
Charles Petzold

Windows®

Programming

S I X T H E D I T I O N

Writing Windows 8 Apps
With C# and XAML

Consumer Preview eBook

www.it-ebooks.info

http://www.it-ebooks.info/

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7176-8

This document supports a preliminary release of a software product that may be changed substantially prior to
final commercial release. This document is provided for informational purposes only and Microsoft makes no
warranties, either express or implied, in this document. Information in this document, including URL and other
Internet website references, is subject to change without notice. The entire risk of the use or the results from
the use of this document remains with the user.

Unless otherwise noted, the companies, organizations, products, domain names, e-mail addresses, logos,
people, places, and events depicted in examples herein are fictitious. No association with any real company,
organization, product, domain name, e-mail address, logo, person, place, or event is intended or should be
inferred.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of Microsoft Corporation.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us
/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other
marks are property of their respective owners.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions, Developmental, and Project Editor: Devon Musgrave
Technical Reviewer: Marc Young
Cover: Twist Creative • Seattle

2

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction .. 6

The Versions of Windows 8 ... 6

The Focus of This Book .. 7

The Approach .. 8

My Setup .. 10

The Programming Windows Heritage... 10

Behind the Scenes .. 13

Errata & Book Support .. 13

We Want to Hear from You .. 14

Stay in Touch .. 14

Chapter 1: Markup and Code ... 15

The First Project ... 15

Graphical Greetings ... 21

Variations in Text .. 24

Media As Well .. 33

The Code Alternatives ... 34

Images in Code .. 38

Not Even a Page .. 40

Chapter 2: XAML Syntax .. 42

The Gradient Brush in Code ... 42

Property Element Syntax .. 45

Content Properties ... 48

The TextBlock Content Property ... 52

Sharing Brushes (and Other Resources) ... 54

Resources Are Shared .. 58

A Bit of Vector Graphics ... 59

Styles .. 68

A Taste of Data Binding ... 74

Chapter 3: Basic Event Handling ... 78

The Tapped Event ... 78

3

www.it-ebooks.info

http://www.it-ebooks.info/

Routed Event Handling .. 81

Overriding the Handled Setting .. 87

Input, Alignment, and Backgrounds ... 88

Size and Orientation Changes ... 91

Bindings to Run? ... 96

Timers and Animation ... 98

Chapter 4: Presentation with Panels... 106

The Border Element .. 106

Rectangle and Ellipse .. 110

The StackPanel ... 112

Horizontal Stacks .. 116

WhatSize with Bindings (and a Converter) ... 119

The ScrollViewer Solution .. 123

Layout Weirdness or Normalcy? ... 129

Making an E-Book .. 130

Fancier StackPanel Items ... 133

Creating Windows Runtime Libraries ... 138

The Wrap Alternative .. 140

The Canvas and Attached Properties ... 142

The Z-Index ... 147

Canvas Weirdness ... 148

Chapter 5: Control Interaction .. 150

The Control Difference .. 150

The Slider for Ranges ... 152

The Grid .. 156

Orientation and Aspect Ratios ... 163

Slider and the Formatted String Converter .. 166

Tooltips and Conversions .. 166

Sketching with Sliders ... 168

The Varieties of Button Experience .. 170

4

www.it-ebooks.info

http://www.it-ebooks.info/

Dependency Properties .. 179

RadioButton Tags .. 187

Keyboard Input and TextBox .. 194

Touch and Thumb .. 198

Chapter 6: WinRT and MVVM .. 205

MVVM (Brief and Simplified).. 205

Data Binding Notifications .. 206

Deriving from BindableBase ... 213

Bindings and TextBox .. 218

Buttons and MVVM ... 223

The DelegateCommand Class .. 225

Chapter 7: Building an Application .. 231

Commands, Options, and Settings .. 231

The Segoe UI Symbol Font .. 233

The Application Bar .. 239

Popups and Dialogs ... 241

Windows Runtime File I/O .. 244

Await and Async .. 251

Calling Your Own Async Methods .. 253

Controls for XamlCruncher ... 255

Application Settings and Isolated Storage.. 271

The XamlCruncher Page .. 275

Parsing the XAML ... 279

XAML Files In and Out .. 282

The Settings Dialog .. 286

Beyond the Windows Runtime .. 291

Author Bio .. 293

5

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction
This book—the 6th edition of Programming Windows—is a guide to programming applications that run
under Microsoft Windows 8. At the time of this writing (May 1, 2012), Windows 8 is not yet complete
and neither is this book. What you are reading right now is a preview ebook version of the book. This
preview version is based on the Consumer Preview of Windows 8, which was released on February 29,
2012. Microsoft has announced that the next preview of Windows 8—called the Release Preview—will
be available in June. The second preview ebook version of this book, which will update the seven
chapters included here and add more chapters, will probably be available in July. If you are reading this
in August 2012 or later, you are very likely not reading the most recent version.

To use this book, you’ll need to download and install the Windows 8 Consumer Preview, as well as
Microsoft Visual Studio 11 Express Beta for Windows 8. Both downloads are accessible from the
Windows 8 developer portal:

http://msdn.microsoft.com/windows/apps

To install Visual Studio, follow the “Download the tools and SDK” link on that page.

The Versions of Windows 8

For the most part, Windows 8 is intended to run on the same class of personal computers as Windows
7, which are machines built around the 32-bit or 64-bit Intel x86 microprocessor family. When
Windows 8 is released later this year, it will be available in a regular edition called simply Windows 8
and also a Windows 8 Pro edition with additional features that appeal to tech enthusiasts and
professionals.

Both Windows 8 and Windows 8 Pro will run two types of programs:

• Desktop applications

• What are currently referred to as “Metro style” applications

Desktop applications are traditional Windows programs that currently run under Windows 7 and that
interact with the operating system through the Windows application programming interface, known
familiarly as the Win32 API. Windows 8 includes a familiar Windows desktop screen for running these
applications.

The applications known as “Metro style” are new with Windows 8. These applications incorporate
the “Metro” design paradigm developed at Microsoft, so named because it’s been inspired by public
signage common in metropolitan areas. Metro design is characterized by the use of unadorned fonts,
clean open styling, and a tile-based interface.

6

www.it-ebooks.info

http://msdn.microsoft.com/windows/apps
http://www.it-ebooks.info/

Internally and externally, Metro style applications represent a radical break with traditional
Windows. The programs generally run in a full-screen mode—although two programs can share the
screen in a “snap” mode—and many of these programs will probably be optimized for touch and tablet
use. Metro style applications will be purchasable and installable only from an application store run by
Microsoft.

In addition to the versions of Windows 8 that run on x86 processors, there will also be a version of
Windows 8 that runs on ARM processors, most likely in low-cost smartphones and tablets. This version
of Windows 8 will be called Windows RT, and it will come preinstalled on these machines. Aside from
some preinstalled desktop applications, Windows RT will run Metro style applications only.

Many developers were first introduced to Metro design principles with Windows Phone 7, so it’s
interesting to see how Microsoft’s thinking concerning large and small computers has evolved. In years
gone by, Microsoft attempted to adapt the design of the traditional Windows desktop to smaller
devices such as hand-held computers and phones. Now a user-interface design for the phone is being
moved up to tablets and the desktop.

One important characteristic of this new environment is an emphasis on multitouch, which has
dramatically changed the relationship between human and computer. In fact, the term "multitouch" is
now outmoded because virtually all new touch devices respond to multiple fingers. The simple word
"touch" is now sufficient. Part of the new programming interface for Metro style applications treats
touch, the mouse, and a stylus in a unified manner so that applications are automatically usable with all
three input devices.

The Focus of This Book

This book focuses exclusively on writing Metro style applications. Plenty of other books already exist
for writing desktop applications, including the 5th edition of Programming Windows.

For writing Metro style applications, a new object-oriented API has been introduced called the
Windows Runtime or WinRT (not to be confused with the version of Windows 8 that runs on ARM
processors, called Windows RT). Internally, the Windows Runtime is based on COM (Component Object
Model) with interfaces exposed through metadata files with the extension .winmd located in the
/Windows/System32/WinMetadata directory.

From the application programmer’s perspective, the Windows Runtime resembles Silverlight,
although internally it is not a managed API. For Silverlight programmers, perhaps the most immediate
difference involves namespace names: the Silverlight namespaces beginning with System.Windows
have been replaced with namespaces beginning with Windows.UI.Xaml.

Most Metro style applications will be built from both code and markup, either the industry-standard
HyperText Markup Language (HTML) or Microsoft’s eXtensible Application Markup Language (XAML).
One advantage of splitting an application between code and markup is potentially splitting the

7

www.it-ebooks.info

http://www.it-ebooks.info/

development of the application between programmers and designers.

Currently there are three main options for writing Metro style applications, each of which involves a
programming language and a markup language:

• C++ with XAML

• C# or Visual Basic with XAML

• JavaScript with HTML5

In each case, the Windows Runtime is supplemented by another programming interface appropriate
for that language. Although you can’t mix languages within a single application, you can create
language-independent libraries with their own .winmd files.

The C++ programmer uses a dialect of C++ called C++ with Component Extensions, or C++/CX,
that allows the language to make better use of WinRT. The C++ programmer also has access to a
subset of the Win32 and COM APIs, as well as DirectX.

Programmers who use the managed languages C# or Visual Basic .NET will find WinRT to be very
familiar territory. Metro style applications written in these languages can’t access Win32, COM, or
DirectX APIs, but a stripped-down version of .NET is available for performing low-level tasks.

For JavaScript, the Windows Runtime is supplemented by a Windows Library for JavaScript, or
WinJS, which provides a number of system-level features for Metro style apps written in JavaScript.

After much consideration (and some anguish), I decided that this book would use the C# and XAML
option exclusively. For at least a decade I have been convinced of the advantages of managed
languages for development and debugging, and for me C# is the language that has the closest fit to
the Windows Runtime. I hope C++ programmers find C# code easy enough to read to derive some
benefit from this book.

I also believe that a book focusing on one language option is more valuable than one that tries for
equal coverage among several. There will undoubtedly be plenty of other Windows 8 books that show
how to write Metro style applications using the other options.

The Approach

In writing this book, I’ve made a couple assumptions about you, the reader. I assume that you are
comfortable with C#. If not, you might want to supplement this book with a C# tutorial. If you are
coming to C# from a C or C++ background, my free online book .NET Book Zero: What the C or C++
Programmer Needs to Know About C# and the .NET Framework might be adequate. This book is
available in PDF or XPS format at www.charlespetzold.com/dotnet. (I hope to update this book later
this year to make it more specific to Windows 8.) I also assume that you know the rudimentary syntax
of XML (eXtensible Markup Language) because XAML is based on XML.

8

www.it-ebooks.info

http://www.charlespetzold.com/dotnet
http://www.it-ebooks.info/

This is an API book rather than a tools book. The only programming tools I use in this book are
Microsoft Visual Studio 11 Express Beta for Windows 8 (which I’ll generally simply refer to as Visual
Studio), and XAML Cruncher, which is a program that I’ve written and which is featured in Chapter 7.

Markup languages are generally much more toolable than programming code. Indeed, some
programmers even believe that markup such as XAML should be entirely machine-generated. Visual
Studio has a built-in interactive XAML designer that involves dragging controls to a page, and many
programmers have come to know and love Microsoft Expression Blend for generating complex XAML
for their applications.

While such tools are great for experienced programmers, I think that the programmer new to the
environment is better served by learning how to write XAML by hand. That’s how I’ll approach XAML in
this book. The XAML Cruncher tool featured in Chapter 7 is very much in keeping with this philosophy:
it lets you type in XAML and interactively see the objects that are generated, but it does not try to write
XAML for you.

On the other hand, some programmers become so skilled at working with XAML that they forget
how to create and initialize certain objects in code! I think both skills are important, and consequently I
often show how to do similar tasks in both code and markup.

Source Code Learning a new API is similar to learning how to play basketball or the oboe: You don’t
get the full benefit by watching someone else do it. Your own fingers must get involved. The source
code in these pages is downloadable from the same web page where you purchased the book via the
“Companion Content” link on that page, but you’ll learn better by actually typing in the code yourself.

As I began working on this book, I contemplated different approaches to how a tutorial about the
Windows Runtime can be structured. One approach is to start with rather low-level graphics and user
input, demonstrate how controls can be built, and then describe the controls that have already been
built for you.

I have instead chosen to focus initially on those skills I think are most important for most
mainstream programmers: assembling the predefined controls in an application and linking them with
code and data. This is what I intend to be the focus of the book’s Part I, “Fundamentals.” The first 7
chapters out of the 10 (or so) that will eventually make up Part I are included in this first preview
version. One of my goals in Part I is to make comprehensible all the code and markup that Visual
Studio generates in the various project templates it supports, so the remaining chapters in Part I
obviously need to cover templates, collection controls (and data), and navigation.

In the current plan for the book, the book will get more interesting as it gets longer: Part II,
“Infrastructure,” will cover more low-level tasks, such as touch, files, networking, security, globalization,
and integrating with the Windows 8 charms. Part III, “Specialities,” will tackle more esoteric topics, such
as working with the sensors (GPS and orientation), vector graphics, bitmap graphics, media, text,
printing, and obtaining input from the stylus and handwriting recognizer.

9

www.it-ebooks.info

http://www.it-ebooks.info/

My Setup

For writing this book, I used the special version of the Samsung 700T tablet that was distributed to
attendees of the Microsoft Build Conference in September 2011. This machine has an Intel Core i5
processor running at 1.6 GHz with 4 GB of RAM and a 64-GB hard drive. The screen (from which all the
screenshots in the book were taken) has 8 touch points and a resolution of 1366 × 768 pixels, which is
the lowest resolution for which snap views are supported.

Although the machines were distributed at Build with the Windows 8 Developer Preview installed, I
replaced that with a complete install of the Consumer Preview (build 8250) in March 2012.

 Except when testing orientation or sensors, I generally used the tablet in the docking port with an
external 1920×1080 HDMI monitor, an external Microsoft Natural Ergonomic Keyboard 4000, and a
Microsoft Comfort Mouse 300.

Running Visual Studio on the large screen and the resultant applications on the tablet turned out to
be a fine development environment, particularly compared with the setup I used to write the first
edition of Programming Windows.

But that was 25 years ago.

The Programming Windows Heritage

I still get a thrill when I look at my very first book contract:

Perhaps the most amusing part of this contract occurs further down the first page:

10

www.it-ebooks.info

http://www.it-ebooks.info/

The reference to “typescript” means that the pages must as least resemble something that came out of
a typewriter. A double-spaced manuscript page with a fixed-pitch font has about 250 words, as the
description indicates. A book page is more in the region of 400 words, so Microsoft Press obviously
wasn’t expecting a very long book.

For writing the book I used an IBM PC/AT with an 80286 microprocessor running at 8 MHz with 512
KB of memory and two 30 MB hard drives. The display was an IBM Enhanced Graphics Adapter, with a
maximum resolution of 640 × 350 with 16 simultaneous colors. I wrote some of the early chapters
using Windows 1 (introduced over a year earlier in November 1985), but beta versions of Windows 2
soon became available.

In those years, editing and compiling a Windows program occurred outside of Windows in MS-DOS.
For editing source code, I used WordStar 3.3, the same word processor I used for writing the chapters.
From the MS-DOS command line, you would run the Microsoft C compiler and then launch Windows
with your program to test it out. It was necessary to exit Windows and return to MS-DOS for the next
edit-compile-run cycle.

As I got deeper into writing the book, much of the rest of my life faded away. I stayed up later and
later into the night. I didn't have a television at the time, but the local public radio station, WNYC-FM,
was on almost constantly with classical music and other programming. For a while, I managed to shift
my day to such a degree that I went to bed after Morning Edition but awoke in time for All Things
Considered.

As the contract stipulated, I sent chapters to Microsoft Press on diskette and paper. (We all had
email, of course, but email didn’t support attachments at the time.) The edited chapters came back to
me by mail decorated with proofreading marks and numerous sticky notes. I remember a page on
which someone had drawn a thermometer indicating the increasing number of pages I was turning in
with the caption “Temperature’s Rising!”

Along the way, the focus of the book changed. Writing a book for “Programmers and Other
Advanced Users” proved to be a flawed concept. I don’t know who came up with the title
Programming Windows.

11

www.it-ebooks.info

http://www.it-ebooks.info/

The contract had a completion date of April, but I didn’t finish until August and the book wasn’t
published until early 1988. The final page total was about 850. If these were normal book pages (that
is, without program listings or diagrams) the word count would be about 400,000 rather than the
100,000 indicated in the contract.

The cover of the first edition of Programming Windows described it as “The Microsoft Guide to
Programming for the MS-DOS Presentation Manager: Windows 2.0 and Windows/386.” The reference
to Presentation Manager reminds us of the days when Windows and the OS/2 Presentation Manager
were supposed to peacefully coexist as similar environments for two different operating systems.

The first edition of Programming Windows went pretty much unnoticed by the programming
community. When MS-DOS programmers gradually realized they needed to learn about the brave new
environment of Windows, it was mostly the 2nd edition (published in 1990 and focusing on Windows 3)
and the 3rd edition (1992, Windows 3.1) that helped out.

When the Windows API graduated from 16-bit to 32-bit, Programming Windows responded with
the 4th edition (1996, Windows 95) and 5th edition (1998, Windows 98). Although the 5th edition is still
in print, the email I receive from current readers indicates that the book is most popular in India and
China.

From the 1st edition to the 5th, I used the C programming language. Sometime between the 3rd and
4th editions, my good friend Jeff Prosise said that he wanted to write Programming Windows with MFC,
and that was fine by me. I didn’t much care for the Microsoft Foundation Classes, which seemed to me
a fairly light wrapper on the Windows API, and I wasn’t that thrilled with C++ either.

As the years went by, Programming Windows acquired the reputation of being the book for
programmers who needed to get close to the metal without any extraneous obstacles between their
program code and the operating system.

But to me, the early editions of Programming Windows were nothing of the sort. In those days,
getting close to the metal involved coding in assembly language, writing character output directly into
video display memory, and resorting to MS-DOS only for file I/O. In contrast, programming for
Windows involved a high-level language, completely unaccelerated graphics, and accessing hardware
only through a heavy layer of APIs and device drivers.

This switch from MS-DOS to Windows represented a deliberate forfeit of speed and efficiency in
return for other advantages. But what advantages? Many veteran programmers just couldn't see the
point. Graphics? Pictures? Color? Fancy fonts? A mouse? That’s not what computers are all about! The
skeptics called it the WIMP (window-icon-menu-pointer) interface, which was not exactly a subtle
implication about the people who chose to use such an environment or code for it.

Wait long enough, and a high-level language becomes a low-level language and multiple layers of
interface seemingly shrink down (at least in lingo) to a native API. Some C and C++ programmers of
today reject a managed language like C# on grounds of efficiency, and Windows has even sparked
some energetic controversy once again. Windows 8 is easily the most revolutionary updating to

12

www.it-ebooks.info

http://shop.oreilly.com/product/9781572319950.do
http://www.it-ebooks.info/

Windows since its very first release in 1985, but many old-time Windows users are wondering about
the wisdom of bringing a touch-based interface tailored for smartphones and tablets to the
mainstream desktop.

I suppose that Programming Windows could only be persuaded to emerge from semi-retirement
with an exciting and controversial new user interface on Windows and an API and programming
language suited to its modern aspirations.

Behind the Scenes

This book exists only because Ben Ryan and Devon Musgrave at Microsoft Press developed an
interesting way to release early content to the developer community and get advances sales of the
final book simultaneously. We are all quite eager to see the results of this experiment.

Part of the job duties of Devon and my technical reviewer Marc Young is to protect me from
embarrassment by identifying blunders in my prose and code, and I thank them both for finding quite
a few. Thanks also to Andrew Whitechapel for giving me feedback on the C++ sample code.

The errors that remain in these chapters are my own fault, of course. I’ll try to identify the worst
ones on my website at www.charlespetzold.com/pw6. And also give me feedback about pacing and the
order that I cover material in these early chapters with an email to cp@charlespetzold.com.

Finally, I want to thank my wife Deirdre Sinnott for love and support and the necessary adjustments
to our lives that writing a book inevitably entails.

Charles Petzold
New York City
May 1, 2012

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion content. Any errors
that have been reported since this book was published are listed on our Microsoft Press site at
oreilly.com. Search for the book at http://microsoftpress.oreilly.com, and then click the “View/Submit
Errata” link. If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses above.

13

www.it-ebooks.info

http://www.charlespetzold.com/pw6
mailto:cp@charlespetzold.com
http://microsoftpress.oreilly.com/
mailto:mspinput@microsoft.com
http://www.it-ebooks.info/

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.
Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for your
input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

14

www.it-ebooks.info

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://www.it-ebooks.info/

Chapter 1

Markup and Code
Ever since the publication of Brian Kernighan and Dennis Ritchie's classic book The C Programming
Language (Prentice Hall, 1978), it has been customary for programming tutorials to begin with a simple
program that displays a short text string such as “hello, world.” Let’s create a few similar programs for
Windows 8, and let's do it in what’s referred to as “Metro style.”

I’ll assume you have the Windows 8 Consumer Preview installed with the development tools and
software development kit, specifically Microsoft Visual Studio 11 Express Beta for Windows 8, which
hereafter I’ll simply refer to as Visual Studio.

Launch Visual Studio from the Windows 8 start screen, and let's get coding.

The First Project

On the opening screen in Visual Studio, the Get Started tab should already be selected. Over at the
right you'll see a New Project option. Click that item, or select New Project from the File menu.

When the New Project dialog box comes up, select Templates in the left panel, then Visual C#, and
Windows Metro Style. From the list of available templates in the central area, select Blank Application.
Towards the bottom of the dialog box, type a project name in the Name field: Hello, for example. Let
the Solution Name be the same. Use the Browse button to select a directory location for this program,
and click OK. (I’ll generally use mouse terminology such as “click” when referring to Visual Studio, but
I’ll switch to touch terminology such as “tap” for the applications you’ll be creating. A version of Visual
Studio that is optimized for touch is probably at least a few years away.)

Visual Studio creates a solution named Hello and a project within that solution named Hello, as well
as a bunch of files in the Hello project. These files are listed in the Solution Explorer on the far right of
the Visual Studio screen. Every Visual Studio solution has at least one project, but a solution might
contain additional application projects and library projects.

The list of files for this project includes one called BlankPage.xaml, and if you click the little
arrowhead next to that file, you’ll see a file named BlankPage.xaml.cs indented underneath
BlankPage.xaml:

15

www.it-ebooks.info

http://www.it-ebooks.info/

You can view either of these two files by double-clicking the file name or by right-clicking the file
name and choosing Open.

The BlankPage.xaml and BlankPage.xaml.cs files are linked in the Solution Explorer because they
both contribute to the definition of a class named BlankPage. For a simple program like Hello, this
BlankPage class defines all the visuals and user interface for the application. As the class name implies,
the visuals are initially "blank," but they won't be for long.

Despite its funny file name, BlankPage.xaml.cs definitely has a .cs extension, which stands for "C
Sharp." Stripped of all its comments, the skeleton BlankPage.xaml.cs file contains C# code that looks
like this:

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using Windows.Foundation;

using Windows.Foundation.Collections;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

using Windows.UI.Xaml.Data;

using Windows.UI.Xaml.Input;

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Navigation;

namespace Hello

{

 public sealed partial class BlankPage : Page

 {

 public BlankPage()

 {

 this.InitializeComponent();

 }

 protected override void OnNavigatedTo(NavigationEventArgs e)

 {

 }

 }

}

16

www.it-ebooks.info

http://www.it-ebooks.info/

The file is dominated by using directives for all the namespaces that you are anticipated to need.
You'll discover that most BlankPage.xaml.cs files don't require all these namespace names and many
others require some additional namespaces.

These namespaces fall into two general categories based on the first word in the name:

• System.* .NET for Metro style applications

• Windows.* Windows Runtime (or WinRT)

As suggested by the list of using directives, namespaces that begin with Windows.UI.Xaml play a major
role in the Windows Runtime.

Following the using directives, this BlankPage.xaml.cs file defines a namespace named Hello (the
same as the project name) and a class named BlankPage that derives from Page, a class that is part of
the Windows Runtime.

The documentation of the Windows 8 API is organized by namespace, so if you want to locate the
documentation of the Page class, knowing the namespace where it’s defined is useful. Let the mouse
pointer hover over the name Page in the BlankPage.xaml.cs source code, and you’ll discover that Page
is in the Windows.UI.Xaml.Controls namespace.

The constructor of the BlankPage class calls an InitializeComponent method (which I'll discuss
shortly), and the class also contains an override of a method named OnNavigatedTo. Metro style
applications often have a page-navigation structure somewhat like a website, and hence they often
consist of multiple classes that derive from Page. For navigational purposes, Page defines virtual
methods named OnNavigatingFrom, OnNavigatedFrom, and OnNavigatedTo. The override of
OnNavigatedTo is a convenient place to perform initialization when the page becomes active. But
that's for later; most of the programs in the early chapters of this book will have only one page. I’ll tend
to refer to an application’s “page” more than its “window.” There is still a window underneath the
application, but it doesn’t play nearly as large a role as the page.

Notice the partial keyword on the BlankPage class definition. This keyword usually means that the
class definition is continued in another C# source code file. In reality (as you’ll see), that’s exactly the
case. Conceptually, however, the missing part of the BlankPage class is not another C# code file but the
BlankPage.xaml file:

<Page

 x:Class="Hello.BlankPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Hello"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 </Grid>

17

www.it-ebooks.info

http://www.it-ebooks.info/

</Page>

This file consists of markup conforming to the standard known as the eXtensible Application Markup
Language, or XAML, pronounced “zammel.” As the name implies, XAML is based on eXtensible Markup
Language, or XML.

Generally, you'll use the XAML file for defining all the visual elements of the page, while the C# file
handles jobs that can't be performed in markup, such as number crunching and responding to user
input. The C# file is often referred to as the "code-behind" file for the corresponding XAML file.

The root element of this XAML file is Page, which you already know is a class in the Windows
Runtime. But notice the x:Class attribute:

<Page

 x:Class="Hello.BlankPage"

The x:Class attribute can appear only on the root element in a XAML file. This particular x:Class
attribute translates as “a class BlankPage in the Hello namespace is defined as deriving from Page.” It
means the same thing as the class definition in the C# file!

The x:Class attribute is followed by a bunch of XML namespace declarations. As usual, these URIs
don’t actually reference interesting webpages but instead serve as unique identifiers maintained by
particular companies or organizations. The first two are the most important:

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

The 2006 date harkens back to Microsoft's introduction of the Windows Presentation Foundation
and the debut of XAML. WPF was part of the .NET Framework 3.0, which prior to its release was known
as WinFX, hence the “winfx” in the URI. To a certain extent, XAML files are compatible between WPF,
Silverlight, Windows Phone, and the Windows Runtime, but only if they use classes, properties, and
features common to all the environments.

The first namespace declaration with no prefix refers to public classes, structures, and enumerations
defined in the Windows Runtime, which includes all the controls and everything else that can appear in
a XAML file, including the Page and Grid classes in this particular file. The word "presentation" in this
URI refers to a visual user interface, and that distinguishes it from other types of applications that can
use XAML. For example, if you were using XAML for the Windows Workflow Foundation (WF), you'd
use a default namespace URI ending with the word "workflow".

The second namespace declaration associates an “x” prefix with elements and attributes that are
intrinsic to XAML itself. Only nine of these are applicable in Windows Runtime applications, and
obviously one of the most important is the x:Class attribute.

The third namespace declaration is interesting:

xmlns:local="using:Hello"

This associates an XML prefix of local with the Hello namespace of this particular application. You

18

www.it-ebooks.info

http://www.it-ebooks.info/

might create custom classes in your application, and you'd use the local prefix to reference them in
XAML. If you need to reference classes in code libraries, you’ll define additional XML namespace
declarations that refer to the assembly name and namespace name of these libraries. You’ll see how to
do this in chapters ahead.

The remaining namespace declarations are for Microsoft Expression Blend. Expression Blend might
insert special markup of its own that should be ignored by the Visual Studio compiler, so that’s the
reason for the Ignorable attribute, which requires yet another namespace declaration. For any program
in this book, these last three lines of the Page root element can be deleted.

The Page element has a child element named Grid, which is another class defined in the
Windows.UI.Xaml.Controls namespace. The Grid will become extremely familiar. It is sometimes referred
to as a "container" because it can contain other visual objects, but it’s more formally classified as a
"panel" because it derives from the Panel class. Classes that derive from Panel play a very important
role in layout in Metro style applications. In the BlankPage.xaml file that Visual Studio creates for you,
the Grid is assigned a background color (actually a Brush object) based on a predefined identifier using
a syntax I'll discuss in Chapter 2, “XAML Syntax.”

Generally, you’ll divide a Grid into rows and columns to define individual cells (as I’ll demonstrate in
Chapter 5, “Control Interaction”), somewhat like a much improved version of an HTML table. A Grid
without rows and columns is sometimes called a "single-cell Grid" and is still quite useful.

To display up to a paragraph of text in the Windows Runtime, you’ll generally use a TextBlock
(another class defined in the Windows.UI.Xaml.Controls namespace), so let’s put a TextBlock in the
single-cell Grid and assign a bunch of attributes. These attributes are actually properties defined by the
TextBlock class:

Project: Hello | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Hello, Windows 8!"

 FontFamily="Times New Roman"

 FontSize="96"

 FontStyle="Italic"

 Foreground="Yellow"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Note In this book, whenever a block of code or markup is preceded by a heading like this one, you'll
find the code among this book's downloadable companion content. Generally I’ll just show an excerpt
of the total file, but with enough context so you know exactly where it is.

The order of these attributes doesn't matter, and of course the indentation doesn’t matter, and all
of them except the Text attribute can be skipped if you're in a hurry. As you type you'll notice that
Visual Studio's Intellisense feature suggests attribute names and possible values for you. Often you can
just select the one you want. As you finish typing the TextBlock, Visual Studio's design view gives you a

19

www.it-ebooks.info

http://www.it-ebooks.info/

preview of the page’s appearance.

You can also skip all the typing and simply drag a TextBlock from the Visual Studio Toolbox and
then set the properties in a table, but I won’t be doing that in this book. I'll instead describe the
creation of these programs as if you and I actually type in the code and markup just like real
programmers.

Press F5 to compile and run this program, or select Start Debugging from the Debug menu. Even
for simple programs like this, it’s best to run the program under the Visual Studio debugger. If all goes
well, this is what you’ll see:

The HorizontalAlignment and VerticalAlignment attributes on the TextBlock have caused the text to

be centered, obviously without the need for you the programmer to explicitly determine the size of the
video display and the size of the rendered text. You can alternatively set HorizontalAlignment to Left or
Right, and VerticalAlignment to Top or Bottom to position the TextBlock in one of nine places in the
Grid. As you’ll see in Chapter 4, “Presentation with Panels,” the Windows Runtime supports precise pixel
placement of visual objects, but usually you’ll want to rely on the built-in layout features.

The TextBlock has Width and Height properties, but generally you don’t need to bother setting
those. In fact, if you set the Width and Height properties on this particular TextBlock, you might end up
cropping part of the text or interfering with the centering of the text on the page. The TextBlock knows
better than you how large it should be.

You might be running this program on a device that responds to orientation changes, such as a
tablet. If so, you’ll notice that the page content dynamically conforms to the change in orientation and
aspect ratio, apparently without any interaction from the program. The Grid, the TextBlock, and the
Windows 8 layout system are doing most of the work.

To terminate the Hello program, press Shift+F5 in Visual Studio, or select Stop Debugging from the

20

www.it-ebooks.info

http://www.it-ebooks.info/

Debug menu. You’ll notice that the program hasn’t merely been executed, but has actually been
deployed to Windows 8 and is now executable from the start screen. The icon is not very pretty, but
the program’s icons are all stored in the Assets directory of the project so you can spruce them up if
you want. You can run the program again outside of the Visual Studio debugger right from the
Windows 8 start screen.

Graphical Greetings

Traditional "hello" programs display a greeting in text, but that's not the only way to do it. The
HelloImage project accesses a bitmap from my website using a tiny piece of XAML:

Project: HelloImage | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg" />

</Grid>

The Image element is defined in Windows.UI.Xaml.Controls namespace, and it’s the standard way to
display bitmaps in a Windows Runtime program. By default, the bitmap is stretched to fit the space
available for it while respecting the original aspect ratio:

If you make the page smaller—perhaps by changing the orientation or invoking a snap view—the
image will change size to accommodate the new size of the page.

You can override the default display of this bitmap by using the Stretch property defined by Image.
The default value is the enumeration member Stretch.Uniform. Try setting it to Fill:

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"

21

www.it-ebooks.info

http://www.it-ebooks.info/

 Stretch="Fill" />

</Grid>

Now the aspect ratio is ignored and the bitmap fills the container:

Set the Stretch property to None to display the image in its pixel dimensions (320 by 400):

You can control where it appears on the page by using the same HorizontalAlignment and
VerticalAlignment properties you use with TextBlock.

The fourth option for the Stretch property is UniformToFill, which respects the aspect ratio but fills
the container regardless. It achieves this feat by the only way possible: clipping the image. Which part

22

www.it-ebooks.info

http://www.it-ebooks.info/

of the image that gets clipped depends on the HorizontalAlignment and VerticalAlignment properties.

Accessing bitmaps over the Internet is dependent on a network connection and even then might
require some time. A better guarantee of having an image immediately available is to bind the bitmap
into the application itself.

You can create simple bitmaps right in Windows Paint. Let’s run Paint and use the File Properties
option to set a size of 480 by 320 (for example). Using a mouse, finger, or stylus, you can create your
own personalized greeting:

The Windows Runtime supports the popular BMP, JPEG, PNG, and GIF formats, as well as a couple less
common formats. For images such as the one above, PNG is common, so save it with a name like
Greeting.png.

Now create a new project: HelloLocalImage, for example. It’s common to store bitmaps used by a
project in a directory named Images. In the Solution Explorer, right-click the project name and choose
Add and New Folder. (Or, if the project is selected in the Solution Explorer, pick New Folder from the
Project menu.) Give the folder a name such as Images.

Now right-click the Images folder and choose Add and Existing Item. Navigate to the Greeting.png
file you saved and click the Add button. Once the file is added to the project, you’ll want to right-click
the Greeting.png file name and select Properties. In the Properties panel, make sure the Build Action is
set to Content. You want this image to become part of the content of the application.

The XAML file that references this image looks very much like one for accessing an image over the
web:

23

www.it-ebooks.info

http://www.it-ebooks.info/

Project: HelloLocalImage | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Image Source="Images/Greeting.png"

 Stretch="None" />

</Grid>

Notice that the Source property is set to the folder and file name. Here’s how it looks:

Sometimes programmers prefer giving a name of Assets to the folder that stores application

bitmaps. You’ll notice that the standard project already contains an Assets folder containing program
icons. You can use that same folder for your other images instead of creating a separate folder.

Variations in Text

You might be tempted to refer to the Grid, TextBlock, and Image as "controls," perhaps based on the
knowledge that these classes are in the Windows.UI.Xaml.Controls namespace. Strictly speaking,
however, they are not controls. The Windows Runtime does define a class named Control but these
three classes do not descend from Control. Here's a tiny piece of the Windows Runtime class hierarchy
showing the classes encountered so far:

Object
 DependencyObject
 UIElement
 FrameworkElement
 TextBlock
 Image
 Panel

24

www.it-ebooks.info

http://www.it-ebooks.info/

 Grid
 Control
 UserControl
 Page

Page derives from Control but TextBlock and Image do not. TextBlock and Image instead derive from
UIElement and FrameworkElement. For that reason, TextBlock and Image are more correctly referred to
as "elements," the same word often used to describe items that appear in XML files.

The distinction between an element and a control is not always obvious. Visually, controls are built
from elements, and the visual appearance of the control can be customizable through a template. But
the distinction is useful nonetheless. A Grid is also an element, but it's more often referred to as a
“panel,” and that (as you'll see) is a very useful distinction.

Try this: In the original Hello program move the Foreground attribute and all the font-related
attributes from the TextBlock element to the Page. The entire BlankPage.xaml file now looks like this:

<Page

 x:Class="Hello.BlankPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Hello"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d"

 FontFamily="Times New Roman"

 FontSize="96"

 FontStyle="Italic"

 Foreground="Yellow">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Hello, Windows 8!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 </Grid>

</Page>

You'll discover that the result is exactly the same. When these attributes are set on the Page element,
they apply to everything on that page.

Now try setting the Foreground property of the TextBlock to red:

<TextBlock Text="Hello, Windows 8!"

 Foreground="Red"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

The local red setting overrides the yellow setting on the Page.

The Page, Grid, and TextBlock form what is called a “visual tree” of elements, except that in the
XAML file the tree is upside-down. The Page is the trunk of the tree, and its descendants (Grid and

25

www.it-ebooks.info

http://www.it-ebooks.info/

TextBlock) form branches. You might imagine that the values of the font properties and Foreground
property defined on the Page are propagated down through the visual tree from parent to child. This is
true except for a little peculiarity: These properties don't exist in Grid. These properties are defined by
TextBlock and separately defined by Control, which means that the properties manage to propagate
from the Page to the TextBlock despite an intervening element that has very different DNA.

If you begin examining the documentation of these properties in the TextBlock or Page class, you'll
discover that they seem to appear twice under somewhat different names. In the documentation of
TextBlock you’ll see a FontSize property of type double:

public double FontSize { set; get; }

You’ll also see a property named FontSizeProperty of type DependencyProperty:

public static DependencyProperty FontSizeProperty { get; }

Notice that this FontSizeProperty property is get-only and static as well.

FontSizeProperty is of type DependencyProperty, and a class with a similar
name—DependencyObject—has a very prominent place in the class hierarchy I just showed you. These
two types are related: A class that derives from DependencyObject often declares static get-only
properties of type DependencyProperty. Both DependencyObject and DependencyProperty are defined
in the Windows.UI.Xaml namespace, suggesting how fundamental they are to the whole system.

In a Metro style application, properties can be set in a variety of ways. For example, you’ve already
seen that properties can be set directly on an object or inherited through the visual tree. As you’ll see
in Chapter 2, properties might also be set from a Style definition. In a future chapter you’ll see
properties set from animations. The DependencyObject and DependencyProperty classes are part of a
system that help maintain order in such an environment by establishing priorities for the different ways
in which the property might be set. I don't want to go too deeply into the mechanism just yet; it’s
something you’ll experience more intimately when you begin defining your own controls.

The FontSize property is sometimes said to be "backed by" the dependency property named
FontSizeProperty. But sometimes a semantic shortcut is used and FontSize itself is referred to as a
dependency property. Usually this is not confusing.

Many of the properties defined by UIElement and its descendent classes are dependency properties,
but only a few of these properties are propagated through the visual tree. Foreground and all the
font-related properties are, as well as a few others that I'll be sure to call your attention to as we
encounter them. Dependency properties also have an intrinsic default value. If you remove all the
TextBlock and Page attributes except Text, you'll get white text displayed with an 11-pixel system font
in the upper-left corner of the page.

The FontSize property is in units of pixels and refers to the design height of a font. This design
height includes space for descenders and diacritical marks. As you might know, font sizes are often
specified in points, which in electronic typography are units of 1/72 inch. The equivalence between
pixels and points requires knowing the resolution of the video display in dots-per-inch (DPI). Without

26

www.it-ebooks.info

http://www.it-ebooks.info/

that information, it's generally assumed that video displays have a resolution of 96 DPI, so a 96-pixel
font is thus a 72-point font (one-inch high) and the default 11-pixel font is an 8¼-point font.

The user of Windows has the option of setting a desired screen resolution. A Metro style application
can obtain the user setting from the DisplayProperties class, which pretty much dominates the
Windows.Graphics.Display namespace. For most purposes, however, assuming a resolution of 96 DPI is
fine, and you’ll use this same assumption for the printer. In accordance with this assumption, I tend to
use pixel dimensions that represent simple fractions of inches: 48 (1/2"), 24 (1/4"), 12 (1/8"), and 6
(1/16").

You've seen that if you remove the Foreground attribute, you get white text on a dark background.
The background is not exactly black, but the predefined ApplicationPageBackgroundBrush identifier
that the Grid references is close to it.

The Hello project also includes two other files that come in a pair: App.xaml and App.xaml.cs
together define a class named App that derives from Application. Although an application can have
multiple Page derivatives, it has only one Application derivative. This App class is responsible for
settings or activities that affect the application as a whole.

Try this: In the root element of the App.xaml file, set the attribute RequestedTheme to Light.

<Application

 x:Class="Hello.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:Hello"

 RequestedTheme="Light">

 …

</Application>

The only options are Light and Dark. Now you get a light background, which means the color
referenced by the ApplicationPageBackgroundBrush identifier is different. If the Foreground property
on the Page or TextBlock is not explicitly set, you’ll also get black text, which means that the
Foreground property has a different default value with this theme.

In many of the sample programs in the remainder of this book, I'll be using the light theme without
mentioning it. I think the screen shots look better on the page, and they won't consume as much ink if
you decide to print pages from the book. However, keep in mind that many small devices and an
increasing number of larger devices have displays built around organic light-emitting diode (OLED)
technology and these displays consume less power if the screen isn't lit up like a billboard. Reduced
power consumption is one reason why dark color schemes are becoming more popular.

Of course, you can completely specify your own colors by explicitly setting both the Background of
the Grid and the Foreground of the TextBlock:

<Grid Background="Blue">

 <TextBlock Text="Hello, Windows 8!"

 Foreground="Yellow"

 … />

27

www.it-ebooks.info

http://www.it-ebooks.info/

</Grid>

For these properties, Visual Studio’s IntelliSense provides 140 standard color names, plus Transparent.
These are actually static properties of the Colors class. Alternatively, you can specify red-green-blue
(RGB) values directly in hexadecimal with values ranging from 00 to FF prefaced by a pound sign:

Foreground="#FF8000"

That’s maximum red, half green, and no blue. An optional fourth byte at the beginning is the alpha
channel, with values ranging from 00 for transparent and FF for opaque. Here’s a half-transparent red:

Foreground="#80FF0000"

The UIElement class also defines an Opacity property that can be set to values between 0 (transparent)
and 1 (opaque). In HelloImage, try setting the Background property of the Grid to a nonblack color
(perhaps Blue) and set the Opacity property of the Image element to 0.5.

When you specify colors by using bytes, the values are in accordance with the familiar sRGB
(“standard RGB”) color space. This color space dates back to the era of cathode-ray tube displays where
these bytes directly controlled the voltages illuminating the pixels. Very fortuitously, nonlinearities in
pixel brightness and nonlinearities in the perception of brightness by the human eye roughly cancel
each other out, so these byte values often seem perceptually linear, or nearly so.

An alternative is the scRGB color space, which uses values between 0 and 1 that are proportional to
light intensity. Here’s a value for medium gray:

Foreground="sc# 0.5 0.5 0.5"

Due to the logarithmic response of the human eye to light intensity, this gray will appear to be rather
too light to be classified as medium.

If you need to display text characters that are not on your keyboard, you can specify them in
Unicode by using standard XML character escaping. For example, if you want to display the text “This
costs €55” and you’re confined to an American keyboard, you can specify the Unicode Euro in decimal
like this:

<TextBlock Text="This costs €55" …

Or perhaps you prefer hexadecimal:

<TextBlock Text="This costs €55" …

Or you can simply paste text into Visual Studio as I obviously did with a program later in this chapter.

As with standard XML, strings can contain special characters beginning with the ampersand:

• & is an ampersand

• ' is a single-quotation mark (“apostrophe”)

• " is a double-quotation mark

28

www.it-ebooks.info

http://www.it-ebooks.info/

• < is a left angle bracket (“less than”)

• > is a right angle bracket (“greater than”)

An alternative to setting the Text property of TextBlock requires separating the element into a start
tag and end tag and specifying the text as content:

<TextBlock … >

 Hello, Windows 8!

</TextBlock>

As I’ll discuss in Chapter 2, setting text as content of the TextBlock is not exactly equivalent to
setting the Text property. It’s actually much more powerful. But even without taking advantage of
additional features, specifying text as content is useful for displaying a larger quantity of text because
you don’t have to worry about extraneous white space as much as when you’re dealing with quoted
text. The WrappedText project displays a whole paragraph of text by specifying this text as content of
the TextBlock:

Project: WrappedText | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock FontSize="48"

 TextWrapping="Wrap">

 For a long time I used to go to bed early. Sometimes, when I had put out

 my candle, my eyes would close so quickly that I had not even time to

 say "I'm going to sleep." And half an hour later the thought that it was

 time to go to sleep would awaken me; I would try to put away the book

 which, I imagined, was still in my hands, and to blow out the light; I

 had been thinking all the time, while I was asleep, of what I had just

 been reading, but my thoughts had run into a channel of their own,

 until I myself seemed actually to have become the subject of my book:

 a church, a quartet, the rivalry between François I and Charles V. This

 impression would persist for some moments after I was awake; it did not

 disturb my mind, but it lay like scales upon my eyes and prevented them

 from registering the fact that the candle was no longer burning. Then

 it would begin to seem unintelligible, as the thoughts of a former

 existence must be to a reincarnate spirit; the subject of my book would

 separate itself from me, leaving me free to choose whether I would form

 part of it or no; and at the same time my sight would return and I

 would be astonished to find myself in a state of darkness, pleasant and

 restful enough for the eyes, and even more, perhaps, for my mind, to

 which it appeared incomprehensible, without a cause, a matter dark

 indeed.

 </TextBlock>

</Grid>

Notice the TextWrapping property. The default is the TextWrapping.NoWrap enumeration member;
Wrap is the only alternative. You can also set the TextAlignment property to members of the
TextAlignment enumeration: Left, Right, or Center. Although the TextAlignment enumeration also
includes a Justify member, it is not supported under the current version of the Windows Runtime.

You can run this program in either portrait mode or landscape:

29

www.it-ebooks.info

http://www.it-ebooks.info/

If your display responds to orientation changes, the text is automatically reformatted. The Windows
Runtime breaks lines at spaces or hyphens, but it does not break lines at nonbreaking spaces
(‘ ’) or nonbreaking hyphens (‘‑’). Any soft hyphens (‘­’) are ignored.

Not every element in XAML supports text content like TextBlock. You can’t have text content in the
Page or Grid, for example.

But the Grid can support multiple TextBlock children. The OverlappedStackedText project has two
TextBlock elements in the Grid with different colors and font sizes:

Project: OverlappedStackText | File: BlankPage.xaml

<Grid Background="Yellow">

 <TextBlock Text="8"

 FontSize="864"

 FontWeight="Bold"

 Foreground="Red"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <TextBlock Text="Windows"

 FontSize="192"

 FontStyle="Italic"

 Foreground="Blue"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Here’s the result:

30

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that the second element is visually above the first. This is often referred to as “Z order” because
in a three-dimensional coordinate space, an imaginary Z axis comes out of the screen. In Chapter 4
you’ll see a way to override this behavior.

Of course, overlapping is not a generalized solution to displaying multiple items of text! In Chapter
5 you’ll see how to define rows and columns in the Grid for layout purposes, but another approach to
organizing multiple elements in a single-cell Grid is to use various values of HorizontalAlignment and
VerticalAlignment to prevent them from overlapping. The InternationalHelloWorld program displays
"hello, world" in nine different languages. (Thank you, Google Translate!)

Project: InternationalHelloWorld | File: BlankPage.xaml (excerpt)

<Page

 x:Class="InternationalHelloWorld.BlankPage"

 …

 FontSize="40">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <!-- Chinese (simplified) -->

 <TextBlock Text="你好，世界"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

 <!-- Urdu -->

 <TextBlock Text="ایند ولیہ،"

 HorizontalAlignment="Center"

 VerticalAlignment="Top" />

 <!-- Japanese -->

 <TextBlock Text="こんにちは、世界中のみなさん"

 HorizontalAlignment="Right"

 VerticalAlignment="Top" />

31

www.it-ebooks.info

http://www.it-ebooks.info/

 <!-- Hebrew -->

 <TextBlock Text="םלוע ,םולש"

 HorizontalAlignment="Left"

 VerticalAlignment="Center" />

 <!-- Esperanto -->

 <TextBlock Text="Saluton, mondo"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <!-- Arabic -->

 <TextBlock Text="ملاعلا ،ابحرم"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <!-- Korean -->

 <TextBlock Text="안녕하세요, 전 세계"

 HorizontalAlignment="Left"

 VerticalAlignment="Bottom" />

 <!-- Russian -->

 <TextBlock Text="Здравствуй, мир"

 HorizontalAlignment="Center"

 VerticalAlignment="Bottom" />

 <!-- Hindi -->

 <TextBlock Text="नमस्ते द�ुनया है,"
 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

 </Grid>

</Page>

Notice the FontSize attribute set in the root element to apply to all nine TextBlock elements. Property
inheritance is obviously one way to reduce repetition in XAML, and you’ll see other approaches as well
in the next chapter.

32

www.it-ebooks.info

http://www.it-ebooks.info/

Media As Well

So far you’ve seen greetings in text and bitmaps. The HelloAudio project plays an audio greeting from
a file on my website. I made the recording using the Windows 8 Sound Recorder application, which
automatically saves in WMA format. The XAML file looks like this:

Project: HelloAudio | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <MediaPlayer Source="http://www.charlespetzold.com/pw6/AudioGreeting.wma"

 VerticalAlignment="Center" />

</Grid>

The MediaPlayer class derives from Control and has its own built-in user interface that automatically
fades out until you brush your mouse or finger across it. Alternatively you can use MediaElement for
playing sounds. MediaElement is a FrameworkElement derivative that has no user interface of its own,
although it provides enough information for you to build your own.

You can use MediaPlayer or MediaElement for playing movies. The HelloVideo program plays a
video from my website:

Project: HelloVideo | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <MediaPlayer Source="http://www.charlespetzold.com/pw6/VideoGreeting.wmv" />

</Grid>

33

www.it-ebooks.info

http://www.it-ebooks.info/

The Code Alternatives

It’s not necessary to instantiate elements or controls in XAML. You can alternatively create them
entirely in code. Indeed, very much of what can be done in XAML can be done in code instead. Code is
particularly useful for creating many objects of the same type because there’s no such thing as a for
loop in XAML.

Let’s create a new project named HelloCode, but let’s visit the BlankPage.xaml file only long enough
to give the Grid a name:

Project: HelloCode | File: BlankPage.xaml (excerpt)

<Grid Name="contentGrid"

 Background="{StaticResource ApplicationPageBackgroundBrush}">

</Grid>

Setting the Name attribute allows the Grid to be accessed from the code-behind file. Alternatively you
can use x:Name:

<Grid x:Name="contentGrid"

 Background="{StaticResource ApplicationPageBackgroundBrush}">

</Grid>

There’s really no practical difference between Name and x:Name. As the “x” prefix indicates, the
x:Name attribute is intrinsic to XAML itself, and you can use it to identify any object in the XAML file.
The Name attribute is more restrictive: Name is defined by FrameworkElement, so you can use it only
with classes that derive from FrameworkElement. For a class not derived from FrameworkElement, you’ll
need to use x:Name instead. Some programmers prefer to be consistent by using x:Name throughout. I
tend to use Name whenever I can and x:Name otherwise.

Whether you use Name or x:Name, the rules for the name you choose are the same as the rules for
variable names. The name can’t contain spaces or begin with a number, for example. All names within
a particular XAML file must be unique.

In the BlankPage.xaml.cs file you’ll want two additional using directives:

Project: HelloCode | File: BlankPage.xaml.cs (excerpt)

using Windows.UI;

using Windows.UI.Text;

The first is for the Colors class; the second is for a FontStyle enumeration. It’s not strictly necessary that
you insert these using directives manually. If you use the Colors class or FontStyle enumeration, Visual
Studio will indicate with a red squiggly underline that it can’t resolve the identifier, at which point you
can right-click it and select Resolve from the context menu. The new using directive will be added to
the others in correct alphabetical order (as long as the existing using directives are alphabetized).
When you’re all finished with the code file, you can right-click anywhere in the file and select Organize

34

www.it-ebooks.info

http://www.it-ebooks.info/

Usings and Remove Unused Usings to clean up the list. (I’ve done that with this BlankPage.xaml.cs file.)

The constructor of the Page class is a handy place to create a TextBlock, assign properties, and then
add it to the Grid:

Project: HelloCode | File: BlankPage.xaml.cs (excerpt)

public BlankPage()

{

 this.InitializeComponent();

 TextBlock txtblk = new TextBlock();

 txtblk.Text = "Hello, Windows 8!";

 txtblk.FontFamily = new FontFamily("Times New Roman");

 txtblk.FontSize = 96;

 txtblk.FontStyle = FontStyle.Italic;

 txtblk.Foreground = new SolidColorBrush(Colors.Yellow);

 txtblk.HorizontalAlignment = HorizontalAlignment.Center;

 txtblk.VerticalAlignment = VerticalAlignment.Center;

 contentGrid.Children.Add(txtblk);

}

Notice that the last line of code here references the Grid named contentGrid in the XAML file just as
if it were a normal object, perhaps stored as a field. (As you’ll see, it actually is a normal object and it is
a field!) Although not evident in XAML, the Grid has a property named Children that it inherits from
Panel. This Children property is of type UIElementCollection, which is a collection that implements the
IList<UIElement> and IEnumerable<UIElement> interfaces. This is why the Grid can support multiple
child elements.

Code often tends to be a little wordier than XAML partially because the XAML parser works behind
the scenes to create additional objects and perform conversions. The code reveals that the FontFamily
property requires that a FontFamily object be created and that Foreground is of type Brush and
requires an instance of a Brush derivative, such as SolidColorBrush. Colors is a class that contains 141
static properties of type Color. You can create a Color object from ARGB bytes by using the static
Color.FromArgb method.

The FontStyle, HorizontalAlignment, and VerticalAlignment properties are all enumeration types,
where the enumeration is the same name as the property. Indeed, the Text and FontSize properties
seem odd in that they are primitive types: a string and a double-precision floating-point number.

You can reduce the code bulk a little by using a style of property initialization introduced in C# 3.0:

TextBlock txtblk = new TextBlock

{

 Text = "Hello, Windows 8!",

 FontFamily = new FontFamily("Times New Roman"),

 FontSize = 96,

 FontStyle = FontStyle.Italic,

 Foreground = new SolidColorBrush(Colors.Yellow),

 HorizontalAlignment = HorizontalAlignment.Center,

35

www.it-ebooks.info

http://www.it-ebooks.info/

 VerticalAlignment = VerticalAlignment.Center

};

Either way, you can now compile and run the HelloCode project and the result should look the same as
the XAML version. It looks the same because it basically is the same.

You can alternatively create the TextBlock and add it to the Children collection of the Grid in the
OnNavigatedTo override. Or you can create the TextBlock in the constructor, save it as a field, and add
it to the Grid in OnNavigatedTo.

Notice that I put the code after the InitializeComponent call in the Page constructor. You can create
the TextBlock prior to InitializeComponent, but you must add it to the Grid after InitializeComponent
because the Grid does not exist prior to that call. The InitializeComponent method basically parses the
XAML at run time and instantiates all the XAML objects and puts them all together in a tree.
InitializeComponent is obviously an important method, which is why you might be puzzled when you
can’t find it in the documentation.

Here’s the story: When Visual Studio compiles the application, it generates some intermediate files.
You can find these files with Windows Explorer by navigating to the HelloCode solution, the HelloCode
project, and then the obj and Debug directories. Among the list of files are BlankPage.g.cs and
BlankPage.g.i.cs. The “g” stands for “generated.” Both these files define BlankPage classes derived from
Page with the partial keyword. The composite BlankPage class thus consists of the BlankPage.xaml.cs
file under your control plus these two generated files, which you don’t mess with. Although you don’t
edit these files, they are important to know about because they might pop up in Visual Studio if a
run-time error occurs involving the XAML file.

The BlankPage.g.i.cs file is the more interesting of the two. Here you’ll find the definition of the
InitializeComponent method, which calls a static method named Application.LoadComponent to load
the BlankPage.xaml file. Notice also that this partial class definition contains a private field named
contentGrid, which is the name you’ve assigned to the Grid in the XAML file. The InitializeComponent
method concludes by setting that field to the actual Grid object created by
Application.LoadComponent.

The contentGrid field is thus accessible throughout the BlankPage class, but the value will be null
until InitializeComponent is called.

In summary, parsing the XAML is a two-stage process. At compile time the XAML is parsed to
extract all the element names (among other tasks) and generate the intermediate C# files in the obj
directory. These generated C# files are compiled along with the C# files under your control. At run time
the XAML file is parsed again to instantiate all the elements, assemble them in a visual tree, and obtain
references to them.

Where is the standard Main method that serves as an entry point to any C# program? That’s in
App.g.i.cs, one of two files generated by Visual Studio based on App.xaml.

Let me show you something else that will serve as just a little preview of dependency properties:

36

www.it-ebooks.info

http://www.it-ebooks.info/

As I mentioned earlier, many properties that we’ve been dealing with—FontFamily, FontSize,
FontStyle, Foreground, Text, HorizontalAlignment, and VerticalAlignment—have corresponding static
dependency properties, named FontFamilyProperty, FontSizeProperty, and so forth. You might amuse
yourself by changing a normal statement like this:

txtblk.FontStyle = FontStyle.Italic;

to an alternative that might look quite peculiar:

txtblk.SetValue(TextBlock.FontStyleProperty, FontStyle.Italic);

What you’re doing here is calling a method named SetValue defined by DependencyObject and
inherited by TextBlock. You’re calling this method on the TextBlock object but passing to it the static
FontStyleProperty object of type DependencyProperty defined by TextBlock and the value you want for
that property. There is no real difference between these two ways of setting the FontStyle property.
Within TextBlock, the FontStyle property is very likely defined like this:

public FontStyle FontStyle

{

 set

 {

 SetValue(TextBlock.FontStyleProperty, value);

 }

 get

 {

 return (FontStyle)GetValue(TextBlock.FontStyleProperty);

 }

}

I say “very likely” because I’m not privy to the Windows Runtime source code, but if the FontStyle
property is defined like all other properties backed by dependency properties, the set and get accessors
simply call SetValue and GetValue with the TextBlock.FontStyleProperty dependency property. This is
extremely standard code, and it’s a pattern you’ll come to be so familiar with that you’ll generally
define your own dependency properties without so much white space like this:

public FontStyle FontStyle

{

 set { SetValue(TextBlock.FontStyleProperty, value); }

 get { return (FontStyle)GetValue(TextBlock.FontStyleProperty); }

}

Earlier you saw how you can set the Foreground and font-related properties on the Page rather than
the TextBlock and how these properties are inherited by the TextBlock. Of course you can do the same
thing in code:

public BlankPage()

{

 this.InitializeComponent();

 this.FontFamily = new FontFamily("Times New Roman");

 this.FontSize = 96;

37

www.it-ebooks.info

http://www.it-ebooks.info/

 this.FontStyle = FontStyle.Italic;

 this.Foreground = new SolidColorBrush(Colors.Yellow);

 TextBlock txtblk = new TextBlock();

 txtblk.Text = "Hello, Windows 8!";

 txtblk.HorizontalAlignment = HorizontalAlignment.Center;

 txtblk.VerticalAlignment = VerticalAlignment.Center;

 contentGrid.Children.Add(txtblk);

}

C# doesn’t require the this prefix to access properties and methods of the class, but when you’re
editing the files in Visual Studio, typing the this prefix invokes Intellisense to give you a list of available
methods, properties, and events.

Images in Code

Judging solely from the XAML files in the HelloImage and HelloLocalImage projects, you might have
assumed that the Source property of Image is defined as a string or perhaps the Uri type. In XAML, that
Source string is a shortcut for an object of type ImageSource, which encapsulates the actual image that
the Image element is responsible for displaying. ImageSource doesn’t define anything on its own and
cannot be instantiated, but several important classes descend from ImageSource, as shown in this
partial class hierarchy:

Object
 DependencyObject
 ImageSource
 BitmapSource
 BitmapImage
 WriteableBitmap

ImageSource is defined in the Windows.UI.Xaml.Media namespace, but the descendent classes are in
Windows.UI.Xaml.Media.Imaging. A BitmapSource can’t be instantiated either, but it defines public
PixelWidth and PixelHeight properties as well as a SetSource method that lets you read in bitmap data
from a file or network stream. BitmapImage inherits these members and also defines a UriSource
property.

You can use BitmapImage for displaying a bitmap from code. Besides defining this UriSource
property, BitmapImage also defines a constructor that accepts a Uri object. In the HelloImageCode
project, the Grid has been given a name of “contentGrid” and a using directive for
Windows.UI.Xaml.Media.Imaging has been added to the code-behind file. Here’s the BlankPage
constructor:

Project: HelloImageCode | File: BlankPage.xaml.cs (excerpt)

public BlankPage()

{

38

www.it-ebooks.info

http://www.it-ebooks.info/

 this.InitializeComponent();

 Uri uri = new Uri("http://www.charlespetzold.com/pw6/PetzoldJersey.jpg");

 BitmapImage bitmap = new BitmapImage(uri);

 Image image = new Image();

 image.Source = bitmap;

 contentGrid.Children.Add(image);

}

Setting a Name of “contentGrid” on the Grid is not strictly necessary for accessing the Grid from
code. The Grid is actually set to the Content property of the Page, so rather than accessing the Grid like
so:

contentGrid.Children.Add(image);

you can do it like this:

Grid grid = this.Content as Grid;

grid.Children.Add(image);

In fact, the Grid isn’t even necessary in such a simple program. You can effectively remove the Grid
from the visual tree by setting the Image directly to the Content property of the Page:

this.Content = image;

The Content property that Page inherits from UserControl is of type UIElement, so it can support only
one child. Generally the child of the Page is a Panel derivative that supports multiple children, but if
you need only one child, you can use the Content property of the Page directly.

It’s also possible to make a hybrid of the XAML and code approaches: to instantiate the Image
element in XAML and create the BitmapImage in code, or to instantiate both the Image element and
BitmapImage in XAML and then set the UriSource property of BitmapImage from code. I’ve used the
first approach in the HelloLocalImageCode project, which has an Images directory with the
Greeting.png file. The XAML file already contains the Image element, but it doesn’t reference an actual
bitmap:

Project: HelloLocalImageCode | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Image Name="image"

 Stretch="None" />

</Grid>

The code-behind file sets the Source property of the Image element in a single line:

Project: HelloLocalImageCode | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 image.Source = new BitmapImage(new Uri("ms-appx:///Images/Greeting.png"));

 }

39

www.it-ebooks.info

http://www.it-ebooks.info/

}

Look at that special URL for referencing the content bitmap file from code. In XAML, that special prefix
is optional.

Are there general rules to determine when to use XAML and when to use code? Not really. I tend to
use XAML whenever possible except when the repetition becomes ridiculous. My normal rule for code
is “three or more: use a for,” but I’ll often allow somewhat more repetition in XAML before moving it
into code. A lot depends on how concise and elegant you’ve managed to make the XAML and how
much effort it would be to change something.

Not Even a Page

Insights into how a Windows Runtime program starts up can be obtained by examining the
OnLaunched override in the standard App.xaml.cs file. You’ll discover that it creates a Frame object,
uses this Frame object to navigate to an instance of BlankPage (which is how BlankPage gets
instantiated), and then sets this Frame object to a precreated Window object accessible through the
Window.Current static property:

var rootFrame = new Frame();

rootFrame.Navigate(typeof(BlankPage));

Window.Current.Content = rootFrame;

Window.Current.Activate();

A Metro style application doesn’t require a Page, a Frame, or even any XAML files at all. Let’s
conclude this chapter by creating a new project named StrippedDownHello and begin by deleting the
App.xaml, App.xaml.cs, BlankPage.xaml, and BlankPage.xaml.cs files, as well as the entire Common
folder. Yes, delete them all! Now the project has no code files and no XAML files. It’s left with just an
app manifest, assembly information, and some PNG files.

Right-click the project name and select Add and New Item. Select either a new class or code file and
name it App.cs. Here’s what you’ll want it to look like:

Project: StrippedDownHello | File: App.cs

using Windows.ApplicationModel.Activation;

using Windows.UI;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Media;

namespace TryStrippedDown

{

 public class App : Application

 {

 static void Main(string[] args)

 {

 Application.Start((p) => new App());

 }

40

www.it-ebooks.info

http://www.it-ebooks.info/

 protected override void OnLaunched(LaunchActivatedEventArgs args)

 {

 TextBlock txtblk = new TextBlock

 {

 Text = "Stripped-Down Windows 8",

 FontFamily = new FontFamily("Lucida sans Typewriter"),

 FontSize = 96,

 Foreground = new SolidColorBrush(Colors.Red),

 HorizontalAlignment = Windows.UI.Xaml.HorizontalAlignment.Center,

 VerticalAlignment = Windows.UI.Xaml.VerticalAlignment.Center

 };

 Window.Current.Content = txtblk;

 Window.Current.Activate();

 }

 }

}

That’s all you need (and obviously much less if you want default properties on the TextBlock). The
static Main method is the entry point and that creates a new App object and starts it going, and the
OnLaunched override creates a TextBlock and makes it the content of the application’s default window.

I won’t be pursuing this approach to creating Metro style applications in this book, but obviously it
works.

41

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

XAML Syntax
A Metro style application is divided into code and markup because each has its own strength. Despite
the limitations of markup in performing complex logic or computational tasks, it’s good to get as much
of a program into markup as possible. Markup is easier to edit with tools and shows a clearer sense of
the visual layout of a page. Of course, everything in markup is a string, so markup sometimes becomes
cumbersome in representing complex objects. Because markup doesn’t have the loop processing
common in programming languages, it can also be prone to repetition.

These issues have been addressed in the syntax of XAML in several ways, the most important of
which are explored in this chapter. But let me begin this vital subject with a topic that will at first
appear to be completely unrelated: defining a gradient brush.

The Gradient Brush in Code

The Background property in Grid and the Foreground property of the TextBlock are both of type Brush.
The programs shown so far have set these properties to a derivative of Brush called SolidColorBrush. As
demonstrated in Chapter 1, “Markup and Code,” you can create a SolidColorBrush in code and give it a
Color value; in XAML this is done for you behind the scenes.

SolidColorBrush is only one of four available brushes, as shown in this class hierarchy:

Object
 DependencyObject
 Brush
 SolidColorBrush
 GradientBrush
 LinearGradientBrush
 TileBrush
 ImageBrush
 WebViewBrush

Only SolidColorBrush, LinearGradientBrush, ImageBrush, and WebViewBrush are instantiable. Like many
other graphics-related classes, most of these brush classes are defined in the Windows.UI.Xaml.Media
namespace, although WebViewBrush is defined in Windows.UI.Xaml.Controls.

The LinearGradientBrush creates a gradient between two or more colors. For example, suppose you
want to display some text with blue at the left gradually turning to red at the right. While we’re at it,
let’s set a similar gradient on the Background property of the Grid but going the other way.

42

www.it-ebooks.info

http://www.it-ebooks.info/

In the GradientBrushCode program, a TextBlock is instantiated in XAML, and both the Grid and the
TextBlock have names:

Project: GradientBrushCode | File: BlankPage.xaml (excerpt)

<Grid Name="contentGrid"

 Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Name="txtblk"

 Text="Hello, Windows 8!"

 FontSize="96"

 FontWeight="Bold"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The constructor of the code-behind file creates two separate LinearGradientBrush objects to set to
the Background property of the Grid and Foreground property of the TextBlock:

Project: GradientBrushCode | File: BlankPage.xaml.cs (excerpt)

public BlankPage()

{

 this.InitializeComponent();

 // Create the foreground brush for the TextBlock

 LinearGradientBrush foregroundBrush = new LinearGradientBrush();

 foregroundBrush.StartPoint = new Point(0, 0);

 foregroundBrush.EndPoint = new Point(1, 0);

 GradientStop gradientStop = new GradientStop();

 gradientStop.Offset = 0;

 gradientStop.Color = Colors.Blue;

 foregroundBrush.GradientStops.Add(gradientStop);

 gradientStop = new GradientStop();

 gradientStop.Offset = 1;

 gradientStop.Color = Colors.Red;

 foregroundBrush.GradientStops.Add(gradientStop);

 txtblk.Foreground = foregroundBrush;

 // Create the background brush for the Grid

 LinearGradientBrush backgroundBrush = new LinearGradientBrush

 {

 StartPoint = new Point(0, 0),

 EndPoint = new Point(1, 0)

 };

 backgroundBrush.GradientStops.Add(new GradientStop

 {

 Offset = 0,

 Color = Colors.Red

 });

 backgroundBrush.GradientStops.Add(new GradientStop

 {

43

www.it-ebooks.info

http://www.it-ebooks.info/

 Offset = 1,

 Color = Colors.Blue

 });

 contentGrid.Background = backgroundBrush;

}

The two brushes are created with two different styles of property initialization, but otherwise they’re
basically the same. The LinearGradientBrush class defines two properties named StartPoint and
EndPoint of type Point, which is a structure with X and Y properties representing a two-dimensional
coordinate point. The StartPoint and EndPoint properties are relative to the object to which the brush is
applied based on the standard windowing coordinate system: X values increase to the right and Y
values increase going down. The relative point (0, 0) is the upper-left corner and (1, 0) is the
upper-right corner, so the brush gradient extends along an imaginary line between these two points,
and all lines parallel to that line. The StartPoint and EndPoint defaults are (0, 0) and (1, 1), which defines
a gradient from the upper-left to the lower-right corners of the target object.

LinearGradientBrush also has a property named GradientStops that is a collection of GradientStop
objects. Each GradientStop indicates an Offset relative to the gradient line and a Color at that offset.
Generally the offsets range from 0 to 1, but for special purposes they can go beyond the range
encompassed by the brush. LinearGradientBrush defines additional properties to indicate how the
gradient is calculated and what happens beyond the smallest Offset and the largest Offset.

Here’s the result:

If you now consider defining these same brushes in XAML, all of a sudden the limitations of markup

become all too evident. XAML lets you define a SolidColorBrush by just specifying the color, but how
on earth do you set a Foreground or Background property to a text string defining two points and two
or more offsets and colors?

44

www.it-ebooks.info

http://www.it-ebooks.info/

Property Element Syntax

Fortunately, there is a way. As you’ve seen, you normally indicate that you want a SolidColorBrush in
XAML simply by specifying the color of the brush:

<TextBlock Text="Hello, Windows 8!"

 Foreground="Blue"

 FontSize="96" />

The SolidColorBrush is created for you behind the scenes.

However, it’s possible to use a variation of this syntax that gives you the option of being more
explicit about the nature of this brush. Remove that Foreground property, and separate the TextBlock
element into start and end tags:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

</TextBlock>

Within those tags, insert additional start and end tags consisting of the element name, a period, and
a property name:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 </TextBlock.Foreground>

</TextBlock>

And within those tags put the object you want to set to that property:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <SolidColorBrush Color="Blue" />

 </TextBlock.Foreground>

</TextBlock>

Now it’s explicit that Foreground is being set to an instance of a SolidColorBrush.

This is called property-element syntax, and it’s an important feature of XAML. At first it might seem
to you (as it did to me) that this syntax is an extension or aberration of standard XML, but it’s definitely
not. Periods are perfectly valid characters in XML element names.

With that last little snippet of XAML it is now possible to categorize three types of XAML syntax:

• The TextBlock and SolidColorBrush are both examples of “object elements” because they are
XML elements that result in the creation of objects.

• The Text, FontSize, and Color settings are examples of “property attributes.” They are XML

45

www.it-ebooks.info

http://www.it-ebooks.info/

attributes that specify the settings of properties.

• The TextBlock.Foreground tag is a “property element.” It is a property expressed as an XML
element.

XAML poses a restriction on property element tags: Nothing else can go in the start tag. The object
being set to the property must be content that goes between the start and end tags.

The following example uses a second set of property element tags for the Color property of the
SolidColorBrush:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <SolidColorBrush>

 <SolidColorBrush.Color>

 Blue

 </SolidColorBrush.Color>

 </SolidColorBrush>

 </TextBlock.Foreground>

</TextBlock>

If you want, you can set the other two properties of the TextBlock similarly:

<TextBlock>

 <TextBlock.Text>

 Hello, Windows 8

 </TextBlock.Text>

 <TextBlock.FontSize>

 96

 </TextBlock.FontSize>

 <TextBlock.Foreground>

 <SolidColorBrush>

 <SolidColorBrush.Color>

 Blue

 </SolidColorBrush.Color>

 </SolidColorBrush>

 </TextBlock.Foreground>

</TextBlock>

But there’s really no point. For these simple properties, the property attribute syntax is shorter and
clearer. Where property-element syntax comes to the rescue is in expressing more complex objects like
LinearGradientBrush. Let’s begin again with the property-element tags:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 </TextBlock.Foreground>

</TextBlock>

46

www.it-ebooks.info

http://www.it-ebooks.info/

Put a LinearGradientBrush in there, separated into start tags and end tags. Set the StartPoint and
EndPoint properties in this start tag:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 </LinearGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

Notice that the two properties of type Point are specified with two numbers separated by a space. You
can separate the two numbers with a comma if you choose.

The LinearGradientBrush has a GradientStops property that is a collection of GradientStop objects, so
include the GradientStops property with another property element:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <LinearGradientBrush.GradientStops>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

The GradientStops property is of type GradientStopCollection, so let’s add that in as well:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

Finally, add the two GradientStop objects to the collection:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="1" Color="Red" />

47

www.it-ebooks.info

http://www.it-ebooks.info/

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

And there we have it: a rather complex object expressed entirely in markup.

Content Properties

The syntax I’ve just shown you for instantiating and initializing the LinearGradientBrush is actually a bit
more extravagant than what you actually need. You might be persuaded of this fact when you consider
that all the XAML files we’ve seen so far have apparently been missing some properties and elements.
Look at this little snippet of markup:

<Page … >

 <Grid … >

 <TextBlock … />

 <TextBlock … />

 <TextBlock … />

 </Grid>

</Page>

We know from working with the classes in code that the TextBlock elements are added to the Children
collection of the Grid, and the Grid is set to the Content property of the Page. But where are those
Children and Content properties in the markup?

Well, you can include them if you want. Here are the Page.Content and Grid.Children property
elements as they are allowed to appear in a XAML file:

<Page … >

 <Page.Content>

 <Grid … >

 <Grid.Children>

 <TextBlock … />

 <TextBlock … />

 <TextBlock … />

 </Grid.Children>

 </Grid>

 </Page.Content>

</Page>

This markup is still missing the UIElementCollection object that is set to the Children property of the
Grid. That cannot be explicitly included because only elements with parameterless public constructors
can be instantiated in XAML files, and the UIElementCollection class is missing that constructor.

The real question is this: Why aren’t the Page.Content and Grid.Children property elements required
in the XAML file?

48

www.it-ebooks.info

http://www.it-ebooks.info/

Simple: All classes referenced in XAML are allowed to have one (and only one) property that is
designated as a “content” property. For this content property, and only this property, property-element
tags are not required.

The content property for a particular class is specified as a .NET attribute. Somewhere in the actual
class definition of the Panel class (from which Grid derives) is the following ContentProperty attribute:

[ContentProperty(Name="Children")]

public class Panel : FrameworkElement

{

 …

}

What this means is simple. Whenever the XAML parser encounters some markup like this:

<Grid … >

 <TextBlock … />

 <TextBlock … />

 <TextBlock … />

</Grid>

then it checks the ContentProperty attribute of the Grid and discovers that these TextBlock elements
should be added to the Children property.

Similarly, the definition of the UserControl class (from which Page derives) defines the Content
property as its content property (which might sound appropriately redundant if you say it out loud):

[ContentProperty(Name="Content")]

public class UserControl : Control

{

 …

}

You can define a ContentProperty attribute in your own classes. The ContentPropertyAttribute class
required for this is in the Windows.UI.Xaml.Markup namespace.

Unfortunately, the current documentation for the Windows Runtime indicates only when a
ContentProperty attribute has been set on a class—look in the Attributes section of the home page for
the Panel class, for example—but not what that property actually is! You’ll just have to learn by
example and retain by habit.

Fortunately, many content properties are defined to be the most convenient property of the class.
For LinearGradientBrush, the content property is GradientStops. Although GradientStops is of type
GradientStopCollection, XAML does not require collection objects to be explicitly included. Here’s the
excessively wordy form of the LinearGradientBrush syntax:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <LinearGradientBrush.GradientStops>

49

www.it-ebooks.info

http://www.it-ebooks.info/

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="1" Color="Red" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

Neither the LinearGradientBrush.GradientStops property elements nor the GradientStopCollection tags
are required, so it simplifies to this:

<TextBlock Text="Hello, Windows 8!"

 FontSize="96">

 <TextBlock.Foreground>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="1" Color="Red" />

 </LinearGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

Now it’s difficult to imagine how it can get any simpler and still be valid XML.

It is now possible to rewrite the GradientBrushCode program so that everything is done in XAML:

Project: GradientBrushMarkup | File: BlankPage.xaml (excerpt)

<Grid>

 <Grid.Background>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="1" Color="Blue" />

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Name="txtblk"

 Text="Hello, Windows 8!"

 FontSize="96"

 FontWeight="Bold"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.Foreground>

 <LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="1" Color="Red" />

 </LinearGradientBrush>

 </TextBlock.Foreground>

 </TextBlock>

</Grid>

Even with the property element syntax, it’s more readable than the code version. What code
illustrates most clearly is how something is built. Markup shows the completed construction.

Here’s something to watch out for—suppose you define a property element on a Grid with multiple

50

www.it-ebooks.info

http://www.it-ebooks.info/

children:

<Grid>

 <Grid.Background>

 <SolidColorBrush Color="Blue" />

 </Grid.Background>

 <TextBlock Text="one" />

 <TextBlock Text="two" />

 <TextBlock Text="three" />

</Grid>

You can alternatively put the property element at the bottom:

<Grid>

 <TextBlock Text="one" />

 <TextBlock Text="two" />

 <TextBlock Text="three" />

 <Grid.Background>

 <SolidColorBrush Color="Blue" />

 </Grid.Background>

</Grid>

But you can’t have some content before the property element and some content after it:

<!-- This doesn't work! -->

<Grid>

 <TextBlock Text="one" />

 <Grid.Background>

 <SolidColorBrush Color="Blue" />

 </Grid.Background>

 <TextBlock Text="two" />

 <TextBlock Text="three" />

</Grid>

Why the prohibition? The problem becomes very apparent when you include the property-element
tags for the Children property:

<!-- This doesn't work! -->

<Grid>

 <Grid.Children>

 <TextBlock Text="one" />

 </Grid.Children>

 <Grid.Background>

 <SolidColorBrush Color="Blue" />

 </Grid.Background>

 <Grid.Children>

 <TextBlock Text="two" />

 <TextBlock Text="three" />

 </Grid.Children>

51

www.it-ebooks.info

http://www.it-ebooks.info/

</Grid>

Now it’s obvious that the Children property is defined twice with two separate collections, and that’s
not legal.

The TextBlock Content Property

As you saw in the WrappedText program in Chapter 1, TextBlock allows you to specify text as content.
However, the content property of TextBlock is not the Text property. It is instead a property named
Inlines of type InlineCollection, a collection of Inline objects, or more precisely, instances of Inline
derivatives. The Inline class and its derivatives can all be found in the Windows.UI.Xaml.Documents
namespace. Here’s the hierarchy:

Object
 DependencyObject
 TextElement
 Block
 Paragraph
 Inline
 InlineUIContainer
 LineBreak
 Run (defines Text property)
 Span (defines Inlines property)
 Bold
 Italic
 Underline

These classes allow you to specify varieties of formatted text in a single TextBlock. TextElement
defines Foreground and all the font-related properties: FontFamily, FontSize, FontStyle, FontWeight (for
setting bold), FontStretch (expanded and compressed for fonts that support it), and CharacterSpacing,
and these are inherited by all the descendant classes.

The Block and Paragraph classes are mostly used in connection with a souped-up version of
TextBlock called RichTextBlock that I’ll discuss in a later chapter. The remainder of this discussion will
focus entirely on classes that derive from Inline.

The Run element is the only class here that defines a Text property, and Text is also the content
property of Run. Any text content in an InlineCollection is converted to a Run, except when that text is
already content of a Run. You can also use Run objects explicitly to specify different font properties of
the text strings.

Span defines an Inlines property just like TextBlock. This allows Span and its descendent classes to be
nested. The three descendent classes of Span are shortcuts. For example, the Bold class is equivalent to
Span with the FontWeight attribute set to Bold.

52

www.it-ebooks.info

http://www.it-ebooks.info/

As an example, here’s a TextBlock with a small Inlines collection using the shortcut classes with
nesting:

 <TextBlock>

 Text in <Bold>bold</Bold> and <Italic>italic</Italic> and

 <Bold><Italic>bold italic</Italic></Bold>

 </TextBlock>

As this is parsed, all those pieces of loose text are converted to Run objects, so the Inlines collection of
the TextBlock contains six items: instances of Run, Bold, Run, Italic, Run, and Bold. The Inlines collection
of the first Bold item contains a single Run object as does the Inlines collection of the first Italic item.
The Inlines collection of the second Bold item contains an Italic object, whose Inlines collection contains
a Run object.

The use of Bold and Italic with a TextBlock demonstrates clearly how the syntax of XAML is based on
the classes and properties that support these elements. It wouldn’t be possible to nest an Italic tag in a
Bold tag if Bold didn’t have an Inlines collection.

Here’s a somewhat more extensive TextBlock that shows off more formatting features:

Project: TextFormatting | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Width="400"

 FontSize="24"

 TextWrapping="Wrap"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 Here is text in a

 <Run FontFamily="Times New Roman">Times New Roman</Run> font,

 as well as text in a

 <Run FontSize="36">36-pixel</Run> height.

 <LineBreak />

 <LineBreak />

 Here is some <Bold>bold</Bold> and here is some

 <Italic>italic</Italic> and here is some

 <Underline>underline</Underline> and here is some

 <Bold><Italic><Underline>bold italic underline and

 bigger and

 Red as well

 </Underline></Italic></Bold>.

 </TextBlock>

</Grid>

The TextBlock is given an explicit 400-pixel width so that it doesn’t sprawl too wide. Individual Run
elements can always be used to format pieces of text as shown in the first several lines in this
paragraph, but if you want nested formatting—and particularly in connection with the shortcut
classes—you’ll want to switch to Span and its shortcut derivatives:

53

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, the LineBreak element can arbitrarily break lines. In theory, the InlineUIContainer

class allows you to embed any UIElement in the text (for example, Image elements), but it is not
implemented. Try to use it, and you’ll get the error “Value does not fall within the expected range.”

Sharing Brushes (and Other Resources)

Suppose you have multiple TextBlock elements on a page, and you want several of them to have the
same brush. If this is a SolidColorBrush, the repetitive markup is not too bad. However, if it’s a
LinearGradientBrush, it gets messier. A LinearGradientBrush requires at least six tags, and all that
repetitive markup becomes very painful, particularly if something needs to be changed.

The Windows Runtime has a feature called the “XAML resource” that lets you share objects among
multiple elements. Sharing brushes is one common application of the XAML resource, but the most
common is defining and sharing styles.

XAML resources are stored in a ResourceDictionary, a dictionary whose keys and values are both of
type object. Very often, however, the keys are strings. Both FrameworkElement and Application define a
property named Resources of type ResourceDictionary.

The SharedBrush project shows a typical way to share a LinearGradientBrush (and a couple other
objects) among several elements on a page. Towards the top of the XAML file I’ve defined a Resources
property element for the collection of resources for that page:

Project: SharedBrush | File: BlankPage.xaml (excerpt)

<Page … >

 <Page.Resources>

 <x:String x:Key="appName">Shared Brush App</x:String>

54

www.it-ebooks.info

http://www.it-ebooks.info/

 <LinearGradientBrush x:Key="rainbowBrush">

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="0.17" Color="Orange" />

 <GradientStop Offset="0.33" Color="Yellow" />

 <GradientStop Offset="0.5" Color="Green" />

 <GradientStop Offset="0.67" Color="Blue" />

 <GradientStop Offset="0.83" Color="Indigo" />

 <GradientStop Offset="1" Color="Violet" />

 </LinearGradientBrush>

 <FontFamily x:Key="fontFamily">Times New Roman</FontFamily>

 <x:Double x:Key="fontSize">96</x:Double>

 </Page.Resources>

 …

</Page>

Often the definition of resources near the top of a XAML file is referred to as a “resources section.”
This particular Resources dictionary is initialized with four items of four different types: String,
LinearGradientBrush, FontFamily, and Double. Notice the “x” prefix on String and Double. These are
.NET primitive types, of course, but they are not Windows Runtime types, and hence they are not in the
default XAML namespace. The x:Boolean and x:Int32 types are also available.

Also notice that each of these objects has an x:Key attribute. The x:Key attribute is valid only in a
Resources dictionary. As the name suggests, the x:Key attribute is the key for that item in the dictionary.

In the body of the XAML file, an element references the resource by using this key in some special
markup called a XAML markup extension.

There are just a few XAML markup extensions, and you’ll always recognize them by curly braces. The
markup extension for referencing a resource consists of the keyword StaticResource and the key name.
In fact, you’ve already seen the StaticResource markup extension numerous times: it provides the
standard Grid with a background brush. The rest of this XAML file uses StaticResource to obtain items
defined in the Resources dictionary:

Project: SharedBrush | File: BlankPage.xaml (excerpt)

<Page … >

 …

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="{StaticResource appName}"

 FontSize="48"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <TextBlock Text="Top Text"

 Foreground="{StaticResource rainbowBrush}"

 FontFamily="{StaticResource fontFamily}"

 FontSize="{StaticResource fontSize}"

 HorizontalAlignment="Center"

 VerticalAlignment="Top" />

55

www.it-ebooks.info

http://www.it-ebooks.info/

 <TextBlock Text="Left Text"

 Foreground="{StaticResource rainbowBrush}"

 FontFamily="{StaticResource fontFamily}"

 FontSize="{StaticResource fontSize}"

 HorizontalAlignment="Left"

 VerticalAlignment="Center" />

 <TextBlock Text="Right Text"

 Foreground="{StaticResource rainbowBrush}"

 FontFamily="{StaticResource fontFamily}"

 FontSize="{StaticResource fontSize}"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBlock Text="Bottom Text"

 Foreground="{StaticResource rainbowBrush}"

 FontFamily="{StaticResource fontFamily}"

 FontSize="{StaticResource fontSize}"

 HorizontalAlignment="Center"

 VerticalAlignment="Bottom" />

 </Grid>

</Page>

Here’s the result

A few notes:

Referencing the same three resources in four TextBlock elements cries out for a more efficient
approach, namely a style, which I’ll discuss later in this chapter.

Resources must be defined in a XAML file lexically preceding their use. This is why it’s most common
for the Resources dictionary to be near the top of a XAML file and most conveniently defined on the

56

www.it-ebooks.info

http://www.it-ebooks.info/

root element.

However, every FrameworkElement descendant can support a Resources dictionary, so you might
include them further down the visual tree. The keys must be unique within any Resources dictionary,
but you can use duplicate keys in other Resources dictionaries. When the XAML parser encounters a
StaticResource markup extension, it begins searching up the visual tree for a Resources dictionary with
a matching key and it uses the first one it encounters. You can effectively override the values of
Resources keys with those in more local dictionaries.

If the XAML parser cannot find a matching key by searching up the visual tree, it checks the
Resources dictionary in the Application object. The App.xaml file is an ideal place for defining resources
that are used throughout the application. To use a bunch of resources across multiple applications, you
can define them in a separate XAML file with a root element of ResourceDictionary. Include that file in
a project, reference it in the App.xaml file, and you can then use items in that dictionary.

Indeed, an example is already provided for you in the standard Visual Studio projects for Metro style
applications. The Common folder contains a file named StandardStyles.xaml that has a root element of
ResourceDictionary:

<ResourceDictionary

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 …

</ResourceDictionary>

This file is referenced in the standard App.xaml file. In fact, referencing this resources collection is just
about all that the standard App.xaml file does:

<Application

 x:Class="SharedBrush.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:SharedBrush">

 <Application.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

 <ResourceDictionary Source="Common/StandardStyles.xaml"/>

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

 </Application.Resources>

</Application>

You can include your own collections of resources by inserting additional ResourceDictionary tags in
the MergedDictionaries collection. Or you can include your own resources directly in the App object’s
Resources dictionary.

You can also reference the Resources dictionary from code. Following the InitializeComponent call,

57

www.it-ebooks.info

http://www.it-ebooks.info/

you can retrieve an item from the dictionary with an indexer:

FontFamily fntfam = this.Resources["fontFamily"] as FontFamily;

Now try this: Comment out the “fontFamily” entry in the BlankPage.xaml file, but add that item to
the dictionary in the BlankPage constructor prior to the InitializeComponent call.

this.Resources.Add("fontFamily", new FontFamily("Times New Roman"));

When the XAML file is parsed by InitializeComponent, this object will be available within that XAML file.

At the time of this writing, the ResourceDictionary class does not define a public method that
searches up the visual tree for dictionaries in ancestor classes. If you need something like that to search
for resources in code, you can easily write it yourself by “climbing the visual tree” using the Parent
property defined by FrameworkElement or the VisualTreeHelper class defined in the
Windows.UI.Xaml.Media namespace. The Application object for the application is available from the
static Application.Current property.

The predefined resources (such as the ApplicationPageBackgroundBrush referenced by the Grid)
don’t seem to be programmatically enumerable. Nor are they documented. However, in Visual Studio
you can see a list of the predefined brushes by clicking the Grid in the BlankPage.xaml file and viewing
the available Background brush identifiers in the Properties view in the lower-right corner of Visual
Studio.

After ApplicationPageBackgroundBrush, the next most important predefined resource identifier is
ApplicationTextBrush, which is black in the light theme, and white in the dark theme. If you need a
color to properly contrast with the background (as I will shortly), this is it. The ControlHighlightBrush is
also convenient for a splash of color that contrasts with both the background and foreground.

Resources Are Shared

Are resource objects truly shared among the elements that reference them? Or are separate instances
created for each StaticResource reference?

Try inserting the following code after the InitializeComponent call in the SharedBrush.xaml.cs file:

TextBlock txtblk = (this.Content as Grid).Children[1] as TextBlock;

LinearGradientBrush brush = txtblk.Foreground as LinearGradientBrush;

brush.StartPoint = new Point(0, 1);

brush.EndPoint = new Point(0, 0);

This code references the LinearGradientBrush of the second TextBlock in the Children collection of the
Grid and changes the StartPoint and EndPoint properties. Lo and behold, all the TextBlock elements
referencing that LinearGradientBrush are affected:

58

www.it-ebooks.info

http://www.it-ebooks.info/

Conclusion: resources are shared.

It’s also easy to verify that even if a resource is not referenced by any element, it is still instantiated.

A Bit of Vector Graphics

As you’ve seen, displaying text and bitmaps in a Metro style application involves creating objects of
type TextBlock and Image and attaching them to a visual tree. There’s no concept of “drawing” or
“painting,” at least not on the application level. Internal to the Windows Runtime, the TextBlock and
Image elements are rendering themselves.

Similarly, if you wish to display some vector graphics—lines, curves, and filled areas—you don’t do it
by calling methods like DrawLine and DrawBezier. These methods do not exist! Instead, you create
elements of type Line, Polyline, Polygon, and Path. These classes derive from the Shape class (which
itself derives from FrameworkElement) and can all be found in the Windows.UI.Xaml.Shapes
namespace, which is sometimes referred to as the Shapes library.

A deep exploration of vector graphics awaits us in a future chapter. For now, let’s just examine two
of the most powerful members of the Shapes library: Polyline and Path.

Polyline renders a collection of connected straight lines, but its real purpose is to draw complex
curves. All you need to do is keep the individual lines short and supply plenty of them. Don’t hesitate
to give Polyline thousands of lines. That’s what it’s there for.

Let’s use Polyline to draw an Archimedean spiral. The XAML file for the Spiral program instantiates
the Polyline object but doesn’t include the points that define the figure:

59

www.it-ebooks.info

http://www.it-ebooks.info/

Project: Spiral | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Polyline Name="polyline"

 Stroke="{StaticResource ApplicationTextBrush}"

 StrokeThickness="3"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The Stroke property (inherited from Shape) is the brush used to draw the actual lines. Generally, this is a
SolidColorBrush, but you’ll see shortly that it doesn’t have to be. I’ve used StaticResource with the
predefined identifier that provides a white brush with a dark theme and a black brush with a light
theme. StrokeThickness (also inherited from Shape) is the width of the lines in pixels, and you’ve seen
HorizontalAlignment and VerticalAlignment before.

It might seem a little strange to specify HorizontalAlignment and VerticalAlignment for a chunk of
vector graphics, so a little explanation might be in order.

Two-dimensional vector graphics involve the use of coordinate points in the form (X, Y) on a
Cartesian coordinate system, where X is a position on the horizontal axis and Y is a position on the
vertical axis. Vector graphics in the Windows Runtime use a coordinate convention commonly
associated with windowing environments: values of X increase to the right (as is normal), but values of
Y increase going down (which is opposite the mathematical convention).

When only positive values of X and Y are used, the origin—the point (0, 0)—is the upper-left corner
of the graphical figure.

Negative coordinates can be used to indicate points to the left of the origin or above the origin.
However, when the Windows Runtime calculates the dimensions of a vector graphics object for layout
purposes, these negative coordinates are ignored. For example, suppose you draw a polyline with
points that have X coordinates ranging from –100 to 300 and Y coordinates ranging from –200 to 400.
This implies that the polyline has a dimension of 400 pixels wide and 600 pixels high, and that is
certainly true. But for purposes of layout and alignment, the polyline is treated as if it were 300 pixels
wide and 400 pixels tall.

For a vector graphics figure to be treated in a predictable manner in the Windows Runtime layout
system, all that’s required is that you regard the point (0, 0) as the upper-left corner. For purposes of
layout, the maximum positive X coordinate becomes the element’s width and the maximum positive Y
coordinate become’s the element’s height.

For specifying a coordinate point, the Windows.Foundation namespace includes a Point structure
that has two properties of type double named X and Y. In addition, the Windows.UI.Xaml.Media
namespace includes a PointCollection, which is a collection of Point objects.

The only property that Polyline defines on its own is Points of type PointCollection. A collection of
points can be assigned to the Points property in XAML, but for very many points calculated
algorithmically, code is ideal. In the constructor of the Spiral class, a for loop goes from 0 to 3600

60

www.it-ebooks.info

http://www.it-ebooks.info/

degrees, effectively spinning around a circle 10 times:

Project: Spiral | File: BlankPage.xaml.cs (excerpt)

public BlankPage()

{

 this.InitializeComponent();

 for (int angle = 0; angle < 3600; angle++)

 {

 double radians = Math.PI * angle / 180;

 double radius = angle / 10;

 double x = 360 + radius * Math.Sin(radians);

 double y = 360 + radius * Math.Cos(radians);

 polyline.Points.Add(new Point(x, y));

 }

}

The radians variable converts degrees to radians for the .NET trig functions, and radius is calculated to
range from 0 through 360 depending on the angle, which means that the maximum radius will be 360
pixels. The values returned by the Math.Sin and Math.Cos static methods are multiplied by radius,
which means these products will range between –360 and 360 pixels.

To shift this figure so that all pixels have positive values relative to an upper-left origin, 360 is added
to both products. The spiral is thus centered at the point (360, 360) and extends not more than 360
pixels in all directions.

The loop concludes by instantiating a Point value and adding it to the Points collection of the
Polyline. Here it is:

Without the HorizontalAlignment and VerticalAlignment settings, the figure would be aligned at the

upper-left corner of the page. If the adjustment for the spiral’s center is also removed from the

61

www.it-ebooks.info

http://www.it-ebooks.info/

calculation, the center would be in the upper-left corner of the page and ¾ of the figure would not be
visible. If you keep HorizontalAlignment and VerticalAlignment set to Center but remove the
adjustment for the spiral’s center, you’ll see the figure positioned so that the lower-right quadrant is
centered.

The spiral almost fills the screen, but that’s only because the screen I’m using for these images has a
height of 768 pixels. What if we wanted to ensure that the spiral filled the screen regardless of the
screen’s size?

One solution is to base the numbers going into the calculation of the spiral coordinates directly on
the pixel size of the screen. You’ll see how to do that in Chapter 3, “Basic Event Handling.”

Another solution requires noticing that the Shape class defines a property named Stretch that you
use in exactly the same way you use the Stretch property of Image. By default, the Stretch property for
Polyline is the enumeration member Stretch.None, which means no stretching, but you can set it to
Uniform so that the figure fills the container while maintaining its aspect ratio.

The StretchedSpiral project demonstrates this. The XAML file sets a larger stroke width as well:

Project: StretchedSpiral | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Polyline Name="polyline"

 Stroke="{StaticResource ApplicationTextBrush}"

 StrokeThickness="6"

 Stretch="Uniform" />

</Grid>

The code-behind file calculates the coordinates of the spiral using arbitrary coordinates, which in
this case I’ve chosen based on a radius of 1000:

Project: StretchedSpiral | File: BlankPage.xaml.cs (excerpt)

public BlankPage()

{

 this.InitializeComponent();

 for (int angle = 0; angle < 3600; angle++)

 {

 double radians = Math.PI * angle / 180;

 double radius = angle / 3.6;

 double x = 1000 + radius * Math.Sin(radians);

 double y = 1000 - radius * Math.Cos(radians);

 polyline.Points.Add(new Point(x, y));

 }

}

You might also notice that I changed a plus to a minus in the y calculation so that the spiral ends at the
top rather than the bottom. The switch to the light theme demonstrates the convenience of using
ApplicationTextBrush for the Stroke color:

62

www.it-ebooks.info

http://www.it-ebooks.info/

Try setting the Stretch property to Fill to see this circular spiral be distorted into an elliptical spiral.

You’ll recall how LinearGradientBrush adapts itself to the size of whatever element it’s applied to.
The same is true when using that brush with vector graphics. Let’s instead try an ImageBrush, which is a
brush created from a bitmap.

The code-behind file for ImageBrushedSpiral is the same as StretchedSpiral. The XAML file widens
the stroke considerably and instantiates an ImageBrush:

Project: ImageBrushedSpiral | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Polyline Name="polyline"

 StrokeThickness="25"

 Stretch="Uniform">

 <Polyline.Stroke>

 <ImageBrush ImageSource="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"

 Stretch="UniformToFill"

 AlignmentY="Top" />

 </Polyline.Stroke>

 </Polyline>

</Grid>

The ImageSource property of ImageBrush is of type ImageSource, just like the Source property of
Image. In XAML you can just set it to a URL. ImageBrush has its own Stretch property, which by default
is Fill. This means that the bitmap is stretched to fill the area without respecting the aspect ratio. For
the image I’m using, that would make me look fat, so I switched to UniformToFill, which maintains the
image’s aspect ratio while filling the area. Doing so requires part of the image to be cropped. Use the
AlignmentX and AlignmentY properties to indicate how the bitmap should be aligned with the
graphical figure, and consequently, where the image should be cropped. For this bitmap, I prefer that
the bottom be cropped rather than my head:

63

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that the alignment of the image seems to be based on the geometric line of the spiral rather

than the line rendered with a width of 25 pixels. This causes areas at the top, left, and right sides to be
shaved off. The problem can be fixed with the Transform property of ImageBrush, but that’s a little too
advanced for this chapter.

You may have noticed that ImageBrush derives from TileBrush. That heritage might suggest that
you could repeat bitmap images horizontally and vertically to tile a surface, but doing so is not
supported by the Windows Runtime.

Any curve that you can define with parametric formulas, you can render with Polyline. But if the
complex curves you need are arcs (that is, curves on the circumference of an ellipse), cubic Bézier
splines (the standard sort), or quadratic Bézier splines (which have only one control point), you don’t
need to use Polyline. These curves are all supported with the Path element.

Path defines just one property on its own called Data, of type Geometry, a class defined in
Windows.UI.Xaml.Media. In the Windows Runtime, Geometry and related classes represent pure
analytic geometry. The Geometry object defines lines and curves using coordinate points, and the Path
renders those lines with a particular stroke brush and thickness.

The most powerful and flexible Geometry derivative is PathGeometry. The content property of
PathGeometry is named Figures, which is a collection of PathFigure objects. Each PathFigure is a series
of connected straight lines and curves. The content property of PathFigure is Segments, a collection of
PathSegment objects. PathSegment is the parent class to LineSegment, PolylineSegment, BezierSegment,
PolyBezierSegment, QuadraticBezierSegment, PolyQuadraticBezierSegment, and ArcSegment.

Let’s display the word HELLO by using Path and PathGeometry:

Project: HelloVectorGraphics | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

64

www.it-ebooks.info

http://www.it-ebooks.info/

 <Path Stroke="Red"

 StrokeThickness="12"

 StrokeLineJoin="Round"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <Path.Data>

 <PathGeometry>

 <!-- H -->

 <PathFigure StartPoint="0 0">

 <LineSegment Point="0 100" />

 </PathFigure>

 <PathFigure StartPoint="0 50">

 <LineSegment Point="50 50" />

 </PathFigure>

 <PathFigure StartPoint="50 0">

 <LineSegment Point="50 100" />

 </PathFigure>

 <!-- E -->

 <PathFigure StartPoint="125 0">

 <BezierSegment Point1="60 -10" Point2="60 60" Point3="125 50" />

 <BezierSegment Point1="60 40" Point2="60 110" Point3="125 100" />

 </PathFigure>

 <!-- L -->

 <PathFigure StartPoint="150 0">

 <LineSegment Point="150 100" />

 <LineSegment Point="200 100" />

 </PathFigure>

 <!-- L -->

 <PathFigure StartPoint="225 0">

 <LineSegment Point="225 100" />

 <LineSegment Point="275 100" />

 </PathFigure>

 <!-- O -->

 <PathFigure StartPoint="300 50">

 <ArcSegment Size="25 50" Point="300 49.9" IsLargeArc="True" />

 </PathFigure>

 </PathGeometry>

 </Path.Data>

 </Path>

</Grid>

Each letter is one or more PathFigure objects, which always specifies a starting point for a series of
connected lines. The PathSegment derivatives continue the figure from that point. For example, to
draw the “E,” BezierSegment specifies two control points and an end point. The next BezierSegment
then continues from the end of the previous segment. (In the ArcSegment, the end point for the arc
can’t be the same as the start point or nothing will be drawn. That why it’s set to 1/10th pixel short.)

The result suggests that a pair of Bézier splines was perhaps not the best way to render a capital E:

65

www.it-ebooks.info

http://www.it-ebooks.info/

Try setting the Stretch property of Path to Fill for a “really big hello”:

Of course you can assemble the PathFigure and PathSegment objects in code, but let me show you

an easier way to do it in XAML. A Path Markup Syntax is available that consists of single letters,
coordinate points, an occasional size, and a couple Boolean values that reduce the markup
considerably. The HelloVectorGraphicsPath project creates the same figure as HelloVectorGraphics:

Project: HelloVectorGraphicsPath | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Path Stroke="Red"

 StrokeThickness="12"

 StrokeLineJoin="Round"

66

www.it-ebooks.info

http://www.it-ebooks.info/

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Data="M 0 0 L 0 100 M 0 50 L 50 50 M 50 0 L 50 100

 M 125 0 C 60 -10, 60 60, 125 50, 60 40, 60 110, 125 100

 M 150 0 L 150 100, 200 100

 M 225 0 L 225 100, 275 100

 M 300 50 A 25 50 0 1 0 300 49.9" />

</Grid>

The Data property is now one big string, but I’ve separated it into five lines corresponding to the five
letters. The M code is a “move” followed by x and y coordinate points. The L is a line (or, more
precisely, a polyline) followed by one or more points; C is a cubic Bézier curve, followed by control
points and an end point, but more than one can be included; and A is an arc. The arc is by far the most
complex: The first two numbers indicate the horizontal and vertical radii of an ellipse, which is rotated a
number of degrees given by the next argument. Following are two flags for the IsLargeArc property
and sweep direction, followed by the end point.

Defining a complex geometry in terms of Path Markup Syntax is one example of something that can
be done only in XAML. Whatever class performs this conversion is not publicly exposed in the Windows
Runtime. It is available only to the XAML parser. To convert a string of Path Markup Syntax to a
Geometry in code would require some way to convert XAML to an object in code.

Fortunately, something like that is available. It’s a static method named XamlReader.Load in the
Windows.UI.Xaml.Markup namespace. Pass it a string of XAML and get out an instance of the root
element with all the other parts of the tree instantiated and assembled. XamlReader.Load has some
restrictions—the XAML it parses can’t refer to event handlers in external code, for example—but it is a
very powerful facility. In Chapter 7, “Building an Application,” I’ll show you the source code for a tool
called XamlCruncher that lets you interactively experiment with XAML.

Meanwhile, here’s a Path with Path Markup Syntax created entirely in code:

Project: PathMarkupSyntaxCode | File: BlankPage.xaml.cs

using Windows.UI; // for Colors

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Markup; // for XamlReader

using Windows.UI.Xaml.Media;

using Windows.UI.Xaml.Shapes; // for Path

namespace PathMarkupSyntaxCode

{

 public sealed partial class BlankPage : Page

 {

 public BlankPage()

 {

 this.InitializeComponent();

 Path path = new Path

 {

 Stroke = new SolidColorBrush(Colors.Red),

67

www.it-ebooks.info

http://www.it-ebooks.info/

 StrokeThickness = 12,

 StrokeLineJoin = PenLineJoin.Round,

 HorizontalAlignment = HorizontalAlignment.Center,

 VerticalAlignment = VerticalAlignment.Center,

 Data = PathMarkupToGeometry(

 "M 0 0 L 0 100 M 0 50 L 50 50 M 50 0 L 50 100 " +

 "M 125 0 C 60 -10, 60 60, 125 50, 60 40, 60 110, 125 100 " +

 "M 150 0 L 150 100, 200 100 " +

 "M 225 0 L 225 100, 275 100 " +

 "M 300 50 A 25 50 0 1 0 300 49.9")

 };

 (this.Content as Grid).Children.Add(path);

 }

 Geometry PathMarkupToGeometry(string pathMarkup)

 {

 string xaml =

 "<Path " +

 "xmlns='http://schemas.microsoft.com/winfx/2006/xaml/presentation'>" +

 "<Path.Data>" + pathMarkup + "</Path.Data></Path>";

 Path path = XamlReader.Load(xaml) as Path;

 // Detach the PathGeometry from the Path

 Geometry geometry = path.Data;

 path.Data = null;

 return geometry;

 }

 }

}

Watch out when working with the Path class in code: the BlankPage.xaml.cs file that Visual Studio
generates does not include a using directive for Windows.UI.Xaml.Shape where Path resides but does
include a using directive for System.IO, which has a very different Path class for working with files and
directories.

The magic method is down at the bottom. It assembles a tiny piece of legal XAML with Path as the
root element and property-element syntax to enclose the string of Path Markup Syntax. Notice that the
XAML must include the standard XML namespace declaration. If XamlReader.Load doesn’t encounter
any errors, it returns a Path with a Data property set to a PathGeometry. However, you can’t use this
PathGeometry for another Path unless you disconnect it from this Path, which requires setting the Data
property of the returned Path to null.

Styles

You’ve seen how brushes can be defined as resources and shared among elements. By far the most
common use of resources is to define styles, which are instances of the Style class. A style is basically a
collection of property definitions that can be shared among multiple elements. The use of styles not

68

www.it-ebooks.info

http://www.it-ebooks.info/

only reduces repetitive markup, but also allows easier global changes.

After this discussion, much of the StandardStyles.xaml file included in the Common folder of your
Visual Studio projects will be comprehensible, except for large sections within ControlTemplate tags.
That’s coming up in a later chapter.

The SharedBrushWithStyle project is much the same as SharedBrush except that it uses a Style to
consolidate several properties. Here’s the new Resources section with the Style near the bottom:

Project: SharedBrushWithStyle | File: BlankPage.xaml (excerpt)

<Page.Resources>

 <x:String x:Key="appName">Shared Brush with Style</x:String>

 <LinearGradientBrush x:Key="rainbowBrush">

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="0.17" Color="Orange" />

 <GradientStop Offset="0.33" Color="Yellow" />

 <GradientStop Offset="0.5" Color="Green" />

 <GradientStop Offset="0.67" Color="Blue" />

 <GradientStop Offset="0.83" Color="Indigo" />

 <GradientStop Offset="1" Color="Violet" />

 </LinearGradientBrush>

 <Style x:Key="rainbowStyle" TargetType="TextBlock">

 <Setter Property="FontFamily" Value="Times New Roman" />

 <Setter Property="FontSize" Value="96" />

 <Setter Property="Foreground" Value="{StaticResource rainbowBrush}" />

 </Style>

</Page.Resources>

Like all resources, the start tag of the Style includes an x:Key attribute. Style also requires a
TargetType attribute indicating either FrameworkElement or a class that derives from
FrameworkElement. Styles can be applied only to FrameworkElement derivatives.

The body of the Style includes a bunch of Setter tags, each of which specifies Property and Value
attributes. Notice that the last one has its Value attribute set to a StaticResource of the previously
defined LinearGradientBrush. For this reference to work, this particular Style must be defined later in
the XAML file than the brush, although it can be in a different Resources section deeper in the visual
tree.

Like other resources, an element references a Style by using the StaticResource markup extension on
its Style property:

Project: SharedBrushWithStyle | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="{StaticResource appName}"

 FontSize="48"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <TextBlock Text="Top Text"

69

www.it-ebooks.info

http://www.it-ebooks.info/

 Style="{StaticResource rainbowStyle}"

 HorizontalAlignment="Center"

 VerticalAlignment="Top" />

 <TextBlock Text="Left Text"

 Style="{StaticResource rainbowStyle}"

 HorizontalAlignment="Left"

 VerticalAlignment="Center" />

 <TextBlock Text="Right Text"

 Style="{StaticResource rainbowStyle}"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBlock Text="Bottom Text"

 Style="{StaticResource rainbowStyle}"

 HorizontalAlignment="Center"

 VerticalAlignment="Bottom" />

</Grid>

Except for the application name, the visuals are the same as the SharedBrush program.

There is an alternative way for this particular Style to incorporate the LinearGradientBrush. Just as
you can use property-element syntax on elements to define an object with complex markup, you can
use property-element syntax with the Value property of the Setter class:

<Style x:Key="rainbowStyle" TargetType="TextBlock">

 <Setter Property="FontFamily" Value="Times New Roman" />

 <Setter Property="FontSize" Value="96" />

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="0.17" Color="Orange" />

 <GradientStop Offset="0.33" Color="Yellow" />

 <GradientStop Offset="0.5" Color="Green" />

 <GradientStop Offset="0.67" Color="Blue" />

 <GradientStop Offset="0.83" Color="Indigo" />

 <GradientStop Offset="1" Color="Violet" />

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

</Style>

I know it looks a little odd at first, but defining brushes within styles is very common. Notice that the
LinearGradientBrush here has no x:Key of its own. Only items defined at the root level in a Resources
collection can have x:Key attributes.

You can define a Style in code, for example, like so:

Style style = new Style(typeof(TextBlock));

style.Setters.Add(new Setter(TextBlock.FontSizeProperty, 96));

style.Setters.Add(new Setter(TextBlock.FontFamilyProperty,

 new FontFamily("Times New Roman")));

70

www.it-ebooks.info

http://www.it-ebooks.info/

You could then add this to the Resources collection of a Page prior to the InitializeComponent call so
that it would be available to TextBlock elements defined in the XAML file. Or you could assign this Style
object directly to the Style property of a TextBlock. This isn’t common, however, because code offers
other solutions for defining the same properties on several different elements, namely the for or
foreach loop.

Take careful note of the first argument to the Setter constructor. It’s defined as a
DependencyProperty, and what you specify is a static dependency property defined by (or inherited by)
the target class of the style. This is an excellent example of how dependency properties allow a
property of a class to be specified independently of a particular instance of that class.

The code also makes clear that the properties targeted by a Style can only be dependency
properties. I mentioned earlier that dependency properties impose a hierarchy on the way that
properties can be set. For example, suppose you have the following markup in this program:

<TextBlock Text="Top Text"

 Style="{StaticResource rainbowStyle}"

 FontSize="24"

 HorizontalAlignment="Center"

 VerticalAlignment="Top" />

The Style defines a FontSize value, but the FontSize property is also set locally on the TextBlock. As
you might hope and expect, the local setting takes precedence over the Style setting, and both take
precedence over a FontSize value propagated through the visual tree.

Once a Style object is set to the Style property of an element, the Style can no longer be changed.
You can later set a different Style object to the element, and you can change properties of objects
referenced by the style (such as brushes), but you cannot set or remove Setter objects or change their
Value properties.

Styles can inherit property settings from other styles by using a Style property called BasedOn,
which is usually set to a StaticResource markup extension referencing a previously defined Style
definition:

<Style x:Key="baseTextBlockStyle" TargetType="TextBlock">

 <Setter Property="FontFamily" Value="Times New Roman" />

 <Setter Property="FontSize" Value="24" />

</Style>

<Style x:Key="gradientStyle" TargetType="TextBlock"

 BasedOn="{StaticResource baseTextBlockStyle}">

 <Setter Property="FontSize" Value="96" />

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="1" Color="Blue" />

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

71

www.it-ebooks.info

http://www.it-ebooks.info/

</Style>

The Style with the key “gradientStyle” is based on the previous Style with the key “baseTextBlockStyle,”
which means that it inherits the FontFamily setting, overrides the FontSize setting, and defines a new
Foreground setting.

Here’s another example:

<Style x:Key="centeredStyle" TargetType="FrameworkElement">

 <Setter Property="HorizontalAlignment" Value="Center" />

 <Setter Property="VerticalAlignment" Value="Center" />

</Style>

<Style x:Key="rainbowStyle" TargetType="TextBlock"

 BasedOn="{StaticResource centeredStyle}">

 <Setter Property="FontSize" Value="96" />

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="1" Color="Blue" />

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

</Style>

In this case, the first Style has a TargetType of FrameworkElement, which means that it can include only
properties defined by FrameworkElement or inherited by FrameworkElement. You can still use this
property for a TextBlock because TextBlock derives from FrameworkElement. The second Style is based
on “centeredStyle” but has a TargetType of TextBlock, which means it can also include property settings
specific to TextBlock. The TargetType must be the same as the BasedOn type or derived from the
BasedOn type.

Despite all I’ve said about keys being required for resources, a Style is actually the only exception to
this rule. A Style without an x:Key is a very special case called an implicit style. The Resources section of
the ImplicitStyle project has an example:

Project: ImplicitStyle | File: BlankPage.xaml (excerpt)

<Page.Resources>

 <x:String x:Key="appName">Implicit Style App</x:String>

 <Style TargetType="TextBlock">

 <Setter Property="FontFamily" Value="Times New Roman" />

 <Setter Property="FontSize" Value="96" />

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="0.17" Color="Orange" />

 <GradientStop Offset="0.33" Color="Yellow" />

 <GradientStop Offset="0.5" Color="Green" />

 <GradientStop Offset="0.67" Color="Blue" />

72

www.it-ebooks.info

http://www.it-ebooks.info/

 <GradientStop Offset="0.83" Color="Indigo" />

 <GradientStop Offset="1" Color="Violet" />

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

 </Style>

</Page.Resources>

A key is actually created behind the scenes. It’s an object of type RuntimeType (which is not a public
type) indicating the TextBlock type.

The implicit style is very powerful. Any TextBlock further down the visual tree that does not have its
Style property set instead gets the implicit style. If you have a page full of TextBlock elements and you
suddenly decide that you want them all to be styled the same way, the implicit style makes it very easy.
Notice that none of these TextBlock elements have their Style properties set:

Project: ImplicitStyle | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="{StaticResource appName}"

 FontFamily="Portable User Interface"

 FontSize="48"

 Foreground="{StaticResource ApplicationTextBrush}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <TextBlock Text="Top Text"

 HorizontalAlignment="Center"

 VerticalAlignment="Top" />

 <TextBlock Text="Left Text"

 HorizontalAlignment="Left"

 VerticalAlignment="Center" />

 <TextBlock Text="Right Text"

 HorizontalAlignment="Right"

 VerticalAlignment="Center" />

 <TextBlock Text="Bottom Text"

 HorizontalAlignment="Center"

 VerticalAlignment="Bottom" />

</Grid>

Although I obviously intended for the implicit style to apply to most of the TextBlock elements on the
page, I didn’t want it to apply to the first one, which appears in the center. If you want certain elements
on the page to not have this implicit style, you must give those elements an explicit style or provide
local settings that override the properties included in the Style object, or set the Style property to null.
(I’ll show you how to do that in XAML shortly.) In this example, I’ve overridden the implicit style in the
first TextBlock by giving it the default FontFamily name, an explicit FontSize, and a Foreground based
on a predefined resource.

73

www.it-ebooks.info

http://www.it-ebooks.info/

You cannot derive a style from an implicit style. However, an implicit style can be based on a
nonimplicit style. Simply provide TargetType and BasedOn attributes and leave out the x:Key.

The implicit style is very powerful, but remember: With great power comes…and you know the rest.
In a large application, styles can be defined all over the place and visual trees can extend over multiple
XAML files. It sometimes happens that a style is implicitly applied to an element, but it’s very hard to
determine where that style is actually defined!

At this point, you can begin using (or at least start looking at) the TextBlock styles defined in the
StandardStyles.xaml file. These are called BasicTextStyle, BaselineTextStyle, HeaderTextStyle,
SubheaderTextStyle, TitleTextStyle, ItemTextStyle, BodyTextStyle, and CaptionTextStyle, and obviously
they are for more extensive text layout than I’ve been doing here.

A Taste of Data Binding

Another way to share objects in a XAML file is through data bindings. Basically, a data binding
establishes a connection between two properties of different objects. As you’ll see in Chapter 6, “WinRT
and MVVM,” data bindings find their greatest application in linking visual elements on a page with
data sources, and they form a crucial part of implementing the popular Model-View-View Model
(MVVM) architectural pattern. In MVVM, the target of the binding is a visual element in the View, and
the source of the binding is a property in a corresponding View Model.

You can also use data bindings to link properties of two elements. Like StaticResource, Binding is
generally expressed as a markup extension, which means that it appears between a pair of curly braces.
However, Binding is more elaborate than StaticResource and can alternatively be expressed in
property-element syntax.

Here’s the Resources section from the SharedBrushWithBinding project:

Project: SharedBrushWithBinding | File: BlankPage.xaml (excerpt)

<Page.Resources>

 <x:String x:Key="appName">Shared Brush with Binding</x:String>

 <Style TargetType="TextBlock">

 <Setter Property="FontFamily" Value="Times New Roman" />

 <Setter Property="FontSize" Value="96" />

 </Style>

</Page.Resources>

The implicit style for the TextBlock no longer has a Foreground property. The LinearGradientBrush is
defined on the first of the four TextBlock elements that use that brush, and the subsequent TextBlock
elements reference that same brush through a binding:

Project: SharedBrushWithBinding | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="{StaticResource appName}"

74

www.it-ebooks.info

http://www.it-ebooks.info/

 FontFamily="Portable User Interface"

 FontSize="48"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <TextBlock Name="topTextBlock"

 Text="Top Text"

 HorizontalAlignment="Center"

 VerticalAlignment="Top">

 <TextBlock.Foreground>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="Red" />

 <GradientStop Offset="0.17" Color="Orange" />

 <GradientStop Offset="0.33" Color="Yellow" />

 <GradientStop Offset="0.5" Color="Green" />

 <GradientStop Offset="0.67" Color="Blue" />

 <GradientStop Offset="0.83" Color="Indigo" />

 <GradientStop Offset="1" Color="Violet" />

 </LinearGradientBrush>

 </TextBlock.Foreground>

 </TextBlock>

 <TextBlock Text="Left Text"

 HorizontalAlignment="Left"

 VerticalAlignment="Center"

 Foreground="{Binding ElementName=topTextBlock, Path=Foreground}" />

 <TextBlock Text="Right Text"

 HorizontalAlignment="Right"

 VerticalAlignment="Center"

 Foreground="{Binding ElementName=topTextBlock, Path=Foreground}" />

 <TextBlock Text="Bottom Text"

 HorizontalAlignment="Center"

 VerticalAlignment="Bottom">

 <TextBlock.Foreground>

 <Binding ElementName="topTextBlock" Path="Foreground" />

 </TextBlock.Foreground>

 </TextBlock>

</Grid>

Data bindings are said to have a source and a target. The target is always the property on which the
binding is set, and the source is the property the binding references. The TextBlock with the name
“topTextBlock” is considered the source of these data bindings; the three TextBlock elements that share
the Foreground property are targets. Two of these targets show the more standard way of expressing
the Binding object as a XAML markup extension:

Foreground="{Binding ElementName=topTextBlock, Path=Foreground}"

XAML markup extensions always appear in curly braces. In the markup extension for Binding, a couple
properties and values usually need to be set. These properties are separated by commas. The
ElementName property indicates the name of the element on which the desired property has been set;

75

www.it-ebooks.info

http://www.it-ebooks.info/

the Path provides the name of the property.

When I’m typing a Binding markup extension, I always want to put quotation marks around the
property values, but that’s wrong. Quotation marks do not appear in a binding expression.

The final TextBlock shows the Binding expressed in less common property-element syntax:

<TextBlock.Foreground>

 <Binding ElementName="topTextBlock" Path="Foreground" />

</TextBlock.Foreground>

With this syntax, the quotation marks around the element name and path are required.

You can also create a Binding object in code and set it on a target property by using the SetBinding
method defined by FrameworkElement. When doing this, you’ll discover that the binding target must
be a dependency property.

The Path property of the Binding class is called Path because it can actually be several property
names separated by periods. For example, replace one of the Text settings in this project with the
following:

Text="{Binding ElementName=topTextBlock, Path=FontFamily.Source}"

The first part of the Path indicates that we want something from the FontFamily property. That
property is set to an object of type FontFamily, which has a property named Source indicating the font
family name. The text displayed by this TextBlock is therefore “Times New Roman.”

Try this on any TextBlock in this project:

Text="{Binding RelativeSource={RelativeSource Self}, Path=FontSize}"

That’s a RelativeSource markup extension inside a Binding markup extension, and you use it to
reference a property of the same element on which the binding is set.

With StaticResource, Binding, and RelativeSource, you’ve now seen 60 percent of the XAML markup
extensions supported by the Windows Runtime. The TemplateBinding markup extension won’t turn up
until a later chapter.

The remaining markup extension is not used very often, but when you need it, it’s indispensable.
Suppose you’ve defined an implicit style for the Grid that includes a Background property, and it does
exactly what you want except for one Grid where you want the Background property to be its default
value of null. How do you specify null in markup? Like so:

Background="{x:Null}"

Or suppose you’ve defined an implicit style and there’s one element where you don’t want any part
of the style to apply. Inhibit the implicit style like so:

Style="{x:Null}"

You have now seen nearly all the elements and attributes that appear with an “x” prefix in Windows

76

www.it-ebooks.info

http://www.it-ebooks.info/

Runtime XAML files. These are the data types x:Boolean, x:Double, x:Int32, x:String, as well as the x:Class,
x:Name, and x:Key attributes and the x:Null markup extension. The only one I haven’t mentioned is
x:Uid, which must be set to application-wide unique strings that reference resources for
internationalization purposes. That’s for a later chapter.

77

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

Basic Event Handling
The previous chapters have demonstrated how you can instantiate and initialize elements and other
objects in either XAML or code. The most common procedure is to use XAML to define the initial
layout and appearance of elements on a page but then to change properties of these elements from
code as the program is running.

As you’ve seen, assigning a Name or x:Name to an element in XAML causes a field to be defined in
the page class that gives the code-behind file easy access to that element. This is one of the two major
ways that code and XAML interact. The second is through events. An event is a general-purpose
mechanism that allows one object to communicate something of interest to other objects. The event is
said to be “fired” by the first object and “handled” by the other. In the Windows Runtime, one
important application of events is to signal the presence of user input from touch, the mouse, a stylus,
or the keyboard.

Following initialization, a Windows Runtime program generally sits dormant in memory waiting for
something interesting to happen. Almost everything the program does thereafter is in response to an
event, so the job of event handling is one that will occupy much of the rest of this book.

The Tapped Event

The UIElement class defines all the basic user-input events. These include eight events beginning with
the word Pointer that consolidate input from touch, the mouse, and the stylus; five events beginning
with the word Manipulation that combine input from multiple fingers; two Key events for keyboard
input; as well as higher level events named Tapped, DoubleTapped, RightTapped, and Holding. (No, the
RightTapped event is not generated by a finger on your right hand; it’s mostly used to register
right-button clicks on the mouse, but you can simulate a right tap with touch by holding your finger
down for a moment and then lifting, a gesture that also generates Holding events. It’s the application’s
responsibility to determine how it wants to handle these.)

A complete exploration of these user-input events awaits us in a future chapter. For now, let’s focus
on Tapped as a simple representative event. An element that derives from UIElement fires a Tapped
event to indicate that the user has briefly touched the element with a finger, or clicked it with the
mouse, or dinged it with the stylus. To qualify as a Tapped event, the finger (or mouse or stylus) cannot
move very much and must be released in a short period of time.

All the user-input events have a similar pattern. UIElement defines the Tapped event like so:

public event TappedEventHandler Tapped;

78

www.it-ebooks.info

http://www.it-ebooks.info/

The TappedEventHandler is defined in the Windows.UI.Xaml.Input namespace. It’s a delegate type that
defines the signature of the event handler:

public delegate void TappedEventHandler(object sender, TappedRoutedEventArgs e);

In the event handler, the first argument indicates the source of the event (which is always an instance
of a class that derives from UIElement) and the second argument provides properties and methods
specific to the Tapped event.

The XAML file for the TapTextBlock program defines a TextBlock with a Name attribute as well as a
handler for the Tapped event:

Project: TapTextBlock | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Name="txtblk"

 Text="Tap Text!"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Tapped="txtblk_Tapped_1" />

</Grid>

As you type TextBlock attributes in XAML, IntelliSense suggests events as well as properties. These are
distinguished with little icons: a wrench for properties and a lightning bolt for events. (You’ll also see a
few with pairs of curly brackets. These are attached properties that I’ll describe in Chapter 4,
“Presentation with Panels.”) If you allow it, IntelliSense also suggests a name for the event handler, and
I let it choose this one. Based solely on the XAML syntax, you really can’t tell which attributes are
properties and which are events.

The actual event handler is implemented in the code-behind file. If you allow Visual Studio to select
a handler name for you, you’ll discover that Visual Studio also creates a skeleton event handler in the
BlankPage.xaml.cs file:

private void txtblk_Tapped_1(object sender, TappedRoutedEventArgs e)

{

}

This is the method that is called when the user taps the TextBlock. In future projects, I’ll change the
names of event handlers to make them more to my liking. I’ll remove the private keyword (because
that’s the default), I’ll change the name to eliminate underscores and preface it with the word On (for
example OnTextBlockTapped), and I’ll change the argument named e to args. In theory, you should be
able to rename the method in the code file and then click a little global-rename icon to rename the
method in the XAML file as well, but that doesn’t seem to work in the current version of Visual Studio.

For this sample program, I decided I want to respond to the tap by setting the TextBlock to a
random color. In preparation for that job, I defined fields for a Random object and a byte array for the
red, green, and blue bytes:

79

www.it-ebooks.info

http://www.it-ebooks.info/

Project: TapTextBlock | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 Random rand = new Random();

 byte[] rgb = new byte[3];

 public BlankPage()

 {

 this.InitializeComponent();

 }

 private void txtblk_Tapped_1(object sender, TappedRoutedEventArgs e)

 {

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 txtblk.Foreground = new SolidColorBrush(clr);

 }

}

I’ve removed the OnNavigatedTo method, because it’s not being used here. In the Tapped event
handler, the NextBytes method of the Random object obtains three random bytes, and these are used
to construct a Color value with the static Color.FromArgb method. The handler finishes by setting the
Foreground property of the TextBlock to a SolidColorBrush based on that Color value.

When you run this program, you can tap the TextBlock with a finger, mouse, or stylus and it will
change to a random color. If you tap on an area of the screen outside the TextBlock, nothing happens.
If you’re using a mouse or stylus, you might notice that you don’t need to tap the actual strokes that
comprise the letters. You can tap between and inside those strokes, and the TextBlock will still respond.
It’s as if the TextBlock has an invisible background that encompasses the full height of the font
including diacritical marks and descenders, and that’s precisely the case.

If you look inside the BlankPage.g.cs file generated by Visual Studio, you’ll see a Connect method
containing the code that attaches the event handler to the Tapped event of the TextBlock. You can do
this yourself in code. Try eliminating the Tapped handler assigned in the XAML file and instead attach
an event handler in the constructor of the code-behind file:

public BlankPage()

{

 this.InitializeComponent();

 txtblk.Tapped += txtblk_Tapped_1;

}

No real difference.

Several properties of TextBlock need to be set properly for the Tapped event to work. The
IsHitTestVisible and IsTapEnabled properties must both be set to their default values of true. The
Visibility property must be set to its default value of Visibility.Visible. If set to Visibility.Collapsed, the
TextBlock will not be visible at all and will not respond to user input.

The first argument to the txtblk_Tapped_1 event handler is the element that sent the event, in this

80

www.it-ebooks.info

http://www.it-ebooks.info/

case the TextBlock. The second argument provides information about this particular event, including
the coordinate point at which the tap occurred, and whether the tap came from a finger, mouse, or
stylus. This information will be explored in more detail in future chapters.

Routed Event Handling

Because the first argument to the Tapped event handler is the element that generates the event, you
don’t need to give the TextBlock a name to access it from within the event handler. You can simply cast
the sender argument to an object of type TextBlock. This is particularly useful for sharing an event
handler among multiple elements, and I’ve done precisely that in the RoutedEvents0 project.

RoutedEvents0 is the first of several projects that demonstrate the concept of routed event handling,
which is an important feature of the Windows Runtime. But this particular program doesn’t show any
features particular to routed events. Hence the suffix of zero. For this project I created the Tapped
handler first with the proper signature and my preferred name:

Project: RoutedEvents0 | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 Random rand = new Random();

 byte[] rgb = new byte[3];

 public BlankPage()

 {

 this.InitializeComponent();

 }

 void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)

 {

 TextBlock txtblk = sender as TextBlock;

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 txtblk.Foreground = new SolidColorBrush(clr);

 }

}

Notice the first line of the event handler casts the sender argument to TextBlock.

Because this event handler already exists in the code-behind file, Visual Studio suggests that name
when you type the name of the event in the XAML file. This was handy because I added nine TextBlock
elements to the Grid:

Project: RoutedEvents0 | File: BlankPage.xaml (excerpt)

<Page

 x:Class="RoutedEvents0.BlankPage"

 …

 FontSize="48">

81

www.it-ebooks.info

http://www.it-ebooks.info/

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Left / Top"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Tapped="OnTextBlockTapped" />

 …

 <TextBlock Text="Right / Bottom"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom"

 Tapped="OnTextBlockTapped" />

 </Grid>

</Page>

I’m sure you don’t need to see them all to get the general idea. Notice that FontSize is set for the Page
so that it is inherited by all the TextBlock elements. When you run the program, you can tap the
individual elements and each one changes its color independently of the others:

If you tap anywhere between the elements, nothing happens.

You might consider it a nuisance to set the same event handler on nine different elements in the
XAML file. If so, you’ll probably appreciate the following variation to the program. The RoutedEvents1
program uses routed input handling, a term used to describe how input events such as Tapped are fired
by the element on which the event occurs but the events are then routed up the visual tree. Rather
than set a Tapped handler for the individual TextBlock elements, you can instead set it on the parent of
one of these elements (for example, the Grid). Here’s an excerpt from the XAML file for the
RoutedEvents1 program:

Project: RoutedEvents1 | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}"

82

www.it-ebooks.info

http://www.it-ebooks.info/

 Tapped="OnGridTapped">

 <TextBlock Text="Left / Top"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

 …

 <TextBlock Text="Right / Bottom"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

</Grid>

In the process of moving the Tapped handler from the individual TextBlock elements to the Grid, I’ve
also renamed it to more accurately describe the source of the event.

The event handler must also be modified. The previous Tapped handler cast the sender argument to
a TextBlock. It could perform this cast with confidence because the event handler was set only on
elements of type TextBlock. However, when the event handler is set on the Grid as it is here, the sender
argument to the event handler will be the Grid. How can we determine which TextBlock was tapped?

Easy: the TappedRoutedEventArgs class—an instance of which appears as the second argument to
the event handler—has a property named OriginalSource, and that indicates the source of the event. In
this example, OriginalSource can be either a TextBlock (if you tap the text) or the Grid (if you tap
between the text), so the new event handler must perform a check before casting:

Project: RoutedEvents1 | File: BlankPage.xaml.cs (excerpt)

void OnGridTapped(object sender, TappedRoutedEventArgs args)

{

 if (args.OriginalSource is TextBlock)

 {

 TextBlock txtblk = args.OriginalSource as TextBlock;

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 txtblk.Foreground = new SolidColorBrush(clr);

 }

}

TappedRoutedEventArgs derives from RoutedEventArgs, which defines OriginalSource and no other
properties. Obviously, the OriginalSource property is a central concept of routed event handling. The
property allows ancestor elements to process events that originate with their descendants and to know
the source of these events.

Alternatively, you can set the Tapped handler on the Page rather than the Grid. But with the Page
there’s an easier way. I mentioned earlier that UIElement defines all the user-input events. These events
are inherited by all descendant classes, but the Control class adds its own event interface consisting of a
whole collection of virtual methods corresponding to these events. For the Tapped event defined by
UIElement, the Control class defines a virtual method named OnTapped. These virtual methods always
begin with the word On followed by the name of the event, so they are sometimes referred to as “On

83

www.it-ebooks.info

http://www.it-ebooks.info/

methods.” Page derives from Control via UserControl, so these methods are inherited on the Page class.

Here’s an excerpt from the XAML file for RoutedEvents2 showing that the XAML file defines no
event handlers:

Project: RoutedEvents2 | File: BlankPage.xaml (excerpt)

<Page

 x:Class="RoutedEvents2.BlankPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:RoutedEvents2"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d"

 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Left / Top"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

 …

 <TextBlock Text="Right / Bottom"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

 </Grid>

</Page>

Instead, the code-behind file has an override of the OnTapped method:

Project: RoutedEvents2 | File: BlankPage.xaml.cs (excerpt)

protected override void OnTapped(TappedRoutedEventArgs args)

{

 if (args.OriginalSource is TextBlock)

 {

 TextBlock txtblk = args.OriginalSource as TextBlock;

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 txtblk.Foreground = new SolidColorBrush(clr);

 }

 base.OnTapped(args);

}

When you’re typing in Visual Studio and you want to override a virtual method like OnTapped,
simply type the keyword override and press the space bar, and Visual Studio will provide a list of all the
virtual methods defined for that class. When you select one, Visual Studio creates a skeleton method
with a call to the base method. A call to the base method isn’t really required here, but including it is a
good habit to develop when overriding virtual methods

The On methods are basically the same as the event handlers, but they have no sender argument
because it’s no longer needed. In this context, sender would be the same as this, the instance of the

84

www.it-ebooks.info

http://www.it-ebooks.info/

Page that is processing the event.

The next project is RoutedEvents3. I decided to give the Grid a random background color if that’s
the element being tapped. The XAML file looks the same, but the revised OnTapped method looks like
this:

Project: RoutedEvents3 | File: BlankPage.xaml.cs (excerpt)

protected override void OnTapped(TappedRoutedEventArgs args)

{

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 SolidColorBrush brush = new SolidColorBrush(clr);

 if (args.OriginalSource is TextBlock)

 (args.OriginalSource as TextBlock).Foreground = brush;

 else if (args.OriginalSource is Grid)

 (args.OriginalSource as Grid).Background = brush;

 base.OnTapped(args);

}

Now when you tap a TextBlock element, it changes color, but when you tap anywhere else on the
screen, the Grid changes color.

Now suppose for one reason or another, you decide you want to go back to the original scheme of
explicitly defining an event handler separately for each TextBlock element to change the text colors,
but you also want to retain the OnTapped override for changing the Grid background color. In the
RoutedEvents4 project, the XAML file has the Tapped events restored for TextBlock elements and the
Grid has been given a name:

Project: RoutedEvents4 | File: BlankPage.xaml (excerpt)

<Grid Name="contentGrid"

 Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Left / Top"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Tapped="OnTextBlockTapped" />

 …

 <TextBlock Text="Right / Bottom"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom"

 Tapped="OnTextBlockTapped" />

</Grid>

One advantage is that the methods to set the TextBlock and Grid colors are now separate and
distinct, so there’s no need for if-else blocks. The Tapped handler for the TextBlock elements can cast
the sender argument with impunity, and the OnTapped override can simply access the Grid by name:

85

www.it-ebooks.info

http://www.it-ebooks.info/

Project: RoutedEvents4 | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 Random rand = new Random();

 byte[] rgb = new byte[3];

 public BlankPage()

 {

 this.InitializeComponent();

 }

 void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)

 {

 TextBlock txtblk = sender as TextBlock;

 txtblk.Foreground = GetRandomBrush();

 }

 protected override void OnTapped(TappedRoutedEventArgs args)

 {

 contentGrid.Background = GetRandomBrush();

 base.OnTapped(args);

 }

 Brush GetRandomBrush()

 {

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 return new SolidColorBrush(clr);

 }

}

However, the code might not do exactly what you want. When you tap a TextBlock, not only does
the TextBlock change color, but the event continues to go up the visual tree where it’s processed by the
OnTapped override, and the Grid changes color as well! If that’s what you want, you’re in luck. If not,
then I’m sure you’ll be interested to know that the TappedRoutedEventArgs has a property specifically
to prevent this. If the OnTextBlockTapped handler sets the Handled property of the event arguments to
true, the event is effectively inhibited from further processing higher in the visual tree.

This is demonstrated in the RoutedEvents5 project, which is the same as RoutedEvents4 except for a
single statement in the OnTextBlockTapped method:

Project: RoutedEvents5 | File: BlankPage.xaml.cs (excerpt)

void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)

{

 TextBlock txtblk = sender as TextBlock;

 txtblk.Foreground = GetRandomBrush();

 args.Handled = true;

}

86

www.it-ebooks.info

http://www.it-ebooks.info/

Overriding the Handled Setting

You’ve just seen that when an element handles an event such as Tapped and concludes its event
processing by setting the Handled property of the event arguments to true, the routing of the event
effectively stops. The event isn’t visible to elements higher in the visual tree.

In some cases, this behavior might be undesirable. Suppose you’re working with an element that
sets the Handled property to true in its event handler but you still want to see that event higher in the
visual tree. One solution is to simply change the code, but that option might not be available. The
element might be implemented in a dynamic-link library, and you might not have access to the source
code.

In RoutedEvents6, the XAML file is the same as in RoutedEvents5: each TextBlock has a handler set
for its Tapped event. The Tapped handler sets the Handled property to true. The class also defines a
separate OnPageTapped handler that sets the background color of the Grid:

Project: RoutedEvents6 | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 Random rand = new Random();

 byte[] rgb = new byte[3];

 public BlankPage()

 {

 this.InitializeComponent();

 this.AddHandler(UIElement.TappedEvent,

 new TappedEventHandler(OnPageTapped),

 true);

 }

 void OnTextBlockTapped(object sender, TappedRoutedEventArgs args)

 {

 TextBlock txtblk = sender as TextBlock;

 txtblk.Foreground = GetRandomBrush();

 args.Handled = true;

 }

 void OnPageTapped(object sender, TappedRoutedEventArgs args)

 {

 contentGrid.Background = GetRandomBrush();

 }

 Brush GetRandomBrush()

 {

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 return new SolidColorBrush(clr);

 }

}

87

www.it-ebooks.info

http://www.it-ebooks.info/

Look at the interesting way that the constructor sets a Tapped handler for the Page. Normally it would
attach the event handler like so:

this.Tapped += OnPageTapped;

In that case the OnPageTapped handler would not get a Tapped event originating with the TextBlock
because the TextBlock handler sets Handled to true. Instead, it attaches the handler with a method
named AddHandler:

this.AddHandler(UIElement.TappedEvent,

 new TappedEventHandler(OnPageTapped),

 true);

AddHandler is defined by UIElement, which also defines the static UIElement.TappedEvent property. This
property is of type RoutedEvent.

Just as a property like FontSize is backed by a static property named FontSizeProperty of type
DependencyProperty, a routed event such as Tapped is backed by a static property named TappedEvent
of type RoutedEvent. RoutedEvent defines nothing public on its own; it mainly exists to allow an event
to be referenced in code without requiring an instance of an element.

The AddHandler method attaches a handler to that event. The second argument of AddHandler is
defined as just an object, so creating a delegate object is required to reference the event handler. And
here’s the magic: set the last argument to true if you want this handler to also receive routed events
that have been flagged as Handled.

The AddHandler method isn’t used often, but when you need it, it can be very useful.

Input, Alignment, and Backgrounds

I have just one more, very short program in the RoutedEvents series to make a couple important points
about input events.

The XAML file for RoutedEvents7 has just one TextBlock and no event handlers defined:

Project: RoutedEvents7 | File: BlankPage.xaml (excerpt)

<Page …

 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Hello, Windows 8!"

 Foreground="Red" />

 </Grid>

</Page>

The absence of HorizontalAlignment and VerticalAlignment settings on the TextBlock cause it to appear
in the upper-left corner of the Grid.

88

www.it-ebooks.info

http://www.it-ebooks.info/

Like RoutedEvents3, the code-behind file contains separate processing for an event originating from
the TextBlock and an event coming from the Grid:

Project: RoutedEvents7 | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 Random rand = new Random();

 byte[] rgb = new byte[3];

 public BlankPage()

 {

 this.InitializeComponent();

 }

 protected override void OnTapped(TappedRoutedEventArgs args)

 {

 rand.NextBytes(rgb);

 Color clr = Color.FromArgb(255, rgb[0], rgb[1], rgb[2]);

 SolidColorBrush brush = new SolidColorBrush(clr);

 if (args.OriginalSource is TextBlock)

 (args.OriginalSource as TextBlock).Foreground = brush;

 else if (args.OriginalSource is Grid)

 (args.OriginalSource as Grid).Background = brush;

 base.OnTapped(args);

 }

}

Here it is:

As you tap the TextBlock, it changes to a random color like normal, but when you tap outside the

89

www.it-ebooks.info

http://www.it-ebooks.info/

TextBlock, the Grid doesn’t change color like it did earlier. Instead, the TextBlock changes color! It’s as
if…yes, it’s as if the TextBlock is now occupying the entire page and snagging all the Tapped events for
itself.

And that’s precisely the case. This TextBlock has default values of HorizontalAlignment and
VerticalAlignment, but those default values are not Left and Top like the visuals may suggest. The
default values are named Stretch, and that means that the TextBlock is stretched to the size of its
parent, the Grid. It’s hard to tell because the text still has a 48-pixel font, but the TextBlock has a
transparent background that now fills the entire page.

In fact, throughout the Windows Runtime, all elements have default HorizontalAlignment and
VerticalAlignment values of Stretch, and it’s an important part of the Windows Runtime layout system.
More details are coming in Chapter 4.

Let’s put HorizontalAlignment and VerticalAlignment values in this TextBlock:

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Hello, Windows 8!"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Foreground="Red" />

</Grid>

Now the TextBlock is only occupying a small area in the upper-left corner of the page, and when you
tap outside the TextBlock, the Grid changes color.

Now change HorizontalAlignment to TextAlignment:

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Text="Hello, Windows 8!"

 TextAlignment="Left"

 VerticalAlignment="Top"

 Foreground="Red" />

</Grid>

The program looks the same. The text is still positioned at the upper-left corner. But now when you tap
to the right of the TextBlock, the TextBlock changes color rather than the Grid. The TextBlock has its
default HorizontalAlignment property of Stretch, so it is now occupying the entire width of the screen,
but within the total width that the TextBlock occupies, the text is aligned to the left.

The lesson: HorizontalAlignment and TextAlignment are not equivalent, although they might seem
to be if you judge solely from the visuals.

Now try another experiment by restoring the HorizontalAlignment setting and removing the
Background property of the Grid:

<Grid>

 <TextBlock Text="Hello, Windows 8!"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Foreground="Red" />

90

www.it-ebooks.info

http://www.it-ebooks.info/

</Grid>

With a light theme, the Grid has an off-white background. When the Background property is removed,
the background of the page changes to black. But you’ll also experience a change in the behavior of
the program: the TextBlock still changes color when you tap it, but when you tap outside the TextBlock,
the Grid doesn’t change color at all.

The default value of the Background property defined by Panel (and inherited by Grid) is null, and
with a null background, the Grid doesn’t trap touch events. They just fall right through.

One way to fix this without altering the visual appearance is to give the Grid a Background property
of Transparent:

<Grid Background="Transparent">

 <TextBlock Text="Hello, Windows 8!"

 HorizontalAlignment="Left"

 VerticalAlignment="Top"

 Foreground="Red" />

</Grid>

It looks the same as null, but now you’ll get Tapped events with an OriginalSource of Grid.

The lessons here are important: Looks can be deceiving. An element with default settings of
HorizontalAlignment and VerticalAlignment might look the same as one with settings of Left and Top,
but it is actually occupying the entire area of its container and might block events from reaching
underlying elements. A Panel derivative with a default Background property of null might look the
same as one with a setting of Transparent, but it does not respond to touch events.

I can almost guarantee that sometime in the future, one of these two issues will cause a bug in one
of your programs that will drive you crazy for the good part of a day, and that this will happen even
after many years of working with the XAML layout system.

I speak from experience.

Size and Orientation Changes

The very first Windows program to be described in a magazine article was called WHATSIZE (all capital
letters, of course), and it appeared in the December 1986 issue of Microsoft Systems Journal, the
predecessor to MSDN Magazine. The program did little more than display the current size of the
program’s window, but as the size of the window changed, the displayed size also changed.

Obviously the original WHATSIZE program was written for the Windows APIs of that era, so it
redrew the display in response to a WM_PAINT message. In the original Windows API, this message
occurred whenever the contents of part of a program’s window became “invalid” and needed
redrawing. A program could define its window so that the entire window was invalidated whenever its
size changed.

91

www.it-ebooks.info

http://www.it-ebooks.info/

The Windows Runtime has no equivalent of the WM_PAINT message, and indeed, the entire
graphics paradigm is quite different. Previous versions of Windows implemented a “direct mode”
graphics system in which applications drew to the actual video memory. Of course, this occurred
through a software lawyer (the Graphics Device Interface) and a device driver, but at some point in the
actual drawing functions, code was writing into video display memory.

The Windows Runtime is quite different. In its public programming interface, it doesn’t even have a
concept of drawing or painting. Instead, a Metro style application creates elements—that is, objects
instantiated from classes that derive from FrameworkElement—and adds them to the application’s
visual tree. These elements are responsible for rendering themselves. When a Metro style application
wants to display text, it doesn’t draw text but instead creates a TextBlock. When the application wants
to display a bitmap, it creates an Image element. Instead of drawing lines and Bézier splines and
ellipses, the program creates Polyline and Path elements.

The Windows Runtime implements a “retained mode” graphics system. Between your application
and the video display is a composition layer on which all the rendered output is assembled before it is
presented to the user. Perhaps the most important benefit of retained mode graphics is flicker-free
animation, as you’ll witness for yourself towards the end of this chapter and in much of the remainder
of this book.

Although the graphics system in the Windows Runtime is very different from earlier versions of
Windows, in another sense a Metro style application is similar to its earlier brethren. Once a program is
loaded into memory and starts running, it spends most of its time generally sitting dormant in
memory, waiting for something interesting to happen. These notifications take the form of events and
callbacks. Often these events signal user input, but there may be other interesting activity as well. One
such callback is the OnNavigatedTo method. In a simple single-page program, this method is called
soon after the constructor returns.

Another event that might be of interest to a Metro style application—particularly one that does
what the old WHATSIZE program did—is named SizeChanged. Here’s the XAML file for the Metro Style
WhatSize program. Notice that the root element defines a handler for the SizeChanged event:

Project: WhatSize | File: BlankPage.xaml (excerpt)

<Page

 x:Class="WhatSize.BlankPage"

 …

 FontSize="36"

 SizeChanged="OnPageSizeChanged">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Top">

 ↤ <Run x:Name="widthText" /> pixels ↦

 </TextBlock>

 <TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

92

www.it-ebooks.info

http://www.it-ebooks.info/

 TextAlignment="Center">

 ↥

 <LineBreak />

 <Run x:Name="heightText" /> pixels

 <LineBreak />

 ↧

 </TextBlock>

 </Grid>

</Page>

The remainder of the XAML file defines two TextBlock elements containing some Run objects
surrounded by arrow characters. (You’ll see what they look like soon.) It might seem excessive to set
three properties to Center in the second TextBlock, but they’re all necessary. The first two center the
TextBlock in the page; setting TextAlignment to Center results in the two arrows being centered relative
to the text. The two Run elements are given x:Name attributes so that the Text properties can be set in
code. This happens in the SizeChanged event handler:

Project: WhatSize | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 }

 void OnPageSizeChanged(object sender, SizeChangedEventArgs args)

 {

 widthText.Text = args.NewSize.Width.ToString();

 heightText.Text = args.NewSize.Height.ToString();

 }

}

Very conveniently, the event arguments supply the new size in the form of a Size structure, and the
handler simply converts the Width and Height properties to strings and sets them to the Text properties
of the two Run elements:

93

www.it-ebooks.info

http://www.it-ebooks.info/

If you’re running the program on a device that responds to orientation changes, you can try flipping

the screen and observe how the numbers change. You can also sweep your finger from the left of the
screen to invoke the snapped views and then divide the screen between this program and another to
see how the width value changes.

You don’t need to set the SizeChanged event handler in XAML. You can set it in code, perhaps
during the Page constructor:

this.SizeChanged += OnPageSizeChanged;

SizeChanged is defined by FrameworkElement and inherited by all descendent classes. Despite the
fact that SizeChangedEventArgs derives from RoutedEventArgs, this is not a routed event. You can tell
it’s not a routed event because the OriginalSource property of the event arguments is always null; there
is no SizeChangedEvent property; and whatever element you set this event on, that’s the element’s size
you get. But you can set SizeChanged handlers on any element. Generally, the order the events are
fired proceeds down the visual tree: Page first (in this example), and then Grid and TextBlock.

If you need the rendered size of an element other than in the context of a SizeChanged handler,
that information is available from the ActualWidth and ActualHeight properties defined by
FrameworkElement. Indeed, the SizeChanged handler in WhatSize is actually a little shorter when
accessing those properties:

void OnPageSizeChanged(object sender, SizeChangedEventArgs args)

{

 widthText.Text = this.ActualWidth.ToString();

 heightText.Text = this.ActualHeight.ToString();

}

What you probably do not want are the Width and Height properties. Those properties are also
defined by FrameworkElement, but they have default values of “not a number” or NaN. A program can

94

www.it-ebooks.info

http://www.it-ebooks.info/

set Width and Height to explicit values (such as in the TextFormatting project in Chapter 2, “XAML
Syntax”), but usually these properties remain at their default values and they are of no use in
determining how large an element actually is. FrameworkElement also defines MinWidth, MaxWidth,
MinHeight, and MaxHeight properties, but these aren’t used very often.

If you access the ActualWidth and ActualHeight properties in the page’s constructor, however, you’ll
find they have values of zero. Despite the fact that InitializeComponent has constructed the visual tree,
that visual tree has not yet gone through a layout process. After the constructor finishes, the page gets
several events in sequence:

• OnNavigatedTo

• SizeChanged

• LayoutUpdated

• Loaded

If the page later changes size, additional SizeChanged events and LayoutUpdated events are fired.
LayoutUpdated can also be fired if elements are added to or removed from the visual tree or if an
element is changed so as to affect layout.

If you need a place to perform initialization after initial layout when all the elements in the visual
tree have nonzero sizes, the event you want is Loaded. It is very common for a Page class to attach a
handler for the Loaded event. Generally, the Loaded event occurs only once during the lifetime of a
Page object. I say “generally” because if the Page object is detached from its parent (a Frame) and
reattached, the Loaded event will occur again. But this won’t happen unless you deliberately make it
happen. Also, the Unloaded event can let you know if the page has been detached from the visual tree.

Every FrameworkElement derivative has a Loaded event. As a visual tree is built, the Loaded events
occur in a sequence going up the visual tree, ending with Page. When Page gets a Loaded event, it can
assume that all its children have fired their own Loaded events and everything has been correctly sized.

Handling a Loaded event in a Page class is so common that some programmers perform Loaded
processing right in the constructor using an anonymous handler:

public BlankPage()

{

 this.InitializeComponent();

 Loaded += (sender, args) =>

 {

 …

 };

}

Sometimes Metro style applications need to know when the orientation of the screen changes. In
Chapter 1, “Markup and Code,” I showed an InternationalHelloWorld program that looks fine in
landscape mode but probably results in overlapping text if switched to portrait mode. For that reason,

95

www.it-ebooks.info

http://www.it-ebooks.info/

the code-behind file changes the page’s FontSize property to 24 in portrait mode:

Project: InternationalHelloWorld | File: BlankPage.xaml.cs

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 SetFont();

 DisplayProperties.OrientationChanged += OnDisplayPropertiesOrientationChanged;

 }

 void OnDisplayPropertiesOrientationChanged(object sender)

 {

 SetFont();

 }

 void SetFont()

 {

 bool isLandscape =

 DisplayProperties.CurrentOrientation == DisplayOrientations.Landscape ||

 DisplayProperties.CurrentOrientation == DisplayOrientations.LandscapeFlipped;

 this.FontSize = isLandscape ? 40 : 24;

 }

}

The DisplayProperties class and DisplayOrientations enumeration are defined in the
Windows.Graphics.Display namespace. DisplayProperties.OrientationChanged is a static event, and
when that event is fired, the static DisplayProperties.CurrentOrientation property provides the current
orientation.

Somewhat more information, including snapped states, is provided by the ViewStateChanged event
of the AppicationView class in the Windows.UI.ViewManagement namespace, but working with this
event must await a future chapter.

Bindings to Run?

In Chapter 2 I discussed data bindings. Data bindings can link properties of two elements so that when
a source property changes, the target property also changes. Data bindings are particularly satisfying
when they eliminate the need for event handlers.

Is it possible to rewrite WhatSize to use data bindings rather than a SizeChanged handler? It’s worth
a try.

In the WhatSize project, remove the OnPageSizeChanged handler from the BlankPage.xaml.cs file
(or just comment it out if you don’t want to do too much damage to the file). In the root tag of the
BlankPage.xaml file, remove the SizeChanged attribute and give the Page a name of “page.” Then set

96

www.it-ebooks.info

http://www.it-ebooks.info/

Binding markup extensions on the two Run objects referencing the ActualWidth and ActualHeight
properties of the page:

<Page …

 FontSize="36"

 Name="page">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Top">

 ↤

 <Run Text="{Binding ElementName=page, Path=ActualWidth}" />

 pixels ↦

 </TextBlock>

 <TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 TextAlignment="Center">

 ↥

 <LineBreak />

 <Run Text="{Binding ElementName=page, Path=ActualHeight}" /> pixels

 <LineBreak />

 ↧

 </TextBlock>

 </Grid>

</Page>

The program compiles fine, and it runs smoothly without any run-time exceptions. The only
problem is: where the numbers should appear is nothing.

This is likely to seem odd, particularly when you set the same bindings on the Text property of
TextBlock instead of Run:

<Page …

 FontSize="36"

 Name="page">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Top"

 Text="{Binding ElementName=page, Path=ActualWidth}" />

 <TextBlock HorizontalAlignment="Center"

 VerticalAlignment="Center"

 TextAlignment="Center"

 Text="{Binding ElementName=page, Path=ActualHeight}" />

 </Grid>

</Page>

This works. It works so well that the size is displayed to the nearest millionth of a pixel:

97

www.it-ebooks.info

http://www.it-ebooks.info/

As you change the orientation or size of the page, the numbers are updated. This is what makes

data bindings so great. Internally, a data binding is notified when a source property changes so that it
can change the target property, but the application source code appears to have no event handlers
and no moving parts.

Unfortunately, by giving up on the bindings to Run we’ve also lost the informative arrows. So why
do the data bindings work on the Text property of TextBlock but not on the Text property of Run?

It’s very simple. The target of a data binding must be a dependency property. This fact is obvious
when you define a data binding in code by using the SetBinding method. That’s the difference: The
Text property of TextBlock is backed by the TextProperty dependency property, but the Text property of
Run is not. It’s a plain old property that cannot serve as a target for a data binding. The XAML parser
probably shouldn’t allow a binding to be set on the Text property of Run, but it does.

In Chapter 4 I’ll show you how to use a StackPanel to get the arrows back in a version of WhatSize
that uses data bindings.

Timers and Animation

Sometimes a Metro style application needs to receive periodic events at a fixed interval. A clock
application, for example, probably needs to update its display every second. The ideal class for this job
is DispatcherTimer. Set a timer interval, set a handler for the Tick event, and go.

Here’s the XAML file for a digital clock application. It’s just a big TextBlock:

Project: DigitalClock | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Name="txtblk"

98

www.it-ebooks.info

http://www.it-ebooks.info/

 FontFamily="Lucida Console"

 FontSize="120"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The code-behind file creates the DispatcherTimer with a 1-second interval and sets the Text
property of the TextBlock in the event handler:

Project: DigitalClock | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 DispatcherTimer timer = new DispatcherTimer();

 timer.Interval = TimeSpan.FromSeconds(1);

 timer.Tick += OnTimerTick;

 timer.Start();

 }

 void OnTimerTick(object sender, object e)

 {

 txtblk.Text = DateTime.Now.ToString("h:mm:ss tt");

 }

}

And here it is:

Calls to the Tick handler occur in the same execution thread as the rest of the user interface, so if

the program is busy doing something in that thread, the calls won’t interrupt that work and might
become somewhat irregular and even skip a few beats. In a multipage application, you might want to

99

www.it-ebooks.info

http://www.it-ebooks.info/

start the timer in the OnNavigatedTo override and stop it in OnNavigatedFrom to avoid the program
wasting time doing work when the page is not visible.

This is a good illustration of the difference in how a desktop Windows application and a Metro style
application updates the video display. Both types of applications use a timer for implementing a clock,
but rather than drawing and redrawing text every second by invalidating the contents of the window,
the Metro style application changes the visual appearance of an existing element simply by changing
one of its properties.

You can set the DispatcherTimer for an interval as low as you want, but you’re not going to get calls
to the Tick handler faster than the frame rate of the video display, which is probably 60 Hz or about a
17-millisecond period. Of course, it doesn’t make sense to update the video display faster than the
frame rate. Updating the display precisely at the frame rate gives you as smooth an animation as
possible. If you want to perform an animation in this way, don’t use DispatcherTimer. A better choice is
the static CompositionTarget.Rendering event, which is specifically designed to be called prior to a
screen refresh.

Even better than CompositionTarget.Rendering are all the animation classes provided as part of the
Windows Runtime. These classes let you define animations in XAML or code, they have lots of options,
and some of them are performed in background threads.

But until I cover the animation classes—and perhaps even after I do—the
CompositionTarget.Rendering event is well suited for performing animations. These are sometimes
called “manual” animations because the program itself has to carry out some calculations based on
elapsed time.

 Here’s a little project called ExpandingText that changes the FontSize of a TextBlock in the
CompositionTarget.Rendering event handler, making the text larger and smaller. The XAML file simply
instantiates a TextBlock:

Project: ExpandingText | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Name="txtblk"

 Text="Hello, Windows 8!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

In the code-behind file, the constructor starts a CompositionTarget.Rendering event simply by
setting an event handler. The second argument to that handler is defined as type object, but it is
actually of type RenderingEventArgs, which has a property named RenderingTime of type TimeSpan,
giving you an elapsed time since the app was started:

Project: ExpandingText | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

100

www.it-ebooks.info

http://www.it-ebooks.info/

 this.InitializeComponent();

 CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, object args)

 {

 RenderingEventArgs renderArgs = args as RenderingEventArgs;

 double t = (0.25 * renderArgs.RenderingTime.TotalSeconds) % 1;

 double scale = t < 0.5 ? 2 * t : 2 - 2 * t;

 txtblk.FontSize = 1 + scale * 143;

 }

}

I’ve attempted to generalize this code slightly. The calculation of t causes it to repeatedly increase
from 0 to 1 over the course of 4 seconds. During those same 4 seconds, the value of scale goes from 0
to 1 and back to 0, so FontSize ranges from 1 to 144 and back to 1. (The code ensures that the FontSize
is never set to zero, which would raise an exception.) When you run this program, you might see a little
jerkiness at first because fonts need to be rasterized at a bunch of different sizes. But after it settles into
a rhythm, it’s fairly smooth and there is definitely no flickering.

It’s also possible to animate color, and I’ll show you two different ways to do it. The second way is
better than the first, but I want to make a point here, so here’s the XAML file for the
ManualBrushAnimation project:

Project: ManualBrushAnimation | File: BlankPage.xaml (excerpt)

<Grid Name="contentGrid">

 <TextBlock Name="txtblk"

 Text="Hello, Windows 8!"

 FontFamily="Times New Roman"

 FontSize="96"

 FontWeight="Bold"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Neither the Grid nor the TextBlock have explicit brushes defined. Creating those brushes based on
animated colors is the job of the CompositionTarget.Rendering event handler:

Project: ManualBrushAnimation | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, object args)

 {

 RenderingEventArgs renderingArgs = args as RenderingEventArgs;

 double t = (0.25 * renderingArgs.RenderingTime.TotalSeconds) % 1;

 t = t < 0.5 ? 2 * t : 2 - 2 * t;

101

www.it-ebooks.info

http://www.it-ebooks.info/

 // Background

 byte gray = (byte)(255 * t);

 Color clr = Color.FromArgb(255, gray, gray, gray);

 contentGrid.Background = new SolidColorBrush(clr);

 // Foreground

 gray = (byte)(255 - gray);

 clr = Color.FromArgb(255, gray, gray, gray);

 txtblk.Foreground = new SolidColorBrush(clr);

 }

}

As the background color of the Grid goes from black to white and back, the foreground color of the
TextBlock goes from white to black and back, meeting halfway through.

The effect is nice, but notice that that two SolidColorBrush objects are being created at the frame
rate of the video display (which is probably about 60 times a second) and these objects are just as
quickly discarded. This is not necessary. A much better approach is to create two SolidColorBrush
objects initially in the XAML file:

Project: ManualColorAnimation | File: BlankPage.xaml (excerpt)

<Grid>

 <Grid.Background>

 <SolidColorBrush x:Name="gridBrush" />

 </Grid.Background>

 <TextBlock Text="Hello, Windows 8!"

 FontFamily="Times New Roman"

 FontSize="96"

 FontWeight="Bold"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.Foreground>

 <SolidColorBrush x:Name="txtblkBrush" />

 </TextBlock.Foreground>

 </TextBlock>

</Grid>

These SolidColorBrush objects exist for the entire duration of the program, and they are given names
for easy access from the CompositionTarget.Rendering handler:

Project: ManualColorAnimation | File: BlankPage.xaml.cs (excerpt)

void OnCompositionTargetRendering(object sender, object args)

{

 RenderingEventArgs renderingArgs = args as RenderingEventArgs;

 double t = (0.25 * renderingArgs.RenderingTime.TotalSeconds) % 1;

 t = t < 0.5 ? 2 * t : 2 - 2 * t;

 // Background

 byte gray = (byte)(255 * t);

 gridBrush.Color = Color.FromArgb(255, gray, gray, gray);

102

www.it-ebooks.info

http://www.it-ebooks.info/

 // Foreground

 gray = (byte)(255 - gray);

 txtblkBrush.Color = Color.FromArgb(255, gray, gray, gray);

}

At first this might not seem a whole lot different because two Color objects are being created and
discarded at the video frame rate. But it’s wrong to speak of objects here because Color is a structure
rather than a class. It is more correct to speak of values of Colors. These Color values are stored on the
stack rather than requiring a memory allocation from the heap.

It’s best to avoid frequent allocations from the heap whenever possible, and particularly when
they’re happening 60 times per second. But what I like most about this example is the idea of
SolidColorBrush objects remaining alive in the Windows Runtime composition system. This program is
effectively reaching down into that composition layer and changing a property of the brush so that it
renders differently.

This program also illustrates part of the wonders of dependency properties. Dependency properties
are built to respond to changes in a very structured manner. As you’ll discover, the built-in animation
facilities of the Windows Runtime can target only dependency properties, and “manual” animations
using CompositionTarget.Rendering have pretty much the same limitation. Fortunately, the Foreground
property of TextBlock and the Background property of Grid are both dependency properties of type
Brush, and the Color property of the SolidColorBrush is also a dependency property.

Indeed, whenever you encounter a dependency property, you might ask yourself, “How can I
animate that?” For example, the Offset property in the GradientStop class is a dependency property,
and you can animate it for some interesting effects.

Here’s the XAML file for the RainbowEight project:

Project: RainbowEight | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBlock Name="txtblk"

 Text="8"

 FontFamily="CooperBlack"

 FontSize="1"

 HorizontalAlignment="Center">

 <TextBlock.Foreground>

 <LinearGradientBrush x:Name="gradientBrush">

 <GradientStop Offset="0.00" Color="Red" />

 <GradientStop Offset="0.14" Color="Orange" />

 <GradientStop Offset="0.28" Color="Yellow" />

 <GradientStop Offset="0.43" Color="Green" />

 <GradientStop Offset="0.57" Color="Blue" />

 <GradientStop Offset="0.71" Color="Indigo" />

 <GradientStop Offset="0.86" Color="Violet" />

 <GradientStop Offset="1.00" Color="Red" />

 <GradientStop Offset="1.14" Color="Orange" />

 <GradientStop Offset="1.28" Color="Yellow" />

 <GradientStop Offset="1.43" Color="Green" />

 <GradientStop Offset="1.57" Color="Blue" />

103

www.it-ebooks.info

http://www.it-ebooks.info/

 <GradientStop Offset="1.71" Color="Indigo" />

 <GradientStop Offset="1.86" Color="Violet" />

 <GradientStop Offset="2.00" Color="Red" />

 </LinearGradientBrush>

 </TextBlock.Foreground>

 </TextBlock>

</Grid>

A bunch of those GradientStop objects have Offset values above 1, so they’re not going to be visible.
Moreover, the TextBlock itself won’t be very obvious because it has a FontSize of 1. However, during its
Loaded event, the Page class obtains the ActualHeight of that tiny TextBlock and saves it in a field. It
then starts a CompositionTarget.Rendering event going:

Project: RainbowEight | File: BlankPage.xaml (excerpt)

public sealed partial class BlankPage : Page

{

 double txtblkBaseSize; // ie, for 1-pixel FontSize

 public BlankPage()

 {

 this.InitializeComponent();

 Loaded += OnPageLoaded;

 }

 void OnPageLoaded(object sender, RoutedEventArgs args)

 {

 txtblkBaseSize = txtblk.ActualHeight;

 CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, object args)

 {

 // Set FontSize as large as it can be

 txtblk.FontSize = this.ActualHeight / txtblkBaseSize;

 // Calculate t from 0 to 1 repetitively

 RenderingEventArgs renderingArgs = args as RenderingEventArgs;

 double t = (0.25 * renderingArgs.RenderingTime.TotalSeconds) % 1;

 // Loop through GradientStop objects

 for (int index = 0; index < gradientBrush.GradientStops.Count; index++)

 gradientBrush.GradientStops[index].Offset = index / 7.0 - t;

 }

}

In the CompositionTarget.Rendering handler, the FontSize of the TextBlock is increased based on the
ActualHeight property of the Page. It won’t be the full height of the page because the ActualHeight of
the TextBlock includes space for descenders and diacriticals, but it will be as large as is convenient to
make it, and it will change when the display switches orientation.

Moreover, the CompositionTarget.Rendering handler goes on to change all the Offset properties of
the LinearGradientBrush for an animated rainbow effect that I’m afraid can’t quite be rendered on the

104

www.it-ebooks.info

http://www.it-ebooks.info/

static page of this book:

You might wonder: Isn’t it inefficient to change the FontSize property of the TextBlock at the frame

rate of the video display? Wouldn’t it make more sense to set a SizeChanged handler for the Page and
do it then?

Perhaps a little. But it is another feature of dependency properties that the object doesn’t register a
change unless the property really changes. If the property is being set to the value it already is, nothing
happens, as you can verify by attaching a SizeChanged handler on the TextBlock itself.

105

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

Presentation with Panels
A Windows Runtime program generally consists of one of more classes that derive from Page. Each
page contains a visual tree of elements connected in a parent-child hierarchy. A Page object can have
only one child set to its Content property, but in most cases this child is an instance of a class that
derives from Panel. Panel defines a property named Children that is of type UIElementCollection—a
collection of UIElement derivatives, including other panels.

These Panel derivatives form the core of the Windows Runtime dynamic layout system. As the size
or orientation of a page changes, panels can reorganize their children to optimally fill the available
space. Each type of panel arranges its children differently. The Grid, for example, arranges its children in
rows and columns. The StackPanel stacks its children either horizontally or vertically. The
VariableSizedWrapGrid also stacks its children horizontally or vertically but then uses additional rows or
columns if necessary. much like the Windows 8 start screen. The Canvas allows its children to be
positioned at specific pixel locations.

What makes a layout system complex is balancing the conflicting needs of parents and children. In
part, a layout system needs to be "child-driven" in that each child should be allowed to determine how
large it needs to be, and to obtain sufficient screen space for itself. But the layout system also needs to
be "parent-driven." At any time, the page is fixed in size and cannot give its descendants in the visual
tree more space than it has available.

For example, a simple HTML page has a width that is parent-driven because it's constrained by the
width of the video display or the browser window. However, the height of a page is child-driven
because it depends on the content of the page. If that height exceeds the height of the browser
window, scrollbars are required.

The Windows 8 start screen is the other way around: The number of application tiles that can fit
vertically is parent-driven because it’s based on the height of the screen. The width of this tile display is
child-driven. If tiles extend off the screen horizontally, they must be moved into view by scrolling.

The Border Element

Two of the most important properties connected with layout are HorizontalAlignment and
VerticalAlignment. These properties are defined by FrameworkElement and set to members of
enumerations with identical names: HorizontalAlignment and VerticalAlignment.

As you saw in Chapter 3, “Basic Event Handling,” the default values of HorizontalAlignment and
VerticalAlignment are not Left and Top. They are instead HorizontalAlignment.Stretch and

106

www.it-ebooks.info

http://www.it-ebooks.info/

VerticalAlignment.Stretch. These default Stretch settings imply parent-driven layout: elements
automatically stretch to become as large as their parents. This is not always visually apparent, but in the
last chapter you saw how a TextBlock stretched to the size of its parent gets all the Tapped events
anywhere within that parent.

When the HorizontalAlignment or VerticalAlignment properties are set to values other than Stretch,
the element sets its own width or height based on its content and layout becomes more child-driven.

The important role of HorizontalAlignment and VerticalAlignment also becomes apparent when you
start adding more parents and children to the page. For example, suppose you want to display a
TextBlock with a border around it. You might discover (perhaps with some dismay) that the TextBlock
has no properties that relate to a border. However, the Windows.UI.Xaml.Controls namespace contains
a Border element with a property named Child. So you put the TextBlock in a Border and put the Border
in the Grid, like so:

Project: NaiveBorderedText | File: BlankPage.xaml (excerpt)

<Page … >

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Border BorderBrush="Red"

 BorderThickness="12"

 CornerRadius="24"

 Background="Yellow">

 <TextBlock Text="Hello Windows 8!"

 FontSize="96"

 Foreground="Blue"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 </Border>

 </Grid>

</Page>

The BorderThickness property defined by Border can be set to different values for the four sides. Just
specify four different values in the order left, top, right, and bottom. If you specify only two values, the
first applies to the left and right and the second applies to the top and bottom. The CornerRadius
property defines the curvature of the corners. You can set it a uniform value or four different values in
the order upper-left, upper-right, lower-right, and lower-left.

Notice the HorizontalAlignment and VerticalAlignment properties set on the TextBlock. The markup
looks reasonable, but the result is probably not what you want:

107

www.it-ebooks.info

http://www.it-ebooks.info/

Because Border derives from FrameworkElement, it also has HorizontalAlignment and

VerticalAlignment properties, and their default values are Stretch, which causes the size of the Border to
be stretched to the size of its parent. To get the effect you probably want, you need to move the
HorizontalAlignment and VerticalAlignment settings from the TextBlock to the Border:

Project: BetterBorderedText | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Border BorderBrush="Red"

 BorderThickness="12"

 CornerRadius="24"

 Background="Yellow"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock Text="Hello Windows 8!"

 FontSize="96"

 Foreground="Blue"

 Margin="24" />

 </Border>

</Grid>

I’ve also added a quarter-inch margin to the TextBlock by setting its Margin property. This causes
the Border to be a quarter-inch larger than the size of the text on all four sides:

108

www.it-ebooks.info

http://www.it-ebooks.info/

The Margin property is defined by FrameworkElement, so it is available on every element. The

property is of type Thickness (the same as the type of the BorderThickness property)—a structure with
four properties named Left, Top, Right, and Bottom. Margin is exceptionally useful for defining a little
breathing room around elements so that they don’t butt up against each other, and it appears a lot in
real-life XAML. Like BorderThickness, Margin can potentially have four different values. In XAML, they
appear in the order left, top, right, and bottom. Specify just two values and the first applies to the left
and right, and the second to the top and bottom.

In addition, Border defines a Padding property, which is similar to Margin except that it applies to
the inside of the element rather than the outside. Try removing the Margin property from TextBlock
and instead set Padding on the Border:

<Border BorderBrush="Red"

 BorderThickness="12"

 CornerRadius="24"

 Background="Yellow"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="24">

 <TextBlock Text="Hello Windows 8!"

 FontSize="96"

 Foreground="Blue" />

</Border>

The result is the same. In either case, any HorizontalAlignment or VerticalAlignment settings on the
TextBlock are now irrelevant.

For layout purposes, Margin is considered to be part of the size of the element, but otherwise it is
entirely out of the element’s control. The element cannot control the background color of its margin,
for example. That color depends on the element’s parent. Nor does an element get user input from the

109

www.it-ebooks.info

http://www.it-ebooks.info/

margin area. If you tap in an element’s margin area, the element’s parent gets the Tapped event.

The Padding property is also of type Thickness, but only a few classes define a Padding property:
Control, Border, TextBlock, RichTextBlock, and RichTextBlockOverflow. The Padding property defines an
area inside the element. This area is considered to be part of the element for all purposes, including
user input.

If you want a TextBlock to respond to taps not only on the text itself but also within a 100-pixel area
surrounding the text, set the Padding property of the TextBlock to 100 rather than the Margin property.

Rectangle and Ellipse

As you saw in Chapter 2, “XAML Syntax,” the Windows.UI.Xaml.Shapes namespace contains classes used
to render vector graphics: lines, and curves, and filled areas. The Shape class itself derives from
FrameworkElement and defines various properties, including Stroke (for specifying the brush used to
render straight lines and curves), StrokeThickness, and Fill (for specifying the brush used to render
enclosed areas).

Six classes derive from Shape. Line, Polyline, and Polygon render straight lines based on coordinate
points, and Path uses a series of classes in Windows.UI.Xaml.Media for rendering a series of straight
lines, arcs, and Bezier curves.

The remaining two classes that derive from Shape are Rectangle and Ellipse. Despite the innocent
names, these elements are real oddities in that they define figures without the use of coordinate points.
Here, for example, is a tiny piece of XAML to render an ellipse:

Project: SimpleEllipse | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Ellipse Stroke="Red"

 StrokeThickness="24"

 Fill="Blue" />

</Grid>

Notice how the ellipse fills its container:

110

www.it-ebooks.info

http://www.it-ebooks.info/

Like all other FrameworkElement derivatives, Ellipse has default HorizontalAlignment and

VerticalAlignment settings of Stretch, but Ellipse most decisively reveals the implications of these
settings.

What happens if you set a nondefault HorizontalAlignment or VerticalAlignment on this Ellipse
element? Try it! The ellipse shrinks down to nothing. It disappears. In fact, it’s hard to imagine how it
can legitimately have any other behavior. If you do not want the Ellipse or Rectangle element to fill its
container, your only real alternative is to set explicit Height and Width values on it.

The Shape class also defines a Stretch property, which is similar to the Stretch property defined by
Image. For example, in the SimpleEllipse program, if you set the Stretch property to Uniform, you’ll get
a special case of an ellipse that has equal horizontal and vertical radii. This is a circle, and its diameter is
set to the minimum of the container’s width and height. Setting the Stretch property to UniformToFill
also gets you a circle, but now the diameter is the maximum of the container’s width and height, so
part of the circle is cropped:

111

www.it-ebooks.info

http://www.it-ebooks.info/

You can control what part is cropped with the HorizontalAlignment and VerticalAlignment properties.

Rectangle is very similar to Ellipse and also shares several characteristics with Border, although the
properties have different names:

Border Rectangle
BorderBrush Stroke
BorderThickness StrokeThickness
Background Fill
CornerRadius RadiusX / RadiusY

The big difference between Border and Rectangle is that Border has a Child property and Rectangle
does not.

The StackPanel

Panel and its derivative classes form the core of the Windows Runtime layout system. Panel defines just
a few properties on its own, but one of them is Children, and that’s crucial. A Panel derivative is the
only type of element that supports multiple children.

This class hierarchy shows Panel and some of its derivatives:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Panel
 Canvas
 Grid

112

www.it-ebooks.info

http://www.it-ebooks.info/

 StackPanel
 VariableSizedWrapGrid

There are others, but they have restrictions that prevent them from being used except in controls of
type ItemsControl (which I’ll discuss in a future chapter). I’ll save the Grid for Chapter 5, “Control
Interaction,” and I’ll cover the other three here.

Of these standard panels, the StackPanel is certainly the easiest to use. Like the name suggests, it
stacks its children, by default vertically. The children can be different heights, but each child gets only
as much height as it needs. The SimpleVerticalStack program shows how it’s done:

Project: SimpleVerticalStack | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel>

 <TextBlock Text="Right-Aligned Text"

 FontSize="48"

 HorizontalAlignment="Right" />

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"

 Stretch="None" />

 <TextBlock Text="Figure 1. Petzold heading to the basketball court"

 FontSize="24"

 HorizontalAlignment="Center" />

 <Ellipse Stroke="Red"

 StrokeThickness="12"

 Fill="Blue" />

 <TextBlock Text="Left-Aligned Text"

 FontSize="36"

 HorizontalAlignment="Left" />

 </StackPanel>

</Grid>

In XAML the children of the StackPanel are simply listed in order, and that’s how they appear on the
screen:

113

www.it-ebooks.info

http://www.it-ebooks.info/

Notice that I made this StackPanel a child of the Grid. Panels can be nested, and they very often are

nested. In this particular case I could have replaced the Grid with StackPanel and set that same
Background property on it.

Each element in the StackPanel gets only as much height as it needs but can stretch to the panel’s
full width, as demonstrated by the first and last TextBlock aligned to the right and left. In a vertical
StackPanel, any VerticalAlignment settings on the children are irrelevant and are basically ignored.

Notice that the Stretch property of the Image element is set to None to display the bitmap in its
pixel dimensions. If left at its default value of Uniform, the Image is stretched to the width of the
StackPanel (which is the same as the width of the Page) and its vertical dimension increases
proportionally. This might cause all the elements below the Image to be pushed right off the bottom
and into the bit bucket.

The XAML also includes an Ellipse. What happened to it? Like all the other children of the
StackPanel, the Ellipse is given only as much vertical space as it needs, and it really doesn’t need any, so
it shrinks to nothing. If you want the Ellipse to be visible, give it at least a nonzero Height, for example,
48:

114

www.it-ebooks.info

http://www.it-ebooks.info/

If you also set the Stretch property of the Ellipse to Uniform, you’ll get a circle rather than a very wide
ellipse.

This StackPanel occupies the entire page. How do I know this? When experimenting with panels,
one very useful technique is to give each panel a unique Background so that you can see the real estate
that the panel occupies on the screen. For example:

<StackPanel Background="Blue">

Like all other FrameworkElement derivatives, StackPanel also has HorizontalAlignment and
VerticalAlignment properties. When set to nondefault values, these properties cause the StackPanel to
tightly hug its contents, and the change can be dramatic. Here’s what it looks like with the StackPanel
getting a Background of Blue and HorizontalAlignment and VerticalAlignment values of Center:

115

www.it-ebooks.info

http://www.it-ebooks.info/

Horizontal Stacks

It is also possible to use StackPanel to stack elements horizontally by setting its Orientation property to
Horizontal. The SimpleHorizontalStack program shows an example:

Project: SimpleHorizontalStack | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel Orientation="Horizontal"

 VerticalAlignment="Center"

 HorizontalAlignment="Center">

 <TextBlock Text="Rectangle: "

 VerticalAlignment="Center" />

 <Rectangle Stroke="Blue"

 Fill="Red"

 Width="72"

 Height="72"

 Margin="12 0"

 VerticalAlignment="Center" />

 <TextBlock Text="Ellipse: "

 VerticalAlignment="Center" />

 <Ellipse Stroke="Red"

 Fill="Blue"

 Width="72"

 Height="72"

 Margin="12 0"

116

www.it-ebooks.info

http://www.it-ebooks.info/

 VerticalAlignment="Center" />

 <TextBlock Text="Petzold: "

 VerticalAlignment="Center" />

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"

 Stretch="Uniform"

 Width="72"

 Margin="12 0"

 VerticalAlignment="Center" />

 </StackPanel>

</Grid>

Here it is:

You might question the apparently excessive number of alignment settings. Try removing all the

VerticalAlignment and HorizontalAlignment settings, and the result looks like this:

117

www.it-ebooks.info

http://www.it-ebooks.info/

The StackPanel is now occupying the entire page, and each of the individual elements is occupying the
full height of the StackPanel. TextBlock aligns itself at the top, and the other elements are in the center.
Setting the HorizontalAlignment and VerticalAlignment settings of the Panel to Center tightens up the
space the panel occupies and moves it to the center of the display, like this:

The height of the StackPanel is now governed by the height of its tallest element, but all the elements
are stretched to that height. To center all the elements relative to each other, the easiest approach is to
give them all VerticalAlignment settings of Center.

118

www.it-ebooks.info

http://www.it-ebooks.info/

WhatSize with Bindings (and a Converter)

In Chapter 3 I discussed how the WhatSize program couldn’t accommodate a data binding because the
Text property in the Run class isn’t a dependency property. Only dependency properties can be targets
of data bindings.

Fortunately, for single lines of text, you can mimic multiple Run objects with multiple TextBlock
elements in a horizontal StackPanel. Here’s WhatSizeWithBindings:

Project: WhatSizeWithBindings | File: BlankPage.xaml (excerpt)

<Page

 x:Class="WhatSizeWithBindings.BlankPage"

 …

 FontSize="36"

 Name="page">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Top">

 <TextBlock Text="↤ " />

 <TextBlock Text="{Binding ElementName=page, Path=ActualWidth}" />

 <TextBlock Text=" pixels ↦" />

 </StackPanel>

 <StackPanel HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock Text="↥" TextAlignment="Center" />

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center">

 <TextBlock Text="{Binding ElementName=page, Path=ActualHeight}" />

 <TextBlock Text=" pixels" />

 </StackPanel>

 <TextBlock Text="↧" TextAlignment="Center" />

 </StackPanel>

 </Grid>

</Page>

Notice that the root element is now given a name of page, which is referenced in the two data
bindings to obtain the ActualWidth and ActualHeight properties. The big advantage over the previous
version is that there’s no longer any need for an event handler in the code-behind file. And here it is:

119

www.it-ebooks.info

http://www.it-ebooks.info/

No? You don’t like that it’s accurate to a millionth of a pixel?

The problem, of course, is that ActualWidth and ActualHeight are double values, and when these
values are converted to strings for the Text property of TextBlock, this is what sometimes happens.

In cases like this, it is possible to supply a little piece of code to the Binding object so that it
performs the data conversion in exactly the way you want. The Binding class has a property named
Converter of type IValueConverter, an interface with two methods named Convert (to convert from a
binding source to a binding target) and ConvertBack (for a conversion from the target back to the
source in a two-way binding).

To create your own custom converter, you’ll need to derive a class from IValueConverter and to fill
in the two methods. Here’s an example that shows these methods doing nothing:

public class NothingConverter : IValueConverter

{

 public object Convert(object value, Type targetType, object parameter, string language)

 {

 return value;

 }

 public object ConvertBack(object value, Type targetType, object parameter, string language)

 {

 return value;

 }

}

If you’ll be using the binding only in a one-way mode, you can ignore the ConvertBack method. In
the Convert method, the value argument is the value coming from the source. In the WhatSize
example, this is a double. The TargetType is the type of the target—in the WhatSize example, a string.

120

www.it-ebooks.info

http://www.it-ebooks.info/

If you’re writing a binding converter specifically for WhatSize to convert floating-point numbers to
strings with no decimal points, the Convert method can be as simple as this:

public object Convert(object value, Type targetType, object parameter, string language)

{

 return ((double)value).ToString("F0");

}

But it’s more common to generalize binding converters. For example, it might be useful for the
converter to handle value arguments of any type that implements the IFormattable interface, which
includes double as well as all the other numeric types and DateTime. The IFormattable interface defines
a ToString method with two arguments: a formatting string and an object that implements
IFormatProvider, which is generally a CultureInfo object.

Besides value and targetType, the Convert method also has parameter and language arguments.
These come from two properties of the Binding class named ConverterParameter and
ConverterLanguage, which are generally set right in the XAML file. This means that the formatting
specification for ToString can be provided by the parameter argument to Convert, and a CultureInfo
object could be created from the language argument. Here’s one possibility:

Project: WhatSizeWithBindingConverter | File: FormattedStringConverter.cs

using System;

using System.Globalization;

using Windows.UI.Xaml.Data;

namespace WhatSizeWithBindingConverter

{

 public class FormattedStringConverter : IValueConverter

 {

 public object Convert(object value, Type targetType, object parameter, string language)

 {

 if (value is IFormattable &&

 parameter is string &&

 !String.IsNullOrEmpty(parameter as string) &&

 targetType == typeof(string))

 {

 if (String.IsNullOrEmpty(language))

 return (value as IFormattable).ToString(parameter as string, null);

 return (value as IFormattable).ToString(parameter as string,

 new CultureInfo(language));

 }

 return value;

 }

 public object ConvertBack(object value, Type targetType, object parameter, string language)

 {

 return value;

 }

 }

}

121

www.it-ebooks.info

http://www.it-ebooks.info/

The Convert method uses ToString only if several conditions are met. If the conditions are not met, the
fallback is simply to return the incoming value argument.

In the XAML file, the binding converter is generally defined as a resource so that it can be shared
among multiple bindings:

Project: WhatSizeWithBindingConverter | File: BlankPage.xaml (excerpt)

<Page

 x:Class="WhatSizeWithBindingConverter.BlankPage"

 …

 FontSize="36"

 Name="page">

 <Page.Resources>

 <local:FormattedStringConverter x:Key="stringConverter" />

 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center"

 VerticalAlignment="Top">

 <TextBlock Text="↤ " />

 <TextBlock Text="{Binding ElementName=page,

 Path=ActualWidth,

 Converter={StaticResource stringConverter},

 ConverterParameter=F0}" />

 <TextBlock Text=" pixels ↦" />

 </StackPanel>

 <StackPanel HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock Text="↥" TextAlignment="Center" />

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Center">

 <TextBlock Text="{Binding ElementName=page,

 Path=ActualHeight,

 Converter={StaticResource stringConverter},

 ConverterParameter=F0}" />

 <TextBlock Text=" pixels" />

 </StackPanel>

 <TextBlock Text="↧" TextAlignment="Center" />

 </StackPanel>

 </Grid>

</Page>

The display looks just like the original WhatSize program in Chapter 3. Take careful note of the syntax
here:

<TextBlock Text="{Binding ElementName=page,

 Path=ActualWidth,

 Converter={StaticResource stringConverter},

122

www.it-ebooks.info

http://www.it-ebooks.info/

 ConverterParameter=F0}" />

The Binding markup is spread out over four lines for purposes of clarity (and to stay within the margins
of the book page), but notice that the Binding markup extension contains an embedded markup
extension of StaticResource for referencing the binding converter resource. No quotation marks appear
within either markup extension.

The Common folder in the standard Visual Studio project contains two binding converters.
BooleanToVisibilityConverter is useful for controlling the Visibility property, which takes on values of
Visibility.Visible and Visibility.Collapsed. The BooleanNegationConverter changes true to false and false
to true.

The ScrollViewer Solution

What happens if there are too many elements for StackPanel to display on the screen? In real life, that
situation occurs quite often and it’s why a StackPanel with more than just a few elements is almost
always put inside a ScrollViewer.

The ScrollViewer has a property named Content that you can set to anything that might be too large
to display in the space allowed for it—a single large Image, for example. ScrollViewer provides
scrollbars for the mouse-users among us. Otherwise, you can just scroll it with your fingers. By default,
ScrollViewer also adds a pinch interface so that you can use two fingers to make the content larger or
smaller. This can be disabled if you want by setting the ZoomMode property to Disabled.

ScrollViewer defines a couple other crucial properties. Most often you’ll be using ScrollViewer for
vertical scrolling, such as with a vertical StackPanel. Consequently, the default value of the
VerticalScrollBarVisibility property is the enumeration member ScrollBarVisibility.Visible. This setting
doesn’t mean that the scrollbar is actually visible all the time. For mouse users, the scrollbar appears
only when the mouse is moved to the right side of the ScrollViewer, and then it fades from view if the
mouse is moved away. A much thinner slider appears when you scroll using your finger.

Horizontal scrolling is different: the default value of HorizontalScrollBarVisibility property is Disabled,
so you’ll want to change that to enable horizontal scrolling. The other two options are Hidden, which
allows scrolling with your fingers but not the mouse, and Auto, which is the same as Visible if the
content requires scrolling and Disabled otherwise.

The XAML file for the StackPanelWithScrolling program contains a StackPanel in a ScrollViewer.
Notice that the FontSize property is set in the root tag based on a predefined identifier:

Project: StackPanelWithScrolling | File: BlankPage.xaml (excerpt)

<Page

 x:Class="StackPanelWithScrolling.BlankPage"

 …

 FontSize="{StaticResource HeaderMediumFontSize}">

123

www.it-ebooks.info

http://www.it-ebooks.info/

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <ScrollViewer>

 <StackPanel Name="stackPanel" />

 </ScrollViewer>

 </Grid>

</Page>

Now all that’s necessary in the code-behind file is to generate so many items for the StackPanel that
they can’t all be visible at once. Where do we get so many items? One convenient solution is to use
.NET reflection to obtain all 141 static Color properties defined in the Colors class:

Project: StackPanelWithScrolling | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties =

 typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)

 {

 Color clr = (Color)property.GetValue(null);

 TextBlock txtblk = new TextBlock();

 txtblk.Text = String.Format("{0} \x2014 {1:X2}-{2:X2}-{3:X2}-{4:X2}",

 property.Name, clr.A, clr.R, clr.G, clr.B);

 stackPanel.Children.Add(txtblk);

 }

 }

}

Windows 8 reflection works a little differently from .NET reflection. Generally, to get anything
interesting from the Type object, you need to call a Windows 8 extension method GetTypeInfo. The
returned TypeInfo object makes available additional information about the Type. In this program, the
DeclaredProperties property of TypeInfo obtains all the properties of the Colors class in the form of
PropertyInfo objects. Because all the properties in the Colors class are static, the value of these static
properties can be obtained by calling GetValue on each PropertyInfo object with a null parameter. Each
TextBlock gets the name of the color, an em-dash (Unicode 0x2014), and the hexadecimal color bytes.
The display looks like this:

124

www.it-ebooks.info

http://www.it-ebooks.info/

And, of course, you can scroll it with your finger or the mouse.

As you play around with the program, you’ll discover that the ScrollViewer incorporates a nice fluid
response to your finger movements, including inertia and bounce. You’ll want to use ScrollViewer for
virtually all your scrolling needs. You’ll discover that many controls that incorporate scrolling—such as
the ListBox and GridView coming up in a future chapter—have this same ScrollViewer built right in. I
wouldn’t be surprised if this same ScrollViewer is used in the Windows 8 start screen.

Wouldn’t it be nice to see the actual colors as well as their names and values? That enhancement is
coming up soon!

Several times already in this book I’ve shown you partial class hierarchies. You may have discovered
that the documentation for each class shows only an ancestor class hierarchy but not derived classes,
so you might have wondered how I assembled the class hierarchies for these pages. They came from a
program I wrote called DependencyObjectClassHierarchy, which uses a ScrollViewer and StackPanel to
show all the classes that derive from DependencyObject.

The XAML file is similar to the previous one except I’ve specified a smaller font:

Project: DependencyObjectClassHierarchy | File: BlankPage.xaml (excerpt)

<Page

 x:Class="DependencyObjectClassHierarchy.BlankPage"

 …

 FontSize="{StaticResource ContentFontSize}">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <ScrollViewer>

 <StackPanel Name="stackPanel" />

 </ScrollViewer>

 </Grid>

</Page>

125

www.it-ebooks.info

http://www.it-ebooks.info/

The program builds a tree of classes and their descendant classes. Each node is a particular class and
a collection of its immediate descendent classes, so I added another code file to the project for a class
that represents this node:

Project: DependencyObjectClassHierarchy | File: ClassAndSubclasses.cs

using System;

using System.Collections.Generic;

namespace DependencyObjectClassHierarchy

{

 class ClassAndSubclasses

 {

 public ClassAndSubclasses(Type parent)

 {

 this.Type = parent;

 this.Subclasses = new List<ClassAndSubclasses>();

 }

 public Type Type { protected set; get; }

 public List<ClassAndSubclasses> Subclasses { protected set; get; }

 }

}

Just as it’s possible to use reflection to get all the properties defined by a class, you can use
reflection to get all public classes defined in an assembly. These classes are available from the
ExportedTypes property of the Assembly object. That’s the simple part. The hard part is getting all the
Assembly objects you’ll need. Conceptually, each of the namespaces in the Windows Runtime is
associated with an assembly of the same name. If you know a class defined in a particular assembly, the
assembly in which that class is defined is available from the Assembly property of the TypeInfo object
for that class.

To write this program, I had to figure out which namespaces contain classes that derive from
DependencyObject and then pick a sample class from each of those namespaces. That’s the purpose of
the long list of AddToClassList calls here (and I can’t guarantee I got them all):

Project: DependencyObjectClassHierarchy | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 Type rootType = typeof(DependencyObject);

 TypeInfo rootTypeInfo = typeof(DependencyObject).GetTypeInfo();

 List<Type> classes = new List<Type>();

 Brush highlightBrush;

 public BlankPage()

 {

 this.InitializeComponent();

 highlightBrush = this.Resources["ControlHighlightBrush"] as Brush;

 // Accumulate all the classes that derive from DependencyObject

 AddToClassList(typeof(Windows.UI.Xaml.DependencyObject));

 AddToClassList(typeof(Windows.UI.Xaml.Automation.Peers.AppBarAutomationPeer));

126

www.it-ebooks.info

http://www.it-ebooks.info/

 AddToClassList(typeof(Windows.UI.Xaml.Automation.Provider.IRawElementProviderSimple));

 AddToClassList(typeof(Windows.UI.Xaml.Controls.Button));

 AddToClassList(typeof(Windows.UI.Xaml.Controls.Primitives.ButtonBase));

 AddToClassList(typeof(Windows.UI.Xaml.Data.Binding));

 AddToClassList(typeof(Windows.UI.Xaml.Documents.Block));

 AddToClassList(typeof(Windows.UI.Xaml.Input.FocusManager));

 AddToClassList(typeof(Windows.UI.Xaml.Media.Brush));

 AddToClassList(typeof(Windows.UI.Xaml.Media.Animation.BackEase));

 AddToClassList(typeof(Windows.UI.Xaml.Media.Imaging.BitmapImage));

 AddToClassList(typeof(Windows.UI.Xaml.Printing.PrintDocument));

 AddToClassList(typeof(Windows.UI.Xaml.Shapes.Ellipse));

 // Sort them alphabetically by name

 classes.Sort((t1, t2) =>

 {

 return String.Compare(t1.GetTypeInfo().Name, t2.GetTypeInfo().Name);

 });

 // Put all these sorted classes into a tree structure

 ClassAndSubclasses rootClass = new ClassAndSubclasses(rootType);

 AddToTree(rootClass, classes);

 // Display the tree using TextBlock's added to StackPanel

 Display(rootClass, 0);

 }

 void AddToClassList(Type sampleType)

 {

 Assembly assembly = sampleType.GetTypeInfo().Assembly;

 foreach (Type type in assembly.ExportedTypes)

 {

 TypeInfo typeInfo = type.GetTypeInfo();

 if (typeInfo.IsPublic && rootTypeInfo.IsAssignableFrom(typeInfo))

 classes.Add(type);

 }

 }

 void AddToTree(ClassAndSubclasses parentClass, List<Type> classes)

 {

 foreach (Type type in classes)

 {

 Type baseType = type.GetTypeInfo().BaseType;

 if (baseType == parentClass.Type)

 {

 ClassAndSubclasses subClass = new ClassAndSubclasses(type);

 parentClass.Subclasses.Add(subClass);

 AddToTree(subClass, classes);

 }

 }

 }

127

www.it-ebooks.info

http://www.it-ebooks.info/

 void Display(ClassAndSubclasses parentClass, int indent)

 {

 TypeInfo typeInfo = parentClass.Type.GetTypeInfo();

 // Create TextBlock with type name

 TextBlock txtblk = new TextBlock();

 txtblk.Inlines.Add(new Run { Text = new string(' ', 8 * indent) });

 txtblk.Inlines.Add(new Run { Text = typeInfo.Name });

 // Indicate if the class is sealed

 if (typeInfo.IsSealed)

 txtblk.Inlines.Add(new Run

 {

 Text = " (sealed)",

 Foreground = highlightBrush

 });

 // Indicate if the class can't be instantiated

 IEnumerable<ConstructorInfo> constructorInfos = typeInfo.DeclaredConstructors;

 int publicConstructorCount = 0;

 foreach (ConstructorInfo constructorInfo in constructorInfos)

 if (constructorInfo.IsPublic)

 publicConstructorCount += 1;

 if (publicConstructorCount == 0)

 txtblk.Inlines.Add(new Run

 {

 Text = " (non-instantiable)",

 Foreground = highlightBrush

 });

 // Add to the StackPanel

 stackPanel.Children.Add(txtblk);

 // Call this method recursively for all subclasses

 foreach (ClassAndSubclasses subclass in parentClass.Subclasses)

 Display(subclass, indent + 1);

 }

}

Notice how the TextBlock for each class is constructed by adding Run items to its Inlines collection.
It’s sometimes useful for a class hierarchy to display additional information, so the program also checks
whether the class is marked as sealed and whether it can be instantiated. In the Windows Presentation
Foundation and Silverlight, classes that can’t be instantiated are generally defined as abstract. In the
Windows Runtime, they have protected constructors instead.

Here’s the section of the class hierarchy with Panel derivatives:

128

www.it-ebooks.info

http://www.it-ebooks.info/

Layout Weirdness or Normalcy?

Suppose you have a StackPanel and you decide that one of the items in this StackPanel should be a
ScrollViewer with another StackPanel. To determine what might happen in such a situation, you might
experiment with the StackPanelWithScrolling project and change the XAML file like so:

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel>

 <ScrollViewer>

 <StackPanel Name="stackPanel" />

 </ScrollViewer>

 </StackPanel>

 </Grid>

When you try it out, you’ll discover it doesn’t work. You can’t scroll. What happened?

Becoming acquainted with the mechanics of layout is an important part of being a crafty Windows
Runtime developer, and the best way to make this acquaintance is to write your own Panel derivatives.
That job awaits us in a future chapter.

The conflict here results from the different ways in which StackPanel and ScrollViewer calculate their
desired heights. The StackPanel calculates a desired height based on the total height of all its children.
In the vertical dimension (by default), StackPanel is entirely child-driven. To calculate a total height, it
offers to each of its children an infinite height. (When you write your own Panel derivatives, you’ll see
that I’m not speaking metaphorically or abstractly. A Double.PositiveInfinity value actually comes into
play!) The children respond by calculating a desired height based on their natural size. The StackPanel
adds these heights to calculate its own desired height.

129

www.it-ebooks.info

http://www.it-ebooks.info/

The height of the ScrollViewer, however, is parent-driven. Its height is only what its parent offers to
it, and in our simple example this has been the height of the Grid, which is the height of the Page,
which is the height of the window. The ScrollViewer is able to determine how to scroll its content
because it knows the difference between the height of its child (often a StackPanel) and its own height.

Now put a vertically-scrolling ScrollViewer as a child of a vertical StackPanel. To determine the
desired size of this ScrollViewer child, the StackPanel offers it an infinite height. How tall does the
ScrollViewer really want to be? The height of the ScrollViewer is now child-driven rather than
parent-driven, and its desired height is the height of its child, which is the total height of the inner
StackPanel, which is the total accumulated height of all the children in that StackPanel.

From the perspective of the ScrollViewer, its height is the same as the height of its content, which
means that there’s nothing to scroll.

In other words, when a vertically-scrolling ScrollViewer is put in a vertical StackPanel, losing the
ability to scroll is totally expected behavior!

Here’s another seeming layout oddity that is actually quite normal: Try giving a TextBlock a very
long chunk of text to display, and set the TextWrapping property to Wrap. In most cases, the text wraps
as we might expect. Now put that TextBlock in a StackPanel with an Orientation property set to
Horizontal. To determine how wide the TextBlock needs to be, the StackPanel offers it an infinite width,
and in response to that infinite width, the TextBlock stops wrapping the text.

In the WhatSizeWithBindings and WhatSizeWithBindingConverter you saw how a horizontal
StackPanel can effectively concatenate TextBlock elements, one of which has a binding on its Text
property. But you can’t use this same technique with a paragraph of wrapped text, because the text will
never wrap in the horizontal StackPanel. If you need to concatenate different text strings in a
paragraph, you’ll need to use a single TextBlock with an Inlines collection. If one piece of text needs to
be set to a variable data item, you can’t use a binding because the Text property of Run is not backed
by a dependency property. You’ll need to set that item from code.

Because a vertical StackPanel has a finite width, it’s an ideal host for TextBlock elements that wrap
text, as you’ll see next.

Making an E-Book

A TextBlock item that goes into a vertical StackPanel can have its TextWrapping property set to Wrap,
which means that it can actually be a whole paragraph rather than just a word or two. Image elements
can also go into this same StackPanel, and the result can be a rudimentary illustrated e-book.

On the famous Project Gutenberg website, I found an illustrated version of Beatrix Potter’s classic
children’s book The Tale of Tom Kitten (http://www.gutenberg.org/ebooks/14837), so I created a Visual
Studio project named TheTaleOfTomKitten and I made a folder called Images. From Project
Gutenberg’s HTML version of the book, it was easy to download all the illustrations in the form of JPEG

130

www.it-ebooks.info

http://www.gutenberg.org/ebooks/14837
http://www.it-ebooks.info/

files. These have names such as tomxx.jpg, where xx is the original page number of the book where
that illustration appeared. From within the Visual Studio project, I then added all 28 of these JPEG files
to the Images folder.

Most of the rest of the work involved the BlankPage.xaml file. Each paragraph of the book became a
TextBlock, and these I interspersed with Image elements referencing the JPEG files in the Images folder.

However, I felt it necessary to deviate somewhat from the ordering of the text and images in Project
Gutenberg’s HTML file. A PDF of the original edition of The Tale of Tom Kitten on the Internet Archive
site (http://archive.org/details/taleoftomkitten00pottuoft) reveals how Miss Potter’s illustrations are
associated with the text of the book. There are two patterns:

1. Text appears on the verso (left-hand, even-numbered) page with an accompanying illustration
on the recto (right-hand, odd-numbered) page.

2. Text appears on the recto page with an accompanying illustration on the verso page.

Adapting this paginated book to a continuous format required altering the order of the text and
image in this second case so that the text appears before the accompanying illustration. That’s why
you’ll see some page swaps in the XAML file.

Given the very many TextBlock and Image elements, styles seemed almost mandatory:

Project: TheTaleOfTomKitten | File: BlankPage.xaml (excerpt)

<Page.Resources>

 <Style x:Key="commonTextStyle" TargetType="TextBlock">

 <Setter Property="FontFamily" Value="Century Schoolbook" />

 <Setter Property="FontSize" Value="36" />

 <Setter Property="Foreground" Value="Black" />

 <Setter Property="Margin" Value="0 12" />

 </Style>

 <Style x:Key="paragraphTextStyle" TargetType="TextBlock"

 BasedOn="{StaticResource commonTextStyle}">

 <Setter Property="TextWrapping" Value="Wrap" />

 </Style>

 <Style x:Key="frontMatterTextStyle" TargetType="TextBlock"

 BasedOn="{StaticResource commonTextStyle}">

 <Setter Property="TextAlignment" Value="Center" />

 </Style>

 <Style x:Key="imageStyle" TargetType="Image">

 <Setter Property="Stretch" Value="None" />

 <Setter Property="HorizontalAlignment" Value="Center" />

 </Style>

</Page.Resources>

Notice the Margin value that provides a little spacing between the paragraphs. Each TextBlock
element references either paragraphTextStyle (for the actual paragraphs of the book) or
frontMatterTextStyle (for all the titles and other information that appears in the front of the book). I

131

www.it-ebooks.info

http://archive.org/details/taleoftomkitten00pottuoft
http://www.it-ebooks.info/

could have made the style for the Image element an implicit style by simply removing the x:Key
attribute and removing the Style attributes from the Image elements.

Many of the TextBlock elements that comprise the front matter have various local FontSize settings.
Books generally are printed with black ink on white pages, so I hard-coded the Foreground of the
TextBlock to black and set the Background of the Grid to white. To restrict the text to reasonable line
lengths, the StackPanel is given a MaxWidth of 640 and centered within the ScrollViewer. Here’s a little
excerpt of the alternating TextBlock elements and Image elements:

Project: TheTaleOfTomKitten | File: BlankPage.xaml (excerpt)

<Grid Background="White">

 <ScrollViewer>

 <StackPanel MaxWidth="640"

 HorizontalAlignment="Center">

 …

 <!-- pg. 38 -->

 <TextBlock Style="{StaticResource paragraphTextStyle}">

   Mittens laughed so that she fell off the

 wall. Moppet and Tom descended after her; the pinafores

 and all the rest of Tom's clothes came off on the way down.

 </TextBlock>

 <TextBlock Style="{StaticResource paragraphTextStyle}">

   “Come! Mr. Drake Puddle-Duck,” said Moppet

 — “Come and help us to dress him! Come and button up Tom!”

 </TextBlock>

 <Image Source="Images/tom39.jpg" Style="{StaticResource imageStyle}" />

 <!-- pg. 41 -->

 <TextBlock Style="{StaticResource paragraphTextStyle}">

   Mr. Drake Puddle-Duck advanced in a slow

 sideways manner, and picked up the various articles.

 </TextBlock>

 <Image Source="Images/tom40.jpg" Style="{StaticResource imageStyle}" />

 …

 </StackPanel>

 </ScrollViewer>

</Grid>

The two   characters at the beginning of each paragraph are em-spaces. These provide a
first-line indentation, which, unfortunately, is something not provided by the TextBlock property.

You can read this book in either landscape or portrait mode:

132

www.it-ebooks.info

http://www.it-ebooks.info/

Fancier StackPanel Items

I mentioned earlier I’d be showing you a program that displays all 141 available Windows Runtime
colors with the colors as well as their names and RGB values. My first example is called ColorList1, but
let’s begin with the screen shot of the completed program so that you can see the goal:

133

www.it-ebooks.info

http://www.it-ebooks.info/

This program contains a total of 283 StackPanel elements. Each of the 141 colors gets a pair: a vertical
StackPanel is parent to the two TextBlock elements, and a horizontal StackPanel is parent to a
Rectangle and the vertical StackPanel. All the horizontal StackPanel elements are then children of the
main vertical StackPanel in a ScrollViewer. The XAML file is responsible for centering that StackPanel:

Project: ColorList1 | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <ScrollViewer>

 <StackPanel Name="stackPanel"

 HorizontalAlignment="Center" />

 </ScrollViewer>

</Grid>

While enumerating through the static properties of the Colors class, the constructor in the
code-behind file builds the nested StackPanel elements for each item:

Project: ColorList1 | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)

 {

 Color clr = (Color)property.GetValue(null);

 StackPanel vertStackPanel = new StackPanel

 {

 VerticalAlignment = VerticalAlignment.Center

134

www.it-ebooks.info

http://www.it-ebooks.info/

 };

 TextBlock txtblkName = new TextBlock

 {

 Text = property.Name,

 FontSize = 24

 };

 vertStackPanel.Children.Add(txtblkName);

 TextBlock txtblkRgb = new TextBlock

 {

 Text = String.Format("{0:X2}-{1:X2}-{2:X2}-{3:X2}",

 clr.A, clr.R, clr.G, clr.B),

 FontSize = 18

 };

 vertStackPanel.Children.Add(txtblkRgb);

 StackPanel horzStackPanel = new StackPanel

 {

 Orientation = Orientation.Horizontal

 };

 Rectangle rectangle = new Rectangle

 {

 Width = 72,

 Height = 72,

 Fill = new SolidColorBrush(clr),

 Margin = new Thickness(6)

 };

 horzStackPanel.Children.Add(rectangle);

 horzStackPanel.Children.Add(vertStackPanel);

 stackPanel.Children.Add(horzStackPanel);

 }

 }

}

Now, there’s nothing really wrong with this code, except that there are numerous ways to do it
better, and by “better” I don’t mean faster or more efficient but cleaner and more elegant and—most
importantly—easier to maintain and modify.

Let’s look at a better solution, but at the same time be aware that I won’t be finished with this
example until a future chapter, where you’ll see not only a better way of doing it, but the best way of
doing it.

The key to making this program better is expressing those color items—the nested StackPanel and
TextBlock and Rectangle—in XAML. Just offhand, this doesn’t seem possible. We can’t put this XAML in
the BlankPage.xaml file because we can’t tell XAML to make 141 instances of the item unless we
actually paste in 141 copies, and I suspect we’re all agreed that would be the worst way to do it.

The ColorList2 program shows how to do it. After creating the project, I right-clicked the project
name in the Solution Explorer and selected Add and New Item. In the Add New Item dialog box, I
chose User Control and gave it a name of ColorItem.xaml. This process creates a pair of files:

135

www.it-ebooks.info

http://www.it-ebooks.info/

ColorItem.xaml accompanied by a code-behind file ColorItem.xaml.cs.

The ColorItem.xaml.cs file created by Visual Studio defines a ColorItem class in the ColorList2
namespace that derives from UserControl:

namespace ColorList2

{

 public sealed partial class ColorItem : UserControl

 {

 public ColorItem()

 {

 this.InitializeComponent();

 }

 }

}

The ColorItem.xaml file created by Visual Studio says the same thing in XAML:

<UserControl

 x:Class="ColorList2.ColorItem"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:ColorList2"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 mc:Ignorable="d"

 d:DesignHeight="300"

 d:DesignWidth="400">

 <Grid>

 </Grid>

</UserControl>

You’ve actually already seen the UserControl class before because Page derives from UserControl.
The “user” refers not to the end-user of your application but to you, the programmer. Deriving from
UserControl is the easiest way for you (the programmer) to make a custom control because you can
define the visuals of the control in this XAML file. UserControl defines a property named Content, which
is also the class’s content property, so anything you add within the UserControl tags is set to this
Content property.

Don’t worry about the d:DesignHeight and d:DesignWidth properties in the ColorItem.xaml file.
Those are for Microsoft Expression Blend. The actual size of this control depends on its contents.

The next step is to define the visuals of the color item in this ColorItem.xaml file:

Project: ColorList2 | File: ColorItem.xaml (excerpt)

<UserControl

 x:Class="ColorList2.ColorItem" … >

 <Grid>

 <StackPanel Orientation="Horizontal">

136

www.it-ebooks.info

http://www.it-ebooks.info/

 <Rectangle Name="rectangle"

 Width="72"

 Height="72"

 Margin="6" />

 <StackPanel VerticalAlignment="Center">

 <TextBlock Name="txtblkName"

 FontSize="24" />

 <TextBlock Name="txtblkRgb"

 FontSize="18" />

 </StackPanel>

 </StackPanel>

 </Grid>

</UserControl>

It’s the same element hierarchy as defined in code in ColorList1, but now it’s actually easily readable.
The Rectangle and the two TextBlock elements all have names, so they can be referenced in the
code-behind file:

Project: ColorList2 | File: ColorItem.xaml.cs (excerpt)

public sealed partial class ColorItem : UserControl

{

 public ColorItem(string name, Color clr)

 {

 this.InitializeComponent();

 rectangle.Fill = new SolidColorBrush(clr);

 txtblkName.Text = name;

 txtblkRgb.Text = String.Format("{0:X2}-{1:X2}-{2:X2}-{3:X2}",

 clr.A, clr.R, clr.G, clr.B);

 }

}

The code-behind file defines a constructor that accepts a color name and a Color value as arguments. It
uses those arguments to set the appropriate properties of the Rectangle and two TextBlock elements.

Let me warn you that defining a parameterized constructor in a UserControl derivative is extremely
unorthodox. A much better approach is to define properties instead, but I don’t want to do that right
now because these properties should really be dependency properties, and that’s too involved at the
moment.

Without a parameterless constructor, this ColorItem class cannot be instantiated in XAML. But that’s
OK for this program because I’m not going to try instantiating it in XAML. The BlankPage.xaml file for
the ColorList2 project looks the same as the one for ColorList1. What’s different is the simplicity of the
code-behind file:

Project: ColorList2 | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

137

www.it-ebooks.info

http://www.it-ebooks.info/

 public BlankPage()

 {

 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)

 {

 Color clr = (Color)property.GetValue(null);

 ColorItem clrItem = new ColorItem(property.Name, clr);

 stackPanel.Children.Add(clrItem);

 }

 }

}

Each ColorItem is instantiated with a name and Color and then added to the StackPanel.

Creating Windows Runtime Libraries

Let’s create another version of this program, but this time the ColorItem class will be in a library that
can be shared with other projects.

You can create a Visual Studio solution containing only a library project, but this is rarely done for a
new library. As you’re developing the code in the library, you want to test it, and it really helps to have
an application project in the same solution for that purpose. It’s much more common to develop
libraries in conjunction with an application and then share those libraries later if desired.

So let’s create a new application project named ColorList3. In the Solution Explorer, add a library
project to the solution by right-clicking the solution name and selecting Add and New Project. (Or pick
Add New Project from the File menu.) In the Add New Project dialog box, select Visual C# and
Windows Metro Style at the left and Class Library among the available templates.

Generally. a library has a multilevel name separated by periods. This name also becomes the default
namespace for that project. The library name usually begins with a company name (or its equivalent),
so for this example I chose a library name of Petzold.Windows8.Controls.

In a new library, Visual Studio automatically creates a file named Class1.cs, but you can delete that.
Now right-click the library project name and select Add and New Item, and in the Add New Item
dialog box, select User Control and give it a name of ColorItem. I decided to enhance the visuals of this
ColorItem a little beyond the one you’ve already seen:

Solution: ColorList3 | Project: Petzold.Windows8.Controls | File: ColorItem.xaml (excerpt)

<UserControl … >

 <Grid>

 <Border BorderBrush="{StaticResource ApplicationTextBrush}"

 BorderThickness="1"

 Width="336"

 Margin="6">

138

www.it-ebooks.info

http://www.it-ebooks.info/

 <StackPanel Orientation="Horizontal">

 <Rectangle Name="rectangle"

 Width="72"

 Height="72"

 Margin="6" />

 <StackPanel VerticalAlignment="Center">

 <TextBlock Name="txtblkName"

 FontSize="24" />

 <TextBlock Name="txtblkRgb"

 FontSize="18" />

 </StackPanel>

 </StackPanel>

 </Border>

 </Grid>

</UserControl>

Notice that I’ve given it a Border with an explicit Width property and a Margin. I chose this width
empirically based on the longest color name (LightGoldenrodYellow). Notice also that the BorderBrush
is set to a predefined identifier, which will be black with a light theme and white with a dark theme.
Themes are set on applications rather than libraries—indeed, a library has no App class to set a
theme—so this brush will be based on the theme of the application that uses ColorItem.

We still haven’t touched the ColorList3 application project. Despite the fact that they’re in the same
solution, this application project will need a reference to the library, so right-click the References item
under the ColorList3 project and select Add Reference. In the Reference Manager dialog box, at the left
select Solution (indicating you want an assembly in the same solution), click
Petzold.Windows8.Controls, and click OK.

There is a distinct advantage to having both these projects in the same solution: whenever you build
ColorList3, Visual Studio will also rebuild the Petzold.Windows8.Controls library if it’s not up to date.

The BlankPage.xaml file in ColorList3 is the same as in the previous two projects. The code-behind
file needs a using directive for the library, but otherwise it’s the same as ColorList2:

Project: ColorList3 | File: BlankPage.xaml.cs

using System.Collections.Generic;

using System.Reflection;

using Windows.UI;

using Windows.UI.Xaml.Controls;

using Petzold.Windows8.Controls;

namespace ColorList3

{

 public sealed partial class BlankPage : Page

 {

 public BlankPage()

 {

 this.InitializeComponent();

139

www.it-ebooks.info

http://www.it-ebooks.info/

 IEnumerable<PropertyInfo> properties =

 typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)

 {

 Color clr = (Color)property.GetValue(null);

 ColorItem clrItem = new ColorItem(property.Name, clr);

 stackPanel.Children.Add(clrItem);

 }

 }

 }

}

Here’s the result:

The Wrap Alternative

Now let’s use that library in another project. There are three ways to do it:

Method 1: Add a new application project to the same solution as the existing library: the ColorList3
solution, in this example. This is the easiest approach, and it certainly makes sense if the two
applications are related some way.

Instead, I’m going to use one of the other two methods. These two methods both involve creating a
new solution and application project, which I’ll call ColorWrap. This project needs a reference to the
Petzold.Windows8.Control library.

Method 2: Right-click the References item in the ColorWrap project, and select Add Reference. In

140

www.it-ebooks.info

http://www.it-ebooks.info/

the left column of the Reference Manager, select Browse, and then click the Browse button in the lower
right corner. This will allow you to browse to the directory location where the
Petzold.Windows8.Controls.dll file is located (which is the bin/Debug directory of the
Petzold.Windows8.Controls project in the ColorList3 solution), and you can select that DLL.

The disadvantage to this method is that you’re assuming that the library is complete and finished
and that you won’t need to make any changes. You’re referencing a DLL rather than the project with its
source code. However, in my experience the really big disadvantage to this method is that it doesn’t
work quite right with the current release of Windows 8 when there are XAML files involved.

That leaves us with:

Method 3: In the ColorWrap solution, right-click the solution name and select Add and Existing
Project. The existing project you want to add is the library. In the Add Existing Project dialog box,
navigate to the Petzold.Windows8.Controls.csproj file. This is the C# project file maintained by Visual
Studio in the ColorList3 solution. Select that. The library project is not copied! Instead, only a reference
is created to that library project. Regardless, Visual Studio can still determine if the library needs to be
rebuilt, and it performs that rebuild if necessary.

Now the Petzold.Windows8.Controls project is part of the ColorWrap solution, but the ColorWrap
application project still needs a reference to the library. Right-click the References section under the
ColorWrap project and select the library from the solution, just as you did in ColorList3.

It could be that you have two instances of Visual Studio running, perhaps with the ColorList3 and
ColorWrap solutions loaded, both of which let you make changes to the Petzold.Windows8.Controls
library. That’s generally OK as long as you save or compile after making changes. If the same file is
open in both instances of Visual Studio and you make changes to that file, the other instance of Visual
Studio will notify you of changes when that file is saved to disk.

With those preliminaries out of the way, let’s focus on the ColorWrap program, which demonstrates
how to display these colors with a VariableSizedWrapGrid panel. Despite the name of this panel, it
really wants all the items to be the same size, and that’s why I added the explicit Width to the Border in
ColorItem.

Like StackPanel, VariableSizedWrapGrid has an Orientation property and the default is Vertical. The
first items in the Children collection are displayed in a column. The difference is that
VariableSizedWrapGrid will use multiple columns, just like the Windows 8 start screen. This means that
the default VariableSizedWrapGrid must be horizontally scrolled, so ScrollViewer properties must be set
accordingly. Here’s the XAML file:

Project: ColorWrap | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <ScrollViewer HorizontalScrollBarVisibility="Visible"

 VerticalScrollBarVisibility="Disabled">

 <VariableSizedWrapGrid Name="wrapPanel" />

 </ScrollViewer>

</Grid>

141

www.it-ebooks.info

http://www.it-ebooks.info/

The code-behind file is similar to the previous program except that now it puts the items into
wrapPanel:

Project: ColorWrap | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 IEnumerable<PropertyInfo> properties = typeof(Colors).GetTypeInfo().DeclaredProperties;

 foreach (PropertyInfo property in properties)

 {

 Color clr = (Color)property.GetValue(null);

 ColorItem clrItem = new ColorItem(property.Name, clr);

 wrapPanel.Children.Add(clrItem);

 }

 }

}

And here it is:

The Canvas and Attached Properties

The final Panel derivative I’ll discuss in this chapter is the Canvas. In one sense, Canvas is the most
“traditional” type of panel because it allows you to position elements at precise pixel locations.
However, if you’ve scoured the properties defined by UIElement and FrameworkElement searching for a
property named Location or Position or X or Y, you haven’t found one. Such a property does not exist

142

www.it-ebooks.info

http://www.it-ebooks.info/

because it doesn’t have a generalized applicability. We’ve managed to make it this far without
specifying pixel locations for positioning elements, and the only time one is needed is when the
element is a child of a Canvas.

For that reason, Canvas itself defines the properties used to position elements relative to itself.
These are a very special type of properties known as attached properties, and they are a subset of
dependency properties. The attached properties defined by one class (Canvas in this example) are
actually set on instances of other classes (children of the Canvas, in this case). The objects on which you
set an attached property don’t need to know what that property does or where it came from.

Let’s see how this works. The TextOnCanvas project has a XAML file that contains a Canvas within
the standard Grid. (You can alternatively replace the Grid with the Canvas.) The Canvas contains three
TextBlock children:

Project: TextOnCanvas | File: BlankPage.xaml (excerpt)

<Page

 x:Class="TextOnCanvas.BlankPage"

 …

 FontSize="48">

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Canvas>

 <TextBlock Text="Text on Canvas at (0, 0)"

 Canvas.Left="0"

 Canvas.Top="0" />

 <TextBlock Text="Text on Canvas at (200, 100)"

 Canvas.Left="200"

 Canvas.Top="100" />

 <TextBlock Text="Text on Canvas at (400, 200)"

 Canvas.Left="400"

 Canvas.Top="200" />

 </Canvas>

 </Grid>

</Page>

Here’s the (rather unexciting) result:

143

www.it-ebooks.info

http://www.it-ebooks.info/

Look at that markup again, and take special note of the strange syntax:

<TextBlock Text="Text on Canvas at (200, 100)"

 Canvas.Left="200"

 Canvas.Top="100" />

Judging from their names, the Canvas.Left and Canvas.Top attributes appear to be defined by the
Canvas class, and yet they are set on the children of the Canvas to indicate their positions. Attributes
with class and property names like this are always attached properties.

The funny thing is, Canvas actually doesn’t define any properties named Left and Top! It defines
properties and methods with similar names but not those names exactly.

The nature of these attached properties might become a little clearer by examining how they are set
in code. The XAML file for the TapAndShowPoint program contains only a named Canvas in the
standard Grid:

Project: TapAndShowPoint | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Canvas Name="canvas" />

</Grid>

Everything else is the responsibility of the code-behind file. It overrides the OnTapped method to
create a dot (an Ellipse element actually) and a TextBlock, both of which it adds to the Canvas at the
point where the screen was tapped:

Project: TapAndShowPoint | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

144

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 protected override void OnTapped(TappedRoutedEventArgs args)

 {

 Point pt = args.GetPosition(this);

 // Create dot

 Ellipse ellipse = new Ellipse

 {

 Width = 3,

 Height = 3,

 Fill = this.Foreground

 };

 Canvas.SetLeft(ellipse, pt.X);

 Canvas.SetTop(ellipse, pt.Y);

 canvas.Children.Add(ellipse);

 // Create text

 TextBlock txtblk = new TextBlock

 {

 Text = String.Format("({0})", pt),

 FontSize = 24,

 };

 Canvas.SetLeft(txtblk, pt.X);

 Canvas.SetTop(txtblk, pt.Y);

 canvas.Children.Add(txtblk);

 args.Handled = true;

 base.OnTapped(args);

 }

}

As you tap on the screen, the dots and text appear at the tap point:

145

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s how the position of the dot is specified in code before it’s added to the Children collection of

the Canvas:

Canvas.SetLeft(ellipse, pt.X);

Canvas.SetTop(ellipse, pt.Y);

canvas.Children.Add(ellipse);

The order doesn’t matter: you could add the element to the Canvas first, and then set its position. The
Canvas.SetLeft and Canvas.SetTop static methods play the same role here as the Canvas.Left and
Canvas.Top attributes in XAML. They let you specify a coordinate point where a particular element is to
be positioned.

If you make the Ellipse a little larger, you’ll see a little flaw in the approach I’ve used. The
Canvas.SetLeft and Canvas.SetTop methods position the upper-left corner of the Ellipse at the specified
point rather than its center. If you want the center of the Ellipse at the point pt, you’ll want to subtract
half its width from pt.X and half its height from pt.Y.

I mentioned that Canvas doesn’t define Left and Top properties specifically. Instead, Canvas defines
static SetLeft and SetTop methods as well as static properties of type DependencyProperty:

public static DependencyProperty LeftProperty { get; }

public static DependencyProperty TopProperty { get; }

As you’ll see in a later chapter, these are special types of dependency properties in that they can be set
on elements other than Canvas.

Instead of setting the position of an element by calling Canvas.SetLeft and Canvas.SetTop, you can
instead set the position by calling SetValue on the child element and referencing the static
DependencyProperty objects:

ellipse.SetValue(Canvas.LeftProperty, pt.X);

146

www.it-ebooks.info

http://www.it-ebooks.info/

ellipse.SetValue(Canvas.TopProperty, pt.Y);

These statements are exactly equivalent to the Canvas.SetLeft and Canvas.SetTop calls. In fact, although
I have never seen the internal source code of the Canvas class, I can practically guarantee you that the
SetLeft and SetTop static methods in Canvas are defined like this:

public static void SetLeft(DependencyObject element, double value)

{

 element.SetValue(LeftProperty, value);

}

public static void SetTop(DependencyObject element, double value)

{

 element.SetValue(TopProperty, value);

}

These methods show very clearly how the dependency property is actually being set on the element
rather than the Canvas.

Canvas also defines GetLeft and GetTop methods:

public static double GetLeft(DependencyObject element)

{

 return (double)element.GetValue(LeftProperty);

}

public static double GetTop(DependencyObject element)

{

 return (double)element.GetValue(TopProperty);

}

The Canvas class uses these methods internally to obtain the left and top settings on each of its
children so that it can position them during the layout process.

You will recall that the SetValue and GetValue methods are defined by DependencyObject, which is a
very basic class in the Windows Runtime. A property like FontSize is actually defined in terms of the
static dependency property:

public double FontSize

{

 set { SetValue(FontSizeProperty, value); }

 get { return (double)GetValue(FontSizeProperty); }

}

The static SetLeft, SetTop, GetLeft, and GetTop methods suggest that the dependency property
system involves a dictionary of sorts. The SetValue method allows an attached property like
Canvas.LeftProperty to be stored in an element that has no knowledge of this property or its purpose.
Canvas can later retrieve this property to determine where the child should appear relative to itself.

The Z-Index

Canvas has a third attached property that you can set in XAML with the attribute Canvas.ZIndex. The

147

www.it-ebooks.info

http://www.it-ebooks.info/

“Z” in ZIndex refers to a three-dimensional coordinate system, where the Z axis extends out of the
screen towards the user.

When sibling elements overlap, they are normally displayed in the order they appear in the visual
tree, which means that elements early in a panel’s Children collection can be covered by elements later
in the Children collection. For example, consider the following:

<Grid>

 <TextBlock Text="Blue Text" Foreground="Blue" FontSize="96" />

 <TextBlock Text="Red Text" Foreground="Red" FontSize="96" />

</Grid>

The red text obscures part of the blue text.

You can override that behavior with the Canvas.ZIndex attached property, and the weird thing is
this: it works with all panels, and not just Canvas. To make the blue text appear on top of the red text,
give it a higher z-index:

<Grid>

 <TextBlock Text="Blue Text" Foreground="Blue" FontSize="96" Canvas.ZIndex="1" />

 <TextBlock Text="Red Text" Foreground="Red" FontSize="96" Canvas.ZIndex="0" />

</Grid>

Canvas Weirdness

Much of what I’ve described about layout doesn’t apply to the Canvas. Layout within a Canvas is
always child-driven. The Canvas always offers its children an infinite size, which means that each child
sets a natural size for itself and that’s the only space the child occupies. HorizontalAlignment and
VerticalAlignment settings have no effect on a child of a Canvas. Likewise, the Stretch property of
Image has no effect when the Image is a child of a Canvas: Image always displays the bitmap in its pixel
size. Rectangle and Ellipse shrink to nothing in a Canvas unless given an explicit width and height.

Although HorizontalAlignment and VerticalAlignment have no effect on a child of the Canvas, they
do have an effect when set on the Canvas itself. With other panels, when you set the alignment
properties to something other than Stretch, the panel becomes as small as possible while still
encompassing its children. The Canvas, however, is different. Set HorizontalAlignment and
VerticalAlignment to values other than Stretch, and the Canvas shrinks to nothing regardless of its
children.

Even when the Canvas shrinks down to a zero size, the display of its children is not affected.
Conceptually, the Canvas is more like a reference point than a container.

You can use this characteristic of the Canvas to your advantage. For example, suppose you try to
display a TextBlock in a Grid that is obviously too small for it:

<Grid Width="200" Height="100">

 <TextBlock Text="Text in a Small Grid" FontSize="144" />

148

www.it-ebooks.info

http://www.it-ebooks.info/

</Grid>

The TextBlock is clipped to the dimensions of the Grid. You could make the Grid larger of course, but
you might be stuck with this Grid size, perhaps because of other child elements. Still, you want the
TextBlock to be aligned with these other elements without being clipped to the Grid.

The extremely simple solution is to put a Canvas in the Grid and put the TextBlock in that Canvas:

<Grid Width="200" Height="100">

 <Canvas>

 <TextBlock Text="Text in a Small Grid" FontSize="144" />

 </Canvas>

</Grid>

Even though the Canvas is now clipped to the size of the Grid, the TextBlock is not. The TextBlock is still
where you want it—aligned with the upper-left corner of the Grid—but it’s now displayed without any
clipping.

It’s a very simple technique that can be very useful when you need it.

149

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

Control Interaction
Early on in this book I made a distinction between classes that derive from FrameworkElement and
those that derive from Control. I've tended to refer to FrameworkElement derivatives (such as TextBlock
and Image) as "elements" to preserve this distinction, but a deeper explication is now required.

The title of this chapter might suggest that elements are for presentation and controls are for
interaction, but that’s not necessarily so. UIElement defines all the user input events for touch, mouse,
stylus, and keyboard, which means that elements as well as controls can interact with the user in very
sophisticated ways.

Nor are elements deficient in layout, styling, or data binding capabilities. It's the FrameworkElement
class that defines layout properties such as Width, Height, HorizontalAlignment, VerticalAlignment, and
Margin, as well as the Style property and the SetBinding method.

The Control Difference

Visually and functionally, FrameworkElement derivatives are primitives—atoms, so to speak—while
Control derivatives are assemblages of these primitives, or molecules in this analogy. A Button is
actually constructed from a Border and a TextBlock (in many cases). A Slider consists of a couple of
Rectangle elements with a Thumb, which itself is a Control probably built from a Rectangle. Anything
that has visual content beyond text, a bitmap, or vector graphics is almost certainly a Control
derivative.

Consequently, one of the most important properties defined by Control is called Template. As I’ll
demonstrate in a future chapter, this property allows you to completely redefine the appearance of a
control by defining a visual tree of your own invention. It makes sense to visually redefine a Button
because (for example) you might want it to be round rather than rectangular so that it looks right in an
application bar. It makes no sense to visually redefine a TextBlock or Image because there's nothing
you can do with it beyond the text or bitmap itself. If you want to add something to a TextBlock or
Image, you're defining a Control because you're constructing a visual tree that includes the element
primitive.

Although you can derive a custom class from FrameworkElement, there is little you can do with the
result. You can't give it any visuals. But when you derive from Control, you give your class a default
visual appearance by defining a visual tree in XAML.

For use by derived classes, Control defines a bunch of properties that the Control class itself does
not need. These are properties mostly associated with TextBlock (CharacterSpacing, FontFamily,

150

www.it-ebooks.info

http://www.it-ebooks.info/

FontSize, FontStretch, FontStyle, FontWeight, and Foreground) and Border (Background, BorderBrush,
BorderThickness, and Padding). Not every Control derivative has text or a border, but if you need those
properties when creating a new control or creating a new template for an existing control, they are
conveniently provided. Control also provides two new properties named HorizontalContentAlignment
and VerticalContentAlignment for purposes of defining control visuals.

A Control derivative often defines a few of its own properties and its own events. Commonly, a
Control derivative will process user-input events from the pointer, mouse, stylus, and keyboard and will
convert that input into a higher-level event. For example, the ButtonBase class (from which all the
buttons derive) defines a Click event. The Slider defines a ValueChanged event indicating when its
Value property changes. The TextBox defines a TextChanged event indicating when its Text property
changes.

It turns out that in real life, Control derivatives really do interact more with users, so the title of this
chapter is accurate. For the convenience of working with user input, Control provides protected virtual
methods corresponding to all the user-input events defined by UIElement. For example, UIElement
defines the Tapped event, but Control defines the protected virtual method OnTapped. Control also
defines an IsEnabled property so that controls can avoid user input if input is not currently applicable,
and it defines an IsEnabledChanged event that is fired when the property changes. This is the only
public event actually defined by Control.

The idea of a control having "input focus" is still applicable in Windows 8. When a control has the
input focus, the user expects that particular control to get most keyboard events. (Of course, some
keyboard events, such as the Windows key, transcend input focus.) For this purpose, Control defines a
Focus method, as well as OnGotFocus and OnLostFocus virtual methods.

In connection with keyboard focus is the idea of being able to navigate among controls by using
the keyboard Tab key. Control provides for this by defining IsTabStop, TabIndex, and TabNavigation
properties.

Many Control derivatives are in the Windows.UI.Xaml.Controls namespace, but a few are in the
Windows.UI.Xaml.Controls.Primitives namespace. The latter namespace is generally reserved for those
controls that usually appear only as parts of other controls, but that's a suggestion rather than a
restriction.

Most Control derivatives derive directly from Control, but four important classes derive from Control
to define their own subcategories of controls. Here they are:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Control
 ContentControl
 ItemsControl

151

www.it-ebooks.info

http://www.it-ebooks.info/

 RangeBase
 UserControl

ContentControl—from which important classes like Button, ScrollViewer, and AppBar
derive—seemingly does little more than define a property named Content of type object. For a Button,
for example, this Content property is what you use to set whatever you want to appear inside the
Button. Most often this is text or a bitmap, but you can also use a panel that contains other content.

It is interesting that the Content property of ContentControl is of type object rather than UIElement.
There's a good reason for that. You can actually put pretty much any type of object you want as the
content of a Button, and you can supply a template (in the form of a visual tree) that tells the Button
how to display this content. This feature is not so much used for Button, but it's used a great deal for
items in ItemsControl derivatives. I’ll show you how to define a content template in a future chapter.

ItemsControl is the parent class to a bunch of controls that display collections of items. Here you'll
find the familiar ListBox and ComboBox as well as the new Windows 8 controls GridView and ListView.
This is such an important category of controls that a whole future chapter will be devoted to it.

There are a couple ways to create custom controls. The really simple way is by defining a Style for
the control, but more extensive visual changes require a template. In some cases you can derive from
an existing control to add some features to it, or you can derive from ContentControl or ItemsControl if
these controls provide features you need.

But one of the most common ways to create a custom control is by deriving from UserControl. This
is not the approach you'll use if you want to market a custom control library, but it's great for controls
that you use yourself within the context of an application.

The Slider for Ranges

The final important parent class that derives from Control is RangeBase, which has three derivatives:
ProgressBar, ScrollBar, and Slider.

Which of these is not like the others? Obviously ProgressBar, which exists in this hierarchy mainly to
inherit several properties from RangeBase: Minimum, Maximum, SmallChange, LargeChange, and
Value. In every RangeBase control, the Value property takes on values of type double ranging from
Minimum through Maximum. With the ScrollBar and Slider, the Value property changes when the user
manipulates the control; with ProgressBar, the Value property is set programmatically to indicate the
progress of a lengthy operation.

ProgressBar has an indeterminate mode to display a row of dots that skirt across the screen, but also
available is ProgressRing, which displays a series of dots that parade around in a circle.

In the quarter-century evolution of Windows, the ScrollBar has slipped from its high perch in the
control hierarchy, and it's commonly seen today only in a ScrollViewer control. Try to instantiate the
Windows Runtime version of ScrollBar, and you won't even see it. If you want to use ScrollBar, you'll

152

www.it-ebooks.info

http://www.it-ebooks.info/

have to supply a template for it. Like RangeBase, ScrollBar is defined in the
Windows.UI.Xaml.Controls.Primitives namespace, indicating that it’s not something application
programmers normally use.

For virtually all applications involving choosing from a range of values, ScrollBar has been replaced
with Slider, and with touch interfaces, Slider has become simpler than ever. In its default manifestation,
Slider has no arrows. It simply jumps to the value corresponding to the point where you touch the
Slider or drag your finger or mouse.

The Value property of the Slider can change either programmatically or through user manipulation.
To obtain a notification when the Value property changes, attach an event handler for the
ValueChanged event, such as shown in the SliderEvents project:

Project: SliderEvents | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel>

 <Slider ValueChanged="OnSliderValueChanged" />

 <TextBlock HorizontalAlignment="Center"

 FontSize="48" />

 <Slider ValueChanged="OnSliderValueChanged" />

 <TextBlock HorizontalAlignment="Center"

 FontSize="48" />

 </StackPanel>

</Grid>

Both Slider controls here share the same event handler. The idea behind this simple program is that
the current Value of each Slider is displayed by the TextBlock below it. This might be considered
somewhat challenging when you notice that nothing in this XAML file is assigned a name. However,
the event handler makes a few assumptions. It assumes that the parent to the Slider is a Panel, and the
next child in this Panel is a TextBlock:

Project: SliderEvents | File: BlankPage.xaml.cs (excerpt)

void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)

{

 Slider slider = sender as Slider;

 Panel parentPanel = slider.Parent as Panel;

 int childIndex = parentPanel.Children.IndexOf(slider);

 TextBlock txtblk = parentPanel.Children[childIndex + 1] as TextBlock;

 txtblk.Text = args.NewValue.ToString();

}

This little bit of “trickery” is merely to demonstrate that there’s more than one way to access
elements in the visual tree. In the final step, the Text property of the TextBlock is assigned the
NewValue argument from the event arguments, converted to a string. Equally valid would be using the
Value property of the Slider:

txtblk.Text = slider.Value.ToString();

153

www.it-ebooks.info

http://www.it-ebooks.info/

Although RangeBaseValueChangedEventArgs derives from RoutedEvent, this is not a routed event.
The event does not travel up the visual tree. The sender argument is always the Slider, and the
OriginalSource property of the event arguments is always null.

When you run the program, you’ll notice that the TextBlock elements initially display nothing. The
ValueChanged event is not fired until Value actually changes from its default value of zero.

As you touch a Slider or click it with a mouse, the value jumps to that position. You can then sweep
your finger or mouse pointer back and forth to change the value. As you manipulate the Slider
controls, you’ll see that they let you select values from 0 to 100, inclusive:

This default range is a result of the default values of the Minimum and Maximum properties, which are
0 and 100, respectively.. Although the Value property is a double, it takes on integral values as a result
of the default StepFrequency property, which is 1.

By default the Slider is oriented horizontally, but you can switch to vertical with the Orientation
property. The height of the slider area cannot be changed (except if you redefine the visuals with a
template). The total height of the control in layout includes a bit more space. In layout, the default
height of a horizontal Slider is 60 pixels; the default width of a vertical Slider is 45 pixels. In use, these
dimensions are adequate for touch purposes.

If you repeatedly press the Tab key while this program is running, you can change the keyboard
input focus from one Slider to another and then use the keyboard arrow keys to make the value go up
or down. Pressing Home and End shoots to the minimum and maximum values.

Some other variations are illustrated in the SliderBindings project, where all the updating logic is
incorporated right in the XAML file. Three Slider controls are instantiated in a StackPanel and
alternated with TextBlock elements with bindings to the Value properties of each Slider. An implicit
style for the TextBlock is defined to reduce markup:

154

www.it-ebooks.info

http://www.it-ebooks.info/

Project: SliderBindings | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.Resources>

 <Style TargetType="TextBlock">

 <Setter Property="FontSize" Value="48" />

 <Setter Property="HorizontalAlignment" Value="Center" />

 </Style>

 </Grid.Resources>

 <StackPanel>

 <Slider Name="slider1" />

 <TextBlock Text="{Binding ElementName=slider1, Path=Value}" />

 <Slider Name="slider2"

 IsDirectionReversed="True"

 StepFrequency="0.01" />

 <TextBlock Text="{Binding ElementName=slider2, Path=Value}" />

 <Slider Name="slider3"

 Minimum="-1"

 Maximum="1"

 StepFrequency="0.01"

 SmallChange="0.01"

 LargeChange="0.1" />

 <TextBlock Text="{Binding ElementName=slider3, Path=Value}" />

 </StackPanel>

</Grid>

Bindings obtain initial values and don’t wait for the first ValueChanged event to be fired. Obviously,
the binding is using a somewhat different approach to converting the double values to strings:

155

www.it-ebooks.info

http://www.it-ebooks.info/

The markup for the second Slider sets the StepFrequency property to 0.01 and also sets
IsDirectionReversed to true so that the minimum value of 0 occurs when the thumb is positioned to the
far right. It’s rather rare to set IsDirectionReversed to true for horizontal sliders but more common for
vertical sliders. The default vertical slider has a minimum value when the slider is all the way down, and
for some purposes that should be a maximum value.

For that second Slider, however, the keyboard arrow keys change the value in increments of 1 rather
than the StepFrequency of 0.01. The keyboard interface is governed by the SmallChange property,
which by default is 1.

The third Slider has a range from –1 to 1. When the Slider is first displayed, the thumb is in the
center at the default Value of 0. I’ve set both StepFrequency and SmallChange to 0.01, and
LargeChange to 0.1, but I’ve found no way to trigger the LargeChange jump with either the mouse or
keyboard.

The Slider class defines TickFrequency and TickPlacement properties to display tick marks adjacent to
the Slider, but it is my experience that with the current release of Windows 8, these tick marks are
barely visible. Something is wrong with the way they’re handling color.

If the Background and Foreground properties of the Slider are set, the Slider uses Foreground for the
slider area associated with the minimum value and Background for the area associated with the
maximum value, but it switches to default colors when the Slider is being manipulated or when the
mouse hovers overhead.

As we begin creating more Slider controls, it becomes necessary to find a better way to lay them out
on the page. It’s time to get familiar with the Grid.

The Grid

The Grid probably seems like a familiar friend at this point because it’s been in almost every program in
this book, but obviously we haven't gotten to know it in any depth. Many of the programs in the
remainder of this book will use the Grid not in its single-cell mode but with actual rows and columns.

The Grid has a superficial resemblance to the HTML table, but it’s quite different. The Grid doesn’t
have any facility to define borders or margins for individual cells. It is strictly for layout purposes. Any
sprucing up for presentation must occur on the parent or children elements. For example, the Grid can
be in a Border, and Border elements can adorn the contents of the individual Grid cells.

The number of rows and columns in a Grid must be explicitly indicated; the Grid cannot determine
this information by the number of children. Children of the Grid generally go in a particular cell, which
is an intersection of a row and column, but children can also span multiple rows and columns.

Although the numbers of rows and columns can be changed programmatically at run time, it’s not
often done. Most common is to fix the number of desired rows and columns in the XAML file. This is

156

www.it-ebooks.info

http://www.it-ebooks.info/

accomplished with objects of type RowDefinition and ColumnDefinition added to two collections
defined by Grid called RowDefinitions and ColumnDefinitions.

The size of each row and column can be defined in one of three ways:

• An explicit row height or column width in pixels

• Auto, meaning based on the size of the children

• Asterisk (or star), which allocates remaining space proportionally

In XAML, property element syntax is used to fill the RowDefinitions and ColumnDefinitions
collections, so a typical Grid looks like this:

<Grid>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="55" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="10*" />

 <ColumnDefinition Width="20*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <!-- Children go here -->

</Grid>

Notice that the Grid collection properties are named RowDefinitions and ColumnDefinitions (plural)
but they contain objects of type RowDefinition and ColumnDefinition (singular). You can omit the
RowDefinitions or ColumnDefinitions for a Grid with only one row or one column.

This particular Grid has three rows and four columns, and it shows the various ways that the size of
the rows and columns can be defined. A number by itself indicates a width (or height) in pixels. Explicit
row heights and column widths are not generally used as much as the other two options.

The word Auto means to let the child decide. The calculated height of the row (or width of the
column) is based on the maximum height (or width) of the children in that row (or column).

As in HTML, the asterisk (pronounced “star”) directs the Grid to allocate the available space. In this
Grid, the height of the third row is calculated by subtracting the height of the first and second rows
from the total height of the Grid. For the columns, the second and third columns are allocated the
remaining space calculated by subtracting the widths of the first and fourth columns from the total
width of the Grid. The numbers before the asterisks indicates proportions, and here they mean that the
third column gets twice the width of the second column.

The star values are applicable only when the size of the Grid is parent-driven! For example, suppose

157

www.it-ebooks.info

http://www.it-ebooks.info/

that this Grid is a child of a StackPanel with a vertical orientation. The StackPanel offers to the Grid an
unconstrained infinite height. How can the Grid allocate that infinite height to its middle row? It
cannot. The asterisk specification degenerates to Auto.

Similarly, if a Grid is a child of a Canvas and the Grid is not given an explicit Height and Width, all
the star specifications degenerate to Auto. The same thing happens to a Grid that does not have
default Stretch values of HorizontalAlignment and VerticalAlignment. In the Grid example shown above,
the second column may actually become wider than the third if that’s what the sizes of the children in
those columns dictate.

However, if you have no RowDefinition objects with a star specification, the height of the Grid is
child-driven. The Grid can go in a vertical StackPanel or Canvas or be given a nondefault
VerticalAlignment without weirdness happening.

The Height property of RowDefinition and the Width property of ColumnDefinition are both of type
GridLength, a structure defined in Windows.UI.Xaml that lets you specify Auto or star sizes from code.
RowDefinition also defines MinHeight and MaxHeight properties, and ColumnDefinition defines
MinWidth and MaxWidth. These are all of type double and indicate minimum and maximum sizes in
pixels. You can obtain the actual sizes with the ActualHeight property of RowDefinition and the
ActualWidth property of ColumnDefinition.

Grid also defines four attached properties that you set on the children of a Grid: Grid.Row and
Grid.Column have default values of 0, and Grid.RowSpan and Grid.ColumnSpan have default values of
1. This is how you indicate the cell in which a particular child resides and how many rows and columns
it spans. A cell can contain more than one element.

You can nest a Grid within a Grid or put other panels in Grid cells, but the nesting of panels could
degrade layout performance, so watch out if a deeply nested element is changing size based on an
animation or if children are frequently being added to or removed from Children collections. You don’t
want the layout of your page being recalculated at the video frame rate!

In Chapter 3, “Basic Event Handling,” I presented a Windows 8 version of WHATSIZE, the first
program to appear in a magazine article about Windows programming. The third article about
Windows Programming was in the May 1987 issue of Microsoft Systems Journal and featured a
program called COLORSCR (“color scroll”). Here it is as it appeared in that article running under a beta
version of Windows 2:

158

www.it-ebooks.info

http://www.it-ebooks.info/

Manipulate the scrollbars to mix red, green, and blue values, and you’d see the result at the right. (In
those days, most graphics displays didn’t have full ranges of color, so dithering was used to
approximate colors not renderable by the device.) The value of each scrollbar is also displayed beneath
the scrollbar. The program performed a rather crude (and heavily arithmetic) attempt at dynamic
layout, even changing the width of the scrollbars when the window size changed.

This seems like an ideal program to demonstrate a simple Grid. Considering the six instances of
TextBlock and three instances of Slider required, the XAML file in the SimpleColorScroll project starts off
with two implicit styles:

Project: SimpleColorScroll | File: BlankPage.xaml (excerpt)

<Page.Resources>

 <Style TargetType="TextBlock">

 <Setter Property="Text" Value="00" />

 <Setter Property="FontSize" Value="24" />

 <Setter Property="HorizontalAlignment" Value="Center" />

 <Setter Property="Margin" Value="0 12" />

 </Style>

 <Style TargetType="Slider">

 <Setter Property="Orientation" Value="Vertical" />

 <Setter Property="IsDirectionReversed" Value="True" />

 <Setter Property="Maximum" Value="255" />

 <Setter Property="HorizontalAlignment" Value="Center" />

 </Style>

</Page.Resources>

I’ve decided to display the current value of each Slider in hexadecimal, so the Style for the TextBlock
initializes sets the Text property to “00”, which is the hexadecimal value corresponding to the minimum
Slider position.

The Grid begins by defining three rows (for each Slider and two accompanying TextBlock labels) and
four columns. Notice that the first three columns are all the same width but the fourth column is three
times as wide:

159

www.it-ebooks.info

http://www.it-ebooks.info/

Project: SimpleColorScroll | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="3*" />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 …

</Grid>

The remainder of the XAML file instantiates 10 children of the Grid. Each one has both Grid.Row and
Grid.Column attached properties set, although these aren’t necessary for values of 0. I tend to put these
attached properties early among the attributes but after at least one attribute (such as a Name or Text)
that provides a quick visual identification of the element:

Project: SimpleColorScroll | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 …

 <!-- Red -->

 <TextBlock Text="Red"

 Grid.Column="0"

 Grid.Row="0"

 Foreground="Red" />

 <Slider Name="redSlider"

 Grid.Column="0"

 Grid.Row="1"

 Orientation="Vertical"

 Foreground="Red"

 ValueChanged="OnSliderValueChanged" />

 <TextBlock Name="redValue"

 Grid.Column="0"

 Grid.Row="2"

 Foreground="Red" />

 <!-- Green -->

 <TextBlock Text="Green"

 Grid.Column="1"

 Grid.Row="0"

 Foreground="Green" />

160

www.it-ebooks.info

http://www.it-ebooks.info/

 <Slider Name="greenSlider"

 Grid.Column="1"

 Grid.Row="1"

 Orientation="Vertical"

 Foreground="Green"

 ValueChanged="OnSliderValueChanged" />

 <TextBlock Name="greenValue"

 Grid.Column="1"

 Grid.Row="2"

 Foreground="Green" />

 <!-- Blue -->

 <TextBlock Text="Blue"

 Grid.Column="2"

 Grid.Row="0"

 Foreground="Blue" />

 <Slider Name="blueSlider"

 Grid.Column="2"

 Grid.Row="1"

 Orientation="Vertical"

 Foreground="Blue"

 ValueChanged="OnSliderValueChanged" />

 <TextBlock Name="blueValue"

 Grid.Column="2"

 Grid.Row="2"

 Foreground="Blue" />

 <!-- Result -->

 <Rectangle Grid.Column="3"

 Grid.Row="0"

 Grid.RowSpan="3">

 <Rectangle.Fill>

 <SolidColorBrush x:Name="brushResult"

 Color="Black" />
 </Rectangle.Fill>

 </Rectangle>

</Grid>

Notice that all the TextBlock and Slider elements are given Foreground property assignments based on
what color they represent.

The Rectangle at the bottom has the Grid.RowSpan attached property set to 3, indicating that it
spans all three rows. The SolidColorBrush is set to Black, so that’s consistent with the three initial Slider
values. If you can’t get everything initialized correctly in the XAML file, the constructor of the
code-behind file is the place to do it.

You might wonder why the Orientation property is set on each Slider when that property is also set
in the implicit Style. It turns out that in the version of Windows 8 I’m using to write this chapter, the
property setting in the Style doesn’t “take.” It looks good in the Visual Studio preview but not when it

161

www.it-ebooks.info

http://www.it-ebooks.info/

actually runs.

All three Slider controls have the same handler for the ValueChanged event. That’s in the
code-behind file:

Project: SimpleColorScroll | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 }

 void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)

 {

 byte r = (byte)redSlider.Value;

 byte g = (byte)greenSlider.Value;

 byte b = (byte)blueSlider.Value;

 redValue.Text = r.ToString("X2");

 greenValue.Text = g.ToString("X2");

 blueValue.Text = b.ToString("X2");

 brushResult.Color = Color.FromArgb(255, r, g, b);

 }

}

The event handler could obtain the actual Slider firing the event with the sender argument and get
the new value from the RangeBaseValueChangedEventArgs object. But regardless of which Slider
actually changes value, the event handler needs to create a whole new Color value, and that requires all
three values. The only somewhat wasteful part of this code is setting all three text values when only
one is changing, but fixing that would require accessing the TextBlock associated with the particular
Slider firing the event.

Here’s one of 16,777,216 possible results:

162

www.it-ebooks.info

http://www.it-ebooks.info/

Orientation and Aspect Ratios

If you run SimpleColorScroll on a tablet and rotate it into portrait mode, the layout starts to look a little
funny, and even if you run it in landscape mode, a snap view might cause some of the text labels to
overlap. It might make sense to add some logic in the code-behind file that adjusts the layout based
on the orientation or aspect ratio of the display.

Adjusting the layout with this particular program becomes much easier if the single Grid is split in
two, one nested in the other. The inner Grid has three rows and three columns for the TextBlock
elements and Slider controls. The outer Grid has just two children: the inner Grid and the Rectangle. In
landscape mode, the outer Grid has two columns; in portrait mode, it has two rows.

The XAML file for the OrientableColorScroll project has the same Style definitions as
SimpleColorScroll. The outer Grid is shown here:

Project: OrientableColorScroll | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}"

 SizeChanged="OnGridSizeChanged">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition x:Name="secondColDef" Width="*" />

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition x:Name="secondRowDef" Height="0" />

 </Grid.RowDefinitions>

163

www.it-ebooks.info

http://www.it-ebooks.info/

 <Grid Grid.Row="0"

 Grid.Column="0">

 …

 </Grid>

 <!-- Result -->

 <Rectangle Name="rectangleResult"

 Grid.Column="1"

 Grid.Row="0">

 <Rectangle.Fill>

 <SolidColorBrush x:Name="brushResult"

 Color="Black" />

 </Rectangle.Fill>

 </Rectangle>

</Grid>

The outer Grid has its RowDefinitions and ColumnDefinitions collections initialized for either
contingency: two columns or two rows. In each collection, the second item has been given a name so
that it can be accessed from code. The second row has a height of zero, so the initial configuration
assumes a landscape mode.

The inner Grid (containing the TextBlock elements and Slider controls) is always in either the first
column or first row:

<Grid Grid.Row="0"

 Grid.Column="0">

…

</Grid>

Setting Grid.Row and Grid.Column attributes on a Grid always looks a little peculiar to me. They refer
not to the rows and columns of this Grid but to the rows and columns of the parent Grid. The default
values of these attached properties are both zero, so these particular attribute settings aren’t actually
required.

The Rectangle is initially in the second column and first row:

<Rectangle Name="rectangleResult"

 Grid.Column="1"

 Grid.Row="0">

 …

</Rectangle>

In this version of the program the Rectangle has a name, so these attached properties can be
changed from the code-behind file. This is done in the SizeChanged event handler set on the outer
Grid:

Project: OrientableColorScroll | File: BlankPage.xaml.cs (excerpt)

void OnGridSizeChanged(object sender, SizeChangedEventArgs args)

164

www.it-ebooks.info

http://www.it-ebooks.info/

{

 // Landscape mode

 if (args.NewSize.Width > args.NewSize.Height)

 {

 secondColDef.Width = new GridLength(1, GridUnitType.Star);

 secondRowDef.Height = new GridLength(0);

 Grid.SetColumn(rectangleResult, 1);

 Grid.SetRow(rectangleResult, 0);

 }

 // Portrait mode

 else

 {

 secondColDef.Width = new GridLength(0);

 secondRowDef.Height = new GridLength(1, GridUnitType.Star);

 Grid.SetColumn(rectangleResult, 0);

 Grid.SetRow(rectangleResult, 1);

 }

}

This code changes the second RowDefinition and ColumnDefinition in the outer Grid. These both apply
to the Rectangle, which has its column and row attached properties changed so that it finds itself in the
second column (for portrait mode) or second row (for landscape mode).

Here’s the program running in a snap mode:

When changing sizes and orientation, sometimes the Slider controls don’t seem to update themselves
properly, but I’m sure that won’t be a problem in the release version of Windows 8.

165

www.it-ebooks.info

http://www.it-ebooks.info/

Slider and the Formatted String Converter

In both ColorScroll programs so far, the TextBlock labels at the bottom show the current values of the
Slider in hexadecimal. It’s not necessary to provide these values from the code-behind file. It could be
done with a data binding from the Slider to the TextBlock. The only thing that’s required is a binding
converter that can convert a double into a two-digit hexadecimal string.

It’s disturbing to discover that the FormattedStringConverter class I described in Chapter 4,
“Presentation with Panels,” in connection with the WhatSizeWithBindingConverter project will not work
in this case. You’re welcome to try it out, but you’ll discover (if you don’t already know) that a
hexadecimal formatting specification of “X2” can be used only with integral types and the Value
property of the Slider is a double.

However, in this case it might make more sense to write a very short ad hoc binding converter,
particularly when you realize it can be used for two purposes, as I’ll discuss next.

Tooltips and Conversions

As you manipulate the Slider controls in either ColorScroll program, you’ve probably noticed
something peculiar: the Slider has a built-in tooltip that shows the current value in a little box. That’s a
nice feature except that this tooltip shows the value in decimal but the program insists on displaying
the current value in hexadecimal.

If you think it’s great that the Slider value is displayed in both decimal and hexadecimal, skip to the
next section. If you’d prefer that the two values be consistent—and that they both display the value in
hexadecimal—you’ll be pleased to know that the Slider defines a ThumbToolTipValueConverter
property that lets you supply a class that performs the formatting you want. This class must implement
the IValueConverter interface, which is the same interface you implement to write binding converters.

However, a converter class for the ThumbToolTipValueConverter property can’t be as sophisticated
as a converter class for a data binding because you don’t have the option of supplying a parameter for
the conversion. On the plus side, the converter class can be very simple and do only what is required
for the particular case.

The ColorScrollWithValueConverter project defines a converter dedicated to converting a double to
a two-character string indicating the value in hexadecimal. The name of this class is almost longer than
the actual code:

Project: ColorScrollWithValueConverter | File: DoubleToStringHexByteConverter.cs

using System;

using Windows.UI.Xaml.Data;

namespace ColorScrollWithValueConverter

{

166

www.it-ebooks.info

http://www.it-ebooks.info/

 public class DoubleToStringHexByteConverter : IValueConverter

 {

 public object Convert(object value, Type targetType, object parameter, string language)

 {

 return ((int)(double)value).ToString("X2");

 }

 public object ConvertBack(object value, Type targetType, object parameter, string language)

 {

 return value;

 }

 }

}

This converter is suitable not only for formatting the tooltip value, but also for a binding converter
to display the value of the Slider in the TextBlock. The following variation of the ColorScroll program
shows how it’s done. (To keep things simple, this version doesn’t adjust for aspect ratio.) The XAML file
instantiates the converter in the Resources section:

Project: ColorScrollWithValueConverter | File: BlankPage.xaml (excerpt)

<Page.Resources>

 <local:DoubleToStringHexByteConverter x:Key="hexConverter" />

 …

</Page.Resources>

Here’s the first set of TextBlock labels and Slider. The hexConverter resource is referenced by a
simple StaticResource markup extension by the Slider. The Binding on the TextBlock is broken into three
lines for easy readability:

Project: ColorScrollWithValueConverter | File: BlankPage.xaml (excerpt)

<!-- Red -->

<TextBlock Text="Red"

 Grid.Column="0"

 Grid.Row="0"

 Foreground="Red" />

<Slider Name="redSlider"

 Grid.Column="0"

 Grid.Row="1"

 ThumbToolTipValueConverter="{StaticResource hexConverter}"

 Orientation="Vertical"

 Foreground="Red"

 ValueChanged="OnSliderValueChanged" />

<TextBlock Text="{Binding ElementName=redSlider,

 Path=Value,

 Converter={StaticResource hexConverter}}"

 Grid.Column="0"

 Grid.Row="2"

 Foreground="Red" />

Because the ValueChanged handler no longer needs to update the TextBlock labels, that code has
been removed:

167

www.it-ebooks.info

http://www.it-ebooks.info/

Project: ColorScrollWithValueConverter | File: BlankPage.xaml.cs (excerpt)

void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)

{

 byte r = (byte)redSlider.Value;

 byte g = (byte)greenSlider.Value;

 byte b = (byte)blueSlider.Value;

 brushResult.Color = Color.FromArgb(255, r, g, b);

}

Is it possible to go another step and define sufficient data bindings so that the ValueChanged
handler could be entirely eliminated? That would surely be feasible if it were possible to establish
bindings on the individual properties of Color, like so:

<!-- Doesn't work! -->

<Rectangle Grid.Column="3"

 Grid.Row="0"

 Grid.RowSpan="3">

 <Rectangle.Fill>

 <SolidColorBrush>

 <SolidColorBrush.Color>

 <Color A="255"

 R="{Binding ElementName=redSlider, Path=Value}"

 G="{Binding ElementName=greenSlider, Path=Value}"

 B="{Binding ElementName=blueSlider, Path=Value}" />

 </SolidColorBrush.Color>

 </SolidColorBrush>

 </Rectangle.Fill>

</Rectangle>

The big problem with this markup is that binding targets need to be backed by dependency properties,
and the properties of Color are not. They can’t be, because dependency properties can be
implemented only in a class that derives from DependencyObject and Color isn’t a class at all. It’s a
structure.

The Color property of SolidColorBrush is backed by a dependency property, and that could be the
target of a data binding. However, in this program the Color property needs three values to be
computed, and the Windows Runtime does not support data bindings with multiple sources.

The solution is to have a separate class devoted to the job of creating a Color object from red,
green, and blue values, and I’ll show you how to do it in Chapter 6, “WinRT and MVVM.”

Sketching with Sliders

I’m not going to show you a screen shot of the next program. It’s called SliderSketch, and it’s a Slider
version of a popular toy invented about 50 years ago. The user of SliderSketch must skillfully
manipulate a horizontal Slider and a vertical Slider in tandem to control a conceptual stylus that
progressively extends a continuous polyline. I’m not going to show you a screen shot because the

168

www.it-ebooks.info

http://www.it-ebooks.info/

program is very difficult to use, and I’m pretty much at the baby stage with it at the moment.

The XAML file defines a 2-by-2 Grid, but the screen is dominated by one cell containing a large
Border and a Polyline. A vertical Slider is at the far left, and a horizontal Slider sits at the bottom. The
cell in the lower-left corner is empty:

Project: SliderSketch | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Slider Name="ySlider"

 Grid.Row="0"

 Grid.Column="0"

 Orientation="Vertical"

 IsDirectionReversed="True"

 Margin="0 18"

 ValueChanged="OnSliderValueChanged" />

 <Slider Name="xSlider"

 Grid.Row="1"

 Grid.Column="1"

 Margin="18 0"

 ValueChanged="OnSliderValueChanged" />

 <Border Grid.Row="0"

 Grid.Column="1"

 BorderBrush="{StaticResource ApplicationTextBrush}"

 BorderThickness="3 0 0 3"

 Background="#C0C0C0"

 Padding="24"

 SizeChanged="OnBorderSizeChanged">

 <Polyline Name="polyline"

 Stroke="#404040"

 StrokeThickness="3"

 Points="0 0" />

 </Border>

</Grid>

It is very common for a Grid to define rows and columns at the edges using Auto and then make the
whole interior as large as possible with a star specification. The content at the edges is effectively
docked. Windows 8 has no DockPanel, but it’s easy to mimic with Grid.

The Margin properties on the Slider controls were developed based on experimentation. For the

169

www.it-ebooks.info

http://www.it-ebooks.info/

program to work intuitively, the range of Slider values should be set equal to the number of pixels
between the minimum and maximum positions, and the Slider thumbs should be approximately even
with the pixel for that value. The calculation of the Minimum and Maximum values for each Slider
occurs when the size of the display area changes:

Project: SliderSketch | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 }

 void OnBorderSizeChanged(object sender, SizeChangedEventArgs args)

 {

 Border border = sender as Border;

 xSlider.Maximum = args.NewSize.Width - border.Padding.Left

 - border.Padding.Right

 - polyline.StrokeThickness;

 ySlider.Maximum = args.NewSize.Height - border.Padding.Top

 - border.Padding.Bottom

 - polyline.StrokeThickness;

 }

 void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)

 {

 polyline.Points.Add(new Point(xSlider.Value, ySlider.Value));

 }

}

After all that, it’s really astonishing to see the actual “drawing” method down at the bottom: just a
single line of code that adds a new Point to a Polyline.

But don’t try turning your tablet upside down and shaking it to start anew. I haven’t defined an
erase function just yet.

The Varieties of Button Experience

The Windows Runtime supports several buttons that derive from the ButtonBase class:

Object
 DependencyObject
 UIElement
 FrameworkElement
 Control
 ContentControl
 ButtonBase

170

www.it-ebooks.info

http://www.it-ebooks.info/

 Button
 HyperlinkButton
 RepeatButton
 ToggleButton
 CheckBox
 RadioButton

The ButtonVarieties program demonstrates the default appearances and functionality of all these
buttons:

Project: ButtonVarieties | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel>

 <Button Content="Just a plain old Button" />

 <HyperlinkButton Content="HyperlinkButton" />

 <RepeatButton Content="RepeatButton" />

 <ToggleButton Content="ToggleButton" />

 <CheckBox Content="CheckBox" />

 <RadioButton Content="RadioButton #1" />

 <RadioButton>RadioButton #2</RadioButton>

 <RadioButton>

 <RadioButton.Content>

 RadioButton #3

 </RadioButton.Content>

 </RadioButton>

 <RadioButton>

 <RadioButton.Content>

 <TextBlock Text="RadioButton #4" />

 </RadioButton.Content>

 </RadioButton>

 <ToggleSwitch />

 </StackPanel>

</Grid>

I’ve included four RadioButton instances, all with different approaches to setting the Content property,
and they’re all basically equivalent:

171

www.it-ebooks.info

http://www.it-ebooks.info/

If you don’t like the look of any of these, keep in mind that you can entirely redesign them with a
ControlTemplate that I’ll explore in a future chapter.

Like all FrameworkElement derivatives, the default values of the HorizontalAlignment and
VerticalAlignment properties are Stretch. However, by the time the button is loaded, the
HorizontalAlignment property has been set to Left, the VerticalAlignment is Center, and a nonzero
Padding has also been set. Although the Margin property is zero, the visuals contain a little built-in
margin that surrounds the Border.

ButtonBase defines the Click event, which is fired when a finger, mouse, or stylus presses the control
and then releases, but that behavior can be altered with the ClickMode property. Alternatively, a
program can be notified that the button has been clicked through a command interface that I’ll discuss
in Chapter 6.

The classic button is Button. There’s nothing really special about HyperlinkButton except that it looks
different as a result of a different template. RepeatButton generates a series of Click events if held
down for a moment; this is mostly intended for the repeat behavior of the ScrollBar.

Each click of the ToggleButton toggles it on and off. The screen shot shows the on state. CheckBox
defines nothing public on its own; it simply inherits all the functionality of ToggleButton and achieves a
different look with a template.

ToggleButton defines an IsChecked property to indicate the current state, as well as Checked and
Unchecked events to signal when changing to the on or off state. In general, you’ll want to install
handlers for both these events, but you can share one handler for the job.

The IsChecked property of ToggleButton is not a bool. It is a Nullable<bool>, which means that it can
have a value of null. This oddity is to accommodate toggle buttons that have a third “indeterminate”
state. The classic example is a CheckBox labeled “Bold” in a word-processing program: If the selected

172

www.it-ebooks.info

http://www.it-ebooks.info/

text is bold, the box should be checked. If the selected text is not bold, it should be unchecked. If the
selected text contains some bold and some nonbold, however, the CheckBox should show an
indeterminate state. You’ll need to set the IsThreeState property to true to enable this feature, and
you’ll want to install a handler for the Indeterminate event. ToggleButton does not have a unique
appearance for the indeterminate state; CheckBox displays a little box rather than a checkmark.

With all that said, you might want to gravitate towards the ToggleSwitch control for your toggling
needs because it’s specifically designed for touch in Metro style applications. Although ToggleSwitch
does not derive from ButtonBase, I’ve included one anyway at the bottom of the list. As you can see, it
provides default labels of “Off” and “On” but you can change those. A header is also available, as you’ll
discover in Chapter 7, “Building an Application.”

The RadioButton is a special form of ToggleButton for selecting one item from a collection of
mutually exclusive options. The name of the control comes from old car radios with buttons for
preselected stations: press a button, and the previously pressed button pops out. Similarly, when a
RadioButton control is checked, it unchecks all other sibling RadioButton controls. The only thing you
need to do is make them all children of the same panel. (Watch out: if you put a RadioButton in a
Border, it is no longer a sibling with any other RadioButton.) If you prefer to separate the RadioButton
controls into multiple mutually exclusive groups within the same panel, a GroupName property is
provided for that purpose.

The Control class defines a Foreground property, many font-related properties, and several
properties associated with Border, and setting these properties will change button appearance. For
example, suppose you initialize a Button like so:

 <Button Content="Not just a plain old Button anymore"

 Background="Yellow"

 BorderBrush="Red"

 BorderThickness="12"

 Foreground="Blue"

 FontSize="48"

 FontStyle="Italic" />

Now it looks like this:

173

www.it-ebooks.info

http://www.it-ebooks.info/

However, certain visual characteristics are still governed by the template. For example, when you pass
the mouse over this button or press it, the yellow background momentarily disappears and the button
background changes to standard colors. Also, although you can change the Border color and thickness,
you can’t give it rounded corners.

ButtonBase derives from ContentControl, which defines a property named Content. Although the
Content property is commonly set to text, it can be set to an Image or a panel. This is obviously very
powerful. For example, here’s how a Button can contain a bitmap and a caption for the bitmap:

<Button>

 <StackPanel>

 <Image Source="http://www.charlespetzold.com/pw6/PetzoldJersey.jpg"

 Width="100" />

 <TextBlock Text="Figure 1"

 HorizontalAlignment="Center" />

 </StackPanel>

</Button>

In a future chapter I’ll show you how the Content property can be set to virtually any object and how
you can supply a template to display that object in a desirable way.

Let’s make a simple telephone-like keypad. The keys are Button controls, and the result is displayed
in a TextBlock.

In the following XAML file, the keypad is enclosed in a Grid that is given a HorizontalAlignment and
VerticalAlignment of Center so that it sits in the center of the screen. Regardless of the size of this
keypad and the contents of the buttons, it should have 12 buttons of exactly the same size. I handled
the width and the height of these buttons in two different ways. A width of 288 (that is, 3 inches) is
imposed on the keyboard Grid itself. I wanted a specific width because I realized that a user could type
many numbers, and I didn’t want the width of the keypad to expand to accommodate an extra-wide

174

www.it-ebooks.info

http://www.it-ebooks.info/

TextBlock. The Height of each Button, however, is specified in an implicit style:

Project: SimpleKeypad | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Width="288">

 <Grid.Resources>

 <Style TargetType="Button">

 <Setter Property="ClickMode" Value="Press" />

 <Setter Property="HorizontalAlignment" Value="Stretch" />

 <Setter Property="Height" Value="72" />

 <Setter Property="FontSize" Value="36" />

 </Style>

 </Grid.Resources>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Grid Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <Border Grid.Column="0"

 HorizontalAlignment="Left">

 <TextBlock Name="resultText"

 HorizontalAlignment="Right"

 VerticalAlignment="Center"

 FontSize="24" />

 </Border>

 <Button Name="deleteButton"

 Content="⇦"

 Grid.Column="1"

 IsEnabled="False"

 FontFamily="Segoe Symbol"

 HorizontalAlignment="Left"

 Padding="0"

175

www.it-ebooks.info

http://www.it-ebooks.info/

 BorderThickness="0"

 Click="OnDeleteButtonClick" />

 </Grid>

 <Button Content="1"

 Grid.Row="1" Grid.Column="0"

 Click="OnCharButtonClick" />

 <Button Content="2"

 Grid.Row="1" Grid.Column="1"

 Click="OnCharButtonClick" />

 <Button Content="3"

 Grid.Row="1" Grid.Column="2"

 Click="OnCharButtonClick" />

 <Button Content="4"

 Grid.Row="2" Grid.Column="0"

 Click="OnCharButtonClick" />

 <Button Content="5"

 Grid.Row="2" Grid.Column="1"

 Click="OnCharButtonClick" />

 <Button Content="6"

 Grid.Row="2" Grid.Column="2"

 Click="OnCharButtonClick" />

 <Button Content="7"

 Grid.Row="3" Grid.Column="0"

 Click="OnCharButtonClick" />

 <Button Content="8"

 Grid.Row="3" Grid.Column="1"

 Click="OnCharButtonClick" />

 <Button Content="9"

 Grid.Row="3" Grid.Column="2"

 Click="OnCharButtonClick" />

 <Button Content="*"

 Grid.Row="4" Grid.Column="0"

 Click="OnCharButtonClick" />

 <Button Content="0"

 Grid.Row="4" Grid.Column="1"

 Click="OnCharButtonClick" />

 <Button Content="#"

 Grid.Row="4" Grid.Column="2"

 Click="OnCharButtonClick" />

 </Grid>

</Grid>

176

www.it-ebooks.info

http://www.it-ebooks.info/

The hard part is the first row. This must accommodate a TextBlock to show the typed result as well
as a delete button. I didn’t want a very large delete button, so I made the whole first row of the Grid a
separate Grid just for these two items. The attributes of the delete button override many of the
properties set in the implicit style. Notice that the delete button is initially disabled. It should be
enabled only when there are characters to delete.

The TextBlock was a little tricky. I wanted it to be left-justified during normal typing, but if the string
got too long to be displayed, I wanted the TextBlock to be clipped at the left, not at the right. My
solution was to enclose the TextBlock in a Border:

<Border Grid.Column="0"

 HorizontalAlignment="Left">

 <TextBlock Name="resultText"

 HorizontalAlignment="Right"

 VerticalAlignment="Center"

 FontSize="24" />

</Border>

The Border has a fixed limit to its width: it cannot get wider that the width of the overall Grid minus the
width of the delete button. But within that area the Border is aligned to the left, and the TextBlock fits
entirely within that Border, also aligned at the left. As more characters are typed, the TextBlock gets
wider until it becomes wider than the Border. At that point, the HorizontalAlignment setting of Right
comes into play and the left part of TextBlock is what gets clipped.

After that top row, everything else is smooth sailing. The implicit style helps keep the markup for
each of the nine buttons as small as possible.

The code-behind file handles the Click event from the delete button and has a shared handler for
the other 12 buttons:

Project: SimpleKeypad | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 string inputString = "";

 char[] specialChars = { '*', '#' };

 public BlankPage()

 {

 this.InitializeComponent();

 }

 void OnCharButtonClick(object sender, RoutedEventArgs args)

 {

 Button btn = sender as Button;

 inputString += btn.Content as string;

 FormatText();

 }

 void OnDeleteButtonClick(object sender, RoutedEventArgs args)

 {

177

www.it-ebooks.info

http://www.it-ebooks.info/

 inputString = inputString.Substring(0, inputString.Length - 1);

 FormatText();

 }

 void FormatText()

 {

 bool hasNonNumbers = inputString.IndexOfAny(specialChars) != -1;

 if (hasNonNumbers || inputString.Length < 4 || inputString.Length > 10)

 resultText.Text = inputString;

 else if (inputString.Length < 8)

 resultText.Text = String.Format("{0}-{1}", inputString.Substring(0, 3),

 inputString.Substring(3));

 else

 resultText.Text = String.Format("({0}) {1}-{2}", inputString.Substring(0, 3),

 inputString.Substring(3, 3),

 inputString.Substring(6));

 deleteButton.IsEnabled = inputString.Length > 0;

 }

}

The handler for the delete button removes a character from the inputString field, and the other handler
adds a character. Each handler then calls FormatText, which attempts to format the string. At the end
of the method, the delete button is enabled only if the input string contains characters.

The OnCharButtonClick event handler uses the Content property of the button being pressed to

determine what character to add to the string. Such an easy equivalence between the Content visuals
of the button and the functionality of the button isn’t always available. Sometimes sharing an event
handler among multiple controls requires that the handler extract more information from the button

178

www.it-ebooks.info

http://www.it-ebooks.info/

being clicked. FrameworkElement defines a Tag property of type object specifically for this purpose.
You can set Tag to an identifying string or object in the XAML file and check it in the event handler.

Dependency Properties

Perhaps you’re writing an application where you want all the Button controls to display text with a
gradient brush. Of course, you can simply define the Foreground property of each Button to be a
LinearGradientBrush, but the markup might start becoming a bit overwhelming. You could then try a
Style with the Foreground property set to a LinearGradientBrush, but then each Button shares the same
LinearGradientBrush with the same gradient colors, and perhaps you want more flexibility than that.

What you really want is a Button with two properties named Color1 and Color2 that you can set to
the gradient colors. That sounds like a custom control. It’s a class that derives from Button that creates
a LinearGradientBrush in its constructor and defines Color1 and Color2 properties to control this
gradient.

Can these Color1 and Color2 properties be just plain old .NET properties with set and get accessors?
Yes, they can. However, defining the properties like that will limit them in some crucial ways. Such
properties cannot be the targets of styles, bindings, or animations. Only dependency properties can do
all that.

Dependency properties have a bit more overhead than regular properties, but learning how to
define dependency properties in your own classes is an important skill. In a new project, begin by
adding a new item to the project and select Class from the list. Give it a name of GradientButton, and in
the file, make the class public and derived from Button:

public class GradientButton : Button

{

}

Now let’s fill up that class. You will need to add some using directives along the way.

The two new properties are named Color1 and Color2 of type Color. These two properties require
two dependency properties of type DependencyProperty named Color1Property and Color2Property.
They must be public and static but settable only from within the class:

public static DependencyProperty Color1Property { private set; get; }

public static DependencyProperty Color2Property { private set; get; }

These DependencyProperty objects must be created in the static constructor. The
DependencyProperty class defines a static method named Register for the job of creating
DependencyProperty objects:

static GradientButton()

{

 Color1Property =

179

www.it-ebooks.info

http://www.it-ebooks.info/

 DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(GradientButton),

 new PropertyMetadata(Colors.White, OnColorChanged));

 Color2Property =

 DependencyProperty.Register("Color2",

 typeof(Color),

 typeof(GradientButton),

 new PropertyMetadata(Colors.Black, OnColorChanged));

}

A slightly different static method named DependencyProperty.RegisterAttached is used to create
attached properties.

The first argument to DependencyProperty.Register is the text name of the property. This is used
sometimes by the XAML parsers. The second argument is the type of the property. The third argument
is the type of the class that is registering this dependency property.

The fourth argument is an object of type PropertyMetadata. The constructor comes in two versions.
In one version, all you need to specify is a default value of the property. In the other, you also specify a
method that is called when the property changes. This method will not be called if the property
happens to be set to the same value it already has.

The default value you specify as the first argument to the PropertyMetadata constructor must match
the type indicated in the second argument or a run-time exception will result. This is not as easy as it
sounds. For example, it is very common for programmers to supply a default value of 0 for a property
of type double. During compilation, the 0 is assumed to be an integer, so at run time a type mismatch
is discovered and an exception is thrown. If you’re defining a dependency property of type double, give
it a default value of 0.0 so that the compiler knows the correct data type of this argument.

The GradientButton class also needs regular .NET property definitions of Color1 and Color2, but
these are always of a very specific form:

public Color Color1

{

 set { SetValue(Color1Property, value); }

 get { return (Color)GetValue(Color1Property); }

}

public Color Color2

{

 set { SetValue(Color2Property, value); }

 get { return (Color)GetValue(Color2Property); }

}

The set accessor always calls SetValue (inherited from the DependencyObject class), referencing the
dependency property object, and the get accessor always calls GetValue and casts the return value to
the proper type for the property. You can make the set accessor protected or private if you don’t want
the property being set from outside the class.

180

www.it-ebooks.info

http://www.it-ebooks.info/

In my GradientButton control, I want the Foreground property to be a LinearGradientBrush and I
want the Color1 and Color2 properties to be the colors of the two GradientStop objects. Two
GradientStop objects are thus defined as fields:

GradientStop gradientStop1, gradientStop2;

The regular instance constructor of the class creates those objects as well as the LinearGradientBrush to
set it to the Foreground property:

public GradientButton()

{

 gradientStop1 = new GradientStop

 {

 Offset = 0,

 Color = this.Color1

 };

 gradientStop2 = new GradientStop

 {

 Offset = 1,

 Color = this.Color2

 };

 LinearGradientBrush brush = new LinearGradientBrush();

 brush.GradientStops.Add(gradientStop1);

 brush.GradientStops.Add(gradientStop2);

 this.Foreground = brush;

}

Notice how the property initializers for the two GradientStop objects access the Color1 and Color2
properties. This is how the colors in the LinearGradientBrush are set to the default colors defined for
the two dependency properties.

You’ll recall that in the definition of the two dependency properties, a method named
OnColorChanged was specified as the method to be called whenever either the Color1 or Color2
property changes value. Because this property-changed method is referenced in a static constructor,
the method itself must also be static:

static void OnColorChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)

{

}

Now this is kind of weird, because the whole point of defining this GradientButton class is to use it
multiple times in an application, and now we’re defining a static property that is called whenever the
Color1 or Color2 property in an instance of this class changes. How do you know to what instance this
method call applies?

Easy: it’s the first argument. That first argument to this OnColorChanged method is always a
GradientButton object, and you can safely cast it to a GradientButton and then access fields and

181

www.it-ebooks.info

http://www.it-ebooks.info/

properties in the particular GradientButton instance.

What I like to do in the static property-changed method is call an instance method of the same
name, passing to it the second argument:

static void OnColorChanged(DependencyObject obj, DependencyPropertyChangedEventArgs args)

{

 (obj as GradientButton).OnColorChanged(args);

}

void OnColorChanged(DependencyPropertyChangedEventArgs args)

{

}

This second method then does all the work accessing instance fields and properties of the class.

The DependencyPropertyChangedEventArgs object contains some useful information. The Property
property is of type DependencyProperty and indicates the changed property. In this example, the
Property property will be either Color1Property or Color2Property.
DependencyPropertyChangedEventArgs also has properties named OldValue and NewValue of type
object.

In GradientButton, the property-changed handler sets the Color property of the appropriate
GradientStop object from NewValue:

void OnColorChanged(DependencyPropertyChangedEventArgs args)

{

 if (args.Property == Color1Property)

 gradientStop1.Color = (Color)args.NewValue;

 if (args.Property == Color2Property)

 gradientStop2.Color = (Color)args.NewValue;

}

And that’s it for GradientButton. The only job left to do is arrange all these pieces in the class in a
way that makes sense to you. I like to put all fields at the top, static constructor next, static properties
next, and then the instance constructor, instance properties, and all methods. Here’s the complete
GradientButton class from the DependencyProperties project:

Project: DependencyProperties | File: GradientButton.cs

using Windows.UI;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Media;

namespace DependencyProperties

{

 public class GradientButton : Button

 {

 GradientStop gradientStop1, gradientStop2;

 static GradientButton()

182

www.it-ebooks.info

http://www.it-ebooks.info/

 {

 Color1Property =

 DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(GradientButton),

 new PropertyMetadata(Colors.White, OnColorChanged));

 Color2Property =

 DependencyProperty.Register("Color2",

 typeof(Color),

 typeof(GradientButton),

 new PropertyMetadata(Colors.Black, OnColorChanged));

 }

 public static DependencyProperty Color1Property { private set; get; }

 public static DependencyProperty Color2Property { private set; get; }

 public GradientButton()

 {

 gradientStop1 = new GradientStop

 {

 Offset = 0,

 Color = this.Color1

 };

 gradientStop2 = new GradientStop

 {

 Offset = 1,

 Color = this.Color2

 };

 LinearGradientBrush brush = new LinearGradientBrush();

 brush.GradientStops.Add(gradientStop1);

 brush.GradientStops.Add(gradientStop2);

 this.Foreground = brush;

 }

 public Color Color1

 {

 set { SetValue(Color1Property, value); }

 get { return (Color)GetValue(Color1Property); }

 }

 public Color Color2

 {

 set { SetValue(Color2Property, value); }

 get { return (Color)GetValue(Color2Property); }

 }

 static void OnColorChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

183

www.it-ebooks.info

http://www.it-ebooks.info/

 (obj as GradientButton).OnColorChanged(args);

 }

 void OnColorChanged(DependencyPropertyChangedEventArgs args)

 {

 if (args.Property == Color1Property)

 gradientStop1.Color = (Color)args.NewValue;

 if (args.Property == Color2Property)

 gradientStop2.Color = (Color)args.NewValue;

 }

 }

}

There are some alternate ways of writing the property-changed handler. If you specify separate
handlers for each property, you don’t need to look at the Property property of the event arguments.
Rather than access the NewValue property, you can just get the value of the property from the class,
for example:

gradientStop1.Color = this.Color1;

The Color1 property has already been set to the new value by the time the property-changed handler
is called.

The XAML file in this project defines a couple styles, one with Setter elements for Color1 and Color2,
and applies these styles to two instances of GradientButton. Any reference to GradientButton in this
XAML file must be preceded by the local XML namespace that is associated with the
DependencyProperties namespace in which GradientButton is defined. Notice the local prefix in both
the TargetType of the Style and when the buttons are instantiated:

Project: DependencyProperties | File: BlankPage.xaml (excerpt)

<Page …

 xmlns:local="using:DependencyProperties"

 … >

 <Page.Resources>

 <Style x:Key="baseButtonStyle" TargetType="local:GradientButton">

 <Setter Property="FontSize" Value="48" />

 <Setter Property="HorizontalAlignment" Value="Center" />

 <Setter Property="Margin" Value="0 12" />

 </Style>

 <Style x:Key="blueRedButtonStyle"

 TargetType="local:GradientButton"

 BasedOn="{StaticResource baseButtonStyle}">

 <Setter Property="Color1" Value="Blue" />

 <Setter Property="Color2" Value="Red" />

 </Style>

 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel>

184

www.it-ebooks.info

http://www.it-ebooks.info/

 <local:GradientButton Content="GradientButton #1"

 Style="{StaticResource baseButtonStyle}" />

 <local:GradientButton Content="GradientButton #2"

 Style="{StaticResource blueRedButtonStyle}" />

 </StackPanel>

 </Grid>

</Page>

The first one gets the default settings of Color1 and Color2, and the second one gets the settings
defined in the Style. Here it is:

What I was not able to do was set Color1 and Color2 locally in the GradientButton tag, but I assume

this is just some oddity that will go away before the Windows 8 release.

I want to show you an alternative way to create the GradientButton class that lets you define the
LinearGradientBrush in XAML and eliminate the property-changed handlers. Interested?

In a separate project, rather than adding a new item and picking Class from the list, add a new item,
pick User Control from the list, and give it a name of GradientButton. As usual you’ll get a pair of files:
GradientButton.xaml and GradientButton.xaml.cs. The GradientButton class derives from UserControl.
Here’s the class definition in the GradientButton.xaml.cs file:

public sealed partial class GradientButton : UserControl

{

 public GradientButton()

 {

 this.InitializeComponent();

 }

}

Change the base class from UserControl to Button:

185

www.it-ebooks.info

http://www.it-ebooks.info/

public sealed partial class GradientButton : Button

{

 public GradientButton()

 {

 this.InitializeComponent();

 }

}

The body of this class will be very much like the first GradientButton class except the instance
constructor doesn’t do anything except call InitializeComponent. There are no property-changed
handlers. Here’s how it looks in the DependencyPropertiesWithBindings project:

Project: DependencyPropertiesWithBindings | File: GradientButton.xaml.cs

public sealed partial class GradientButton : Button

{

 static GradientButton()

 {

 Color1Property =

 DependencyProperty.Register("Color1",

 typeof(Color),

 typeof(GradientButton),

 new PropertyMetadata(Colors.White));

 Color2Property =

 DependencyProperty.Register("Color2",

 typeof(Color),

 typeof(GradientButton),

 new PropertyMetadata(Colors.Black));

 }

 public static DependencyProperty Color1Property { private set; get; }

 public static DependencyProperty Color2Property { private set; get; }

 public GradientButton()

 {

 this.InitializeComponent();

 }

 public Color Color1

 {

 set { SetValue(Color1Property, value); }

 get { return (Color)GetValue(Color1Property); }

 }

 public Color Color2

 {

 set { SetValue(Color2Property, value); }

 get { return (Color)GetValue(Color2Property); }

 }

}

When first created, the GradientButton.xaml file has a root element that indicates the class derives

186

www.it-ebooks.info

http://www.it-ebooks.info/

from UserControl:

<UserControl

 x:Class="DependencyPropertiesWithBindings.GradientButton" … >

 …

</UserControl>

Change that to Button as well:

<Button

 x:Class="DependencyPropertiesWithBindings.GradientButton" … >

 …

</Button>

Normally when you put stuff between the root tags of a XAML file, you’re implicitly setting the
Content property. But in this case we don’t want to set the Content property of the Button. We want to
set the Foreground property of GradientButton to a LinearGradientBrush. This requires
property-element tags of Button.Foreground. Here’s the complete XAML file:

Project: DependencyPropertiesWithBindings | File: GradientButton.xaml

<Button

 x:Class="DependencyPropertiesWithBindings.GradientButton"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Name="root">

 <Button.Foreground>

 <LinearGradientBrush>

 <GradientStop Offset="0"

 Color="{Binding ElementName=root,

 Path=Color1}" />

 <GradientStop Offset="1"

 Color="{Binding ElementName=root,

 Path=Color2}" />

 </LinearGradientBrush>

 </Button.Foreground>

</Button>

Notice the cool way that the Color properties of the GradientStop objects are set: the root element is
given a name of “root” so that it can be the source of two data bindings referencing the custom
dependency properties.

The BlankPage.xaml file for this project is the same as the previous project, and the result is also the
same.

RadioButton Tags

A group of RadioButton controls allows a user to choose between one of several mutually exclusive
items. From the program’s perspective, often it is convenient that each RadioButton in a particular

187

www.it-ebooks.info

http://www.it-ebooks.info/

group corresponds with a member of an enumeration and that the enumeration value be identifiable
from the RadioButton object. This allows all the buttons in a group to share the same event handler.

The Tag property is ideal for this purpose. For example, suppose you want to write a program that
lets you experiment with the StrokeStartLineCap, StrokeEndLineCap, and StrokeLineJoin properties
defined by the Shape class. When rendering thick lines, these properties govern the shape of the ends
of the line and the shape where two lines join. The first two properties are set to members of the
PenLineCap enumeration type and the third is set to members of the PenLineJoin enumeration.

For example, one of the members of the PenLineJoin enumeration is Bevel. You might define a
RadioButton to represent this option like so:

<RadioButton Content="Bevel join"

 Tag="Bevel"

 … />

The problem is that “Bevel” is interpreted by the XAML parser as a string, so in the event handler in the
code-behind file, you need to use switch and case to differentiate between the different strings or
Enum.TryParse to convert the string into an actual PenLineJoin.Bevel value.

A better way of defining the Tag property involves breaking it out as a property element and
explicitly indicating that it’s being set to a value of type PenLineJoin:

<RadioButton Content="Bevel join"

 … >

 <RadioButton.Tag>

 <PenLineJoin>Bevel</PenLineJoin>

 </RadioButton.Tag>

</RadioButton>

Of course, this is a bit cumbersome. Nevertheless, I’ve used this approach in the LineCapsAndJoins
project. The XAML file defines three groups of RadioButton controls for the three Shape properties.
Each group contains three or four controls corresponding to the appropriate enumeration members.

Project: LineCapsAndJoins | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <StackPanel Name="startLineCapPanel"

 Grid.Row="0" Grid.Column="0"

 Margin="24">

188

www.it-ebooks.info

http://www.it-ebooks.info/

 <RadioButton Content="Flat start"

 Checked="OnStartLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Flat</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Round start"

 Checked="OnStartLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Round</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Square start"

 Checked="OnStartLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Square</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Triangle start"

 Checked="OnStartLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Triangle</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 </StackPanel>

 <StackPanel Name="endLineCapPanel"

 Grid.Row="0" Grid.Column="2"

 Margin="24">

 <RadioButton Content="Flat end"

 Checked="OnEndLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Flat</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Round end"

 Checked="OnEndLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Round</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Square end"

 Checked="OnEndLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Square</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Triangle End"

189

www.it-ebooks.info

http://www.it-ebooks.info/

 Checked="OnEndLineCapRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineCap>Triangle</PenLineCap>

 </RadioButton.Tag>

 </RadioButton>

 </StackPanel>

 <StackPanel Name="lineJoinPanel"

 Grid.Row="1" Grid.Column="1"

 HorizontalAlignment="Center"

 Margin="24">

 <RadioButton Content="Bevel join"

 Checked="OnLineJoinRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineJoin>Bevel</PenLineJoin>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Miter join"

 Checked="OnLineJoinRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineJoin>Miter</PenLineJoin>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="Round join"

 Checked="OnLineJoinRadioButtonChecked">

 <RadioButton.Tag>

 <PenLineJoin>Round</PenLineJoin>

 </RadioButton.Tag>

 </RadioButton>

 </StackPanel>

 <Polyline Name="polyline"

 Grid.Row="0"

 Grid.Column="1"

 Points="0 0, 500 1000, 1000 0"

 Stroke="{StaticResource ApplicationTextBrush}"

 StrokeThickness="100"

 Stretch="Fill"

 Margin="24" />

</Grid>

Each of the three groups of RadioButton controls is in its own StackPanel, and all the controls within
each StackPanel share the same handler for the Checked event.

The markup doesn’t put any RadioButton in its checked state. This is the responsibility of the
constructor in the code-behind file. At the bottom of the markup is a thick Polyline waiting for its
StrokeStartLineCap, StrokeEndLineCap, and StrokeLineJoin properties to be set. This happens in the
three Checked event handlers also in the code-behind file:

Project: LineCapsAndJoins | File: BlankPage.xaml.cs (excerpt)

190

www.it-ebooks.info

http://www.it-ebooks.info/

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 foreach (UIElement child in startLineCapPanel.Children)

 (child as RadioButton).IsChecked =

 (PenLineCap)(child as RadioButton).Tag == polyline.StrokeStartLineCap;

 foreach (UIElement child in endLineCapPanel.Children)

 (child as RadioButton).IsChecked =

 (PenLineCap)(child as RadioButton).Tag == polyline.StrokeStartLineCap;

 foreach (UIElement child in lineJoinPanel.Children)

 (child as RadioButton).IsChecked =

 (PenLineJoin)(child as RadioButton).Tag == polyline.StrokeLineJoin;

 }

 void OnStartLineCapRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 polyline.StrokeStartLineCap = (PenLineCap)(sender as RadioButton).Tag;

 }

 void OnEndLineCapRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 polyline.StrokeEndLineCap = (PenLineCap)(sender as RadioButton).Tag;

 }

 void OnLineJoinRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 polyline.StrokeLineJoin = (PenLineJoin)(sender as RadioButton).Tag;

 }

}

The constructor loops through all the RadioButton controls in each group, setting the IsChecked
property to true if the Tag value matches the corresponding property of the Polyline. Any further
RadioButton checking occurs under the user’s control. The event handlers simply need to set a property
of the Polyline based on the Tag property of the checked RadioButton. Here’s the result:

191

www.it-ebooks.info

http://www.it-ebooks.info/

It seems that the Round join is not implemented in the version of Windows 8 I’m using.

Although the markup is very explicit about setting the Tag property to a member of the PenLineCap
or PenLineJoin enumeration, the XAML parser actually assigns the Tag an integer corresponding to the
underlying enumeration value. This integer can easily be cast into the correct enumeration member,
but it’s definitely not the enumeration member itself.

Much of the awkward markup in the LineCapsAndJoins can be eliminated by defining a couple
simple custom controls. These custom controls don’t need to have dependency properties; they can
have just a very simple regular .NET property for a tag corresponding to a particular type.

The LineCapsAndJoinsWithCustomClass shows how this works. Here’s a RadioButton derivative
specifically for representing a PenLineCap value:

Project: LineCapsAndJoinsWithCustomClass | File: LineCapRadioButton.cs

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Media;

namespace LineCapsAndJoinsWithCustomClass

{

 public class LineCapRadioButton : RadioButton

 {

 public PenLineCap LineCapTag { set; get; }

 }

}

Similarly, here’s one for PenLineJoin values:

Project: LineCapsAndJoinsWithCustomClass | File: LineJoinRadioButton.cs

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Media;

192

www.it-ebooks.info

http://www.it-ebooks.info/

namespace LineCapsAndJoinsWithCustomClass

{

 public class LineJoinRadioButton : RadioButton

 {

 public PenLineJoin LineJoinTag { set; get; }

 }

}

Let me show you just a little piece of the XAML (the last group of three RadioButton controls) to
demonstrate how the property-element syntax has been eliminated:

Project: LineCapsAndJoinsWithCustomClass | File: BlankPage.xaml (excerpt)

<StackPanel Name="lineJoinPanel"

 Grid.Row="1" Grid.Column="1"

 HorizontalAlignment="Center"

 Margin="24">

 <local:LineJoinRadioButton Content="Bevel join"

 LineJoinTag="Bevel"

 Checked="OnLineJoinRadioButtonChecked" />

 <local:LineJoinRadioButton Content="Miter join"

 LineJoinTag="Miter"

 Checked="OnLineJoinRadioButtonChecked" />

 <local:LineJoinRadioButton Content="Round join"

 LineJoinTag="Round"

 Checked="OnLineJoinRadioButtonChecked" />

</StackPanel>

You’ll notice that as you type this markup, IntelliSense correctly recognizes the LineCapTag and
LineJoinTag properties to be an enumeration type and gives you an option of typing in one of the
enumeration members. Nice!

This switch to custom RadioButton derivatives mostly affects the XAML file. The code-behind file is
pretty much the same except for somewhat less casting:

Project: LineCapsAndJoinsWithCustomClass | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 public BlankPage()

 {

 this.InitializeComponent();

 foreach (UIElement child in startLineCapPanel.Children)

 (child as LineCapRadioButton).IsChecked =

 (child as LineCapRadioButton).LineCapTag == polyline.StrokeStartLineCap;

 foreach (UIElement child in endLineCapPanel.Children)

 (child as LineCapRadioButton).IsChecked =

 (child as LineCapRadioButton).LineCapTag == polyline.StrokeStartLineCap;

 foreach (UIElement child in lineJoinPanel.Children)

193

www.it-ebooks.info

http://www.it-ebooks.info/

 (child as LineJoinRadioButton).IsChecked =

 (child as LineJoinRadioButton).LineJoinTag == polyline.StrokeLineJoin;

 }

 void OnStartLineCapRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 polyline.StrokeStartLineCap = (sender as LineCapRadioButton).LineCapTag;

 }

 void OnEndLineCapRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 polyline.StrokeEndLineCap = (sender as LineCapRadioButton).LineCapTag;

 }

 void OnLineJoinRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 polyline.StrokeLineJoin = (sender as LineJoinRadioButton).LineJoinTag;

 }

}

Keyboard Input and TextBox

Keyboard input in Metro style applications is complicated somewhat by the on-screen touch keyboard
that allows the user to enter text by tapping on the screen. Although the touch keyboard is important
for tablets and other devices that don’t have real keyboards attached, it can also be invoked as a
supplement to a real keyboard.

It is vital that the touch keyboard not pop up and disappear in an annoying fashion. For this reason,
many controls—including custom controls—do not automatically receive keyboard input. If they did,
the system would need to invoke the touch keyboard whenever these controls received input focus.
Consequently, if you create a custom control and install event handlers for the KeyUp and KeyDown
events (or override the OnKeyUp and OnKeyDown methods), you’ll discover that nothing comes
through.

If you are interested in getting keyboard input from the physical keyboard only and you don’t care
about the touch keyboard—perhaps for a program intended only for yourself or for testing
purposes—there is a fairly easy way to do it. In the constructor of your page, obtain your application’s
CoreWindow object:

CoreWindow coreWindow = Window.Current.CoreWindow;

This class is defined in the Windows.UI.Core namespace. You can then install event handlers on this
object for KeyDown and KeyUp (which indicate keys on the keyboard) as well as CharacterReceived
(which translates keys to text characters).

If you need to create a custom control that obtains keyboard input from both the physical keyboard
and the touch keyboard, the process is rather more involved. You need to derive a class from
FrameworkElementAutomationPeer that implements the ITextProvider and IValueProvider interfaces

194

www.it-ebooks.info

http://www.it-ebooks.info/

and return this class in an override of the OnCreateAutomationPeer method of your custom control.

Obviously this is a nontrivial task, and I’ll provide full details in a forthcoming chapter.

Meanwhile, if your program needs text input, the best approach is to use one of the controls
specifically provided for this purpose:

• TextBox features single-line or multiline input with a uniform font, much like the traditional
Windows Notepad program.

• RichEditBox features formatted text, much like the traditional Windows WordPad program.

• PasswordBox allows a single line of masked input.

I’ll be focusing on TextBox in this brief discussion, and I’ll provide more examples in the chapters ahead.

TextBox defines a Text property that sets the text in the TextBox or obtains the current text. The
SelectedText property is the text that’s selected (if any), and the SelectionStart and SelectionLength
properties indicate the offset and length of the selection. If SelectionLength is 0, SelectionStart is the
position of the cursor. Setting the IsReadOnly property to true inhibits typed input but allows text to be
selected and copied to the Clipboard. All cut, copy, and paste interaction occurs through context
menus. The TextBox defines both TextChanged and SelectionChanged events.

By default, a TextBox allows only a single line of input. Two properties can change that behavior.
Normally the TextBox ignores the Return key, but setting AcceptsReturn to true causes the TextBox to
begin a new line when Return is pressed. The default setting of the TextWrapping property is NoWrap.
Setting that to Wrap causes the TextBox to generate a new line when the user types beyond the end of
the current line. These properties can be set independently. Either will cause a TextBox to grow
vertically as additional lines are added. TextBox has a built-in ScrollViewer. If you don’t want the
TextBox to grow indefinitely, set the MaxLength property.

There is not one touch keyboard but several, and some are more suitable for entering numbers or
email addresses or URIs. A TextBox specifies what type of keyboard it wants with the InputScope
property. With the current version of Windows 8, setting this property in XAML is particularly clumsy
(involving two layers of property elements), which accounts for much of the bulk in the following
XAML file for the TextBoxInputScopes program. This program lets you experiment with these different
keyboard layouts, as well as different modes of multiline TextBox instances and (as a bonus)
PasswordBox:

Project: TextBoxInputScopes | File: BlankPage.xaml (excerpt)

<Page

 x:Class="TextBoxInputScopes.BlankPage" … >

 <Page.Resources>

 <Style TargetType="TextBlock">

 <Setter Property="FontSize" Value="24" />

 <Setter Property="VerticalAlignment" Value="Center" />

 <Setter Property="Margin" Value="6" />

195

www.it-ebooks.info

http://www.it-ebooks.info/

 </Style>

 <Style TargetType="TextBox">

 <Setter Property="Width" Value="320" />

 <Setter Property="VerticalAlignment" Value="Center" />

 <Setter Property="Margin" Value="0 6" />

 </Style>

 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid HorizontalAlignment="Center">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <!-- Multiline with Return, no wrapping -->

 <TextBlock Text="Multiline (accepts Return, no wrap):"

 Grid.Row="0" Grid.Column="0" />

 <TextBox AcceptsReturn="True"

 Grid.Row="0" Grid.Column="1" />

 <!-- Multiline with no Return, wrapping -->

 <TextBlock Text="Multiline (ignores Return, wraps):"

 Grid.Row="1" Grid.Column="0" />

 <TextBox TextWrapping="Wrap"

 Grid.Row="1" Grid.Column="1" />

 <!-- Multiline with Return and wrapping -->

 <TextBlock Text="Multiline (accepts Return, wraps):"

 Grid.Row="2" Grid.Column="0" />

 <TextBox AcceptsReturn="True"

 TextWrapping="Wrap"

 Grid.Row="2" Grid.Column="1" />

 <!-- Default input scope -->

 <TextBlock Text="Default input scope:"

 Grid.Row="3" Grid.Column="0" />

196

www.it-ebooks.info

http://www.it-ebooks.info/

 <TextBox Grid.Row="3" Grid.Column="1">

 <TextBox.InputScope>

 <InputScope>

 <InputScope.Names>

 <InputScopeName NameValue="Default" />

 </InputScope.Names>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

 <!-- Email address input scope -->

 <TextBlock Text="Email address input scope:"

 Grid.Row="4" Grid.Column="0" />

 <TextBox Grid.Row="4" Grid.Column="1">

 <TextBox.InputScope>

 <InputScope>

 <InputScope.Names>

 <InputScopeName NameValue="EmailSmtpAddress" />

 </InputScope.Names>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

 <!-- Number input scope -->

 <TextBlock Text="Number input scope:"

 Grid.Row="5" Grid.Column="0" />

 <TextBox Grid.Row="5" Grid.Column="1">

 <TextBox.InputScope>

 <InputScope>

 <InputScope.Names>

 <InputScopeName NameValue="Number" />

 </InputScope.Names>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

 <!-- Search input scope -->

 <TextBlock Text="Search input scope:"

 Grid.Row="6" Grid.Column="0" />

 <TextBox Grid.Row="6" Grid.Column="1">

 <TextBox.InputScope>

 <InputScope>

 <InputScope.Names>

 <InputScopeName NameValue="Search" />

 </InputScope.Names>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

 <!-- Telephone number input scope -->

197

www.it-ebooks.info

http://www.it-ebooks.info/

 <TextBlock Text="Telephone number input scope:"

 Grid.Row="7" Grid.Column="0" />

 <TextBox Grid.Row="7" Grid.Column="1">

 <TextBox.InputScope>

 <InputScope>

 <InputScope.Names>

 <InputScopeName NameValue="TelephoneNumber" />

 </InputScope.Names>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

 <!-- URL input scope -->

 <TextBlock Text="URL input scope:"

 Grid.Row="8" Grid.Column="0" />

 <TextBox Grid.Row="8" Grid.Column="1">

 <TextBox.InputScope>

 <InputScope>

 <InputScope.Names>

 <InputScopeName NameValue="Url" />

 </InputScope.Names>

 </InputScope>

 </TextBox.InputScope>

 </TextBox>

 <!-- PasswordBox -->

 <TextBlock Text="PasswordBox:"

 Grid.Row="9" Grid.Column="0" />

 <PasswordBox Grid.Row="9" Grid.Column="1" />

 </Grid>

 </Grid>

</Page>

This is a program you’ll want to experiment with before choosing a multiline mode or an InputScope
value.

Touch and Thumb

In a future chapter I’ll discuss touch input and how you can use it to manipulate objects on the screen.
Meanwhile, a modest control called Thumb provides some rudimentary touch functionality. Thumb is
defined in the Windows.UI.Xaml.Controls.Primitives namespace, and it is primarily intended as a
building block for the Slider and Scrollbar. In Chapter 7, I’ll use it in a custom control.

The Thumb control generates three events based on mouse, stylus, or touch movement relative to
itself: DragStarted, DragDelta, and DragCompleted. The DragStarted event occurs when you put your
finger on a Thumb control or move the mouse to its surface and click. Thereafter, DragDelta events

198

www.it-ebooks.info

http://www.it-ebooks.info/

indicate how the finger or mouse is moving. You can use these events to move the Thumb (and
anything else), most conveniently on a Canvas.

In the AlphabetBlocks program, a series of buttons labeled with letters, numbers, and some
punctuation surround the perimeter. Click one, and an alphabet block appears that you can drag with
your finger or the mouse. I know that you’ll want to send this alphabet block scurrying across the
screen with a flick of your finger, but it won’t respond in that way. The Thumb does not incorporate
touch inertia. For inertia, you’ll have to tap into the actual touch events.

For the alphabet blocks themselves, a UserControl derivative named Block has a XAML file that
defines a 144-pixel square image with a Thumb, some graphics and a TextBlock:

Project: AlphabetBlocks | File: Block.xaml

<UserControl

 x:Class="AlphabetBlocks.Block"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:AlphabetBlocks"

 Width="144"

 Height="144"

 Name="root">

 <Grid>

 <Thumb DragStarted="OnThumbDragStarted"

 DragDelta="OnThumbDragDelta"

 Margin="18 18 6 6" />

 <!-- Left -->

 <Polygon Points="0 6, 12 18, 12 138, 0 126"

 Fill="#E0C080" />

 <!-- Top -->

 <Polygon Points="6 0, 18 12, 138 12, 126 0"

 Fill="#F0D090" />

 <!-- Edge -->

 <Polygon Points="6 0, 18 12, 12 18, 0 6"

 Fill="#E8C888" />

 <Border BorderBrush="{Binding ElementName=root, Path=Foreground}"

 BorderThickness="12"

 Background="#FFE0A0"

 CornerRadius="6"

 Margin="12 12 0 0"

 IsHitTestVisible="False" />

 <TextBlock FontFamily="Courier New"

 FontSize="156"

 FontWeight="Bold"

 Text="{Binding ElementName=root, Path=Text}"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

199

www.it-ebooks.info

http://www.it-ebooks.info/

 Margin="12 18 0 0"

 IsHitTestVisible="False" />

 </Grid>

</UserControl>

The Polygon is similar to Polyline except that it automatically closes the figure and then fills the
figure with the brush referenced by the Fill property.

The Thumb has DragStarted and DragDelta event handlers installed. The two elements that sit on
top of the Thumb—the Border and TextBlock—visually hide the Thumb but have their IsHitTestVisible
properties set to false so that they don’t block touch input from reaching the Thumb.

The BorderBrush property of the Border has a binding to the Foreground property of the root
element. Foreground, you’ll recall, is defined by the Control class and inherited by UserControl and
propagated through the visual tree. The Foreground property of the TextBlock automatically gets this
same brush. The Text property of the TextBlock element is bound to the Text property of the control.
UserControl doesn’t have a Text property, which strongly suggests that Block defines it.

The code-behind file confirms that supposition. Much of this class is devoted to defining a Text
property backed by a dependency property:

Project: AlphabetBlocks | File: Block.xaml.cs

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Controls.Primitives;

namespace AlphabetBlocks

{

 public sealed partial class Block : UserControl

 {

 static int zindex;

 static Block()

 {

 TextProperty = DependencyProperty.Register("Text",

 typeof(string),

 typeof(Block),

 new PropertyMetadata("?"));

 }

 public static DependencyProperty TextProperty { private set; get; }

 public static int ZIndex

 {

 get { return ++zindex; }

 }

 public Block()

 {

 this.InitializeComponent();

 }

200

www.it-ebooks.info

http://www.it-ebooks.info/

 public string Text

 {

 set { SetValue(TextProperty, value); }

 get { return (string)GetValue(TextProperty); }

 }

 void OnThumbDragStarted(object sender, DragStartedEventArgs args)

 {

 Canvas.SetZIndex(this, ZIndex);

 }

 void OnThumbDragDelta(object sender, DragDeltaEventArgs args)

 {

 Canvas.SetLeft(this, Canvas.GetLeft(this) + args.HorizontalChange);

 Canvas.SetTop(this, Canvas.GetTop(this) + args.VerticalChange);

 }

 }

}

This Block class also defines a static ZIndex property that requires an explanation. As you click
buttons in this program and Block objects are created and added to a Canvas, each subsequent Block
appears on top of the previous Block objects because of the way they’re ordered in the collection.
However, when you later put your finger on a Block, you want that object to pop to the top of the pile,
which means that it should have a z-index higher than every other Block.

The static ZIndex property defined here helps achieve that. Notice that the value is incremented
each time it’s called. Whenever a DragStarted event occurs, which means that the user has touched one
of these controls, the Canvas.SetZIndex method gives the Block a z-index higher than all the others. Of
course, this process will break down eventually when the ZIndex property reaches its maximum value,
but it’s highly unlikely that will happen.

The DragDelta event of the Thumb reports how touch or the mouse has moved relative to itself in
the form of HorizontalChange and VerticalChange properties. These are simply used to increment the
Canvas.Left and Canvas.Top attached properties.

The BlankPage.xaml file is very bare. The XAML is dominated by some text that displays the name of
the program in the center of the page:

Project: AlphabetBlocks | File: BlankPage.xaml (excerpt)

<Grid Background="{StaticResource ApplicationPageBackgroundBrush}"

 SizeChanged="OnGridSizeChanged">

 <TextBlock Text="Alphabet Blocks"

 FontStyle="Italic"

 FontWeight="Bold"

 FontSize="96"

 TextWrapping="Wrap"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 TextAlignment="Center"

 Opacity="0.1" />

201

www.it-ebooks.info

http://www.it-ebooks.info/

 <Canvas Name="buttonCanvas" />

 <Canvas Name="blockcanvas" />

</Grid>

Notice the SizeChanged handler on the Grid. Whenever the size of the page changes, the handler is
responsible for re-creating all the Button objects and distributing them equally around the perimeter of
the page. That code dominates that code-behind file:

Project: AlphabetBlocks | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 const double BUTTON_SIZE = 60;

 const double BUTTON_FONT = 18;

 string blockChars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!?-+*/%=";

 Color[] colors = { Colors.Red, Colors.Green, Colors.Orange, Colors.Blue, Colors.Purple };

 Random rand = new Random();

 public BlankPage()

 {

 this.InitializeComponent();

 }

 void OnGridSizeChanged(object sender, SizeChangedEventArgs args)

 {

 buttonCanvas.Children.Clear();

 double widthFraction = args.NewSize.Width /

 (args.NewSize.Width + args.NewSize.Height);

 int horzCount = (int)(widthFraction * blockChars.Length / 2);

 int vertCount = (int)(blockChars.Length / 2 - horzCount);

 int index = 0;

 double slotWidth = (args.NewSize.Width - BUTTON_SIZE) / horzCount;

 double slotHeight = (args.NewSize.Height - BUTTON_SIZE) / vertCount + 1;

 // Across top

 for (int i = 0; i < horzCount; i++)

 {

 Button button = MakeButton(index++);

 Canvas.SetLeft(button, i * slotWidth);

 Canvas.SetTop(button, 0);

 buttonCanvas.Children.Add(button);

 }

 // Down right side

 for (int i = 0; i < vertCount; i++)

 {

 Button button = MakeButton(index++);

 Canvas.SetLeft(button, this.ActualWidth - BUTTON_SIZE);

 Canvas.SetTop(button, i * slotHeight);

 buttonCanvas.Children.Add(button);

 }

202

www.it-ebooks.info

http://www.it-ebooks.info/

 // Across bottom from right

 for (int i = 0; i < horzCount; i++)

 {

 Button button = MakeButton(index++);

 Canvas.SetLeft(button, this.ActualWidth - i * slotWidth - BUTTON_SIZE);

 Canvas.SetTop(button, this.ActualHeight - BUTTON_SIZE);

 buttonCanvas.Children.Add(button);

 }

 // Up left side

 for (int i = 0; i < vertCount; i++)

 {

 Button button = MakeButton(index++);

 Canvas.SetLeft(button, 0);

 Canvas.SetTop(button, this.ActualHeight - i * slotHeight - BUTTON_SIZE);

 buttonCanvas.Children.Add(button);

 }

 }

 Button MakeButton(int index)

 {

 Button button = new Button

 {

 Content = blockChars[index].ToString(),

 Width = BUTTON_SIZE,

 Height = BUTTON_SIZE,

 FontSize = BUTTON_FONT,

 Tag = new SolidColorBrush(colors[index % colors.Length]),

 };

 button.Click += OnButtonClick;

 return button;

 }

 void OnButtonClick(object sender, RoutedEventArgs e)

 {

 Button button = sender as Button;

 Block block = new Block

 {

 Text = button.Content as string,

 Foreground = button.Tag as Brush

 };

 Canvas.SetLeft(block, this.ActualWidth / 2 - 144 * rand.NextDouble());

 Canvas.SetTop(block, this.ActualHeight / 2 - 144 * rand.NextDouble());

 Canvas.SetZIndex(block, Block.ZIndex);

 blockcanvas.Children.Add(block);

 }

}

A Block is created in the Click handler for the Button and given a random location somewhere close to
the center of the screen. It’s the responsibility of the user to then move the blocks to discover yet
another way to say Hello to Windows 8:

203

www.it-ebooks.info

http://www.it-ebooks.info/

204

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

WinRT and MVVM
In structuring software, one of the main guiding rules is the separation of concerns. A large application
is best developed, debugged, and maintained by being separated into specialized layers. In highly
interactive graphical environments, one obvious separation is between presentation and content. The
presentation layer is the part of the program that displays controls and other graphics and interacts
with the user. Underlying this presentation layer is business logic and data providers.

To help programmers conceptualize and implement separations of concerns, architectural patterns
are developed. In XAML-based programming environments, one pattern that has become extremely
popular is Model-View-ViewModel, or MVVM. MVVM is particularly suited for implementing a
presentation layer in XAML and linking to the underlying business logic through data bindings and
commands.

Unfortunately, books such as this one tend to contain very small programs to illustrate particular
features and concepts. Very small programs often become much larger when they are made to fit an
architectural pattern! MVVM is overkill for a small application and may very well obfuscate rather than
clarify.

Nevertheless, data binding and commanding are an important part of the Windows Runtime, and
you should see how they help implement an MVVM architecture.

MVVM (Brief and Simplified)

As the name suggests, an application using the Model-View-ViewModel pattern is split into three
layers:

• The Model is the layer that deals with data and raw content. It is often involved with obtaining
and maintaining data from files or web services.

• The View is the presentation layer of controls and graphics, generally implemented in XAML.

• The View Model sits between the Model and View. In the general case, it is responsible for
making the data or content from the Model more conducive to the View.

It’s not uncommon for the Model layer to be unnecessary and therefore absent, and that’s the case
for the programs shown in this chapter.

If all the interaction between these three layers occurs through procedural method calls, a calling
hierarchy would be imposed:

205

www.it-ebooks.info

http://www.it-ebooks.info/

View  View Model  Model

Calls in the other direction are not allowed except for events. The Model can define an event that the
View Model handles, and the View Model can define an event that the View handles. Events allow the
View Model (for example) to signal to the View that updated data is available. The View can then call
into the View Model to obtain that updated data.

Most often, the View and View Model interact through data bindings and commands.
Consequently, many of the method calls and event handling actually occurs under the covers. These
data bindings and commands serve to allow three types of interactions:

• The View can transfer user input to the View Model.

• The View Model can notify the View when updated data is available.

• The View can obtain and display updated data from the View Model.

One of the goals inherent in MVVM is to minimize the code-behind file—at least on the page or
window level. MVVM mavens are happiest when all the connections between the View and View Model
are accomplished through bindings in the XAML file.

Data Binding Notifications

In Chapter 5, “Control Interaction,” you saw data bindings that looked like this:

<TextBlock Text="{Binding ElementName=slider, Path=Value}" />

This is a binding between two FrameworkElement derivatives. The target of this data binding is the Text
property of the TextBlock. The binding source is the Value property of a Slider identified by the name
slider. Both the target and source properties are backed by dependency properties. This is a
requirement for the binding target but not (as you’ll see) for the source.

Whenever the Value property of the Slider changes, the text displayed by the TextBlock changes
accordingly. How does this work? When the binding source is a dependency property, the actual
mechanism is internal to the Windows Runtime. Undoubtedly an event is involved. The Binding object
installs a handler for an event that provides a notification when the Value property of the Slider
changes, and the Binding object sets that changed value to the Text property of the TextBlock. This
shouldn’t be very mysterious, considering that Slider has a public ValueChanged event that is also fired
when the Value property changes.

When implementing a View Model, the data bindings are a little different: the binding targets are
still elements in the XAML file, but the binding sources are properties in the View Model class. This is
the basic way that the View Model and the View (the XAML file) transfer data back and forth.

A binding source is not required to be backed by a dependency property. But in order for the
binding to work properly, the binding source must implement some other kind of notification

206

www.it-ebooks.info

http://www.it-ebooks.info/

mechanism to signal to the Binding object when a property has changed. This notification does not
happen automatically; it must be implemented through an event.

The standard way for a View Model to serve as a binding source is by implementing the
INotifyPropertyChanged interface defined in the System.ComponentModel namespace. This interface
has an exceptionally simple definition:

public interface INotifyPropertyChanged

{

 event PropertyChangedEventHandler PropertyChanged;

}

The PropertyChangedEventHandler delegate is associated with the PropertyChangedEventArgs class,
which defines one property: PropertyName of type string. When a class implements
INotifyPropertyChanged, it fires a PropertyChanged event whenever one of its properties changes.

Here’s a simple example of a class that implements INotifyPropertyChanged. The single property
named TotalScore fires the PropertyChanged event when the property changes:

public class SimpleViewModel : INotifyPropertyChanged

{

 double totalScore;

 public event PropertyChangedEventHandler PropertyChanged;

 public double TotalScore

 {

 set

 {

 if (totalScore != value)

 {

 totalScore = value;

 if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs("TotalScore"));

 }

 }

 get

 {

 return totalScore;

 }

 }

}

The TotalScore property is backed by the totalScore field. Notice that the TotalScore property checks
the value coming into the set accessor against the totalScore field and fires the PropertyChanged event
only when the property actually changes. Do not skimp on this step just to make these set accessors a
little shorter! The event is called PropertyChanged and not
PropertySetAndPerhapsChangedOrMaybeNot.

Also notice that it’s possible for a class to legally implement INotifyPropertyChanged and not

207

www.it-ebooks.info

http://www.it-ebooks.info/

actually fire any PropertyChanged events, but that would be considered very bad behavior.

When a class has more than a couple properties, it starts making sense to define a protected
method named OnPropertyChanged and let that method do the actual event firing. It’s also possible to
automate part of this class, as you’ll see shortly.

As you design a View and View Model, it helps to start thinking of controls as visual manifestations
of data types. The controls in the View are bound to properties of these types in the View Model. For
example, a Slider is a double, a TextBox is a string, a CheckBox or ToggleSwitch is a bool, and a group of
RadioButton controls is an enumeration.

A View Model for ColorScroll

The ColorScroll programs in Chapter 5 showed how to use data bindings to update a TextBlock from
the value property of a Slider. However, defining a data binding to change the color based on the three
Slider values proved much more elusive. Is it possible at all?

The solution is to have a separate class devoted to the job of creating a Color object from the values
of Red, Green, and Blue properties. Any change to one of these three properties triggers a recalculation
of the Color property. In the XAML file, bindings connect the Slider controls with the Red, Green, and
Blue properties and the SolidColorBrush with the Color property. Even if we don’t call this class a View
Model, that’s what it is.

Here’s an RgbViewModel class that implements the INotifyPropertyChanged interface to fire
PropertyChanged events whenever its Red, Green, Blue, or Color properties change:

Project: ColorScrollWithViewModel | File: RgbViewModel.cs

using System.ComponentModel; // for INotifyPropertyChanged

using Windows.UI; // for Color

namespace ColorScrollWithViewModel

{

 public class RgbViewModel : INotifyPropertyChanged

 {

 double red, green, blue;

 Color color = Color.FromArgb(255, 0, 0, 0);

 public event PropertyChangedEventHandler PropertyChanged;

 public double Red

 {

 set

 {

 if (red != value)

 {

 red = value;

 OnPropertyChanged("Red");

 Calculate();

208

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 }

 get

 {

 return red;

 }

 }

 public double Green

 {

 set

 {

 if (green != value)

 {

 green = value;

 OnPropertyChanged("Green");

 Calculate();

 }

 }

 get

 {

 return green;

 }

 }

 public double Blue

 {

 set

 {

 if (blue != value)

 {

 blue = value;

 OnPropertyChanged("Blue");

 Calculate();

 }

 }

 get

 {

 return blue;

 }

 }

 public Color Color

 {

 protected set

 {

 if (color != value)

 {

 color = value;

 OnPropertyChanged("Color");

 }

 }

 get

 {

209

www.it-ebooks.info

http://www.it-ebooks.info/

 return color;

 }

 }

 void Calculate()

 {

 this.Color = Color.FromArgb(255, (byte)this.Red, (byte)this.Green, (byte)this.Blue);

 }

 protected void OnPropertyChanged(string propertyName)

 {

 if (PropertyChanged != null)

 PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

 }

 }

}

The OnPropertyChanged method at the bottom of the class has the job of actually firing the
PropertyChanged event with the name of the property.

I’ve defined the Red, Green, and Blue properties as double to facilitate data bindings. These
properties are basically input to the View Model, and they’ll probably come from controls such as
Slider, so the double type is the most generalized.

Each of the Red, Green, and Blue property set accessors fires a PropertyChanged event and then calls
Calculate, which sets a new Color value, which causes another PropertyChanged event to be fired for
the Color property. The Color property itself has a protected set accessor, indicating that this class isn’t
designed to calculate Red, Green, and Blue values from a new Color value. (I’ll discuss this issue shortly.)

The RgbViewModel class is part of the ColorScrollWithViewModel project. The BlankPage.xaml file
instantiates the RgbViewModel in its Resources section.

Project: ColorScrollWithViewModel | File: BlankPage.xaml (excerpt)

<Page.Resources>

 <local:RgbViewModel x:Key="rgbViewModel" />

 …

</Page.Resources>

Notice the namespace prefix of local.

Defining the View Model as a resource is one of two basic ways that a XAML file can get access to
the object. As was demonstrated in Chapter 2, “XAML Syntax,” a class included in a Resources section is
instantiated only once and shared among all StaticResource references. This behavior is essential for an
application such as this, in which all the bindings need to reference the same object.

Each of the Slider controls is similar. Only one is shown here:

Project: ColorScrollWithViewModel | File: BlankPage.xaml (excerpt)

<!-- Red -->

<TextBlock Text="Red"

 Grid.Column="0"

210

www.it-ebooks.info

http://www.it-ebooks.info/

 Grid.Row="0"

 Foreground="Red" />

<Slider Grid.Column="0"

 Grid.Row="1"

 Value="{Binding Source={StaticResource rgbViewModel},

 Path=Red,

 Mode=TwoWay}"

 ThumbToolTipValueConverter="{StaticResource hexConverter}"

 Orientation="Vertical"

 Foreground="Red" />

<TextBlock Text="{Binding Source={StaticResource rgbViewModel},

 Path=Red,

 Converter={StaticResource hexConverter}}"

 Grid.Column="0"

 Grid.Row="2"

 Foreground="Red" />

Notice that the Slider element no longer has a Name attribute because no other element in the XAML
file refers to this element, and neither does the code-behind file. There’s no ValueChanged event
handler because that’s not needed either. The code-behind file contains nothing except a call to
InitializeComponent.

Take careful note of the binding on the Slider:

<Slider …

 Value="{Binding Source={StaticResource rgbViewModel},

 Path=Red,

 Mode=TwoWay}" … />

This binding is a little long, so I’ve broken it into three lines. It does not specify an ElementName
because it’s not referencing another element in the XAML file. Instead, it’s referencing an object
instantiated as a XAML resource, so it must use Source with StaticResource. The syntax of this binding
implies that the binding target is the Value property of the Slider and the binding source is the Red
property of the RgbViewModel instance.

RgbViewModel must be a binding source rather than a target. It can’t be a binding target because it
has no dependency properties. Despite the syntax implying that Value is the binding target, in reality
we want the Slider to provide a value to the Red property. For this reason, the Mode property of
Binding must be set to TwoWay, which means both that an updated source value causes a change to
the target property (the normal case) and that an updated target value causes a change to the source
property (which is actually the essential transfer here).

The default Mode setting is OneWay. The only other option is OneTime, which means that the target
is updated from the source property only when the binding is established. With OneTime, no updating
occurs when the source property later changes. You can use OneTime if the source has no notification
mechanism.

Also notice that the TextBlock showing the current value now has a binding to the RgbViewModel

211

www.it-ebooks.info

http://www.it-ebooks.info/

object:

<TextBlock Text="{Binding Source={StaticResource rgbViewModel},

 Path=Red,

 Converter={StaticResource hexConverter}}" … />

This binding could instead refer directly to the Slider as in the previous project, but I thought it would
be better that it also refer to the RgbViewModel instance. The default OneWay mode is fine here
because data only needs to go from the source to the target.

The OneWay mode is also good for the binding on the Color property of the SolidColorBrush:

Project: ColorScrollWithViewModel | File: BlankPage.xaml (excerpt)

<Rectangle Grid.Column="3"

 Grid.Row="0"

 Grid.RowSpan="3">

 <Rectangle.Fill>

 <SolidColorBrush Color="{Binding Source={StaticResource rgbViewModel},

 Path=Color}" />

 </Rectangle.Fill>

</Rectangle>

The SolidColorBrush no longer has an x:Name attribute because there’s nothing in the code-behind file
that refers to it.

Of course, the code in the RgbViewModel class is much longer than the ValueChanged event
handler we’ve managed to remove from the code-behind file. I warned you at the outset that MVVM is
overkill for small programs. Even in larger applications, often there’s an initial price to pay for cleaner
architecture, but the separation of presentation and business logic certainly has long-term advantages.

In the RgbViewModel class I made the set accessor of Color protected so that it can be accessed only
from within the class. Is this really necessary? Perhaps the Color property can be defined so that an
external change to the property causes new values of the Red, Green, and Blue properties to be
calculated:

public Color Color

{

 set

 {

 if (color != value)

 {

 color = value;

 OnPropertyChanged("Color");

 this.Red = color.R;

 this.Green = color.G;

 this.Blue = color.B;

 }

 }

 get

 {

 return color;

 }

212

www.it-ebooks.info

http://www.it-ebooks.info/

}

At first this might seem like asking for trouble because it causes recursive property changes and
recursive calls to OnPropertyChanged. But that doesn’t happen because the set accessors do nothing if
the property is not actually changing, so this should be safe.

But it’s actually flawed. Suppose the Color property is currently the RGB value (0, 0, 0) and it’s set to
value (255, 128, 0). When the Red property is set to 255 in the code, a PropertyChanged event is fired,
but now Color (and color) is set to (255, 0, 0), so the code here continues with Green and Blue being set
to the new color values of 0.

This version works OK, however, even though it causes a flurry of PropertyChanged events:

public Color Color

{

 set

 {

 if (color != value)

 {

 color = value;

 OnPropertyChanged("Color");

 this.Red = value.R;

 this.Green = value.G;

 this.Blue = value.B;

 }

 }

 get

 {

 return color;

 }

}

I’ll make the set accessor of Color property public in the next version of the program.

Deriving from BindableBase

You might have concluded from the RgbViewModel code that implementing INotifyPropertyChanged is
a bit of a hassle, and that’s true. To make it somewhat easier, Visual Studio creates a BindableBase class
in the Common folder of your projects. (Don’t confuse this class with the BindingBase class from which
Binding derives.)

The BindableBase class is defined in a namespace that consists of the project name followed by a
period and the word Common. Stripped of comments and attributes, here’s what it looks like:

public abstract class BindableBase : INotifyPropertyChanged

{

 public event PropertyChangedEventHandler PropertyChanged;

 protected bool SetProperty<T>(ref T storage, T value,

 [CallerMemberName] String propertyName = null)

213

www.it-ebooks.info

http://www.it-ebooks.info/

 {

 if (object.Equals(storage, value)) return false;

 storage = value;

 this.OnPropertyChanged(propertyName);

 return true;

 }

 protected void OnPropertyChanged([CallerMemberName] string propertyName = null)

 {

 var eventHandler = this.PropertyChanged;

 if (eventHandler != null)

 {

 eventHandler(this, new PropertyChangedEventArgs(propertyName));

 }

 }

}

A class that derives from BindableBase calls SetProperty in the set accessor of its property definitions.
The signature for the SetProperty method looks a little hairy, but it’s very easy to use. For a property
named Red of type double, for example, you would have a backing field defined like this:

double red;

You call SetProperty in the set accessor like so:

SetProperty<double>(ref red, value, "Red");

Notice the use of CallerMemberName in BindableBase. This is an attribute added to .NET 4.5 that C#
5.0 can use to obtain information about code that’s calling a particular property or method, which
means that you can call SetProperty without that last argument. If you’re calling SetProperty from the
set access of the Red property, the name will be automatically provided:

SetProperty<double>(ref red, value);

The return value from SetProperty is true if the property is actually changing. You’ll probably want
to use the return in logic that does something with the new value. For the next project, called
ColorScrollWithDataContext, I’ve created an alternate version of RgbViewModel that derives from
BindableBase, and I’ve given Color a public set accessor:

Project: ColorScrollWithDataContext | File: RgbViewModel.cs

using Windows.UI;

using ColorScrollWithDataContext.Common;

namespace ColorScrollWithDataContext

{

 public class RgbViewModel : BindableBase

 {

 double red, green, blue;

 Color color = Color.FromArgb(255, 0, 0, 0);

 public double Red

214

www.it-ebooks.info

http://www.it-ebooks.info/

 {

 set

 {

 if (SetProperty<double>(ref red, value))

 Calculate();

 }

 get

 {

 return red;

 }

 }

 public double Green

 {

 set

 {

 if (SetProperty<double>(ref green, value))

 Calculate();

 }

 get

 {

 return green;

 }

 }

 public double Blue

 {

 set

 {

 if (SetProperty<double>(ref blue, value))

 Calculate();

 }

 get

 {

 return blue;

 }

 }

 public Color Color

 {

 set

 {

 if (SetProperty<Color>(ref color, value))

 {

 this.Red = value.R;

 this.Green = value.G;

 this.Blue = value.B;

 }

 }

 get

 {

 return color;

 }

 }

215

www.it-ebooks.info

http://www.it-ebooks.info/

 void Calculate()

 {

 this.Color = Color.FromArgb(255, (byte)this.Red, (byte)this.Green, (byte)this.Blue);

 }

 }

}

This form of the INotifyPropertyChanged implementation is somewhat cleaner and certainly sleeker. I’ll
use this version in the ColorScrollWithDataContext project in the next section.

The DataContext Property

So far you’ve seen three ways to specify a source object in a binding. ElementName is ideal for
referencing a named element in XAML, and RelativeSource allows a binding to reference a property in
the target object. (RelativeSource actually has a more important but also more esoteric use that you’ll
discover in a future chapter.) The third option is the Source property, which is generally used with
StaticResource for accessing an object in the Resources collection.

There’s a fourth way to specify a binding source: if ElementName, RelativeSource, and Source are all
null, the Binding object checks the DataContext property of the binding target.

The DataContext property is defined by FrameworkElement, and it has the wonderful (and essential)
characteristic of propagating down through the visual tree. Not many properties propagate through
the visual tree in this way. Foreground and all the font-related properties do so, but not many others.
DataContext is one of the big exceptions to the rule.

The constructor of a code-behind file can instantiate a View Model and set that instance to the
DataContext of the page. Here’s how it’s done in the BlankPage.xaml.cs file of the
ColorScrollWithDataContext project:

Project: ColorScrollWithDataContext | File: BlankPage.xaml.cs

public BlankPage()

{

 this.InitializeComponent();

 this.DataContext = new RgbViewModel();

 // Initialize to highlight color

 (this.DataContext as RgbViewModel).Color =

 (this.Resources["ControlHighlightBrush"] as SolidColorBrush).Color;

}

Instantiating the View Model in code might be necessary or desirable for one reason or another.
Perhaps the View Model has a constructor that requires an argument. That’s something XAML can’t do.

Notice that I’ve also taken the opportunity to test the settability of the Color property by initializing
it to the system highlight color.

216

www.it-ebooks.info

http://www.it-ebooks.info/

One big advantage to the DataContext approach is the simplification of the data bindings. Since
they no longer require Source settings, they can look like this:

<Slider … Value="{Binding Path=Red, Mode=TwoWay}" … />

Moreover, if the Path item is the first item in the binding markup, the Path= part can be removed:

<Slider … Value="{Binding Red, Mode=TwoWay}" … />

Now that’s a simple Binding syntax!

You can remove the Path= part of any binding specification regardless of the source, but only if
Path is the first item. Whenever I use Source or ElementName, I prefer for that part of the Binding
specification to appear first, so I’ll drop Path= only when the DataContext comes into play.

Here’s an excerpt from the XAML file showing the new bindings. They’ve become so short that I’ve
stopped breaking them into multiple lines:

Project: ColorScrollWithDataContext | File: BlankPage.xaml (excerpt)

<!-- Red -->

<TextBlock Text="Red"

 Grid.Column="0"

 Grid.Row="0"

 Foreground="Red" />

<Slider Grid.Column="0"

 Grid.Row="1"

 Value="{Binding Red, Mode=TwoWay}"

 ThumbToolTipValueConverter="{StaticResource hexConverter}"

 Orientation="Vertical"

 Foreground="Red" />

<TextBlock Text="{Binding Red, Converter={StaticResource hexConverter}}"

 Grid.Column="0"

 Grid.Row="2"

 Foreground="Red" />

…

<!-- Result -->

<Rectangle Grid.Column="3"

 Grid.Row="0"

 Grid.RowSpan="3">

 <Rectangle.Fill>

 <SolidColorBrush Color="{Binding Color}" />

 </Rectangle.Fill>

</Rectangle>

It’s possible to mix the two approaches. For example, you can instantiate the View Model in the
Resource collection of the XAML file:

<Page.Resources>

 …

 <local:RgbViewModel x:Key="rgbViewModel" />

 …

217

www.it-ebooks.info

http://www.it-ebooks.info/

</Page.Resources>

Then at the earliest convenient place in the visual tree, you can set a DataContext property:

<Grid … DataContext="{StaticResource rgbViewModel}" … >

Or:

<Grid … DataContext="{Binding Source={StaticResource rgbViewModel}}" … >

The second form is particularly useful if you want to set the DataContext to a property of the View
Model. You’ll see examples when I begin discussing collections.

Bindings and TextBox

One of the big advantages to isolating underlying business logic is the ability to completely revamp
the user interface without touching the View Model. For example, suppose you want a color-selection
program that is similar to ColorScroll but where each color component is entered in a TextBox. Such a
program might be a little clumsy to use, but it should be possible.

The ColorTextBoxes project has the same RgbViewModel class as the ColorScrollWithDataContext
program. The code-behind file has the same constructor as that project as well:

Project: ColorTextBoxes | File: BlankPage.xaml.cs (excerpt)

public BlankPage()

{

 this.InitializeComponent();

 this.DataContext = new RgbViewModel();

 // Initialize to highlight color

 (this.DataContext as RgbViewModel).Color =

 (this.Resources["ControlHighlightBrush"] as SolidColorBrush).Color;

}

The XAML file instantiates three TextBox controls and defines data bindings between the Red, Green,
and Blue properties of RgbViewModel:

Project: ColorTextBoxes | File: BlankPage.xaml (excerpt)

<Page … >

 <Page.Resources>

 <Style TargetType="TextBlock">

 <Setter Property="FontSize" Value="24" />

 <Setter Property="Margin" Value="24 0 0 0" />

 <Setter Property="VerticalAlignment" Value="Center" />

 </Style>

 <Style TargetType="TextBox">

 <Setter Property="Margin" Value="24 48 96 48" />

 <Setter Property="VerticalAlignment" Value="Center" />

218

www.it-ebooks.info

http://www.it-ebooks.info/

 </Style>

 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Grid Grid.Column="0">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <TextBlock Text="Red: "

 Grid.Row="0"

 Grid.Column="0" />

 <TextBox Text="{Binding Red, Mode=TwoWay}"

 Grid.Row="0"

 Grid.Column="1" />

 <TextBlock Text="Green: "

 Grid.Row="1"

 Grid.Column="0" />

 <TextBox Text="{Binding Green, Mode=TwoWay}"

 Grid.Row="1"

 Grid.Column="1" />

 <TextBlock Text="Blue: "

 Grid.Row="2"

 Grid.Column="0" />

 <TextBox Text="{Binding Blue, Mode=TwoWay}"

 Grid.Row="2"

 Grid.Column="1" />

 </Grid>

 <!-- Result -->

 <Rectangle Grid.Column="1">

 <Rectangle.Fill>

 <SolidColorBrush Color="{Binding Color}" />

 </Rectangle.Fill>

 </Rectangle>

 </Grid>

</Page>

219

www.it-ebooks.info

http://www.it-ebooks.info/

When the program runs, the individual TextBox controls are initialized with color values that have an
excessive number of decimal places (which we probably expect by now) but which are correct:

Now tap one of the TextBox controls, and try entering another number. Nothing happens. Now tap

another TextBox, or press the Tab key to shift the input focus to the next TextBox. Aha! Now the
number you entered in the first TextBox has finally been acknowledged and used to update the color.

As you experiment with this program, you’ll find that the Windows Runtime is extremely lenient
about accepting letters and symbols in these text strings without raising exceptions but that any new
value you type registers only when the TextBox loses input focus.

This behavior is by design. Suppose a View Model bound to a TextBox is using a Model to update a
database through a network connection. As the user types text into a TextBox—perhaps making
mistakes and backspacing—do you really want each and every change going over the network? For
that reason, user entry in the TextBox is considered to be completed and ready for processing only
when the TextBox loses input focus.

Unfortunately, there’s currently no option to change this behavior. Nor is there any way to include
validation in these data bindings. If the TextBox binding behavior is unacceptable, the only real choice
you have is abandoning bindings for this case and using the TextChanged event handler instead.

The ColorTextBoxesWithEvents project shows one possible approach. The project still uses the same
RgbViewModel class. The XAML file is similar to the previous project except that the TextBox controls
now have names and TextChanged handlers assigned:

Project: ColorTextBoxesWithEvents | File: BlankPage.xaml (excerpt)

<TextBlock Text="Red: "

 Grid.Row="0"

 Grid.Column="0" />

220

www.it-ebooks.info

http://www.it-ebooks.info/

<TextBox Name="redTextBox"

 Grid.Row="0"

 Grid.Column="1"

 Text="0"

 TextChanged="OnTextBoxTextChanged" />

<TextBlock Text="Green: "

 Grid.Row="1"

 Grid.Column="0" />

<TextBox Name="greenTextBox"

 Grid.Row="1"

 Grid.Column="1"

 Text="0"

 TextChanged="OnTextBoxTextChanged" />

<TextBlock Text="Blue: "

 Grid.Row="2"

 Grid.Column="0" />

<TextBox Name="blueTextBox"

 Grid.Row="2"

 Grid.Column="1"

 Text="0"

 TextChanged="OnTextBoxTextChanged" />

The Rectangle, however, still has the same data binding as in the earlier programs.

Because we’re replacing two-way bindings, not only do we need event handlers on the TextBox
controls, but we need to install a handler for the PropertyChanged event of RgbViewModel. Updating a
TextBox when a View Model property changes is fairly easy—and it prevents the decimal point and row
of zeroes—but I also decided I wanted to actually validate the text entered by the user:

Project: ColorTextBoxesWithEvents | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 RgbViewModel rgbViewModel;

 Brush textBoxTextBrush;

 Brush textBoxErrorBrush = new SolidColorBrush(Colors.Red);

 public BlankPage()

 {

 this.InitializeComponent();

 // Get TextBox brush

 textBoxTextBrush = this.Resources["TextBoxTextBrush"] as SolidColorBrush;

 // Create RgbViewModel and save as field

 rgbViewModel = new RgbViewModel();

 rgbViewModel.PropertyChanged += OnRgbViewModelPropertyChanged;

 this.DataContext = rgbViewModel;

221

www.it-ebooks.info

http://www.it-ebooks.info/

 // Initialize to highlight color

 rgbViewModel.Color = (this.Resources["ControlHighlightBrush"] as SolidColorBrush).Color;

 }

 void OnRgbViewModelPropertyChanged(object sender, PropertyChangedEventArgs args)

 {

 switch (args.PropertyName)

 {

 case "Red":

 redTextBox.Text = rgbViewModel.Red.ToString("F0");

 break;

 case "Green":

 greenTextBox.Text = rgbViewModel.Green.ToString("F0");

 break;

 case "Blue":

 blueTextBox.Text = rgbViewModel.Blue.ToString("F0");

 break;

 }

 }

 void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

 {

 byte value;

 if (sender == redTextBox && Validate(redTextBox, out value))

 rgbViewModel.Red = value;

 if (sender == greenTextBox && Validate(greenTextBox, out value))

 rgbViewModel.Green = value;

 if (sender == blueTextBox && Validate(blueTextBox, out value))

 rgbViewModel.Blue = value;

 }

 bool Validate(TextBox txtbox, out byte value)

 {

 bool valid = byte.TryParse(txtbox.Text, out value);

 txtbox.Foreground = valid ? textBoxTextBrush : textBoxErrorBrush;

 return valid;

 }

}

The Validate method uses the standard TryParse method to convert the text into a byte value. If
successful, the View Model is updated with the value. If not, the text is displayed in red, indicating a
problem.

This works well except when the numbers being entered are preceded with leading blanks or zeros.
For example, suppose you type 0 in the first TextBox. That’s a valid byte, so the Red property in
RgbViewModel is updated with this value, which triggers a PropertyChanged method, and the TextBox
is assigned a Text value of “0”. No problem. Now type a 5. The TextBox contains “05”. The TryParse
method considers this to be a valid byte string, and the Red property is updated with the value 5. Now

222

www.it-ebooks.info

http://www.it-ebooks.info/

the PropertyChanged handler sets the Text property of the TextBox to the string “5”, replacing “05”. But
the cursor location is not changed, so it’s between the 0 and the 5 instead of being after the 5.

Perhaps the best way to prevent this problem is to ignore PropertyChanged events from the View
Model while setting a property in the View Model from the TextChanged handler. You can do this with
a simple flag:

bool blockViewModelUpdates;

…

void OnRgbViewModelPropertyChanged(object sender, PropertyChangedEventArgs args)

{

 if (blockViewModelUpdates)

 return;

 …

}

void OnTextBoxTextChanged(object sender, TextChangedEventArgs args)

{

 blockViewModelUpdates = true;

 …

 blockViewModelUpdates = false;

}

You’ll probably also want to clean up the displayed values when each TextBox loses input focus.

Buttons and MVVM

At first, the idea that you can use MVVM to eliminate most of the code-behind file seems valid only for
controls that generate values. The concept starts to crumble when you consider buttons. A Button fires
a Click event. That Click event must be handled in the code-behind file. If a View Model is actually
implementing the logic for that button (which is likely), the Click handler must call a method in the
View Model. That might be architecturally legal, but it’s still rather cumbersome.

Fortunately, there’s an alternative to the Click event that is ideal for MVVM. This is sometimes
informally referred to as the “command interface.” ButtonBase defines properties named Command (of
type ICommand) and CommandParameter (of type object) that allow a Button to effectively make a call
into a View Model. Command and CommandParameter are both backed by dependency properties,
which means they can be binding targets. Command is almost always the target of a data binding.
CommandParameter is optional. It’s useful for differentiating between buttons bound to the same
Command object, and it’s usually treated like a Tag property.

Perhaps you’ve written a calculator application where you’ve implemented the engine as a View
Model that’s set as the DataContext. The calculator button for the + (plus) command might be
instantiated in XAML like so:

<Button Content="+"

223

www.it-ebooks.info

http://www.it-ebooks.info/

 Command="{Binding CalculateCommand}"

 CommandParameter="add" />

What this means is that the View Model has a property named CalculateCommand of type
ICommand, perhaps defined like this:

public ICommand CalculateCommand { protected set; get; }

The View Model must initialize the CalculateCommand property by setting it to an instance of a class
that implements the ICommand interface, which is defined like so:

public interface ICommand

{

 void Execute(object param);

 bool CanExecute(object param)

 event EventHandler<object> CanExecuteChanged;

}

When this particular Button is clicked, the Execute method is called in the class referenced by
CalculateCommand with an argument of “add”. This is how a Button basically makes a call right into the
View Model (or rather, the class containing that Execute method).

The other two-thirds of the ICommand interface contain the phrase “can execute” and involve the
validity of the particular command at a particular time. If this command is not currently valid—perhaps
the calculator can’t add right now because no number has been entered—the Button should be
disabled.

Here’s how it works: As the XAML is being parsed and loaded at run time, the Command property of
the Button is assigned a binding to (in this example) the CalculateCommand object. The Button installs
a handler for the CanExecuteChanged event and calls the CanExecute method in this object with an
argument (in this example) of “add”. If CanExecute returns false, the Button disables itself. Thereafter,
the Button calls CanExecute again whenever the CanExecuteChanged event is fired.

To include a command in your View Model, you must provide a class that implements the
ICommand interface. However, it’s very likely that this class needs to access properties in the View
Model class, and vice versa.

So you might wonder: can these two classes be one and the same?

In theory, yes they can, but only if you use the same Execute and CanExecute methods for all the
buttons on the page, which means that each button must have a unique CommandParameter so that
the methods can distinguish between them.

I have not been able to get it to work, however, so let me show you the standard way of
implementing commands in a View Model.

224

www.it-ebooks.info

http://www.it-ebooks.info/

The DelegateCommand Class

Let’s rewrite the SimpleKeypad application from Chapter 5 so that it uses a View Model to accumulate
the keystrokes and generate a formatted text string. Besides implementing the INotifyPropertyChanged
interface (via the BindableBase class), the View Model will also process commands from all the buttons
in the keypad. There will be no more Click handlers.

Here’s the problem: For the View Model to process button commands, it must have one or more
properties of type ICommand, which means that we need one or more classes that implement the
ICommand interface. To implement ICommand, these classes must contain Execute and CanExecute
methods and the CanExecuteChanged event. Yet, the bodies of these methods undoubtedly need to
interact with the other parts of the View Model.

The solution is to define all the Execute and CanExecute methods in the View Model class but with
different and unique names. Then, a special class can be defined that implements ICommand but that
actually calls the methods in the View Model.

This special class is often named DelegateCommand, and if you search around, you’ll find several
somewhat different implementations of this class, including one in Microsoft’s Prism framework, which
helps developers implement MVVM in Windows Presentation Foundation (WPF) and Silverlight. The
version here is my variation.

DelegateCommand implements the ICommand interface, which means it has Execute and
CanExecute methods and the CanExecuteChanged event, but it turns out that DelegateCommand also
needs another method to fire the CanExecuteChanged event. Let’s call this additional method
RaiseCanExecuteChanged. The first job is to define an interface that implements ICommand but that
includes this additional method:

Project: KeypadWithViewModel | File: IDelegateCommand.cs

using System.Windows.Input;

namespace KeypadWithViewModel

{

 public interface IDelegateCommand : ICommand

 {

 void RaiseCanExecuteChanged();

 }

}

Simple enough. The DelegateCommand class implements the IDelegateCommand interface and
makes use of a couple simple (but useful) delegates defined in the System namespace. The
Action<object> delegate represents a method with a single object argument and a void return value;
not coincidentally, this is the signature of the Execute method. The Func<object, bool> delegate
represents a method with an object argument that returns a bool; this is the signature of the
CanExecute method. DelegateCommand defines two fields of these types for storing methods with
these signatures:

225

www.it-ebooks.info

http://www.it-ebooks.info/

Project: KeypadWithViewModel | File: DelegateCommand.cs

using System;

namespace KeypadWithViewModel

{

 public class DelegateCommand : IDelegateCommand

 {

 Action<object> execute;

 Func<object, bool> canExecute;

 // Event required by ICommand

 public event EventHandler CanExecuteChanged;

 // Two constructors

 public DelegateCommand(Action<object> execute, Func<object, bool> canExecute)

 {

 this.execute = execute;

 this.canExecute = canExecute;

 }

 public DelegateCommand(Action<object> execute)

 {

 this.execute = execute;

 this.canExecute = this.AlwaysCanExecute;

 }

 // Methods required by ICommand

 public void Execute(object param)

 {

 execute(param);

 }

 public bool CanExecute(object param)

 {

 return canExecute(param);

 }

 // Method required by IDelegateCommand

 public void RaiseCanExecuteChanged()

 {

 if (CanExecuteChanged != null)

 CanExecuteChanged(this, EventArgs.Empty);

 }

 // Default CanExecute method

 bool AlwaysCanExecute(object param)

 {

 return true;

 }

 }

}

This class implements Execute and CanExecute methods, but these methods merely call the methods
saved as fields. These fields are set by the constructor of the class from constructor arguments.

For example, if the calculator View Model has a command to calculate, it can define the

226

www.it-ebooks.info

http://www.it-ebooks.info/

CalculateCommand property like so:

public IDelegateCommand CalculateCommand { protected set; get; }

The View Model also defines two methods named ExecuteCalculate and CanExecuteCalculate:

void ExecuteCalculate(object param)

{

 …

}

bool CanExecuteCalculate(object param)

{

 …

}

The constructor of the View Model class creates the CalculateCommand property by instantiating
DelegateCommand with these two methods:

this.CalculateCommand = new DelegateCommand(ExecuteCalculate, CanExecuteCalculate);

Now that you see the general idea, let’s look at the View Model for the keypad. The class derives
from BindableBase for the INotifyPropertyChanged implementation. For the text entered into and
displayed by the keypad, this View Model defines two properties named InputString and the formatted
version, DisplayText.

The View Model also defines two properties of type IDelegateCommand named
AddCharacterCommand (for all the numeric and symbol keys) and DeleteCharacterCommand. These
properties are created by instantiating DelegateCommand with the methods ExecuteAddCharacter,
ExecuteDeleteCharacter, and CanExecuteDeleteCharacter. There’s no CanExecuteAddCharacter because
the keys are always valid.

Project: KeypadWithViewModel | File: KeypadViewModel.cs

using System;

using KeypadWithViewModel.Common;

namespace KeypadWithViewModel

{

 public class KeypadViewModel : BindableBase

 {

 string inputString = "";

 string displayText = "";

 char[] specialChars = { '*', '#' };

 // Constructor

 public KeypadViewModel()

 {

 this.AddCharacterCommand = new DelegateCommand(ExecuteAddCharacter);

 this.DeleteCharacterCommand =

 new DelegateCommand(ExecuteDeleteCharacter, CanExecuteDeleteCharacter);

 }

 // Public properties

 public string InputString

227

www.it-ebooks.info

http://www.it-ebooks.info/

 {

 protected set

 {

 bool previousCanExecuteDeleteChar = this.CanExecuteDeleteCharacter(null);

 if (this.SetProperty<string>(ref inputString, value))

 {

 this.DisplayText = FormatText(inputString);

 if (previousCanExecuteDeleteChar != this.CanExecuteDeleteCharacter(null))

 this.DeleteCharacterCommand.RaiseCanExecuteChanged();

 }

 }

 get { return inputString; }

 }

 public string DisplayText

 {

 protected set { this.SetProperty<string>(ref displayText, value); }

 get { return displayText; }

 }

 // ICommand implementations

 public IDelegateCommand AddCharacterCommand { protected set; get; }

 public IDelegateCommand DeleteCharacterCommand { protected set; get; }

 // Execute and CanExecute methods

 void ExecuteAddCharacter(object param)

 {

 this.InputString += param as string;

 }

 void ExecuteDeleteCharacter(object param)

 {

 this.InputString = this.InputString.Substring(0, this.InputString.Length - 1);

 }

 bool CanExecuteDeleteCharacter(object param)

 {

 return this.InputString.Length > 0;

 }

 // Private method called from InputString

 string FormatText(string str)

 {

 bool hasNonNumbers = str.IndexOfAny(specialChars) != -1;

 string formatted = str;

 if (hasNonNumbers || str.Length < 4 || str.Length > 10)

 {

 }

 else if (str.Length < 8)

228

www.it-ebooks.info

http://www.it-ebooks.info/

 {

 formatted = String.Format("{0}-{1}", str.Substring(0, 3),

 str.Substring(3));

 }

 else

 {

 formatted = String.Format("({0}) {1}-{2}", str.Substring(0, 3),

 str.Substring(3, 3),

 str.Substring(6));

 }

 return formatted;

 }

 }

}

The ExecuteAddCharacter method expects that the parameter is the character entered by the user. This
is how the single command is shared among multiple buttons.

The CanExecuteDeleteCharacter returns true only if there are characters to delete. The delete button
should be disabled otherwise. But this method is called only initially when the binding is first
established and thereafter only if the CanExecuteChanged event is fired. The logic to fire this event is in
the set access of InputString, which compares the CanExecuteDeleteCharacter return values before and
after the input string is modified.

The XAML file instantiates the View Model as a resource and then defines a DataContext in the Grid.
Notice the simplicity of the Command bindings on the thirteen Button controls and the use of
CommandParameter on the numeric and symbol keys:

Project: KeypadWithViewModel | File: BlankPage.xaml (excerpt)

<Page … >

 <Page.Resources>

 <local:KeypadViewModel x:Key="viewModel" />

 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}"

 DataContext="{StaticResource viewModel}">

 <Grid HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Width="288">

 <Grid.Resources>

 <Style TargetType="Button">

 <Setter Property="ClickMode" Value="Press" />

 <Setter Property="HorizontalAlignment" Value="Stretch" />

 <Setter Property="Height" Value="72" />

 <Setter Property="FontSize" Value="36" />

 </Style>

 </Grid.Resources>

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

229

www.it-ebooks.info

http://www.it-ebooks.info/

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Grid Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <Border Grid.Column="0"

 HorizontalAlignment="Left">

 <TextBlock Text="{Binding DisplayText}"

 HorizontalAlignment="Right"

 VerticalAlignment="Center"

 FontSize="24" />

 </Border>

 <Button Content="⇦"

 Command="{Binding DeleteCharacterCommand}"

 Grid.Column="1"

 FontFamily="Segoe Symbol"

 HorizontalAlignment="Left"

 Padding="0"

 BorderThickness="0" />

 </Grid>

 <Button Content="1"

 Command="{Binding AddCharacterCommand}"

 CommandParameter="1"

 Grid.Row="1" Grid.Column="0" />

 …

 <Button Content="#"

 Command="{Binding AddCharacterCommand}"

 CommandParameter="#"

 Grid.Row="4" Grid.Column="2" />

 </Grid>

 </Grid>

</Page>

The really boring part of this project is the code-behind file, which now contains nothing but a call
to InitializeComponent.

Mission accomplished.

230

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

Building an Application
Even after becoming familiar with various features of the Windows Runtime, putting it all together to
create an application can still be a challenge. For that reason, this chapter is mostly devoted to building
a rather larger application than anything else in this book.

XamlCruncher features a multiline TextBox for editing a XAML file and a display area that shows the
visual tree created by running that XAML through the XamlReader.Load method. I demonstrated
XamlReader.Load briefly in Chapter 2, “XAML Syntax,” when I used it to convert some XAML path
markup syntax to a PathGeometry object. The method can handle more complex visual trees, and a
tool such as XamlCruncher is very useful for interactively experimenting with XAML and learning about
it.

XamlCruncher also features some custom controls, and it demonstrates common application needs:

• An application bar

• A pop-up dialog (or “popup”) for customizing program settings

• Saving and retrieving user settings in isolated application storage

• Saving and retrieving files in the Documents area

I’ll add additional features to XamlCruncher in future chapters.

Two aspects of this job—file input/output and asynchronous operations—are the subjects of future
chapters as well, but it will be necessary to at least become acquainted with these topics in this chapter.
To allow me to focus more sharply on these two topics, I’ll discuss them in connection with a simpler
program with fewer features called MetroPad, which is similar to the traditional Windows Notepad
program.

Commands, Options, and Settings

The Windows Runtime supports several methods for applications to implement commands and
program options. The most important is the application bar, which is intended to implement basic
program commands in a manner similar to a traditional menu or toolbar. The application bar is a class
named AppBar, and it’s invoked when the user sweeps a finger on the top or bottom of the screen. The
application bar then often disappears when a command has been selected.

An application bar can appear at the top of the page, or the bottom, or both. The Page class defines
two properties named TopAppBar and BottomAppBar that you generally set to AppBar tags in XAML.

231

www.it-ebooks.info

http://www.it-ebooks.info/

AppBar derives from ContentControl, and you’ll usually set the Content property to a panel that
contains the controls that appear on the application bar.

Perhaps the best way to become familiar with the use of application bars in real programs is to
explore some of the standard Metro style applications that are part of Windows 8.

The application bars in the Metro style version of Internet Explorer demonstrates that an application
bar can contain a variety of controls. However, very often the BottomAppBar contains only a row of
circular Button controls. In the StandardStyles.xaml file that Visual Studio creates in the Common folder
of a standard application, you’ll find a Style definition with the name AppBarButtonStyle that defines
this circular button. In addition, StandardStyles.xaml also defines 29 additional styles based on
AppBarButtonStyle for common commands such as Play, Edit, Save, and Delete. These styles include a
template that references the AutomationProperties.Name attached property for the text that appears
under the button. The button content in these 29 styles is set to character codes ranging from 0xE100
to 0xE11C. This is a private use area in the Unicode standard and makes sense only for the Segoe UI
Symbol font. This font has additional symbol characters beyond 0xE11C that you can also use for
application bar buttons.

In addition, the Segoe UI Symbol font supports character codes from 0x1F300 through 0x1F5FF that
map to emoji characters. These are icon characters that originated in Japan but that have also found
their way into the Microsoft Windows Phone and the Apple iPhone. Some of these characters might
also be suitable for application bar buttons. (An application to display these symbols is coming up.)

Unfortunately, the AppBarButtonStyle has a TargetType of Button, and even if you change that to
ButtonBase, you cannot use the style for ToggleButton or RadioButton. This is unfortunate, because
some standard Metro style applications use application bar buttons in this way. For example, in the
Calendar application, the Day, Week, and Month buttons work like a trio of RadioButton controls, and
the Show Traffic button in the Map application works like a ToggleButton. I suspect in a future version
of StandardStyles.xaml we’ll see AppBarToggleButtonStyle and AppBarRadioButtonStyle, or perhaps
controls designed specifically for application bars.

Another approach to implement functionality similar to a ToggleButton in an application bar is
illustrated in the Weather application. When tapped, the Button labeled “Change to Celsius” changes to
“Change to Fahrenheit.”

A button on an application bar can also invoke a pop-up dialog. For example, press the button in
the Metro style Internet Explorer with the wrench icon and the mouse-over tooltip “Page tools.” A little
popup appears with two additional commands: “Find on page” and “View on the desktop.” Or try the
Map Style button in Maps to see two mutually exclusive options “Road View” and “Aerial View” with a
checkmark indicating the current selection. Or press the “Camera options” command in the Camera
application. You get a popup with combo boxes, a toggle switch, and a link for “More,” which displays
a larger pop-up dialog.

All these dialogs are probably instances of Popup, defined in the
Windows.UI.Xaml.Controls.Primitives namespace. Popup has a property named Child that you normally

232

www.it-ebooks.info

http://www.it-ebooks.info/

set to a Panel derivative to display a bunch of controls. I’ll show you how to use Popup shortly.

There’s also a class named PopupMenu from the Windows.UI.Popups namespace. As the name
suggests, PopupMenu is mostly for context menus, such as the Cut/Copy/Paste menu that appears
when you press and hold some selected text in the TextBox control. You can create a PopupMenu on
your own, but it is restricted to text commands and you have no control over the formatting.

Also in the Windows.UI.Popups namespace is MessageDialog, which is the Metro style version of the
message box. I’ll have some examples of MessageDialog later in this chapter.

If you sweep your finger on the right side of the screen while an application is running, you’ll bring
up the standard list of charms: Search, Share, Devices, and Settings. I’ll demonstrate in a later chapter
how your application can hook into these charms. In particular, the Settings button often invokes a list
of options that can include About and Help as well as Settings. However, some applications include an
Options item on the application bar, and the application bar can also contain a Settings item. Indeed,
StandardStyles.xaml includes a SettingsAppBarButtonStyle that displays a gear icon and the word
“Settings.” How you divide program functionality among these items is up to you, but generally you’ll
use an application bar Options button for items accessed more frequently than the Settings and you’ll
use the Settings button on the application bar for items accessed more frequently than those on the
Settings charm.

The Segoe UI Symbol Font

To help you (and me) select symbols for an application bar, I’ve written a program named
SegoeSymbols that displays all the characters from 0x0000 through 0x1FFFF in the Segoe UI Symbol
font, which is the font specified by AppBarButtonStyle.

As you might know, Unicode started out as a 16-bit character encoding with codes ranging from
0x0000 through 0xFFFF. When it became evident that 65,536 code points were not sufficient, Unicode
began incorporating character codes in the range 0x10000 through 0x10FFFF, increasing the number
of characters to over 1.1 million. This expansion of Unicode also included a system to represent these
additional characters using a pair of 16-bit values.

The use of a 32-bit value to represent a character code is known as UTF-32, or 32-bit Unicode
Transformation Format. But that’s a bit of misnomer because with UTF-32 there is no transformation: a
one-to-one mapping exists from the 32-bit numeric codes to Unicode characters.

Most modern programming languages and operating systems instead support UTF-16. For example,
the Char structure supported by the Windows Runtime is basically a 16-bit integer, and that’s the basis
for the char data type in C#. To represent the additional characters in the range 0x10000 through
0x10FFFF, UTF-16 uses two 16-bit characters in sequence. These are known as surrogates, and a special
range of 16-bit codes in Unicode has been set aside for their use. The leading surrogate is in the range
0xD800 through 0xDBFF, and the trailing surrogate is in the range 0xDC00 through 0xDFFF. That’s

233

www.it-ebooks.info

http://www.it-ebooks.info/

1,024 possible leading surrogates, and 1,024 possible trailing surrogates, which is sufficient for the
1,048,576 codes in the range 0x10000 through 0x10FFFF. (You’ll see the actual algorithm shortly.)

Text in languages that use the Latin alphabet is mostly restricted to ASCII character codes in the
range 0x0020 and 0x007E, so most web pages and other files save lots of space by using a system
called UTF-8 for text. UTF-8 encodes these 7-bit characters directly but uses one to three additional
bytes for other Unicode characters.

Because I wrote SegoeSymbols mostly to let me examine the symbols that might be useful in
application bars, the program goes up to character codes of 0x1FFFF only. The XAML file has a simple
title, a Grid awaiting rows and columns to display a block of 256 characters, and a Slider:

Project: SegoeSymbols | File: BlankPage.xaml (excerpt)

<Page … >

 <Page.Resources>

 <local:DoubleToStringHexByteConverter x:Key="hexByteConverter" />

 </Page.Resources>

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <TextBlock Name="titleText"

 Grid.Row="0"

 Text="Segoe UI Symbol"

 HorizontalAlignment="Center"

 Style="{StaticResource HeaderTextStyle}" />

 <Grid Name="characterGrid"

 Grid.Row="1"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <Slider Grid.Row="2"

 Orientation="Horizontal"

 Margin="24 0"

 Minimum="0"

 Maximum="511"

 SmallChange="1"

 LargeChange="16"

 ThumbToolTipValueConverter="{StaticResource hexByteConverter}"

 ValueChanged="OnSliderValueChanged" />

 </Grid>

</Page>

Notice that the Slider has a Maximum value of 511, which is the maximum character code I want to
display (0x1FFFF) divided by 256. The DoubleToStringHexByteConverter class referenced in the
Resources section is similar to one you’ve seen before, but it displays a couple underlines as well to be

234

www.it-ebooks.info

http://www.it-ebooks.info/

consistent with the screen visuals:

Project: SegoeSymbols | File: DoubleToStringHexByteConverter.cs (excerpt)

public class DoubleToStringHexByteConverter : IValueConverter

{

 public object Convert(object value, Type targetType, object parameter, string language)

 {

 return ((int)(double)value).ToString("X2") + "__";

 }

 public object ConvertBack(object value, Type targetType, object parameter, string language)

 {

 return value;

 }

}

Each Slider value corresponds to a display of 256 characters in a 16 × 16 array. The code to build the
Grid that displays these 256 characters is rather messy because I decided that there should be lines
between all the rows and columns of characters and that these lines should have their own rows and
columns in the Grid.

Project: SegoeSymbols | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 const int CellSize = 36;

 const int LineLength = (CellSize + 1) * 16 + 18;

 FontFamily symbolFont = new FontFamily("Segoe UI Symbol");

 TextBlock[] txtblkColumnHeads = new TextBlock[16];

 TextBlock[,] txtblkCharacters = new TextBlock[16, 16];

 public BlankPage()

 {

 this.InitializeComponent();

 for (int row = 0; row < 34; row++)

 {

 RowDefinition rowdef = new RowDefinition();

 if (row == 0 || row % 2 == 1)

 rowdef.Height = GridLength.Auto;

 else

 rowdef.Height = new GridLength(CellSize, GridUnitType.Pixel);

 characterGrid.RowDefinitions.Add(rowdef);

 if (row != 0 && row % 2 == 0)

 {

 TextBlock txtblk = new TextBlock

 {

 Text = (row / 2 - 1).ToString("X1"),

 VerticalAlignment = VerticalAlignment.Center

 };

 Grid.SetRow(txtblk, row);

235

www.it-ebooks.info

http://www.it-ebooks.info/

 Grid.SetColumn(txtblk, 0);

 characterGrid.Children.Add(txtblk);

 }

 if (row % 2 == 1)

 {

 Rectangle rectangle = new Rectangle

 {

 Stroke = this.Foreground,

 StrokeThickness = row == 1 || row == 33 ? 1.5 : 0.5,

 Height = 1

 };

 Grid.SetRow(rectangle, row);

 Grid.SetColumn(rectangle, 0);

 Grid.SetColumnSpan(rectangle, 34);

 characterGrid.Children.Add(rectangle);

 }

 }

 for (int col = 0; col < 34; col++)

 {

 ColumnDefinition coldef = new ColumnDefinition();

 if (col == 0 || col % 2 == 1)

 coldef.Width = GridLength.Auto;

 else

 coldef.Width = new GridLength(CellSize);

 characterGrid.ColumnDefinitions.Add(coldef);

 if (col != 0 && col % 2 == 0)

 {

 TextBlock txtblk = new TextBlock

 {

 Text = "00" + (col / 2 - 1).ToString("X1") + "_",

 HorizontalAlignment = HorizontalAlignment.Center

 };

 Grid.SetRow(txtblk, 0);

 Grid.SetColumn(txtblk, col);

 characterGrid.Children.Add(txtblk);

 txtblkColumnHeads[col / 2 - 1] = txtblk;

 }

 if (col % 2 == 1)

 {

 Rectangle rectangle = new Rectangle

 {

 Stroke = this.Foreground,

 StrokeThickness = col == 1 || col == 33 ? 1.5 : 0.5,

 Width = 1

 };

 Grid.SetRow(rectangle, 0);

 Grid.SetColumn(rectangle, col);

 Grid.SetRowSpan(rectangle, 34);

236

www.it-ebooks.info

http://www.it-ebooks.info/

 characterGrid.Children.Add(rectangle);

 }

 }

 for (int col = 0; col < 16; col++)

 for (int row = 0; row < 16; row++)

 {

 TextBlock txtblk = new TextBlock

 {

 Text = ((char)(16 * col + row)).ToString(),

 FontFamily = symbolFont,

 FontSize = 24,

 HorizontalAlignment = HorizontalAlignment.Center,

 VerticalAlignment = VerticalAlignment.Center

 };

 Grid.SetRow(txtblk, 2 * row + 2);

 Grid.SetColumn(txtblk, 2 * col + 2);

 characterGrid.Children.Add(txtblk);

 txtblkCharacters[col, row] = txtblk;

 }

 }

 …

}

The ValueChanged handler for the Slider has the relatively easier job of inserting the correct text
into the existing TextBlock elements, but there is that irksome matter of dealing with character codes
above 0xFFFF:

Project: SegoeSymbols | File: BlankPage.xaml.cs (excerpt)

void OnSliderValueChanged(object sender, RangeBaseValueChangedEventArgs args)

{

 int baseCode = 256 * (int)args.NewValue;

 for (int col = 0; col < 16; col++)

 {

 txtblkColumnHeads[col].Text = (baseCode / 16 + col).ToString("X3") + "_";

 for (int row = 0; row < 16; row++)

 {

 int code = baseCode + 16 * col + row;

 string strChar = null;

 if (code <= 0x0FFFF)

 {

 strChar = ((char)code).ToString();

 }

 else

 {

 code -= 0x10000;

 int lead = 0xD800 + code / 1024;

 int trail = 0xDC00 + code % 1024;

 strChar = ((char)lead).ToString() + (char)trail;

 }

 txtblkCharacters[col, row].Text = strChar;

237

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 }

}

Four statements towards the end of the handler demonstrate the mathematics that separate a Unicode
character code between 0x10000 and 0x10FFFF into two 10-bit values to construct leading and trailing
surrogates, which in sequence in a string define a single character.

If you’re the type of person who prefers not witnessing how sausage is made, you can replace those
four lines with:

strChar = Char.ConvertFromUtf32(code);

For a 16-bit code, Char.ConvertFromUtf32 returns a string consisting of one character; for codes above
0xFFFF, the string has two characters. Passing the method a surrogate code (0xD800 through 0xDFFF)
raises an exception.

The areas that are of most interest in constructing application bar buttons begin at 0xE100 (the
private use area used by the Seqoe UI Symbol font) and 0x1F300 (emoji). Here’s the first screen of the
emoji characters:

You can specify a character beyond 0xFFFF in XAML like so:

<TextBlock FontFamily="Segoe UI Symbol"

 FontSize="24"

 Text="🎷" />

That’s the saxophone symbol. The Visual Studio designer will complain upon encountering a five-digit
character code, but it will compile the application regardless and Windows 8 will run it.

238

www.it-ebooks.info

http://www.it-ebooks.info/

The Application Bar

The two MetroPad programs coming up might represent a first step in creating a Metro style Notepad
application. Rather than a menu, these programs expose their commands using an application bar. To
keep the programs reasonably short, I’ve eliminated some features that might be expected in a real
Notepad-like application. MetroPad1 and MetroPad2 are functionally equivalent but use different
methods for asynchronous file I/O. Here’s the BlankPage.xaml file for MetroPad1:

Project: MetroPad1 | File: BlankPage.xaml (excerpt)

<Page … >

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <TextBox Name="txtbox"

 FontSize="24"

 AcceptsReturn="True" />

 </Grid>

 <Page.BottomAppBar>

 <AppBar Padding="10 0">

 <Grid>

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Left">

 <Button Style="{StaticResource AppBarButtonStyle}"

 Content=""

 AutomationProperties.Name="Wrap options"

 Click="OnWrapOptionsAppBarButtonClick" />

 </StackPanel>

 <StackPanel Orientation="Horizontal"

 HorizontalAlignment="Right">

 <Button Style="{StaticResource AppBarButtonStyle}"

 Content=""

 AutomationProperties.Name="Open"

 Click="OnOpenAppBarButtonClick" />

 <Button Style="{StaticResource SaveAppBarButtonStyle}"

 AutomationProperties.Name="Save As"

 Click="OnSaveAsAppBarButtonClick" />

 </StackPanel>

 </Grid>

 </AppBar>

 </Page.BottomAppBar>

</Page>

I’ve given the TextBox a little larger font so that it’s easier to experiment with scrolling and word
wrapping. In the constructor of the code-behind file, the handler for the Loaded event gives TextBox
input focus so the program is ready for your typing:

Project: MetroPad1 | File: BlankPage.xaml.cs (excerpt)

239

www.it-ebooks.info

http://www.it-ebooks.info/

public BlankPage()

{

 this.InitializeComponent();

 Loaded += (sender, args) =>

 {

 txtbox.Focus(FocusState.Keyboard);

 };

}

As you can see in the XAML file, an application bar is added to the page by splitting out the
BottomAppBar property of Page as a property element and setting it to an AppBar element. The
Padding value of “10 0” is standard and puts 10 pixels of padding at the left and right to prevent the
contents from getting too close to the edge.

Generally an application bar has some buttons on the left and some on the right. When holding a
tablet, these are more convenient than buttons in the middle. You can use XAML in a couple ways to
divide the buttons between left and right. Perhaps the easiest approach is to put two horizontal
StackPanel elements in a single-cell Grid and align them on the right and left.

It’s recommended that a New (or Add) button be on the far right, and although this program does
not have a New button, the other file-related buttons should also appear on the right side because
they are related to New. I was able to use the predefined SaveAppBarButtonStyle, but I had to specify
my own symbols and text for the other two items.

When you run MetroPad1, it might not be obvious that anything is happening because the program
consists entirely of a TextBox with an off-white background. But you can type some poetry (or other
text) into the TextBox and when you sweep your finger on the top or bottom of the screen, here’s what
you’ll see:

240

www.it-ebooks.info

http://www.it-ebooks.info/

Do not specify a RequestedTheme of Light when using an application bar. The AppBar has a black
background regardless, and the dark outline and text of the buttons will be nearly invisible.

AppBar defines an IsOpen property that you can initialize to true if you want the application bar to
be visible when the user first runs the program. This might make sense if the program is not usable
unless a user executes one of the commands.

Clicking one of the buttons does not automatically dismiss the application bar. That must be done
in code by setting IsOpen to false. However, the user can manually dismiss the application bar in one of
two ways: by sweeping a finger again on the top or bottom, or by touching anywhere outside the
application bar. The first type of dismissal always works. The second is called light dismiss and you can
override the default behavior by setting the IsSticky property to true.

AppBar also defines Opened and Closed events if you need to initialize an application bar when it’s
opening or save settings when it closes.

Popups and Dialogs

When the Button in the MetroPad1 application bar labeled “Wrap options” is clicked, the program
displays a little dialog with “Wrap” and “No wrap” items. Such a dialog is normally defined as a
UserControl, and I’ve called mine WrapOptionsDialog. The XAML file represents the two options with
RadioButton controls:

Project: MetroPad1 | File: WrapOptionsDialog.xaml (excerpt)

<UserControl … >

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <StackPanel Name="stackPanel"

 Margin="24">

 <RadioButton Content="Wrap"

 Checked="OnRadioButtonChecked">

 <RadioButton.Tag>

 <TextWrapping>Wrap</TextWrapping>

 </RadioButton.Tag>

 </RadioButton>

 <RadioButton Content="No wrap"

 Checked="OnRadioButtonChecked">

 <RadioButton.Tag>

 <TextWrapping>NoWrap</TextWrapping>

 </RadioButton.Tag>

 </RadioButton>

 </StackPanel>

 </Grid>

</UserControl>

A few words on color. You’ll notice that this Grid has the standard background brush. It needs to
have some kind of brush or the background will be transparent. I mentioned earlier that you can’t set

241

www.it-ebooks.info

http://www.it-ebooks.info/

RequestedTheme to Light when you implement an application bar or the buttons fade into the
background. Because a dark theme is in effect here, this dialog will have a black background with a
white foreground.

All of the dialogs that I’ve seen in Metro style applications have a white background and black
foreground. However, I’ve had frustrating experiences trying to flip the colors in the dialog box. You
can set the Grid background to ApplicationTextBrush or explicitly to white, but setting the Foreground
on the root element does not property propagate to the RadioButton controls, and even explicitly
setting Foreground on the individual controls (or using a style) does not color them properly.

This means that the dialogs in this book will have a black background and white foreground until
the controls are fixed or more guidance comes from above.

The code-behind file for the dialog defines a dependency property named TextWrapping of type
TextWrapping. The property-changed handler checks a RadioButton when this property is set, and the
property is set when a user checks a RadioButton:

Project: MetroPad1 | File: WrapOptionsDialog.xaml.cs (excerpt)

public sealed partial class WrapOptionsDialog : UserControl

{

 static WrapOptionsDialog()

 {

 TextWrappingProperty = DependencyProperty.Register("TextWrapping",

 typeof(TextWrapping),

 typeof(WrapOptionsDialog),

 new PropertyMetadata(TextWrapping.NoWrap, OnTextWrappingChanged));

 }

 public static DependencyProperty TextWrappingProperty { private set; get; }

 public WrapOptionsDialog()

 {

 this.InitializeComponent();

 }

 public TextWrapping TextWrapping

 {

 set { SetValue(TextWrappingProperty, value); }

 get { return (TextWrapping)GetValue(TextWrappingProperty); }

 }

 static void OnTextWrappingChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as WrapOptionsDialog).OnTextWrappingChanged(args);

 }

 void OnTextWrappingChanged(DependencyPropertyChangedEventArgs args)

 {

 foreach (UIElement child in stackPanel.Children)

 {

242

www.it-ebooks.info

http://www.it-ebooks.info/

 RadioButton radioButton = child as RadioButton;

 radioButton.IsChecked = (TextWrapping)radioButton.Tag == (TextWrapping)args.NewValue;

 }

 }

 void OnRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 this.TextWrapping = (TextWrapping)(sender as RadioButton).Tag;

 }

}

The event handler for the “Wrap options” application bar button is in the BlankPage code-behind
file. The event handler instantiates a WrapOptionsDialog object and initializes its TextWrapping
property from the TextWrapping property of the TextBox. It then defines a binding in code between the
two TextWrapping properties. This allows the user to see the result of changing this property directly in
the TextBox. The WrapOptionsDialog object is then made a child of a new Popup object:

Project: MetroPad1 | File: BlankPage.xaml.cs (excerpt)

void OnWrapOptionsAppBarButtonClick(object sender, RoutedEventArgs args)

{

 // Create dialog

 WrapOptionsDialog wrapOptionsDialog = new WrapOptionsDialog

 {

 TextWrapping = txtbox.TextWrapping

 };

 // Bind dialog to TextBox

 Binding binding = new Binding

 {

 Source = wrapOptionsDialog,

 Path = new PropertyPath("TextWrapping"),

 Mode = BindingMode.TwoWay

 };

 txtbox.SetBinding(TextBox.TextWrappingProperty, binding);

 // Create popup

 Popup popup = new Popup

 {

 Child = wrapOptionsDialog,

 IsLightDismissEnabled = true

 };

 // Adjust location based on content size

 wrapOptionsDialog.SizeChanged += (dialogSender, dialogArgs) =>

 {

 popup.VerticalOffset = this.ActualHeight - wrapOptionsDialog.ActualHeight

 - this.BottomAppBar.ActualHeight - 48;

 popup.HorizontalOffset = 48;

 };

 // Open the popup

 popup.IsOpen = true;

}

243

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, Popup also has a “light dismiss” mode that lets you dismiss the Popup by tapping
anywhere outside it. By default this property is not enabled, but in most cases it should be.

The hard part is positioning the Popup. It has VerticalOffset and HorizontalOffset properties for that
purpose, but generally popups such as this are positioned just above the application bar, which means
that you need to know the height of the popup, the height of the page, and the height of the
application bar to get it right. I’ve found that setting a SizeChanged event on the dialog control is a
good way to obtain this information and perform the calculation.

The Click handler concludes by setting the IsOpen property of the Popup to true, and here it is:

The Popup is automatically dismissed when the user taps anywhere outside the Popup, and then the
user needs to tap once more to dismiss the application bar. Like AppBar, Popup has Opened and Closed
events if you need to perform some initialization or cleanup. For example, it’s possible to install a
handler for the Closed event of Popup and use that to set the IsOpen property of the AppBar to false.

Windows Runtime File I/O

MetroPad1 has Open and Save As buttons. If it were a real application, it would also have New and
Save buttons and it would prompt you to save a file if you pressed New or Open without saving your
previous work. That logic is coming up in XamlCruncher. The more modest goal here is to introduce
you to the Windows Runtime FileOpenPicker and FileSavePicker classes, as well as some rudimentary
Windows Runtime file I/O.

If you’re familiar with the .NET System.IO namespace, you can leverage some of what you already
know, but the Windows 8 version of System.IO might look a bit emaciated in comparison. Be prepared
for plenty of new file I/O classes and concepts. The whole file and stream interface has been revamped,

244

www.it-ebooks.info

http://www.it-ebooks.info/

and any method that accesses a disk is asynchronous. Fortunately, C# 5.0 has introduced two new
keywords await and async, which make working with asynchronous methods very easy. But first I want
to show you how to use these asynchronous methods without await and async.

The FileOpenPicker and FileSavePicker classes are defined in the Windows.Storage.Pickers
namespace. These pickers take over the screen from your application and don’t return control to the
application until they have completed. If this is unacceptable to you, you’ll probably want to explore
the FolderInformation class in the Windows.Storage.BulkAccess namespace for obtaining files and
subdirectories on your own.

The FileOpenPicker and FileSavePicker classes deliver an object of type StorageFile back to your
application. StorageFile is defined in the Windows.Storage namespace and represents an unopened file.
Calling one of the Open methods on this StorageFile object gives you a stream object represented as
an interface such as IInputStream or IRandomAccessStream. You can then attach a DataReader or
DataWriter object to this stream for reading or writing. The stream classes and interfaces are found in
Windows.Storage.Streams. Through extension methods defined in System.IO, it’s also possible to create
a .NET Stream object from the Windows Runtime object, and then use some familiar .NET objects, such
as StreamReader or StreamWriter, for dealing with these files. You might be able to salvage some
existing code that uses .NET streams, and you’ll also need these .NET stream objects for reading and
writing XML files.

The only prerequisite for invoking FileOpenPicker is adding at least one string to the FileTypeFilter
collection (for example, “.txt”). You then call the PickSingleFileAsync method.

Notice the last five letters of that method name: Async, short for “asynchronous.” That’s a very
important sequence of five letters in the Windows Runtime.

As you know, a Windows Metro program is similar to a Windows Desktop program in being
event-driven and structured much like a state machine. Following initialization, a program sits dormant
in memory waiting for events. Very often these events signal activity in the user interface. Sometimes
they signal systemwide changes, such as a switch in the orientation of the display. Sometimes they
signal that a file download has progressed or completed or failed.

It’s important that applications process events as quickly as possible and then return control back to
the operating system to wait for more events. If an application doesn’t process events quickly, it could
become unresponsive. For this reason, applications should relegate very lengthy jobs to secondary
threads of execution. The thread devoted to the user interface should remain free and unencumbered
of heavy processing.

But what if a particular method call in the Windows Runtime itself takes a long time? Is an
application programmer expected to anticipate that problem and put that call in a secondary thread?

No, that seems unreasonable. For that reason, when the Microsoft developers were designing the
Windows Runtime, they attempted to identify any method call that could require more than 50
milliseconds to return control to the application. Approximately 10–15% of the Windows Runtime

245

www.it-ebooks.info

http://www.it-ebooks.info/

qualified. These methods were made asynchronous, meaning that the methods themselves spin off
secondary threads to do the lengthy processing. They return control back to the application very
quickly and later notify the application when they’ve completed.

These asynchronous methods are all identified with the Async suffix, and they all have similar
definition patterns.

The method call in FileOpenPicker class that displays the picker and returns a file selected by the
user definitely will not return control to the program in under 50 milliseconds. Consequently, instead of
a method call named PickSingleFile, it has a method call named PickSingleFileAsync.

Here’s the Click handler for the application bar Open button in MetroPad1 showing the creation
and initialization of FileOpenPicker, and the PickSingleFileAsync call:

Project: MetroPad1 | File: BlankPage.xaml.cs (excerpt)

void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)

{

 FileOpenPicker picker = new FileOpenPicker();

 picker.FileTypeFilter.Add(".txt");

 IAsyncOperation<StorageFile> asyncOp = picker.PickSingleFileAsync();

 asyncOp.Completed = OnPickSingleFileCompleted;

}

void OnPickSingleFileCompleted(IAsyncOperation<StorageFile> asyncInfo, AsyncStatus asyncStatus)

{

 …

}

PickSingleFileAsync returns quickly, but instead of returning with a StorageFile selected by the user,
it returns an object of the generic type IAsyncOperation<StorageFile>. That StorageFile type is
important, because that's what the PickSingleFileAsync will eventually deliver to your program but just
not right away. For that reason, sometimes an object like IAsyncOperation is called a “future” or a
“promise.”

IAsyncOperation<T> derives from the IAsyncInfo interface, which defines methods named Cancel
and Close and properties named Id, Status, and ErrorCode. The IAsyncOperation<T> interface
additionally defines a property named Completed, which you’ll notice is set in this code.

This Completed property is a delegate of type AsyncOperationCompletedHandler<T>. Although it’s
defined as a property, it functions like an event. (The difference is that an event can have multiple
handlers but a property can have only one.)

To actually initiate the display of the FileOpenPicker, your program simply sets the Completed
property of the IAsyncOperation<StorageFile> object to a method of the required type, named here
OnPickSingleFileCompleted.

There is no separate Start method. Setting the Completed property starts it going but perhaps not
right away. If your method contains any code after the Completed property is set, that code will be
executed first. Only after OnOpenAppBarButtonClick returns control back to the operating system is the

246

www.it-ebooks.info

http://www.it-ebooks.info/

file picker displayed. The user then interacts with it.

When the user selects a file from the picker and presses OK (or presses Cancel), Windows is ready to
deliver a file back to your program. The Completed callback method in your program (here called
OnPickSingleFileCompleted) is called with a first argument that is the same object that
PickSingleFileAsync returned, but I’ve given it a somewhat different name (asyncInfo) because now it
actually has some information for us.

If an error occurred—which is unlikely in this case—the ErrorCode property of this asyncInfo
argument is non-null and equals an Exception object that describes the problem. (For the most part I
will be ignoring errors in this little exercise.) Otherwise, the Completed handler calls GetResults on the
IAsyncOperation object. This returns on object of type StorageFile indicating the file selected by the
user. However, if GetResults returns null, the user dismissed the file picker by pressing Cancel, and
there’s nothing further to do. Here’s the code so far:

Project: MetroPad1 | File: BlankPage.xaml.cs (excerpt)

void OnPickSingleFileCompleted(IAsyncOperation<StorageFile> asyncInfo, AsyncStatus asyncStatus)

{

 if (asyncInfo.ErrorCode != null)

 return;

 StorageFile storageFile = asyncInfo.GetResults();

 if (storageFile == null)

 return;

 …

}

To open that StorageFile object for reading, you can call OpenReadAsync on it. Oh no! That’s
another asynchronous operation! Of course, it makes sense that opening a file is asynchronous because
the call must access the disk, and that could take longer than 50 milliseconds. So, similar to the first
case, OpenReadAsync returns an object of type (hold your breath)
IAsyncOperation<IRandomAccessStreamWithContentType>. Once again, set the Completed handler to
start the operation going.

Here’s the complete OnPickSingleFileCompleted handler with the handler for the Completed event
of OpenReadAsync:

Project: MetroPad1 | File: BlankPage.xaml.cs (excerpt)

void OnPickSingleFileCompleted(IAsyncOperation<StorageFile> asyncInfo, AsyncStatus asyncStatus)

{

 if (asyncInfo.ErrorCode != null)

 return;

 StorageFile storageFile = asyncInfo.GetResults();

 if (storageFile == null)

 return;

247

www.it-ebooks.info

http://www.it-ebooks.info/

 IAsyncOperation<IRandomAccessStreamWithContentType> asyncOp = storageFile.OpenReadAsync();

 asyncOp.Completed = OnFileOpenReadCompleted;

}

void OnFileOpenReadCompleted(IAsyncOperation<IRandomAccessStreamWithContentType> asyncInfo,

 AsyncStatus asyncStatus)

{

 …

}

When OnFileOpenReadCompleted is called, the file has been opened and is ready for reading and
the GetResults method of the asyncInfo argument returns an object of type
IRandomAccessStreamWithContentType. You create a DataReader object based on this stream, and the
next step is to call LoadAsync to actually read the contents of the file into an internal buffer. Another
asynchronous operation requires another Completed handler:

Project: MetroPad1 | File: BlankPage.xaml.cs (excerpt)

DataReader dataReader;

…

void OnFileOpenReadCompleted(IAsyncOperation<IRandomAccessStreamWithContentType> asyncInfo,

 AsyncStatus asyncStatus)

{

 if (asyncInfo.ErrorCode != null)

 return;

 using (IRandomAccessStreamWithContentType stream = asyncInfo.GetResults())

 {

 using (dataReader = new DataReader(stream))

 {

 uint length = (uint)stream.Size;

 DataReaderLoadOperation asyncOp = dataReader.LoadAsync(length);

 asyncOp.Completed = OnDataReaderLoadCompleted;

 }

 }

}

void OnDataReaderLoadCompleted(IAsyncOperation<uint> asyncInfo, AsyncStatus asyncStatus)

{

 …

}

Both IRandomAccessStreamWithContentType and DataReader implement IClosable (which is the same
as the .NET IDisposable), so they appear in using statements to automatically close and dispose of the
object when it’s no longer needed. Also notice that the DataReader is saved as a field.

A call to the OnDataReaderLoadCompleted handler indicates that the file is now present in memory,
so the contents can be transferred to the TextBox.

Not so fast!

When you set the Completed property of a method like LoadAsync, the DataReader class creates a
secondary thread of execution that performs the job of accessing the file and reading it into memory.

248

www.it-ebooks.info

http://www.it-ebooks.info/

The Completed handler in your code is then called, and it runs in that secondary thread. You cannot
access user interface objects from that thread.

For any particular window, there can be only one application thread that handles user input and
displays graphics that interact with this input. This "UI thread" (as it's called) is consequently very
important and very special to Windows applications because all interaction with the user must occur
through this thread.

This prohibition can be generalized: DependencyObject is not thread safe. Any object based on a
class that derives from DependencyObject can only be accessed by the thread that creates that object.

In the particular problem we’ve encountered, the code that transfers text into a TextBox must run in
the UI thread. Fortunately, there’s a way to do it. To compensate for the fact that it’s not thread safe,
DependencyObject has a property named Dispatcher that returns an object of type CoreDispatcher. The
HasThreadAccess property of CoreDispatcher lets you know if you can access this particular
DependencyObject from the thread in which the code is running. If you can’t (and even if you can), you
can put a chunk of code on a queue for execution by the thread that created the object. You do this by
calling the Invoke method referencing a method in your code that will run in the proper thread.

Here’s the OnDataReaderLoadCompleted method calling Invoke on the Dispatcher property of the
page. It doesn’t matter whose CoreDispatcher object you use; because all the user interface objects
were created in the same UI thread, they all work identically. The last argument passed to Invoke is
passed to the handler as the Context property of the event arguments:

Project: MetroPad1 | File: BlankPage.xaml.cs (excerpt)

void OnDataReaderLoadCompleted(IAsyncOperation<uint> asyncInfo, AsyncStatus asyncStatus)

{

 if (asyncInfo.ErrorCode != null)

 return;

 uint length = asyncInfo.GetResults();

 string text = dataReader.ReadString(length);

 this.Dispatcher.Invoke(CoreDispatcherPriority.Normal,

 SetTextBoxText, this, text);

}

void SetTextBoxText(object sender, InvokedHandlerArgs args)

{

 string text = args.Context as string;

 txtbox.Text = text;

}

The SetTextBoxText method runs in the UI thread so that it can safely set the text from the file into the
TextBox.

Very often, the method to be executed in the UI thread is passed as an anonymous method to
Invoke, like this:

249

www.it-ebooks.info

http://www.it-ebooks.info/

this.Dispatcher.Invoke(CoreDispatcherPriority.Normal, (sender, args) =>

 {

 txtbox.Text = text;

 },

 this, null);

Indeed, all the Completed methods can be defined as anonymous methods, and that’s what I’ve done
for the logic to save a file in MetroPad1.

Even so, saving to a file is potentially more involved that opening a file because four asynchronous
operations are involved: PickSaveFileAsync on the FileSavePicker, OpenAsync on the StorageFile to get a
stream from which to create a DataWriter, and then, after calling WriteString on this DataWriter, calling
StoreAsync and FlushAsync. However, there are some shortcuts. The FileIO class in Windows.Storage
contains static methods that can read and write entire StorageFile objects in one big gulp.

In summary, in implementing the Save As button, I’ve used the shortcut methods for the file I/O and
anonymous methods for the Completed handler and Invoke method. Everything goes in the Click
handler for the button:

Project: MetroPad1 — File: BlankPage.xaml.cs (excerpt)

void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)

{

 FileSavePicker picker = new FileSavePicker();

 picker.DefaultFileExtension = ".txt";

 picker.FileTypeChoices.Add("Text", new List<string> { ".txt" });

 picker.PickSaveFileAsync().Completed = (asyncInfo, asyncStatus) =>

 {

 if (asyncInfo.ErrorCode != null)

 return;

 StorageFile storageFile = asyncInfo.GetResults();

 if (storageFile == null)

 return;

 string text = null;

 this.Dispatcher.Invoke(CoreDispatcherPriority.Normal,

 (dispatcherSender, dispatcherArgs) =>

 {

 text = txtbox.Text;

 },

 this, null);

 FileIO.WriteTextAsync(storageFile, text).Completed = (asyncInfo2, asyncStatus2) =>

 {

 };

 };

}

This actually isn’t too bad, but as the number of nested anonymous handlers builds up, the structure

250

www.it-ebooks.info

http://www.it-ebooks.info/

can become quite awkward and particularly messy to trace program flow or implement a simple return
statement.

Another solution is desperately needed. Fortunately, it exists.

Await and Async

The C# 5.0 keyword await allows us to work with asynchronous operations as if they were relatively
normal method calls. The MetroPad2 program is the same as MetroPad1 except for the processing of
the Open and Save As buttons on the application bar. Here’s the Click handler for the Save As button:

Project: MetroPad2 — File: BlankPage.xaml.cs (excerpt)

async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)

{

 FileSavePicker picker = new FileSavePicker();

 picker.DefaultFileExtension = ".txt";

 picker.FileTypeChoices.Add("Text", new List<string> { ".txt" });

 // Asynchronous call!

 StorageFile storageFile = await picker.PickSaveFileAsync();

 if (storageFile == null)

 return;

 // Asynchronous call!

 await FileIO.WriteTextAsync(storageFile, txtbox.Text);

}

Notice the two occurrences of await preceded with comments. PickSaveFileAsync actually returns an
IAsyncOperation on which you must normally set a Completed handler and then call GetResults in the
Completed callback to get a StorageFile object. The await operator seems to bypass all the messy stuff
and simply return the StorageFile directly. And that's exactly what it does, except not quite right away.

It looks like magic, but much of the messy implementation details are now hidden. The C# compiler
generates the callback and the GetResults call. But what the await operator also does is turn the
method in which it’s used into a state machine. The OnSaveAsAppBarButtonClick method begins
executing normally, until PickSaveFileAsync is called and the first await appears.

Despite its name, that await does not wait until the operation completes. Instead, the Click handler
is exited at that point. Control returns back to Windows. Other code on the program's user interface
thread can then run, as can the file-picker itself. When the file-picker is dismissed, and a result is ready,
and the UI thread is ready to run some code, execution of the Click handler continues with the
assignment to the storageFile variable and then continues until the next await operator. And so forth
with as many await operators as you like until the method completes.

The last line in this Click handler calls the static FileIO.WriteTextAsync method. Strictly speaking, the
await operator is not needed here because conclusion of the Click handler doesn’t need to wait for this

251

www.it-ebooks.info

http://www.it-ebooks.info/

method to conclude. The FileIO.WriteTextAsync method doesn’t return anything, and nothing else in
the Click handler is dependent on its conclusion. That await operator can be removed in this case and
the program will work the same:

FileIO.WriteTextAsync(storageFile, txtbox.Text);

You’ll get a warning message from the compiler, but it’s OK. The await operator is crucial only when
you need a return value from the asynchronous method or when the method must complete before
program logic continues.

Here’s the Click handler for the Open button now using the static FileIO.ReadTextAsync shortcut
method:

Project: MetroPad2 | File: BlankPage.xaml.cs (excerpt)

async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)

{

 FileOpenPicker picker = new FileOpenPicker();

 picker.FileTypeFilter.Add(".txt");

 // Asynchronous call!

 StorageFile storageFile = await picker.PickSingleFileAsync();

 if (storageFile == null)

 return;

 // Asynchronous call!

 txtbox.Text = await FileIO.ReadTextAsync(storageFile);

}

Prior to await, calling asynchronous operations in C# always seemed to me to violate the imperative
structure of the language. The await operator brings back that imperative structure and turns
asynchronous calls into what appears to be a series of sequential normal method calls. Moreover,
everything in those Click handlers now runs in the UI thread, so you don’t have to worry about
accessing user interface objects. But despite the ease of await, you’ll probably want to keep in mind
that a method in which await appears is actually chopped up into pieces behind the scenes.

There are some restrictions on the await operator. It cannot appear in the catch or finally clause of
an exception handler. However, it can appear in the try clause, and this is how you'll trap errors that
occur in the asynchronous method. There are also ways to cancel operations, and some asynchronous
methods report progress as well. More details in the later chapter devoted to asynchronous operations.

The method in which the await operator appears must be flagged as async, but the async keyword
doesn't do much of anything. In earlier versions of C#, await was not a keyword, so programmers could
use the word for variable names or property names or whatever. Adding a new await keyword to C#
5.0 would break this code, but restricting await to methods flagged with async avoids that problem.
The async modifier does not change the signature of the method—the method above is still a valid
Click handler. But you can't use async (and hence await) with methods that serve as entry points, such
as Main or class constructors.

252

www.it-ebooks.info

http://www.it-ebooks.info/

If you need to call asynchronous methods while initializing a FrameworkElement derivative, do them
in the handler for the Loaded event and flag it as async:

public BlankPage()

{

 this.InitializeComponent();

 …

 Loaded += OnLoaded;

}

async void OnLoaded(object sender, RoutedEventArgs arg)

{

 …

}

Or, if you prefer defining the Loaded handler as an anonymous method:

public BlankPage()

{

 this.InitializeComponent();

 …

 Loaded += async (sender, args) =>

 {

 …

 };

}

See the async before the argument list?

Calling Your Own Async Methods

Suppose you want to isolate the file-save logic in a method like this:

async void SaveFile(string text)

{

 FileSavePicker picker = new FileSavePicker();

 picker.DefaultFileExtension = ".txt";

 picker.FileTypeChoices.Add("Text", new List<string> { ".txt" });

 StorageFile storageFile = await picker.PickSaveFileAsync();

 if (storageFile == null)

 return;

 await FileIO.WriteTextAsync(storageFile, txtbox.Text);

}

The method must be flagged as async because it contains await keywords. You can then call this
method from OnSaveAsAppBarButtonClick like so:

void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)

{

 SaveFile(txtbox.Text);

}

253

www.it-ebooks.info

http://www.it-ebooks.info/

What happens here is that OnSaveAsAppBarButtonClick calls SaveFile and SaveFile begins executing
until the first await on the PickSaveFileAsync call. At that point, SaveFile returns control back to
OnSaveAsAppBarButtonClick and that method terminates. When PickSaveFileAsync has a result ready,
the rest of the SaveFile method proceeds.

In this particular case, this might be OK. However, if you want the OnSaveAsAppBarButtonClick
method to await the execution of SaveFile, it must include an await keyword and be flagged as async:

async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)

{

 await SaveFile(txtbox.Text);

}

But when you do that, SaveFile must be changed as well. It can no longer return void. You can modify
SaveFile in several ways, but perhaps the easiest is simply changing the return type to Task:

async Task SaveFile(string text)

{

 …

}

At this point, you probably also want to change the name of the method to SaveFileAsync to indicate
that it’s an asynchronous method that can be awaited. Although the code that you write in this
SaveFileAsync method does not run in a secondary thread, the other asynchronous methods that
SaveFileAsync calls do so.

A similar separation of OnOpenAppBarButtonClick and a ReadFileAsync method is a little different.
You probably want the ReadFileAsync method to return the text contents of the file, so the return type
isn’t Task but Task<string>:

async Task<string> ReadFileAsync()

{

 FileOpenPicker picker = new FileOpenPicker();

 picker.FileTypeFilter.Add(".txt");

 StorageFile storageFile = await picker.PickSingleFileAsync();

 if (storageFile == null)

 return null;

 return await FileIO.ReadTextAsync(storageFile);

}

You can then call ReadFileAsync like so:

async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)

{

 string text = await ReadFileAsync();

 if (text != null)

 txtbox.Text = text;

}

254

www.it-ebooks.info

http://www.it-ebooks.info/

It’s important to realize that all of this code runs in the user interface thread. You don’t have to
worry about accessing user interface objects. The two methods in the FileIO class certainly spin off
secondary threads to do work, but the ReadFileAsync method I’ve shown is considered to be
asynchronous only because it calls other asynchronous methods. The other code in the method runs in
the user interface thread.

If you’re writing some of your own code that requires a lot of processing time, you don’t want to do
that job in the user interface thread. But instead of using traditional techniques to create and execute
threads, consider using a task-based approach like the Windows Runtime. You can execute program
code asynchronously by passing it as a method to the static Task.Run method. Generally this is done as
an anonymous method:

Task<double> BigJobAsync(int arg1, int arg2)

{

 return Task.Run<double>(() =>

 {

 double val = 0;

 // ... lengthy code

 return val;

 });

}

Everything in that anonymous method runs in a secondary thread, and hence it cannot access user
interface objects. You can then call this method like so:

double value = await BigJobAsync(22, 33);

If, perchance, the anonymous method in BigJobAsync includes its own await operators, you would
need to flag the anonymous method as async:

Task<double> BigJobAsync(int arg1, int arg2)

{

 return Task.Run<double>(async () =>

 {

 double val = 0;

 // ... lengthy code

 return val;

 });

}

I’ll have much more to say about asynchronous processing in the chapter devoted to the subject.

Controls for XamlCruncher

Now that you’ve seen some rudimentary file I/O and asynchronous processing, it’s time to start looking
at XamlCruncher. I won’t pretend that this program is commercial grade or even that it doesn’t have
some serious flaws. But it’s a real program with real Metro style features, and I’ll surely be enhancing it
to fix any problems or deficiencies the first version might have.

255

www.it-ebooks.info

http://www.it-ebooks.info/

XamlCruncher lets you type in XAML and see the resultant objects and visual tree. The magic
method that XamlCruncher uses is XamlReader.Load, which you had a brief glimpse of in the
PathMarkupSyntaxCode project in Chapter 2. The XAML processed by XamlReader.Load cannot
reference event handlers or external assemblies.

Here’s a view of the program with some XAML in the editor on the left and the resultant objects in a
display area on the right:

The editor doesn’t include any amenities. It won’t even automatically generate a closing tag when you
type a start tag; it doesn’t use different colors for elements, attributes, and strings; and it doesn’t have
anything close to IntelliSense. However, the configuration of the page is changeable: you can put the
edit window on the top, right, or bottom.

The application bar has Add, Open, Save, and Save As buttons as well as a Refresh button and a
button for application options:

256

www.it-ebooks.info

http://www.it-ebooks.info/

You can select whether XamlCruncher reparses the XAML with each keystroke or only with a press of
the Refresh button. That option and others are available from the dialog invoked when you press the
Options button:

I’ve turned on the Ruler and Grid Lines options to show you the result in the display area on the right.
All these options are saved for the next time the program is run.

Most of the page is a custom UserControl derivative called SplitContainer. In the center is a Thumb
control that lets you select the proportion of space in the left and right panels (or top and bottom
panels). In the screen shots, this Thumb is a lighter gray vertical bar in the center of the screen. The
XAML file for SplitContainer consists of a Grid defined for both horizontal and vertical configurations:

257

www.it-ebooks.info

http://www.it-ebooks.info/

Project: XamlCruncher | File: SplitContainer.xaml

<UserControl

 x:Class="XamlCruncher.SplitContainer"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:local="using:XamlCruncher">

 <Grid>

 <!-- Default Orientation is Horizontal -->

 <Grid.ColumnDefinitions>

 <ColumnDefinition x:Name="coldef1" Width="*" MinWidth="100" />

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition x:Name="coldef2" Width="*" MinWidth="100" />

 </Grid.ColumnDefinitions>

 <!-- Alternative Orientation is Vertical -->

 <Grid.RowDefinitions>

 <RowDefinition x:Name="rowdef1" Height="*" />

 <RowDefinition Height="Auto" />

 <RowDefinition x:Name="rowdef2" Height="0" />

 </Grid.RowDefinitions>

 <Grid Name="grid1"

 Grid.Row="0"

 Grid.Column="0" />

 <Thumb Name="thumb"

 Grid.Row="0"

 Grid.Column="1"

 Width="12"

 DragStarted="OnThumbDragStarted"

 DragDelta="OnThumbDragDelta" />

 <Grid Name="grid2"

 Grid.Row="0"

 Grid.Column="2" />

 </Grid>

</UserControl>

You’ve seen similar markup in the OrientableColorScroll program, which altered a Grid when the aspect
ratio of the page changed between landscape and portrait.

The code-behind file defines five properties backed by dependency properties. Normally you’ll set
the Child1 and Child2 properties to the elements to appear in the left and right of the control, but
where they actually appear is governed by the Orientation and SwapChildren properties:

Project: XamlCruncher | File: SplitContainer.xaml.cs (excerpt)

public sealed partial class SplitContainer : UserControl

{

 // Static constructor and properties

 static SplitContainer()

 {

 Child1Property =

258

www.it-ebooks.info

http://www.it-ebooks.info/

 DependencyProperty.Register("Child1",

 typeof(UIElement), typeof(SplitContainer),

 new PropertyMetadata(null, OnChildChanged));

 Child2Property =

 DependencyProperty.Register("Child2",

 typeof(UIElement), typeof(SplitContainer),

 new PropertyMetadata(null, OnChildChanged));

 OrientationProperty =

 DependencyProperty.Register("Orientation",

 typeof(Orientation), typeof(SplitContainer),

 new PropertyMetadata(Orientation.Horizontal, OnOrientationChanged));

 SwapChildrenProperty =

 DependencyProperty.Register("SwapChildren",

 typeof(bool), typeof(SplitContainer),

 new PropertyMetadata(false, OnSwapChildrenChanged));

 MinimumSizeProperty =

 DependencyProperty.Register("MinimumSize",

 typeof(double), typeof(SplitContainer),

 new PropertyMetadata(100.0, OnMinSizeChanged));

 }

 public static DependencyProperty Child1Property { private set; get; }

 public static DependencyProperty Child2Property { private set; get; }

 public static DependencyProperty OrientationProperty { private set; get; }

 public static DependencyProperty SwapChildrenProperty { private set; get; }

 public static DependencyProperty MinimumSizeProperty { private set; get; }

 // Instance constructor and properties

 public SplitContainer()

 {

 this.InitializeComponent();

 }

 public UIElement Child1

 {

 set { SetValue(Child1Property, value); }

 get { return (UIElement)GetValue(Child1Property); }

 }

 public UIElement Child2

 {

 set { SetValue(Child2Property, value); }

 get { return (UIElement)GetValue(Child2Property); }

 }

 public Orientation Orientation

 {

 set { SetValue(OrientationProperty, value); }

 get { return (Orientation)GetValue(OrientationProperty); }

 }

259

www.it-ebooks.info

http://www.it-ebooks.info/

 public bool SwapChildren

 {

 set { SetValue(SwapChildrenProperty, value); }

 get { return (bool)GetValue(SwapChildrenProperty); }

 }

 public double MinimumSize

 {

 set { SetValue(MinimumSizeProperty, value); }

 get { return (double)GetValue(MinimumSizeProperty); }

 }

 …

}

The Orientation property is of type Orientation, the same enumeration used for StackPanel and
VariableSizedWrapGrid. It’s always nice to use existing types for dependency properties rather than
inventing your own. Notice that the MinimumSize is of type double and hence is initialized as 100.0
rather than 100 to prevent a type mismatch at run time.

The property-changed handlers show two different approaches that programmers use in calling the
instance property-changed handler from the static handler. I’ve already shown you the approach
where the static handler simply calls the instance handler with the same
DependencyPropertyChangedEventArgs object. Sometimes—as with the handlers for the Orientation,
SwapChildren, and MinimumSize properties—it’s more convenient for the static handler to call the
instance handler with the old value and new value cast to the proper type:

Project: XamlCruncher | File: SplitContainer.xaml.cs (excerpt)

public sealed partial class SplitContainer : UserControl

{

 …

 // Property changed handlers

 static void OnChildChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as SplitContainer).OnChildChanged(args);

 }

 void OnChildChanged(DependencyPropertyChangedEventArgs args)

 {

 Grid targetGrid = (args.Property == Child1Property ^ this.SwapChildren) ? grid1 : grid2;

 targetGrid.Children.Clear();

 if (args.NewValue != null)

 targetGrid.Children.Add(args.NewValue as UIElement);

 }

 static void OnOrientationChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as SplitContainer).OnOrientationChanged((Orientation)args.OldValue,

 (Orientation)args.NewValue);

260

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 void OnOrientationChanged(Orientation oldOrientation, Orientation newOrientation)

 {

 // Shouldn't be necessary, but...

 if (newOrientation == oldOrientation)

 return;

 if (newOrientation == Orientation.Horizontal)

 {

 coldef1.Width = rowdef1.Height;

 coldef2.Width = rowdef2.Height;

 coldef1.MinWidth = this.MinimumSize;

 coldef2.MinWidth = this.MinimumSize;

 rowdef1.Height = new GridLength(1, GridUnitType.Star);

 rowdef2.Height = new GridLength(0);

 rowdef1.MinHeight = 0;

 rowdef2.MinHeight = 0;

 thumb.Width = 12;

 thumb.Height = Double.NaN;

 Grid.SetRow(thumb, 0);

 Grid.SetColumn(thumb, 1);

 Grid.SetRow(grid2, 0);

 Grid.SetColumn(grid2, 2);

 }

 else

 {

 rowdef1.Height = coldef1.Width;

 rowdef2.Height = coldef2.Width;

 rowdef1.MinHeight = this.MinimumSize;

 rowdef2.MinHeight = this.MinimumSize;

 coldef1.Width = new GridLength(1, GridUnitType.Star);

 coldef2.Width = new GridLength(0);

 coldef1.MinWidth = 0;

 coldef2.MinWidth = 0;

 thumb.Height = 12;

 thumb.Width = Double.NaN;

 Grid.SetRow(thumb, 1);

 Grid.SetColumn(thumb, 0);

 Grid.SetRow(grid2, 2);

 Grid.SetColumn(grid2, 0);

 }

261

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 static void OnSwapChildrenChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as SplitContainer).OnSwapChildrenChanged((bool)args.OldValue,

 (bool)args.NewValue);

 }

 void OnSwapChildrenChanged(bool oldOrientation, bool newOrientation)

 {

 grid1.Children.Clear();

 grid2.Children.Clear();

 grid1.Children.Add(newOrientation ? this.Child2 : this.Child1);

 grid2.Children.Add(newOrientation ? this.Child1 : this.Child2);

 }

 static void OnMinSizeChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as SplitContainer).OnMinSizeChanged((double)args.OldValue,

 (double)args.NewValue);

 }

 void OnMinSizeChanged(double oldValue, double newValue)

 {

 if (this.Orientation == Orientation.Horizontal)

 {

 coldef1.MinWidth = newValue;

 coldef2.MinWidth = newValue;

 }

 else

 {

 rowdef1.MinHeight = newValue;

 rowdef2.MinHeight = newValue;

 }

 }

 …

}

My original version of the property-changed handler for Orientation assumed that the Orientation
property was actually changing, as should be the case whenever a property-changed handler is called.
However, I discovered that sometimes the property-changed handler was called when the property
was set to its existing value.

All that’s left is looking at the event handlers for the Thumb. The idea here is that the two columns
(or rows) of the Grid are allocated size based on the star specification so that the relative size of the
columns (or rows) remains the same when the size or aspect ratio of the Grid changes. However, to
keep the Thumb dragging logic reasonably simple, it helps if the numeric proportions associated with
the star specifications are actual pixel dimensions. These are initialized in the OnThumbDragStarted
method and changed in OnDragThumbDelta:

262

www.it-ebooks.info

http://www.it-ebooks.info/

Project: XamlCruncher | File: SplitContainer.xaml.cs (excerpt)

public sealed partial class SplitContainer : UserControl

{

 …

 // Thumb event handlers

 void OnThumbDragStarted(object sender, DragStartedEventArgs args)

 {

 if (this.Orientation == Orientation.Horizontal)

 {

 coldef1.Width = new GridLength(coldef1.ActualWidth, GridUnitType.Star);

 coldef2.Width = new GridLength(coldef2.ActualWidth, GridUnitType.Star);

 }

 else

 {

 rowdef1.Height = new GridLength(rowdef1.ActualHeight, GridUnitType.Star);

 rowdef2.Height = new GridLength(rowdef2.ActualHeight, GridUnitType.Star);

 }

 }

 void OnThumbDragDelta(object sender, DragDeltaEventArgs args)

 {

 if (this.Orientation == Orientation.Horizontal)

 {

 double newWidth1 = Math.Max(0, coldef1.Width.Value + args.HorizontalChange);

 double newWidth2 = Math.Max(0, coldef2.Width.Value - args.HorizontalChange);

 coldef1.Width = new GridLength(newWidth1, GridUnitType.Star);

 coldef2.Width = new GridLength(newWidth2, GridUnitType.Star);

 }

 else

 {

 double newHeight1 = Math.Max(0, rowdef1.Height.Value + args.VerticalChange);

 double newHeight2 = Math.Max(0, rowdef2.Height.Value - args.VerticalChange);

 rowdef1.Height = new GridLength(newHeight1, GridUnitType.Star);

 rowdef2.Height = new GridLength(newHeight2, GridUnitType.Star);

 }

 }

}

The last of the earlier screen shots of XamlCruncher showed a ruler and grid lines in the display area.
The ruler is in units of inches, based on 96 pixels to the inch, so the grid lines are 24 pixels apart. The
ruler and grid lines are useful if you’re interactively designing some vector graphics or other precise
layout.

The ruler and grid lines are independently optional. The UserControl derivative that displays them is
called RulerContainer. As you’ll see when the XamlCruncher page is constructed, an instance of
RulerContainer is set to the Child2 property of the SplitContainer object. Here’s the XAML file for
RulerContainer:

Project: XamlCruncher | File: RulerContainer.xaml (excerpt)

<UserControl … >

263

www.it-ebooks.info

http://www.it-ebooks.info/

 <Grid SizeChanged="OnGridSizeChanged">

 <Canvas Name="rulerCanvas" />

 <Grid Name="innerGrid">

 <Grid Name="gridLinesGrid" />

 <Border Name="border" />

 </Grid>

 </Grid>

</UserControl>

This RulerContainer control has a Child property, and the child of this control is set to the Child
property of the Border. Visually behind this Border is the grid of horizontal and vertical lines, which are
children of the Grid labeled “gridLinesGrid.” If the ruler is also present, the Grid labeled “innerGrid” is
given a nonzero Margin on the left and top to accommodate this ruler. The tick marks and numbers
that comprise the ruler are children of the Canvas named “rulerCanvas.”

Here’s all the overhead for the dependency property definitions in the code-behind file:

Project: XamlCruncher | File: RulerContainer.xaml.cs (excerpt)

public sealed partial class RulerContainer : UserControl

{

 …

 static RulerContainer()

 {

 ChildProperty =

 DependencyProperty.Register("Child",

 typeof(UIElement), typeof(RulerContainer),

 new PropertyMetadata(null, OnChildChanged));

 ShowRulerProperty =

 DependencyProperty.Register("ShowRuler",

 typeof(bool), typeof(RulerContainer),

 new PropertyMetadata(false, OnShowRulerChanged));

 ShowGridLinesProperty =

 DependencyProperty.Register("ShowGridLines",

 typeof(bool), typeof(RulerContainer),

 new PropertyMetadata(false, OnShowGridLinesChanged));

 }

 public static DependencyProperty ChildProperty { private set; get; }

 public static DependencyProperty ShowRulerProperty { private set; get; }

 public static DependencyProperty ShowGridLinesProperty { private set; get; }

 public RulerContainer()

 {

 this.InitializeComponent();

 }

 public UIElement Child

 {

 set { SetValue(ChildProperty, value); }

 get { return (UIElement)GetValue(ChildProperty); }

 }

264

www.it-ebooks.info

http://www.it-ebooks.info/

 public bool ShowRuler

 {

 set { SetValue(ShowRulerProperty, value); }

 get { return (bool)GetValue(ShowRulerProperty); }

 }

 public bool ShowGridLines

 {

 set { SetValue(ShowGridLinesProperty, value); }

 get { return (bool)GetValue(ShowGridLinesProperty); }

 }

 // Property changed handlers

 static void OnChildChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as RulerContainer).border.Child = (UIElement)args.NewValue;

 }

 static void OnShowRulerChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as RulerContainer).RedrawRuler();

 }

 static void OnShowGridLinesChanged(DependencyObject obj,

 DependencyPropertyChangedEventArgs args)

 {

 (obj as RulerContainer).RedrawGridLines();

 }

 void OnGridSizeChanged(object sender, SizeChangedEventArgs args)

 {

 RedrawRuler();

 RedrawGridLines();

 }

 …

}

Also shown here are the property-changed handlers (which are simple enough to use in the static
versions) as well as the SizeChanged handler for the Grid. Two redraw methods handle all the drawing,
which involves creating Line elements and TextBlock elements and organizing them in the two panels:

public sealed partial class RulerContainer : UserControl

{

 const double RULER_WIDTH = 12;

 …

 void RedrawGridLines()

 {

 gridLinesGrid.Children.Clear();

265

www.it-ebooks.info

http://www.it-ebooks.info/

 if (!this.ShowGridLines)

 return;

 // Vertical grid lines every 1/4"

 for (double x = 24; x < gridLinesGrid.ActualWidth; x += 24)

 {

 Line line = new Line

 {

 X1 = x,

 Y1 = 0,

 X2 = x,

 Y2 = gridLinesGrid.ActualHeight,

 Stroke = this.Foreground,

 StrokeThickness = x % 96 == 0 ? 1 : 0.5

 };

 gridLinesGrid.Children.Add(line);

 }

 // Horizontal grid lines every 1/4"

 for (double y = 24; y < gridLinesGrid.ActualHeight; y += 24)

 {

 Line line = new Line

 {

 X1 = 0,

 Y1 = y,

 X2 = gridLinesGrid.ActualWidth,

 Y2 = y,

 Stroke = this.Foreground,

 StrokeThickness = y % 96 == 0 ? 1 : 0.5

 };

 gridLinesGrid.Children.Add(line);

 }

 }

 void RedrawRuler()

 {

 rulerCanvas.Children.Clear();

 if (!this.ShowRuler)

 {

 innerGrid.Margin = new Thickness();

 return;

 }

 innerGrid.Margin = new Thickness(RULER_WIDTH, RULER_WIDTH, 0, 0);

 // Ruler across the top

 for (double x = 0; x < gridLinesGrid.ActualWidth - RULER_WIDTH; x += 12)

 {

 // Numbers every inch

 if (x > 0 && x % 96 == 0)

 {

 TextBlock txtblk = new TextBlock

 {

266

www.it-ebooks.info

http://www.it-ebooks.info/

 Text = (x / 96).ToString("F0"),

 FontSize = RULER_WIDTH - 2

 };

 txtblk.Measure(new Size());

 Canvas.SetLeft(txtblk, RULER_WIDTH + x - txtblk.ActualWidth / 2);

 Canvas.SetTop(txtblk, 0);

 rulerCanvas.Children.Add(txtblk);

 }

 // Tick marks every 1/8"

 else

 {

 Line line = new Line

 {

 X1 = RULER_WIDTH + x,

 Y1 = x % 48 == 0 ? 2 : 4,

 X2 = RULER_WIDTH + x,

 Y2 = x % 48 == 0 ? RULER_WIDTH - 2 : RULER_WIDTH - 4,

 Stroke = this.Foreground,

 StrokeThickness = 1

 };

 rulerCanvas.Children.Add(line);

 }

 }

 // Heavy line underneath the tick marks

 Line topLine = new Line

 {

 X1 = RULER_WIDTH - 1,

 Y1 = RULER_WIDTH - 1,

 X2 = rulerCanvas.ActualWidth,

 Y2 = RULER_WIDTH - 1,

 Stroke = this.Foreground,

 StrokeThickness = 2

 };

 rulerCanvas.Children.Add(topLine);

 // Ruler down the left side

 for (double y = 0; y < gridLinesGrid.ActualHeight - RULER_WIDTH; y += 12)

 {

 // Numbers every inch

 if (y > 0 && y % 96 == 0)

 {

 TextBlock txtblk = new TextBlock

 {

 Text = (y / 96).ToString("F0"),

 FontSize = RULER_WIDTH - 2,

 };

 txtblk.Measure(new Size());

 Canvas.SetLeft(txtblk, 2);

 Canvas.SetTop(txtblk, RULER_WIDTH + y - txtblk.ActualHeight / 2);

 rulerCanvas.Children.Add(txtblk);

 }

267

www.it-ebooks.info

http://www.it-ebooks.info/

 // Tick marks every 1/8"

 else

 {

 Line line = new Line

 {

 X1 = y % 48 == 0 ? 2 : 4,

 Y1 = RULER_WIDTH + y,

 X2 = y % 48 == 0 ? RULER_WIDTH - 2 : RULER_WIDTH - 4,

 Y2 = RULER_WIDTH + y,

 Stroke = this.Foreground,

 StrokeThickness = 1

 };

 rulerCanvas.Children.Add(line);

 }

 }

 Line leftLine = new Line

 {

 X1 = RULER_WIDTH - 1,

 Y1 = RULER_WIDTH - 1,

 X2 = RULER_WIDTH - 1,

 Y2 = rulerCanvas.ActualHeight,

 Stroke = this.Foreground,

 StrokeThickness = 2

 };

 rulerCanvas.Children.Add(leftLine);

 }

}

These two methods make extensive use of the Line element, which renders a single straight line
between the points (X1, Y1) and (X2, Y2). This RedrawRuler code also illustrates a technique for
obtaining the rendered size of a TextBlock.

When you create a new TextBlock, the ActualWidth and ActualHeight properties are both zero.
These properties are normally not calculated until the TextBlock becomes part of a visual tree and is
subjected to layout. However, you can force the TextBlock to calculate a size for itself by calling its
Measure method. This method is defined by UIElement and is an important component of the layout
system.

The argument to the Measure method is a Size value indicating the size available for the element,
but you can set the size to zero for this purpose:

txtblk.Measure(new Size());

If you need to find the size of a TextBlock that wraps text, you must supply a nonzero first argument to
the Size constructor so that TextBlock knows the width in which to wrap the text.

Following the Measure call, the ActualWidth and ActualHeight properties of TextBlock are valid and
usable for positioning the TextBlock in a Canvas. Calling the Canvas.SetLeft and Canvas.SetTop
properties is necessary only when positioning the TextBlock elements in the Canvas. In either a
single-cell Grid or Canvas, the Line elements are positioned based on their coordinates.

268

www.it-ebooks.info

http://www.it-ebooks.info/

As you’ll see, an instance of RulerContainer is set to the Child2 property of the SplitContainer that
dominates the XamlCruncher page. The Child1 property appears to be a TextBox, but it’s actually an
instance of another custom control named TabbableTextBox, which derives from TextBox.

The standard TextBox does not respond to the Tab key, and when you’re typing XAML into an
editor, you really want tabs. That’s the primary feature of TabbableTextBox, shown here in its entirety:

Project: XamlCruncher | File: TabbableTextBox.cs

using Windows.System;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Input;

namespace XamlCruncher

{

 public class TabbableTextBox : TextBox

 {

 static TabbableTextBox()

 {

 TabSpacesProperty =

 DependencyProperty.Register("TabSpaces",

 typeof(int), typeof(TabbableTextBox),

 new PropertyMetadata(4));

 }

 public static DependencyProperty TabSpacesProperty { private set; get; }

 public int TabSpaces

 {

 set { SetValue(TabSpacesProperty, value); }

 get { return (int)GetValue(TabSpacesProperty); }

 }

 public bool IsModified { set; get; }

 protected override void OnKeyDown(KeyEventArgs args)

 {

 this.IsModified = true;

 if (args.Key == VirtualKey.Tab)

 {

 int line, col;

 GetPositionFromIndex(this.SelectionStart, out line, out col);

 int insertCount = this.TabSpaces - col % this.TabSpaces;

 this.SelectedText = new string(' ', insertCount);

 this.SelectionStart += insertCount;

 this.SelectionLength = 0;

 args.Handled = true;

 return;

 }

 base.OnKeyDown(args);

 }

269

www.it-ebooks.info

http://www.it-ebooks.info/

 public void GetPositionFromIndex(int index, out int line, out int col)

 {

 if (index > Text.Length)

 {

 line = col = -1;

 return;

 }

 line = col = 0;

 bool justFoundEol = false;

 for (int i = 0; i < index; i++)

 {

 if (Text[i] == '\r' || Text[i] == '\n')

 {

 if (!justFoundEol)

 line++;

 col = 0;

 justFoundEol = true;

 }

 else

 {

 col++;

 justFoundEol = false;

 }

 }

 return;

 }

 }

}

The class intercepts the OnKeyDown method to determine if the Tab key is being pressed. If that’s
the case, it inserts blanks into the Text object so that the cursor moves to a text column that is an
integral multiple of the TabSpaces property. This calculation requires knowing the character position of
the cursor on the current line. To obtain this information, it uses the GetPositionFromIndex method also
defined in this class. This method is public and is also used by XamlCruncher to display the current
position of the cursor and the current selection (if any).

Another property—not backed by a dependency property—is also defined by TabbableTextBox. This
is IsModified, which is set to true whenever a KeyDown event occurs.

Like many programs that deals with documents, XamlCruncher keeps track if the text file has
changed since the last save. If the user initiates an operation to create a new file or open an existing
file, and the current document is in a modified state, the program asks if the user wants to save that
document.

Often this logic occurs entirely external to the TextBox control. The program sets an IsModified flag
to true when a new file is loaded or the file is saved and to false on receipt of a TextChanged event.
However, the TextChanged event is fired when the Text property of the TextBox is set
programmatically, so even if the TextBox is being set to a newly loaded file, the TextChanged event is

270

www.it-ebooks.info

http://www.it-ebooks.info/

fired and the IsModified flag would be set by the TextChanged handler. You might think that setting
the IsModified flag in that case might be avoided by setting a flag when the Text property is set
programmatically. However, the TextChanged handler is not called until the method setting the Text
property has returned control back to the operating system, which makes the logic rather messy.
Implementing the IsModified flag in the TextBox derivative helps.

Application Settings and Isolated Storage

Many applications maintain user settings and preferences between invocations of the program. The
Windows Runtime provides an area of application data storage (sometimes known as “isolated
storage”) specifically for the use of the application in storing information of this sort. A program
obtains access to this storage through the ApplicationData class in the Windows.Storage namespace.

An instance of ApplicationData applicable for the current application is available from the static
ApplicationData.Current method. From that object, a TemporaryFolder property provides a disk area
suitable for temporary data. Other properties—LocalFolder, LocalSettings, RoamingFolder, and
RoamingSettings—are also available for storing more permanent data.

The LocalSettings property gives you access to a dictionary in which you can store program settings
with names and values. But I don’t like to use this. I prefer to store program settings in an XML file that
is serialized from a class in the program that I generally called AppSettings. This class implements
INotifyPropertyChanged so that it can be used for data binding. It’s basically a View Model, or perhaps
(in larger applications) part of a View Model. An XML file serialized from AppSettings can be stored in
the AppicationData.Current.LocalFolder directory, which, you’ll discover, maps to this location on the
machine’s main drive:

/Users/[username]/AppData/Local/Packages/[package family name]/LocalState

The [username] is the user’s name on the computer, and [package family name] is mostly a GUID that
uniquely identifies the application. For any Visual Studio application project you can find this name by
opening the Package.appmanifest file and clicking the Packaging tab.

One program option that should be saved is the orientation of the edit and display areas. As you’ll
recall, the SplitContainer has two properties named Orientation and SwapChildren. For storing user
settings, I wanted something more specific to this application. The TextBox (or rather, the
TabbableTextBox) can be on the left, top, right, or bottom, and this enumeration encapsulates those
options:

Project: XamlCruncher | File: EditOrientation.cs

namespace XamlCruncher

{

 public enum EditOrientation

 {

 Left, Top, Right, Bottom

 }

271

www.it-ebooks.info

http://www.it-ebooks.info/

}

Here’s the first half of AppSettings showing all the properties that comprise program settings. The
class derives from BindableBase to implement INotifyPropertyChanged. All the property values are
backed by fields initialized with the program’s default settings. Notice that the EditOrientation property
is based on the EditOrientation enumeration:

Project: XamlCruncher | File: AppSettings.cs

public class AppSettings : XamlCruncher.Common.BindableBase

{

 …

 // Application settings initial values

 EditOrientation editOrientation = EditOrientation.Left;

 Orientation orientation = Orientation.Horizontal;

 bool swapEditAndDisplay = false;

 bool autoParsing = false;

 bool showRuler = false;

 bool showGridLines = false;

 double fontSize = 18;

 int tabSpaces = 8;

 public EditOrientation EditOrientation

 {

 set

 {

 if (SetProperty<EditOrientation>(ref editOrientation, value))

 {

 switch (editOrientation)

 {

 case EditOrientation.Left:

 this.Orientation = Orientation.Horizontal;

 this.SwapEditAndDisplay = false;

 break;

 case EditOrientation.Top:

 this.Orientation = Orientation.Vertical;

 this.SwapEditAndDisplay = false;

 break;

 case EditOrientation.Right:

 this.Orientation = Orientation.Horizontal;

 this.SwapEditAndDisplay = true;

 break;

 case EditOrientation.Bottom:

 this.Orientation = Orientation.Vertical;

 this.SwapEditAndDisplay = true;

 break;

 }

 }

 }

 get { return editOrientation; }

 }

272

www.it-ebooks.info

http://www.it-ebooks.info/

 [XmlIgnore]

 public Orientation Orientation

 {

 protected set { SetProperty<Orientation>(ref orientation, value); }

 get { return orientation; }

 }

 [XmlIgnore]

 public bool SwapEditAndDisplay

 {

 protected set { SetProperty<bool>(ref swapEditAndDisplay, value); }

 get { return swapEditAndDisplay; }

 }

 public bool AutoParsing

 {

 set { SetProperty<bool>(ref autoParsing, value); }

 get { return autoParsing; }

 }

 public bool ShowRuler

 {

 set { SetProperty<bool>(ref showRuler, value); }

 get { return showRuler; }

 }

 public bool ShowGridLines

 {

 set { SetProperty<bool>(ref showGridLines, value); }

 get { return showGridLines; }

 }

 public double FontSize

 {

 set { SetProperty<double>(ref fontSize, value); }

 get { return fontSize; }

 }

 public int TabSpaces

 {

 set { SetProperty<int>(ref tabSpaces, value); }

 get { return tabSpaces; }

 }

 …

}

Besides EditOrientation, AppSettings defines two additional properties that more directly correspond
to properties of the SplitContainer. These are Orientation and SwapEditAndDisplay. The set accessors
are protected, and the properties are set only from the set accessor of EditOrientation. These two
properties are also flagged with the attribute XmlIgnore, indicating that these properties should be
ignored when the AppSettings object is serialized into XML. They are not actually part of application
settings, but they are easily derived from application settings and make the bindings easier.

273

www.it-ebooks.info

http://www.it-ebooks.info/

AppSettings also has methods to serialize an instance of itself to XML and save it as a file and to
deserialize that file back into an AppSettings instance. The LoadAsync and SaveAsync methods to load
and save these files are, as the names suggest, asynchronous. They use a combination of Windows
Runtime classes (StorageFolder, StorageFile, and FileIO) and .NET classes (XmlSerializer, StringReader,
and StringWriter).

The LoadAsync method must be static because it is the only way to create an instance of
AppSettings. Some programmers like to use a static property called Current for this purpose to ensure
that AppSettings is a singleton—in other words, to ensure that only one instance of AppSettings exists
anywhere in the program.

Project: XamlCruncher | File: AppSettings.cs (excerpt)

public class AppSettings : XamlCruncher.Common.BindableBase

{

 const string FILENAME = "applicationsettings.xml";

 …

 public async static Task<AppSettings> LoadAsync()

 {

 StorageFolder storageFolder = ApplicationData.Current.LocalFolder;

 StorageFile appSettingsFile = null;

 AppSettings appSettings = null;

 try

 {

 appSettingsFile = await storageFolder.GetFileAsync(FILENAME);

 }

 catch (Exception)

 {

 // This happens the first time the program is run

 }

 if (appSettingsFile == null)

 {

 appSettings = new AppSettings();

 }

 else

 {

 string str = await FileIO.ReadTextAsync(appSettingsFile);

 XmlSerializer xmlSerializer = new XmlSerializer(typeof(AppSettings));

 using (StringReader reader = new StringReader(str))

 {

 appSettings = xmlSerializer.Deserialize(reader) as AppSettings;

 }

 }

 return appSettings;

 }

 public async Task SaveAsync()

 {

274

www.it-ebooks.info

http://www.it-ebooks.info/

 string settingsXml = null;

 using (StringWriter stringWriter = new StringWriter())

 {

 XmlSerializer xmlSerializer = new XmlSerializer(typeof(AppSettings));

 xmlSerializer.Serialize(stringWriter, this);

 settingsXml = stringWriter.ToString();

 }

 StorageFolder storageFolder = ApplicationData.Current.LocalFolder;

 StorageFile storageFile = null;

 try

 {

 storageFile = await storageFolder.CreateFileAsync(FILENAME,

 CreationCollisionOption.ReplaceExisting);

 }

 catch (Exception)

 {

 // TODO: This shouldn't happen, but it might

 }

 await FileIO.WriteTextAsync(storageFile, settingsXml);

 }

}

When the program is first run, AppSettings.LoadAsync attempts to access the settings file, but it
won’t exist. An exception is thrown, and instead the method simply instantiates AppSettings. That
instance will have all default values.

The XamlCruncher Page

Sufficient pieces have now been created to let us begin assembling this application. Here’s
BlankPage.xaml:

Project: XamlCruncher | File: BlankPage.xaml (excerpt)

<Page … >

 <Grid Background="{StaticResource ApplicationPageBackgroundBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <TextBlock Name="filenameText"

 Grid.Row="0"

 Grid.Column="0"

275

www.it-ebooks.info

http://www.it-ebooks.info/

 Grid.ColumnSpan="2"

 FontSize="18"

 TextTrimming="WordEllipsis" />

 <local:SplitContainer x:Name="splitContainer"

 Orientation="{Binding Orientation}"

 SwapChildren="{Binding SwapEditAndDisplay}"

 MinimumSize="200"

 Grid.Row="1"

 Grid.Column="0"

 Grid.ColumnSpan="2">

 <local:SplitContainer.Child1>

 <local:TabbableTextBox x:Name="editBox"

 AcceptsReturn="True"

 FontSize="{Binding FontSize}"

 TabSpaces="{Binding TabSpaces}"

 TextChanged="OnEditBoxTextChanged"

 SelectionChanged="OnEditBoxSelectionChanged"/>

 </local:SplitContainer.Child1>

 <local:SplitContainer.Child2>

 <local:RulerContainer x:Name="resultContainer"

 ShowRuler="{Binding ShowRuler}"

 ShowGridLines="{Binding ShowGridLines}" />

 </local:SplitContainer.Child2>

 </local:SplitContainer>

 <TextBlock Name="statusText"

 Text="OK"

 Grid.Row="2"

 Grid.Column="0"

 FontSize="18"

 TextWrapping="Wrap" />

 <TextBlock Name="lineColText"

 Grid.Row="2"

 Grid.Column="1"

 FontSize="18" />

 </Grid>

 <Page.BottomAppBar>

 <AppBar Padding="10 0">

 <Grid>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Left">

 <Button Style="{StaticResource RefreshAppBarButtonStyle}"

 Click="OnRefreshAppBarButtonClick" />

 <Button Style="{StaticResource AppBarButtonStyle}"

 Content=""

 AutomationProperties.Name="Options"

 Click="OnOptionsAppBarButtonClick" />

 </StackPanel>

 <StackPanel Orientation="Horizontal" HorizontalAlignment="Right">

276

www.it-ebooks.info

http://www.it-ebooks.info/

 <Button Style="{StaticResource AppBarButtonStyle}"

 Content=""

 AutomationProperties.Name="Open"

 Click="OnOpenAppBarButtonClick"

 />

 <Button Style="{StaticResource SaveAppBarButtonStyle}"

 AutomationProperties.Name="Save As"

 Click="OnSaveAsAppBarButtonClick" />

 <Button Style="{StaticResource AppBarButtonStyle}"

 Content=""

 AutomationProperties.Name="Save"

 Click="OnSaveAppBarButtonClick" />

 <Button Style="{StaticResource AddAppBarButtonStyle}"

 Click="OnAddAppBarButtonClick" />

 </StackPanel>

 </Grid>

 </AppBar>

 </Page.BottomAppBar>

</Page>

The main Grid has three rows:

• for the name of the loaded file (the TextBlock named “filenameText”),

• the SplitContainer,

• and the status bar at the bottom.

The status bar consists of two TextBlock elements named “statusText” (to indicate possible XAML
parsing errors) and “lineColText” (for the line and column of the TabbableTextBox). The Grid is further
divided into two columns for the two components of that status bar.

Most of the page is occupied by the SplitContainer, and you’ll see that it contains bindings to the
Orientation and SwapEditAndDisplay properties of AppSettings. The SplitContainer contains a
TabbableTextBox (with bindings to the FontSize and TabSpaces properties of AppSettings) and a
RulerContainer (with bindings to ShowRuler and ShowGridLines). All these bindings strongly suggest
that the DataContext of BlankPage is set to an instance of AppSettings.

The bottom of the XAML file has the Button definitions for the application bar.

As you might expect, the code-behind file is the longest file in the project, but I’m going to discuss
it in various modular sections so that the discussion won’t be too overwhelming. Here’s the constructor,
Loaded handler and a few simple methods:

Project: XamlCruncher | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 …

 AppSettings appSettings;

277

www.it-ebooks.info

http://www.it-ebooks.info/

 StorageFile loadedStorageFile;

 public BlankPage()

 {

 this.InitializeComponent();

 …

 // Why aren't these set in the generated C# files?

 editBox = splitContainer.Child1 as TabbableTextBox;

 resultContainer = splitContainer.Child2 as RulerContainer;

 // Set a fixed-pitch font for the TextBox

 Language language = new Language();

 LanguageFontGroup languageFontGroup = new LanguageFontGroup(language.LanguageTag);

 LanguageFont languageFont = languageFontGroup.FixedWidthTextFont;

 editBox.FontFamily = new FontFamily(languageFont.FontFamily);

 Loaded += OnLoaded;

 }

 async void OnLoaded(object sender, RoutedEventArgs args)

 {

 // Load AppSettings and set to DataContext

 appSettings = await AppSettings.LoadAsync();

 this.DataContext = appSettings;

 // Other initialization

 await SetDefaultXamlFile();

 ParseText();

 editBox.Focus(FocusState.Keyboard);

 DisplayLineAndColumn();

 …

 }

 async Task SetDefaultXamlFile()

 {

 editBox.Text =

 "<Page xmlns=\"http://schemas.microsoft.com/winfx/2006/xaml/presentation\"\r\n" +

 " xmlns:x=\"http://schemas.microsoft.com/winfx/2006/xaml\">\r\n\r\n" +

 " <TextBlock Text=\"Hello, Windows 8!\"\r\n" +

 " FontSize=\"48\" />\r\n\r\n" +

 "</Page>";

 editBox.IsModified = false;

 loadedStorageFile = null;

 filenameText.Text = "";

 }

 …

 void OnEditBoxSelectionChanged(object sender, RoutedEventArgs args)

 {

 DisplayLineAndColumn();

 }

278

www.it-ebooks.info

http://www.it-ebooks.info/

 void DisplayLineAndColumn()

 {

 int line, col;

 editBox.GetPositionFromIndex(editBox.SelectionStart, out line, out col);

 lineColText.Text = String.Format("Line {0} Col {1}", line + 1, col + 1);

 if (editBox.SelectionLength > 0)

 {

 editBox.GetPositionFromIndex(editBox.SelectionStart + editBox.SelectionLength - 1,

 out line, out col);

 lineColText.Text += String.Format(" - Line {0} Col {1}", line + 1, col + 1);

 }

 }

 …

}

The constructor begins by fixing a little bug involving the editBox and resultContainer fields. The XAML
parser definitely creates these fields during compilation, but they not set by the InitializeComponent
call at run time.

The remainder of the constructor sets a fixed-pitch font in the TabbableTextBox based on the
predefined fonts available from the LanguageFontGroup class. This is apparently the only way to get
actual font family names from the Windows Runtime.

The remaining initialization occurs in the Loaded event handler because it needs to call the
AppSettings.LoadAsync asynchronous method and asynchronous methods can’t be called in
constructors. The DataContext of the page is set to the AppSettings instance, as you probably
anticipated from the data bindings in the BlankPage.xaml file.

The OnLoaded method begins by setting a default piece of XAML in the TabbableTextBox and
calling ParseText to parse it. (You’ll see how this works soon.) The TabbableTextBox is assigned
keyboard input focus, and OnLoaded concludes by displaying the initial line and column, which is then
updated whenever the TextBox selection changes.

You might wonder why SetDefaultXamlFile is defined as async and returns Task when it does not
actually contain any asynchronous code. You’ll see later that this method is used as an argument to
another method in the file I/O logic, and that’s the sole reason I had to define it oddly. The compiler
generates a warning message because it doesn’t contain any await logic.

Parsing the XAML

The major job of XamlCruncher is to pass a piece of XAML to XamlReader.Load and get out an object.
A property of the AppSettings class named AutoParsing allows this to happen with every keystroke, or it
waits until you press the Refresh button on the application bar.

If XamlReader.Load encounters an error, it raises an exception, and the program then displays that
error in red in the status bar at the bottom of the page and also colors the text in the TabbableTextBox

279

www.it-ebooks.info

http://www.it-ebooks.info/

red.

Project: XamlCruncher | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 Brush textBlockBrush, textBoxBrush, errorBrush;

 …

 public BlankPage()

 {

 …

 // Set brushes

 textBlockBrush = Resources["ApplicationTextBrush"] as SolidColorBrush;

 textBoxBrush = Resources["TextBoxTextBrush"] as SolidColorBrush;

 errorBrush = new SolidColorBrush(Colors.Red);

 …

 }

 …

 void OnRefreshAppBarButtonClick(object sender, RoutedEventArgs args)

 {

 ParseText();

 this.BottomAppBar.IsOpen = false;

 }

 …

 void OnEditBoxTextChanged(object sender, RoutedEventArgs e)

 {

 if (appSettings.AutoParsing)

 ParseText();

 }

 void ParseText()

 {

 object result = null;

 try

 {

 result = XamlReader.Load(editBox.Text);

 }

 catch (Exception exc)

 {

 SetErrorText(exc.Message);

 return;

 }

 if (result == null)

 {

 SetErrorText("Null result");

 }

 else if (!(result is UIElement))

 {

 SetErrorText("Result is " + result.GetType().Name);

 }

 else

280

www.it-ebooks.info

http://www.it-ebooks.info/

 {

 resultContainer.Child = result as UIElement;

 SetOkText();

 return;

 }

 }

 void SetErrorText(string text)

 {

 SetStatusText(text, errorBrush, errorBrush);

 }

 void SetOkText()

 {

 SetStatusText("OK", textBlockBrush, textBoxBrush);

 }

 void SetStatusText(string text, Brush statusBrush, Brush editBrush)

 {

 statusText.Text = text;

 statusText.Foreground = statusBrush;

 editBox.Foreground = editBrush;

 }

}

It could be that a chunk of XAML successfully passes XamlReader.Load with no errors but then raises
an exception later on. This can happen particularly when XAML animations are involved because the
animation doesn’t start up until the visual tree is loaded.

The only real solution is to install a handler for the UnhandledException event defined by the
Application object, and that’s done in the conclusion of the Loaded handler:

Project: XamlCruncher | File: BlankPage.xaml.cs (excerpt)

async void OnLoaded(object sender, RoutedEventArgs args)

{

 …

 Application.Current.UnhandledException += (excSender, excArgs) =>

 {

 SetErrorText(excArgs.Message);

 excArgs.Handled = true;

 };

}

The problem with something like this is that you want to make sure that the program isn’t going to
have some other kind of unhandled exception that isn’t a result of some errant XAML.

Also, when Visual Studio is running a program in its debugger, it wants to snag the unhandled
exceptions so that it can report them to you. Use the Exceptions dialog from the Debug menu to
indicate which exceptions you want Visual Studio to intercept and which should be left to the program.

281

www.it-ebooks.info

http://www.it-ebooks.info/

XAML Files In and Out

Whenever I approach the code involved in loading and saving documents, I always think it’s going to
be easier than it turns out to be. Here’s the basic problem. Whenever a New or Open command occurs,
you need to check if the current document has been modified without being saved. If that’s the case, a
message box should be displayed asking whether the user wants to save the file. The options are Save,
Don’t Save, and Cancel.

The easy answer is Cancel. The program doesn’t need to do anything further. If the user selects the
Don’t Save option, the current document can be abandoned and the New or Open command can
proceed.

If the user answers Save, the existing document needs to be saved under its filename. But that
filename might not exist if the document wasn’t loaded from a disk file or previously saved. At that
point, the Save As dialog box needs to be displayed. But the user can select Cancel from that dialog
box as well, and the New or Open operation ends. Otherwise, the existing file is first saved.

Let’s first look at the methods involved in saving documents. The application button has Save and
Save As buttons, but the Save button needs to invoke the Save As dialog box if it doesn’t have a
filename for the document:

Project: XamlCruncher | File: BlankPage.xaml.cs (excerpt)

async void OnSaveAsAppBarButtonClick(object sender, RoutedEventArgs args)

{

 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile == null)

 return;

 await SaveXamlToFile(storageFile);

}

async void OnSaveAppBarButtonClick(object sender, RoutedEventArgs args)

{

 Button button = sender as Button;

 button.IsEnabled = false;

 if (loadedStorageFile != null)

 {

 await SaveXamlToFile(loadedStorageFile);

 }

 else

 {

 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile != null)

 {

 await SaveXamlToFile(storageFile);

 }

282

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 button.IsEnabled = true;

}

async Task<StorageFile> GetFileFromSavePicker()

{

 FileSavePicker picker = new FileSavePicker();

 picker.DefaultFileExtension = ".xaml";

 picker.FileTypeChoices.Add("XAML", new List<string> { ".xaml" });

 picker.SuggestedSaveFile = loadedStorageFile;

 return await picker.PickSaveFileAsync();

}

async Task SaveXamlToFile(StorageFile storageFile)

{

 loadedStorageFile = storageFile;

 string exception = null;

 try

 {

 await FileIO.WriteTextAsync(storageFile, editBox.Text);

 }

 catch (Exception exc)

 {

 exception = exc.Message;

 }

 if (exception != null)

 {

 string message = String.Format("Could not save file {0}: {1}",

 storageFile.Name, exception);

 MessageDialog msgdlg = new MessageDialog(message, "XAML Cruncher");

 await msgdlg.ShowAsync();

 }

 else

 {

 editBox.IsModified = false;

 filenameText.Text = storageFile.Path;

 }

}

For the Save button, the handler disables the button and then enables it when it’s completed. I’m
worried that the button might be re-pressed during the time the file is being saved and there might
even be a reentrancy problem if the handler tries to save it again when the first save hasn’t completed.
More research into how this problem can occur is surely warranted.

In the final method, the FileIO.WriteTextAsync call is in a try block. If an exception occurs while
saving the file, the program wants to use MessageDialog to inform the user. But asynchronous
methods such as ShowAsync can’t be called in a catch block, so the exception is simply saved for
checking afterward.

For both Add and Open, XamlCruncher needs to check if the file has been modified. If so, a

283

www.it-ebooks.info

http://www.it-ebooks.info/

message box must be displayed to inform the user and request further direction. This occurs in a
method I’ve called CheckIfOkToTrashFile. Because this method is applicable for both the Add and Open
buttons, I gave this method an argument named commandAction of type Func<Task>, a delegate
meaning a method with no arguments that returns a Task. The Click handler for the Open event passes
the LoadFileFromOpenPicker method as this argument, and the handler for the Add button uses the
aforementioned SetDefaultXamlFile.

Project: XamlCruncher | File: BlankPage.xaml.cs (excerpt)

async void OnAddAppBarButtonClick(object sender, RoutedEventArgs args)

{

 Button button = sender as Button;

 button.IsEnabled = false;

 await CheckIfOkToTrashFile(SetDefaultXamlFile);

 button.IsEnabled = true;

 this.BottomAppBar.IsOpen = false;

}

async void OnOpenAppBarButtonClick(object sender, RoutedEventArgs args)

{

 Button button = sender as Button;

 button.IsEnabled = false;

 await CheckIfOkToTrashFile(LoadFileFromOpenPicker);

 button.IsEnabled = true;

 this.BottomAppBar.IsOpen = false;

}

async Task CheckIfOkToTrashFile(Func<Task> commandAction)

{

 if (!editBox.IsModified)

 {

 await commandAction();

 return;

 }

 string message =

 String.Format("Do you want to save changes to {0}?",

 loadedStorageFile == null ? "(untitled)" : loadedStorageFile.Name);

 MessageDialog msgdlg = new MessageDialog(message, "XAML Cruncher");

 msgdlg.Commands.Add(new UICommand("Save", null, "save"));

 msgdlg.Commands.Add(new UICommand("Don't Save", null, "dont"));

 msgdlg.Commands.Add(new UICommand("Cancel", null, "cancel"));

 msgdlg.DefaultCommandIndex = 0;

 msgdlg.CancelCommandIndex = 2;

 IUICommand command = await msgdlg.ShowAsync();

 if ((string)command.Id == "cancel")

 return;

 if ((string)command.Id == "dont")

 {

 await commandAction();

 return;

284

www.it-ebooks.info

http://www.it-ebooks.info/

 }

 if (loadedStorageFile == null)

 {

 StorageFile storageFile = await GetFileFromSavePicker();

 if (storageFile == null)

 return;

 loadedStorageFile = storageFile;

 }

 await SaveXamlToFile(loadedStorageFile);

 await commandAction();

}

async Task LoadFileFromOpenPicker()

{

 FileOpenPicker picker = new FileOpenPicker();

 picker.FileTypeFilter.Add(".xaml");

 StorageFile storageFile = await picker.PickSingleFileAsync();

 if (storageFile != null)

 {

 string exception = null;

 try

 {

 editBox.Text = await FileIO.ReadTextAsync(storageFile);

 }

 catch (Exception exc)

 {

 exception = exc.Message;

 }

 if (exception != null)

 {

 string message = String.Format("Could not load file {0}: {1}",

 storageFile.Name, exception);

 MessageDialog msgdlg = new MessageDialog(message, "XAML Cruncher");

 await msgdlg.ShowAsync();

 }

 else

 {

 editBox.IsModified = false;

 loadedStorageFile = storageFile;

 filenameText.Text = loadedStorageFile.Path;

 }

 }

}

The CheckIfOkToTrashFile method also demonstrates how additional commands are added to the
MessageDialog. By default, the only button is labeled Close.

285

www.it-ebooks.info

http://www.it-ebooks.info/

The Settings Dialog

When the user clicks the Options button, the handler instantiates a UserControl derivative named
SettingsDialog and makes it the child of a Popup. Among these options is the orientation of the display.
You’ll recall I defined an EditOrientation enumeration for the four possibilities. Accordingly, the project
also contains an EditOrientationRadioButton for storing one of the four values as a custom tag:

Project: XamlCruncher | File: EditOrientationRadioButton.cs

using Windows.UI.Xaml.Controls;

namespace XamlCruncher

{

 public class EditOrientationRadioButton : RadioButton

 {

 public EditOrientation EditOrientationTag { set; get; }

 }

}

The SettingsDialog.xaml file arranges all the controls in a StackPanel:

Project: XamlCruncher | File: SettingsDialog.xaml (excerpt)

<UserControl … >

 <UserControl.Resources>

 <Style x:Key="DialogCaptionTextStyle"

 TargetType="TextBlock"

 BasedOn="{StaticResource CaptionTextStyle}">

 <Setter Property="FontSize" Value="14.67" />

 <Setter Property="FontWeight" Value="SemiLight" />

 <Setter Property="Margin" Value="7 0 0 0" />

 </Style>

 </UserControl.Resources>

 <Border Background="{StaticResource ApplicationPageBackgroundBrush}"

 BorderBrush="{StaticResource ApplicationTextBrush}"

 BorderThickness="1">

 <StackPanel Margin="24">

 <TextBlock Text="XamlCruncher settings"

 Style="{StaticResource SubheaderTextStyle}"

 Margin="0 0 0 12" />

 <!-- Auto parsing -->

 <ToggleSwitch Header="Automatic parsing"

 IsOn="{Binding AutoParsing, Mode=TwoWay}" />

 <!-- Orientation -->

 <TextBlock Text="Orientation"

 Style="{StaticResource DialogCaptionTextStyle}" />

 <Grid Name="orientationRadioButtonGrid"

 Margin="7 0 0 0">

286

www.it-ebooks.info

http://www.it-ebooks.info/

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="Auto" />

 <ColumnDefinition Width="Auto" />

 </Grid.ColumnDefinitions>

 <Grid.Resources>

 <Style TargetType="Border">

 <Setter Property="BorderBrush"

 Value="{StaticResource ApplicationTextBrush}" />

 <Setter Property="BorderThickness" Value="1" />

 <Setter Property="Padding" Value="3" />

 </Style>

 <Style TargetType="TextBlock">

 <Setter Property="TextAlignment" Value="Center" />

 </Style>

 <Style TargetType="local:EditOrientationRadioButton">

 <Setter Property="Margin" Value="0 6 12 6" />

 </Style>

 </Grid.Resources>

 <local:EditOrientationRadioButton Grid.Row="0" Grid.Column="0"

 EditOrientationTag="Left"

 Checked="OnOrientationRadioButtonChecked">

 <StackPanel Orientation="Horizontal">

 <Border>

 <TextBlock Text="edit" />

 </Border>

 <Border>

 <TextBlock Text="display" />

 </Border>

 </StackPanel>

 </local:EditOrientationRadioButton>

 <local:EditOrientationRadioButton Grid.Row="0" Grid.Column="1"

 EditOrientationTag="Bottom"

 Checked="OnOrientationRadioButtonChecked">

 <StackPanel>

 <Border>

 <TextBlock Text="display" />

 </Border>

 <Border>

 <TextBlock Text="edit" />

 </Border>

 </StackPanel>

 </local:EditOrientationRadioButton>

 <local:EditOrientationRadioButton Grid.Row="1" Grid.Column="0"

287

www.it-ebooks.info

http://www.it-ebooks.info/

 EditOrientationTag="Top"

 Checked="OnOrientationRadioButtonChecked">

 <StackPanel>

 <Border>

 <TextBlock Text="edit" />

 </Border>

 <Border>

 <TextBlock Text="display" />

 </Border>

 </StackPanel>

 </local:EditOrientationRadioButton>

 <local:EditOrientationRadioButton Grid.Row="1" Grid.Column="1"

 EditOrientationTag="Right"

 Checked="OnOrientationRadioButtonChecked">

 <StackPanel Orientation="Horizontal">

 <Border>

 <TextBlock Text="display" />

 </Border>

 <Border>

 <TextBlock Text="edit" />

 </Border>

 </StackPanel>

 </local:EditOrientationRadioButton>

 </Grid>

 <!-- Ruler -->

 <ToggleSwitch Header="Ruler"

 OnContent="Show"

 OffContent="Hide"

 IsOn="{Binding ShowRuler, Mode=TwoWay}" />

 <!-- Grid lines -->

 <ToggleSwitch Header="Grid lines"

 OnContent="Show"

 OffContent="Hide"

 IsOn="{Binding ShowGridLines, Mode=TwoWay}" />

 <!-- Font size -->

 <TextBlock Text="Font size"

 Style="{StaticResource DialogCaptionTextStyle}" />

 <Slider Value="{Binding FontSize, Mode=TwoWay}"

 Minimum="10"

 Maximum="48"

 Margin="7 0 0 0" />

 <!-- Tab spaces -->

 <TextBlock Text="Tab spaces"

 Style="{StaticResource DialogCaptionTextStyle}" />

 <Slider Value="{Binding TabSpaces, Mode=TwoWay}"

 Minimum="1"

 Maximum="12"

288

www.it-ebooks.info

http://www.it-ebooks.info/

 Margin="7 0 0 0" />

 </StackPanel>

 </Border>

</UserControl>

All the two-way bindings strongly suggest that the DataContext is set to an instance of AppSettings,
just like BlankPage. It’s actually the same instance of AppSettings, which means that any changes in this
dialog are automatically applied to the program.

This means that you can’t make a bunch of changes in the dialog and hit Cancel. There is no Cancel
button. To compensate, it might make sense for a dialog to have a Defaults button that restores
everything to its factory-new condition.

A significant chunk of the XAML file is devoted to the four EditOrientationRadioButton controls. The
content of each of these is a StackPanel with two bordered TextBlock elements, to create a little graphic
that resembles the four layout options you saw in the earlier screen shot (that is, the third screen shot
in the “Controls for XamlCruncher” section).

The dialog contains three instances of ToggleSwitch. By default, the OnContent and OffContent
properties are set to the text string “On” and “Off,” but I thought “Show” and “Hide” were better for the
ruler and grid displays.

ToggleSwitch also has a Header property that displays text above the switch. In the screen shot I just
referred to, the labels “Automatic parsing,” “Ruler,” and “Grid lines” are all displayed by the
ToggleSwitch. I thought the labels looked good, so I made an effort to duplicate the font and
placement with the Style labeled as “DialogCaptionTextStyle.”

A Slider is used to set the font size, which might seem reasonable, but I also use a Slider to set the
number of tab spaces, which I’ll admit doesn’t seem reasonable at all. Even though the AppSettings
class defines the TabSpaces property as an integer, the binding with the Value property of the Slider
works regardless, and the Slider proves to be a convenient way to change the property.

The only chore left for the code-behind file is to manage the RadioButton controls:

Project: XamlCruncher | File: SettingsDialog.xaml.cs

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace XamlCruncher

{

 public sealed partial class SettingsDialog : UserControl

 {

 public SettingsDialog()

 {

 this.InitializeComponent();

 Loaded += OnLoaded;

 }

 // Initialize RadioButton for edit orientation

 void OnLoaded(object sender, RoutedEventArgs args)

289

www.it-ebooks.info

http://www.it-ebooks.info/

 {

 AppSettings appSettings = DataContext as AppSettings;

 if (appSettings != null)

 {

 foreach (UIElement child in orientationRadioButtonGrid.Children)

 {

 EditOrientationRadioButton radioButton = child as EditOrientationRadioButton;

 radioButton.IsChecked =

 appSettings.EditOrientation == radioButton.EditOrientationTag;

 }

 }

 }

 // Set EditOrientation based on checked RadioButton

 void OnOrientationRadioButtonChecked(object sender, RoutedEventArgs args)

 {

 AppSettings appSettings = DataContext as AppSettings;

 EditOrientationRadioButton radioButton = sender as EditOrientationRadioButton;

 if (appSettings != null)

 appSettings.EditOrientation = radioButton.EditOrientationTag;

 }

 }

}

The display of the dialog is very similar to the MetroPad programs:

Project: XamlCruncher | File: BlankPage.xaml.cs (excerpt)

public sealed partial class BlankPage : Page

{

 …

 void OnOptionsAppBarButtonClick(object sender, RoutedEventArgs args)

 {

 SettingsDialog settingsDialog = new SettingsDialog();

 settingsDialog.DataContext = appSettings;

 Popup popup = new Popup

 {

 Child = settingsDialog,

 IsLightDismissEnabled = true

 };

 settingsDialog.SizeChanged += (dialogSender, dialogArgs) =>

 {

 popup.VerticalOffset = this.ActualHeight - settingsDialog.ActualHeight

 - this.BottomAppBar.ActualHeight - 24;

 popup.HorizontalOffset = 24;

 };

 popup.Closed += OnPopupClose;

 popup.IsOpen = true;

 }

290

www.it-ebooks.info

http://www.it-ebooks.info/

 async void OnPopupClose(object sender, object args)

 {

 try

 {

 await appSettings.SaveAsync();

 }

 catch (Exception exc)

 {

 }

 this.BottomAppBar.IsOpen = false;

 }

 …

}

The Closed event handler for the Popup saves the updated settings.

What happens if XamlCruncher terminates (either normally or unexpectedly) when the
SettingsDialog is still displayed? Well, any changes that the user made to the settings won’t be saved.
The same goes for a document that was modified, which is potentially a much greater loss.

One of the big “to do” items is to handle the Suspending event of the App object. This event
indicates when Windows 8 is suspending an application but also when the application is about to
terminate. My thinking now is that the program should save any edited document in the LocalFolder
area and then check for the existence of the document the next time the program starts up. One
philosophy holds that applications should seem to be continuous experiences even when they are
terminated and restarted.

Beyond the Windows Runtime

Earlier I mentioned some limitations to the XAML that you can enter in XamlCruncher. Elements cannot
have their events set, because events require event handlers and event handlers must be implemented
in code. Nor can the XAML contain references to external classes or assemblies.

However, the parsed XAML runs in the XamlCruncher process, which means that it does have access
to any classes that XamlCruncher has access to, including the custom classes I created for the program.
Here’s a piece of XAML that includes a namespace declaration for local. This enables it to use the
SplitContainer and nests two instances of it:

291

www.it-ebooks.info

http://www.it-ebooks.info/

This piece of XAML is among the downloadable code for this chapter, as is the XAML used for the
earlier screen shots.

This is interesting, because it means that XamlCruncher really can go beyond the Windows Runtime
and let you experiment with custom classes.

More to come.

292

www.it-ebooks.info

http://www.it-ebooks.info/

Author Bio

Charles Petzold began programming for Windows 27 years ago
with beta versions of Windows 1. He wrote the first articles about
Windows programming to appear in a magazine and wrote one of
the first books on the subject, Programming Windows, first
published in 1988. Over the past decade, he has written seven
books on .NET programming, including the recent Programming
Windows Phone 7 (Microsoft Press, 2010), and he currently writes a
column on touch-oriented user interfaces for MSDN Magazine.
Petzold’s books also include Code: The Hidden Language of
Computer Hardware and Software (Microsoft Press, 1999), a unique
exploration of digital technologies, and The Annotated Turing: A
Guided Tour through Alan Turing’s Historic Paper on Computability
and the Turing Machine (Wiley, 2008). His website is
www.charlespetzold.com.

293

www.it-ebooks.info

http://www.charlespetzold.com/
http://www.it-ebooks.info/

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover

	Copyright Page
	Table of Contents

	Introduction
	The Versions of Windows 8
	The Focus of This Book
	The Approach
	My Setup
	The Programming Windows Heritage
	Behind the Scenes
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Chapter 1: Markup and Code
	The First Project
	Graphical Greetings
	Variations in Text
	Media As Well
	The Code Alternatives
	Images in Code
	Not Even a Page

	Chapter 2: XAML Syntax
	The Gradient Brush in Code
	Property Element Syntax
	Content Properties
	The TextBlock Content Property
	Sharing Brushes (and Other Resources)
	Resources Are Shared
	A Bit of Vector Graphics
	Styles
	A Taste of Data Binding

	Chapter 3: Basic Event Handling
	The Tapped Event
	Routed Event Handling
	Overriding the Handled Setting
	Input, Alignment, and Backgrounds
	Size and Orientation Changes
	Bindings to Run?
	Timers and Animation

	Chapter 4: Presentation with Panels
	The Border Element
	Rectangle and Ellipse
	The StackPanel
	Horizontal Stacks
	WhatSize with Bindings (and a Converter)
	The ScrollViewer Solution
	Layout Weirdness or Normalcy?
	Making an E-Book
	Fancier StackPanel Items
	Creating Windows Runtime Libraries
	The Wrap Alternative
	The Canvas and Attached Properties
	The Z-Index
	Canvas Weirdness

	Chapter 5: Control Interaction
	The Control Difference
	The Slider for Ranges
	The Grid
	Orientation and Aspect Ratios
	Slider and the Formatted String Converter
	Tooltips and Conversions
	Sketching with Sliders
	The Varieties of Button Experience
	Dependency Properties
	RadioButton Tags
	Keyboard Input and TextBox
	Touch and Thumb

	Chapter 6: WinRT and MVVM
	MVVM (Brief and Simplified)
	Data Binding Notifications
	A View Model for ColorScroll
	Deriving from BindableBase
	The DataContext Property
	Bindings and TextBox
	Buttons and MVVM
	The DelegateCommand Class

	Chapter 7: Building an Application
	Commands, Options, and Settings
	The Segoe UI Symbol Font
	The Application Bar
	Popups and Dialogs
	Windows Runtime File I/O
	Await and Async
	Calling Your Own Async Methods
	Controls for XamlCruncher
	Application Settings and Isolated Storage
	The XamlCruncher Page
	Parsing the XAML
	XAML Files In and Out
	The Settings Dialog
	Beyond the Windows Runtime

	Author Bio
	Survey: What do you think of this ebook?

