token and Token_stream:

token.h:

/I declarations:
class Token {/* ... */};
class Token_stream { /* ... */ };

token.cpp: /

#include "token.h" calculator.cpp:

//definitions: 5 o "
void Token_stream: : putback(Token t) Sl len

{ // uses:

buffer = t;
full = true’; Token_stream ts;

:I:t;ken t=ts.get();

i;.putback{t) ;

The declarations of Token and Token_stream arc in the header token.h. Their
definitions are in token.cpp. The .h suffix is the most common for C++ headers,
and the .cpp suffix is the most common for C++ source files. Actually, the C++
language doesn’t care about file suffixes, but some compilers and most program
development environments insist, so please use this convention for your source
code.

In principle, #include "file.h" simply copies the declarations from file.h into
your file at the point of the #include. For example, we could write a header f.h:

/i f.h
int f(int);

and include it in our file f.cpp:
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I f.cpp
#include "f.h"
int g(int i)
{

return f(i);

}

When compiling f.cpp the compiler would do the #include and compile

int f(int);
int g(int i)
{
return f(i);

}

Since #includes logically happen before anything else a compiler does, handling
#includes is part of what is called preprocessing (§A.17).

To ease consistency checking, we #include a header both in source files that
use its declarations and in source files that provide definitions for those declara-
tions. That way, the compiler catches errors as soon as possible. For example,
imagine that the implementer of Token_stream: : putback() made mistakes:

Token Token_stream: : putback(Token t)
{

buffer.push_back(t);

return t;

}

This looks innocent enough. Fortunately, the compiler catches the mistakes be-
cause it sees the (#included) declaration of Token_stream: : putback(). Compar-
ing that declaration with our definition, the compiler finds that putback() should
not return a Token and that buffer is a Token, rather than a vector<Token>, so
we can't use push_back(). Such mistakes occur when we work on our code to im-
prove it, but don’t quite get a change consistent throughout a program.

Similarly, consider these mistakes:

Token t =ts.gett();  // error: no member gett
Woass
ts.putback(); // error: argument missing

The compiler would immediately give errors; the header token.h gives it all the
information it needs for checking.
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Our std_lib_facilities.h header contains declarations for the standard library
facilities we use, such as cout, vector, and sqrt(), together with a couple of simple
utility functions, such as error(), that are not part of the standard library. In §12.8
we show how to use the standard library headers directly.

A header will typically be included in many source files. That means that a
header should only contain declarations that can be duplicated in several files (such
as function declarations, class definitions, and definitions of numeric constants).

8.4 Scope

A scope is a region of program text. A name is declared in a scope and is valid (is
“in scope”) from the point of its declaration until the end of the scope in which it
was declared. For example:

void f()
{
g0); M error: g() isn't (yet) in scope
}
void g()
{
f(); / OK: f() is in scope
)
void h()
{
intx=y; /l error: y isn't (yet) in scope
inty=x; /I OK: x is in scope
g0); /I OK: g() is in scope
}

Names in a scope can be seen from within scopes nested within it. For example,
the call of f() is within the scope of g() which is “nested” in the global scope. The
global scope is the scope that’s not nested in any other. The rule that a name
must be declared before it can be used still holds, so f() cannot call g().

There are several kinds of scopes that we use to control where our names
can be used:

* The global scope: the area of text outside any other scope

* A namespace scope: a named scope nested in the global scope or in another
namespace; see §8.7

* A dass scope: the area of text within a class: see §9.2
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* A local scope: between | . . . | braces of a block or in a function argument
list
* A statement scope: e.g., in a for-statement

The main purpose of a scope is to keep names local, so that they won't interfere
with names declared elsewhere. For example:

void f(int x) I f is global; x is local to f
{
intz=x+7; //zis local
}
int g(int x) // g is global; x is local to g
{
intf=x+2; //fislocal
return 2*f;
}
Or graphically:
Global scope:
R
G
g | X
f

Here ()’s x is different from g()’s x. They don’t “clash” because they are not in
the same scope: f()’s x is local to f and g()'s x is local to g. Two incompatible dec-
larations in the same scope are often referred to as a dash. Similarly, the f defined
and used within g() is (obviously) not the function f().

Here is a logically equivalent but more realistic example of the use of local
scope:

int max(int a, int b) // max is global; a and b are local
{
return (a>=b) ?a: b;
}
int abs(int a) // not max()’s a
{

return (a<0) ? -a : a;

}
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You find max() and abs() in the standard library, so you don’t have to write them
yourself. The 2: construct is called an arithmetic if or a conditional expression. The
value of (a>=b)?a:b is a if a>=b and b otherwise. A conditional expression saves
us from writing long-winded code like this:

int max(int a, int b) // max is global; a and b are local
{
intm; // mis local
if (a>=h)
m=a;
else
m=b;
return m;
}

So, with the noticeable exception of the global scope, a scope keeps names local.
For most purposes, locality is good, so keep names as local as possible. When I
declare my variables, functions, etc. within functions, classes, namespace, etc.,
they won’t interfere with yours. Remember: real programs have many thousands
of named entities. To keep such programs manageable, most names have to be
local.

Here is a larger technical example illustrating how names go out of scope at
the end of statements and blocks (including function bodies):

/M nor i, orv here
class My_vector {

vector<int>v; M v is in class scope
public:
int largest()
{
intr=0; /v is local (smallest nonnegative int)

for (inti=0; i<v.size(); ++i)
r = max(r,abs(v[il)); /iis in the for’s statement scope
M/ no i here
returnr;
}
// no r here
b

/! no v here

int x; /I global variable — avoid those where you can
inty;
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int ()
{
int x; / local variable
x=7; / the local x
{
intx=y; / local x initialized by global y
++X; Il the x from the previous line
}

++x;  // the x from the first line of f()

return x;

}

Whenever you can, avoid such complicated nesting and hiding. Remember:

“Keep it simple!”

The larger the scope of a name is, the longer and more descriptive its name
should be: x, y, and f are horrible as global names. The main reason that you
don’t want global variables in your program is that it is hard to know which func-
tions modify them. In large programs, it is basically impossible to know which
functions modify a global variable. Imagine that you are trying to debug a pro-
gram and you find that a global variable has an unexpected value. Who gave it
that value? Why? What functions write to that value? How would you know?
The function that wrote a bad value to that variable may be in a source file you
have never seen! A good program will have only very few (say, one or two), if
any, global variables. For example, the calculator in Chapters 6 and 7 had two

global variables: the token stream, ts, and the symbol table, names.
Note that most C++ constructs that define scopes nest:

» Functions within classes: member functions (see §9.4.2)

Wiz

class C {
public:
void f();
void g()
{
}
W o
b
void C::f()
{
'
}

// a member function can be defined within its class

/l a member definition can be outside its class

This is the most common and useful case.
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+ Classes within classes: member classes (also called nested classes)

class C {
public:
struct M {
Mo
|5
...
b

This tends to be useful only in complicated classes; remember that the
ideal is to keep classes small and simple.

+ (lasses within functions: local classes

void f()
{
class L {
'/ -
b
N
}
C) Avoid this; if you feel the need for a local class, your function is probably
far too long.

*  Functions within functions: local functions (also called nested functions)

void f()
{
voidg()  /illegal
{
Wis
}
/|

}
This is not legal in C++; don’t do it. The compiler will reject it.
* Blocks within functions and other blocks: nested blocks

void f(int x, int y)
{
if (e>y) {
Wara s
}
else {
Mg
{
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R
Wit

}

Nested blocks are unavoidable, but be suspicious of complicated nesting:
it can easily hide errors.

C++ also provides a language feature, namespace, exclusively for expressing
scoping; see §8.7.

Note our consistent indentation to indicate nesting. Without consistent in-
dentation, nested constructs become unreadable. For example:

/I dangerously ugly code
struct X {

void f(int x) {

struct Y {

intf() { return 1; }intm; };
int m;

m=x; Ym2;

return f(m2.10); }

int m; void g(int m) {

if (m) f(m+2); else {
g(m+2); }}

X() { } void m3() {

}

void main() {
X a; a.f(2);}
Y

Hard-to-read code usually hides bugs. When you use an IDE, it tries to automat-
ically make your code properly indented (according to some definition of “prop-
erly”), and there exist “code beautifiers” that will reformat a source code file for
you (often offering you a choice of formats). However, the ultimate responsibility
for your code being readable rests with you.

8.5 Function call and return

Functions are the way we represent actions and computations. Whenever we
want to do something that is worthy of a name, we write a function. The C++
language gives us operators (such as + and *) with which we can produce new
values from operands in expressions, and statements (such as for and if) with
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which we can control the order of execution. To organize code made out of these
primitives, we have functions.

To do its job, a function usually needs arguments, and many functions return
a result, This section focuses on how arguments are specified and passed.

8.5.1 Declaring arguments and return type

Functions are what we use in C++ to name and represent computations and ac-
tions. A function declaration consists of a return type followed by the name of the
function followed by a list of formal arguments in parentheses. For example:

double fct(int a, double d); // declaration of fct (no body)
double fct(int a, double d) { return a*d; } // definition of fct

A definition contains the function body (the statements to be executed by a call),
whereas a declaration that isn’t a definition just has a semicolon. Formal argu-
ments are often called parameters. If you don’t want a function to take arguments,
just leave out the formal arguments. For example:

int current_power(); I/ current_power doesn't take an argument

If you don’t want to return a value from a function, give void as its return type.
For example:

void increase_power(int level); /l increase_power doesn't return a value

Here, void means “doesn’t return a value” or “return nothing.”
You can name a parameter or not as it suits you in both declarations and def-
initions. For example:

Il search for s in vs;

// vs[hint] might be a good place to start the search

/ return the index of a match; -1 indicates “not found”

int my_find(vector<string> vs, string s, int hint); /l naming arguments

int my_find(vector<string>, string, int); // not naming arguments

In declarations, formal argument names are not logically necessary, just very use-
ful for writing good comments. From a compiler’s point of view, the second dec-
laration of my_find() is just as good as the first: it has all the information
necessary to call my_find().

Usually, we name all the arguments in the definition. For example:
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int my_find(vector<string> vs, string s, int hint)
// search for s in vs starting at hint
{
if (hint<0 || vs.size()<=hint) hint = 0;
for (inti = hint; i<vs.size(); ++i)  // search starting from hint
if (vs[i]==s) return i;
if (0<hint) { /I if we didn’t find s search before hint
for (inti = 0; i<hint; ++i)
if (vs[i]==s) return i;
}
return-1;

}

The hint complicates the code quite a bit, but the hint was provided under the as-
sumption that users could use it to good effect by knowing roughly where in the
vector a string will be found. However, imagine that we had used my_find() for a
while and then discovered that callers rarely used hint well, so that it actually
hurt performance. Now we don’t need hint anymore, but there is lots of code
“out there” that calls my_find() with a hint. We don’t want to rewrite that code
(or can't because it is someone else’s code), so we don’t want to change the decla-
ration(s) of my_find(). Instead, we just don’t use the last argument. Since we
don’t use it we can leave it unnamed:

int my_find(vector<string> vs, string s, int) /l 3rd argument unused
{
for (int i = 0; i<vs.size(); ++i)
if (vs[il==s) return i;
return -1;

}

You can find the complete grammar for function definitions in The C++ Program-
ming Language by Stroustrup or in the ISO C++ standard.

8.5.2 Returning a value

We return a value from a function using a return statement:

T1() /() returns a T

{
Vv;
Hiais
return v;
}

Tx=1();
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Here, the value returned is exactly the value we would have gotten by initializing
a variable of type T by a value of type V:

Vyv;
o
Tt(v); /l initialize t with v

That is, value return is a form of initalization. A function declared to return a
value must return a value. In particular, it is an error to “fall through the end of

the function™:

double my_abs(intx)  // warning: buggy code

{
if (x<0)
return —-x;
else if (x> 0)
return x;
} /l error: no value returned if x is 0

Actually, the compiler probably won’t notice that we “forgot”™ the case x==0. In
principle it could, but few compilers are that smart. For complicated functions, it
can be impossible for a compiler to know whether or not you return a value, so
be careful. Here, “being careful” means to make really sure that you have a re-
turn statement or an error() for every possible way out of the function.

For historical reasons, main() is a special case. Falling through the bottom of
main() is equivalent to returning the value 0, meaning “successful completion” of
the program.

In a function that does not return a value, we can use return without a value
to cause a return from the function. For example:

void print_until_s(const vector<string> v, const string quit)
{
for(int i=0; i<v.size(); ++i) {
if (v[il==quit) return;
cout << v[i] <<"\n';

}

As you can see, it is acceptable to “drop through the bottom™ of a veid function.
This is equivalent to a return;.
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8.5.3 Pass-by-value

The simplest way of passing an argument to a function is to give the function a
copy of the value you use as the argument. An argument of a function () is a
local variable in f() that's initialized each time f() is called. For example:

/I pass-by-value (give the function a copy of the value passed)

int f(int x)
{
X =x+1; /l give the local x a new value
return x;
}
int main()
{
int xx =0;
cout << f(xx) << endl; M write: 1
cout << xx << endl; // write: 0; f() doesn’t change xx
intyy=7;
cout << f(yy) << endl; /] write: 8
cout << yy << endl; I/ write: 7; f() doesn’t change yy
}

Since a copy is passed, the x=x+1 in f() does not change the values xx and yy passed
in the two calls. We can illustrate a pass-by-value argument passing like this:

XX: X:
‘ Copy the value

X:

Yy
2 cal

Copy the value
Pass-by-value is pretty straightforward and its cost is the cost of copying the value.

8.5.4 Pass-by-const-reference

Pass-by-value is simple, straightforward, and efficient when we pass small values,
such as an int, a double, or a Token (§6.3.2). But what if a value is large, such as
an image (often, several million bits), a large table of values (say, thousands of in-
tegers), or a long string (say, hundreds of characters)? Then, copying can be
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costly. We should not be obsessed by cost, but doing unnecessary work can be
embarrassing because it is an indication that we didn’t directly express our idea
of what we wanted. For example, we could write a function to print out a vector
of floating-point numbers like this:

void print(vector<double>v)  // pass-by-value; appropriate?
{
cout<<"{";
for (int i = 0; i<v.size(); ++i) {
cout << v[i];
if (i!=v.size()-1) cout << ", ";
}
cout<<" }\n";

}

We could use this print() for vectors of all sizes. For example:

void f(int x)

{
vector<double> vd1(10); / small vector
vector<double> vd2(1000000);  // large vector
vector<double> vd3(x); // vector of some unknown size
/.. Aill vd1, vd2, vd3 with values . . .
print(vd1);
print(vd2);
print(vd3);

}

This code works, but the first call of print() has to copy ten doubles (probably 80
bytes), the second call has to copy a million doubles (probably 8 mcgabytcs) and
we don’t know how much the third call has to copy. The question we must ask
ourselves here is: “Why are we copying anything at all?” We just wanted to print
the vectors, not to make copies of their elements. Obviously, there has to be a
way for us to pass a variable to a function without copying it. As an analogy, if
you were given the task to make a list of books in a library, the librarians
wouldn’t ship you a copy of the library building and all its contents; they would
send you the address of the library, so that you could go and look at the books.
So, we need a way of giving our print() function “the address™ of the vector to
print() rather than the copy of the vector. Such an “address” is called a reference
and is used like this:
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void print(const vector<double>& v) /I pass-by-const-reference

{
cout<<"{";
or (inti =0; i<v.size(); ++i) {
cout << v[i];
if (i!=v.size()-1) cout<< ", ";
}
cout << " H\n";
}

The & means “reference” and the const is there to stop print() modifying its ar-
gument by accident. Apart from the change to the argument declaration, all is the
same as before; the only change is that instead of operating on a copy, print()
now refers back to the argument through the reference. Note the phrase “refer
back™; such arguments are called references because they “refer” to objects de-
fined elsewhere. We can call this print() exactly as before:

void f(int x)

{
vector<double> vd1(10); // small vector
vector<double> vd2(1000000);  // large vector
vector<double> vd3(x); /f vector of some unknown size
/.. . fill vd1, vd2, vd3 with values . . .
print(vd1);
print(vd2);
print(vd3);

}

We can illustrate that graphically:

Refer to vd1 in 1 call

Refer to vd2 in 2" call

vd2: |

A const reference has the useful property that we can’t accidentally modify the
object passed. For example, if we made a silly error and tried to assign to an ele-
ment from within print(), the compiler would catch it:
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void print(const vector<double>& v) I/ pass-by-const-reference
{

M

vli]=7;  /lerror: v is a const (is not mutable)

/-
}

Pass-by-const-reference is a useful and popular mechanism. Consider again the
my_find() function (§8.5.1) that searches for a string in a vector of strings. Pass-
by-value could be unnecessarily costly:

int my_find(vector<string> vs, string s); /l pass-by-value: copy

If the vector contained thousands of strings, you might notice the time spent
even on a fast computer. So, we could improve my_find() by making it take its ar-
guments by const reference:

/ pass-by-const-reference: no copy, read-only access
int my_find(const vector<string>& vs, const string& s);

8.5.5 Pass-by-reference

But what if we did want a function to modify its arguments? Sometimes, that’s a
perfectly reasonable thing to wish for. For example, we might want an init() func-
tion that assigned values to vector elements:

void init(vector<double>& v)  // pass-by-reference

{
for (inti = 0; i<v.size(); ++i) V[i] = i;

}

void g(int x)

{
vector<double> vd1(10); // small vector
vector<double> vd2(1000000);  // large vector
vector<double> vd3(x); // vector of some unknown size
init(vd1);
init(vd2);
init(vd3);
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Here, we wanted init() to modify the argument vector, so we did not copy (did
not use pass-by-value) nor declare the reference const (did not use pass-by-const-
value), but simply passed a “plain reference” to the vector.

Let us consider references from a more technical point of view. A reference is
a construct that allows a user to declare a new name for an object. For example,
int& is a reference to an int, so we can write

inti=7;

int&r=1i; M/ ris a reference to i i

r=9; /i becomes 9 o E
i=10;

cout<<r<<''<<i<<'\n'; /[ write: 10 10

That is, any use of r is really a use of i.
References can be useful as shorthand. For example, we might have a

vector< vector<double> > v; /! vector of vector of double
and we need to refer to some element vIf(x)l[g(y)] several times. Clearly. v[f(x)][g(y)]
is a complicated expression that we don’t want to repeat more often than we have
to. If we just need its value, we could write

double val = v[f(x)1[g(y)]; // val is the value of v[f(x)][g(y)]

and use val repeatedly. But what if we need to both read from v[f(x)][g(y)] and
write to v[f(x)][g(y)]? Then, a reference comes in handy:

double& var = v[f(x)][g(y)]; /l var is a reference to v[f(x)][g(y)]
Now we can read and write v[f(x)l[g(y)] through var. For example:
var = var/2+sqrt(var);

This key property of references, that a reference can be a convenient shorthand
for some object, is what makes them useful as arguments. For example:

/l pass-by-reference (let the function refer back to the variable passed)

int f(int& x)

{
X =x+1;
return x;
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int main()
{
intxx=0;
cout << f(xx) << endl; // write: 1
cout << xx << endl; /1 write: 1; f() changed the value of xx
intyy=7;
cout << f(yy) << endl; / write: 8
cout << yy << endl; // write: 8; () changed the value of yy
}

We can illustrate a pass-by-reference argument passing like this:

X: 1* call (x refers to xx)

27 call (x refers to yy)

Compare this to the similar example in §8.5.3.

C) Pass-by-reference is clearly a very powerful mechanism: we can have a function
operate directly on any object to which we pass a reference. For example, swapping
two values is an immensely important operation in many algorithms, such as sort-
ing. Using references, we can write a function that swaps doubles like this:

void swap(double& d1, double& d2)

{
double temp =d1;  // copy d1’s value to temp
d1=d2; // copy d2’s value to d2
d2 = temp; /l copy d1's old value to d2
}
int main()
{

double x = 1;
double y = 2;

cout<<"x=="<<x<<"y=="<<y<<"\n'; /N write: x==1 y==2
swap(x,y);
cout<<"x=="<<x<<"y=="<<y<<"\n";  /write: x==2 y==1
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The standard library provides a swap() for every type that you can copy, so you
don’t have to write swap() yourself for each type.

8.5.6 Pass-by-value vs. pass-by-reference

When should you use pass-by-value, pass-by-reference, and pass-by-const-reference?
Consider first a technical example:

void f(int a, int& r, const int& cr)

{
++a;  // change the local a
++r;  // change the object referred to by r
++cr; // error: cr is const

}

If you want to change the value of the object passed, you must use a non-const
reference: pass-by-value gives you a copy and pass-by-const-reference prevents
you from changing the value of the object passed. So we can try

void g(int a, int& r, const int& cr)

{
++a; /l change the local a
+41; /l change the object referred to by r
intx =cr; //read the object referred to by cr
}
int main()
{
intx=0;
inty=0;
intz=0;
g(x,y,z); Nl x==0; y==1; z==
g(1,2,3); /l error: reference argument r needs a variable to refer to
g(1,y,3); /I OK: since cr is const we can pass a literal
}

So, if you want to change the value of an object passed by reference, you have to
pass an object. Technically, the integer literal 2 is just a value (an rvalue), rather
than an object holding a value. What you need for g()’s argument r is an lvalue,
that is, something that could appear on the left-hand side of an assignment.

Note that a const reference doesn’t need an Ivalue. It can perform conver-
sions exactly as initialization or pass-by-value. Basically, what happens in that last
call, g(1,y,3), is that the compiler sets aside an int for g()'s argument cr to refer to:
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g(1,y,3); /I means: int __compiler_generated = 3; g(1,y,__compiler_generated)

Such a compiler-generated object is called a temporary object or just a lemporary.
Our rule of thumb is:

O 1. Use pass-by-value to pass very small objects.
2. Use pass-by-const-reference to pass large objects that you don’t need to
modify.
3. Return a result rather than modifying an object through a reference
argument.
4. Use pass-by-reference only when you have to.
These rules lead to the simplest, least error-prone, and most efficient code. By

“very small” we mean one or two ints, one or two doubles, or something like
that. If we see an argument passed by non-const-reference, we must assume that
the called function will modify that argument.

That third rule reflects that you have a choice when you want to use a func-
tion to change the value of a variable. Consider:

int incri(int a) { return a+1; } // return the new value as the result

void incr2(int& a) { ++a; } /I modify object passed as reference
intx=7;

x = incri(x); /I pretty obvious

incr2(x); /I pretty obscure

0 Why do we ever use non-const-reference arguments? Occasionally, they are es-
sential

*  For manipulating containers (e.g., vector)

* For functions that change several objects (we can have only one return
value)

For example:

void larger(vector<int>& v1, vector<int>& v2)
// make each element in v1 the larger of the corresponding
// elements in vl and v2;
/ similarly, make each element of v2 the smaller

if (vi.size()!=v2.size() error("larger(): different sizes");
for (int i=0; i<vl.size(); ++i)
if (vi[il<v2[i])
swap(v1[il,v2[il);



8.5 FUNCTION CALL AND RETURN

void f()

{
vector<int> vx;
vector<int> vy;
/ read vx and vy from input
larger(vx,vy);
7

}

Using pass-by-reference arguments is the only reasonable choice for a function
like larger().

It is usually best to avoid functions that modify several objects. In theory,
there are always alternatives, such as returning a class object holding several val-
ues. However, there are a lot of programs “out there” expressed in terms of func-
tions that modify one or more arguments, so you are likely to encounter them.
For example, in Fortran — the major programming language used for numerical
calculation for about 50 years — all arguments are passed by reference. Many nu-
meric programmers copy Fortran designs and call functions written in Fortran.
Such code often uses pass-by-reference or pass-by-const-reference.

If we use a reference simply to avoid copying, we use a const reference. Con-
sequently, when we see a non-const-reference argument, we assume that the
function changes the value of its argument; that is, when we see a pass-by-non-
const-reference we assume that not only can that function modify the argument
passed, but that it will, so that we have to look extra carefully at the call to make
sure that it does what we expect it to.

8.5.7 Argument checking and conversion

Passing an argument is the initialization of the function’s formal argument with
the actual argument specified in the call. Consider:

void (T x);
fty);
T x=y; / initialize x with y (see §8.2.2)

The call f(y) is legal whenever the initialization T x=y; is, and when it is legal both
x’s get the same value. For example:

void f(double);

void g(int y)
{
fly);
double x(y);
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Note that to initialize x with y, we have to convert an int to a double. The same
happens in the call of (). The double value received by f() is the same as the one
stored in x.

Conversions are often useful, but occasionally they give surprising results
(see §3.9.2). Consequently, we have to be careful with them. Passing a double as
an argument to a function that requires an int is rarely a good idea:

void ff(int);
void gg(double x)
{

ff(x);  // how would you know if this makes sense?

}

If you really mean to truncate a double value to an int, say so explicitly:

void ggg(double x)

{
intx1=x; // truncate x
int x2 = int(x);
ff(x1);
ff(x2);
ff(x); / truncate x
ff(int(x));

}

That way, the next programmer to look at this code can see that you thought
about the problem.

8.5.8 Function call implementation

But how does a computer really do a function call? The expression(). term(), and
primary() functions from Chapters 6 and 7 are perfect for illustrating this except
for one detail: they don’t take any arguments, so we can’t use them to explain
how arguments are passed. But wait! They must take some input; if they didn’t,
they couldn’t do anything useful. They do take an implicit argument: they use a
Token_stream called ts to get their input; ts is a global variable. That’s a bit
sneaky. We can improve these functions by letting them take a Token_stream&
argument. Here they are with a Token_stream& parameter added and everything
that doesn’t concern function call implementation removed.
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First, expression() is completely straightforward; it has one argument (ts)
and two local variables (left and t):

double expression(Token_stream& ts)

{
double left = term(ts);
Token t = ts.get();
s

}

Second, term() is much like expression(), except that it has an additional local
variable (d) that it uses to hold the result of a divisor for '/':

double term(Token_stream& ts)

{
double left = primary(ts);
Token t = ts.get();
W
case '/':
{
double d = primary(ts);
(; f—-—
}
[
}

Third, primary() is much like term() except that it doesn’t have a local variable
left:

double primary(Token_stream& ts)

{
Token t = ts.get ();
switch (t.kind) {
case '(:
{ double d = expression(ts);
/o
}
(/-
}
}

Now they don’t use any “sneaky global variables” and are perfect for our illus-
tration: they have an argument, they have local variables, and they call each
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other. You may want to take the opportunity to refresh your memory of what the
complete expression(). term(), and primary() looks like, but the salient features as
far as function call is concerned are presented here.

When a function is called, the language implementation sets aside a data
structure containing a copy of all its parameters and local variables. For example,
when expression() is first called, the compiler ensures that a structure like this is
created:

Call of expression(): |ts

The “implementation stuff” varies from implementation to implementation, but
that’s basically the information that the function needs to return to its caller and
to return a value to its caller. Such a data structure is called a_function activation
record, and each function has its own detailed layout of its activation record. Note
that from the implementation’s point of view, a parameter is just another local
variable.

So far, so good, and now expression() calls term(), so the compiler ensures
that an activation record for this call of term() is generated:

Call of expression(): |ts
left
Ly
stuff

Direction of

Call of term(): stack growth

TEF

Note that term() has an extra variable d that needs to be stored, so we set aside
space for that in the call even though the code may never get around to using it.
That's OK. For reasonable functions (such as every function we directly or indi-
rectly use in this book), the run-time cost of laying down a function activation
record doesn’t depend on how big it is. The local variable d will be initialized
only if we execute its case '/".

Now term() calls primary() and we get
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Call of expression():

Call of term():

Call of primary():

This is starting to get a bit repetitive, but now primary() calls expression():
Call of expression():

Call of term():

Call of primary():

Call of expression():
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C) So this call of expression() gets its own activation record, different from the first
call of expression(). That’s good or else we'd be in a terrible mess, since left and t
will be different in the two calls. A function that directly or (as here) indirectly
calls itself is called recursive. As you see, recursive functions follow naturally from
the implementation technique we use for function call and return (and vice versa).

So, each time we call a function the stack of activation records, usually just called
the stack, grows with one record. Conversely, when the function returns, its
record is no longer used. For example, when that last call of expression() returns
to primary(), the stack will revert to this:

Call of expression(): |ts
left
t
i

Call of term(): |ts
left

t Direction of
d stack growth

Call of primary(): |ts

And when that call of primary() returns to term(), we get back to

Call of expression(): |ts

Direction of
stack growth

Call of term():

'-”;'g,g‘s

ementation

=
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And so on. The stack, also called the el stack, is a data structure that grows and
shrinks at one end according to the rule: first in, first out.

Please remember that the details of how a call stack is implemented and used
vary from C++ implementation to C++ implementation, but the basics are as
outlined here. Do you need to know how function calls are implemented to use
them? Of course not; you have done well enough before this implementation
subsection, but many programmers like to know and many use phrases like
*activation record” and “call stack,” so it’s better to know what they mean.

8.6 Order of evaluation

The evaluation of a program — also called the execution of a program — proceeds
through the statements according to the language rules. When this “thread of ex-
ecution” reaches the definition of a variable, the variable is constructed; that is,
memory is set aside for the object and the object is initialized. When the variable
goes out of scope, the variable is destroyed: that is, the object it refers to is in
principle removed and the compiler can use its memory for something else. For
example:

string program_name = "silly";

vector<string> v; /v is global
void f()
{
string s; /lsislocal to f
while (cin>>s && s!="quit") {
string stripped; / stripped is local to the loop

string not_letters;
for (int i=0; i<s.size(); ++i) /i has statement scope
if (isalpha(s[i]))
stripped += s[i];
else
not_letters += s[il;
v.push_back(stripped);
o

}

Global variables, such as program_name and v, are initialized before the first state-
ment of main() is executed. They “live” until the program terminates, and then
they are destroyed. They are constructed in the order in which they are defined
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(that s, program_name before v) and destroyed in the reverse order (that is, v be-
fore program_name).

When someone calls f(), first s is constructed; that is, s is initialized to the
empty string. It will live until we return from f().

Each time we enter the block that is the body of the while-loop, stripped and
not_letters are constructed. Since stripped is defined before not_letters, stripped
is constructed before not_letters. They live until the end of the loop, where they
are destroyed in the reverse order of construction (that is, not_letters before
stripped) before the condition is reevaluated. So, if ten strings are seen before we
encounter the string quit, stripped and not_letters will cach be constructed and
destroyed ten times.

Each time we reach the for-loop, i is constructed. Each time we exit the for-
loop, i is destroyed before we reach the v.push_back(stripped); statement.

Please note that compilers (and linkers) are clever beasts and they are al-
lowed to — and do — optimize code as long as the results are equivalent to what
we have described here. In particular, compilers are clever at not allocating and
deallocating memory more often than is really necessary.

8.6.1 Expression evaluation

The order of evaluation of sub-expressions is governed by rules designed to
please an optimizer rather than to make life simple for the programmer. That’s
unfortunate, but you should avoid complicated expressions anyway, and there is
a simple rule that can keep you out of trouble: if you change the value of a vari-
able in an expression, don’t read or write it twice in that same expression. For
example:

v[i] = ++i; // don't: undefined order of evaluation
v++i] = i; /f don't: undefined order of evaluation
int X = ++i + ++i; /f don't: undefined order of evaluation
cout << ++i<<''<<i<<\n'; /I dont: undefined order of evaluation
f(++i,++i); /! don't: undefined order of evaluation

Unfortunately, not all compilers warn if you write such bad code; it’s bad be-
cause you can't rely on the results being the same if you move your code to an-
other computer, use a different compiler, or use a different optimizer setting.
Compilers really differ for such code; just don’t do it.

Note in particular that = (assignment) is considered just another operator in
an expression, so there is no guarantee that the left-hand side of an assignment is
evaluated before the right-hand side. That’s why v[++i] = i is undefined.

8.6.2 Global initialization

Global variables (and namespace variables; see §8.7) in a single translation unit
are initialized in the order in which they appear. For example:
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M file f1.cpp
intxi=1;
intyl =x1+2; /I y1 becomes 3

This initialization logically takes place “before the code in main() is executed.”

Using a global variable in anything but the most limited circumstances is usu-
ally not a good idea. We have mentioned the problem of the programmer having
no really effective way of knowing which parts of a large program read and/or
write a global variable (§8.4). Another problem is that the order of initialization of
global variables in different translation units is not defined. For example:

/ file £2.cpp
extern int y1;
inty2=yl1+2; /l y2 becomes 2 or 5

Such code is to be avoided for several reasons: it uses global variables, it gives the
global variables short names, and it uses complicated initialization of the global
variables. If the globals in file f1.cpp are initialized before the globals in f2.cpp, y2
will be initialized to 5 (as a programmer might naively and reasonably expect).
However, if the globals in file f2.cpp are initialized before the globals in f1.cpp, y2
will be initialized to 2 (because the memory used for global variables is initialized
to 0 before complicated initialization is attempted). Avoid such code, and be very
suspicious when you see global variables with nontrivial initializers; consider any
initializer that isn’t a constant expression complicated.

But what do you do if you really need a global variable (or constant) with a
complicated initializer? A plausible example would be that we wanted a default
value for a Date type we were providing for a library supporting business trans-
actions:

const Date default_date(1970,1,1); // the default date is January 1, 1970

How would we know that default_date was never used before it was initialized?
Basically, we can’t know, so we shouldn’t write that definition. The technique
that we use most often is to call a function that returns the value. For example:

const Date default_date() // return the default Date
{

return Date(1970,1,1);
}

This constructs the Date every time we call default_date(). That is often fine, but
if default_date() is called often and it is expensive to construct Date, we'd like to
construct the Date once only. That is done like this:
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const Date& default_date()

{
static const Date dd(1970,1,1); / initialize dd first time we get here
return dd;

}

A static local variable is initialized (constructed) only the first time its function is
called. Note that we returned a reference to eliminate unnecessary copying and,
in particular, we returned a const reference to prevent the called function from
accidentally changing the value. The arguments about how to pass an argument
(§8.5.6) also apply to returning values.

8.7 Namespaces

We use blocks to organize code within a function (§8.4). We use classes to organ-
ize functions, data, and types into a type (Chapter 9). A function and a class both
do two things for us:

* They allow us to define a number of “entities” without worrying that
their names clash with other names in our program.

+ They give us a name to refer to what we have defined.

What we lack so far is something to organize classes, functions, data, and types
into an identifiable and named part of a program without defining a type. The
language mechanism for such grouping of declarations is a namespace. For exam-
ple, we might like to provide a graphics library with classes called Color, Shape,
Line, Function, and Text (sece Chapter 13):

namespace Graph_lib {
struct Color {/*.. . */};
struct Shape {/* .. . */};
struct Line : Shape {/* .. . */};
struct Function : Shape {/* .. . */};
struct Text : Shape {/*. .. */};
/e
int gui_main() {/*...*/}

}

Most likely somebody else in the world has used those names, but now that
doesn’t matter. You might define something called Text, but our Text doesn’t in-
terfere. Graph_lib::Text is one of our classes and your Text is not. We have a
problem only if you have a class or a namespace called Graph _lib with Text as its
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member. Graph_lib is a slightly ugly name; we chose it because the “pretty and
obvious™ name Graphics had a greater chance of already being used somewhere.

Let’s say that your Text was part of a text manipulation library. The same
logic that made us put our graphics facilities into namespace Graph_lib should
make you put your text manipulation facilities into a namespace called some-
thing like TextLib:

namespace TextLib {
classText{/*...*};
class Glyph {/* ... */};
class Line {/* .. . */};
(/.

}

Had we both used the global namespace, we could have been in real trouble.
Someone trying to use both our libraries would have had really bad name clashes
for Text and Line. Worse, if we both had users for our libraries we would not
have been able to change our names, such as Line and Text, to avoid clashes. We
avoided that problem by using namespaces; that is, our Text is Graph_lib:: Text
and yours is TextLib::Text. A name composed of a namespace name (or a class
name) and a member name combined by :: is called a _fully qualified name.

8.7.1 using declarations and using directives

Writing fully qualified names can be tedious. For example, the facilities of the
C++ standard library are defined in namespace std and can be used like this:

#include<string> /l get the string library
#include<iostream> // get the iostream library
int main()

{

std::string name;

std::cout << "Please enter your first name\n";
std::cin >> name;

std::cout << "Hello, " << name << '\n';

}

Having seen the standard library string and cout thousands of times, we don't
really want to have to refer to them by their “proper” fully qualified names
std::string and std::cout all the time. A solution is to say that “by string. I mean
std::string,” “by cout, I mean std::cout.” ctc.:
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using std::string;  //string means std::string
using std::cout; // cout means std::cout
Y/ SR

That construct is called a using declaration; it is the programming equivalent to
using plain “Greg” to refer to Greg Hansen, when there are no other Gregs in the
room.

Sometimes, we prefer an even stronger “shorthand” for the use of names
from a namespace: “If you don’t find a declaration for a name in this scope, look
in std.” The way to say that is to use a using directive:

using namespace std;  // make names from std directly accessible
So we get this common style:

#include<string> // get the string library
#include<iostream> // get the iostream library
using namespace std;  // make names from std directly accessible

int main()
{
string name;
cout << "Please enter your first name\n";
cin >> name;
cout << "Hello, " << name << "\n';

}

The cin is std::cin, the string is std::string, etc. As long as you use std_lib_facil-
ities.h, you don’t need to worry about standard headers and the std namespace.
It is usually a good idea to avoid using directives for any namespace except
for a namespace, such as std, that’s extremely well known in an application area.
The problem with overuse of using directives is that you lose track of which
names come from where, so that you again start to get name clashes. Explicit
qualification with namespace names and using declarations doesn’t suffer from
that problem. So, putting a namespace directive in a header file (so that users
can’t avoid it) is a very bad habit. However, to simplify our initial code we did
place a using directive for std in std_lib_facilities.h. That allowed us to write

#include "std_lib_facilities.h"

int main()

{
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}

string name;

cout << "Please enter your first name\n";
cin >> name;

cout << "Hello, " << name << '\n';

We promise never to do that for any namespace except std.

J Drill

1. Create three files: my.h, my.cpp, and use.cpp. The header file my.h

contains

extern int foo;
void print_foo();
void print(int);

The source code file my.cpp #includes my.h and std_lib_facilities.h, de-
fines print_foo() to print the value of foo using cout, and print(int i) to
print the value of i using cout.

The source code file use.cpp #includes my.h, defines main() to set
the value of foo to 7 and print it using print_foo(), and to print the value
of 99 using print(). Note that use.cpp does not #include std_lib_facili-
ties.h as it doesn’t directly use any of those facilities.

Get these files compiled and run. On Windows, you need to have
both use.cpp and my.cpp in a project and use { char cc; cin>>cc; } in
use.cpp to be able to see your output.

Write three functions swap_v(int,int), swap_r(int&,int&), and swap_cr(const
int&, const int&). Each should have the body

{ int temp; temp = a, a=b; b=temp; }

where a and b are the names of the arguments.
Try calling each swap like this

intx=7;

inty=9;

swap_?(x,y); //replace?byv,r, orcr
swap_?(7,9);

constintcx=7;

constintcy=9;

swap_?(cx,cy);

swap_2(7.7,9.9);
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double dx =7.7;
double dy =9.9;
swap_2(dx,dy);
swap_2(dx,dy);

Which calls compiled, and why? After each swap that compiled, print
the value of the arguments after the call to see if they were actually
swapped. If you are surprised by a result, consult §8.6.

3. Write a program using a single file containing three namespaces X, Y, and
Z so that the following main() works correctly:

int main()

{
X:ivar=7;
X::print(); N print X's var
using namespace Y;
var=9;
print(); H printY's var
{ using Z::var;
using Z::print;
var =11;
print();  //print Z's var
}
print(); I printY’s var
X::print(); M print X's var
}

Each namespace needs to define a variable called var and a function
called print() that outputs the appropriate var using cout.

Review

1. What is the difference between a declaration and a definition?

2. How do we syntactically distinguish between a function declaration and
a function definition?

3. How do we syntactically distinguish between a variable declaration and
a variable definition?

4. Why can’t you use the functions in the calculator program from Chapter 6

without declaring them first?

Is int a; a definition or just a declaration?

Why is it a good idea to initialize variables as they are declared?

. What can a function declaration consist of?

No o
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8. What good does indentation do?
9. What are header files used for?

10. What is the scope of a declaration?

11. What kinds of scope are there? Give an example of each.

12. What is the difference between a class scope and local scope?

13. Why should a programmer minimize the number of global variables?

14. What is the difference between pass-by-value and pass-by-reference?

15. What is the difference between pass-by-reference and pass-by-const-
reference?

16. What is a swap()?

17. Would you ever define a function with a vector<double>-by-value pa-
rameter?

18. Give an example of undefined order of evaluation. Why can undefined
order of evaluation be a problem?

19. What do x&&y and x|ly, respectively, mean?

20. Which of the following is standard-conforming C++: functions within
functions, functions within classes, classes within classes, classes within
functions?

21. What goes into an activation record?

22. What is a call stack and why do we need one?

23. What is the purpose of a namespace?

24. How does a namespace differ from a class?
25. What is a using declaration?

26. Why should you avoid using directives in a header?
27. What is namespace std?

Terms
activation record function definition pass-by-value
argument global scope recursion
argument passing header file return
call stack mitializer return value
class scope local scope scope
const namespace statement scope
declaration namespace scope technicalities
definition nested block undeclared identifier
extern parameter using declaration
forward declaration pass-by-const-reference  using directive
function pass-by-reference
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Exercises

1.

NS

10.

Modify the calculator program from Chapter 7 to make the input stream
an explicit parameter (as shown in §8.5.8). Also give the Token_stream
constructor and istream& parameter so that when we figure out how to
make our own istreams (e.g., attached to files), we can use the calculator
for those.

. Write a function print() that prints a vector of ints to cout. Give it two ar-

guments: a string for “labeling” the output and a vector.

. Create a vector of Fibonacci numbers and print them using the function

from exercise 2. To create the vector, write a function, fibonacci(x,y,v,n),
where integers x and y are ints, v is an empty vector<int>, and n is the
number of elements to put into v; v[0] will be x and v[1] will be y. A
Fibonacci number is one that is part of a sequence where each element is
the sum of the two previous ones. For example, starting with 1 and 2, we
get 1,2,3,6,9, 15,24, . ... Your fibonacci() function should make such
a series starting with its x and y arguments.

An int can hold integers only up to a maximum number. Find an ap-
proximation of that maximum number by using fibonacci().

. Write two functions that reverse the order of elements in a vector<int>,

For example, 1, 3, 5, 7, 9 becomes 9, 7, 5, 3, 1. The first reverse function
should produce a new vector with the reversed sequence, leaving its orig-
inal vector unchanged. The other reverse function should reverse the el-
ements of its vector without using any other vectors (hint: swap).

Write versions of the functions from exercise 5, but with a vector<string>.
Read five names into a vector<string> name, then prompt the user for the
ages of the people named and store the ages in a vector<double> age. Then
print out the five (namelil.ageli]) pairs. Sort the names (sort(name.begin(),
name.end())) and print out the (name[il,agelil) pairs. The tricky part here
is to get the age vector in the correct order to match the sorted name
vector. Hint: Before sorting age, take a copy and use that to make a copy of
age in the right order after sorting age. Then, do that exercise again but al-
lowing an arbitrary number of names.

. Write a simple function randint() that produces a pseudo-random number

in the range [0:MAXINT]. Hint: Knuth, The Art of Computer Programming,
Volume 2.

. Write a function that — using randint() from the previous exercise — com-

putes a pseudo-random integer in the range [a:b): rand_in_range(int a,
int b). Note: This function is very useful for writing simple games.
Write a function that given two vector<double>s price and weight com-
putes a value (an “index”) that is the sum of all price[i]*weight[i]. Note
that we must have weight.size()<=price.size().
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1.

12;

13.

14.

15.

Write a function maxv() that returns the largest element of a vector
argument.

Write a function that finds the smallest and the largest element of a
vector argument and also computes the mean and the median. Do not
use global variables. Either return a struct containing the results or pass
them back through reference arguments. Which of the two ways of re-
turning several result values do you prefer and why?

Improve print_until_s() from §8.5.2. Test it. What makes a good set of
test cases? Give reasons. Then, write a print_until_ss() that prints unul it
sees a second occurrence of its quit argument.

Write a function that takes a vector<string> argument and returns a
vector<int> containing the number of characters in each string. Also find
the longest and the shortest string and the lexicographically first and last
string. How many separate functions would you use for these tasks?
Why?

Can we declare a non-reference function argument const (e.g., void
f(const int);)? What might that mean? Why might we want to do that?
Why don’t people do that often? Try it; write a couple of small programs
to see what works.

Postscript

We could have put much of this chapter (and much of the next) into an appen-
dix. However, you'll need most of the facilities described here in Part IT of this
book. You'll also encounter most of the problems that these facilities were in-
vented to help solve very soon. Most simple programming projects that you
mlght undertake will require you to solve such problems. So, to save time and
minimize confusion, a somewhat systematic approach is called for, rather than a
series of “random” visits to manuals and appendices.
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Technicalities:
Classes, etc.

“Remember, things take time.”

—Piet Hein

In this chapter, we keep our focus on our main tool for pro-
gramming: the C++ programming language. We present lan-
guage technicalities, mostly related to user-defined types, that is,
to classes and enumerations. Much of the presentation of lan-
guage features takes the form of the gradual improvement of a
Date type. That way, we also get a chance to demonstrate some

useful class design techniques.
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9.1 User-defined types 9.5 Enumerations

9.2 Classes and members 9.6 Operator overloading
9.3 Interface and implementation 9.7 Class interfaces

9.4 Evolving a class 9.7.1 Argument types

9.7.2 Copying
9.7.3 Default constructors
9.7.4 const member functions

9.4.1 struct and functions
9.4.2 Member functions and

constructors e A
9.4.3 Keep details private 9.7.5 Members and “helper functions
9.4.4 Defining member functions 9.8 The Date class

9.4.5 Referring to the current object
9.4.6 Reporting errors

9.1 User-defined types

The C++ language provides you with some built-in types, such as char, int, and
double (§A.8). A type is called built-in if the compiler knows how to represent
objects of the type and which operations can be done on it (such as + and *) with-
out being told by declarations supplied by a programmer in source code.

Types that are not built-in are called user-defined types (UDTs). They can be
standard library types — available to all C++ programmers as part of every ISO
Standard C++ implementation — such as string, vector, and ostream (Chapter
10), or types that we build for ourselves, such as Token and Token_stream (§6.5
and §6.6). As soon as we get the necessary technicalities under our belt, we'll
build graphics types such as Shape, Line, and Text (Chapter 13). The standard k-
brary types are as much a part of the language as the built-in types, but we still
consider them user-defined because they are built from the same primitives and
with the same techniques as the types we built ourselves; the standard library
builders have no special privileges or facilities that you don’t have. Like the built-
in types, most user-defined types provide operations. For example, vector has [ ]
and size() (§4.6.1, §B.4.8), ostream has <<, Token_stream has get() (§6.8), and
Shape has add(Point) and set_color() (§14.2).

Why do we build types? The compiler does not know all the types we might
like to use in our programs. It couldn’t, because there are far too many useful
types — no language designer or compiler implementer could know them all. We
invent new ones every day. Why? What are types good for? Types are good for
directly representing ideas in code. When we write code, the ideal is to represent
our ideas directly in our code so that we, our colleagues, and the compiler can
understand what we wrote. When we want to do integer arithmetic, int is a great
help; when we want to manipulate text, string is a great help; when we want to
manipulate calculator input, Token and Token_stream are a great help. The help
comes in two forms:



9.2 CLASSES AND MEMBERS

*  Representation: A type “knows” how to represent the data needed in an
object.

*  Operations: A type “knows” what operations can be applied to objects.

Many ideas follow this pattern: “something” has data to represent its current
value — sometimes called the current state — and a set of operations that can be
applied. Think of a computer file, a web page, a toaster, a CD player, a coffee
cup, a car engine, a cell phone, a telephone directory:; all can be characterized by
some data and all have a more or less fixed set of standard operations that you
can perform. In each case, the result of the operation depends on the data — the
“current state” — of an object.

So, we want to represent such an “idea” or “concept” in code as a data struc-
ture plus a set of functions. The question is: “Exactly how?” This chapter pres-
ents the technicalities of the basic ways of doing that in C++.

C++ provides two kinds of user-defined types: classes and enumerations.
The class is by far the most general and important, so we first focus on classes. A
class directly represents a concept in a program. A dass is a (user-defined) type
that specifies how objects of its type are represented, how those objects can be
created, how they are used, and how they can be destroyed (see §17.5). If you
think of something as a separate entity, it is likely that you should define a class
to represent that “thing” in your program. Examples are vector, matrix, input
stream, string, FFT (fast Fourier transform), valve controller, robot arm, device
driver, picture on screen, dialog box, graph, window, temperature reading, and
clock.

In C++ (as in most modern languages), a class is the key building block for
large programs — and very useful for small ones as well, as we saw for our calcu-
lator (Chapters 6 and 7).

9.2 Classes and members

A class is a user-defined type. It is composed of built-in types, other user-defined
types, and functions. The parts used to define the class are called members. A class

has zero or more members. For example:

class X {
public:

intm; // data member

int mf(int v) { int old = m; m=v; return old; } // function member
¢

Members can be of various types. Most are either data members, which define
the representation of an object of the class, or function members, which provide
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operations on such objects. We access members using the object.member notation.
For example:

X var; // var is a variable of type X
varm=7; // assign to var's data member m
int x =var.mf(9); // call var's member function mf()

You can read var.m as var's m. Most people pronounce it “var dot m” or “var’s m.”
The type of a member determines what operations we can do on it. We can read
and write an int member, call a function member, etc.

9.3 Interface and implementation

Usually, we think of a class as having an interface plus an implementation. The
interface is the part of the class’s declaration that its users access directly. The im-
plementation is that part of the class’s declaration that its users access only indi-
rectly through the interface. The public interface is identified by the label public:
and the implementation by the label private:. You can think of a class declaration
like this:

class X { // this class’s name is X
public:
/l public members:
// - the interface to users (accessible by all)
// functions
/ types
// data (often best kept private)
private:
// private members:
/' —the implementation details (used by members of this class only)
// functions
/ types
// data
Y

Class members are private by default; that is,

class X {
int mf(int);
W... .

H

means
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class X {
private:
int mf(int);
i
b

so that

X x; / variable x of type X
inty = x.mf(); /l error: mf is private (i.e., inaccessible)

A user cannot directly refer to a private member. Instead, we have to go through
a public function that can use it. For example:

class X {

int m;

int mi(int);
public:

int f(int i) { m=i; return mf(i); }
Y

Xx;
inty=x.f(2);

We use the distinction between private and public to represent the important dis-
tinction between an interface (the user’s view of the class) and implementation
details (the implementer’s view of the class). We explain that and give lots of ex-
amples as we go along. Here we'll just mention that for something that’s just
data, this distinction doesn’t make sense. So, there is a useful simplified notation
for a class that has no private implementation details. A struct is a class where
members are public by default:

struct X {
intm;
l...
1

means

class X {
public:
intm;
/...
Y
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structs arc primarily used for data structures where the members can take any
value; that is, we can’t define any meaningful invariant (§9.4.3).

9.4 Evolving a class

Let’s illustrate the language facilities supporting classes and the basic techniques
for using them by showing how — and why — we might evolve a simple data
structure into a class with private implementation details and supporting opera-
tions. We use the apparently trivial problem of how to represent a date (such as
August 14, 1954) in a program. The need for dates in many programs is obvious
(commercial transactions, weather data, calendar programs, work records, inven-
tory management, etc.). The only question is how we might represent them.

9.4.1 struct and functions

How would we represent a date? When asked, most people answer, “Well, how
about the year, the month, and the day of the month?” That’s not the only an-
swer and not always the best answer, but it’s good enough for our uses, so that’s
what we'll do. Our first attempt is a simple struct:

// simple Date (too simple?)
struct Date {

inty; //year

intm; //month in year

intd; //day of month
}i

Date today; //a Date variable (a named object)

A Date object, such as today, will simply be three ints:

Date:
y: 2005
m: 12
d: 24

There is no “magic” relying on hidden data structures anywhere related to a
Date — and that will be the case for every version of Date mn this chapter.

So, we now have Dates; what can we do with them? We can do everything in
the sense that we can access the members of today (and any other Date) and read
and write them as we like. The snag is that nothing is really convenient. Just
about anything that we want to do with a Date has to be written in terms of reads
and writes of those members. For example:
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/f set today to December 24, 2005
today.y = 2005;

today.m = 24;

today.d = 12;

This is tedious and error-prone. Did you spot the error? Everything that’s te-
dious is error-prone! For example, does this make sense?

Date x;

x.y=-3;
x.m=13;
%.d=32;

Probably not, and nobody would write that — or would they? How about

Date y;
y-y = 2000;
ym=2;
y.d =29;

Was year 2000 a leap year? Are you sure?

What we do then is to provide some helper functions to do the most com-
mon operations for us. That way, we don’t have to repeat the same code over
and over again and we won't make, find, and fix the same mistakes over and
over again. For just about every type, initialization and assignment are among the
most common operations. For Date, increasing the value of the Date is another
common operation, SO we write:

/ helper functions:

void init_day(Date& dd, int y, int m, int d)

{
/l check that (y,m,d) is a valid date
/1 if it is, use it to initialize dd

}

void add_day(Date& dd, int n)

{
/l increase dd by n days

}

We can now try to use Date:
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void f()

{
Date today;
init_day(today, 12, 24, 2005); // oops! (no day 2005 in year 12)
add_day(today,1);

}

First we note the usefulness of such “operations” — here implemented as helper
functions. Checking that a date is valid is sufficiently difficult and tedious that if
we didn’t write a checking function once and for all, we'd skip the check occa-
sionally and get buggy programs. Whenever we define a type, we want some op-
erations for it. Exactly how many operations we want and of which kind will
vary. Exactly how we provide them (as functions, member functions, or opera-
tors) will also vary, but whenever we decide to provide a type, we ask ourselves,
“Which operations would we like for this type?”

9.4.2 Member functions and constructors

We provided an initialization function for Dates, one that provided an important
check on the validity of Dates. However, checking functions are of little use if we

fail to use them. For example, assume that we have defined the output operator
<< for a Date (§9.8):

void f()
{
Date today;
'/ P
cout << today << "\n'; / use today
Hiivia
init_day(today,2008,3,30);
/)
Date tomorrow;
tomorrow.y = today.y;
tomorrow.m = today.m;
tomorrow.d = today.d+1; /f add 1 to today
cout << tomorrow << '\n'; // use tomorrow

}

Here, we “forgot” to immediately initialize today and “someone” used it before
we got around to calling init_day(). “Someone else” decided that it was a waste of
time to call add_day() — or maybe hadn’t heard of it — and constructed tomorrow
by hand. As it happens, this is bad code — very bad code. Sometimes, probably
most of the time, it works, but small changes lead to serious errors. For example,
writing out an uninitialized Date will produce garbage output, and incrementing
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a day by simply adding 1 to its member d is a time bomb: when today is the last
day of the month the increment yields an invalid date. The worst aspect of this
“very bad code” is that it doesn’t look bad.

This kind of thinking leads to a demand for an initialization function that
can’t be forgotten and for operations that are less likely to be overlooked. The
basic tool for that is member functions, that is, functions declared as members of the
class within the class body. For example:

/I simple Date

// guarantee initialization with constructor
/ provide some notational convenience
struct Date {

inty, m, d; /I year, month, day
Date(int y, int m, int d); /] check for valid date and initialize
void add_day(int n); /l increase the Date by n days

i

A member function with the same name as its class is special. It is called a
constructor and will be used for initialization (“construction”) of objects of the class.
It is an error — caught by the compiler — to forget to initialize a class that has a
constructor that requires an argument, and there is a special convenient syntax
for doing such initialization:

Date my_birthday; /l error: my_birthday not initialized
Date today(12,24,2007); /l oops! run-time error

Date last(2000, 12, 31); /l OK (colloquial style)

Date christmas = Date(1976,12,24); /f also OK (verbose style)

The attempt to declare my_birthday fails because we didn’t specify the required
initial value. The attempt to declare today will pass the compiler, but the check-
ing code in the constructor will catch the illegal date at run time (12/24/2007 -
there is no day 2007 of the 24th month of year 12).

The definition of last provides the initial value — the arguments required by
Date’s constructor — in parentheses immediately after the name of the variable.
That’s the most common style of initialization of variables of a class that has a
constructor requiring arguments. We can also use the more verbose style where
we explicitly create an object (here, Date(1976,12,24)) and then use that to initial-
ize the variable using the = initializer syntax. Unless you actually like typing,
you'll soon tire of that.

We can now try to use our newly defined variables:

last.add_day(1);
add_day(2); /l error: what date?
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Note that the member function add_day() is called for a particular Date using the
dot member-access notation. We'll show how to define member functions in §9.4.4.

9.4.3 Keep details private

We still have a problem: What if someone forgets to use the member function
add_day()? What if someone decides to change the month directly? After all, we
“forgot™ to provide a facility for that:

Date birthday(1960,12,31); // December 31, 1960

++birthday.d; /l ouch! invalid date
Date today(1970,2,3);
today.m = 14; // ouch! invalid date

As long as we leave the representation of Date accessible to everybody, some-
body will — by accident or design — mess it up; that is, someone will do some-
thing that produces an invalid value. In this case, we created a Date with a value
that doesn’t correspond to a day on the calendar. Such invalid objects are time
bombs; it is just a matter of time before someone innocently uses the invalid
value and gets a run-time error or — usually worse — produces a bad result.

Such concerns lead us to conclude that the representation of Date should be
inaccessible to users except through the public member functions that we supply.
Here is a first cut:

// simple Date (control access)
class Date {

inty, m, d; / year, month, day

public:
Date(int y, int m, int d); /l check for valid date and initialize
void add_day(int n); /l increase the Date by n days

int month() { return m; }
intday() { returnd; }
int year() { returny; }

5
We can use it like this:
Date birthday(1970, 12, 30); // OK

birthday.m = 14; N error: Date::m is private
cout << birthday.month() << endl;  // we provided a way to read m
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The notion of a “valid Date” is an important special case of the idea of a valid
value. We try to design our types so that values are guaranteed to be valid; that
is, we hide the representation, provide a constructor that creates only valid ob-
jects, and design all member functions to expect valid values and leave only valid
values behind when they return. The value of an object is often called its state, so
the idea of a valid value is often referred to as a valid state of an object.

The alternative is for us to check for validity every time we use an object, or
just hope that nobody left an invalid value lying around. Experience shows that
“hoping” can lead to “pretty good™ programs. However, producing “pretty good™
programs that occasionally produce erroneous results and occasionally crash is
no way to win friends and respect as a professional. We prefer to write code that
can be demonstrated to be correct.

A rule for what constitutes a valid value is called an mvariant. The invariant
for Date (“A Date must represent a day in the past, present, or future”) is unusu-
ally hard to state precisely: remember leap years, the Georgian calendar, time
zones, etc. However, for simple realistic uses of Dates we can do it. For example,
if we are analyzing internet logs, we need not be bothered with the Georgian, Ju-
lian, or Mayan calendars. If we can’t think of a good invariant, we are probably
dealing with plain data. If so, use a struct.

9.4.4 Defining member functions

So far, we have looked at Date from the point of view of an interface designer
and a user. But sooner or later, we have to implement those member functions.
First, here is a subset of the Date class reorganized to suit the common style of
providing the public interface first:

/ simple Date (some people prefer implementation details last)
class Date {
public:
Date(inty, int m, int d); // constructor: check for valid date and initialize
void add_day(int n); /l increase the Date by n days
int month();
Wi
private:
inty, m, d; /I year, month, day
b

People put the public interface first because the interface is what most people are
interested in. In principle, a user need not look at the implementation details. In
reality, we are typically curious and have a quick look to see if the implementation
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looks reasonable and if the implementer used some technique that we could learn
from. However, unless we are the implementers, we do tend to spend much more
time with the public interface. The compiler doesn’t care about the order of class
members; it takes the declarations in any order you care to present them.

When we define a member outside its class, we need to say which class it is a
member of. We do that using the dass_name: : member_name notation:

Date: :Date(int yy, int mm, int dd) // constructor

:y(yy), m(mm), d(dd) /l note: member initializers
{
}
void Date::add_day(int n)
{
VT
}
int month() // oops: we forgot Date::
{
return m; /f not the member function, can’t access m
}

The :y(yy), m(mm), d(dd) notation is how we initialize members. We could have
written

Date::Date(int yy, int mm, int dd) /l constructor

{
Y=Yy:
m = mm;
d = dd;
}

but then we would in principle first have default initialized the members and then
assigned values to them. We would then also open the possibility of accidentally
using a member before it was initialized. The :y(yy), m(mm), d(dd) notation
more directly expresses our intent. The distinction is exactly the same as the one
between

int x; /! first define the variable x
s iin
x=2; // later assign to x
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and
intx=2; /I define and immediately initialize with 2

For consistency, it is even possible to express that last initialization using the
“argument”/parenthesis notation:

int x(2); / initialize x with 2
Date sunday(2004,8,29);  //initialize sunday with (2004,8,29)

We can also define member functions right in the class definition:

// simple Date (some people prefer implementation details last)
class Date {

public:

Date(int yy, int mm, int dd)
:y(yy), m(mm), d(dd)

{
I

}

void add_day(int n)

{
n...

}

int month() { return m; }

Wi
private:

inty,m,d; // year, month, day
b

The first thing we notice is that the class declaration became larger and “messier.”
In this example, the code for the constructor and add_day() could be a dozen or
more lines each. This makes the class declaration several times larger and makes
it harder to find the interface among the implementation details. Consequently,
we don’t define large functions within a class declaration.

However, look at the definition of month(). That’s straightforward and
shorter than the version that places Date::month() out of the class declaration.
For such short, simple functions, we might consider writing the definition right in
the class declaration.

31
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Note that month() can refer to m even though m is defined after (below)
month(). A member can refer to another member of its class independently of
where in the class that other member is declared. The rule that a name must be
declared before it is used is relaxed within the limited scope of a class.

Writing the definition of a member function within the class definition has
two effects:

* The function will be #lined, that is, the compiler will try to generate code
for a call to the inline function without using a function call to get to that
code. This can be a significant performance advantage for functions,
such as month(), that hardly do anything but are used a lot.

* All uses of the class will have to be recompiled whenever we make a
change to the body of an inlined function. If the function body is out of
the class declaration, recompilation of users is needed only when the
class declaration is itself changed. Not recompiling when the body is
changed can be a huge advantage in large programs.

The obvious rule of thumb is: Don’t put member function bodies in the class
declaration unless you know that you need the performance boost from inlining
tiny functions. Large functions, say five lines of code, don’t benefit from inlining.
We rarely inline a function that consists of more than one or two expressions.

9.4.5 Referring to the current object
Consider a simple use of the Date class so far:

class Date {

/...

int month() { return m; }

7/
private:

inty, m,d; //year, month, day
|5

void f(Date d1, Date d2)
{
cout << d1.month() <<'' << d2.month() << '\n';

}

How does Date: :month() know to print out d1.m in the first call and d2.m in the
second? Look again at Date::month(); its declaration specifies no function argu-
ment! How does Date::month() know for which object it was called? A class
member function, such as Date::month(), has an implicit argument which it uses
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to identify the object for which it is called. So in the first call, m correctly refers to
d1.m and in the second call it refers to d2.m. See §17.10 for more uses of this im-
plicit argument.

9.4.6 Reporting errors

What do we do when we find an invalid date? Where in the code do we look for 0
invalid dates? From §5.6, we know that the answer to the first question is
“Throw an exception,” and the obvious place to look is where we first construct a

Date. If we don’t create invalid Dates and also write our member functions cor-
rectly, we will never have a Date with an invalid value. So, we’'ll prevent users

from ever creating a Date with an invalid state:

// simple Date (prevent invalid dates)
class Date {

public:
class Invalid { }; // to be used as exception
Date(int y, int m, int d); /l check for valid date and initialize
Wi
private:
inty, m, d; /l year, month, day

bool check(); // return true if date is valid
1 H

We put the testing of validity into a separate check() function because checking
for validity is logically distinct from initialization and because we might want to
have several constructors. As you can see, we can have private functions as well
as private data:

Date: :Date(int yy, int mm, int dd)

: y(yy), m(mm), d(dd) M/ initialize data members
{
if (1check()) throw Invalid(); /l check for validity
¥
bool Date::check() // return true if date is valid
{
if (m<1 || 12<m) return false;
7/ g
}

Given that definition of Date, we can write:
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void f(int x, int y)

try {
Date dxy(2004,x,y);
cout << dxy << '\n'; // see §9.8 for a declaration of <<
dxy.add_day(2);

}

catch(Date: :Invalid) {
error("invalid date");  // error() defined in §5.6.3

}

We now know that << and add_date() will have a valid Date on which to operate.

Before completing the evolution of our Date class in §9.7, we'll take a detour
to describe a couple of general language facilities that we'll need to do that well:
enumerations and operator overloading.

9.5 Enumerations

An enum (an enumeration) is a very simple user-defined type, specifying its set of
values (its enumerators) as symbolic constants. For example:

enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

Y

The “body” of an enumeration is simply a list of its enumerators. You can give a
specific value for an enumerator, as we did for jan here, or leave it to the com-
piler to pick a suitable value. If you leave it to the compiler to pick, it'll give each
enumerator the value of the previous enumerator plus one. Thus, our definition
of Month gave the months consecutive values starting with 1. We could equiva-
lently have written

enum Month {
jan=1, feb=2, mar=3, apr=4, may=5, jun=6,
jul=7, aug=8, sep=9, oct=10, nov=11, dec=12
Y

However, that’s tedious and opens the opportunity for errors. In fact, we made
two typing errors before getting this latest version right; it is better to let the com-
piler do simple, repetitive “mechanical” things. The compiler is better at such
tasks than we are, and it doesn’t get bored.

If we don’t initialize the first enumerator, the count starts with 0. For example:
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enum Day {
monday, tuesday, wednesday, thursday, friday, saturday, sunday
b

Here monday==0 and sunday==6. In practice, starting with 0 is often a good
choice.
We can use our Month like this:

Month m = feb;

m=7; / error: can't assign an int to a Month
intn=m; /I OK: we can get the numeric value of a Month
Month mm = Month(7);  // convert int to Month (unchecked)

Note that a Month is a separate type. It has an implicit conversion to int, but
there is no implicit conversion from int to Month. This makes sense because
every Month has an equivalent integer value, but most ints do not have a Month
equivalent. For example, we really do want this initialization to fail:

Month bad =9999;  // error: can’t convert an int to a Month

If you insist on using the Month(9999) notation, on your head be it! In many
cases, C++ will not try to stop a programmer from doing something potentially
silly when the programmer explicitly insists; after all, the programmer might ac-
tually know better.

Unfortunately, we cannot define a constructor for an enumeration to check
initializer values, but it is trivial to write a simple checking function:

Month int_to_month(int x)

{
if (x<jan || dec<x) error("bad month");
return Month(x);

}
Given that, we can write

void f(int m)

{
Month mm = int_to_month(m);
/.

}

What do we use enumerations for? Basically, an enumeration is useful whenever
we need a set of related named integer constants. That happens all the time when
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we try to represent sets of alternatives (up, down; yes, no, maybe; on, off; n, ne,
e, se, s, sw, w, nw) or distinctive values (red, blue, green, yellow, maroon, crim-
son, black).

Note that an enumerator is nof in the scope of its enumeration type; it is in
the same scope as the name of its enumeration type. For example:

enum Traffic_sign { red, yellow, green };
int var = red; /l note: not Traffic_sign::red

This can cause problems. Imagine the potential for confusion if you have short
popular names, such as red, on, ne, and dec, as global names. For example, does
ne mean “northeast” or “not equal”? Does dec mean “decimal” or “December™?
This is the kind of problem we warned against in §3.7, and we can easily get such
problems if we define an enum with short, convenient enumerator names in the
global scope. In fact, we immediately get this problem when we try to use our
Month enumeration together with iostreams because there is a “manipulator”
called dec for “decimal” (see §11.2.1). To avoid such problems, we often prefer to
define enumerations in more limited scopes, such as within a class. That also al-
lows us to be explicit about what an enumerator value refers to, such as
Month: :jan and Color::red. We present the technique for doing that in §9.7.1. If
we absolutely need global names, we try to minimize the chance of name clashes
by using longer names, by using unusual names (or unusual spellings), and by
capitalization. However, our preferred solution is to make names as local as is
reasonable.

9.6 Operator overloading

You can define almost all C++ operators for class or enumeration operands.
That’s often called operator overloading. We use it when we want to provide con-
ventional notation for a type we design. For example:

enum Month {
Jan=1, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec
Y

Month operator++(Month& m) / prefix increment operator
{

m = (m==Dec) ? Jan : Month(m+1);  //“wrap around”

return m;
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The ? : construct is an “arithmetic if”: m becomes Jan if (m==Dec) and
Month(m+1) otherwise. It is a reasonably elegant way of expressing the fact that
months “wrap around” after December. The Month type can now be used like
this:

Month m = sep;

++m; // m becomes Oct
++m; // m becomes Nov
++m; // m becomes Dec
++m; /l m becomes Jan (“wrap around”)

You might not think that incrementing a Month is common enough to warrant a
special operator. That may be so, but how about an output operator? We can de-
fine one like this:

vector<string> month_tbl;

ostream& operator<<(ostream& os, Month m)
{
return os << month_tbl[m];

}

This assumes that month_tbl has been initialized somewhere so that (for exam-
ple) month_tbl[Mar] is "March" or some other suitable name for that month; see
§10.11.3.

You can define just about any operator provided by C++ for your own b
types, but only existing operators, such as +, -, *,/, %, [I. 0, , !, & <, <=, >, and
>=. You cannot define your own operators; you might like to have ** or $= as op-
erators in your program, but C++ won’t let you. You can define operators only
with their conventional number of operands; for example, you can define unary
-, but not unary <= (less than or equal), and binary +, but not binary ! (not). Ba-
sically, the language allows you to use the existing syntax for the types you de-
fine, but not to extend that syntax.

An overloaded operator must have at least one user-defined type as operand:

int operator+(int,int);  // error: you can’t overload built-in +
Vector operator+(const Vector&, const Vector &); // OK
Vector operator+=(const Vector&, int); // OK

It is generally a good idea not to define operators for a type unless you are really ()

certain that it makes a big positive change to your code. Also, define operators
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only with their conventional meaning: + should be addition, binary * multiplica-
tion, [] access, () call, etc. This is just advice, not a language rule, but it is good
advice: conventional use of operators, such as + for addition, can significantly
help us understand a program. After all, such use is the result of hundreds of
years of experience with mathematical notation. Conversely, obscure operators
and unconventional use of operators can be a significant distraction and a source
of errors, We will not elaborate on this point. Instead, in the following chapters,
we will simply use operator overloading in a few places where we consider it
appropriate.

Note that the most interesting operators to overload aren’t +, -, *, and / as
people often assume, but =, ==, !=, <, [], and ().

9.7 Class interfaces

We have argued that the public interface and the implementation parts of a class
should be separated. As long as we leave open the possibility of using structs for
types that are “plain old data,” few professionals would disagree. However, how
do we design a good interface? What distinguishes a good public interface from a
mess? Part of that answer can be given only by example, but there are a few gen-
eral principles that we can list and which are given some support in C++:

* Keep interfaces complete.

* Keep interfaces minimal.

* Provide constructors.

*  Support copying (or prohibit it) (see §14.2.4).

*  Use types to provide good argument checking.

* Identify nonmodifying member functions (see §9.7.4).
+  Free all resources in the destructor (see §17.5).

See also §5.5 (how to detect and report run-time errors).

The first two principles can be summarized as “Keep the interface as small as
possible, but no smaller.” We want our interface to be small because a small inter-
face is easy to learn and easy to remember, and the implementer doesn’t waste a
lot of time implementing unnecessary and rarely used facilities. A small interface
also means that when something is wrong, there are only a few functions to
check to find the problem. On average, the more public member functions, the
harder it is to find bugs — and please don’t get us started on the complexities of
debugging classes with public data. But of course, we want a complete interface;
otherwise, it would be useless. We couldn’t use an interface that didn’t allow us
to do all we really needed.

Let’s look at the other — less abstract and more directly supported — ideals.
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9.7.1 Argument types

When we defined the constructor for Date in §9.4.3, we used three ints as the ar-

guments. That caused some problems:

Date d1(4,5,2005);  // oops: year 4, day 2005
Date d2(2005,4,5); /I April 5 or May 4?

The first problem (an illegal day of the month) is easily dealt with by a test in the
constructor. However, the second (a month vs. day-of-the-month confusion) can’t
be caught by code written by the user. The second problem is simply that the
conventions for writing month and day-in-month differ; for example, 4/5 is
April 5 in the United States and May 4 in England. Since we can’t calculate our
way out of this, we must do something else. The obvious solution is to use the
type system:

// simple Date (use Month type)
class Date {
public:
enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

5

Date(int y, Month m, intd); // check for valid date and initialize
s |
private:
inty; / year
Month m;
intd; / day
b

When we use a Month type, the compiler will catch us if we swap month and
day, and using an enumeration as the Month type also gives us symbolic names
to use. It is usually easier to read and write symbolic names than to play around
with numbers, and therefore less error-prone:

Date dx1(1998, 4, 3); /l error: 2nd argument not a Month
Date dx2(1998, 4, Date::mar);  // error: 2nd argument not a Month
Date dx2(4, Date::mar, 1998);  // oops: run-time error: day 1998
Date dx2(Date::mar, 4, 1998);  // error: 2nd argument not a Month
Date dx3(1998, Date::mar, 30); // OK

319
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This takes care of most “accidents.” Note the use of the qualification of the enu-
merator mar with the class name Date: Date::mar. This is the way we say that
it’s Date’s mar. We don’t say Date.mar because Date isn’t an object (it’s a type)
and mar isn’t a data member (it’s an enumerator — a symbolic constant). Use ::
after a class name (or a namespace name; §8.7) and . (dot) after an object name.

When we have a choice, we catch errors at compile time rather than at run
time. We prefer for the compiler to find the error rather than for us to try to fig-
ure out exactly where in the code a problem occurred. Also, errors caught at
compile time don’t require checking code to be written and executed.

Thinking like that, could we catch the swap of the day of the month and the
year also? We could, but the solution is not as simple or as elegant as for Month;
after all, there was a year 4 and you might want to represent it. Even if we re-
stricted ourselves to modern times there would probably be too many relevant
years for us to list them all in an enumeration.

Probably the best we could do (without knowing quite a lot about the in-
tended use of Date) would be something like this:

class Year { / year in [min:max) range
static const int min = 1800;
static const int max = 2200;
public:
class Invalid { };
Year(int x) : y(x) { if (x<min || max<x) throw Invalid(); }
int year() { returny; }
private:
inty;
b

class Date {
public:
enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
};

Date(Year y, Month m, intd);  // check for valid date and initialize
/(-
private:
Yeary;
Month m;
intd; /l day
};
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Now we get

Date dx1(Year(1998), 4, 3); /l error: 2nd argument not a Month
Date dx2(Year(1998), 4, Date::mar);  // error: 2nd argument not a Month
Date dx2(4, Date::mar, Year(1998));  // error: 1st argument not a Year
Date dx2(Date::mar, 4, Year(1998));  // error: 2nd argument not a Month
Date dx3(Year(1998), Date::mar, 30); // OK

This weird and unlikely error would still not be caught until run time:
Date dx2(Year(4), Date::mar, 1998);  // run-time error: Year::Invalid

Is the extra work and notation to get years checked worthwhile? Naturally, that
depends on the constraints on the kind of problem you are solving using Date,
but in this case we doubt it and won't use class Year as we go along.

When we program, we always have to ask ourselves what is good enough
for a given application. We usually don’t have the luxury of being able to search
“forever™ for the perfect solution after we have already found one that is good
enough. Search further, and we might even come up with something that’s so
elaborate that it is worse than the simple early solution. This is one meaning of
the saying “The best is the enemy of the good” (Voltaire).

Note the use of static const in the definitions of min and max. This is the
way we define symbolic constants of integer types within classes. For a class
member, we use static to make sure that there is just one copy of the value in the
program, rather than one per object of the class.

9.7.2 Copying

We always have to create objects; that is, we must always consider initialization
and constructors. Arguably they are the most important members of a class: to
write them, you have to decide what it takes to initialize an object and what it
means for a value to be valid (what is the invariant?). Just thinking about initial-
ization will help you avoid errors.

The next thing to consider is often: Can we copy our objects? And if so, how
do we copy them?

For Date or Month, the answer is that we obviously want to copy objects of
that type and that the meaning of copy is trivial: just copy all of the members. Ac-
tually, this is the default case. So as long as you don’t say anything else, the com-
piler will do exactly that. For example, if you copy a Month as an initializer or
right-hand side of an assignment, all its members are copied:

Date holiday(1978, Date::jul, 4); /l initialization
Date d2 = holiday;
Date d3 = Date(1978, Date: :jul, 4);

n
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holiday = Date(1978, Date: :dec, 24); // assignment
d3 = holiday;

This will all work as expected. The Date(1978, Date: :dec, 24) notation makes the
appropriate unnamed Date object, which you can then use appropriately. For
example:

cout << Date(1978, Date: :dec, 24);

This 1s a use of a constructor that acts much as a literal for a class type. It often
comes in as a handy alternative to first defining a variable or const and then
using it once.

What if we don’t want the default meaning of copying? We can either define
our own (see §18.2) or make the copy constructor and copy assignment private
(see §14.2.4).

9.7.3 Default constructors

Uninitialized variables can be a serious source of errors. To counter that problem,
we have the notion of a constructor to guarantee that every object of a class is ini-
tialized. For example, we declared the constructor Date: :Date(int,Month,int) to
ensure that every Date is properly initialized. In the case of Date, that means that
the programmer must supply three arguments of the right types. For example:

Date d1; /! error: no initializer

Date d2(1998); /l error: too few arguments

Date d3(1,2,3,4); / error: too many arguments

Date d4(1,"jan",2); / error: wrong argument type

Date d5(1,Date::jan,2); // OK: use the three-argument constructor
Date d6 = d5; /I OK: use the copy constructor

Note that even though we defined a constructor for Date, we can still copy Dates.

Many classes have a good notion of a default value; that is, there is an obvi-
ous answer to the question “What value should it have if I didn’t give it an ini-
tializer?” For example:

string s1; /I default value: the empty string *"
vector<string> vi; /] default value: the empty vector; no elements
vector<string> v2(10);  // vector of 10 default strings

This looks reasonable. It even works the way the comments indicate. That is
achieved by giving vector and string default constructors that implicitly provide the
desired initialization.
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For a type T, T() is the notation for the default value, as defined by the default o
constructor, so we could write
string s1 = string(); /I default value: the empty string ""
vector<string> v1 = vector<string>(); /l default value:
/l the empty vector; no elements
vector<string> v2(10,string()); / vector of 10 default strings

However, we prefer the equivalent and colloquial

string s1; /I default value: the empty string ""
vector<string> v1; /l default value: the empty vector; no elements
vector<string> v2(10);  // vector of 10 default strings

For built-in types, such as int and double, the default constructor notation means
0, so int() is a complicated way of saying 0, and double() a long-winded way of
saying 0.0.

Beware of a nasty syntax problem with the () notation for initializers: O

string s1("lke");  //string initialized to “Ike”
string s2(); // function taking no argument returning a string

Using a default constructor is not just a matter of looks. Imagine that we could
have an uninitialized string or vector.

string s;
for (int i=0, i<s.size(), ++i) // oops: loop an undefined number of times
toupper(s[il); // oops: modify the contents of a random memory location

vector<string> v;
v.push_back("bad"); I/ oops: write to random address

If the values of s and v were genuinely undefined, s and v would have no notion
of how many elements they contained or (using the common implementation
techniques; see §17.5) where those elements were supposed to be stored. The re-
sults would be use of random addresses — and that can lead to the worst kind of
errors. Basically, without a constructor, we cannot establish an invariant — we
cannot ensure that the values in those variables are valid (§9.4.3). We must insist
that such variables are initialized. We could insist on an initializer and then write:

strings1="";
vector<string> v1(0);
vector<string> v2(10,"");  // vector of 10 empty strings
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But we don’t think that’s particularly pretty. For string, "" is rather obvious for
“empty string.” For vector, 0 isn’t too obscure for “empty vector.” However, for
many types, it is not easy to find a reasonable notation for a default value. For
many types, it is better to define a constructor that gives meaning to the creation
of an object without an explicit initializer. Such a constructor takes no arguments
and is called a default constructor.

There isn’t an obvious default value for dates. That’s why we didn’t define a
default constructor for Date so far, but let’s provide one (just to show we can):

class Date {
public:
A...
Date(); /l default constructor
)
private:
inty;
Month m;
intd;
Y

We have to pick a default date. The first day of the 21st century might be a rea-
sonable choice:

Date: :Date()

:y(2001), m(Date: :jan), d(1)
{
}

If we didn’t like to build the default value right into the constructor code, we
could use a constant (or a variable). To avoid a global variable and its associated
initialization problems, we use the technique from §8.6.2:

Date& default_date()

{
static Date dd(2001,Date::jan,1);
return dd;

}

We used static to get a variable (dd) that is created only once, rather than each
time default_date() is called, and initialized the first time default_date() is called.
Given default_date(), it is trivial to define a default constructor for Date:
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Date::Date()
:y(default_date().year()),
m(default_date().month()),
d(default_date().day())

{
}

Note that the default constructor does not need to check its value; the construc-
tor for default_date already did that. Given this default Date constructor, we can
now have vectors of Dates:

vector<Date> birthdays(10);

Without the default constructor, we would have had to be explicit:

vector<Date> birthdays(10,default_date());

9.7.4 const member functions

Some variables are meant to be changed — that’s why we call them “variables” —
but some are not; that is, we have “variables” representing immutable values.
Those, we typically call constants or just consts. Consider:

void some_function(Date& d, const Date& start_of_term)

{
inta = d.day(); /l OK
int b = start_of_term.day(); //should be OK (why?)
d.add_day(3); / fine
start_of_term.add_day(3); /l error

}

Here we intend d to be mutable, but start_of_term to be immutable; it is not ac-
ceptable for some_function() to change start_of_term. How would the compiler
know that? It knows because we told it by declaring start_of_term const. So far,
so good, but then why is it OK to read the day of start_of_term using day()? As
the definition of Date stands so far, start_of_term.day() is an error because the
compiler does not know that day() doesn’t change its Date. We never told it, so
the compiler assumes that day() may modify its Date and reports an error.

We can deal with this problem by classifying operations on a class as modify- ()
ing and nonmodifying. That’s a pretty fundamental distinction that helps us un-
derstand a class, but it also has a very practical importance: operations that do
not modify the object can be invoked for const objects. For example:
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class Date {

public:
'/
int day() const; /l const member: can’t modify the object
Month month() const; // const member: can’t modify the object
int year() const; /l const member: can’t modify the object
void add_day(int n); /l non-const member: can modify the object

void add_month(int n); // non-const member: can modify the object
void add_year(intn);  // non-const member: can modify the object

private:

inty; N year

Month m;

intd; /l day of month
b

Date d(2000, Date::jan, 20);
const Date cd(2001, Date::feb, 21);

cout << d.day() << " — " << cd.day() << endl; //OK
d.add_day(1); /1 OK
cd.add_day(1); / error: cd is a const

We use const right after the argument list in a member function declaration to in-
dicate that the member function can be called for a const object. Once we have
declared a member function const, the compiler holds us to our promise not to
modify the object. For example:

int Date::day() const

{
++d;  //error: attempt to change object from const member function
return d;

}

Naturally, we don’t usually try to “cheat™ in this way. What the compiler pro-
vides for the class implementer is primarily protection against accident, which is
particularly useful for more complex code.

9.7.5 Members and “helper functions”

When we design our interfaces to be minimal (though complete), we have to
leave out lots of operations that are merely useful. A function that can be simply,
clegantly, and efficiently implemented as a freestanding function (that is, as a
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nonmember function) should be implemented outside the class. That way, a bug
in that function cannot directly corrupt the data in a class object. Not accessing
the representation is important because the usual debug technique is “round up
the usual suspects™; that is, when something goes wrong with a class, we first
look at the functions that directly access the representation: one of those almost
certainly did it. If there are a dozen such functions we will be much happier than
if there were 50.

Fifty functions for a Date class! You must wonder if we are kidding. We are
not: a few years ago I surveyed a number of commercially used Date libraries
and found them full of functions like next_Sunday(), next_workday(), etc. Fifty is
not an unreasonable number for a class designed for the convenience of the users
rather than for ease of comprehension, implementation, and maintenance.

Note also that if the representation changes, only the functions that directly
access the representation need to be rewritten. That's another strong practical
reason for keeping interfaces minimal. In our Date example, we might decide
that an integer representing the number of days since January 1, 1900, is a much
better representation for our uses than (year,month,day). Only the member func-
tions would have to be changed.

Here are some examples of kelper functions:

Date next_Sunday(const Date& d)
{

/l access d using d.day(), d.monthi(), and d.year()
// make new Date to return

}
Date next_weekday(const Date& d) {/* ... */}
bool leapyear(inty) {/*...*/}

bool operator==(const Date& a, const Date& b)

{
return a.year()==b.year()
&& a.month()==b.month()
&& a.day()==b.day();
}

bool operator!=(const Date& a, const Date& b)

{

return !(a==b);

}
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Helper functions are also called convenience functions, auxiliary functions, and many
other things. The distinction between these functions and other nonmember
functions is logical; that is, “helper function” is a design concept, not a program-
ming language concept. The helper functions often take arguments of the classes
that they are helpers of. There are exceptions, though: note leapyear(). Often, we
use namespaces to identify a group of helper functions; see §8.7:

namespace Chrono {
class Date {/*...*};
bool is_date(int y, Date::Month m, int d); // true for valid date
Date next_Sunday(const Date& d) {/*...*/}
Date next_weekday(const Date& d) {/*...*/}
bool leapyear(inty) {/* ... */} //see exercise 10
bool operator==(const Date& a, const Date& b) {/* . . . */}
s
}

Note the == and != functions. They are typical helpers. For many classes, == and
!= make obvious sense, but since they don’t make sense for all classes, the com-
piler can’t write them for you the way it writes the copy constructor and copy
assignment.

Note also that we introduced a helper function is_date(). That function re-
places Date::check() because checking whether a date is valid is largely inde-
pendent of the representation of a Date. For example, we don’t need to know
how Date objects are represented to know that “January 30, 2008 is a valid date
and “February 30, 2008” is not. There still may be aspects of a date that might
depend on the representation (e.g., can we represent “January 30, 1066"?), but (if
necessary) Date’s constructor can take care of that.

9.8 The Date class

So, let’s just put it all together and see what that Date class might look like when
we combine all of the ideas/concerns. Where a function’s body is just a . . . com-
ment, the actual implementation is tricky (please don’t try to write those just yet).
First we place the declarations in a header Chrono.h:

/ file Chrono.h

namespace Chrono {

class Date {
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public:
enum Month {
jan=1, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec

b
class Invalid { };  /to throw as exception

Date(int y, Month m, intd); / check for valid date and initialize
Date(); // default constructor
// the default copy operations are fine

/I nonmodifying operations:

int day() const { return d; }

Month month() const { return m; }
int year() const { returny; }

/I modifying operations:
void add_day(int n);
void add_month(int n);
void add_year(int n);

private:
inty;
Month m;
intd;

b

bool is_date(int y, Date: :Month m, int d); /! true for valid date
bool leapyear(int y); M true if y is a leap year

bool operator==(const Date& a, const Date& b);
bool operator!=(const Date& a, const Date& b);

ostream& operator<<(ostream& os, const Date& d);
istream& operator>>(istream& is, Date& dd);
} // Chrono

The definitions go into Chrono.cpp:
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// Chrono.cpp
namespace Chrono {
// member function definitions:

Date: : Date(int yy, Month mm, int dd)
: ylyy), m(mm), d(dd)

{
if (!is_date(yy,mm,dd)) throw Invalid();

}

Date& default_date()

{
static Date dd(2001,Date::jan,1);  //start of 21st century
return dd;

}

Date::Date()
:y(default_date().year()),
m(default_date().month()),
d(default_date().day())

{
}
void Date:: add_day(int n)
{
Wi
}
void Date: :add_month(int n)
{
Wicis
}
void Date::add_year(int n)
{
if (m==feb && d==29 && !leapyear(y+n)) { //beware of leap years!
m = mar; /l use March 1 instead of February 29
d=1;
}
y+=n;
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// helper functions:

bool is_date(int y, Date::Month m, int d)

{
/l assume that y is valid
if (d<=0) return false; /I d must be positive
intdays_in_month =31;  // most months have 31 days
switch (m) {
case Date::feb: /l the length of February varies
days_in_month = (leapyear(y))?29:28;
break;
case Date::apr: case Date::jun: case Date::sep: case Date::nov:
days_in_month =30;  //the rest have 30 days
break;
}
if (days_in_month<d) return false;
return true;
}
bool leapyear(int y)
{
/l see exercise 10
}
bool operator==(const Date& a, const Date& b)
{
return a.year()==b.year()
&& a.month()==b.month()
&& a.day()==b.day();
}
bool operator!=(const Date& a, const Date& b)
{
return !(a==b);
}

ostream& operator<<(ostream& os, const Date& d)

{
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return os << '(' << d.year()
<<',' << d.month()
<<','<<d.day() << ')";

}
istream& operator>>(istream& is, Date& dd)
4
inty, m, d;
char ch1, ch2, ch3, ch4;
is >> ch1>>y >> ch2 >>m >> ch3 >> d >> ch4;
if (lis) return is;
if (ch1!='("|| ch2!="," || ch3!="," || ch4!=")") { /I oops: format error
is.clear(ios_base: :failbit); // set the fail bit
return is;
}
return is;
}
enum Day {
sunday, monday, tuesday, wednesday, thursday, friday, saturday
b
Day day_of_week(const Date& d)
{
Wi
}
Date next_Sunday(const Date& d)
{
/e
}
Date next_weekday(const Date& d)
{
Wiwis
}

}// Chrono

The functions implementing >> and << for Date will be explained in detail in
§10.7 and 10.8.
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J Drill

This drill simply involves getting the sequence of versions of Date to work. For
each version define a Date called today initialized to June 25, 1978. Then, define
a Date called tomorrow and give it a value by copying teday into it and increas-
ing its day by one using add_day(). Finally, output today and tomorrow using a
<< defined as in §9.8.

Your check for a valid date may be very simple. However, don’t accept a
month that is not in the [1,12] range or day of the month that is not in the [1,31]
range. Test each version with at least one invalid date (e.g., 2004, 13, -5).

_

Al

The version from §9.4.1
The version from §9.4.2
The version from §9.4.3
The version from §9.7.1
The version from §9.7.4

Review

1;
2

3.

What are the two parts of a class, as described in the chapter?

What is the difference between the interface and the implementation in a
class?

What are the limitations and problems of the original Date struct that is
created in the chapter?

Why is a constructor used for the Date type instead of an init_day()
function?

What is an invariant? Give examples.

. When should functions be put in the class definition, and when should

they be defined outside the class? Why?
When should operator overloading be used in a program? Give a list of
operators that you might want to overload (each with a reason).

8. Why should the public interface to a class be as small as possible?
9. What does adding const to a member function do?
10. Why are “helper functions™ best placed outside the class definition?
Terms

built-in types enumeration invariant
class enumerator representation
const helper function struct
constructor implementation structure
destructor inlining user-defined types

enum interface valid state

333
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Exercises

1.

2,

List sets of plausible operations for the examples of real-world objects in
§9.1 (such as toaster).

Design and implement a Name_pairs class holding (name,age) pairs where
name is a string and age is a double. Represent that as a vector<string>
(called name) and a vector<double> (called age) member. Provide an
input operation read_names() that reads a series of names. Provide a
read_ages() operation that prompts the user for an age for each name.
Provide a print() operation that prints out the (namelil,agelil) pairs (one
per line) in the order determined by the name vector. Provide a sort() op-
eration that sorts the name vector in alphabetical order and reorganizes
the age vector to match. Implement all “operations™ as member functions.
Test the class (of course: test early and often).

. Replace Name_pair::print() with a (global) operator<< and define ==

and != for Name_pairs.

Look at the headache-inducing last example of §8.4. Indent it properly
and explain the meaning of each construct. Note that the example doesn’t
do anything meaningful; it is pure obfuscation.

This exercise and the next few require you to design and implement a
Book class, such as you can imagine as part of software for a library.
Class Book should have members for the ISBN, title, author, and copy-
right date. Also store data on whether or not the book is checked out.
Create functions for returning those data values. Create functions for
checking a book in and out. Do simple validation of data entered into a
Book; for example, accept ISBNs only of the form n-n-n-x where n is an
integer and x is a digit or a letter.

Add operators for the Book class. Have the == operator check whether
the ISBN numbers are the same for two books. Have != also compare
the ISBN numbers. Have a << print out the title author, and ISBN on
separate lines.

Create an enumerated type for the Book class called Genre. Have the
types be fiction, nonfiction, periodical, biography, children. Give each
book a Genre and make appropriate changes to the Book constructor
and member functions.

Create a Patron class for the library. The class will have a user’s name, li-
brary card number, and library fees (if owed). Have functions that access
these methods, as well as a function to set the fee of the user. Have a
helper method that returns a Boolean (bool) depending on whether or
not the user owes a fee.

Create a Library class. Include vectors of Books and Patrons. Include a
struct called Transaction. Have it include a Book, a Patron, and a Date
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10.
1,

12,

13.

14.

15.

16.

17.

from the chapter. Make a vector of Transactions. Create functions to add
books to the library, add patrons to the library, and check out books.
Whenever a user checks out a book, have the library make sure that
both the user and the book are in the library. If they aren’t, report an
error. Then check to make sure that the user owes no fees. If the user
does, report an error. If not, create a Transaction, and place it in the vec-
tor of Transactions. Also create a method that will return a vector that
contains the names of all Patrons who owe fees.

Implement leapyear() from §9.8.

Design and implement a set of useful helper function for the Date class
with functions such as next_workday() (assume that any day that is not a
Saturday or a Sunday is a workday) and week_of_year() (assume that
week 1 is the week with January 1 in it and that the first day of a week is
a Sunday).

Change the representation of a Date to be the number of days since
January 1, 1970 (known as day 0), represented as a long, and re-
implement the functions from §9.8. Be sure to reject dates outside the
range we can represent that way (feel free to reject days before day 0, i.e.,
no negative days).

Design and implement a rational number class, Rational. A rational
number has two parts: a numerator and a denominator, for example, 5/6
(five-sixths, also known as approximately .83333). Look up the defini-
tion if you need to. Provide assignment, addition, subtraction, multiplica-
tion, division, and equality operators. Also, provide a conversion to
double. Why would people want to use a Rational class?

Design and implement a Money class for calculations involving dollars
and cents where arithmetic has to be accurate to the last cent using the
4/5 rounding rule (.5 of a cent rounds up; anything less than .5 rounds
down). Represent a monetary amount as a number of cents in a long,
but input and output as dollars and cents, e.g., $123.45. Do not worry
about amounts that don’t fit into a long.

Refine the Money class by adding a currency (given as a constructor ar-
gument). Accept a floating-point initializer as long as it can be exactly
represented as a long. Don’t accept illegal operations. For example,
Money*Money doesn’t make sense, and USD1.23+DKK5.00 makes sense
only if you provide a conversion table defining the conversion factor be-
tween U.S. dollars (USD) and Danish kroner (DKK).

Give an example of a calculation where a Rational gives a mathemati-
cally better result than Money.

Give an example of a calculation where a Rational gives a mathemati-
cally better result than double.
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Postscript

There is a lot to user-defined types, much more than we have presented here.
User-defined types, especially classes, are the heart of G++ and the key to many
of the most effective design techniques. Most of the rest of the book is about the
design and use of classes. A class — or a set of classes — is the mechanism through
which we represent our concepts in code. Here we primarily introduced the
language-technical aspects of classes; elsewhere we focus on how to elegantly ex-
press useful ideas as classes.
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Input and Output Streams

“Science 1s what we have learned about
how to keep from fooling ourselves.”

—Richard P. Feynman

n this chapter and the next, we present the C++ standard
Ilibrary facilities for handling input and output from a variety
of sources: I/O streams. We show how to read and write files,
how to deal with errors, how to deal with formatted input, and
how to provide and use I/O operators for user-defined types.
This chapter focuses on the basic model: how to read and write
individual values, and how to open, read, and write whole files.
The final example illustrates the kinds of considerations that go

into a larger piece of code. The next chapter addresses details.
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10.1 Input and output 10.8 User-defined output operators

10.2 The /O stream model 10.9 User-defined input operators

10.3 Files 10.10 A standard input loop

10.4 Opening a file 10.11 Reading a structured file

10.5 Reading and writing a file 10.11.1 In-memory representation
- 10.11.2 Reading structured values

10.6 /O error handling 10.11.3 Changing representations

10.7 Reading a single value

10.7.1 Breaking the problem into
manageable parts
10.7.2 Separating dialog from function

10.1 Input and output

Without data, computing is pointless. We need to get data into our program to do
interesting computations and we need to get the results out again. In §4.1, we men-
tioned the bewildering variety of data sources and targets for output. If we don't
watch out, we'll end up writing programs that can receive input only from a specific
source and deliver output only to a specific output device. That may be acceptable
(and sometimes even necessary) for specialized applications, such as a digital cam-
era or a sensor for an engine fuel injector, but for more common tasks, we need a
way to separate the way our program reads and writes from the actual input and
output devices used. If we had to directly address each kind of device, we'd have to
change our program each time a new screen or disk came on the market, or limit
our users to the screens and disks we happen to like. That would be absurd.

Most modern operating systems separate the detailed handling of 1/0O de-
vices into device drivers and then access the device drivers through an 1/O li-
brary that makes I/O from/to different sources appear as similar as possible.
Generally, the device drivers are deep in the operating system where most users
don’t see them, and the I/O library provides an abstraction of I/O so that the pro-
grammer doesn’t have to think about devices and device drivers:

Data source:

Input device Device driver Input library
|

Data destination:

FOm:putliln-m-y Device driver Output device
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When a model like this is used, all input and all output can be seen as streams of
bytes (characters) handled by the input/output library. Our job as programmers
of an application then becomes

1. To set up I/O streams to the appropriate data sources and destinations
2. To read and write from/to those streams

The details of how our characters are actually transmitted to/from the devices are
dealt with by the I/O library and the device drivers. In this chapter and the next,
we'll see how I/O consisting of streams of formatted data is done using the C++
standard library.

From the programmer’s point of view there are many different kinds of input
and output. One classification is

* Streams of (many) data items (usually to/from files, network connec-
tions, recording devices, or display devices)

* Interactions with a user at a keyboard

* Interactions with a user through a graphical interface (outputting objects,
receiving mouse clicks, etc.)

This classification isn’t the only classification possible, and the distinction be-
tween the three kinds of I/O isn’t as clear as it might appear. For example, if a
stream of output characters happens to be an HTTP document aimed at a
browser, the result looks remarkably like user interaction and can contain graph-
ical elements. Conversely, the results of interactions with a GUI (graphical user
interface) may be presented to a program as a sequence of characters. However,
this classification fits our tools: the first two kinds of I/O are provided by the
C++ standard library I/O streams and supported rather directly by most operat-
ing systems. We have been using the iostream library since Chapter 1 and will
focus on that for this and the next chapter. The graphical output and graphical
user interactions are served by a variety of different libraries, and we will focus

on that kind of I/O in Chapters 12 to 16.

10.2 The 1/0 stream model

The C++ standard library provides the type istream to deal with streams of
input and the type ostream to deal with streams of output. We have used the
standard istream called cin and the standard ostream called cout, so we know
the basics of how to use this part of the standard library (usually called the
iostream library).

An ostream

* Turns values of various types into character sequences

» Sends those characters “somewhere” (such as to a console, a file, the
main memory, or another computer)
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We can represent an ostream graphically like this:

Values of various types Character sequences

i

“Somewhere”

123

The buffer is a data structure that the ostream uses internally to store the data you
give it while communicating with the operating system. If you notice a “delay™ be-
tween your writing to an ostream and the characters appearing at their destination,
it’s usually because they are still in the buffer. Buffering is important for perform-
ance, and performance is important if you deal with large amounts of data.

An istream

+ Turns character sequences into values of various types

*  Gets those characters from somewhere (such as a console, a file, the
main memory, or another computer)

We can represent an istream graphically like this:

Values of various types Character sequences

“Somewhere”

123

As with an ostream, an istream uses a buffer to communicate with the operating
system. With an istream, the buffering can be quite visible to the user. When you
use an istream that is attached to a keyboard, what you type is left in the buffer
until you hit Enter (return/newline) and you can use the erase (Backspace) key
“to change your mind” (until you hit Enter).
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One of the major uses of output is to produce data for humans to read.
Think of email messages, scholarly articles, web pages, billing records, business
reports, contact lists, tables of contents, equipment status readouts, etc. There-
fore, ostreams provide many features for formatting text to suit various tastes.
Similarly, much input is written by humans or is formatted to make it easy for
humans to read it. Therefore, istreams provide features for reading the kind of
output produced by ostreams. We'll discuss formatting in §11.2 and how to read
non-character input in §11.3.2. Most of the complexity related to input has to do
with how to handle errors. To be able to give more realistic examples, we’ll start
by discussing how the iostream model relates to files of data.

10.3 Files

We typically have much more data than can fit in the main memory of our com- C)
puter, so we store most of it on disks or other large-capacity storage devices. Such
devices also have the desirable property that data doesn’t disappear when the
power is turned off — the data is persistent. At the most basic level, a file is simply

a sequence of bytes numbered from 0 upward:

A file has a format; that is, it has a set of rules that determine what the bytes
mean. For example, if we have a text file, the first 4 bytes will be the first four
characters. On the other hand, if we have a file that uses a binary representation

of integers, those very same first 4 bytes will be taken to be the (binary) represen-
tation of the first integer (see §11.3.2). The format serves the same role for files

on disk as types serve for objects in main memory. We can make sense of the bits

in a file if (and only if) we know its format (see §11.2-3).

For a file, an ostream converts objects in main memory into streams of bytes ()

and writes them to disk. An istream does the opposite; that is, it takes a stream of
bytes from disk and composes objects from them:

— : Main
memory
Files iostreams Objects
(sequences of bytes) (of various types)

Most of the time, we assume that these “bytes on disk” are in fact characters in
our usual character set. That is not always so, but we can get an awfully long way
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with that assumption, and other representations are not that hard to deal with.
We also talk as if all files were on disks (that is, on rotating magnetic storage).
Again, that’s not always so (think of flash memory), but at this level of program-
ming the actual storage makes no difference. That's one of the beauties of the file
and stream abstractions.

To read a file, we must

1. Know its name

2. Open it (for reading)

3. Read in the characters

4. Close it (though that is typically done implicitly)
To write a file, we must

1. Name it

2. Open it (for writing) or create a new file of that name
3. Write out our objects

4. Close it (though that is typically done implicitly)

We already know the basics of reading and writing because an ostream attached
to a file behaves exactly as cout for what we have done so far, and an istream at-
tached to a file behaves exactly as cin for what we have done so far. We'll present
operations that can only be done for files later (§11.3.3), but for now we’ll just
see how to open files and then concentrate on operations and techniques that
apply to all ostreams and all istreams.

10.4 Opening a file

If you want to read from a file or write to a file you have to open a stream specif-
ically for that file. An ifstream is an istream for reading from a file, an ofstream is
an ostream for writing to a file, and an fstream is an iostream that can be used
for both reading and writing. Before a file stream can be used it must be attached
to a file. For example:

cout << "Please enter input file name: ";

string name;

cin >> name;

ifstream ist(name.c_str());  // istis an input stream for the file named name
if (list) error("can't open input file ",name);

Defining an ifstream with a name string opens the file of that name for reading.
The function c_str() is a member of string that produces a low-level C-style string
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from a C++ string. Such C-style strings are required by many system interfaces.

The test of list checks that the file was properly opened. After that, we can read C)
from the file exactly as we would from any other istream. For example, assuming

that the input operator, >>, was defined for a type Point, we could write

vector<Point> points;
Point p;
while (ist>>p) points.push_back(p);

Output to files is handled in a similar fashion by ofstreams. For example:

cout << "Please enter name of output file: ";

string oname;

cin >> oname;

ofstream ost(oname.c_str()); // ost is an output stream for a file named name
if (1ost) error("can't open output file ",oname);

Defining an ofstream with a name string opens the file with that name for writ-
ing. The test of !ost checks that the file was properly opened. After that, we can
write to the file exactly as we would to any other ostream. For example:

for (int i=0; i<points.size(); ++i)
ost << '(' << points[il.x << '," << points[il.y << ")\n";

When a file stream goes out of scope its associated file is closed. When a file is
closed its associated buffer is “flushed™; that is, the characters from the buffer are
written to the file.

It is usually best to open files early in a program before any serious computa-
tion has taken place. After all, it is a waste to do a lot of work just to find that we
can’t complete it because we don’t have anywhere to write our results.

Opening the file implicitly as part of the creation of an ostream or an istream
and relying on the scope of the stream to take care of closing the file is the ideal.
For example:

void fill_from_file(vector<Point>& points, string& name)
{
ifstream ist(name.c_str()); / open file for reading
if (!ist) error("can’t open input file ",name);
Tl LISRLTSE 1
/f the file is implicitly closed when we leave the function
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C) You can also perform explicit open() and close() operanons (§B.7.1). However,
relying on scope minimizes the chances of someone trying to use a file stream be-
fore it has been attached to a stream or after it was closed. For example:

ifstream ifs;

/A

ifs >> foo; /l won't succeed: no file opened for ifs
/...

ifs.open(name,ios_base::in);  // open file named name for reading
o

ifs.close(); /I close file

!/ -

ifs >> bar; // won't succeed: ifs’ file was closed
i

In real-world code the problems would typically be much harder to spot. Fortu-
nately, you can’t open a file stream a second time without first closing it. For

example:
fstream fs;
fs.open("foo", ios_base::in) ; /l open for input
/ close() missing
fs.open("foo", ios_base::out); /l won't succeed: ifs is already open

if (fs) error("impossible");

Don't forget to test a stream after opening it.

Why would you use open() or close() explicitly? Well, occasionally the life-
time of a connection to a file isn’t conveniently limited by a scope so you have to.
But that’s rare enough for us not to have to worry about it here. More to the
point, you'll find such use in code written by people using styles from languages
and libraries that don’t have the scoped idiom used by iostreams (and the rest of
the C++ standard library).

As we'll see in Chapter 11, there is much more to files, but for now we know
enough to use them as a data source and a destination for data. That'll allow us
to write programs that would be unrealistic if we assumed that a user had to di-
rectly type in all the input. From a programmer’s point of view, a great advantage
of a file is that you can repeatedly read it during debugging until your program

works correctly.

10.5 Reading and writing a file

Consider how you might read a set of results of some measurements from a file
and represent them in memory. This might be the temperature readings from a
weather station:
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0 60.7
1 60.6
2 603
3 59.22

TR

This data file contains a sequence of (hour of day,temperature) pairs. The hours

are numbered 0 to 23 and the temperatures are in Fahrenheit. No further formatting

is assumed; that is, the file does not contain any special header information (such as

where the reading was taken), units for the values, punctuation (such as parenthe-

ses around cach pair of values), or termination indicator. This is the simplest case.
We could represent a temperature reading by a Reading type:

struct Reading { /l a temperature reading
int hour; /' hour after midnight [0:23]
double temperature;  //in Fahrenheit
Reading(int h, double t) :hour(h), temperature(t) { }
b

Given that, we could read like this:

vector<Reading> temps; // store the readings here

int hour;

double temperature;

while (ist >> hour >> temperature) {
if (hour < 0 || 23 <hour) error("hour out of range");
temps.push_back(Reading(hour,temperature));

}

This is a typical input loop. The istream called ist could be an input file stream
(ifstream) as shown in the previous section, (an alias for) the standard input
stream (cin), or any other kind of istream. For code like this, it doesn’t matter ex-
actly from where the istream gets its data. All that our program cares about is
that ist is an istream and that the data has the expected format. The next section
addresses the interesting question of how to detect errors in the input data and
what we can do after detecting a format error.

Writing to a file is usually simpler than reading from one. Again, once a
stream is initialized we don’t have to know exactly what kind of stream it is. In
particular, we can use the output file stream (ofstream) from the section above
just like any other ostream. For example, we might want to output the readings
with each pair of values in parentheses:

for (int i=0; i<temps.size(); ++i)
ost << '(' << tempslil.hour <<',' << tempsli].temperature << ")\n";
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The resulting program would then be reading the original temperature reading
file and producing a new file with the data in (hourtemperature) format.
Because the file streams automatically close their files when they go out of
c/ scope, the complete program becomes

#include "std_lib_facilities.h"

struct Reading { / a temperature reading
int hour; /l hour after midnight [0:23]
double temperature;  //in Fahrenheit
Reading(int h, double t) :hour(h), temperature(t) { }

}i
int main()
{
cout << "Please enter input file name: ";
string name;
cin >> name;
ifstream ist(name.c_str()); // ist reads from the file named “name”
if (list) error("can't open input file ",name);
cout << "Please enter name of output file: ";
cin >> name;
ofstream ost(name.c_str()); // ost writes to a file named “name”
if (!ost) error("can't open output file ",name);
vector<Reading> temps; // store the readings here
int hour;
double temperature;
while (ist >> hour >> temperature) {
if (hour <0 || 23 <hour) error("hour out of range");
temps.push_back(Reading(hour,temperature));
}
for (int i=0; i<temps.size(); ++i)
ost << '(' << temps[i].hour << '’
<< tempslil.temperature << ")\n";
}

10.6 1/0 error handling

When dealing with input we must expect errors and deal with them. What kind
of errors? And how? Errors occur because humans make mistakes (misunder-
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standing instructions, mistyping, letting the cat walk on the keyboard, etc.), be-
cause files fail to meet specifications, because we (as programmers) have the
wrong expectations, etc. The possibilities for input errors are limitless! However,
an istream reduces all to four possible cases, called the stream state:

Stream states

good() The operations succeeded.

eof() We hit end of input (“end of file”).
fail() Something unexpected happened.
bad() Something unexpected and serious happened.

Unfortunately, the distinction between fail() and bad() is not precisely defined
and subject to varying opinions among programmers defining I/O operations for
new types. However, the basic idea is simple: If an input operation encounters a
simple format error, it lets the stream fail(), assuming that you (the user of our
mmput operation) might be able to recover. If, on the other hand, something really
nasty, such as a bad disk read, happens, the input operation lets the stream go
bad(), assuming that there is nothing much you can do except to abandon the at-
tempt to get data from that stream. This leaves us with this general logic:

inti=0;
cin >>i;
if (!cin) { // we get here (only) if an input operation failed
if (cin.bad()) error("cin is bad"); // stream corrupted: let’s get out of here!
if (cin.eof()) {
// no more input
/ this is often how we want a sequence of input operations to end

}

if (cin.fail()) { /l stream encountered something unexpected
cin.clear(); /I make ready for more input
// somehow recover

}

}

The !cin can be read as “cin is not good” or “Something went wrong with cin”
or “The state of cin is not good().” It is the opposite of “The operation suc-
ceeded.” Note the cin.clear() where we handle fail(). When a stream has failed,
we might be able to recover. To try to recover, we explicitly take the stream out of
the fail() state, so that we can look at characters from it again; clear() does that —
after cin.clear() the state of cin is good().
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Here is an example of how we might use the stream state. Consider how to
read a sequence of integers that may be terminated by the character * or an “end
of file” (Ctrl+Z on Windows, Ctrl+D on Unix) into a vector. For example:

12345*

This could be done using a function like this:

void fill_vector(istream& ist, vector<int>& v, char terminator)
/l read integers from ist into v until we reach eof() or terminator

{
inti=0;
while (ist >> i) v.push_back(i);
if (ist.eof()) return; // fine: we found the end of file
if (ist.bad()) error("istis bad"); // stream corrupted; let's get out of here!
if (ist.fail()) { // clean up the mess as best we can and report the problem
ist.clear(); /l clear stream state,
// so that we can look for terminator
charc;
ist>>¢; // read a character, hopefully terminator
if (c !=terminator) { // unexpected character
ist.unget(); / put that character back
ist.clear(ios_base: :failbit); /f set the state to fail()
}
}
}

Note that when we didn’t find the terminator, we still returned. After all, we may
have collected some data and the caller of fill_vector() may be able to recover from
a fail(). Since we cleared the state to be able to examine the character, we have to
set the stream state back to fail(). We do that with ist.clear(ios_base: :failbit). Note
this potentially confusing use of clear(): clear() with an argument actually sets the
iostream state flags (bits) mentioned and (only) clears flags not mentioned. By set-
ting the state to fail(), we indicate that we encountered a format error, rather than
something more serious. We put the character back into ist using unget(); the
caller of fill_vector() might have a use for it. The unget() function is a shorter ver-
sion of putback() that relies on the stream remembering which character it last
produced, so that you don’t have to mention it.

If you called fill_vector() and want to know what terminated the read, you
can test for fail() and eof(). You could also catch the runtime_error exception
thrown by error(), but it is understood that getting more data from istream in the
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bad() state is unlikely. Most callers won’t bother. This implies that in almost all ()
cases the only thing we want to do if we encounter bad() is to throw an excep-
tion. To make life easier, we can tell an istream to do that for us:

/I make ist throw if it goes bad
ist.exceptions(ist.exceptions()|ios_base: :badbit);

The notation may seem odd, but the effect is simply that from that statement on-
ward, ist will throw the standard library exception ios_base::failure if it goes
bad(). We need to execute that exceptions() call only once in a program. That’ll
allow us to simplify all input loops by ignoring bad():

void fill_vector(istream& ist, vector<int>& v, char terminator)
/ read integers from ist into v until we reach eof() or terminator

{
inti=0;
while (ist >> i) v.push_back(i);
if (ist.eof()) return; // fine: we found the end of file
/I not good() and not bad() and not eof(), ist must be fail()
ist.clear();  // clear stream state
char c;
ist>>c; / read a character, hopefully terminator
if (¢ != terminator) { // ouch: not the terminator, so we must fail
ist.unget(); /l maybe my caller can use that character
ist.clear(ios_base::failbit);  //set the state to fail()
}
}

The ios_base that appears here and there is the part of an iostream that holds
constants such as badbit, exceptions such as failure, and other useful stuff. You
refer to them using the :: operator, for example, ios_base::badbit (see §10.6 and
§B.7.2). We don’t plan to go into the iostream library in that much detail; it could
take a whole course to explain all of iostreams. For example, iostreams can han-
dle different character sets, implement different buffering strategies, and also con-
tain facilities for formatting monetary amounts in various languages; we once
had a bug report relating to the formatting of Ukrainian currency. You can read
up on whatever bits you need to know about if you need to; see The C++ Pro-
gramming Language by Stroustrup, and Langer, Standard C++ I0Streams and Locales.

You can test an ostream for exactly the same states as an istream: good(),
fail(), eof(), and bad(). However, for the kinds of programs we write here, errors



352

CHAPTER 10 « INPUT AND OUTPUT STREAMS

are much rarer for output than for input, so we don’t do it as often. For programs
where output devices have a more significant chance of being unavailable, filled,
or broken, we would test after each output operation just as we test after each
input operation.

10.7 Reading a single value

So, we know how to read a series of values ending with the end of file or a termi-
nator. We'll show more examples as we go along, but let’s just have a look at the
ever popular idea of repeatedly asking for a value untl an acceptable one is en-
tered. This example will allow us to examine several common design choices.
We'll discuss these alternatives through a series of alternative solutions to the
simple problem of “how to get an acceptable value from the user” We start with
an unpleasantly messy obvious “first try” and proceed through a series of im-
proved versions. Our fundamental assumption is that we are dealing with inter-
active input where a human is typing input and reading the messages from the
program. Let’s ask for an integer in the range 1 to 10 (inclusive):

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
intn=0;
while (cin>>n) { // read
if (1<=n && n<=10) break; //check range
cout << "Sorry "
<< n<<"is notin the [1:10] range; please try again\n";

}

This is pretty ugly, but it “sort of works.” If you don’t like using the break (§A.6),
you can combine the reading and the range checking:

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
intn=0;
while (cin>>n && !(1<=n && n<=10)) / read and check range
cout << "Sorry "
<< n<<"is notin the [1:10] range; please try again\n";

However, that’s just a cosmetic change. Why does it only “sort of work™? It
works if the user carefully enters integers. If the user is a poor typist and hits t
rather than 6 (t is just below 6 on most keyboards), the program will leave the
loop without changing the value of n, so that n will have an out-of-range value.
We wouldn't call that quality code. A joker (or a diligent tester) might also send
an “end of file” from the keyboard (Ctrl+Z on a Windows machine and Curl+D
on a Unix machine). Again, we'd leave the loop with n out of range. In other
words, to get a robust read we have to deal with three problems:
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1. The user typing an out-of-range value
2. Getting no value (end of file)
3. The user typing something of the wrong type (here, not an integer)

What do we want to do in those three cases? That's often the question when
writing a program: what do we really want? Here, for each of those three errors,
we have three alternatives:

1. Handle the problem in the code doing the read.

2. Throw an exception to let someone else handle the problem (potentially
terminating the program).
3. Ignore the problem.

As it happens, those are three very common alternatives for dealing with an error
condition. Thus, this is a good example of the kind of thinking we have to do
about errors.

It is tempting to say that the third alternative, ignoring the problem, is always
unacceptable, but that would be patronizing. If I'm writing a trivial program for
my own use, I can do whatever I like, including forgetting about error checking
with potential nasty results. However, for a program that I might want to use for
more than a few hours after I wrote it, I would probably be foolish to leave such
errors, and if I want to share that program with anyone, I should not leave such
holes in the error checking in the code. Please note that we deliberately use the
first-person singular here; “we” would be misleading. We do not consider alter-
native 3 acceptable even when just two people are involved.

The choice between alternatives 1 and 2 is genuine; that is, in a given pro-
gram there can be good reasons to choose either way. First we note that in most
programs there is no local and clegant way to deal with no input from a user sit-
ting at the keyboard: after the input stream is closed, there isn’t much point in
asking the user to enter a number. We could reopen cin (using cin.clear()), but
the user is unlikely to have closed that stream by accident (how would you hit
Cul+Z by accident?). If the program wants an integer and finds “end of file,” the
part of the program trying to read the integer must usually give up and hope that
some other part of the program can cope; that is, our code requesting input from
the user must throw an exception. This implies that the choice is not between
throwing exceptions and handling problems locally, but a choice of which prob-
lems (if any) we should handle locally.

10.7.1 Breaking the problem into manageable parts

Let’s try handling both an out-of-range input and an input of the wrong type
locally:

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";
intn=0;
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while (true) {

}

cin >>n;
if (cin) { // we got an integer; now check it
if (1<=n && n<=10) break;
cout << "Sorry "
<< n<<"is notin the [1:10] range; please try again\n";

}
else if (cin.fail()) {  / we found something that wasn't an integer
cin.clear(); // set the state back to good();
/l we want to look at the characters
cout << "Sorry, that was not a number; please try again\n";
char ch;
while (cin>>ch && lisdigit(ch)) ;  // throw away non-digits
if (!cin) error("no input");  // we didn’t find a digit: give up
cin.unget(); // put the digit back, so that we can read the number
}
else {
error("no input");  // eof or bad: give up
}

/I if we get here n is in [1:10]

This is messy, and rather long-winded. In fact, it is so messy that we could not
recommend that people write such code each time they needed an integer from a
user. On the other hand, we do need to deal with the potential errors because

O people do make them, so what can we do? The reason that the code is messy is
that code dealing with several different concerns is all mixed together:

Reading values

Prompting the user for input
Writing error messages

Skipping past “bad” input characters
Testing the input against a range

O The way to make code clearer is often to separate logically distinct concerns nto
separate functions. For example, we can separate out the code for recovering after
seeing a “bad” (i.e., unexpected) character:

void skip_to_int()

{

if (cin.fail()) { /l we found something that wasn’t an integer
cin.clear(); //we'd like to look at the characters
char ch;
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while (cin>>ch){ / throw away non-digits
if (isdigit(ch)) {
cin.unget(); // put the digit back,
// so that we can read the number
return;

}
}

error("no input"); / eof or bad: give up

}
Given the skip_to_int() “utility function,” we can write

cout << "Please enter an integer in the range 1 to 10 (inclusive):\n";

intn=0;
while (true) {
if (cin>>n) { // we got an integer; now check it
if (1<=n && n<=10) break;
cout << "Sorry " <<n
<< " is not in the [1:10] range; please try again\n";
}
else {
cout << "Sorry, that was not a number; please try again\n";
skip_to_int();
}
}

/it we get here n is in [1:10]

This code is better, but it is still too long and too messy to use many times in a

program. We'd never get it consistently right, except after (too) much testing,
What operation would we really like to have? One plausible answer is “a

function that reads an int, any int, and another that reads an int of a given range™:

int get_int(); // read an int from cin
int get_int(int low, int high); // read an int in [low:high] from cin

If we had those, we would at least be able to use them simply and correctly. They
are not that hard to write:

int get_int()

{
intn=0;
while (true) {
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if (cin >> n) return n;
cout << "Sorry, that was not a number; please try again\n";
skip_to_int();

}

Basically, get_int() stubbornly keeps reading until it finds some digits that it can

interpret as an integer. If we want to get out of get_int(), we must supply an inte-

ger or end of file (and end of file will cause get_int() to throw an exception).
Using that general get_int(), we can write the range-checking get_int():

int get_int(int low, int high)

{
cout << "Please enter an integer in the range "
<< low << " to " << high << " (inclusive):\n";
while (true) {
int n = get_int();
if (low<=n && n<=high) return n;
cout << "Sorry "
<<n<<"isnotin the [" <<low << ':' << high
<< "] range; please try again\n";
}
}

This get_int() is as stubborn as the other. It keeps getting ints from the non-range
get_int() undl the int it gets is in the expected range.
We can now reliably read integers like this:

int n = get_int(1,10);
cout << "n: " << n << endl;

int m = get_int(2,300);
cout << "m: " <<m << endl;

Don't forget to catch exceptions somewhere, though, if you want decent error
messages for the (probably rare) case when get_int() really couldn’t read a num-
ber for us.

10.7.2 Separating dialog from function

The get_int() functions still mix up reading with writing messages to the user. That’s
probably good enough for a simple program, but in a large program we might want
to vary the messages written to the user. We might want to call get_int() like this:
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int strength = get_int(1,10, "enter strength", "Not in range, try again");
cout << "strength: " << strength << endl;

int altitude = get_int(0,50000,
"Please enter altitude in feet",
"Not in range, please try again");
cout << "altitude: " << altitude << "f above sea level\n";

We could implement that like this:

int get_int(int low, int high, const string& greeting, const string& sorry)
{

cout << greeting << ": [" << low << ":' << high << "\n";

while (true) {
int n = get_int();
if (low<=n && n<=high) return n;
cout<<sorry << ": [" << low <<':' << high << "]\n";

}

It is hard to compose arbitrary messages, so we “stylized” the messages. That's
often acceptable, and composing really flexible messages, such as are needed to
support many natural languages (e.g., Arabic, Bengali, Chinese, Danish, English,
and French), 1s not a task for a novice.

Note that our solution is still incomplete: the get_int() without a range still
“blabbers.” The deeper point here is that “utility functions” that we use in many
parts of a program shouldn’t have messages “hardwired” into them. Further, li-
brary functions that are meant for use in many programs shouldn’t write to the
user at all — after all, the library writer may not even know that the program in
which the library runs is used on a machine with a human watching, That's one
reason that our error() function doesn’t just write an error message (§5.6.3); in
general, we wouldn’t know where to write.

10.8 User-defined output operators

Defining the output operator, <<, for a given type is typically trivial. The main
design problem is that different people might prefer the output to look different,
so it 1s hard to agree on a single format. However, even if no single output format
is good enough for all uses, it is often a good idea to define << for a user-defined
type. That way, we can at least trivially write out objects of the type during de-
bugging and early development. Later, we might provide a more sophisticated <<
that allows a user to provide formatting information. Also, if we want output that
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looks different from what a << provides, we can simply bypass the << and write
out the individual parts of the user-defined type the way we happen to like them
in our application.

Here is a simple output operator for Date from §9.8 that simply prints the
year, month, and day comma-separated in parentheses:

ostream& operator<<(ostream& os, const Date& d)

{
return os << '(' << d.year()
<< ',' << d.month()
<<','<<d.day() <<)';
}

This will print August 30, 2004, as (2004,8,30). This simple list-of-elements repre-
sentation is what we tend to use for types with a few members unless we have a
better idea or more specific needs.

In §9.6, we mention that a user-defined operator is handled by calling its
function. Here we can see an example of how that's done. Given the definition of
<< for Date, the meaning of

cout << d1;
where d1 is a Date 1s the call

operator<<(cout,d1);
Note how operator<<() takes an ostream& as its first argument and returns it
again as its return value. That's the way the output stream is passed along so that
you can “chain” output operations. For example, we could output two dates like
this:

cout << d1 << d2;

This will be handled by first resolving the first << and after that the second <<:

cout << d1 <<d2; /l means operator<<(cout,d1) << d2;
/I means operator<<(operator<<(cout,d1),d2);

That is, first output d1 to cout and then output d2 to the output stream that is the
result of the first output operation. In fact, we can use any of those three variants
to write out d1 and d2. We know which one is easier to read, though.
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10.9 User-defined input operators

Defining the input operator, >>, for a given type and input format is basically an
exercise in error handling. It can therefore be quite tricky.

Here is a simple input operator for the Date from §9.8 that will read dates as
written by the operator << defined above:

istream& operator>>(istream& is, Date& dd)

{
inty, m, d;
char ch1, ch2, ch3, ch4;
is >> ch1>> y >> ch2>>m >> ch3 >> d >> ch4;
if (1is) return is;
if (ch1!='("|| ch2!=",' || ch3!="," || ch4!=")") { // oops: format error
is.clear(ios_base: :failbit);
return is;
}
dd = Date(y,Date::Month(m),d);  // update dd
return is;
}

This >> will read items like (2004,8,20) and try to make a Date out of those three
integers. As ever, input is harder to deal with than output. There is simply more
that can — and often does — go wrong with input than with output.

If this >> doesn’t find something in the ( iteger , integer , integer ) format, it will
leave the stream in a not-good state (fail, eof, or bad) and leave the target Date
unchanged. The clear() member function is used to set the state of the istream.
Obviously, ios_base: :failbit puts the stream into the fail() state. Leaving the tar-
get Date unchanged in case of a failure to read is the ideal; it tends to lead to
cleaner code. The ideal is for an operator>>() not to consume (throw away) any
characters that it didn’t use, but that’s too difficult in this case: we might have
read lots of characters before we caught a format error. As an example, consider
(2004, 8, 30}. Only when we see the final } do we know that we have a format
error on our hands and we cannot in general rely on putting back many charac-
ters. One character unget() is all that’s universally guaranteed. If this
operator>>() reads an invalid Date, such as (2004,8,32), Date’s constructor will
throw an exception, which will get us out of this operator>>().

10.10 A standard input loop

In §10.5, we saw how we could read and write files. However, that was before we
looked more carefully at errors (§10.6), so the input loop simply assumed that we
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could read a file from its beginning until end of file. That can be a reasonable as-
sumption, because we often apply separate checks to ensure that a file is valid.
However, we often want to check our reads as we go along. Here is a general
strategy, assuming that ist is an istream:

My_type var;
while (ist>>var) { / read until end of file
/l maybe check that var is valid
/I do something with var
}
/l'we can rarely recover from bad; don't try unless you really have to:
if (ist.bad()) error("bad input stream");
if (ist.fail()) {
//' was it an acceptable terminator?

}

/ carry on: we found end of file

That is, we read a sequence of values into variables and when we can’t read any
more values, we check the stream state to see why. As in §10.6, we can improve
this a bit by letting the istream throw an exception of type failure if it goes bad.
That saves us the bother of checking for it all the time:

// somewhere: make ist throw an exception if it goes bad:
ist.exceptions(ist.exceptions()|ios_base: :badbit);

We could also decide to designate a character as a terminator:

My_type var;
while (ist>>var) { /f read until end of file
/ maybe check that var is valid
/I do something with var
}
if (ist.fail()) {  /use'|" as terminator and/or separator
ist.clear();
char ch;
if (!(ist>>ch && ch=="")) error("bad termination of input");
}

// carry on: we found end of file or a terminator

If we don’t want to accept a terminator — that is, to accept only end of file as the
end; we simply delete the test before the call of error(). However, terminators are
very useful when you read files with nested constructs, such as a file of monthly
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readings containing daily readings, containing hourly readings, etc., so we'll keep
considering the possibility of a terminating character.

Unfortunately, that code is still a bit messy. In particular, it is tedious to re-
peat the terminator test if we read a lot of files. We could write a function to deal
with that:

/ somewhere: make ist throw if it goes bad:
ist.exceptions(ist.exceptions()|ios_base: :badbit);

void end_of_loop(istream& ist, char term, const string& message)

{
if (ist.fail()) { /l use term as terminator and/or separator
ist.clear();
char ch;
if (ist>>ch && ch==term) return;  //all is fine
error(message);

}
This reduces the input loop to

My _type var;
while (ist>>var) { /l read until end of file
/ maybe check that var is valid

// do something with var

}

end_of_loop(ist,'|',"bad termination of file"); // test if we can continue
/f carry on: we found end of file or a terminator

The end_of_loop() does nothing unless the stream is in the fail() state. We con-
sider that simple enough and general enough for many purposes.

10.11 Reading a structured file

Let’s try to use this “standard loop™ for a concrete example. As usual, we’ll use the
example to illustrate widely applicable design and programming techniques. As-
sume that you have a file of temperature readings that has been structured like this:

* Afile holds years (of months of readings).

* A year starts with { year followed by an integer giving the year, such
as 1900, and ends with }.
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* A year holds months (of days of readings).

* A month starts with { month followed by a three-letter month name,
such as jan, and ends with }.

* A reading holds a time and a temperature.

* A reading starts with a ( followed by day of the month, hour of the
day, and temperature and ends with a ).

For example:

{ year 1990 }
{year 1991 { month jun }}
{ year 1992 { month jan (1061.5) } {month feb (1164) (2265.2) } }
{year 2000
{month feb (1168)(2366.66) (1067.2)}
{month dec (1515-9.2) (1514-8.8) (140-2) }
}

This format is somewhat peculiar. File formats often are. There is a move toward
more regular and hierarchically structured files (such as HTML and XML files)

O in the industry, but the reality is still that we can rarely control the input format
offered by the files we need to read. The files are the way they are, and we just
have to read them. If a format is too awful or files contain too many errors, we
can write a format conversion program to produce a format that suits our main
program better. On the other hand, we can typically choose the in-memory rep-
resentation of data to suit our needs, and we can often pick output formats to suit
needs and tastes.

So, let’s assume that we have been given the temperature reading format
above and have to live with it. Fortunately, it has self-identifying components,
such as years and months (a bit like HTML or XML). On the other hand, the
format of individual readings is somewhat unhelpful. For example, there is no in-
formation that could help us if someone flipped a day-of-the-month value with an
hour of day or if someone produced a file with temperatures in Celsius and the
program expected them in Fahrenheit or vice versa. We just have to cope.

10.11.1 In-memory representation

How should we represent this data in memory? The obvious first choice is three
classes, Year, Month, and Reading, to exactly match the input. Year and Month
are obviously useful when manipulating the data; we want to compare tempera-
tures of different years, calculate monthly averages, compare different months of
a year, compare the same month of different years, match up temperature read-
ings with sunshine records and humidity readings, etc. Basically, Year and Month
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match the way we think about temperatures and weather in general: Month
holds a month’s worth of information and Year holds a year’s worth of informa-
tion. But what about Reading? That’s a low-level notion matching some piece of
hardware (a sensor). The data of a Reading (day of month, hour of day, tempera-
ture) is “odd” and makes sense only within a Month. It is also unstructured: we
have no promise that readings come in day-of-the-month or hour-of-the-day
order. Basically, whenever we want to do anything of interest with the readings
we have to sort them.

For representing the temperature data in memory, we make these assumptions:

* If we have any readings for a month, then we tend to have lots of read-
ings for that month.

* If we have any readings for a day, then we tend to have lots of readings

for that day.

When that’s the case, it makes sense to represent a Year as a vector of 12 Months,
a Month as a vector of about 30 Days, and a Day as 24 temperatures (one per
hour). That’s simple and easy to manipulate for a wide variety of uses. So, Day,
Month, and Year are simple data structures, each with a constructor. Since we
plan to create Months and Days as part of a Year before we know what tempera-
ture readings we have, we need to have a notion of “not a reading” for an hour of
a day for which we haven’t (yet) read data.

constint not_a_reading =-7777;  // less than absolute zero
Similarly, we noticed that we often had a month without data, so we introduced
the notion “not a month™ to represent that directly, rather than having to search
through all the days to be sure that no data was lurking somewhere:

const int not_a_month =-1;

The three key classes then become

struct Day {
vector<double> hour;

Day(); /initialize hours to “not a reading”
b
Day::Day()

: hour(24)
{

for (int i = 0; i<hour.size(); ++i) hour[il=not_a_reading;
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struct Month { /l a month of temperature readings
int month; //10:11] January is 0
vector<Day> day; // [1:31] one vector of readings per day
Month() // at most 31 days in a month (day[0] wasted)
:month(not_a_month), day(32) { }
b

struct Year { // a year of temperature readings, organized by month
int year; /I positive == A.D.
vector<Month> month;  /[0:11] January is 0
Year() :month(12) { } // 12 months in a year

Y

Each class is basically a simple vector of “parts,” and Month and Year have an
identifying member month and year, respectively.

There are several “magic constants” here (for example, 24, 32, and 12). We
try to avoid such literal constants in code. These are pretty fundamental (the
number of months in a year rarely changes) and will not be used in the rest of the
code. However, we left them in the code primarily so that we could remind you
of the problem with “magic constants”; symbolic constants are almost always
preferable (§7.6.1). Using 32 for the number of days in a month definitely re-
quires explanation; 32 is obviously “magic” here.

10.11.2 Reading structured values
The Reading class will be used only for reading input and is even simpler:

struct Reading {
int day;
int hour;
double temperature;

HH

istream& operator>>(istream& is, Reading& r)
/l read a temperature reading from is into r
/l format: (3 49.7)
/I check format, but don't bother with data validity
{
char cht;
if (is>>ch1 && ch1!='(") { // could it be a Reading?
is.unget();
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is.clear(ios_base: :failbit);
return is;

}

char ch2;

intd;

int h;

double t;

is >>d >>h>>t>> ch2;

if (lis || ch2!=")'") error("bad reading");  // messed-up reading
r.day =d;

r.hour = h;

r.temperature = {;

return is;

Basically, we check if the format begins plausibly, and if it doesn’t we set the file
state to fail() and return. This allows us to try to read the information in some
other way. On the other hand, if we find the format wrong after having read
some data so that there is no real chance of recovering, we bail out with error().
The Month input operation is much the same, except that it has to read an ar-
bitrary number of Readings rather than a fixed set of values (as Reading’s >> did):

istream& operator>>(istream& is, Month& m)
// read a month from is into m
M format: { month feb . . . }

{

char ch = 0;

if (is >> ch && ch!="{") {
is.unget();
is.clear(ios_base::failbit); // we failed to read a Month
return is;

}

string month_marker;

string mm;

is >> month_marker >> mm;

if (lis || month_marker!="month") error("bad start of month");
m.month = month_to_int(mm);

Reading r;
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int duplicates = 0;
int invalids = 0;
while (is>>r) {
if (is_valid(r)) {
if (m.day[r.day].hour[r.hour] != not_a_reading)
++duplicates;
m.day[r.day]l.hour[r.hour] = r.temperature;
}
else
++invalids;
}
if (invalids) error("invalid readings in month" invalids);
if (duplicates) error("duplicate readings in month", duplicates);
end_of_loop(is,'}',"bad end of month");
return is;

We'll get back to month_to_int() later; it converts the symbolic notation for a
month, such as jun, to a number in the [0:11] range. Note the use of end_of_loop()
from §10.10 to check for the terminator. We keep count of invalid and duplicate
Readings; someone might be interested.

Month’s >> does a quick check that a Reading is plausible before storing it:

const int implausible_min = -200;
const int implausible_max = 200;

bool is_valid(const Reading& r)
/ a rough test

{

}

if (r.day<1 || 31<r.day) return false;

if (r.hour<0 || 23<r.hour) return false;

if (r.temperature<implausible_min|| implausible_max<r.temperature)
return false;

return true;

Finally, we can read Years. Year's >> is similar to Month’s >>:

istream& operator>>(istream& is, Year& y)
/ read a year from is into y
// format: { year 1972 . . . |

{



10.11 READING A STRUCTURED FILE

char ch;

is >> ch;

if (ch!="{") {
is.unget();
is.clear(ios: :failbit);
return is;

}

string year_marker;

int yy;

is >> year_marker >> yy;

if (1is || year_marker!="year") error("bad start of year");

y-year = yy;

while(true) {
Month m;  //get a clean m each time around
if(!(is >> m)) break;
y.month[m.month] = m;

}

end_of_loop(is,'}',"bad end of year");
return is;

}

We would have preferred “boringly similar” to just “similar,” but there is a signif-
icant difference. Have a look at the read loop. Did you expect something like the
following?

Month m;
while (is >>m)
y.month[m.month] = m;

You probably should have, because that’s the way we have written all the read
loops so far. That's actually what we first wrote, and it’s wrong. The problem is
that operator>>(istream& is, Month& m) doesn’t assign a brand-new value to m;
it simply adds data from Readings to m. Thus, the repeated is>>m would have
kept adding to our one and only m. Oops! Each new month would have gotten all
the readings from all previous months of that year. We need a brand-new, clean
Month to read into each time we do is>>m. The casiest way to do that was to put
the definition of m inside the loop so that it would be initialized each time around.
The alternatives would have been for operator>>(istream& is, Month& m) to as-
sign an empty month to m before reading into it, or for the loop to do that:
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Month m;
while (is >>m) {
y-month[m.month] = m;
m = Month(); // “reinitialize” m

}
Let’s try to use it:

/l open an input file:

cout << "Please enter input file name\n";
string name;

cin >> name;

ifstream ifs(name.c_str());

if (!ifs) error("can't open input file",name);

ifs.exceptions(ifs.exceptions()|ios_base: :badbit);

// open an output file:

cout << "Please enter output file name\n";
cin >> name;

ofstream ofs(name.c_str());

if (1ofs) error("can't open output file",name);

// read an arbitrary number of years:
vector<Year>ys;
while(true) {

// throw for bad)

Yeary; // get a freshly initialized Year each time around

if (!(ifs>>y)) break;
ys.push_back(y);
}

cout << "read " << ys.size() << " years of readings\n";

for (int i = 0; i<ys.size(); ++i) print_year(ofs,ys[il);

We leave print_year() as an exercise.

10.11.3 Changing representations

To get Month’s >> to work, we need to provide a way of reading symbolic repre-
sentations of the month. For symmetry, we'll provide a matching write using a sym-
bolic representation. The tedious way would be to write an if-statement convert:

if (s=="jan")
m=1;
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else if (s=="feb")

This is not just tedious; it also builds the names of the months into the code. It
would be better to have those in a table somewhere so that the main program
could stay unchanged even if we had to change the symbolic representation. We
decided to represent the input representation as a vector<string> plus an initial-
ization function and a lookup function:

vector<string> month_input_tbl;

m=2;

// month_input_tbl[0]=="jan"

void init_input_tbl(vector<string>& tbl)
/l initialize vector of input representations

{

}

tbl.push_back("jan");
tbl.push_back("feb");
tbl.push_back("mar");
tbl.push_back("apr");

tbl.push_back("may");

tbl.push_back("jun");
tbl.push_back("jul");

tbl.push_back("aug");
tbl.push_back("sep");
tbl.push_back("oct");
thl.push_back("nov");
thl.push_back("dec");

int month_to_int(string s)
/! is s the name of a month? If so return its index [0:11] otherwise -1

{

}

In case you wonder: the C++ standard library does provide a simpler way to do
this. See §21.6.1 for a map<string,int>.

When we want to produce output, we have the opposite problem. We have
an int representing a month and would like a symbolic representation to be
printed. Our solution is fundamentally similar, but instead of using a table to go

for (int i=0; i<12; ++i) if (month_input_tbl[i]==s) return i;

return -1;

from string to int, we use one to go from int to string:

vector<string> month_print_tbl;

// month_print_tbl[0]=="January"
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void init_print_tbl(vector<string>& tbl)

/ initialize vector of output representations

{
tbl.push_back("January");
tbl.push_back("February");
tbl.push_back("March");
tbl.push_back("April");
tbl.push_back("May");
tbl.push_back("June");
tbl.push_back("July");
tbl.push_back("August");
tbl.push_back("September");
tbl.push_back("October");
tbl.push_back("November");
tbl.push_back("December");

}

string int_to_month(int i)

// months [0:11]

{
if (i<0 || 12<=i) error("bad month index");
return month_print_tbl[i];

}

For this to work, we need to call the initialization functions somewhere, such as at
the beginning of main():

/l first initialize representation tables:
init_print_tbl(month_print_tbl);
init_input_tbl(month_input_tbl);

So, did you actually read all of that code and the explanations? Or did your eyes
0 glaze over and skip to the end? Remember that the easiest way of learning to write
good code is to read a lot of code. Believe it or not, the techniques we used for this
example are simple, but not trivial to discover without help. Reading data is fun-
damental. Writing loops correctly (initializing every variable used correctly) is fun-
damental. Converting between representations is fundamental. That is, you will
learn to do such things. The only questions are whether you'll learn to do them
well and whether you learn the basic techniques before losing too much sleep.
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J Drill
1

2.

ol

h

. Start a program to work with points, discussed in §10.4. Begin by defin-

ing the data type Point that has two coordinate members x and y.

Using the code and discussion in §10.4, prompt the user to input seven
(x,) pairs. As the data is entered, store it in a vector of Points called
original_points.

Print the data in original_points to see what it looks like.

Open an ofstream and output each point to a file named mydata.txt. On
Windows, we suggest the .txt suffix to make it easier to look at the data
with an ordinary text editor (such as WordPad).

Close the ofstream and then open an ifstream for mydata.txt. Read the
data from mydata.txt and store it in a new vector called processed_points.
Print the data elements from both vectors.

Compare the two vectors and print Something’s wrong! if the number
of elements or the values of elements differ.

Review

1,

[

L 2
12.
13.
14.

15.

2 4000 a1 Oy G e G0

When dealing with input and output, how is the variety of devices dealt
with in most modern computers?

What, fundamentally, does an istream do?

What, fundamentally, does an ostream do?

What, fundamentally, is a file?

What is a file format?

Name four different types of devices that can require I/O for a program.
What are the four steps for reading a file?

What are the four steps for writing a file?

Name and define the four stream states.

Discuss how the following input problems can be resolved:

a. The user typing an out-of-range value
b. Getting no value (end of file)
c. The user typing something of the wrong type

In what way is input usually harder than output?

In what way is output usually harder than input?

Why do we (often) want to separate input and output from computation?
What are the two most common uses of the istream member function
clear()?

What are the usual function declarations for << and >> for a user-defined

type X?
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Terms
bad() good() ostream
buffer ifstream output device
clear() input device output operator
close() input operator stream state
device driver iostream structured file
eof() istream terminator
fail() ofstream unget()
file open()

Exercises

1. Write a program that produces the sum of all the numbers in a file of

2.

e o

10.

whitespace-separated integers.

Wrrite a program that creates a file of data in the form of the temperature
Reading type defined in §10.5. Fill the file with at least 50 temperature
readings. Call this program store_temps.cpp and the file it creates
raw_temps.txt.

Write a program that reads the data from raw_temps.txt created in
exercise 2 into a vector and then calculates the mean and median tem-
peratures in your data set. Call this program temp_stats.cpp.

. Modify the store_temps.cpp program from exercise 2 to include a tem-

perature suffix ¢ for Celsius or f for Fahrenheit temperatures. Then mod-
ify the temp_stats.cpp program to test cach temperature, converting the
Celsius readings to Fahrenheit before putting them into the vector.

Write the function print_year() mentioned in §10.11.2.

Define a Roman_int class for holding Roman numerals (as ints) with a
<< and >>. Provide Roman_int with an as_int() member that returns the
int value, so that if r is a Roman_int, we can write cout << "Roman" <<r
<< " equals " << r.as_int() << "\n';.

Make a version of the calculator from Chapter 7 that accepts Roman nu-
merals rather than the usual Arabic ones, for example, XX1 + CIV == CXXV.
Write a program that accepts two file names and produces a new file that
is the contents of the first file followed by the contents of the second; that
is, the program concatenates the two files.

Write a program that takes two files containing sorted whitespace-scparated
words and merges them, preserving order.

Add a command from x to the calculator from Chapter 7 that makes it
take input from a file x. Add a command to y to the calculator that makes
it write its output (both standard output and error output) to file y. Write
a collection of test cases based on ideas from §7.3 and use that to test the
calculator. Discuss how you would use these commands for testing.
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11. Write a program that produces the sum of all the whitespace-separated
integers in a text file. For example, “bears: 17 elephants 9 end” should
output 26.

12. Write a program that given a file name and a word outputs each line that
contains that word together with the line number. Hint: getline().

Postscript

Much of computing involves moving lots of data from one place to another, for
example, copying text from a file to a screen or moving music from a computer
onto an MP3 player. Often, some transformation of the data is needed on the way.
The iostream library is a way of handling many such tasks where the data can be
seen as a sequence (a stream) of values. Input and output can be a surprisingly
large part of common programming tasks. This is partly because we (or our pro-
grams) need a lot of data and partly because the point where data enters a system
is a place where lots of errors can happen. So, we must try to keep our I/O simple
and try to minimize the chances that bad data “slips through” into our system.
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Customizing
Input and Output

“Keep it simple:
as simple as possible,
but no simpler.”

—Albert Einstein

In this chapter, we concentrate on how to adapt the general
iostream framework presented in Chapter 10 to specific needs
and tastes. This involves a lot of messy details dictated by human
sensibilities to what they read and also practical constraints on
the uses of files. The final example shows the design of an input

stream for which you can specify the set of separators.
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11.1 Regularity and irregularity 11.4 String streams
11.2 Output formatting 11.5 Line-oriented input
11.2.1 Integer output 11.6 Character classification

11.2.2 Integer input .
11.2.3 Floating-point output 11.7 Using nonstandard separators

11.2.4 Precision 11.8 And there is so much more
11.2.5 Fields

11.3 File opening and positioning
11.3.1 File open modes

11.3.2 Binary files
11.3.3 Positioning in files

11.1 Regularity and irregularity

The iostream library — the input/output part of the ISO C++ standard library —
provides a unified and extensible framework for input and output of text. By
“text” we mean just about anything that can be represented as a sequence of
characters. Thus, when we talk about input and output we can consider the inte-
ger 1234 as text because we can write it using the four characters 1, 2, 3, and 4.

So far, we have treated all input sources as equivalent. Sometimes, that’s not
enough. For example, files differ from other input sources (such as communica-
tions connections) in that we can address individual bytes. Similarly, we worked
on the assumption that the type of an object completely determined the layout of
its input and output. That’s not quite right and wouldn’t be sufficient. For exam-
ple, we often want to specify the number of digits used to represent a floating-
point number on output (its precision). This chapter presents a number of ways
in which we can tailor input and output to our needs.

As programmers, we prefer regularity: treating all in-memory objects uni-
formly, treating all input sources equivalently, and imposing a single standard on
the way to represent objects entering and exiting the system give the cleanest,
simplest, most maintainable, and often the most efficient code. However, our pro-
grams exist to serve humans, and humans have strong preferences. Thus, as pro-
grammers we must strive for a balance between program complexity and
accommodation of users’ personal tastes.

11.2 Output formatting

People care a lot about apparently minor details of the output they have to read.
For example, to a physicist 1.25 (rounded to two digits after the dot) can be very
different from 1.24670477, and to an accountant (1.25) can be legally different
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from (1.2467) and totally different from 1.25 (in financial documents, parentheses
are sometimes used to indicate losses, that is, negative values). As programmers,
we aim at making our output as clear and as close as possible to the expectations
of the “consumers” of our program. Output streams (ostreams) provide a variety
of ways for formatting the output of built-in types. For user-defined types, it is up
to the programmer to define suitable << operations.

There seems to be an infinite number of details, refinements, and options for
output and quite a few for input. Examples are the character used for the decimal
point (usually dot or comma), the way to output monetary values, a way to rep-
resent true as the word true (or vrai or sandt) rather than the number 1 when
output, ways to deal with non-ASCII character sets (such as Unicode), and a way
to limit the number of characters read into a string. These facilities tend to be un-
interesting until you need them, so we’ll leave their description to manuals and
specialized works such as Langer, Standard C++ [0Streams and Locales; Chapter 21
and Appendix D of The C++ Programming Language by Stroustrup; and §22 and
§27 of the ISO C++ standard. Here we'll present the most frequently useful fea-
tures and a few general concepts.

11.2.1 Integer output

Integer values can be output as octal (the base-8 number system), decimal (our
usual base-10 number system), and hexadecimal (the base-16 number system). If
you don’t know about these systems, read §A.1.2.1 before proceeding here. Most
output uses decimal. Hexadecimal is popular for outputting hardware-related in-
formation. The reason is that a hexadecimal digit exactly represents a 4-bit value.
Thus, two hexadecimal digits can be used to present the value of an 8-bit byte,
four hexadecimal digits give the value of 2 bytes (that’s often a half word), and
eight hexadecimal digits can present the value of 4 bytes (that’s often the size of a
word or a register). When C++'s ancestor C was first designed (in the 1970s),
octal was popular for representing bit patterns, but now it’s rarely used.

We can specify the output (decimal) value 1234 to be decimal, hexadecimal
(often called “hex"), and octal:

cout << 1234 << "\t(decimal)\n"
<< hex << 1234 << "\t(hexadecimal)\n"
<< oct << 1234 << "\t(octal)\n";

The "t' character is “tab” (short for “tabulation character”). This prints
1234 (decimal)

4d2 (hexadecimal)
2322 (octal)
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The notations << hex and << oct do not output values. Instead, << hex informs
the stream that any further integer values should be displayed in hexadecimal
and << oct informs the stream that any further integer values should be dis-
played in octal. For example:

cout << 1234 << '\t' << hex << 1234 << "\t' << oct << 1234 << "\n';
cout << 1234 << "\n'; // the octal base is still in effect

This produces

1234 4d2 2322
2322 / integers will continue to show as octal until changed

Note that the last output is octal; that is, oct, hex, and dec (for decimal) persist
(“stick,” “are sticky”) — they apply to every integer value output until we tell the
stream otherwise. Terms such as hex and oct that are used to change the behav-
ior of a stream are called manipulators.

TRY THIS

~» Output your birth year in decimal, hexadecimal, and octal form. Label each

value. Line up your output in columns using the tab character. Now output
your age.

Seeing values of a base different from 10 can often be confusing. For example, un-
less we tell you otherwise, you'll assume that 11 represents the (decimal) number
11, rather than 9 (11 in octal) or 17 (11 in hexadecimal). To alleviate such problems,
we can ask the ostream to show the base of each integer printed. For example:

cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << "\n';
cout << showbase << dec; /f show bases
cout << 1234 << '\t' << hex << 1234 << '\t' << oct << 1234 << '\n';

This prints

1234 4d2 2322
1234 0x4d2 02322

So, decimal numbers have no prefix, octal numbers have the prefix 0, and hexa-
decimal values have the prefix 0x (or 0X). This is exactly the notation for integer
literals in C++ source code. For example:
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cout << 1234 << '\t' << 0x4d2 << '\t' << 02322 <<"\n';
In decimal form, this will print

1234 1234 1234
As you might have noticed, showbase persists, just like oct and hex. The manip-
ulator noshowbase reverses the action of showbase, reverting to the default,

which shows each number without its base.
In summary, the integer output manipulators are:

Integer output manipulations

oct use base-8 (octal) notation

dec use base-10 (decimal) notation

hex use base-16 (hexadecimal) notation
showbase prefix 0 for octal and 0x for hexadecimal

noshowbase  don't use prefixes

11.2.2 Integer input

By default, >> assumes that numbers use the decimal notation, but you can tell it
to read hexadecimal or octal integers:

inta;

inth;

intc;

intd;

cin>>a>>hex>>b>> oct >>c>>d;
cout<<a<<'<<b<<'t'<<c<<\t'<<d <<"\n';

If you type in

1234 4d2 2322 2322
this will print

1234 1234 1234 1234

Note that this implies that oct, dec, and hex “stick” for input, just as they do for
output.
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TRY THIS

(
»  Complete the code fragment above to make it into a program. Try the sug-
gested input; then type in

1234 1234 1234 1234

Explain the results. Try other inputs to see what happens.

You can get >> to accept and correctly interpret the 0 and 0x prefixes. To do that,
you “unset” all the defaults. For example:

cin.unsetf(ios: :dec); // don’t assume decimal (so that Ox can mean hex)
cin.unsetf(ios::oct); // don’t assume octal (so that 12 can mean twelve)
cin.unsetf(ios: :hex); // don't assume hexadecimal (so that 12 can mean twelve)

The stream member function unsetf() clears the flag (or flags) given as argument.
Now, if you write

cin>>a>>b>>c>>d;
and enter

1234 0x4d2 02322 02322
you get

1234 1234 1234 1234

11.2.3 Floating-point output

If you deal directly with hardware, you'll need hexadecimal (or possibly octal)
notation. Similarly, if you deal with scientific computation, you must deal with
the formatting of floating-point values. They are handled using iostream manipu-
lators in a manner very similar to that of decimal values. For example:

cout << 1234.56789 << "\t\t(general)\n" M\t to line up columns
<< fixed << 1234.56789 << "\t(fixed)\n"

<< scientific << 1234.56789 << "\t(scientific)\n";

This prints
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1234.57 (general)
1234.567890 (fixed)
1.234568e+003 (scientific)

The manipulators fixed and scientific are used to select floating-point formats.
Curiously, the standard library doesn’t have a general manipulator to give the
default format. However, we can define one, as we did in std_lib_facilities.h.
This does require knowledge of the inner workings of the iostream library:

inline ios_base& general(ios_base& b)  //to complement fixed and scientific
// clear all floating-point format flags

{
b.setf(ios_base: :fmtflags(0), ios_base: :floatfield);

return b;

}

Now, we can write

cout << 1234.56789 << "\t'

<< fixed << 1234.56789 << "\t'
<< scientific << 1234.56789 << "\n';
cout << 1234.56789 << "\n'; // floating format “sticks”
cout << general << 1234.56789 << '\t' // warning: general isn’t standard

<< fixed << 1234.56789 << '\t'
<< scientific << 1234.56789 << "\n';

This prints
1234.57 1234.567890 1.234568e+003
1.234568e+003 // scientific manipulator “sticks”
1234.57 1234.567890 1.234568e+003

In summary, the basic floating-point output-formatting manipulators are:

Floating-point formats

fixed use fixed-point notation

scientific  use mantissa and exponent notation; the mantissa is always in the [1:10)
range; that is, there is a single nonzero digit before the decimal point

general choose fixed or scientific to give the numerically most accurate
representation, within the precision of general. The general format is
the default, but to explicitly set it you need a definition of general().
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11.2.4 Precision

By default, a floating-point value is printed using six total digits using the general
format. The most appropriate format is chosen and the number is rounded to
give the best approximation that can be printed using only six digits (the default
precision for the general form). For example:

1234.567 prints as 1234.57

1.2345678 prints as 1.23457
The rounding rule is the usual 4/5 rule: 0 to 4 round down and 5 to 9 round up.
Note that floating-point formatting applies only to floating-point numbers, so

1234567 prints as 1234567 (because it’s an integer)

1234567.0 prints as 1.23457e+006
In the latter case, the ostream determines that 1234567.0 cannot be printed using
the fixed format using only six digits and switches to scientific format to preserve
the most accurate representation. Basically the general format chooses between
scientific and fixed formats to present the user with the most accurate represen-

tation of a floating-point value within the precision of the general format, which
defaults at six total digits.

TRY THIS

Write some code to print the number 1234567.89 three times, first using
general, then fixed, then scientific. Which output form presents the user
with the most accurate representation? Explain why.

A programmer can set the precision using the manipulator setprecision().
For example:

cout << 1234.56789 << "\'

<< fixed << 1234.56789 << "\’

<< scientific << 1234.56789 << "\n';
cout << general << setprecision(5)

<< 1234.56789 << "\t

<< fixed << 1234.56789 << "\t'

<< scientific << 1234.56789 << "\n';
cout << general << setprecision(8)

<< 1234.56789 << "\t'

<< fixed << 1234.56789 << "\t'

<< scientific << 1234.56789 << "\n';
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This prints (note the rounding)

1234.57 1234.567890 1.234568e+003
1234.6 1234.56789  1.23457e+003
1234.5679 1234.56789000 1.23456789¢+003

The precision is defined as:

Floating-point precision

general precision is the total number of digits
scientific  precision is the number of digits after the decimal point

fixed precision is the number of digits after the decimal point

Use the default (general format with precision 6) unless there is a reason not to.
The usual reason not to is “Because we need greater accuracy of the output.”

11.2.5 Fields

Using scientific and fixed formats, a programmer can control exactly how much
space a value takes up on output. That's clearly useful for printing tables, etc.
The equivalent mechanism for integer values is called fields. You can specify ex-
actly how many character positions an integer value or string value will occupy
using the “set field width” manipulator setw(). For example:

cout << 123456 // no field used
<<'|'<< setw(4) << 123456 <<'|' // 123456 doesn’t fit in a 4-char field
<< setw(8) << 123456 << '|' // set field width to 8
<< 123456 << "\n"; // field sizes don't stick
This prints

123456/123456] 123456/123456|

Note first the two spaces before the third occurrence of 123456. That's what we
would expect for a six-digit number in an eight-character field. However, 123456

did not get truncated to fit into to a four-character field. Why not? |1234| or |3456]|
might be considered plausible outputs for the four-character field. However, that
would have completely changed the value printed without any warning to the

poor reader that something had gone wrong. The ostream doesn’t do that; in-

stead it breaks the output format. Bad formatting is almost always preferable to ()
“bad output data.” In the most common uses of fields (such as printing out a
table), the “overflow” is visually very noticeable, so that it can be corrected.
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Fields can also be used for floating-point numbers and strings. For example:

cout << 12345 <<'|'<< setw(4) << 12345 << '|'

<< setw(8) << 12345 << '|' << 12345 << "\n";
cout << 1234.5 <<'|'<< setw(4) << 1234.5 << '

<< setw(8) << 1234.5 << '|' << 1234.5 << "\n";
cout << "asdfg" <<'|'<< setw(4) << "asdfg" << '|'

<< setw(8) << "asdfg" << '|' << "asdfg" << "[\n";

This prints

12345[12345| 12345/12345)
1234.5[1234.5| 1234.5/1234.5]
asdfglasdfg| asdfglasdfg|

Note that the field width “doesn’t stick.” In all three cases, the first and the last
values are printed in the default “as many characters as it takes” format. In other
words, unless you set the field width immediately before an output operation, the
notion of “field” is not used.

TRY THIS

Make a simple table including the last name, first name, telephone number,
and email address for yourself and at least five of your friends. Experiment
with different field widths until you are satisfied that the table is well presented.

11.3 File opening and positioning

As seen from C++, a file is an abstraction of what the operating system provides. As
described in §10.3, a file is simply a sequence of bytes numbered from 0 upward:

The question is how we access those bytes. Using iostreams, this is largely deter-
mined when we open a file and associate a stream with it. The properties of a
stream determine what operations we can perform after opening the file, and their
meaning. The simplest example of this is that if we open an istream for a file, we
can read from the file, whereas if we open a file with an ostream, we can write to it.
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11.3.1 File open modes

You can open a file in one of several modes. By default, an ifstream opens its file
for reading and an ofstream opens its file for writing. That takes care of most
common needs. However, you can choose between several alternatives:

Filestream open modes

ios_base::app append (i.e., add to the end of the file)
ios_base::ate “at end” (open and seek to end)

ios_base::binary  binary mode — beware of system-specific behavior

ios_base::in for reading
ios_base::out for writing
ios_base::trunc truncate file to 0-length

A file mode is optionally specified after the name of the file. For example:

ofstream of1(name1); // defaults to ios_base::out
ifstream if1(name2); /l defaults to ios_base::in

ofstream ofs(name, ios_base::app); // ofstreams are by default out
fstream fs("myfile", ios_base::inlios_base::out);  //both in and out

The | in that last example is the “bitwise or” operator (§A.5.5) that can be used to
combine modes as shown. The app option is popular for writing log files where
you always add to the end.

In each case, the exact effect of opening a file may depend on the operating
system, and if an operating system cannot honor a request to open a file in a cer-
tain way, the result will be a stream that is not in the good() state:

if (!fs) // oops: we couldn’t open that file that way

The most common reason for a failure to open a file for reading is that the file
doesn’t exist (at least not with the name we used):

ifstream ifs("redungs");
if (tifs)  //error: can’t open “readings” for reading

In this case, we guess that a spelling error might be the problem.
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Note that typically, an operating system will create a new file if you try to
open a nonexistent file for output, but (fortunately) not if you try to open a non-
existent file for input:

ofstream ofs("no-such-file"); /l create new file called no-such-file
ofstream ifs("no-file-of-this-name"); N error: ifs will be not be good()

11.3.2 Binary files

In memory, we can represent the number 123 as an integer value or as a string
value. For example:

intn=123;
string s = "123";

In the first case, 123 is stored as a (binary) number in an amount of memory that
is the same as for all other ints (4 bytes, that is, 32 bits, on a PC). Had we chosen
the value 12345 instead, the same 4 bytes would have been used. In the second
case, 123 is stored as a string of three characters. Had we chosen the string value
"12345" it would have used five characters (plus the fixed overhead for managing
a string). We could illustrate this like this (using the ordinary decimal and char-
acter representation, rather than the binary representation actually used within
the computer):

123 as characters: |12 [3[2[2]2]2] 2]
12345 as characters: [1[2]3]4[5]2]2]2]
123 asbinary: | 128 | |
12345 as binary: | 12345 | |

When we use a character representation, we must use some character to repre-
sent the end of a number in memory, just as we do on paper: 123456 is one num-
ber and 123 456 are two numbers. On “paper.” we use the space character to
represent the end of the number. In memory, we could do the same:

123456 as characters: |[1][2]3[4[5[6] [2]

123 456 as characters: [1[2[3] [4[5][6] |

The distinction between storing fixed-sized binary representation (e.g., an int)
and variable-sized character string representation (e.g., a string) also occurs in
files. By default, iostreams deal with character representations; that is, an istream
reads a sequence of characters and turns it into an object of the desired type. An
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ostream takes an object of a specified type and transforms it into a sequence of
characters which it writes out. However, it is possible to request istream and
ostream to simply copy bytes to and from files. That's called binary I/0 and is re-
quested by opening a file with the mode ios_base: :binary. Here is an example
that reads and writes binary files of integers. The key lines that specifically deal

with “binary” are explained below:

int main()

{

}

/I open an istream for binary input from a file:

cout << "Please enter input file name\n";

string name;

cin >> name;

ifstream ifs(name.c_str(),ios_base::binary);  // note: stream mode
/f “binary” tells the stream not to try anything clever with the bytes

if (!ifs) error("can't open input file ", name);

/l open an ostream for binary output to a file:

cout << "Please enter output file name\n";

cin >> name;

ofstream ofs(name.c_str(),ios_base::binary); /l note: stream mode
/l “binary” tells the stream not to try anything clever with the bytes

if (!ofs) error("can't open output file ",name);

vector<int> v;

/ read from binary file:

inti;

while (ifs.read(as_bytes(i),sizeof(int)))  // note: reading bytes
v.push_back(i);

/. . .dosomething with v . . .

/ write to binary file:
for(int i=0; i<v.size(); ++i)

ofs.write(as_bytes(v[i]),sizeof(int));  // note: writing bytes
return 0;

We open the files using ios_base: :binary as the stream mode:

ifstream ifs(name.c_str(), ios_base::binary);

ofstream ofs(name.c_str(), ios_base::binary);

387
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In both cases, we chose the trickier, but often more compact, binary representa-
tion. When we move from character-oriented I/O to binary I/O we give up our
usual >> and << operators. Those operators specifically turn values into charac-
ter sequences using the default conventions (e.g., the string "asdf" turns into the
characters a, s, d, f and the integer 123 turns into the characters 1, 2, 3). If we
wanted that, we wouldn’t need to say binary — the default would suffice. We use
binary only if we (or someone else) thought that we somehow could do better
than the default. We use binary to tell the stream not to try anything clever with
the bytes.

What “cleverness” might we do to an int? The obvious is to store a 4-byte int
in 4 bytes; that is, we can look at the representation of the int in memory (a se-
quence of 4 bytes) and transfer those bytes to the file. Later, we can read those
bytes back the same way and reassemble the int:

ifs.read(as_bytes(i),sizeof(int)) // note: reading bytes
ofs.write(as_bytes(v[i]),sizeof(int)) // note: writing bytes

The ostream write() and the istream read() both take an address (supplied here
by as_byte()) and a number of bytes (characters) which we obtained by using the
operator sizeof. That address should refer to the first byte of memory holding
the value we want to read or write. For example, if we had an int with the value
1234, we would get the 4 bytes (using hexadecimal notation) 00, 00, 04, d2:

I Lo STt Ad2 - |

The as_bytes() function is needed to get the address of the first byte of an object’s
representation. It can — using language facilities yet to be explained (§17.8 and

§19.3) — be defined like this:

template<class T>
char* as_bytes(T& i) /treat a T as a sequence of bytes
{
void* addr = &i; // get the address of the first byte
// of memory used to store the object
return static_cast<char*>(addr);  //treat that memory as bytes

}

The (unsafe) type conversion using static_cast is necessary to get to the “raw
bytes” of a variable. The notion of addresses will be explored in some detail in
Chapters 17 and 18. Here, we just show how to treat any object in memory as a
sequence of bytes for the use of read() and write().
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This binary I/O is messy, somewhat complicated, and error-prone. However,
as programmers we don’t always have the freedom to choose file formats, so oc-
casionally we must use binary I/O simply because that’s the format someone
chose for the files we need to read or write. Alternatively, there may be a good
logical reason for choosing a non-character representation. A typical example is
an image or a sound file, for which there is no reasonable character representa-
tion: a photograph or a piece of music is basically just a bag of bits.

The character I/O provided by default by the iostream library is portable, ()
human readable, and reasonably supported by the type system. Use it when you
have a choice and don’t mess with binary I/O unless you really have to.

11.3.3 Positioning in files

Whenever you can, just read and write files from the beginning to the end. ()
That’s the easiest and least error-prone way. Many times, when you feel that you
have to make a change to a file, the better solution is to produce a new file con-
taining the change.

However. if you must, you can use positioning to select a specific place in a file
for reading or writing. Basically, every file that is open for reading has a “read/get
position” and every file that is open for writing has a “write/put position™:

Put position: Get position:

0: 1:

S N O I I A

This can be used like this:

fstream fs(name.c_str());  // open for input and output
if (1fs) error("can't open ",name);

fs.seekg(5); // move reading position (g for “get”) to 5 (the 6th character)
char ch;

fs>>ch; // read and increment reading position

cout << "character 6 is " << ch << '(' << int(ch) << ")\n";

fs.seekp(1); // move writing position (p for “put”) to 1
fs<<'y'; /I write and increment writing position

Please be careful: there is next to no run-time error checking when you use posi-
tioning. In particular, it is undefined what happens if you try to seck (using
seekg() or seekp()) beyond the end of a file, and operating systems really do dif-
fer in what happens then.



390 CHAPTER 11 o CUSTOMIZING INPUT AND OUTPUT

11.4 String streams

0 You can use a string as the source of an istream or the target for an ostream. An
istream that reads from a string is called an istringstream and an ostream that
stores characters written to it in a string is called an ostringstream. For example,

an istringstream is useful for extracting numeric values from a string:

double str_to_double(string s)
/1 if possible, convert characters in s to floating-point value

{
istringstream is(s);  // make a stream so that we can read from s
double d;
is >>d;
if (!is) error("double format error: ",s);
return d;
}
double d1 = str_to_double("12.4"); / testing

double d2 = str_to_double("1.34e-3");
double d3 = str_to_double("twelve point three");  // will call error()

If we try to read beyond the end of a stringstream’s string, the stringstream will
go into eof() state. This means that we can use “the usual input loop™ for a
stringstream; a string stream really is a kind of istream.

Conversely, an ostringstream can be useful for formatting output for a sys-
tem that requires a simple string argument, such as a GUI system (see §16.5).
For example:

void my_code(string label, Temperature temp)

{
M s
ostringstream os; // stream for composing a message
0s << setw(8) << label << ": "
<< fixed << setprecision(5) << temp.temp << temp.unit;
someobject.display(Point(100,100), os.str().c_str());
i
}

The str() member function of ostringstream returns the string composed by out-
put operations to an ostringstream. The c_str() is a member function of string
that returns a C-style string as required by many system interfaces.

C) The stringstreams are generally used when we want to separate actual I/O
from processing. For example, a string argument for str_to_double() will usually
originate in a file (e.g., a web log) or from a keyboard. Similarly, the message we
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composed in my_code() will eventually end up written to an area of a screen. For
example, in §11.7, we use a stringstream to filter undesirable characters out of
our input. Thus, stringstreams can be seen as a mechanism for tailoring 1/0 to
special needs and tastes.

A simple use of an ostream is to construct strings by concatenation. For
example:

int seq_no = get_next_number(); /f get the number of a log file
ostringstream name;
name << "myfile" << seq_no; He.g., myfilel7

ofstream logfile(name.str().c_str());  //e.g., open myfile17

Usually, we initialize an istringstream with a string and then read the characters
from that string using input operations. Conversely, we typically initialize an
ostringstream to the empty string and then fill it using output operations. There
is a more direct way of accessing characters in a stringstream that is sometimes
useful: ss.str() returns a copy of ss’s string, and ss.str(s) sets in ss’s string to a
copy of s. §11.7 shows an example where ss.str(s) is essential.

11.5 Line-oriented input

A >> operator reads into objects of a given type according to that type’s standard
format. For example, when reading into an int, >> will read until it encounters
something that's not a digit, and when reading into a string, >> will read undl it
encounters whitespace. The standard library istream library also provides facili-
ties for reading individual characters and whole lines. Consider:

string name;
cin >> name; / input: Dennis Ritchie
cout << name << \n';  / output: Dennis

What if we wanted to read everything on that line at once and decide how to for-
mat it later? That could be done using the function getline(). For example:

string name;
getline(cin,name); // input: Dennis Ritchie
cout << name << '\n';  // output: Dennis Ritchie

Now we have the whole line. Why would we want that? A good answer would
be “Because we want to do something that can’t be done by >>" Often, the an-
swer is a poor one: “Because the user typed a whole line.” If that’s the best you
can think of, stick to >>, because once you have the line entered, you usually
have to parse it somehow. For example:

391
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string first_name;

string second_name;

stringstream ss(name);

ss>>first_name; /l input Dennis
ss>>second_name; /l input Ritchie

Reading directly into first_name and second_name would have been simpler.

One common reason for wanting to read a whole line 1s that the definition of
whitespace isn’t always appropriate. Sometimes, we want to consider a newline
as different from other whitespace characters. For example, a text communica-
tion with a game might consider a line a sentence, rather than relying on conven-
tional punctuation:

go left until you see a picture on the wall to your right
remove the picture and open the door behind it. take the bag from there

In that case, we'd first read a whole line and then extract individual words from that,

string command;
getline(cin,command); // read the line

stringstream ss(command);

vector<string> words;

string s;

while (ss>>s) words.push_back(s); // extract the individual words

On the other hand, had we had a choice, we would most likely have preferred to

rely on some proper punctuation rather than a line break.

11.6 Character classification

Usually, we read integers, floating-point numbers, words, etc. as defined by for-
mat conventions. However, we can — and sometimes must — go down a level of
abstraction and read individual characters. That's more work, but when we read
individual characters, we have full control over what we are doing. Consider tok-
enizing an expression (§7.8.2). For example, we want 1+4*x<=y/z*5 to be sepa-
rated into the eleven tokens

1+4*x<=y/z*5

We could use >> to read the numbers, but trying to read the identifiers as strings
would cause x<=y to be read as one string (since < and = are not whitespace char-
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acters) and z* to be read as one string (since * isn’t a whitespace character either).
Instead, we could write

char ch;

while (cin.get(ch)) {
if (isspace(ch)) {  //if ch is whitespace

}

/l do nothing (i.e., skip whitespace)

if (isdigit(ch)) {

}

// read a number

else if (isalpha(ch)) {

}

/f read an identifier

else {

)
}

// deal with operators

The istream: :get() function reads a single character into its argument. It does not
skip whitespace. Like >>, get() returns a reference to its istream so that we can

test its state.

When we read individual characters, we usually want to classify them: Is this
character a digit? Is this character uppercase? And so forth. There is a set of stan-
dard library functions for that:

Character classification

isspace(c)  Is c whitespace ("', '\t', "\n', etc.)?

isalpha(c) Is ca letter ('a'..'z", 'A"..'Z') (note: not '_")?

isdigit(c) Is ¢ a decimal digit ('0'..'9")?

isxdigit(c) Is ¢ a hexadecimal digit (decimal digit or 'a'.."f' or 'A'..'"F')?
isupper(c) Is can uppercase letter?

islower(c) Is c a lowercase letter?

isalnum(c)  Is ca letter or a decimal digit?

iscntrl(c) Is ¢ a control character (ASCII 0..31 and 127)?

ispunct(c) Is ¢ not a letter, digit, whitespace, or invisible control character?
isprint(c) Is ¢ printable (ASCII ' '..'~")?

isgraph(c)  Is cisalpha(|isdigit()lispunct() (note: not space)?
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Note the way that classifications can be combined using the “or™ operator (|). For
example, isalnum(c) means isalpha(c)|isdigit(c); that is, “Is c either a letter or a
digit?”

In addition, the standard library provides two useful functions for getting rid
of case differences:

Character case

toupper(c)  cor ¢'s uppercase equivalent

tolower(c) ¢ or ¢’s lowercase equivalent

These are useful when you want to ignore case differences. For example, in input
from a user Right, right, and rigHT most likely mean the same thing (rigHT most
likely being the result of an unfortunate hit on the Caps Lock key). After apply-
ing tolower() to each character in each of those strings, we get right for cach. We
can do that for an arbitrary string:

void tolower(string& s) / put s into lower case
{

for (int i=0; i<s.length(); ++i) s[i] = tolower(s[i]);
}

We use pass-by-reference (§8.5.5) to actually change the string. Had we wanted
to keep the old string we could have written a function to make a lowercase copy.
Prefer tolower() to toupper() because that works better for text in some natural
languages, such as German, where not every lowercase character has an upper-
case equivalent.

11.7 Using nonstandard separators

This section provides a semi-realistic example of the use of iostreams to solve a
real problem. When we read strings, words are by default separated by white-
space. Unfortunately, istream doesn’t offer a facility for us to define what charac-
ters make up whitespace or in some other way directly change how >> reads a
string. So, what do we do if we need another definition of whitespace? Consider
the example from §4.6.3 where we read in “words™ and compared them. Those
words were whitespace-separated, so if we read

As planned, the guests arrived; then,

We would get the “words”
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As
planned,
the
guests
arrived;
then,

This is not what we'd find in a dictionary: “planned,” and “arrived;” are not words.
They are words plus distracting and irrelevant punctuation characters. For most
purposes we must treat punctuation just like whitespace. How might we get rid of
such punctuation? We could read characters, remove the punctuation characters —
or turn them into whitespace — and then read the “cleaned-up” input again:

string line;
getline(cin,line); // read into line
for (int i=0; i<line.size(); ++i) // replace each punctuation character
by a space
switch(line[i]) {
case ';': case '.': case',': case '?': case '!":
linelil="";

}
stringstream ss(line); // make an istream ss reading from line
vector<string> vs;
string word;
while (ss>>word) // read words without punctuation characters

vs.push_back(word);
Using that to read the line we get the desired

As
planned
the
guests
arrived
then

Unfortunately, the code above is messy and rather special-purpose. What would
we do if we had another definition of punctuation? Let’s provide a more general
and useful way of removing unwanted characters from an input stream. What
would that be? What would we like our user code to look like? How about
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ps.whitespace(";:,."); // treat semicolon, colon, comma, and dot as whitespace
string word;
while (ps>>word) vs.push_back(word);

How would we define a stream that would work like ps? The basic idea is to read
words from an ordinary input stream and then treat the user-specified “white-
space” characters as whitespace; that is, we do not give “whitespace™ characters
to the user, we just use them to separate words. For example,

as.not
should be the two words

as
not

We can define a class to do that for us. It must get characters from an istream and
have a >> operator that works just like istream’s except that we can tell it which
characters it should consider to be whitespace. For simplicity, we will not provide
a way of treating existing whitespace characters (space, newline, etc.) as non-
whitespace; we'll just allow a user to specify additional “whitespace” characters.
Nor will we provide a way to completely remove the designated characters from
the stream: as before, we will just turn them into whitespace. Let’s call that class
Punct_stream:

class Punct_stream { // like an istream, but the user can add to
// the set of whitespace characters
public:
Punct_stream(istream& is)
: source(is), sensitive(true) { }

void whitespace(const string& s)  // make s the whitespace set

{white=s; }
void add_white(char ¢) { white +=c¢; }  // add to the whitespace set
bool is_whitespace(char c); /is ¢ in the whitespace set?

void case_sensitive(bool b) { sensitive = b; }
bool is_case_sensitive() { return sensitive; }

Punct_stream& operator>>(string& s);
operator bool();
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private:
istream& source; /l character source
istringstream buffer;  //we let buffer do our formatting
string white; /l characters considered “whitespace”
bool sensitive; /! is the stream case-sensitive?

}i

The basic idea is — just as in the example above — to read a line at a time from
the istream, convert “whitespace” characters into spaces, and then use the
stringstream to do formatting. In addition to dealing with user-defined white-
space, we have given Punct_stream a related facility: if we ask it to, using
case_sensitive(), it can convert case-sensitive input into non-case-sensitive input.
For example, if we ask, we can get a Punct_stream to read

Man bites dog!

man
bites
dog

Punct_stream’s constructor takes the istream to be used as a character source
and gives it the local name source. The constructor also defaults the stream to
the usual case-sensitive behavior. We can make a Punct_stream that reads from
cin regarding semicolon, colon, and dot as whitespace, and that turns all charac-
ters into lower case:

Punct_stream ps(cin); /I ps reads from cin
ps.whitespace(";:."); /l semicolon, colon, and dot are also whitespace
ps.case_sensitive(false);  // not case-sensitive

Obviously, the most interesting operation is the input operator >>. It is also by
far the most difficult to define. Our general strategy is to read a whole line from
the istream into a string (called line). We then convert all of “our™ whitespace
characters to the space character (' ‘). That done, we put the line into the
istringstream called buffer. Now we can use the usual whitespace-separating >>
to read from buffer. The code looks a bit more complicated than this because we
simply try reading from the buffer and try to fill it only when we find it empty:

Punct_stream& Punct_stream::operator>>(string& s)

{
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while (!(buffer>>s)) {  //try to read from buffer
if (buffer.bad() || !source.good()) return *this;
buffer.clear();

string line;
getline(source,line); //get a line from source

/l do character replacement as needed:
for (int i =0; i<line.size(); ++i)
if (is_whitespace(line[i]))
linelil=""; //'to space
else if (!sensitive)
line[i] = tolower(lineli]); // to lower case

buffer.str(line); / put string into stream
}
return *this;

)
Let’s consider this bit by bit. Consider first the somewhat unusual
while (!(buffer>>s)) {

If there are characters in the istringstream called buffer the read buffer>>s will
work, and s will receive a “whitespace™separated word; then there is nothing
more to do. That will happen as long as there are characters in buffer for us to
read. However, when buffer>>s fails — that is, if !(buffer>>s) — we must replen-
ish buffer from source. Note that the buffer>>s read is in a loop; after we have
tried to replenished buffer, we need to try another read, so we get

while (!(buffer>>s)) {  /try to read from buffer
if (buffer.bad() || !source.good()) return *this;
buffer.clear();

/ replenish buffer
}

If buffer is bad() or the source has a problem, we give up; otherwise, we clear
buffer and try again. We need to clear buffer because we get into that “replenish
loop™ only if a read failed, typically because we hit eof() for buffer; that is, there
were no more characters in buffer for us to read. Dealing with stream state is al-
ways messy and it is often the source of subtle errors that require tedious debug-
ging. Fortunately the rest of the replenish loop is pretty straightforward:
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string line;
getline(source,line); // get a line from source

// do character replacement as needed:
for (int i =0; i<line.size(); ++i)
if (is_whitespace(line[i]))
linelil=""; /1o space
else if (!sensitive)
line[i] = tolower(line[il); // to lower case

buffer.str(line); / put string into stream

We read a line into buffer. Then we look at each character of that line to see if we

need to change it. The is_whitespace() function is a member of Punct_stream,
which we'll define later. The tolower() function is a standard library function
doing the obvious, such as turning A into a (see §11.6).

Once we have a properly processed line, we need to get it into our istring-

stream. That’s what buffer.str(line) does: it can be read as “Set the stringstream
buffer’s string to line.”

Note that we “forgot” to test the state of source after reading from it using

getline(). We don’t need to because we will eventually reach the !source.good()
test at the top of the loop.

As ever, we return a reference to the stream itself, *this, as the result of >>;

sce §17.10.

Testing for whitespace is easy; we just compare a character to each character

of the string that holds our whitespace set:

bool Punct_stream: :is_whitespace(char c)

{
for (inti = 0; i<white.size(); ++i) if (c==white[i]) return true;
return false;

}

Remember that we left the istringstream to deal with the usual whitespace char-
acters (e.g., newline and space) in the usual way, so we don’t need to do anything
special about those.

This leaves one mysterious function:

Punct_stream: : operator bool()
{
return !(source.fail() || source.bad()) && source.good();
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The conventional use of an istream is to test the result of >>. For example:
while (ps>>s) {/* ... */}

That means that we need a way of looking at the result of ps>>s as a Boolean
value. The result of ps>>s is a Punct_stream, so we need a way of implicitly turn-
ing a Punct_stream into a bool. That's what Punct_stream’s operator bool() does.
A member function called operator bool() defines a conversion to bool. In partic-
ular, it returns true if the operation on the Punct_stream succeeded.

Now we can write our program.

int main()
/l given text input, produce a sorted list of all words in that text
// ignore punctuation and case differences
/l eliminate duplicates from the output

{
Punct_stream ps(cin);
ps.whitespace(";:,.21 O\"(}<>/&S@#%"*|~"); // note \" means " in string
ps.case_sensitive(false);
cout << "please enter words\n";
vector<string> vs;
string word;
while (ps>>word) vs.push_back(word); / read words
sort(vs.begin(),vs.end()); / sort in lexicographical order
for (int i=0; i<vs.size(); ++i) /l write dictionary
if (i==0 || vs[i]!=vs[i-1]) cout << vs[i] << endl;
}

This will produce a properly sorted list of words from input. The test
if (i==0 || vs[il!=vs[i-1])
will suppress duplicates. Feed this program the input

There are only two kinds of languages: languages that people complain
about, and languages that people don’t use.

and it will output
and

are
complain
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don’t
languages
of

only
people
that

there

two

use

Why did we get don’t and not dont? We left the single quote out of the white-
space() call.

Caution: Punct_stream behaves like an istream in many important and useful
ways, but it isn’t really an istream. For example, we can’t ask for its state using rd-
state(), eof() isn’t defined, and we didn’t bother providing a >> that reads integers.
Importantly, we cannot pass a Punct_stream to a function expecting an istream.
Could we define a Punct_istream that really is an istream? We could, but we don’t
yet have the programming experience, the design concepts, and the language facil-
ities required to pull off that stunt (if you — much later — want to return to this
problem, you have to look up stream buffers in an expert-level guide or manual).

Did you find Punct_stream casy to read? Did you find the explanations easy
to follow? Do you think you could have written it yourself? If you were a genuine
novice a few days ago, the honest answer is likely to be “No, no, no!” or even
“NO, no! Nooo!! — Are you crazy?” We understand — and the answer to the last
queston/outburst is “No, at least we think not.” The purpose of the example is

* To show a somewhat realistic problem and solution

* To show what can be achieved with relatively modest means

* To provide an easy-to-use solution to an apparently easy problem

* o illustrate the distinction between the interface and the implementation
To become a programmer, you need to read code, and not just carefully polished
solutions to educational problems. This is an example. In another few days or
weeks, this will become easy for you to read, and you will be looking at ways to
improve the solution.

One way to think of this example is as equivalent to a teacher having dropped

some genuine English slang into an English-for-beginners course to give a bit of
color and enliven the proceedings.

11.8 And there is so much more
The details of I/O seem infinite. They probably are, since they are limited only by

human inventiveness and capriciousness. For example, we have not considered

401
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the complexity implied by natural languages. What is written as 12.35 in English
will be conventionally represented as 12,35 in most other European languages.
Naturally, the C++ standard library provides facilities for dealing with that and
many other natural-language-specific aspects of 1/0. How do you write Chinese
characters? How do you compare strings written using Malayalam characters?
There are answers, but they are far beyond the scope of this book. If you need to
know, look in more specialized or advanced books (such as Langer, Standard C++
10Streams and Locales, and Stroustrup, The C++ Programming Language) and in li-
brary and system documentation. Look for locale; that's the term usually applied
to facilities for dealing with natural language differences.

Another source of complexity is buffering: the standard library iostreams
rely on a concept called streambuf. For advanced work — whether for perform-
ance or functionality — with iostreams these istreambufs are unavoidable. If you
feel the need to define your own iostreams or to tune iostreams to new data
sources/sinks, see Chapter 21 of The C++ Programming Language by Stroustrup or
your system documentation.

When using C++, you may also encounter the C standard printf()/scanf()
family of I/O functions. If you do, look them up in §27.6, §B.10.2, or in the excel-
lent C textbook by Kernighan and Ritchie (7%e C Programming Language) or one of
the innumerable sources on the web. Each language has its own I/O facilities;
they all vary, most are quirky, but most reflect (in various odd ways) the same
fundamental concepts that we have presented in Chapters 10 and 11.

The standard library I/O facilities are summarized in Appendix B.

The related topic of graphical user interfaces (GUISs) is described in Chap-
ters 12-16.

. Start a program called Test_output.cpp. Declare an integer birth_year
and assign it the year you were born.

Output your birth_year in decimal, hexadecimal, and octal form.

Label each value with the name of the base used.

Did you line up your output in columns using the tab character? If not,
doit.

Now output your age.

Was there a problem? What happened? Fix your output to decimal.

Go back to 2 and cause your output to show the base for each output.
Try reading as octal, hexadecimal, etc.:

Ll

NS W

cin >> a>>oct>> b >> hex>> c>>d;
cout<<a<<\t'e<b<<'\t'<<c<<\t'<<cd << "\n' ;

Run this code with the input
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1234 1234 1234 1234
Explain the results.

. Write some code to print the number 1234567.89 three times, first using

general, then fixed, then scientific forms. Which output form presents
the user with the most accurate representation? Explain why.

10. Make a simple table including last name, first name, telephone number,
and email address for yourself and at least five of your friends. Experi-
ment with different field widths until you are satisfied that the table is
well presented.

Review
1. Why is I/O tricky for a programmer?
2. What does the notation << hex do?
3. What are hexadecimal numbers used for in computer science? Why?
4. Name some of the options you may want to implement for formatting in-
teger output.
5. What is a manipulator?
6. What is the prefix for decimal? For octal? For hexadecimal?
7. What is the default output format for floating-point values?
8. What is a field?
9. Explain what setprecision() and setw() do.

10. What is the purpose of file open modes?

11. Which of the following manipulators does not “stick”: hex, scientific,
setprecision, showbase, setw?

12. What is the difference between character I/O and binary 1/0?

13. Give an example of when it would probably be beneficial to use a binary
file instead of a text file.

14. Give two examples where a stringstream can be useful.

15. What is a file position?

16. What happens if you position a file position beyond the end of file?

17. When would you prefer line-oriented input to type-specific input?

18. What does isalnum(c) do?

Terms
binary hexadecimal octal
character classification  irregularity output formatting
decimal line-oriented input regularity
file positioning manipulator scientific
fixed nonstandard separator  setprecision

gene

ral noshowbase showbase
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Exercises

1.

2,

10.

11.

Write a program that reads a text file and converts its input to all lower
case, producing a new file.

Write a program that removes all vowels from a file (“disemvowels”). For
example, Once upon a time! becomes nc pn tm!. Surprisingly often, the
result is still readable; try it on your friends.

Write a program called multi_input.cpp that prompts the user to enter
several integers in any combination of octal, decimal, or hexadecimal,
using the 0 and 0x base suffixes; interprets the numbers correctly: and
converts them to decimal form. Then your program should output the
values in properly spaced columns like this:

0x4 hexadecimal convertsto 67 decimal
0123 octal convertsto 83 decimal
65 decimal convertsto 65 decimal

Write a program that reads strings and for each string outputs the char-
acter classification of each character, as defined by the character classifi-
cation functions presented in §11.6. Note that a character can have
several classifications (e.g., x is both a letter and an alphanumeric).
Write a program that replaces punctuation with whitespace. For exam-
ple, © - don’t use the as-if rule.” becomes “ dont use the asif rule ",
Modify the program from the previous exercise so that it replaces don’t
with do not, can’t with cannot, etc.; leaves hyphens within words intact
(so that we get “  do not use the as-if rule ”); and converts all characters
to lower case.

Use the program from the previous exercise to make a dictionary (as an
alternative to the approach in §11.7). Run the result on a mult-page text
file, look at the result, and see if you can improve the program to make a
better dictionary.

Split the binary I/O program from §11.3.2 into two: one program that
converts an ordinary text file into binary and one program that reads bi-
nary and converts it to text. Test these programs by comparing a text file
with what you get by converting it to binary and back.

Write a function vector<string> split(const string& s) that returns a
vector of whitespace-separated substrings from the argument s.

Write a function vector<string> split(const string& s, const string& w)
that returns a vector of whitespace-separated substrings from the argu-
ment s, where whitespace is defined as “ordinary whitespace” plus the
characters in w.

Reverse the order of characters in a text file. For example, asdighijkl be-
comes lkjhgfdsa. Hint: “file open modes.”
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12

Reverse the order of words (defined as whitespace-separated strings) in a
file. For example, Norwegian Blue parrot becomes parrot Blue Norwegian.
You are allowed to assume that all the strings from the file will fit into
memory at once.

13. Write a program that reads a text file and writes out how many charac-
ters of each character classification (§11.6) are in the file.

14. Write a program that reads a file of whitespace-separated numbers and
outputs a file of numbers using scientific format and precision 8 in four
fields of 20 characters per line.

15. Write a program to read a file of whitespace-separated numbers and out-
put them in order (lowest value first), one value per line. Write a value
only once, and if it occurs more than once write the count of its occur-
rences on its line. For example, “755 7 3 117 5” should give

3

5 3

7 2

17
Postscript

Input and output are messy because our human tastes and conventions have not
followed simple-to-state rules and straightforward mathematical laws. As program-
mers, we are rarely in a position to dictate that our users depart from their prefer-
ences, and when we are, we should typically be less arrogant than to think that we
can provide a simple alternative to conventions built up over time. Consequently,
we must expect, accept, and adapt to a certain messiness of input and output while
still trying to keep our programs as simple as possible — but no simpler.
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A Display Model

“The world was black and white then.
[It] didn’t turn color
until sometime in the 1930s.”

—Calvin’s dad

his chapter presents a display model (the output part of GUI),
T giving examples of use and fundamental notions such as
screen coordinates, lines, and color. Line, Lines, Polygons, Axis, and
Text arc examples of Shapes. A Shape is an object in memory that
we can display and manipulate on a screen. The next two chapters
will explore these classes further, with Chapter 13 focusing on their

implementation and Chapter 14 on design issues.
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12.1 Why graphics? 12.7 Using Shape primitives

12.2 A display model 12.7.1 Graphics headers and main
12.7.2 An almost blank window

12.3 A first example 12.7.3 Axis

12.4 Using a GUI library 12.7.4 Graphing a function

B 12.7.5 Polygons

12.5 Coordinates 12.7.6 Rectangles

12.6 Shapes 12.7.7 Fill
12.7.8 Text

12.7.9 Images
12.7.10 And much more

12.8 Getting this to run
12.8.1 Source files

12.1 Why graphics?

Why do we spend four chapters on graphics and one on GUIs (graphical user
interfaces)? After all, this is a book about programmmg. not a graphics book.
There is a huge number of interesting software topics that we don’t discuss, and
we can at best scratch the surface on the topic of graphics. So, “Why graphics?”
Basically, graphics is a subject that allows us to explore several important areas of
software design, programming, and programming language facilities:

Graphics are useful. There is much more to programming than graphics
and much more to software than code manipulated through a GUL
However, in many areas good graphics are either essential or very im-
portant. For example, we wouldn’t dream of studying scientific comput-
ing, data analysis, or just about any quantitative subject without the
ability to graph data. Chapter 15 gives simple (but general) facilities for
graphing data.

Graphics are fun. There are few areas of computing where the effect of a
piece of code 1s as immediately obvious and — when finally free of bugs

— as pleasing. We'd be tempted to play with graphics even if it wasn’t
useful!

Graphics provide lots of interesting code o read. Part of learning to program is
to read lots of code to get a feel for what good code is like. Similarly, the
way to become a good writer of English involves reading a lot of books,
articles, and quality newspapers. Because of the direct correspondence
between what we see on the screen and what we write in our programs,
simple graphics code is more readable than most kinds of code of similar
complexity. This chapter will prove that you can read graphics code after
a few minutes of introduction; Chapter 13 will demonstrate how you can
write it after another couple of hours.
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Graphics are a fertile source of design examples. It is actually hard to design and
implement a good graphics and GUI library. Graphics are a very rich
source of conerete and practical examples of design decisions and design
techniques. Some of the most useful techniques for designing classes, de-
signing functions, separating software into layers (of abstraction), and
constructing libraries can be illustrated with a relatively small amount of
graphics and GUI code.

Graphics provide a good introduction to what is commonly called object-oriented prro-
gramming and the language features that support it. Despite rumors to the con-
trary, object-oriented programming wasn’t invented to be able to do
graphics (see Chapter 22), but it was soon applied to that, and graphics
provide some of the most accessible examples of object-oriented designs.

Some of the key graphics concepts are nontrivial. So they are worth teaching,
rather than leaving it to your own initiative (and patience) to seek out in-
formation. If we did not show how graphics and GUI were done, you
might consider them “magic,” thus violating one of the fundamental
aims of this book.

12.2 A display model

The iostream library is oriented toward reading and writing streams of characters
as they might appear in a list of numeric values or a book. The only direct sup-
ports for the notion of graphical position are the newline and tab characters. You
can embed notions of color and two-dimensional positions, etc., in a one-
dimensional stream of characters. That's what layout (typesetting, “markup”)
languages such as Troff, Tex, Word, HT'TP, and XML (and their associated
graphical packages) do. For example:

<hr>

<h2>

Organization

</h2>

This list is organized in three parts:
<ul>

<li><b>Proposals</b>, numbered EPddd, . . .</li>
<li><b>lIssues</b>, numbered Elddd, . . .</li>
<li><b>Suggestions</b>, numbered ESddd, . . .</li>

</ul>
<p>We tryto...
<p>

This is a piece of HTML specifying a header (<h2>. .. </h2>) a list (<ul> . . .
</ul>) with list items (<il> . . . </il>) and a paragraph (<p>). We left out most of
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the actual text because it is irrelevant here. The point is that you can express lay-
out notions in plain text, but the connection between the characters written and
what appears on the screen is indirect, governed by a program that interprets
those “markup” commands. Such techniques are fundamentally simple and im-
mensely useful (just about everything you read has been produced using them),
but they also have their limitations.

In this chapter and the next four, we present an alternative: a notion of graph-
ics and of graphical user interfaces that is directly aimed at a computer sc