

Praise for Scalability Rules

“Once again,Abbott and Fisher provide a book that I’ll be giving
to our engineers. It’s an essential read for anyone dealing with
scaling an online business.”

—Chris Lalonde,VP,Technical Operations and Infrastructure
Architecture, Bullhorn

“Abbott and Fisher again tackle the difficult problem of scalability
in their unique and practical manner. Distilling the challenges of
operating a fast-growing presence on the Internet into 50 easy-to-
understand rules, the authors provide a modern cookbook of
scalability recipes that guide the reader through the difficulties
of fast growth.”

—Geoffrey Weber,Vice President, Internet Operations, Shutterfly

“Abbott and Fisher have distilled years of wisdom into a set of
cogent principles to avoid many nonobvious mistakes.”

—Jonathan Heiliger,VP,Technical Operations, Facebook

“In The Art of Scalability, the AKF team taught us that scale is not
just a technology challenge. Scale is obtained only through a
combination of people, process, and technology.With Scalability
Rules, Martin Abbott and Michael Fisher fill our scalability toolbox
with easily implemented and time-tested rules that once applied
will enable massive scale.”

—Jerome Labat,VP, Product Development IT, Intuit

“When I joined Etsy, I partnered with Mike and Marty to hit the
ground running in my new role, and it was one of the best
investments of time I have made in my career.The indispensable
advice from my experience working with Mike and Marty is fully
captured here in this book.Whether you’re taking on a role as a
technology leader in a new company or you simply want to make
great technology decisions, Scalability Rules will be the go-to
resource on your bookshelf.”

—Chad Dickerson, CTO, Etsy

“Scalability Rules provides an essential set of practical tools and
concepts anyone can use when designing, upgrading, or inheriting
a technology platform. It’s very easy to focus on an immediate
problem and overlook issues that will appear in the future. This
book ensures strategic design principles are applied to everyday
challenges.”

—Robert Guild, Director and Senior Architect, Financial Services

“An insightful, practical guide to designing and building scalable
systems.A must-read for both product building and operations
teams, this book offers concise and crisp insights gained from years
of practical experience of AKF principals.With the complexity of
modern systems, scalability considerations should be an integral part
of the architecture and implementation process. Scaling systems for
hypergrowth requires an agile, iterative approach that is closely
aligned with product features; this book shows you how.”

—Nanda Kishore, Chief Technology Officer, ShareThis

“For organizations looking to scale technology, people, and
processes rapidly or effectively, the twin pairing of Scalability Rules
and The Art of Scalability are unbeatable.The rules-driven approach
in Scalability Rules makes this not only an easy reference companion,
but also allows organizations to tailor the Abbott and Fisher
approach to their specific needs both immediately and in the
future!”

—Jeremy Wright, CEO, BNOTIONS.ca and Founder, b5media

Scalability
Rules

50 Principles for
Scaling Web Sites

Martin L. Abbott
Michael T. Fisher

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and
sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark
claim, the designations have been printed with initial
capital letters or in all capitals.

The authors and publisher have taken care in the
preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsi-
bility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection
with or arising out of the use of the information or pro-
grams contained herein.

The publisher offers excellent discounts on this book
when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or
custom covers and content particular to your business,
training goals, marketing focus, and branding interests.
For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data:

Abbott, Martin L.
Scalability rules : 50 principles for scaling Web sites

/ Martin L. Abbott, Michael T. Fisher.
p. cm.

ISBN 978-0-321-75388-5 (pbk. : alk. paper) — ISBN
(invalid) 01321753887 (pbk. : alk. paper) 1.
Computer networks—Scalability. 2. Web sites—
Security measures. I. Fisher, Michael T. II. Title.

TK5105.59.A23 2011
006.7—dc22

2011006257

Copyright © 2011 AKF Consulting Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in
any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-321-75388-5
ISBN-10: 0-321-75388-7

Text printed in the United States on recycled paper at R.R. Donnelley in
Crawfordsville, Indiana.
First printing May 2011

Editor-in-Chief
Mark Taub

Senior Acquisitions
Editor
Trina MacDonald

Development Editor
Songlin Qiu

Managing Editor
Kristy Hart

Project Editor
Anne Goebel

Copy Editor
Geneil Breeze

Indexer
Erika Millen

Proofreader
Linda Seifert

Technical Reviewers
Robert Guild
Geoffrey Weber
Jeremy Wright

Publishing
Coordinator
Olivia Basegio

Cover Designer
Chuti Prasertsith

Senior Compositor
Gloria Schurick

This book is dedicated to our
friend and partner

“Big”Tom Keeven.
“Big” refers to the impact he’s

had in helping countless
companies scale in his nearly

30 years in the business.

❖

❖

This page intentionally left blank

Contents at a Glance
Preface viii

Acknowledgments xiii

About the Authors xiv

1 Reduce the Equation 1

2 Distribute Your Work 23

3 Design to Scale Out Horizontally 35

4 Use the Right Tools 53

5 Don’t Duplicate Your Work 71

6 Use Caching Aggressively 87

7 Learn from Your Mistakes 113

8 Database Rules 129

9 Design for Fault Tolerance and
Graceful Failure 147

10 Avoid or Distribute State 167

11 Asynchronous Communication and
Message Buses 179

12 Miscellaneous Rules 193

13 Rule Review and Prioritization 213

Index 247

Preface
Thanks for your interest in Scalability Rules! This book is meant
to serve as a primer, a refresher, and a lightweight reference
manual to help engineers, architects, and managers develop and
maintain scalable Internet products. It is laid out in a series of
rules, each of them bundled thematically by different topics.
Most of the rules are technically focused, while a smaller num-
ber of them address some critical mindset or process concern—
each of which is absolutely critical to building scalable products.
The rules vary in their depth and focus. Some rules are high
level, such as defining a model that can be applied to nearly any
scalability problem, while others are specific and may explain a
technique, such as how to modify headers to maximize the
“cache-ability” of content.

Quick Start Guide
For experienced engineers, architects, and managers read
through the header sections of all the rules that contain the
what, when, how, and why.You can browse through each chapter
reading these, or you can jump to Chapter 13,“Rule Review
and Prioritization,” which has a consolidated view of these
headers. Once you’ve read these go back to the chapters that are
new to you or that you find more interesting.

For less experienced readers we understand that 50 rules can
seem overwhelming.We do believe that you should eventually
become familiar with all the rules, but we also understand that
you need to prioritize your time.With that in mind, we have
picked out five chapters for managers, five chapters for software
developers, and five chapters for technical operations that we
recommend you read before the others to get a jump start on
your scalability knowledge.
Managers:

n Chapter 1,“Reduce the Equation”
n Chapter 2,“Distribute Your Work”
n Chapter 4,“Use the Right Tools”
n Chapter 7,“Learn from Your Mistakes”
n Chapter 12,“Miscellaneous Rules”

Software developers:
n Chapter 1,“Reduce the Equation”
n Chapter 2,“Distribute Your Work”
n Chapter 5,“Don’t Duplicate Your Work”
n Chapter 10,“Avoid or Distribute State”
n Chapter 11,“Asynchronous Communication and Message

Buses”

Technical operations:
n Chapter 2,“Distribute Your Work”
n Chapter 3,“Design to Scale Out Horizontally”
n Chapter 6,“Use Caching Aggressively”
n Chapter 8,“Database Rules”
n Chapter 9,“Design for Fault Tolerance and Graceful

Failure”

As you have time later, we recommend reading all the rules to
familiarize yourself with the rules and concepts that we present
no matter what your role.The book is short and can probably be
read in a coast-to-coast flight in the US.

After the first read, the book can be used as a reference. If
you are looking to fix or re-architect an existing product,
Chapter 13,“Rule Review and Prioritization,” offers an
approach to applying the rules to your existing platform based
on cost and the expected benefit (presented as a reduction of
risk). If you already have your own prioritization mechanism, we
do not recommend changing it for ours unless you like our
approach better. If you don’t have an existing method of priori-
tization, then our method should help you think through which
rules you should apply first.

If you are just starting to develop a new product, the rules
can help inform and guide you as to best practices for scaling. In
this case, the approach of prioritization represented in Chapter
13 can best be used as a guide to what’s most important to con-
sider in your design.You should look at the rules that are most
likely to allow you to scale for your immediate and long-term
needs and implement those.

ixScalability Rules

For all organizations, the rules can serve to help you create a
set of architectural principles to drive future development. Select
the 5, 10, or 15 rules that will help your product scale best and
use them as an augmentation to your existing design reviews.
Engineers and architects can ask questions relevant to each of
the scalability rules that you select and ensure that any new sig-
nificant design meets your scalability standards.While these rules
are as specific and fixed as possible there is room for modifica-
tion based on your system’s particular criteria. If you or your
team has extensive scalability experience, go ahead and tweak
these rules as necessary to fit your particular scenario. If you and
your team are lacking large scale experience use them exactly as
is and see how far they allow you to scale.

Finally, this book is meant to serve as a reference and hand-
book. Chapter 13 is set up as a quick reference and summary of
the rules.Whether you are experiencing problems or simply
looking to develop a more scalable solution, Chapter 13 can
become a quick reference guide to help pinpoint the rules that
will help you out of your predicament fastest or help you define
the best path forward in the event of new development. Besides
using this as a desktop reference also consider integrating this
into your organization by one of many tactics such as taking one
or two rules each week and discussing them at your technology
all-hands meeting.

Why Write Another Book on Scale?
There simply aren’t many good books on scalability on the mar-
ket yet, and Scalability Rules is unique in its approach in this
sparse market. It is the first book to address the topic of scalabili-
ty in a rules-oriented fashion. It is the first book meant to be as
much of a reference as it is an overview of the topic. It includes
a chapter summarizing the 50 rules and gives a prioritization of
the rules for those looking to apply the book to their existing
platforms.

One of our most-commented-on blog posts is on the need
for scalability to become a discipline.We and the community of
technologists that tackle scalability problems believe that scalabil-
ity architects are needed in today’s technology organizations. In

x Scalability Rules

the early days of computer systems almost everyone involved was
a programmer, and then came specialization with system opera-
tors, DBAs, architects, and so on.We now have many different
disciplines and specialties that make up our technology teams.
One of the missing disciplines is the scalability architect.

Unlike a DBA, whose job is to get things done and not nec-
essarily teach someone else unless they are mentoring a junior
DBA, one of the primary responsibilities of the scalability archi-
tect would be to educate technology people.The scalability
architects should be evangelists and teachers rather than the
gatekeepers of secret knowledge.As part of that teaching we’ve
made a step forward by putting together these 50 rules that we
believe will help guide any organization in scaling its systems.

How Did You Decide What 50 Rules
to Include?
The decision of which rules to include wasn’t easy.This could
easily be a book of 100 or even 200 rules. Our criteria for inclu-
sion was to look at the recommendations that we make most
often to our client base and find the most commonly recom-
mended changes, additions, or modifications to their products.
When we looked at these rules, we saw a fairly sharp drop-off in
the rate of recommendations after the first 50 rules.That’s not to
say that we made these 50 recommendations equally, or that the
51st potential rule wasn’t also fairly common. Rather, these 50
were just recommended more often with our clients.The rules
aren’t presented in order of frequency of recommendation. In
Chapter, 13 we group the rules by their benefit and priority
based on how we ranked each rule’s risk reduction and cost of
implementation or adoption.

How Does Scalability Rules Differ
from The Art of Scalability?
The Art of Scalability (ISBN: 0137030428, published by Addison-
Wesley), our first book on this topic, focused on people, process,
and technology, while Scalability Rules is predominately a techni-
cally focused book. Don’t get us wrong, we still believe that

xiScalability Rules

people and process are the most important component of build-
ing scalable solutions.After all, it’s the organization, including
both the individual contributors and the management, which
succeeds or fails in producing scalable solutions.The technology
isn’t at fault for failing to scale—it’s the people who are at fault
for building it, selecting it, or integrating it. But we believe that
The Art of Scalability adequately addresses the people and process
concerns around scalability, and we wanted to go in greater
depth on the technical aspects of scalability.

Scalability Rules expands on the third (technical) section of
our first book.The material in Scalability Rules is either new or
discussed in a more technical fashion than in The Art of
Scalability.Where we discussed something in that book, we
expand upon it or define it in a slightly different way to help
readers better understand the concept.

xii Scalability Rules

Acknowledgments
The rules contained within this book weren’t developed by our
partnership alone.They are the result of nearly 60 years of work
with clients, colleagues, and partners within nearly 200 compa-
nies, divisions, and organizations. Each of them contributed, in
varying degrees, to some or all of the rules within this book.As
such, we would like to acknowledge the contributions of our
friends, partners, clients, coworkers, and bosses for whom or with
which we’ve worked over the past several (combined) decades.

We would also like to acknowledge and thank the editors
who have provided guidance, feedback, and project management.
Our technical editors Geoffrey Weber, Jeremy Wright, and
Robert Guild shared with us their combined decades of tech-
nology experience and provided invaluable insight. Our editors
from Addison-Wesley, Songlin Qiu and Trina MacDonald, pro-
vided supportive stylistic and rhetorical guidance throughout
every step of this project.Thank you all for helping with this
project.

Last but certainly not least we’d like to thank our families and
friends who put up with our absence from social events to sit in
front of a computer screen and write. No undertaking of this
magnitude is done single-handedly, and without our families’
and friends’ understanding and support this would have been a
much more arduous journey.

About the Authors
Martin L. Abbott is an executive with experience running
technology and business organizations within Fortune 500 and
startup companies. He is a founding partner of AKF Partners, a
consulting firm focusing on meeting the technical and business
hyper growth needs of today’s fast-paced companies. Marty was
formerly the COO of Quigo, an advertising technology startup
acquired by AOL in 2007, where he was responsible for product
strategy, product management, technology development, advertis-
ing, and publisher services. Prior to Quigo, Marty spent nearly
six years at eBay, most recently as SVP of Technology and CTO
and member of the CEO’s executive staff. Prior to eBay, Marty
held domestic and international engineering, management, and
executive positions at Gateway and Motorola. Marty serves on
the boards of directors for OnForce, LodgeNet Interactive
(NASD:LNET), and Bullhorn. He sits on a number of advisory
boards for universities and public and private companies. Marty
has a BS in computer science from the United States Military
Academy, an MS in computer engineering from the University
of Florida, is a graduate of the Harvard Business School
Executive Education Program, and is pursuing a Doctorate of
Management from Case Western Reserve University. His current
research investigates the antecedents and effects of conflict with-
in executive teams of startups.

Michael T. Fisher is a veteran software and technology execu-
tive with experience in both Fortune 500 and startup compa-
nies.“Fish” is a founding partner of AKF Partners, a consulting
firm focusing on meeting the technical and business hyper
growth needs of today’s fast-paced companies. Michael’s experi-
ence includes two years as the chief technology officer of Quigo,
a startup Internet advertising company acquired by AOL in
2007. Prior to Quigo, Michael served as vice president of engi-
neering & architecture for PayPal, Inc., an eBay company. Prior
to joining PayPal, Michael spent seven years at General Electric
helping to develop the company’s technology strategy and
processes. Michael served six years as a captain and pilot in the

US Army. He sits on a number of boards of directors and adviso-
ry boards for private and nonprofit companies. Michael has a BS
in computer science from the United States Military Academy,
an MSIS from Hawaii Pacific University, a Ph.D. in Information
Systems from Kennedy-Western University, and an MBA from
Case Western Reserve University. Michael is a certified Six
Sigma Master Black Belt and is pursuing a Doctorate of
Management from Case Western Reserve University. His current
research investigates the drivers for the viral growth of digital
services.

This page intentionally left blank

1
Reduce the Equation

We’ve all been there at some point in our academic or profes-
sional careers:We stare at a complex problem and begin to lose
hope.Where do we begin? How can we possibly solve the prob-
lem within the allotted time? Or in the extreme case—how do
we solve it within a single lifetime? There’s just too much to do,
the problem is too complex, and it simply can’t be solved.That’s
it. Pack it in. Game over…

Hold on—don’t lose hope! Take a few deep breaths and
channel your high school or college math teacher/professor.
If you have a big hairy architectural problem, do the same thing
you would do with a big hairy math equation and reduce it into
easily solvable parts. Break off a small piece of the problem and
break it into several smaller problems until each of the problems
is easily solvable!

Our view is that any big problem, if approached properly, is
really just a collection of smaller problems waiting to be solved.
This chapter is all about making big architectural problems
smaller and doing less work while still achieving the necessary
business results. In many cases this approach actually reduces
(rather than increases) the amount of work necessary to solve the
problem, simplify the architecture and the solution, and end up
with a much more scalable solution or platform.

As is the case with many of the chapters in Scalability Rules,
the rules vary in size and complexity. Some are overarching
rules easily applied to several aspects of our design. Some rules
are very granular and prescriptive in their implementation to
specific systems.

Rule 1—Don’t Overengineer
the Solution

Rule 1: What, When, How, and Why
What: Guard against complex solutions during design.

When to use: Can be used for any project and should be used for
all large or complex systems or projects.

How to use: Resist the urge to overengineer solutions by testing
ease of understanding with fellow engineers.

Why: Complex solutions are costly to implement and have exces-
sive long-term costs.

Key takeaways: Systems that are overly complex limit your ability
to scale. Simple systems are more easily and cost effectively
maintained and scaled.

As Wikipedia explains, overengineering falls into two broad
categories.1 The first category covers products designed and
implemented to exceed the useful requirements of the product.
We discuss this problem briefly for completeness, but in our
estimation its impact to scale is small compared to the second
problem.The second category of overengineering covers prod-
ucts that are made to be overly complex.As we earlier implied,
we are most concerned about the impact of this second category
to scalability. But first, let’s address the notion of exceeding
requirements.

To explain the first category of overengineering, the exceed-
ing of useful requirements, we must first make sense of the term
useful, which here means simply capable of being used. For
example, designing an HVAC unit for a family house that is
capable of heating that house to 300 degrees Fahrenheit in out-
side temperatures of 0 Kelvin simply has no use for us anywhere.
The effort necessary to design and manufacture such a solution
is wasted as compared to a solution that might heat the house to
a comfortable living temperature in environments where outside
temperatures might get close to –20 degrees Fahrenheit.This
type of overengineering might have cost overrun elements,
including a higher cost to develop (engineer) the solution and a

2 Chapter 1 Reduce the Equation

higher cost to implement the solution in hardware and software.
It may further impact the company by delaying the product
launch if the overengineered system took longer to develop than
the useful system. Each of these costs has stakeholder impact as
higher costs result in lower margins, and longer development
times result in delayed revenue or benefits. Scope creep, or the
addition of scope between initial product definition and initial
product launch, is one manifestation of overengineering.

An example closer to our domain of experience might be
developing an employee timecard system capable of handling a
number of employees for a single company that equals or
exceeds 100 times the population of Planet Earth.The probabili-
ty that the Earth’s population increases 100-fold within the use-
ful life of the software is tiny.The possibility that all of those
people work for a single company is even smaller.We certainly
want to build our systems to scale to customer demands, but we
don’t want to waste time implementing and deploying those
capabilities too far ahead of our need (see Rule 2).

The second category of overengineering deals with making
something overly complex and making something in a complex
way. Put more simply, the second category consists of either
making something work harder to get a job done than is
necessary, making a user work harder to get a job done than is
necessary, or making an engineer work harder to understand
something than is necessary. Let’s dive into each of these three
areas of overly complex systems.

What does it mean to make something work harder than is
necessary? Some of the easiest examples come from the real
world. Imagine that you ask your significant other to go to the
grocery store.When he agrees, you tell him to pick up one of
everything at the store, and then to pause and call you when he
gets to the checkout line. Once he calls, you will tell him the
handful of items that you would like from the many baskets of
items he has collected and he can throw everything else on the
floor.“Don’t be ridiculous!” you might say. But have you ever
performed a select (*) from schema_name. table_name
SQL statement within your code only to cherry-pick your
results from the returned set (see Rule 35)? Our grocery store
example is essentially the same activity as the select (*) case

3Rule 1—Don’t Overengineer the Solution

above. How many lines of conditionals have you added to your
code to handle edge cases and in what order are they evaluated?
Do you handle the most likely case first? How often do you ask
your database to return a result set you just returned, and how
often do you re-create an HTML page you just displayed? This
particular problem (doing work repetitively when you can just
go back and get your last correct answer) is so rampant and easi-
ly overlooked that we’ve dedicated an entire chapter (Chapter 6,
“Use Caching Aggressively”) to this topic! You get the point.

What do we mean by making a user work harder than is
necessary? The answer to this one is really pretty simple. In many
cases, less is more. Many times in the pursuit of trying to make
a system flexible, we strive to cram as many odd features as
possible into it.Variety is not always the spice of life. Many times
users just want to get from point A to point B as quickly as pos-
sible without distractions. If 99% of your market doesn’t care
about being able to save their blog as a .pdf file, don’t build in a
prompt asking them if they’d like to save it as a .pdf. If your
users are interested in converting .wav files to mp3 files, they are
already sold on a loss of fidelity, so don’t distract them with the
ability to convert to lossless compression FLAC files.

Finally we come to the notion of making software complex
to understand for other engineers. Back in the day it was all the
rage, and in fact there were competitions, to create complex
code that would be difficult for others to understand. Sometimes
this complex code would serve a purpose—it would run faster
than code developed by the average engineer. More often than
not the code complexity (in terms of ability to understand what
it was doing due rather than a measure like cyclomatic complex-
ity) would simply be an indication of one’s “brilliance” or mas-
tery of “kung fu.” Medals were handed out for the person who
could develop code that would bring senior developers to tears
of acquiescence within code reviews. Complexity became the
intellectual cage within which geeky code-slingers would battle
for organizational dominance. It was a great game for those
involved, but companies and shareholders were the ones paying
for the tickets for a cage match no one cares about. For those
interested in continuing in the geek fest, but in a “safe room”

4 Chapter 1 Reduce the Equation

away from the potential stakeholder value destruction of doing it
“for real,” we suggest you partake in the International
Obfuscated C Code Contest at www0.us.ioccc.org/main.html.

We should all strive to write code that everyone can under-
stand.The real measure of a great engineer is how quickly that
engineer can simplify a complex problem (see Rule 3) and
develop an easily understood and maintainable solution. Easy to
follow solutions mean that less senior engineers can more quick-
ly come up to speed to support systems. Easy to understand
solutions mean that problems can be found more quickly during
troubleshooting, and systems can be restored to their proper
working order in a faster manner. Easy to follow solutions
increase the scalability of your organization and your solution.

A great test to determine whether something is too complex
is to have the engineer in charge of solving a given complex
problem present his or her solution to several engineering
cohorts within the company.The cohorts should represent dif-
ferent engineering experience levels as well as varying tenures
within the company (we make a difference here because you
might have experienced engineers with very little company
experience).To pass this test, each of the engineering cohorts
should easily understand the solution, and each cohort should be
able to describe the solution, unassisted, to others not otherwise
knowledgeable about the solution. If any cohort does not under-
stand the solution, the team should debate whether the system is
overly complex.

Overengineering is one of the many enemies of scale.
Developing a solution beyond that which is useful simply wastes
money and time. It may further waste processing resources,
increase the cost of scale, and limit the overall scalability of the
system (how far that system can be scaled). Building solutions
that are overly complex has a similar effect. Systems that work
too hard increase your cost and limit your ultimate size. Systems
that make users work too hard limit how quickly you are likely
to increase users and therefore how quickly you will grow your
business. Systems that are too complex to understand kill organi-
zational productivity and the ease with which you can add engi-
neers or add functionality to your system.

5Rule 1—Don’t Overengineer the Solution

www0.us.ioccc.org/main.html

Rule 2—Design Scale into the
Solution (D-I-D Process)

Rule 2: What, When, How, and Why
What: An approach to provide JIT (Just In Time) Scalability.

When to use: On all projects; this approach is the most cost
effective (resources and time) to ensure scalability.

How to use:

n Design for 20x capacity.

n Implement for 3x capacity.

n Deploy for ~1.5x capacity.

Why: D-I-D provides a cost effective, JIT method of scaling your
product.

Key takeaways: Teams can save a lot of money and time by
thinking of how to scale solutions early, implementing (coding)
them a month or so before they are needed, and implementing
them days before the customer rush or demand.

Our firm is focused on helping clients through their scalability
needs, and as you might imagine customers often ask us “When
should we invest in scalability?”The somewhat flippant answer is
that you should invest (and deploy) the day before the solution is
needed. If you could deploy scale improvements the day before
you needed them, you would delay investments to be “just in
time” and gain the benefits that Dell brought to the world
with configure-to-order systems married with just in time
manufacturing. In so doing you would maximize firm profits
and shareholder wealth.

But let’s face it—timing such an investment and deployment
“just in time” is simply impossible, and even if possible it would
incur a great deal of risk if you did not nail the date exactly.The
next best thing to investing and deploying “the day before” is
AKF Partners’ Design-Implement-Deploy or D-I-D approach to
thinking about scalability.These phases match the cognitive
phases with which we are all familiar: starting to think about and
designing a solution to a problem, building or coding a solution

6 Chapter 1 Reduce the Equation

to that problem, and actually installing or deploying the solution
to the problem.This approach does not argue for nor does it
need a waterfall model.We argue that agile methodologies abide
by such a process by the very definition of the need for human
involvement. One cannot develop a solution to a problem of
which they are not aware, and a solution cannot be manufac-
tured or released if it is not developed. Regardless of the devel-
opment methodology (agile, waterfall, hybrid, or whatever),
everything we develop should be based on a set of architectural
principles and standards that define and guide what we do.

Design
We start with the notion that discussing and designing some-
thing is significantly less expensive than actually implementing
that design in code. Given this relatively low cost we can discuss
and sketch out a design for how to scale our platform well in
advance of our need.Whereas we clearly would not want to put
10x, 20x, or 100x more capacity than we would need in our
production environment, the cost of discussing how to scale
something to those dimensions is comparatively small.The focus
then in the (D)esign phase of the D-I-D scale model is on scal-
ing to between 20x and infinity. Our intellectual costs are high
as we employ our “big thinkers” to think through the “big prob-
lems.” Engineering and asset costs, however, are low as we aren’t
writing code or deploying costly systems. Scalability summits, a
process in which groups of leaders and engineers gather to dis-
cuss scale limiting aspects of the product, are a good way to
identify the areas necessary to scale within the design phase of
the D-I-D process.Table 1.1 lists the parts of the D-I-D process.

Table 1.1 D-I-D Process for Scale

Design Implement Deploy

Scale Objective 20x to Infinite 3x to 20x 1.5x to 3x

Intellectual Cost High Medium Low to Medium

Engineering Cost Low High Medium

Asset Cost Low Low to Medium High to Very High

Total Cost Low/Medium Medium Medium

7Rule 2—Design Scale into the Solution (D-I-D Process)

Implement
As time moves on, and as our perceived need for future scale
draws near, we move to (I)mplementing our designs within our
software.We reduce our scope in terms of scale needs to some-
thing that’s more realistic, such as 3x to 20x our current size.We
use “size” here to identify that element of the system that is per-
ceived to be the greatest bottleneck of scale and therefore in the
greatest need of modification for scalability.There may be cases
where the cost of scaling 100x (or greater) our current size is
not different than the cost of scaling 20x, and if this is the case
we might as well make those changes once rather than going in
and making those changes multiple times.This might be the case
if we are going to perform a modulus of our user base to dis-
tribute (or share) them across multiple (N) systems and databas-
es.We might code a variable Cust_MOD that we can configure
over time between 1 (today) and 1,000 (5 years from now).The
engineering (or implementation) cost of such a change really
doesn’t vary with the size of N so we might as well make it.The
cost of these types of changes are high in terms of engineering
time, medium in terms of intellectual time (we already discussed
the designs earlier in our lifecycle), and low in terms of assets as
we don’t need to deploy 100x our systems today if we intend to
deploy a modulus of 1 or 2 in our first phase.

Deployment
The final phase of the D-I-D process is (D)eployment. Using
our modulus example above, we want to deploy our systems in a
just in time fashion; there’s no reason to have idle assets sitting
around diluting shareholder value. Maybe we put 1.5x of our
peak capacity in production if we are a moderately high growth
company and 5x our peak capacity in production if we are a
hyper growth company.We often guide our clients to leverage
the “cloud” for burst capacity so that we don’t have 33% of our
assets waiting around for a sudden increase in user activity.Asset
costs are high in the deployment phase, and other costs range
from low to medium.Total costs tend to be highest for this cate-
gory as to deploy 100x of your necessary capacity relative to
demand would kill many companies. Remember that scale is an

8 Chapter 1 Reduce the Equation

elastic concept; it can both expand and contract, and our solu-
tions should recognize both aspects of scale. Flexibility is there-
fore key as you may need to move capacity around as different
systems within your solution expand and contract to customer
demand.

Referring to Table 1.1, we can see that while each phase of
the D-I-D process has varying intellectual, engineering, and asset
costs, there is a clear progression of overall cost to the company.
Designing and thinking about scale comes relatively cheaply and
thus should happen frequently. Ideally these activities result in
some sort of written documentation so that others can build
upon it quickly should the need arise. Engineering (or develop-
ing) the architected or designed solutions can happen later and
cost a bit more overall, but there is no need to actually imple-
ment them in production.We can roll the code and make small
modifications as in our modulus example above without needing
to purchase 100x the number of systems we have today. Finally
the process lends itself nicely to purchasing equipment just ahead
of our need, which might be a six-week lead time from a major
equipment provider or having one of our systems administrators
run down to the local server store in extreme emergencies.

Rule 3—Simplify the Solution 3
Times Over

Rule 3: What, When, How, and Why
What: Used when designing complex systems, this rule simplifies
the scope, design, and implementation.

When to use: When designing complex systems or products
where resources (engineering or computational) are limited.

How to use:

n Simplify scope using the Pareto Principle.

n Simplify design by thinking about cost effectiveness and
scalability.

n Simplify implementation by leveraging the experience of
others.

9Rule 3—Simplify the Solution 3 Times Over

Why: Focusing just on “not being complex” doesn’t address the
issues created in requirements or story and epoch development
or the actual implementation.

Key takeaways: Simplification needs to happen during every
aspect of product development.

Whereas Rule 1 dealt with avoiding surpassing the “usable”
requirements and eliminating complexity, this rule discusses taking
another pass at simplifying everything from your perception of
your needs through your actual design and implementation. Rule
1 is about fighting against the urge to make something overly
complex, and Rule 3 is about attempting to further simplify the
solution by the methods described herein. Sometimes we tell our
clients to think of this rule as “asking the 3 how’s.” How do I sim-
plify my scope, my design, and my implementation?

How Do I Simplify the Scope?
The answer to this question of simplification is to apply the
Pareto Principle (also known as the 80-20 rule) frequently.What
80% of your benefit is achieved from 20% of the work? In our
case, a direct application is to ask “what 80% of your revenue
will be achieved by 20% of your features.” Doing significantly
less (20% of the work) and achieving significant benefits (80% of
the value) frees up your team to perform other tasks. If you cut
unnecessary features from your product, you can do 5x as much
work, and your product would be significantly less complex!
With 4/5ths fewer features, your system will no doubt have
fewer dependencies between functions and as a result will be
able to scale both more effectively and cost effectively. Moreover,
the 80% of the time that is freed up can be used to both launch
new product offerings as well as invest in thinking ahead to the
future scalability needs of your product.

We’re not alone in our thinking on how to reduce unneces-
sary features while keeping a majority of the benefit.The folks at
37signals are huge proponents of this approach, discussing the
need and opportunity to prune work in both their book
Rework2 and in their blog post titled “You Can Always Do
Less.”3 Indeed, the concept of the “minimum viable product”
popularized by Eric Reis and evangelized by Marty Cagan is

10 Chapter 1 Reduce the Equation

predicated on the notion of maximizing the “amount of validat-
ed learning about customers with the least effort.”4 This “agile”
focused approach allows us to release simple, easily scalable prod-
ucts quickly. In so doing we get greater product throughput in
our organizations (organizational scalability) and can spend addi-
tional time focusing on building the minimal product in a more
scalable fashion. By simplifying our scope we have more compu-
tational power as we are doing less.

How Do I Simplify My Design?
With this new smaller scope, the job of simplifying our imple-
mentation just became easier. Simplifying design is closely
related to the complexity aspect of overengineering. Complexity
elimination is about cutting off unnecessary trips in a job, and sim-
plification is about finding a shorter path. In Rule 1, we gave the
example of only asking a database for that which you need;
select(*) from schema_name.table_name became select

(column) from schema_name.table_name.The approach of
design simplification suggests that we first look to see if we already
have the information being requested within a local shared
resource like local memory. Complexity elimination is about doing
less work, and design simplification is about doing that work faster
and easier.

Imagine a case where we are looking to read some source
data, perform a computation on intermediate tokens from this
source data, and then bundle up these tokens. In many cases,
each of these verbs might be broken into a series of services. In
fact, this approach looks similar to that employed by the popular
“map-reduce” algorithm.This approach isn’t overly complex, so
it doesn’t violate Rule 1. But if we know that files to be read are
small and we don’t need to combine tokens across files, it might
make sense to take the simple path of making this a simple
monolithic application rather than decomposing it into services.
Going back to our timecard example, if the goal is simply to
compute hours for a single individual it makes sense to have
multiple cloned monolithic applications reading a queue of
timecards and performing the computations. Put simply, the step
of design simplification asks us how to get the job done in an
easy to understand, cost-effective, and scalable way.

11Rule 3—Simplify the Solution 3 Times Over

How Do I Simplify My Implementation?
Finally, we get to the question of implementation. Consistent
with Rule 2—the D-I-D Process for Scale, we define an imple-
mentation as the actual coding of a solution.This is where we
get into questions such as whether it makes more sense to solve
a problem with recursion or iteration. Should we define an array
of a certain size, or be prepared to allocate memory dynamically
as we need it? Do I make the solution, open-source the solution,
or buy it? The answers to all these solutions have a consistent
theme:“How can we leverage the experiences of others and
existing solutions to simplify our implementation?”

Given that we can’t be the best at building everything, we
should first look to find widely adopted open source or third-
party solutions to meet our needs. If those don’t exist, we should
look to see if someone within our own organization has devel-
oped a scalable solution to solve the problem. In the absence of a
proprietary solution, we should again look externally to see if
someone has described a scalable approach to solve the problem
that we can legally copy or mimic. Only in the absence of finding
one of these three things should we embark on attempting to
solve the solution ourselves.The simplest implementation is almost
always one that has already been implemented and proven scalable.

Rule 4—Reduce DNS Lookups

Rule 4: What, When, How, and Why
What: Reduce the number of DNS lookups from a user
perspective.

When to use: On all Web pages where performance matters.

How to use: Minimize the number of DNS lookups required to
download pages, but balance this with the browser’s limitation for
simultaneous connections.

Why: DNS lookups take a great deal of time, and large numbers
of them can amount to a large portion of your user experience.

Key takeaways: Reduction of objects, tasks, computation, and so
on is a great way of speeding up page load time, but division of
labor must be considered as well.

12 Chapter 1 Reduce the Equation

As we’ve seen so far in this chapter, reducing is the name of the
game for performance improvements and increased scalability.
A lot of rules are focused on the architecture of the Software as
a Service (SaaS) solution, but for this rule let’s consider your cus-
tomer’s browser. If you use any of the browser level debugging
tools such as Mozilla Firefox’s plug-in Firebug,5 you’ll see some
interesting results when you load a page from your application.
One of the things you will most likely notice is that similarly
sized objects on your page take different amounts of time to
download.As you look closer you’ll see some of these objects
have an additional step at the beginning of their download.This
additional step is the DNS lookup.

The Domain Name System (DNS) is one of the most
important parts of the infrastructure of the Internet or any other
network that utilizes the Internet Protocol Suite (TCP/IP). It
allows the translation from domain name (www.akfpartners.com)
to an IP address (184.72.236.173) and is often analogized to a
phone book. DNS is maintained by a distributed database sys-
tem, the nodes of which are the name servers.The top of the
hierarchy consists of the root name servers. Each domain has at
least one authoritative DNS server that publishes information
about that domain.

This process of translating domains into IP addresses is made
quicker by caching on many levels, including the browser, com-
puter operating system, Internet service provider, and so on.
However, in our world where pages can have hundreds or thou-
sands of objects, many from different domains, small milliseconds
of time can add up to something noticeable to the customer.

Before we go any deeper into our discussion of reducing the
DNS lookups we need to understand at a high level how most
browsers download pages.This isn’t meant to be an in-depth
study of browsers, but understanding the basics will help you
optimize your application’s performance and scalability. Browsers
take advantage of the fact that almost all Web pages are com-
prised of many different objects (images, JavaScript files, css files,
and so on) by having the ability to download multiple objects
through simultaneous connections. Browsers limit the maximum
number of simultaneous persistent connections per server or

13Rule 4—Reduce DNS Lookups

www.akfpartners.com

proxy.According to the HTTP/1.1 RFC6 this maximum should
be set to 2; however, many browsers now ignore this RFC and
have maximums of 6 or more.We’ll talk about how to optimize
your page download time based on this functionality in the next
rule. For now let’s focus on our Web page broken up into many
objects and able to be downloaded through multiple connections.

Every distinct domain that serves one or more objects for a
Web page requires a DNS lookup either from cache or out to a
DNS name server. For example, let’s assume we have a simple
Web page that has four objects: 1) the HTML page itself that
contains text and directives for other objects, 2) a CSS file for
the layout, 3) a JavaScript file for a menu item, and 4) a JPG
image.The HTML comes from our domain (akfpartners.com),
but the CSS and JPG are served from a subdomain (static.akf-
partners.com), and the JavaScript we’ve linked to from Google
(ajax.googleapis.com). In this scenario our browser first receives
the request to go to page www.akfpartners.com, which requires
a DNS lookup of the akfpartners.com domain. Once the
HTML is downloaded the browser parses it and finds that it
needs to download the CSS and JPG both from static.akfpart-
ners.com, which requires another DNS lookup. Finally, the pars-
ing reveals the need for an external JavaScript file from yet
another domain. Depending on the freshness of DNS cache in
our browser, operating system, and so on, this lookup can take
essentially no time up to hundreds of milliseconds. Figure 1.1
shows a graphical representation of this.

As a general rule, the fewer DNS lookups on your pages the
better your page download performance will be.There is a
downside to combining all your objects into a single domain,
and we’ve hinted at the reason in the previous discussion about
maximum simultaneous connects.We explore this topic in more
detail in the next rule.

14 Chapter 1 Reduce the Equation

www.akfpartners.com

1
5

R
ule 4

—
R

educe D
N

S
 Lookups

Figure 1.1 Object download time

Request Time

Legend

http://www.akfpartners.com/
http://static.akfpartners.com/styles.css
http://static.akpartners.com/fish.jpg
http://ajax.googleapis.com/ajax/libs/jquery.min.js

DNS Lookup

TCP Connection

Send Request

Receive Request

50ms 31ms 1ms 3ms

45ms 33ms 1ms 2ms

0ms 38ms 0ms 3ms

15ms 23ms 1ms 1ms

http://www.akfpartners.com/
http://static.akfpartners.com/styles.css
http://static.akpartners.com/fish.jpg
http://ajax.googleapis.com/ajax/libs/jquery.min.js

Rule 5—Reduce Objects Where
Possible

Rule 5: What, When, How, and Why
What: Reduce the number of objects on a page where possible.

When to use: On all web pages where performance matters.

How to use:

n Reduce or combine objects but balance this with maximiz-
ing simultaneous connections.

n Test changes to ensure performance improvements.

Why: The number of objects impacts page download times.

Key takeaways: The balance between objects and methods that
serve them is a science that requires constant measurement
and adjustment; it’s a balance between customer usability,
usefulness, and performance.

Web pages consist of many different objects (HTML, CSS,
images, JavaScript, and so on), which allows our browsers to
download them somewhat independently and often in parallel.
One of the easiest ways to improve Web page performance and
thus increase your scalability (fewer objects to serve per page
means your servers can serve more pages) is to reduce the num-
ber of objects on a page.The biggest offenders on most pages are
graphical objects such as pictures and images.As an example let’s
take a look at Google’s search page (www.google.com), which
by their own admission is minimalist in nature.7 At the time of
writing Google had five objects on the search page: the HTML,
two images, and two JavaScript files. In my very unscientific
experiment the search page loaded in about 300 milliseconds.
Compare this to a client that we were working with in the
online magazine industry, whose home page had more than 200
objects, 145 of which were images and took on average more
than 11 seconds to load.What this client didn’t realize was that
slow page performance was causing them to lose valuable read-
ers. Google published a white paper in 2009 claiming that tests
showed an increase in search latency of 400 milliseconds reduced
their daily searches by almost 0.6%.8

16 Chapter 1 Reduce the Equation

www.google.com

Reducing the number of objects on the page is a great way
to improve performance and scalability, but before you rush off
to remove all your images there are a few other things to con-
sider. First is obviously the important information that you are
trying to convey to your customers.With no images your page
will look like the 1992 W3 Project page, which claimed to be
the first Web page.9 Since you need images and JavaScript and
CSS files, your second consideration might be to combine all
similar objects into a single file.This is not a bad idea, and in fact
there are techniques such as CSS image sprites for this exact
purpose.An image sprite is a combination of small images into
one larger image that can be manipulated with CSS to display
any single individual image.The benefit of this is that the num-
ber of images requested is significantly reduced. Back to our dis-
cussion on the Google search page, one of the two images on
the search page is a sprite that consists of about two dozen
smaller images that can be individually displayed or not.10

So far we’ve covered that reducing the number of objects on
a page will improve performance and scalability, but this must be
balanced with the need for modern looking pages thus requiring
images, CSS, and JavaScript. Next we covered how these can be
combined into a single object to reduce the number of distinct
requests that must be made by the browser to render the page.
Yet another balance to be made is that combining everything
into a single object doesn’t make use of the maximum number
of simultaneous persistent connections per server that we dis-
cussed previously in Rule 3.As a recap this is the browser’s capa-
bility to download multiple objects simultaneously from a single
domain. If everything is in one object, having the capability to
download two or more simultaneous objects doesn’t help. Now
we need to think about breaking these objects back up into a
number of smaller ones that can be downloaded simultaneously.
One final variable to add to the equation is that part above
about simultaneous persistent connections “per server, which
will bring us full circle to our DNS discussion noted in Rule 4.

The simultaneous connection feature of a browser is a limit
ascribed to each domain that is serving the objects. If all objects
on your page come from a single domain (www.akfpartners.
com), then whatever the browser has set as the maximum

17Rule 5—Reduce Objects Where Possible

www.akfpartners.com
www.akfpartners.com

number of connections is the most objects that can be down-
loaded simultaneously.As mentioned previously, this maximum is
suggested to be set at 2, but many browsers by default have
increased this to 6 or more.Therefore, you want your content
(images, CSS, JavaScript, and so on) divided into enough objects
to take advantage of this feature in most browsers. One tech-
nique to really take advantage of this browser feature is to
serve different objects from different subdomains (for example,
static1.akfpartners.com, static2.akfpartners.com, and so on).The
browser considers each of these different domains and allows for
each to have the maximum connects concurrently.The client
that we talked about earlier who was in the online magazine
industry and had an 11-second page load time used this tech-
nique across seven subdomains and was able to reduce the
average load time to less than 5 seconds.

Unfortunately there is not an absolute answer about ideal size
of objects or how many subdomains you should consider.The
key to improving performance and scalability is testing your
pages.There is a balance between necessary content and func-
tionality, object size, rendering time, total download time,
domains, and so on. If you have 100 images on a page, each
50KB, combining them into a single sprite is probably not a
great idea because the page will not be able to display any
images until the entire 4.9MB object downloads.The same con-
cept goes for JavaScript. If you combine all your .js files into
one, your page cannot use any of the JavaScript functions until
the entire file is downloaded.The way to know for sure which is
the best alternative is to test your pages on a variety of browsers
with a variety of ISP connection speeds.

In summary, the fewer the number of objects on a page the
better for performance, but this must be balanced with many
other factors. Included in these factors are the amount of con-
tent that must be displayed, how many objects can be combined,
how to maximize the use of simultaneous connections by adding
domains, the total page weight and whether penalization can
help, and so on.While this rule touches on many Web site per-
formance improvement techniques the real focus is how to
improve performance and thus increase the scalability of your
site through the reduction of objects on the page. Many other

18 Chapter 1 Reduce the Equation

techniques for optimizing performance should be considered,
including loading CSS at the top of the page and JavaScript files
at the bottom, minifying files, and making use of caches, lazy
loading, and so on.

Rule 6—Use Homogenous
Networks

Rule 6: What, When, How, and Why
What: Don’t mix the vendor networking gear.

When to use: When designing or expanding your network.

How to use:

n Do not mix different vendors’ networking gear (switches
and routers).

n Buy best of breed for other networking gear (firewalls, load
balancers, and so on).

Why: Intermittent interoperability and availability issues simply
aren’t worth the potential cost savings.

Key takeaways: Heterogeneous networking gear tends to cause
availability and scalability problems. Choose a single provider.

We are technology agnostic, meaning that we believe almost any
technology can be made to scale when architected and deployed
correctly.This agnosticism ranges from programming language
preference to database vendors to hardware.The one caveat to
this is with network gear such as routers and switches.Almost all
the vendors claim that they implement standard protocols (for
example, Internet Control Message Protocol RFC792,11

Routing Information Protocol RFC1058,12 Border Gateway
Protocol RFC427113) that allow for devices from different
vendors to communicate, but many also implement proprietary
protocols such as Cisco’s Enhanced Interior Gateway Routing
Protocol (EIGRP).What we’ve found in our own practice, as
well as with many of our customers, is that each vendor’s inter-
pretation of how to implement a standard is often different.As
an analogy, if you’ve ever developed the user interface for a Web
page and tested it in a couple different browsers such as Internet

19Rule 6—Use Homogenous Networks

Explorer, Firefox, and Chrome, you’ve seen firsthand how differ-
ent implementations of standards can be. Now, imagine that
going on inside your network. Mixing Vendor A’s network
devices with Vendor B’s network devices is asking for trouble.

This is not to say that we prefer one vendor over another—
we don’t.As long as they are a “reference-able” standard utilized
by customers larger than you, in terms of network traffic vol-
ume, we don’t have a preference.This rule does not apply to
networking gear such as hubs, load balancers, and firewalls.The
network devices that we care about in terms of homogeneity are
the ones that must communicate to route communication. For
all the other network devices that may or may not be included
in your network such as intrusion detection systems (IDS), fire-
walls, load balancers, and distributed denial of service (DDOS)
protection appliances, we recommend best of breed choices. For
these devices choose the vendor that best serves your needs in
terms of features, reliability, cost, and service.

Summary
This chapter was about making things simpler. Guarding against
complexity (aka overengineering—Rule 1) and simplifying
every step of your product from your initial requirements or sto-
ries through the final implementation (Rule 3) gives us products
that are easy to understand from an engineering perspective and
therefore easy to scale. By thinking about scale early (Rule 2)
even if we don’t implement it, we can have solutions ready on
demand for our business. Rules 4 and 5 teach us to reduce the
work we force browsers to do by reducing the number of
objects and DNS lookups we must make to download those
objects. Rule 6 teaches us to keep our networks simple and
homogenous to decrease the chances of scale and availability
problems associated with mixed networking gear.

20 Chapter 1 Reduce the Equation

Endnotes
1. Wikipedia, “Overengineering,” http://en.wikipedia.org/wiki/

Overengineering.

2. Jason Fried and David Heinemeier Hansson, Rework (New York:

Crown Business, 2010).

3. 37Signals, “You Can Always Do Less,” Signal vs. Noise blog,

January 14, 2010, http://37signals.com/svn/posts/2106-you-can-

always-do-less.

4. Wikipedia, “Minimum Viable Product,” http://en.wikipedia.org/wiki/

Minimum_viable_product.

5. To get or install Firebug, go to http://getfirebug.com/.

6. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, Network Working Group Request for Comments

2616, “Hypertext Transfer Protocol—HTTP/1.1,” June 1999,

www.ietf.org/rfc/rfc2616.txt.

7. The Official Google Blog, “A Spring Metamorphosis—Google’s New

Look,” May 5, 2010, http://googleblog.blogspot.com/2010/05/

spring-metamorphosis-googles-new-look.html.

8. Jake Brutlag, “Speed Matters for Google Web Search,” Google, Inc.,

June 2009, http://code.google.com/speed/files/delayexp.pdf.

9. World Wide Web, www.w3.org/History/19921103-hypertext/

hypertext/WWW/TheProject.html.

10. Google.com, www.google.com/images/srpr/nav_logo14.png.

11. J. Postel, Network Working Group Request for Comments 792,

“Internet Control Message Protocol,” September 1981, http://tools.

ietf.org/html/rfc792.

12. C. Hedrick, Network Working Group Request for Comments 1058,

“Routing Information Protocol,” June 1988, http://tools.ietf.org/

html/rfc1058.

13. Y. Rekhter, T. Li, and S. Hares, eds., Network Working Group Request

for Comments 4271, “A Border Gateway Protocol 4 (BGP-4), January

2006, http://tools.ietf.org/html/rfc4271.

21Endnotes

www.ietf.org/rfc/rfc2616.txt
http://googleblog.blogspot.com/2010/05/spring-metamorphosis-googles-new-look.html
http://googleblog.blogspot.com/2010/05/spring-metamorphosis-googles-new-look.html
http://code.google.com/speed/files/delayexp.pdf
www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
www.w3.org/History/19921103-hypertext/hypertext/WWW/TheProject.html
www.google.com/images/srpr/nav_logo14.png
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc792
http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/html/rfc4271
http://en.wikipedia.org/wiki/Overengineering
http://en.wikipedia.org/wiki/Overengineering
http://37signals.com/svn/posts/2106-you-can-always-do-less
http://37signals.com/svn/posts/2106-you-can-always-do-less
http://en.wikipedia.org/wiki/Minimum_viable_product
http://en.wikipedia.org/wiki/Minimum_viable_product
http://getfirebug.com/

This page intentionally left blank

2
Distribute Your Work

When you hear the word distribute you might immediately
think of grid computing—the concept of dividing tasks into
small chunks of work that can be farmed out to two or more
computers, each of which performs a piece of the task necessary
for the final answer. If you’re interested in that topic, you should
see Chapters 28 and 30 of The Art of Scalability. In this chapter
we discuss how you can distribute your data and application
services across multiple systems to ensure you have the ability to
scale to meet your customer’s demands.

The concept of distributing work can be analogized to paint-
ing a picket fence. Let’s say you and your four friends want to
play baseball but you’ve been tasked with painting the fence
before you can play. If you have 25 pickets (vertical posts) that
you need to paint white and each picket takes 1 minute to paint,
you could complete this task in 25 minutes (give or take for
cleanup and other miscellaneous tasks).Alternatively, your four
buddies could each pick up a paintbrush, instead of lying around
asking you to hurry up, and help paint.With five people painting
1 picket each per minute, you can be done and on your way to
play baseball in a matter of just 5 minutes (25 pickets / 5 people
× 1 picket per person per minute).The lesson learned is the
more you can divide up the work the greater throughput
(work/time) that you can achieve resulting in greater scalability.

This chapter discusses scaling databases and services through
cloning and replication, separating functionality or services, and
splitting similar data sets across storage and application systems.

Utilizing these three approaches, you will be able to scale nearly
any system or database to a level that approaches infinite scalabil-
ity.We use the word approaches here as a bit of a hedge, but in
our experience across more than a hundred companies and
thousands of databases and systems these techniques have yet to
fail.To help visualize these three approaches to scale we employ
the AKF Scale Cube, a diagram we developed to represent these
methods of scaling systems. Figure 2.1 shows the AKF Scale
Cube, which is named after our partnership,AKF Partners.

24 Chapter 2 Distribute Your Work

Figure 2.1 AKF Scale Cube

At the heart of the AKF Scale Cube are three simple axes, each
with an associated rule for scalability.The cube is a great way to
represent the path from minimal scale (lower-left front of the
cube) to near infinite scalability (upper-right back corner of the
cube). Sometimes, it’s easier to see these three axes without the
confined space of the cube. Figure 2.2 shows these three axes
along with their associated rules.We cover each of these three
rules in this chapter.

Split by
service or
data affinity

No splits

Starting Point

X Axis – Horizontal Duplication

Z
Axi

s
–

Lo
ok

up
 o

r F
or

m
ul

ai
c

Spl
its

One,
monolithic data
architecture

Reads on
replicas, writes
on a single
node

No splits

Large
modulus or
hash

Near Infinite Scale

Y Axis – Split
by Function,
Service, or
Resource

25Rule 7—Design to Clone Things (X Axis)

Figure 2.2 Three axes of scale

Rule 8: Y Axis – Split by Function,
Service, or Resource

Rule 9: Z Axis – Lookups or
Formulaic Splits

Rule 7: X Axis – Horizontal
Duplication

Rule 7—Design to Clone Things
(X Axis)

Rule 7: What, When, How, and Why
What: Typically called horizontal scale, this is the duplication of
services or databases to spread transaction load.

When to use:

n Databases with a very high read to write ratio (5:1 or
greater—the higher the better).

n Any system where transaction growth exceeds data growth.

How to use:

n Simply clone services and implement a load balancer.

n For databases, ensure the accessing code understands the
difference between a read and a write.

Why: Allows for fast scale of transactions at the cost of duplicat-
ed data and functionality.

Key takeaways: X axis splits are fast to implement and can allow
for transaction, but not data scalability.

The hardest part of a system to scale is almost always the data-
base or persistent storage tier.The beginning of this problem can
be traced back to Edgar F. Codd’s 1970 paper “A Relational
Model of Data for Large Shared Data Banks”1 which is credited
with introducing the concept of the Relational Database
Management System (RDBMS).Today’s most popular
RDBMSs, such as Oracle, MySQL, and SQL Server, just as the
name implies, allow for relations between data elements.These
relationships can exist within or between tables.The tables of
most On Line Transactional Processing (OLTP) systems are nor-
malized to third normal form,2 where all records of a table have
the same fields, nonkey fields cannot be described by only one
of the keys in a composite key, and all nonkey fields must be
described by the key.Within the table each piece of data is relat-
ed to other pieces of data in that table. Between tables there are
often relationships, known as foreign keys. Most applications
depend on the database to support and enforce these relation-
ships because of its ACID properties (see Table 2.1). Requiring
the database to maintain and enforce these relationships makes
it difficult to split the database without significant engineering
effort.

Table 2.1 ACID Properties of Databases

Property Description

Atomicity All of the operations in the transaction will com-
plete, or none will.

Consistency The database will be in a consistent state when
the transaction begins and ends.

Isolation The transaction will behave as if it is the only
operation being performed upon the database.

Durability Upon completion of the transaction,
the operation will not be reversed.

One technique for scaling databases is to take advantage of the
fact that most applications and databases perform significantly
more reads than writes.A client of ours that handles booking
reservations for customers has on average 400 searches for a
single booking. Each booking is a write and each search a read,

26 Chapter 2 Distribute Your Work

resulting in a 400:1 read to write ratio.This type of system
can be easily scaled by creating read-only copies (or replicas) of
the data

There are a couple ways that you can distribute the read-
copy of your data depending on the time sensitivity of the data.
Time sensitivity is how fresh or completely correct the read-
copy has to be relative to the write copy. Before you scream out
that the data has to be instantly, real time, in sync, and complete-
ly correct across the entire system, take a breath and appreciate
the costs of such a system.While perfectly in sync data is ideal, it
costs…a lot. Furthermore, it doesn’t always give you the return
that you might expect or desire for that cost.

Let’s go back to our client with the reservation system that
has 400 reads for every write.They’re handling reservations for
customers so you would think the data they display to customers
would have to be completely in sync. For starters you’d be keep-
ing 400 sets of data in sync for the 1 piece of data that the cus-
tomer wants to reserve. Second, just because the data is out of
sync with the primary transactional database by 3 or 30 or 90
seconds doesn’t mean that it isn’t correct, just that there is a
chance that it isn’t correct.This client probably has 100,000
pieces of data in their system at any one time and books 10% of
those each day. If those bookings are evenly distributed across
the course of a day they are booking one reservation just about
every second (0.86 sec).All things being equal, the chance of a
customer wanting a particular booking that is already taken by
another customer (assuming a 90 second sync of data) is 0.104%.
Of course even at 0.1% some customers will select a booking
that is already taken, which might not be ideal but can be han-
dled in the application by doing a final check before allowing
the booking to be placed in their cart. Certainly every applica-
tion’s data needs are going to be different, but from this discus-
sion hopefully you will get a sense of how you can push back
on the idea that all data has to be kept in sync in real time.

Now that we’ve covered the time sensitivity, let’s start dis-
cussing the ways to distribute the data. One way is to use a
caching tier in front of the database.An object cache can be used
to read from instead of going back to the application for each
query. Only when the data has been marked expired would the

27Rule 7—Design to Clone Things (X Axis)

application have to query the primary transactional database to
retrieve the data and refresh the cache. Given the availability of
numerous excellent, open source key-value stores that can be
used as object caches, this is a highly recommended first step.

The next step beyond an object cache between the applica-
tion tier and the database tier, is replicating the database. Most
major relational database systems allow for some type of replica-
tion “out of the box.” MySQL implements replication through
the master-slave concept—the master database being the primary
transactional database that gets written to and the slave databases
are read-only copies of the master databases.The master database
keeps track of updates, inserts, deletes, and so on in a binary log.
Each slave requests the binary log from the master and replays
these commands on its database.While this is asynchronous, the
latency between data being updated in the master and then in
the slave can be very low. Often this implementation consists of
several slave databases or read replicas that are configured behind
a load balancer.The application makes a read request to the load
balancer, which passes the request in either a round robin or
least connections manner to a read replica.

We call this type of split an X axis split, and it is represented
on the AKF Scale Cube in Figure 2.1 as the X axis – Horizontal
Duplication.An example that many developers familiar with
hosting Web applications will recognize is on the Web or appli-
cation tier of a system, running multiple servers behind a load
balancer all with the same code.A request comes in to the load
balancer that distributes it to any one of the many Web or appli-
cation servers to fulfill.The great thing about this distributed
model on the application tier is that you can put dozens, hun-
dreds, or even thousands of servers behind load balancers all run-
ning the same code and handling similar requests.

The X axis can be applied to more than just the database.
Web servers and application servers typically can be easily
cloned.This cloning allows the distribution of transactions across
systems evenly for horizontal scale.This cloning of application or
Web services tends to be relatively easy to perform, and allows
us to scale the number of transactions processed. Unfortunately,
it doesn’t really help us when trying to scale the data we must
manipulate to perform these transactions. In memory, caching of

28 Chapter 2 Distribute Your Work

data unique to several customers or unique to disparate functions
might create a bottleneck that keeps us from scaling these servic-
es without significant impact to customer response time.To solve
these memory constraints we’ll look to the Y and Z axes of our
scale cube.

Rule 8—Design to Split Different
Things (Y Axis)

Rule 8: What, When, How, and Why
What: Sometimes referred to as scale through services or
resources, this rule focuses on scaling data sets, transactions,
and engineering teams.

When to use:

n Very large data sets where relations between data are not
necessary.

n Large, complex systems where scaling engineering
resources requires specialization.

How to use:

n Split up actions by using verbs or resources by using
nouns or use a mix.

n Split both the services and the data along the lines
defined by the verb/noun approach.

Why: Allows for efficient scaling of not only transactions, but very
large data sets associated with those transactions.

Key takeaways: Y axis or data/service-oriented splits, allow for
efficient scaling of transactions, large data sets, and can help
with fault isolation.

When you put aside the religious debate around the concepts of
services (SOA) and resources (ROA) oriented architectures and
look deep into their underlying premises, they have at least one
thing in common. Both concepts force architects and engineers
to think in terms of separation of responsibilities within their
architectures.At a high and simple level, they do this through the
concepts of verbs (services) and nouns (resources). Rule 8, and
our second axis of scale, takes the same approach. Put simply,

29Rule 8—Design to Split Different Things (Y Axis)

Rule 8 is about scaling through the separation of distinct and
different functions and data within your site.The simple
approach to Rule 8 tells us to split up our product by either
nouns or verbs or a combination of both nouns and verbs.

Let’s split up our site using the verb approach first. If our site
is a relatively simple ecommerce site, we might break our site
into the necessary verbs of signup, login, search, browse, view,
add-to-cart, and purchase/buy.The data necessary to perform
any one of these transactions can vary significantly from the data
necessary for the other transactions. For instance, while signup
and login might be argued to need the same data, they have
some data that is unique and distinct. Signup, for instance, proba-
bly needs to be capable of checking whether a user’s preferred
ID has been chosen by someone else in the past, while login
might not need to have a complete understanding of every other
user’s ID. Signup likely needs to write a fair amount of data to
some permanent data store, while login is likely a read-intensive
application to validate a user’s credentials. Signup may require
that the user store a fair amount of personally identifiable infor-
mation including credit card numbers, while login does not like-
ly need access to all of this information at the time that a user
would like to establish a login.

The differences and resulting opportunities for this method of
scale become even more apparent when we analyze obviously
distinct functions as is the case between search and login. In the
case of login we are mostly concerned with validating the user’s
credentials and potentially establishing some notion of session
(we’ve chosen the word session rather than state for a reason we
explore in Rule 40). Login is concerned about the user and as a
result needs to cache and interact with data about that user.
Search, on the other hand, is concerned about the hunt for an
item and is most concerned about user intent (vis-à-vis a search
string, query, or search terms typically typed into a search box)
and the items that we have in stock within our catalog of items.
Separating these sets of data allows us to cache more of them
within the confines of memory available on our system and
process transactions faster as a result of higher cache hit ratios.
Separating this data within our backend persistence systems
(such as a database) allows us to dedicate more “in memory”

30 Chapter 2 Distribute Your Work

space within those systems and respond faster to the clients
(application servers) making requests. Both systems respond
faster as a result of better utilization of system resources. Clearly
we can now scale these systems more easily and with less memo-
ry constraints. Moreover, the Y axis adds transaction scalability by
splitting up transactions in the same fashion as Rule 7, the X
axis of scale.

Hold on! What if we want to merge information about the
user and our products such as in the case of recommending
products? Note that we have just added another verb—recom-
mend.This gives us another opportunity to perform a split of our
data and our transactions.We might add a recommendation serv-
ice that asynchronously evaluates past user purchase behavior
with users of similar purchase behaviors.This in turn may popu-
late data in either the login function or the search function for
display to the user when he or she interacts with the system. Or
it can be a separate synchronous call made from the user’s
browser to be displayed in an area dedicated to the result of the
recommend call.

Now how about using nouns to split items? Again, using our
ecommerce example we might identify certain resources upon
which we will ultimately take actions (rather than the verbs that
represent the actions we take).We may decide that our ecom-
merce site is made up of a product catalog, product inventory,
user account information, marketing information, and so on.
Using our noun approach, we may decide to split up our data by
these categories and then define a set of high-level primitives
such as create, read, update, and delete actions on these
primitives.

While Y axis splits are most useful in scaling data sets, they are
also useful in scaling code bases. Because services or resources
are now split, the actions we perform and the code necessary to
perform them are split up as well.This means that very large
engineering teams developing complex systems can become
experts in subsets of those systems and don’t need to worry
about or become experts on every other part of the system.And
of course because we have split up our services, we can also scale
transactions fairly easily.

31Rule 8—Design to Split Different Things (Y Axis)

Rule 9—Design to Split Similar
Things (Z Axis)

Rule 9: What, When, How, and Why
What: This is very often a split by some unique aspect of the
customer such as customer ID, name, geography, and so on.

When to use: Very large, similar data sets such as large and rap-
idly growing customer bases.

How to use: Identify something you know about the customer,
such as customer ID, last name, geography, or device and split or
partition both data and services based on that attribute.

Why: Rapid customer growth exceeds other forms of data growth
or you have the need to perform fault isolation between certain
customer groups as you scale.

Key takeaways: Z axis splits are effective at helping you to scale
customer bases but can also be applied to other very large data
sets that can’t be pulled apart using the Y axis methodology.

Often referred to as sharding and podding, Rule 9 is about taking
one data set or service and partitioning it into several pieces.
These pieces are often equal sized but may be of different sizes if
there is value in having several unequal sized chunks or shards.
One reason to have unequal sized shards is to enable application
rollouts that limit your risk by affecting first a small customer
segment, and then increasingly large segments of customers as
you feel you have identified and resolved major problems.

Often sharding is accomplished by separating something we
know about the requestor or customer. Let’s say that we are a
timecard and attendance tracking software as a service provider.
We are responsible for tracking the time and attendance for
employees for each of our clients who are in turn enterprise
class customers with more than 1,000 employees each.We might
determine that we can easily partition or shard our solution by
company, meaning that each company could have its own dedi-
cated Web, application, and database servers. Given that we also
want to leverage the cost efficiencies enabled by multitenancy,
we also want to have multiple small companies exist within a
single shard. Really big companies with many employees might

32 Chapter 2 Distribute Your Work

get dedicated hardware, while smaller companies with fewer
employees cohabit within a larger number of shards.We have
leveraged the fact that there is a relationship between employees
and companies to create scalable partitions of systems that allow
us to employ smaller, cost-effective hardware and scale horizon-
tally (we discuss horizontal scale further in Rule 10).

Maybe we are a provider of advertising services for mobile
phones. In this case, we very likely know something about the
end user’s device and carrier. Both of these create compelling
characteristics by which we can partition our data. If we are an
ecommerce player, we might split users by their geography to
make more efficient use of our available inventory in distribu-
tion centers. Or maybe we create partitions of data that allow us
to evenly distribute users based on the recency, frequency, and
monetization of their purchases. Or, if all else fails, maybe we
just use some modulus or hash of a user identification (userid)
number that we’ve assigned the user at signup.

Why would we ever decide to partition similar things? For
hyper growth companies, the answer is easy.The speed with
which we can answer any request is at least partially determined
by the cache hit ratio of near and distant caches.This speed in
turn indicates how many transactions we can process on any
given system, which in turn determines how many systems we
need to process a number of requests. In the extreme case, with-
out partitioning of data, our transactions might become agoniz-
ingly slow as we attempt to traverse huge amounts of monolithic
data to come to a single answer for a single user.Where speed is
paramount and the data to answer any request is large, designing
to split different things (Rule 8) and similar things (Rule 9)
become necessities.

Splitting similar things obviously isn’t just limited to cus-
tomers, but customers are the most often and easiest implemen-
tation of Rule 9 within our consulting practice. Sometimes we
recommend splitting product catalogs for instance. But when we
split diverse catalogs into items such as lawn chairs and diapers,
we often categorize these as splits of different things.We’ve also
helped clients shard their systems by splitting along a modulus or
hash of a transaction ID. In these cases, we really don’t know
anything about the requestor, but we do have a monotonically

33Rule 9—Design to Split Similar Things (Z Axis)

increasing number upon which we can act.These types of splits
can be performed on systems that log transactions for future
reference as in a system designed to retain errors for future
evaluation.

Summary
We maintain that three simple rules can help you scale nearly
everything.There are undoubtedly more ways to scale systems
and platforms, but armed with these three rules, few if any scale
related problems will stand in your way:

n Scale by cloning—Cloning or duplicating data and serv-
ices allows you to scale transactions easily.

n Scale by splitting different things—Use nouns or
verbs to identify data and services to separate. If done
properly, both transactions and data sets can be scaled
efficiently.

n Scale by splitting similar things—Typically these are
customer data sets. Set customers up into unique and sepa-
rated shards or swimlanes (see Chapter 9,“Design for Fault
Tolerance and Graceful Failure,” for swimlane definition) to
enable transaction and data scaling.

Endnotes
1. Edgar F. Codd, “A Relational Model of Data for Large Shared Data

Banks,” 1970, www.eecs.umich.edu/~klefevre/eecs584/Papers/

codd_1970.pdf.

2. Wikipedia, “Third normal form,” http://en.wikipedia.org/wiki/

Third_normal_form.

34 Chapter 2 Distribute Your Work

www.eecs.umich.edu/~klefevre/eecs584/Papers/codd_1970.pdf
www.eecs.umich.edu/~klefevre/eecs584/Papers/codd_1970.pdf
http://en.wikipedia.org/wiki/Third_normal_form
http://en.wikipedia.org/wiki/Third_normal_form

3
Design to Scale Out

Horizontally

Within our practice, we often tell clients that “Scaling up is
failing up.”What does that mean? In our minds, it’s pretty clear:
We believe that within hyper growth environments it is critical
that companies plan to scale in a horizontal fashion through the
segmentation of workloads.The practice or implementation of
that segmentation often looks like one of the approaches we
described in Chapter 2,“Distribute Your Work.”When hyper
growth companies do not scale out, their only option is to buy
bigger and faster systems.When they hit the limitation of the
fastest and biggest system provided by the most costly provider
of the system in question they are in big trouble. Ultimately, this
is what hurt eBay in 1999, and we still see it more than a decade
later in our business and with our clients today.The constraints
and problems with scaling up aren’t only a physical issue. Often
they are caused by a logical contention that bigger and faster
hardware simply can’t solve.This chapter discusses the thoughts
behind why you should design your systems to scale
horizontally, or out, rather than up.

Rule 10: Design Your Solution to
Scale Out—Not Just Up

Rule 10: What, When, How, and Why
What: Scaling out is the duplication of services or databases to
spread transaction load and is the alternative to buying larger
hardware, known as scaling up.

When to use: Any system, service, or database expected to grow
rapidly.

How to use: Use the AKF Scale Cube to determine the correct
split for your environment. Usually the horizontal split (cloning) is
the easiest.

Why: Allows for fast scale of transactions at the cost of duplicat-
ed data and functionality.

Key takeaways: Plan for success and design your systems to
scale out. Don’t get caught in the trap of expecting to scale up
only to find out that you’ve run out of faster and larger systems
to purchase.

What do you do when faced with a rapid growth of customers
and transactions on your systems and you haven’t built them to
scale to multiple servers? Ideally you’d investigate your options
and decide you could either buy a larger server or spend engi-
neering time to enable the software to run on multiple servers.
Having the ability to run your application or database on multi-
ple servers is scaling out. Continuing to run your systems on larg-
er hardware is scaling up. In your analysis, you might come to the
decision through an ROI calculation that it is cheaper to buy
the next larger server rather than spend the engineering
resources required to change the application.While we would
applaud the analytical approach to this decision, for very high-
growth companies and products it’s probably flawed.The reason
is that it likely doesn’t take into account the long-term costs.
Moving from a machine with two 64-bit dual-core processors to
one with four processors will likely cost proportionally exactly
what you get in improved computational resources (~2x).The
fallacy comes in as we continue to purchase larger servers with

36 Chapter 3 Design to Scale Out Horizontally

more processors.This curve of cost to computational processing
is a power law in which the cost begins to increase dispropor-
tionally to the increase in processing power provided by larger
servers (see Rule 11).Assuming that your company continues to
succeed and grow, you will continue to travel up the curve in
costs for bigger systems.While you may budget for technology
refreshes over time, you will be forced to purchase systems at an
incredibly high price point relative to the cheaper systems you
could purchase if you had built to scale horizontally. Overall,
your total capital expenditures increase significantly. Of course
the costs to solve the problem with engineering resources will
also likely increase due to the increased size of the code base and
complexity of the system, but this cost should be linear.Thus
your analysis in the beginning should have resulted in a decision
to spend the time up front changing the code to scale out.

Using an online pricing and configuration utility from one of
the large server vendors, the graph in Figure 3.1 shows the cost
of seven servers each configured as closely as possible to one
another (RAM, disk, and so on) except for the increasing num-
ber of processors and cores per processor.Admittedly the com-
putational resource from two dual-core processors is not exactly
equivalent to a single quad-core, but for this cost comparison it
is close enough. Notice the exponential trend line that fits the
data points.

37Rule 10: Design Your Solution to Scale Out—Not Just Up

Figure 3.1 Cost per core

Total Number of Cores

160

140

120

100

80

60

40

20

0

0 5 10 15 20 25 30 35

C
o

st
 in

 0
00

’s

In our experience with more than a hundred clients, this type of
analysis almost always results in the decision to modify the code
or database to scale out instead of up.That’s why it’s an AKF
Partners’ belief that scaling up is failing up. Eventually you will
get to a point that either the cost becomes uneconomical or
there is no bigger hardware made. For example, we had a client
who did have some ability to split their customers onto different
systems but continued to scale up with their database hardware.
They eventually topped out with six of the largest servers made
by their preferred hardware vendor. Each of these systems cost
more than $3 million, totaling nearly $20 million in hardware
cost. Struggling to continue to scale as their customer demand
increased, they undertook a project to horizontally scale their
databases.They were able to replace each of those large servers
with four much smaller servers costing $350,000 each. In the
end they not only succeeded in continuing to scale for their
customers but realized a savings of almost $10 million.The
company continued to use the old systems until they ultimately
failed with age and could be replaced with newer, smaller
systems at lower cost.

Most applications are either built from the start to allow them
to be run on multiple servers or they can be easily modified to
accommodate this. For most SaaS applications this is as simple as
replicating the code onto multiple application servers and put-
ting them behind a load balancer.The application servers need
not know about each other, but each request gets handled by
whichever server gets sent the request from the load balancer. If
the application has to keep track of state (see Chapter 10,“Avoid
or Distribute State,” for why you will want to eliminate this),
a possible solution is to allow session cookies from the load
balancer to maintain affinity between a customer’s browser and
a particular application server. Once the customer has made the
initial request, whichever server was tasked with responding to
that request will continue to handle that customer until the
session has ended.

For a database to scale out often requires more planning and
engineering work, but as we explained in the beginning this is
almost always effort well spent. In Chapter 2, we covered three

38 Chapter 3 Design to Scale Out Horizontally

ways in which you can scale an application or database.
These are identified on the AKF Scale Cube as X,Y, or Z axis
corresponding to replicating (cloning), splitting different things
(services), and splitting similar things (customers).

“But wait!” you cry.“Intel’s co-founder Gordon Moore
predicted in 1965 that the number of transistors that can be
placed on an integrated circuit will double every two years.”
That’s true. Moore’s Law has amazingly held true for nearly 50
years now.The problem with this is that this “law” cannot hold
true forever, as Gordon Moore admitted in a 2005 interview.1

Additionally, if you are a true hyper growth company you are
growing faster than just doubling customers or transactions every
two years.You might be doubling every quarter. Relying on
Moore’s Law to scale your system, whether it’s your application
or database, is likely to lead to failure.

Rule 11—Use Commodity Systems
(Goldfish Not Thoroughbreds)

Rule 11: What, When, How, and Why
What: Use small, inexpensive systems where possible.

When to use: Use this approach in your production environment
when going through hyper growth.

How to use: Stay away from very large systems in your produc-
tion environment.

Why: Allows for fast, cost-effective growth.

Key takeaways: Build your systems to be capable of relying on
commodity hardware and don’t get caught in the trap of using
high-margin, high-end servers.

Hyper growth can be a lonely place.There’s so much to learn
and so little time to do that learning. But rest assured, if you fol-
low our advice, you’ll have lots of friends—lots of friends that
draw power, create heat, push air, and do useful money making
tasks—computers.And in our world, the world of hyper growth,
we believe that a lot of little low-cost “goldfish” are better than a
few big high-cost “thoroughbreds.”

39Rule 11—Use Commodity Systems (Goldfish Not Thoroughbreds)

One of my favorite lines from an undergraduate calculus
book is “It should be intuitively obvious to the casual observer
that <insert some totally nonobvious statement here>”.This
particular statement left a mark on me, primarily because what
was being discussed was neither intuitive nor obvious to me at
the time. It might not seem obvious that having more of some-
thing, like many more “smaller” computers, is a better solution
than having fewer, larger systems. In fact, more computers proba-
bly means more power, more space, and more cooling.The rea-
son more and smaller is often better than less and bigger is
twofold and described later in this chapter.

Your equipment provider is incented to sell you into his or
her highest margin products. Make no mistake about it, they are
talking to you to make money, and they make the most money
when they sell you the equipment that has the highest or fattest
margin for them.That equipment happens to be the systems that
have the largest number of processors.Why is this so? Many
companies rely on faster, bigger hardware to do their necessary
workloads and are simply unwilling to invest in scaling their
own infrastructure.As such, the equipment manufacturers can
hold these companies hostage with higher prices and achieve
higher margins. But there is an interesting conundrum within
this approach as these faster, bigger machines aren’t really capable
of doing more work compared to an equivalent number of
processors in smaller systems. On a per-CPU basis, there is an
inefficiency that simply hasn’t been solved for in these large
machines.As you add CPUs, each CPU does slightly less work
than it would in a single CPU system (regardless of cores).There
are many reasons for this, including the inefficiency of schedul-
ing algorithms for multiple processors, conflicts with memory
bus access speeds, structural hazards, data hazards, and so on.

Think about what we just said carefully.You are paying more
on a CPU basis, but actually doing less per CPU.You are getting
nailed twice!

When confronted with the previous information, your
providers will likely go through the relatively common first
phase of denial.The wise ones will quickly move on and indi-
cate that your total cost of ownership will go down as the larger
units draw less aggregate power than the smaller units. In fact,

40 Chapter 3 Design to Scale Out Horizontally

they might say, you can work with one of their partners to parti-
tion (or virtualize) the systems to get the benefit of small systems
and lower power drain.This brings us to our second point:We
must do some math.

It might, in fact, be the case that the larger system will draw
less power and save you money.As power costs increase and sys-
tem costs decrease, there is no doubt that there is a “right size”
system for you that maximizes power, system cost, and comput-
ing power. But your vendors aren’t the best source of informa-
tion for this.You should do the math on your own. It is highly
unlikely that you should purchase the largest system available as
that math nearly never works.To figure out what to do with the
vendors’ arguments, let’s break them down into their component
parts.

The math is easy. Look at power cost and unit power con-
sumption as compared to an independent third-party benchmark
on system utilization.We can find the right system for us that
still fits the commodity range (in other words hasn’t been
marked up by the vendor as a high-end system) and maximizes
the intersection of computing power with minimal power and
space requirements.Total cost of ownership, in nearly all cases
and when considering all costs, typically goes down.

On the topic of virtualization, remember that no software
comes for free.There are many reasons to virtualize (or in the old
language domain or partition) systems. But one never virtualizes a
system into four separate domains and ends up with more sys-
tem processing power and throughput than if you had just pur-
chased four systems equivalent to the size of each domain.
Remember that the virtualization software has to use CPU
cycles to run and that it’s getting those cycles from somewhere.
Again, there are many reasons to virtualize, but greater system
capacity in a larger domained system as compared to smaller
equivalently sized systems is a fallacy and is not one of them.

What are the other reasons we might want to use commodity
systems as compared to more costly systems? We are planning to
scale aggressively and there are economies to our rate of scaling.
We can more easily negotiate for commodity systems.While we
might have more of them, it is easier to discard them and work
on them at our leisure than the more expensive systems that will

41Rule 11—Use Commodity Systems (Goldfish Not Thoroughbreds)

demand time.While this may seem counterintuitive, we have
been successful in managing more systems with less staff in the
commodity (goldfish) world than in the costly system (thor-
oughbred) world.We pay less for maintenance on these systems,
can afford more redundancy, and they fail less often due to fewer
parts (CPUs, for example) on a per-unit basis.

And, ultimately, we come to why we call these things “gold-
fish.”At scale, these systems are very inexpensive. If they “die,”
you are probably incented to simply throw them away rather
than investing a lot of time to fix them.“Thoroughbreds” on the
other hand represent a fairly large investment that will take time
to maintain and fix. Ultimately, we prefer to have many little
friends rather than a few big friends.

Rule 12—Scale Out Your Data
Centers

Rule 12: What, When, How, and Why
What: Design your systems to have three or more live data cen-
ters to reduce overall cost, increase availability, and implement
disaster recovery.

When to use: Any rapidly growing business that is considering
adding a disaster recovery (cold site) data center.

How to use: Split up your data to spread across data centers
and spread transaction load across those data centers in a “mul-
tiple live” configuration. Use spare capacity for peak periods of
the year.

Why: The cost of data center failure can be disastrous to your
business. Design to have three or more as the cost is often less
than having two data centers. Make use of idle capacity for peak
periods rather than slowing down your transactions.

Key takeaways: When implementing disaster recovery, lower your
cost of disaster recovery by designing your systems to leverage
three or more live data centers. Use the spare capacity for spiky
demand when necessary.

The data center has become one of the biggest pain points in
scaling for rapidly growing companies.This is because data cen-
ters take a long time to plan and build out and because they are

42 Chapter 3 Design to Scale Out Horizontally

often one of the last things that we think about during periods
of rapid growth.And sometimes that “last thing” that we think
about is the thing that endangers our company most.This rule is
a brief treatment of the “how” and “why” to split up data centers
for rapid growth.

First, let’s review a few basics. For the purposes of fault isola-
tion (which helps create high availability) and transaction
growth, we are going to want to segment our data using both
the Y and Z axes of scale presented in Rules 8 and 9, respective-
ly. For the purposes of high availability and transaction growth,
we are going to want to replicate (or clone) data and services
along the X axis as described in Rule 7. Finally, we are going to
assume that you’ve attempted to apply Rule 40 and that you
either have a stateless system or that you can design around your
stateful needs to allow for multiple data centers. It is this seg-
mentation, replication, and cloning of data and services as well as
statelessness that are the building blocks for us to spread our data
centers across multiple sites and geographies.

If we have sliced our data properly along the Z axis (see Rule
9), we can now potentially locate data closer to the users
requesting that data. If we can slice data while maintaining mul-
titenancy by individual users, we can choose data center loca-
tions that are near our end users. If the “atomic” or “granular”
element is a company, then we might also locate next to the
companies we serve (or at least the largest employee bases of
those companies if it is a large company).

Let’s start with three data centers. Each data center is the
“home” for roughly 33% of our data.We will call these data sets
A, B, and C. Each data set in each data center has its data repli-
cated in halves, 50% going to each peer data center.Assuming a
Z axis split (see Rule 9) and X axis (see Rule 7) replication of
data, 50% of data center A’s customers would exist in data center
B, and 50% would exist in data center C. In the event of any
data center failure, 50% of the data and associated transactions of
the data center that failed will move to its peer data centers. If
data center A fails, 50% of its data and transactions will go to
data center B and 50% to data center C.This approach is depict-
ed in Figure 3.2.The result is that you have 200% of the data
necessary to run the site in aggregate, but each site only contains

43Rule 12—Scale Out Your Data Centers

66% of the necessary data as each site contains the copy for
which it is a master (33% of the data necessary to run the site)
and 50% of the copies of each of the other sites (16.5% of the
data necessary to run the site for a total of an additional 33%).

44 Chapter 3 Design to Scale Out Horizontally

Figure 3.2 Split of data center replication

To see why this configuration is better than the alternative, let’s
look at some math. Implicit in our assumption is that you agree
that you need at least two data centers to stay in business in the
event of a geographically isolated disaster. If we have two data
centers labeled “A” and “B” you might decide to operate 100%
of your traffic out of data center A and leave data center B for a
warm standby. In a hot/cold (or active/passive) configuration
you would need 100% of your computing and network assets in
both data centers to include 100% of your Web and application
servers, 100% of your database servers, and 100% of your net-
work equipment. Power needs would be similar and Internet
connectivity would be similar.You probably keep slightly more
than 100% of the capacity necessary to serve your peak demand
in each location to handle surges in demand. So let’s say that you

Site A
100% A Data
50% B Data
50% C Data

Site C
100% C Data
50% A Data
50% B Data

Site B
100% B Data
50% A Data
50% C Data

A Data

.5 B .5 C

B Data

.5 A .5 C

C Data

.5 B .5 A

keep 110% of your needs in both locations.Anytime you buy
additional servers for one place, you have to buy them for the
next.You may also decide to connect the data centers with your
own dedicated circuits for the purposes of secure replication of
data. Running live out of both sites would help you in the event
of a major catastrophe as only 50% of your transactions would
initially fail until you transfer that traffic to the alternate site,
but it won’t help you from a budget or financial perspective.A
high-level diagram of the data centers may look as depicted in
Figure 3.3.

45Rule 12—Scale Out Your Data Centers

Figure 3.3 Two data center configuration,
“hot and cold” site

But with three live sites, our costs go down.This is because for
all nondatabase systems we only really need 150% of our capaci-
ty in each location to run 100% of our traffic in the event of a
site failure. For databases, we still need 200% of the storage, but
that cost stays with us no matter what approach we use. Power
and facilities consumption should also be at roughly 150% of the
need for a single site, though obviously we will need slightly
more people, and there’s probably slightly more overhead than
150% to handle three sites versus one.The only area that increas-
es disproportionately are the network interconnects as we need
two additional connections (versus 1) for three sites versus two.
Our new data center configuration is shown in Figure 3.4, and
the associated comparative operating costs are listed in Table 3.1.

Site B “Cold Site”:
100% Servers (6)

100% Data and Databases

100% Site Data

Site A “Hot Site”:
100% Servers (6)

100% Data and Databases

100% Site Data

Table 3.1 Cost Comparisons
Site Network Servers Data- Storage Network Site Total
Configuration bases Connections Cost

Single Site 100% 100% 100% 100% 0 100%

2 Site “Hot”
and “Cold” 200% 200% 200% 200% 1 200%

2 Site Live/
Live 200% 200% 200% 200% 1 200%

3 Site Live/

Live/Live 150% 150% 150% 200% 3 ~166%

One great benefit out of such a configuration is the ability to
leverage our idle capacity for the creation of testing zones (such
as load and performance tests) and the ability to leverage these
idle assets during spikes in demand.These spikes can come at
nearly anytime. Perhaps we get some exceptional and unplanned
press, or maybe we just get some incredible viral boost from an
exceptionally well-connected individual or company.The capaci-
ty we have on hand for a disaster starts getting traffic, and we
quickly order additional capacity.Voila!

46 Chapter 3 Design to Scale Out Horizontally

Figure 3.4 Three data center configuration,
three hot sites

Site A
50% Server Capacity
66% Total Site Data

Site C
50% Server Capacity
66% Total Site Data

Site B
50% Server Capacity
66% Total Site Data

A Data.5 B .5 C

C Data.5 A .5 BB Data.5 A .5 C

As we’ve hinted, running three or more sites comes with cer-
tain drawbacks.While the team gains confidence that each site
will work as all of them are live, there is some additional opera-
tional complexity in running three sites.We believe that, while
some additional complexity exists, it is not significantly greater
than attempting to run a hot and cold site. Keeping two sites in
sync is tough, especially when the team likely doesn’t get many
opportunities to prove that one of the two sites would actually
work if needed. Constantly running three sites is a bit tougher,
but not significantly so.

Network transit costs also increase at a fairly rapid pace even
as other costs ultimately decline. For a fully connected graph of
sites, each new site (N+1) requires N additional connections
where N is the previous number of sites. Companies that handle
this cost well typically negotiate for volume discounts and play
third-party transit providers off of each other for reduced cost.

Finally, we expect to see an increase in employee and
employee related costs with a multiple live site model. If our
sites are large, we may decide to collocate employees near the
sites rather than relying on remote-hands work. Even without
employees on site, we will likely need to travel to the sites from
time to time to validate setups, work with third-party providers,
and so on.The “Multiple Live Site Considerations” sidebar sum-
marizes the benefits, drawbacks, and architectural considerations
of a multiple live site implementation.

Multiple Live Site Considerations
Multiple live site benefits include

n Higher availability as compared to a hot and cold site con-
figuration

n Lower costs compared to a hot and cold site configuration

n Faster customer response times if customers are routed to
the closest data center for dynamic calls

n Greater flexibility in rolling out products in a SaaS environ-
ment

n Greater confidence in operations versus a hot and cold site
configuration

n Fast and easy “on-demand” growth for spikes using spare
capacity in each data center

47Rule 12—Scale Out Your Data Centers

Drawbacks or concerns of a multiple live site configuration
include

n Greater operational complexity

n Likely a small increase in head count

n Increase in travel and network costs

Architectural considerations in moving to a multiple live site envi-
ronment include

n Eliminate the need for state and affinity wherever possible

n Route customers to closest data center if possible to
reduce dynamic call times

n Investigate replication technologies for databases and
state if necessary

Rule 13—Design to Leverage
the Cloud

Rule 13: What, When, How, and Why
What: This is the purposeful utilization of cloud technologies to
scale on demand.

When to use: When demand is temporary, spiky, and inconsistent
and when response time is not a core issue in the product.

How to use:

n Make use of third-party cloud environments for temporary
demands, such as large batch jobs or QA environments
during testing cycles.

n Design your application to service some requests from a
third-party cloud when demand exceeds a certain peak
level.

Why: Provisioning of hardware in a cloud environment takes a few
minutes as compared to days or weeks for physical servers in
your own collocation facility. When utilized temporarily this is also
very cost effective.

Key takeaways: Design to leverage virtualization and the cloud to
meet unexpected spiky demand.

48 Chapter 3 Design to Scale Out Horizontally

Cloud computing is part of the infrastructure as a service
offering provided by many vendors such as Amazon.com,
Inc., Google, Inc., Hewlett-Packard Company, and Microsoft
Corporation.Vendor-provided clouds have four primary charac-
teristics: pay by usage, scale on demand, multiple tenants, and
virtualization.Third-party clouds are generally comprised of
many physical servers that run a hypervisor software allowing
them to emulate smaller servers that are called virtual. For exam-
ple, an eight processor machine with 32GB of RAM might
be divided into four machines each allowed to utilize two
processors and 8GB of RAM.

Customers are allowed to spin up or start using one of these
virtual servers and are typically charged by how long they use it.
Pricing is different for each of the vendors providing these serv-
ices, but typically the break-even point for utilizing a virtual
server versus purchasing a physical server is around 12 months.
This means that if you are utilizing the server 24 hours a day for
12 months you will exceed the cost of purchasing the physical
server.Where the cost savings arise is that these virtual servers
can be started and stopped on demand.Thus, if you only need
this server for 6 hours per day for batch processing, your break-
even point is extended for upward of 48 months.

While cost is certainly an important factor in your decision
to use a cloud, another distinct advantage of the cloud is that
provisioning of the hardware typically takes minutes as compared
to days or weeks with physical hardware.The approval process
required in your company for additional hardware, the steps of
ordering, receiving, racking, and loading a server, can easily take
weeks. In a cloud environment, additional servers can be brought
into service in minutes.

The two ideal ways that we’ve seen companies make use of
third-party cloud environments is when demand is either tem-
porary or inconsistent.Temporary demand can come in the form
of nightly batch jobs that need intensive computational resources
for a couple of hours or from QA cycles that occur for a couple
days each month when testing the next release. Inconsistent
demand can come in the form of promotions or seasonality such
as “Cyber Monday.”

49Rule 13—Design to Leverage the Cloud

One of our clients makes great use of a third-party cloud
environment each night when they process the day’s worth of
data into their data warehouse.They spin up hundreds of virtual
instances, process the data, and then shut them down ensuring
they only pay for the amount of computational resources that
they need.Another of our clients uses virtual instances for their
QA engineers.They build a machine image of the software ver-
sion to be tested and then as QA engineers need a new environ-
ment or refreshed environment, they allocate a new virtual
instance. By utilizing virtual instances for their QA environment,
the dozens of testing servers don’t remain unused the majority
of the time.Yet another of our clients utilizes a cloud environ-
ment for ad serving when their demand exceeds a certain point.
By synchronizing a data store every few minutes, the ads served
from the cloud are nearly as up to date as those served from the
collocation facility.This particular application can handle a slight
delay in the synchronization of data because serving an ad when
requested, even if not the absolutely best one, is still much better
than not serving the ad because of scaling issues.

Think about your system and what parts are most ideally
suited for a cloud environment. Often there are components,
such as batch processing, testing environments, or surge capacity,
that make sense to put in a cloud. Cloud environments allow for
scaling on demand with very short notice.

Summary
While scaling up is an appropriate choice for slow to moderate
growth companies, those companies whose growth consistently
exceeds Moore’s Law will find themselves hitting the computa-
tional capacity limits of high-end, very expensive systems with
little notice. Nearly all the high-profile services failures about
which we’ve all read have been a result of products simply out-
growing their “britches.”We believe it is always wise to plan to
scale out early such that when the demand comes, you can easily
split up systems. Follow our rules of scaling out both your sys-
tems and your data centers, leveraging the cloud for unexpected
demand and relying on inexpensive commodity hardware and
you will be ready for hyper growth when it comes!

50 Chapter 3 Design to Scale Out Horizontally

Endnotes
1. Manek Dubash, “Moore’s Law is dead, says Gordon Moore,”

TechWorld, April 13, 2005, www.techworld.com/opsys/news/

index.cfm?NewsID=3477.

51Endnotes

www.techworld.com/opsys/news/index.cfm?NewsID=3477
www.techworld.com/opsys/news/index.cfm?NewsID=3477

This page intentionally left blank

4
Use the Right Tools

You may never have heard of Abraham Maslow, but there is a
good chance that you know of his “law of the instrument,” oth-
erwise known as Maslow’s hammer. Paraphrased, it goes some-
thing like “When all you have is a hammer, everything looks like
a nail.”There are at least two important implications of this
“law.”

The first is that we all tend to use instruments or tools with
which we are familiar in solving the problems before us. If you
are a C programmer, you will likely try to solve a problem or
implement requirements within C. If you are a DBA, there is a
good chance that you’ll think in terms of how to use a database
to solve a given problem. If your job is to maintain a third-party
ecommerce package, you might try to solve nearly any problem
using that package rather than simpler solutions that might
require a two to three line interpreted shell script.

The second implication of this law really builds on the first.
If, within our organizations we consistently bring in people of
similar skill sets to solve problems or implement new products,
we will very likely get consistent answers built with similar tools
and third-party products.The problem with such an approach is
that while it has the benefit of predictability and consistency, it
may very well drive us to use tools or solutions that are inappro-
priate or suboptimal for our task. Let’s imagine we have a bro-
ken sink. Given Maslow’s hammer, we would beat on it with our
hammer and likely cause further damage. Extending this to our
topic of scalability, why would we want to use a database when

just writing to a file might be a better solution? Why would we
want to implement a firewall if we are only going to block cer-
tain ports and we have that ability within our routers? Let’s look
at a few scalability related “tools rules.”

Rule 14—Use Databases
Appropriately

Rule 14: What, When, How, and Why
What: Use relational databases when you need ACID properties
to maintain relationships between your data. For other data stor-
age needs consider more appropriate tools.

When to use: When you are introducing new data or data struc-
tures into the architecture of a system.

How to use: Consider the data volume, amount of storage,
response time requirements, relationships, and other factors to
choose the most appropriate storage tool.

Why: An RDBMS provides great transactional integrity but is more
difficult to scale, costs more, and has lower availability than many
other storage options.

Key takeaways: Use the right storage tool for your data. Don’t
get lured into sticking everything in a relational database just
because you are comfortable accessing data in a database.

Relational database management systems (RDBMSs), such as
Oracle and MySQL, are based on the relational model intro-
duced by Edgar F. Codd in his 1970 paper “A Relational Model
of Data for Large Shared Data Banks.” Most RDBMSs provide
two huge benefits for storing data.The first is the guarantee of
transactional integrity through ACID properties, see Table 2.1 in
Chapter 2,“Distribute Your Work,” for definitions.The second is
the relational structure within and between tables.To minimize
data redundancy and improve transaction processing, the tables
of most Online Transaction Processing databases (OLTP) are
normalized to Third Normal Form, where all records of a table
have the same fields, nonkey fields cannot be described by only
one of the keys in a composite key, and all nonkey fields must
be described by the key.Within the table each piece of data is

54 Chapter 4 Use the Right Tools

highly related to other pieces of data. Between tables there are
often relationships known as foreign keys.While these are two of
the major benefits of using an RDBMS, these are also the reason
for their limitations in terms of scalability.

Because of this guarantee of ACID properties, an RDBMS
can be more challenging to scale than other data stores.When
you guarantee consistency of data and you have multiple nodes
in your RDBMS cluster, such as with MySQL NDB, synchro-
nous replication is used to guarantee that data is written to mul-
tiple nodes upon committing the data.With Oracle RAC there
is a central database, but ownership of areas of the DB are shared
among the nodes so write requests have to transfer ownership to
that node and reads have to hop from requestor to master to
owner and back. Eventually you are limited by the number of
nodes that data can be synchronously replicated to or by their
physical geographical location.

The relational structure within and between tables in the
RDBMS makes it difficult to split the database through such
actions as sharding or partitioning. See Chapter 2 for rules relat-
ed to distributing work across multiple machines.A simple query
that joined two tables in a single database must be converted
into two separate queries with the joining of the data taking
place in the application to split tables into different databases.

The bottom line is that data that requires transactional
integrity or relationships with other data are likely ideal for an
RDBMS. Data that requires neither relationships with other data
nor transactional integrity might be better suited for other stor-
age systems. Let’s talk briefly about a few of the alternative stor-
age solutions and how they might be used in place of a database
for some purposes to achieve better, more cost-effective, and
more scalable results.

One often overlooked storage system is a file system. Perhaps
this is thought of as unsophisticated because most of us started
programming by accessing data in files rather than databases.
Once we graduated to storing and retrieving data from a data-
base we never looked back. File systems have come a long way,
and many are specifically designed to handle very large amounts
of files and data. Some of these include Google File System
(GFS), MogileFS, and Ceph. File systems are great alternatives

55Rule 14—Use Databases Appropriately

when you have a “write once-read many” system. Put another
way, if you don’t expect to have conflicting reads and writes over
time on a structure or object and you don’t need to maintain a
great deal of relationships, you don’t really need the transactional
overhead of a database; file systems are a great choice for this
kind of work.

The next set of alternative storage strategies is termed
NoSQL.Technologies that fall into this category are often
subdivided into key-value stores, extensible record stores, and
document stores.There is no universally agreed classification of
technologies, and many of them could accurately be placed in
multiple categories.We’ve included some example technologies
in the following descriptions, but this is not to be considered
gospel. Given the speed of development on many of these proj-
ects, the classifications are likely to become even more blurred in
the future.

Key-value stores include technologies such as Memcached,
Tokyo Tyrant, and Voldemort.These products have a single key-
value index for data and that is stored in memory. Some have
the capability to write to disk for persistent storage. Some prod-
ucts in this subcategory use synchronous replication across nodes
while others are asynchronous.These offer significant scaling and
performance by utilizing a simplistic data store model, the key-
value pair, but this is also a significant limitation in terms of
what data can be stored.Additionally, the key-value stores that
rely on synchronous replication still face the limitations that
RDBMS clusters do, which are a limit on the number of nodes
and their geographical locations.

Extensible record stores include technologies such as
Google’s proprietary BigTable and Facebook’s, now open source,
Cassandra.These products use a row and column data model
that can be split across nodes. Rows are split or sharded on
primary keys, and columns are broken into groups and placed on
different nodes.This method of scaling is similar to the X and Y
axes in the AKF Scale Cube, shown in Figure 2.1 in Chapter 2,
where the X axis split is read replicas, and the Y axis is separating
the tables by services supported. In these products row sharding

56 Chapter 4 Use the Right Tools

is done automatically, but column splitting requires user defini-
tions, similar to how it is performed in an RDBMS.These
products utilize an asynchronous replication providing eventual
consistency.This means that eventually, which may take millisec-
onds or hours, the data will become consistent across all nodes.

Document stores include technologies such as CouchDB,
Amazon’s SimpleDB, and Yahoo’s PNUTS.The data model used
in this category is called a “document” but is more accurately
described as a multi-indexed object model.The multi-indexed
object (or “document”) can be aggregated into collections of
multi-indexed objects (typically called “domains”).These collec-
tions or “domains” in turn can be queried on many different
attributes. Document store technologies do not support ACID
properties; instead, they utilize asynchronous replication, provid-
ing an eventually consistent model.

NoSQL solutions limit the number of relationships between
objects or entities to a small number. It is this reduction of rela-
tionships that allows for the systems to be distributed across
many nodes and achieve greater scalability while maintaining
transactional integrity and read-write conflict resolution.

As is so often the case, and as you’ve probably determined
reading the preceding text, there is a tradeoff between scalability
and flexibility within these systems.The degree of relationship
between data entities ultimately drives this tradeoff; as relation-
ships increase, flexibility also increases.This flexibility comes at
an increase in cost and a decrease in the ability to easily scale the
system. Figure 4.1 plots RDBMS, NoSQL, and file systems solu-
tions against both the costs (and limits) to scale the system and
the degree to which relationships are used between data entities.
Figure 4.2 plots flexibility against the degree of relationships
allowed within the system.The result is clear: Relationships
engender flexibility but also create limits to our scale.As such,
we do not want to overuse relational databases but rather choose
a tool appropriate to the task at hand to engender greater scala-
bility of our system.

57Rule 14—Use Databases Appropriately

58 Chapter 4 Use the Right Tools

Figure 4.1 Cost and limits to scale versus
relationships

C
o

st
 o

f
S

ca
le

 –
 L

im
it

s
to

 S
ca

le

Embedded Relationships

NoSQL

RDBMSHigh

High

Low

Low

File Systems

Figure 4.2 Flexibility versus relationships

F
le

xi
b

ili
ty

Embedded Relationships

NoSQL

RDBMSHigh

High

Low

Low

File Systems

Another data storage alternative that we are going to cover in
this rule is Google’s MapReduce.1 At a high level, MapReduce
has both a Map and a Reduce function.The Map function takes
a key-value pair as input and produces an intermediate key-value
pair.The input key might be the name of a document or pointer
to a piece of a document.The value could be content consisting
of all the words within the document itself.This output is fed
into a reducer function that uses a program that groups the
words or parts and appends the values for each into a list.This is
a rather trivial program that sorts and groups the functions by
key.The huge benefit of this technology is the support of dis-
tributed computing of very large data sets across many servers.

An example technology that combines two of our data
storage alternatives is Apache’s Hadoop.This was inspired by
Google’s MapReduce and Google File System, both of which
are described previously. Hadoop provides benefits of both a
highly scalable file system with distributed processing for storage
and retrieval of the data.

So now that we’ve covered a few of the many options that
might be preferable to a database when storing data, what data
characteristics should you consider when making this decision?
As with the myriad of options available for storage, there are
numerous characteristics that should be considered.A few of the
most important ones are the number of degree of relationships
needed between elements, the rate of growth of the solution,
and the ratio of reads to writes of the data (and potentially
whether data is updated). Finally we are interested in how well
the data monetizes (that is, is it profitable?) as we don’t want our
cost of the system to exceed the value we expect to achieve
from it.

The degree of relationships between data is important as it
drives flexibility, cost, and time of development of a solution.
As an example, imagine the difficulty of storing a transaction
involving a user’s profile, payment, purchase, and so on, in a key-
value store and then retrieving the information piecemeal such
as through a report of purchased items.While you can certainly

59Rule 14—Use Databases Appropriately

do this with a file system or NoSQL alternative, it may be
costly to develop and time consuming in delivering results back
to a user.

The expected rate of growth is important for a number of
reasons. Ultimately this rate impacts the cost of the system and
the response times we would expect for some users. If a high
degree of relationships are required between data entities, at
some point we will run out of hardware and processing capacity
to support a single integrated database, driving us to split the
databases into multiple instances.

Read and write ratios are important as they help drive an
understanding of what kind of system we need. Data that is
written once and read many times can easily be put on a file
system coupled with some sort of application, file, or object
cache. Images are great examples of systems that typically can be
put on file systems. Data that is written and then updated, or
with high write to read ratios, are better off within NoSQL or
RDBMS solutions.

These considerations bring us to another cube, Figure 4.3,
where we’ve plotted the three considerations against each other.
Note that as the X,Y, and Z axes increase in value, so does the
cost of the ultimate solution increase.Where we require a high
degree of relationships between systems (upper right and back
portion of Figure 4.3), rapid growth, and resolution of read and
write conflicts we are likely tied to several smaller RDBMS sys-
tems at relatively high cost in both our development and the
systems, maintenance, and possibly licenses for the databases. If
growth and size are small but relationships remain high and we
need to resolve read and write conflict, we can use a single
monolithic database (with high availability clustering).

60 Chapter 4 Use the Right Tools

61Rule 14—Use Databases Appropriately

Figure 4.3 Solution decision cube

Relaxing relationships slightly allows us to use NoSQL alterna-
tives at any level of reads and writes and with nearly any level of
growth. Here again we see the degree to which relationships
drive our cost and complexity, a topic we explore later in
Chapter 8,“Database Rules.” Cost is lower for these NoSQL
alternatives. Finally, where relationship needs are low and read-
write conflict is not a concern we can get into low-cost file sys-
tems to provide our solutions.

Monetization value of the data is critical to understand
because as many struggling startups have experienced, storing
terabytes of user data for free on class A storage is a quick way to
run out of capital.A much better approach might be using tiers
of data storage; as the data ages in terms of access date, continue
to push it off to cheaper and slower access storage media.We call
this the Cost-Value Data Dilemma, which is where the value of
data decreases over time and the cost of keeping it increases over
time.We discuss this dilemma more in Rule 47 and describe
how to solve the dilemma cost effectively.

High

Low

Read/Write Conflict

Rel
at

io
ns

hi
ps

Low High
Low

High

Many Small RDBMS –
Very High Cost
and Effort

Monolithic DB

NoSQL Solutions –
Moderate Cost

Rate of Growth

File Systems – Low Cost

Rule 15—Firewalls, Firewalls
Everywhere!

Rule 15: What, When, How, and Why
What: Use firewalls only when they significantly reduce risk and
recognize that they cause issues with scalability and availability.

When to use: Always.

How to use: Employ firewalls for critical PII, PCI compliance, and
so on. Don’t use them for low-value static content.

Why: Firewalls can lower availability and cause unnecessary scal-
ability chokepoints.

Key takeaways: While firewalls are useful, they are often over-
used and represent both an availability and scalability concern if
not designed and implemented properly.

The decision to employ security measures should ultimately be
viewed from the lens of profit maximization. Security in general
is an approach to reduce risk. Risk in turn is a function of both
the probability that an action will happen and the impact or
damage the action causes should it happen. Firewalls help to
manage risk in some cases by reducing the probability that an
event happens.They do so at some additional capital expense,
some impact to availability (and hence either transaction revenue
or customer satisfaction), and often an additional area of concern
for scalability: the creation of a difficult to scale chokepoint in
either network traffic or transaction volume. Unfortunately, far
too many companies view firewalls as an all or nothing approach
to security.They overuse firewalls and underuse other security
approaches that would otherwise make them even more secure.
We can’t understate the impact of firewalls to availability. In our
experience, failed firewalls are the number two driver of site
downtime next to failed databases.As such, this rule is about
reducing them in number. Remember, however, that there are
many other things that you should be doing for security while
you look to eliminate any firewalls that are unnecessary or
simply burdensome.

62 Chapter 4 Use the Right Tools

In our practice, we view firewalls as perimeter security
devices meant to increase both the perceived and actual cost of
gaining entry to a product. In this regard, they serve a similar
purpose as the locks you have on the doors to your house. In
fact, we believe that the house analogy is appropriate to how
one should view firewalls, so we’ll build on that analogy here.

There are several areas of your house that you don’t likely
lock up—for example, you probably don’t lock up your front
yard.You probably also leave certain items of relatively low value
in front of your house, such as hoses and gardening implements.
You may also leave your vehicle outside even though you
know it is more secure in your garage given how quickly most
thieves can bypass vehicle security systems. More than likely
you have locks and maybe deadbolts on your exterior doors
and potentially smaller privacy locks on your bathrooms and
bedrooms. Other rooms of your house, including your closets,
probably don’t have locks on them.Why the differences in our
approaches?

Certain areas outside your house, while valuable to you, sim-
ply aren’t of significant value for someone else to steal them.You
really value your front yard but probably don’t think someone’s
going to come with a shovel and dig it up to replant elsewhere.
You might be concerned with someone riding a bicycle across it
and destroying the grass or the sprinkler head, but that concern
probably doesn’t drive you to incur the additional cost of fenc-
ing it (other than a decorative picket fence) and destroying the
view for both you and others within the neighborhood.

Your interior doors really only have locks for the purpose of
privacy. Most of the interior doors don’t have locks meant to
keep out an interested and motivated intruder.We don’t lock
and deadbolt most of our interior doors because these locks
present more of a hassle to us as occupants of the house, and the
additional hassle really isn’t worth the additional security provid-
ed by such locks.

Now consider your product. Several aspects, such as static
images, .css files, JavaScript, and so on, are important to you but
don’t really need high-end security. In many cases, you likely
look to deliver these attributes via an edge-cache (or content
delivery network) outside your network anyway (see Chapter 6,

63Rule 15—Firewalls, Firewalls Everywhere!

“Use Caching Aggressively”).As such, we shouldn’t subject these
objects to an additional network hop (the firewall), the associated
lower overall availability, and its scale limiting attributes of an
additional network chokepoint.We can save some money and
reduce the load on our firewalls simply by ensuring that these
objects are delivered from private IP addresses and only have
access via port 80 and 443.

Returning to the value and costs of firewalls, let’s explore a
framework by which we might decide when and where to
implement firewalls.We’ve indicated that firewalls cost us in the
following ways:There is a capital cost to purchase the firewall,
they create an additional item that needs to be scaled, and they
represent an impact to our availability as it is one more device
on the critical route of any transaction that can fail and cause
problems.We’ve also indicated that they add value when they are
used to deter or hinder the efforts of those who would want to
steal from us or harm our product.Table 4.1 shows a matrix
indicating some of the key decision criteria for us in implement-
ing firewalls.

Table 4.1 Firewall Implementation Matrix

Value to Cost to Examples Firewall
“Bad Guy” Firewall Decision

Low High css, static images, JavaScript No

Low Medium product catalogs, search services No

Medium Medium critical business functions Maybe

High Low Personally identifiable information Yes
(e.g., social security numbers,
credit cards), password reset
information

The first thing that you might notice is that we’ve represented
value to the bad guy and cost to firewall as having a near inverse
relationship.While this relationship won’t always be true, in
many of our clients’ products it is the case. Static object refer-
ences tend to represent a majority of object requests on a page
and often are the heaviest elements of the pages.As such they
tend to be costly to firewall given the transaction rate and
throughput requirements.They are even more costly when you

64 Chapter 4 Use the Right Tools

consider that they hold very little value to a potential bad guy.
Given the high cost in terms of potential availability impact and
capital relative to the likelihood that they are the focus of a bad
guy’s intentions, it makes little sense for us to invest in their pro-
tection.We’ll just ensure that they are on private IP space (for
example, 10.X.Y.Z addresses or the like) and that the only traffic
that gets to them are requests for ports 80 and 443.

On the flip side we have items like credit cards, bank account
information, and social security numbers.These items have a
high perceived value to our bad guy.They are also less costly to
protect relative to other objects as they tend to be requested less
frequently than many of our objects.We absolutely should lock
these things away!

In the middle are all the other requests that we service within
our platform. It probably doesn’t make a lot of sense to ensure
that every search a user performs goes through a firewall.What
are we protecting? The actual servers themselves? We can protect
our assets well against attacks such as distributed denial of service
attacks with packet filters, routers, and carrier relationships.
Other compromises can be thwarted by limiting the ports that
access these systems. If there isn’t a huge motivation for a bad
guy to go after the services, let’s not spend a lot of money and
decrease our availability by pretending that they are the crown
jewels.

In summation, don’t assume that everything deserves the
same level of protection.The decision to employ firewalls is a
business decision focused on decreasing risk at the cost of
decreasing availability and increasing capital costs.Too many
companies view firewalls as a unary decision—if it exists within
our site it must be firewalled when in fact firewalls are just one
of many tools you might employ to help decrease your risk. Not
everything in your product is likely deserving of the cost and
impact to availability that a firewall represents.As with any other
business decision, this one should be considered in the light of
these tradeoffs, rather than just assuming a cookie-cutter
approach to your implementation. Given the nature of firewalls,
they can easily become the biggest bottleneck from a scale per-
spective for your product.

65Rule 15—Firewalls, Firewalls Everywhere!

Rule 16—Actively Use Log Files

Rule 16: What, When, How, and Why
What: Use your application’s log files to diagnose and prevent
problems.

When to use: Put a process in place that monitors log files and
forces people to take action on issues identified.

How to use: Use any number of monitoring tools from custom
scripts to Splunk to watch your application logs for errors. Export
these and assign resources for identifying and solving the issue.

Why: The log files are excellent sources of information about how
your application is performing for your users; don’t throw this
resource away without using it.

Key takeaways: Make good use of your log files, and you will
have fewer production issues with your system.

In the spirit of using the right tools for the job, one of the tools
that is likely in all our toolboxes but often gets overlooked are
log files. Unless you’ve purposely turned off logging on your
Web or application servers almost all varieties come with error
and access logs.Apache has error and access logs,Tomcat has
java.util.logging or Log4j logs, and Websphere has SystemErr and
SystemOut logs.These logs can be incredibly valuable tools for
providing insights into the performance and problems occurring
within your application that might prevent it from scaling.To
best use this tool there are a few simple but important steps to
follow.

The first step in using log files is to aggregate them.As you
probably have dozens or perhaps even hundreds of servers, you
need to pull this data together to use it. If the amount of data is
too large to pull together there are strategies such as sampling,
pulling data from every nth server, which can be implemented.
Another strategy is to aggregate the logs from a few servers onto
a log server that can then transmit the semi-aggregated logs into
the final aggregation location.As shown in Figure 4.4, dedicated
log servers can aggregate the log data to then be sent to a data
store.This aggregation is generally done through an out-of-band
network that is not the same network used for production

66 Chapter 4 Use the Right Tools

traffic.What we want to avoid is impacting production traffic
from logging, monitoring, or aggregating data.

67Rule 16—Actively Use Log Files

Figure 4.4 Log aggregation

The next step is to monitor these logs. Surprisingly many com-
panies spend the time and computational resources to log and
aggregate but then ignore the data.While you can just use log
files during incidents to help restore service, this isn’t optimal.A
preferred use is to monitor these files with automated tools.This
monitoring can be done through custom scripts such as a simple
shell script that greps the files, counting errors and alerting when
a threshold is exceeded. More sophisticated tools such as Cricket
or Cacti include graphing capabilities.A tool that combines the
aggregation and monitoring of log files is Splunk.

Once you’ve aggregated the logs and monitored them for
errors, the last step is to take action to fix the problems.This
requires assigning engineering and QA resources to identify
common errors as being related to individual problems. It is
often the case that one bug in an application flow can result in
many different error manifestations.The same engineers who

App Server App Server App Server App Server App Server App Server

Customers

Logging/Monitoring Network

Log
DB

Production Network

Log Server Log Server

identified the bug might also get assigned to fix it, or other
engineers might get assigned the task.

We’d like to have the log files completely free of errors, but
we know that’s not always possible.While it’s not uncommon to
have some errors in application log files you should establish a
process that doesn’t allow them to get out of control or ignored.
Some teams periodically, every third or fourth release, clean up
all miscellaneous errors that don’t require immediate actions.
These errors might be something as simple as missing redirect
configurations or not handling known error conditions in the
application.

We must also remember that logging comes at some cost.
Not only is there a cost in keeping additional data, but very
often there is a cost in terms of transaction response times.We
can help mitigate the former by summarizing logs over time and
archiving and purging them as their value decreases (see Rule
47).We can help minimize the former by logging in an asyn-
chronous fashion. Ultimately we must pay attention to our costs
for logging and make a cost-effective decision of both how
much to log and how much data to keep.

Hopefully we’ve convinced you that log files are an impor-
tant tool in your arsenal of debugging and monitoring your
application. By simply using a tool that you likely already
have, you can greatly improve your customer experience and
scalability of your application.

Summary
Using the right tool for the job is important in any discipline.
Just as you wouldn’t want your plumber to bring only a hammer
into your house to fix your pipes, your customers and investors
don’t want you to bring a single tool to solve problems with
diverse characteristics and requirements.Avoid falling prey to
Maslow’s hammer and bring together diverse teams capable
of thinking of different solutions to problems.A final word of
caution on this topic is that each new technology introduced
requires another skill set to support.While the right tool for the
job is important, don’t overspecialize to the point that you have
no depth of skills to support your systems.

68 Chapter 4 Use the Right Tools

Endnotes
1. Jeffrey Dean and Sanjay Ghernawat, “Map Reduce: Simplified Data

Processing on Large Clusters,” Google Research Publications,

http://labs.google.com/papers/mapreduce.html.

69Endnotes

http://labs.google.com/papers/mapreduce.html

This page intentionally left blank

5
Don’t Duplicate

Your Work

No one wants to do the same thing over and over again, unless
perhaps you are a professional musician or athlete. For most of
us, repetitious work is mind numbing, boring, and tedious.The
people who read this book are probably not folks who find per-
sonal fulfillment using a torque wrench to drive in the same five
screws over and over again every day.Yet, surprisingly, many of us
do some seemingly small tasks over and over again to the detri-
ment of the scalability of our platform.The three rules we dis-
cuss in this chapter are the three most common drivers of dupli-
cated work and value defeating requirements that we see in our
consulting practice day in and day out. Some of them might
strike you as obvious or even odd.We entreat you to dig within
your organizations and engineering efforts as we suspect that
you might find some of these value killers lurking about in the
shadows.

Rule 17—Don’t Check Your Work

Rule 17: What, When, How, and Why
What: Avoid checking things you just did or reading things you
just wrote within your products.

When to use: Always (see rule conflict in the following
explanation).

How to use: Never read what you just wrote for the purpose of
validation. Store data in a local or distributed cache if it is
required for operations in the near future.

Why: The cost of validating your work is high relative to the
unlikely cost of failure. Such activities run counter to cost-
effective scaling.

Key takeaways: Never justify reading something you just wrote
for the purposes of validating the data. Read and act upon errors
associated with the write activity instead. Avoid other types of
reads of recently written data by storing that data locally.

Carpenters and woodworkers have an expression:“Measure
twice and cut once.”You might have learned such a phrase from
a high school wood shop teacher—one who might have been
missing a finger. Missing digits aside, the logic behind such a
statement is sound and based on experience through practice. It’s
much better to validate a measurement before making a cut, as a
failed measurement will potentially increase production waste by
creating a useless board of the wrong size.We won’t argue with
such a plan. Instead, we aim to eliminate waste of a different
kind: the writing and subsequent immediate validation of the
just-written data.

We’ve been surprised over the last several years at how often
we find ourselves asking our clients “What do you mean you are
reading and validating something that you just wrote?”
Sometimes clients have a well thought out reason for their
actions, though we have yet to see one with which we agree.
More often than not, the client cops a look that reminds us of a
child who just got caught doing something he or she knew
should not be done.The claims of those with well thought out
(albeit in our opinion value destroying) answers are that their

72 Chapter 5 Don’t Duplicate Your Work

application requires an absolute guarantee that the data not only
be written but also be written correctly. Keep in mind that most
of our clients have SaaS or commerce platforms—they aren’t
running nuclear power facilities, sending people into space,
controlling thousands of passenger-laden planes in flight, or
curing cancer. Fear of failed writes and calculations has long
driven extra effort on the part of many a developer.This fear,
perhaps justified in the dark ages of computing, was at least
partially responsible for the fault-tolerant computer designs
developed by both Tandem and Stratus in the late 1970s and
early 1980s, respectively.The primary driver of these systems was
to reduce mean time to failure (MTTF) within systems through
“redundant everything” including CPUs, storage, memory,
memory paths, storage paths, and so on. Some models of these
computers necessarily compared results of computations and
storage operations along parallel paths to validate that the sys-
tems were working properly. One of the authors of this book
developed applications for an aging Stratus minicomputer, and in
the two years he worked with it, the system never identified a
failure in computation between the two processors, or failure
writes to memory or disk.

Today those fears are much less founded than they were in the
late 1970s through the late 1980s. In fact, when we ask our clients
who first write something and then attempt to immediately read
it how often they find failures, the answer is fairly consistent:
“Never.”And the chances are that unless they fail to act upon an
error returned from a write operation, they will never experience
such an event. Sure, corruption happens from time to time, but in
most cases that corruption is identified during the actual write
operation. Rather than doubling your activities, thereby halving
the number of transactions you can perform on your storage,
databases, and systems, simply look at the error codes returned
from your operations and react accordingly.As a side note here,
the most appropriate protection against corruption is to properly
implement high availability and have multiple copies of data
around such as a standby database or replicated storage (see
Chapter 9,“Design for Fault Tolerance and Graceful Failure”).
Ideally you will ultimately implement multiple live sites (see
Chapter 3,“Design to Scale Out Horizontally,” Rule 12).

73Rule 17—Don’t Check Your Work

Of course not every “write then immediately read” activity is
a result of an overzealous engineer attempting to validate what
he or she has just written. Sometimes it’s the result of an end
user immediately requesting the thing they just wrote.The ques-
tion we ask here is why these clients don’t store frequently used
(including written) data locally? If you just wrote something and
you know you are likely to need it again, just keep it around
locally. One common example of such a need is during a regis-
tration flow for most products.Typically there is a stage at which
one wants to present to the user the data you are about to com-
mit to the permanent registration “record.”Another one might
be the purchase flow embedded within most shopping cart sys-
tems on commerce sites. Regardless of the case, it makes sense to
keep around the information you are writing if it is going to be
needed in the future. Storing and then immediately fetching is
just a wasteful use of system resources. See Chapter 6,“Use
Caching Aggressively,” for more information on how and what
to cache.

The point to which all the preceding paragraphs are leading
up to is that doubling your activity reduces your ability to scale
cost effectively. In fact, it doubles your cost for those transac-
tions. So while you may be engineering a solution to avoid a
couple of million in risk associated with failed writes, you may
be incurring tens of millions of dollars in extra infrastructure to
accomplish it. Rarely, and in our experience never, does this
investment in engineering time and infrastructure overcome the
risk it mitigates. Reading after writing is bad in most cases
because it not only doubles your cost and limits your scalability,
it rarely returns value in risk mitigation commensurate with the
costs.There are no doubt cases where it is warranted, though
those are far fewer in number than justified by many technology
teams and businesses.

The observant reader may have identified a conflict in our
rules. Storing information locally on a system might be indica-
tive of state and certainly requires affinity to the server to be
effective.As such, we’ve violated Rule 40.At a high level, we
agree, and if forced to make a choice we would always develop
a stateless application over ensuring that we don’t have to read

74 Chapter 5 Don’t Duplicate Your Work

what we just wrote.That said, our rules are meant to be nomo-
thetic or “generally true” rather than idiographic or “specifically
true.”You should absolutely try not to duplicate your work and
absolutely try to maintain a largely stateless application.Are these
two statements sometimes in conflict? Yes. Is that conflict resolv-
able? Absolutely!

The way we resolve such a conflict in rules is to take the
30,000 foot approach.We want a system that does not waste
resources (like reading what we just wrote) while we attempt to
be largely stateless for reasons we discuss in Chapter 10,“Avoid
or Distribute State.”To do this, we decide to never read for the
sake of validation.We also agree that there are times when we
might desire affinity for speed and scale versus reading what we
just wrote.This means maintaining some notion of state, but we
limit these to transactions where it is necessary for us to read
something that we just wrote.While this approach causes a vio-
lation of our state rules, it makes complete sense as we are
attempting to introduce state in a limited set of operations
where it actually decreases cost and increases scalability as
opposed to how it often does just the opposite.

As with any rule, there are likely exceptions.What if you exist
in a regulatory environment that requires absolutely 100% of all
writes of a particular piece of data be verified to exist, encrypt-
ed, and backed up? We’re not certain such an environment exists,
but if it did there are almost always ways to meet requirements
such as these without blocking for an immediate read of data
that was just written. Here is a bulleted checklist of questions
you can answer and steps you can take to eliminate reading what
you just wrote and blocking the user transaction to do so:

n Regulatory/legal requirement—Is this activity a regu-
latory or legal requirement? If it is, are you certain that
you have read it properly? Rarely does a requirement spell
out that you need to do something “in line” with a user
transaction.And even if it does, the requirement rarely
(probably never) applies to absolutely everything that
you do.

n Competitive differentiation—Does this activity provide
competitive differentiation? Careful—“Yes” is an all-too-
common and often incorrect answer to this question.

75Rule 17—Don’t Check Your Work

Given the small rate of failures you would expect, it is
hard to believe that you will win by correctly handling the
.001% of failures that your competitors will have by not
checking twice.

n Asynchronous completion—If you have to read after
writing for the purposes of validation due to either a
regulatory requirement (doubtful but possible) or competi-
tive differentiation (beyond doubtful—see above), then
consider doing it asynchronously.Write locally and do not
block the transaction. Handle any failures to process by
re-creating the data from logs, reapplying it from a pro-
cessing queue or worst case asking the user for it again in
the very small percentage of cases where you lose it. If the
failure is in copying the data to a remote backup for high
availability, simply reapply that record or transaction. Never
block the user under any scenario pending a synchronous
write to two data sources.

Rule 18—Stop Redirecting Traffic

Rule 18: What, When, How, and Why
What: Avoid redirects when possible; use the right method when
they are necessary.

When to use: Use redirects as little as possible.

How to use: If you must have them, consider server configura-
tions instead of HTML or other code-based solutions.

Why: Redirects in general delay the user, consume computation
resources, and are prone to errors.

Key takeaways: Use redirects correctly and only when necessary.

There are many reasons that you might want to redirect traffic.
A few of these include tracking clicks on content or an adver-
tisement, misspelled domains (for example, afkpartners.com
instead of akfpartners.com), aliasing or shortening URLs
(for example, akfpartners.com/news instead of akfpartners.com/
news/index.php), or changing domains (for example, moving the

76 Chapter 5 Don’t Duplicate Your Work

site from akf-consulting.com to akfpartners.com).There is even a
design pattern called Post/Redirect/Get (PRG) that is used to
avoid some duplicated form submissions. Essentially this pattern
calls for the post operation on a form submission to redirect the
browser, preferably with an HTTP 303 response.All these and
more are valid reasons for redirecting users from one place to
another. However, like any good tool it can be used improperly,
like trying to use a screwdriver for a hammer, or too frequently,
such as splitting a cord of wood without sharpening your axe.
Either problem ends up with less than desirable results. Let’s
first talk a little more about redirection according to the HTTP
standard.

According to RFC2616, Hypertext Transfer Protocol,1 there
are several redirect codes, including the more familiar 301
moved permanently and the 302 found for temporary redirec-
tion.These codes fall under the Redirection 3xx heading and
refer to a class of status code that requires further action to be
taken by the user agent to fulfill the request.The complete list of
3xx codes is provided in the following sidebar.

HTTP 3xx Status Codes
n 300 Multiple Choices—The requested resource corre-

sponds to any one of many representations and is being
provided so that the user can select a preferred represen-
tation.

n 301 Moved Permanently—The requested resource has
been assigned a new permanent URI, and any future refer-
ences to this resource should use the URI returned.

n 302 Found—The requested resource resides temporarily
under a different URI, but the client should continue to use
the Request-URI for future requests.

n 303 See Other—The response to the request can be found
under a different URI and should be retrieved using a GET
method. This method exists primarily for the PRG design
pattern to allow the output of a POST to redirect the user
agent.

n 304 Not Modified—If the client has performed a condition-
al GET request and access is allowed, but the document
has not been modified, the server should respond with this
status code.

77Rule 18—Stop Redirecting Traffic

n 305 Use Proxy—The requested resource must be
accessed through the proxy given by the Location field.

n 306 (Unused)—This status code is no longer used in the
specification.

n 307 Temporary Redirect—The requested resource resides
temporarily under a different URI.

So, we’ve agreed that there are many valid reasons for using redi-
rects and the HTTP standard even has multiple status codes that
allow for various types of redirects.What then is the problem
with redirects? The problem is that they can be performed in
numerous ways, some better than others in terms of resource
utilization and performance, and they can easily get out of hand.
Let’s examine a few of the most popular methods of redirecting
users from one URI to another and discuss the pros and cons of
each.

The simplest way to redirect a user from one page or domain
to another is to construct an HTML page that requests they
click on a link to proceed to the real resources they are attempt-
ing to retrieve.The page might look something like this:

<html><head></head><body>

<p>Please click <a href="http://www.akfpartners.com/
techblog">here for your requested page</p>

</body></html>

The biggest problem with this method is that it requires the user
to click again to retrieve the real page he was after.A slightly
better way to redirect with HTML is to use the meta tag
“refresh” and automatically send the user’s browser to the new
page.The HTML code for that would look like this:

<html><head>

<meta http-equiv="Refresh" content="0;
url=http://www.akfpartners.com/techblog" />

</head><body>

<p>In case your page doesn’t automatically refresh, click
here for your
requested page</p>

</body></html>

With this we solved the user interaction problem, but we’re still
wasting resources by requiring our Web server to receive a

78 Chapter 5 Don’t Duplicate Your Work

request and respond with a page back to the browser that must
parse the HTML code before the redirection.Another more
sophisticated method of handling redirects is through code.
Almost all languages allow for redirects; in PHP the code might
look like this.

<?

Header("HTTP/1.1 301 Moved Permanently");

Header("Location: http://www.akfpartners.com/techblog");

?>

This code has the benefit of not requiring the browser to parse
HTML but rather redirect through an HTTP status code in a
header field. In HTTP, header fields contain the operating
parameters of a request or response by defining various charac-
teristics of the data transfer.The PHP preceding code results in
the following response:

HTTP/1.1 301 Moved Permanently

Date: Mon, 11 Oct 2010 19:39:39 GMT

Server: Apache/2.2.9 (Fedora)

X-Powered-By: PHP/5.2.6

Location: http://www.akfpartners.com/techblog

Cache-Control: max-age=3600

Expires: Mon, 11 Oct 2010 20:39:39 GMT

Vary: Accept-Encoding,User-Agent

Content-Type: text/html; charset=UTF-8

We’ve now improved our redirection by using HTTP status
codes in the header fields, but we’re still requiring our server to
interpret the PHP script. Instead of redirecting in code, which
requires either interpretation or execution, we can request the
server to redirect for us with its own embedded module. In the
Apache Web server two primary modules are used for redirect-
ing, mod_alias or mod_rewrite.The mod_alias is the easi-
est to understand and implement but is not terribly sophisticated
in what it can accomplish.This module can implement alias,
aliasmatch, redirect, or redirectmatch commands.
Following is an example of a mod_alias entry:

Alias /image /www/html/image

Redirect /service http://foo2.akfpartners.com/service

79Rule 18—Stop Redirecting Traffic

The mod_rewrite module compared to the mod_alias mod-
ule is sophisticated.According to Apache’s own documentation
this module is a “killer one”2 because it provides a powerful way
to manipulate URLs, but the price you pay is increased com-
plexity.An example rewrite entry for redirecting all requests for
artofscale.com or www.artofscale.com URLs to theartofscalability.com
permanently (301 status code) follows:

RewriteEngine on

RewriteCond %{HTTP_HOST} ^artofscale.com$ [OR]

RewriteCond %{HTTP_HOST} ^www.artofscale.com$

RewriteRule ^/?(.*)$
"http\:\/\/theartofscalability\.com\/$1" [R=301,L]

To add to the complexity,Apache allows the scripts for these
modules to be placed in either the .htaccess files or the
httpd.conf main configuration file. However, using the .htaccess
files should be avoided in favor of the main configuration files
primarily because of performance.3 When configured to allow
the use of .htaccess files,Apache looks in every directory for
.htaccess files, thus causing a performance hit, whether you use
them or not! Also, the .htaccess file is loaded every time a docu-
ment is requested instead of once at startup like the httpd.conf
main configuration file.

We’ve now seen some pros and cons of redirecting through
different methods, which hopefully will guide us in how to use
redirection as a tool.The last topic to cover is making sure
you’re using the right tool in the first place. Ideally we want to
avoid redirection completely.A few of the reasons to avoid redi-
rection when possible is that it always delays the user from get-
ting the resource she wants, it takes up computational resources,
and there are many ways to mess up redirection hurting user
browsing or search engine rankings.

A few examples of ways that redirects can be wrong come
directly from Google’s page on why URLs are not followed by
its search engine bots.4 These include redirect errors, redirect
loops, too long URLs, and empty redirects.You might think that
creating a redirect loop would be difficult, but it is much easier
than you think, and while most browsers and bots stop when
they detect the loop, it takes up a ton of resources trying to
service those requests.

80 Chapter 5 Don’t Duplicate Your Work

www.artofscale.com

As we mentioned in the beginning of this rule there are
certainly times when redirection is necessary, but with a little
thought there are ways around many of these.Take click tracking
for example.There are certainly all types of business needs to
keep track of clicks, but there might be a better way than
sending the user to a server to record the click in an access log
or application log and then sending the user to the desired site.
One alternative is in the browser to use the onClick event han-
dler to call a JavaScript function.This function can request a 1x1
pixel through a PHP or other script that records the click.The
beauty of this solution is that it doesn’t require the user’s browser
to request a page, receive back a page or even a header, before it
can start loading the desired page.

When it comes to redirects, make sure you first think through
ways that you can avoid them. Using the right tool for the job as
discussed in Chapter 4,“Use the Right Tools,” is important, and
redirects are specialized tools. Once those options fail, consider
how best to use the redirect tool.We covered several methods
and discussed their pros and cons.The specifics of your applica-
tion will dictate the best alternative.

Rule 19—Relax Temporal
Constraints

Rule 19: What, When, How, and Why
What: Alleviate temporal constraints in your system whenever
possible.

When to use: Any time you are considering adding a constraint
that an item or object maintains a certain state between a user’s
actions.

How to use: Relax constraints in the business rules.

Why: The difficulty in scaling systems with temporal constraints
is significant because of the ACID properties of most RDBMSs.

Key takeaways: Carefully consider the need for constraints such
as items being available from the time a user views them until
the user purchases them. Some possible edge cases where
users are disappointed are much easier to compensate for than
not being able to scale.

81Rule 19—Relax Temporal Constraints

In the domains of mathematics and machine learning (artificial
intelligence) there is a set of Constraint Satisfaction Problems
(CSP) where the state of a set of objects must satisfy certain
constraints. CSPs are often highly complex, requiring a combi-
nation of heuristics and combinatorial search methods to be
solved.5 Two classic puzzles that can be modeled as CSPs are
Sudoku and the map coloring problem.The goal of Sudoku is
to fill each nine-square row, each nine-square column, and each
nine-square box with the numbers 1 through 9, with each num-
ber used once and only once in each section.The goal of a map
coloring problem is to color a map so that regions sharing a
common border have different colors. Solving this involves rep-
resenting the map as a graph where each region is a vertex and
an edge connects two vertices if the corresponding regions share
a border.

A more specific variety of the CSP is a Temporal Constraint
Satisfaction Problem (TCSP), which is a representation where
variables denote events, and constraints represent the possible
temporal relations between them.The goals are ensuring consis-
tency among the variables and determining scenarios that satisfy
all constraints. Enforcing what is known as local consistency on
the variables ensures that the constraints are satisfied for all
nodes, arcs, and paths within the problem.While many problems
within machine learning and computer science can be modeled
as TCSPs, including machine vision, scheduling, and floor plan
design, use cases within SaaS systems can also be thought of as
TCSPs.

An example of a temporal constraint within a typical SaaS
application would be purchasing an item in stock.There are time
lapses between a user viewing an item, putting it in his shopping
cart, and purchasing it. One could argue that for the absolute
best user experience, the state of the object, whether or not it is
available, would ideally remain consistent throughout this
process.To do so would require that the application mark the
item as “taken” in the database until the user browses off the
page, abandons the cart, or makes the purchase.

This is pretty straightforward until we get a lot of users on
our site. It’s not uncommon for users to view 100 or more items

82 Chapter 5 Don’t Duplicate Your Work

before they add anything to their cart. One of our clients claims
that users look at more than 500 search results before adding a
single item to their cart. In this case our application probably
needs several read replicas of the database to allow many more
people to search and view items than to purchase them. Herein
lies the problem; most RDBMSs aren’t good at keeping all the
data completely consistent between nodes. Even though read
replicas or slave databases can be kept within seconds of each
other in terms of consistent data, certainly there will be edge
cases when two users want to view the last available inventory of
a particular item.We’ll come back and solve this problem, but
first let’s talk about why databases make this difficult.

In Chapter 2,“Distribute Your Work,” and Chapter 4,“Use
the Right Tools,” we spoke about ACID properties of RDBMSs
(refer to Table 2.1).The one property that makes scaling an
RDBMS in a distributed manner difficult is consistency.The
CAP Theorem, also known as the Brewer Theorem so named
after computer scientist Eric Brewer, states that three core
requirements exist when designing applications in a distributed
environment, but it is impossible to simultaneously satisfy all
three requirements.These requirements are expressed in the
acronym CAP:

n Consistency—The client perceives that a set of operations
has occurred all at once.

n Availability—Every operation must terminate in an
intended response.

n Partition tolerance—Operations will complete, even if
individual components are unavailable.

What has been derived as a solution to this problem is called
BASE, an acronym for architectures that solve CAP and stands
for Basically Available, Soft State, and Eventually Consistent. By
relaxing the ACID properties of consistency we have greater
flexibility in how we scale.A BASE architecture allows for the
databases to become consistent, eventually.This might be min-
utes or even just seconds, but as we saw in the previous example,
even milliseconds of inconsistency can cause problems if our
application expects to be able to “lock” the data.

83Rule 19—Relax Temporal Constraints

The way we would redesign our system to accommodate this
eventual consistency would be to relax the temporal constraint.
The user just viewing an item would not guarantee that it was
available.The application would “lock” the data when it was
placed into a shopping cart, and this would be done on the
primary write copy or master database. Because we have ACID
properties we can guarantee that if our transaction completes
and we mark the record of the item as “locked,” then that user
can continue through the purchase confident that the item is
reserved for them. Other users viewing the item may or may not
have it available for them to purchase.

Another area in which temporal constraints are commonly
found in applications is the transfer of items (money) or
communications between users. Guaranteeing that user A gets
the money, message, or item in her account as soon as user B
sends it is easy on a single database. Spreading out the data
among several copies of the data makes this consistency much
more difficult.The way to solve this is to not expect or require
the temporal constraint of instant transfer. More than likely it is
totally acceptable that user A wait a few seconds before she sees
the money that user B sent.The reason is simply that most dyads
don’t synchronously transfer items in a system. Obviously syn-
chronous communication such as chat is different.

It is easy to place temporal constraints on your system
because at first glance it appears that it would be the best cus-
tomer experience to do so. However, before doing so consider
the long-term ramifications of how difficult that system will be
to scale because of the constraint.

Summary
We offered three rules in this chapter that deal with not
duplicating your work. Start by not double checking yourself.
You employ expensive databases and hardware to ensure your
systems properly record transactions and events. Don’t expect
them not to work.We all have the need for redirection at times,
but excessive use of this tool causes all types of problems from
user experience to search engine indexing. Finally, consider the
business requirements that you place on your system.Temporal

84 Chapter 5 Don’t Duplicate Your Work

constraints of items and objects make it difficult and expensive
to scale. Carefully consider the real costs and benefits of these
decisions.

Endnotes
1. R. Fielding et al., Networking Working Group Request for Comments

2616, “Hypertext Transfer Protocol—HTTP/1.1,” June 1999,

http://www.w3.org/Protocols/rfc2616/rfc2616.html.

2. Ralf S. Engelschall, “URL Rewriting Guide,” Apache HTTP Server

Version 2.2, December 1997, http://httpd.apache.org/docs/cur-

rent/misc/rewriteguide.html.

3. Apache HTTP Server Version 1.3, “.htaccess Files,”

http://httpd.apache.org/docs/1.3/howto/htaccess.html.

4. Google Webmaster Central, Webmaster Tools Help, “URLs Not

Followed Errors,” http://www.google.com/support/webmasters/bin/

answer.py?answer=35156.

5. Wikipedia, “Constraint satisfaction problem,” http://en.wikipedia.

org/wiki/Constraint_satisfaction_problem.

85Endnotes

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://httpd.apache.org/docs/current/misc/rewriteguide.html
http://httpd.apache.org/docs/current/misc/rewriteguide.html
http://httpd.apache.org/docs/1.3/howto/htaccess.html
http://www.google.com/support/webmasters/bin/answer.py?answer=35156
http://www.google.com/support/webmasters/bin/answer.py?answer=35156
http://en.wikipedia.org/wiki/Constraint_satisfaction_problem
http://en.wikipedia.org/wiki/Constraint_satisfaction_problem

This page intentionally left blank

6
Use Caching
Aggressively

It is often said in the world of business that “Cash is King.” In
the technology world, a close parallel to this saying is the homo-
phone “cache,” as in “Cache is King.”While we typically tell our
clients that there is a difference between tuning and scaling, and
while we often indicate that caching is more of a tuning activity
than a scaling activity, there is no doubt that the application of
caches “in depth” throughout one’s platform architecture has sig-
nificant impact to the scalability of one’s site. By caching at
every level from the browser through the cloud, your network,
application servers, and even databases, one can significantly
increase one’s ability to scale. Similar to the theme of Chapter 5,
“Don’t Duplicate Your Work,” caching is also about how to min-
imize the amount of work your system does. Caching allows you
to not look up, create, or serve the same data over and over
again.This chapter covers seven rules that will help guide you
on the appropriate type and amount of caching for your
application.

A word of caution is warranted here before we get into these
rules.As with any system implementation or major modification,
the addition of caching, while often warranted, will create com-
plexity within your system. Multiple levels of caching can make
it more difficult to troubleshoot problems in your product.As
such, you should design the caching to be monitored as we
discuss in Rule 49.While caching is a mechanism that often

engenders greater scalability, it also needs to be engineered to
scale well. Developing a caching solution that doesn’t scale well
will create a scalability chokepoint within your system and lead
to lower availability down the road.The failure of caches can
have catastrophic impact to the availability of your site as servic-
es soon get overloaded.As such, you should ensure that you’ve
designed the caches to be highly available and easily maintained.
Finally, caching is a bit of an art that is performed best with
deep experience. Look to hire engineers with past experience to
help you with your caching initiatives.

Rule 20—Leverage Content
Delivery Networks

Rule 20: What, When, How, and Why
What: Use CDNs (content delivery networks) to offload traffic
from your site.

When to use: Ensure it is cost justified and then choose which
content is most suitable.

How to use: Most CDNs leverage DNS (Domain Name Services
or Domain Name Servers) to serve content on your site’s behalf.

Why: CDNs help offload traffic spikes and are often economical
ways to scale parts of a site’s traffic.

Key takeaways: CDNs are a fast and simple way to offset spiki-
ness of traffic as well as traffic growth in general. Make sure you
perform a cost-benefit analysis and monitor the CDN usage.

The easiest way to handle a huge amount of user traffic is to
avoid it. Now there are two ways in which you can do this.The
first is by failing to scale, and having your site crash and all the
users leave.A better way to avoid the traffic is to get someone
else to handle as many of the requests as possible.This is where
the content delivery networks (CDNs) come in.

CDNs are a collection of computers, called nodes or edge
servers, connected via a network, called a backbone, that have
duplicate copies of their customers’ data or content (images,
Web pages, and so on) on them. By strategically placing edge

88 Chapter 6 Using Caching Aggressively

servers on different Tier 1 networks and employing a myriad of
technologies and algorithms the CDN can direct requests to
nodes that are optimally suited to respond.This optimization
could be based on such things as the fewest network hops, high-
est availability, or fewest requests.The focus of this optimization
is most often the reduction of response times as perceived by the
end user, requesting person, or service.

How this works in practice can be demonstrated best by an
example, see Figure 6.1. Let’s say the AKF blog was getting so
much traffic that we decided to employ a CDN.We would set
up a CNAME in DNS that pointed users requesting www.akf-
partners.com/techblog to 1107.c.cdn_vendor.net (see the DNS
table in Figure 6.1).The user’s browser would then query DNS
for akfpartners.com (step 1), receive the CDN domain name
back (step 2), perform another DNS lookup on the CDN
domain (step 3), receive IPs associated with
1107.c.cdn_vendor.net (step 4), and route and receive the
request for our blog content to one of those IPs (steps 5-6).The
content of our blog would be cached on the CDN servers, and
periodically it would query the origin or originating server, in
this case our server hosting our blog, for updates.

89Rule 20—Leverage Content Delivery Networks

Figure 6.1 CDN example

10.20.30.2

www.akfpartners.com/techblog

10.20.30.3

Hostname Service Details

10.20.30.1

kfpartners.com/techblog

5) Request content from 10.20.30.3
6) Returned blog content

www.akfpartners.com

1107.c cdn_vendor.net

1107.c cdn_vendor.net

10.20.30.1
10.20.30.2
10.20.30.3

A

CNAME

DNS

• Periodically request content from origin server
• Receive updated content

1) DNS lookup
 www.akfpartners.com
2) Returned 1107.c cdn_vendor.net
3) DNSlookup
 1107.c cdn_vendor.net
4) Return10.20.30.1-3 IPs

www.akfpartners.com/techblog
www.akfpartners.com/techblog
www.akfpartners.com
www.akfpartners.com/techblog
www.akfpartners.com

As you can see in our example, the benefit of using a CDN
in front of our own blog server is that the CDN takes all
the requests (possibly hundreds or thousands per hour) and only
requests from our server when checking for updated cache.This
requires you to purchase fewer servers, less power, and smaller
amounts of bandwidth, as well as fewer people required to main-
tain that infrastructure.This aid in scale, availability, and response
time isn’t free—it typically comes at a premium to your public
peering (Internet peering) traffic costs. Often CDN providers
price on either the 95th percentile of peak traffic (like many
transit providers) or total traffic delivered. Rates drop on a per
traffic delivered basis as the traffic increases.As a result, the analy-
sis of when to convert to a CDN almost never works on a cost-
only basis.You need to factor in the reduction in response time
to end users, the likely resulting increase in user activity (faster
response often elicits more transactions), the increase in availabil-
ity of your site, and the reduction in server, power, and associated
infrastructure costs. In most cases, we’ve found that clients with
greater than 10M of avenue revenues are better served by imple-
menting CDNs than continuing to serve that traffic themselves.

You might be thinking that all this caching sounds great for
static Web sites but how does this help your dynamic pages? To
start with even dynamic pages have static content. Images,
JavaScript, CSS, and so on, are all usually static, which means
they can be cached in a CDN.The actual text or content gener-
ated dynamically is usually the smallest portion of the page.
Second, CDNs are starting to enable dynamic page support.
Akamai offers a service called Dynamic Site Accelerator1 that is
used to accelerate and cache dynamic pages.Akamai was one of
the companies, along with Oracle,Vignette, and others, who
developed Edge Side Includes,2 which is a markup language for
assembling dynamic Web content on edge servers.

Whether you have dynamic or static pages on your site, con-
sider adding a CDN into the mix of caches.This layer provides
the benefit of faster delivery, typically very high availability, and
less traffic on your site’s servers.

90 Chapter 6 Using Caching Aggressively

Rule 21—Use Expires Headers

Rule 21: What, When, How, and Why
What: Use Expires headers to reduce requests and improve
the scalability and performance of your system.

When to use: All object types need to be considered.

How to use: Headers can be set on Web servers or through
application code.

Why: The reduction of object requests increases the page per-
formance for the user and decreases the number of requests
your system must handle per user.

Key takeaways: For each object type (IMAGE, HTML, CSS, PHP,
and so on) consider how long the object can be cached for and
implement the appropriate header for that timeframe.

It is a common misconception that pages can control how they
are cached by placing meta tags, such as Pragma, Expires, or
Cache-Control, in the <HEAD> element of the page. See the
following code for examples. Unfortunately, meta tags in HTML
are recommendations of how a page should be treated by the
browser, but many browsers do not pay attention to these tags.
Even worse, because proxy caches don’t inspect the HTML, they
do not abide by these tags at all.

<META HTTP-EQUIV="EXPIRES" CONTENT="Mon, 22 Aug 2011
11:12:01 GMT">

<META HTTP-EQUIV="Cache-Control" CONTENT="NO-CACHE">

HTTP headers, unlike meta tags, provide much more control
over caching.This is especially true with regard to proxy caches
because they do pay attention to headers.These headers cannot
be seen in the HTML and are generated dynamically by the
Web server or the code that builds the page.You can control
them by configurations on the server or in code.A typical
HTTP response header could look like this:

HTTP Status Code: HTTP/1.1 200 OK

Date: Thu, 21 Oct 2010 20:03:38 GMT

Server: Apache/2.2.9 (Fedora)

91Rule 21—Use Expires Headers

X-Powered-By: PHP/5.2.6

Expires: Mon, 26 Jul 2011 05:00:00 GMT

Last-Modified: Thu, 21 Oct 2010 20:03:38 GMT

Cache-Control: no-cache

Vary: Accept-Encoding, User-Agent

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

A couple of the most pertinent headers for caching are the
Expires and Cache-Control.The Expires entity-header field
provides the date and time after which the response is consid-
ered stale.To mark a response as “never expires,” the origin serv-
er should send a date one year from the time of response. In the
preceding example, notice the Expires header identifies the
date 26 July 2011 with a time of 05:00 GMT. If today’s date was
26 June 2011, then the page requested would expire in approxi-
mately one month and should be refreshed from the server at
that time.

The Cache-Control general-header field is used to specify
directives that, in accordance with the Request For Comments
(RFC) 2616 Section 14 defining the HTTP 1.1 protocol, must
be obeyed by all caching mechanisms along the request/response
chain.3 There are many directives that can be issued under the
header, including public, private, no-cache, and max-age. If
a response includes both an Expires header and a max-age
directive, the max-age directive overrides the Expires header,
even if the Expires header is more restrictive. Following are the
definitions of a few of the Cache-Control directives:

n public—The response may be cached by any cache,
shared or nonshared.

n private—The response message is intended for a single
user and must not be cached by a shared cache.

n no-cache—A cache must not use the response to satisfy a
subsequent request without revalidation with the origin
server.

n max-age—The response is stale if its current age is greater
than the value given (in seconds) at the time of a request.

92 Chapter 6 Using Caching Aggressively

There are several ways to set HTTP headers, including through
a Web server and through code. In Apache 2.2 the configurations
are set in the httpd.conf file. Expires headers require the
mod_expires module to be added to Apache.4 There are three
basic directives for the expires module.The first tells the server
to activate the module, ExpiresActive.The next directive is to
set the Expires header for a specific type of object such as
images or text, ExpiresByType.The last directive is a default for
how to handle all objects not specified by a type,
ExpiresDefault. See the following code for an example:

ExpiresActive On

ExpiresByType image/png "access plus 1 day"

ExpiresByType image/gif "modification plus 5 hours"

ExpiresByType text/html "access plus 1 month 15 days 2 hours"

ExpiresDefault "access plus 1 month"

The other way to set HTTP Expires as well as Cache-
Control and other headers is in code. In PHP this is pretty
straightforward by using the header() command to send a raw
HTTP header.This header() command must be called before
any output is sent, either by HTML tags or from PHP. See the
following sample PHP code for setting headers. Other languages
have similar methods of setting headers.

<?php

header("Expires: 0");

header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");

header("cache-control: no-store, no-cache, must-revalidate");

header("Pragma: no-cache");

?>

The last topic for this rule actually has nothing to do with head-
ers but has to deal with configuring Web servers for optimiza-
tion of performance and scale, so this is a good place to talk
about it. Keep-alives, or HTTP persistent connections, allow for
the reuse of TCP connections for multiple HTTP requests. In
HTTP/1.1 all connections are considered persistent, and most
Web servers default to allow keep-alives.According to the

93Rule 21—Use Expires Headers

Apache documentation the use of keep-alives has resulted in a
50% reduction in latency for HTML pages.5 The default setting
in Apache’s httpd.conf file is KeepAlive On, but the default
KeepAliveTimeOut is set at only 5 seconds.The benefit of
longer timeout periods is that more HTTP requests do not have
to establish, use, and break down TCP connections, but the ben-
efit of short timeout periods is that the Web server threads will
not be tied up for servicing other requests.A balance between
the two based on the specifics of your application or site is
important.

As a practical example, we ran a test on one of our sites using
webpagetest.org, the open-source tool developed by AOL for
testing Web pages.The configuration was a simple MediaWiki
running on an Apache HTTP Server v 2.2. In Figure 6.2, the
results from the test on the wiki page with the keep-alives
turned off and the Expires headers not set are shown.The
initial page load was 3.8 seconds, and the repeat view as 2.3
seconds.

94 Chapter 6 Using Caching Aggressively

Figure 6.2 Wiki page test (keep-alives off and
no Expires headers)

0.5

0.5

144 ms

229 ms

330 ms
220 ms

322 ms

Waterfall View

Document Complete

DNS Lookup

First ByteLoad Time Start Render Result (error code) Time Requests Bytes In

3.828s 2102.778s0.550s3.828s 109 KB

Time Requests Bytes In

3.600s 21 109 KB

Fully Loaded

Initial Connection Time to First Byte Content Download Start Render DOM Element Document Complete 3xx result 4xx result

1.0

1.0

1.5

1.5

2.0

2.0

2.5

2.5

3.0

3.0

3.5

3.5

http://scalapedia.com
1: scalapedia.com - /
2: scalapedia.com - Main_Page
3: scalapedia.com - shared.css
4: scalapedia.com - commonPrint.css
5: scalapedia.com - main.css
6: scalapedia.com - IE70Fixes.css
7: scalapedia.com - index.php
8: scalapedia.com - index.php
9: scalapedia.com - index.php
10: scalapedia.com - index.php
11: scalapedia.com - wikibits.js
12: scalapedia.com - ajax.js
13: scalapedia.com - index.php
14: scalapedia.com - headbg.jpg
15: scalapedia.com - bullet.gif
16: scalapedia.com - opensearch_desc.php
17: scalapedia.com - user.gif
18: scalapedia.com...mediawiki_88x31.png
19: scalapedia.com - external.png
20: scalapedia.com - lock_icon.gif
21: scalapedia.com - scalapedia.png
22: scalapedia.com - favicon.ico

254 ms (301)
367 ms

312 ms
179 ms

156 ms
208 ms

206 ms
270 ms

270 ms

9: http://scalapedia.com/
index.php?title=MediaWiki:Monobook.css&usemsgcach
e=yes&ctype=text%2Fcss&smaxage=18000&action=raw
&maxage=1800

147 ms
154 ms
145 ms

149 ms
153 ms

http://scalapedia.com
http://scalapedia.com/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&ctype=text%2Fcss&smaxage=18000&action=raw&maxage=1800
http://scalapedia.com/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&ctype=text%2Fcss&smaxage=18000&action=raw&maxage=1800
http://scalapedia.com/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&ctype=text%2Fcss&smaxage=18000&action=raw&maxage=1800
http://scalapedia.com/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&ctype=text%2Fcss&smaxage=18000&action=raw&maxage=1800

In Figure 6.3, the results are shown from the test on the wiki
page with the keep-alives turned on and the Expires headers
set.The initial page load was 2.6 seconds, and the repeat view as
1.4 seconds.This is a reduction in page load time of 32% for the
initial page load and 37% for the repeat page load.

95Rule 22—Cache Ajax Calls

Figure 6.3 Wiki page test (keep-alives on and
Expires headers set)

0.2

0.2

0.4

0.4

84 ms

284 ms

207 ms

188 ms

67 ms
83 ms

68 ms
74 ms

147 ms

Waterfall View

Document Complete

DNS Lookup

First ByteLoad Time Start Render Result (error code) Time Requests Bytes In

2.598s 2101.861s0.491s2.598s 111 KB

Time Requests Bytes In

2.366s 21 111 KB

Fully Loaded

Initial Connection Time to First Byte Content Download Start Render DOM Element Document Complete 3xx result 4xx result

0.6

0.6

100 ms

0.8

0.8

1.0

1.0

1.2

1.2

1.4

1.4

1.6

1.6

1.8

1.8

2.0

2.0

2.2

2.2

2.4

2.4

http://scalapedia.com
1: scalapedia.com - /
2: scalapedia.com - Main_Page
3: scalapedia.com - shared.css
4: scalapedia.com - commonPrint.css
5: scalapedia.com - main.css
6: scalapedia.com - IE70Fixes.css
7: scalapedia.com - index.php
8: scalapedia.com - index.php
9: scalapedia.com - index.php
10: scalapedia.com - index.php
11: scalapedia.com - wikibits.js
12: scalapedia.com - ajax.js
13: scalapedia.com - index.php
14: scalapedia.com - headbg.jpg
15: scalapedia.com - bullet.gif
16: scalapedia.com - user.gif
17: scalapedia.com...mediawiki_88x31.png
18: scalapedia.com - opensearch_desc.php
19: scalapedia.com - external.png
20: scalapedia.com - lock_icon.gif
21: scalapedia.com - scalapedia.png
22: scalapedia.com - favicon.ico

277 ms (301)

308 ms

203 ms
163 ms

210 ms
238 ms

73 ms
176 ms

266 ms
260 ms

73 ms

63 ms

Rule 22—Cache Ajax Calls

Rule 22: What, When, How, and Why
What: Use appropriate HTTP response headers to ensure
cacheability of Ajax calls.

When to use: Every Ajax call but those absolutely requiring real
time data that are likely to have been recently updated.

How to use: Modify Last-Modified, Cache-Control, and
Expires headers appropriately.

Why: Decrease user perceived response time, increase user sat-
isfaction, and increase the scalability of your platform or solution.

Key takeaways: Leverage Ajax and cache Ajax calls as much as
possible to increase user satisfaction and increase scalability.

http://scalapedia.com

For newcomers or those unfamiliar with some fairly common
Internet terms, think of Ajax as one of the “approaches” behind
some of those drop-down menus that start to offer suggestions as
you type, or the map services that allow you to zoom in and out
of maps without making additional round-trip calls to a distant
server. If handled properly,Ajax not only makes for wonderfully
interactive user interfaces, it helps us in our scalability endeavors
by allowing the client to handle and interact with data and
objects without requiring additional server side work. But if not
handled properly,Ajax can actually create some unique scalability
constraints by significantly increasing the number of requests our
servers need to handle.And make no mistake about it, while
these requests might be asynchronous from the perspective of
the browser, a huge burst in a short period of time may very
well flood our server farms and cause them to fail.

Ajax is an acronym for Asynchronous JavaScript and XML.
While often referred to as a technology, it’s perhaps best
described as a group of techniques, languages, approaches, and
technologies employed on the browser (or client side) to help
create richer and more interactive Web applications.While the
items within this acronym are descriptive of many Ajax imple-
mentations, the actual interactions need not be asynchronous
and need not make use of XML only as a data interchange for-
mat. JSON may take the place of XML for instance. JavaScript,
however, is almost always used.

Jesse James Garrett is widely cited as coining the term Ajax
in 2005 in his article “Ajax:A New Approach to Web
Applications.”6 In a loose sense of the term,Ajax consists of
standards-based presentation leveraging CSS and DHTML,
interaction and dynamic display capabilities facilitated by the
Document Object Model (or DOM), a data interchange and
manipulation mechanism such as XML with XSLT or JSON,
and a data retrieval mechanism. Data retrieval is often (but not
absolutely necessarily) asynchronous from the end user perspec-
tive. JavaScript is the language used to allow everything to inter-
act within the client browser.When asynchronous data transfer is
used, the XMLHttpRequest object is used.The purpose of Ajax
is to put an end to the herky-jerky interactions described by our
first experiences with the Internet, where everything was a

96 Chapter 6 Using Caching Aggressively

request and reply interaction.With this background behind us,
we move on to some of the scalability concerns associated with
Ajax and finally discuss how our friend caching might help us
solve some of these concerns.

Clearly we all strive to create interfaces that increase user
interaction and satisfaction and hopefully in so doing increase
revenues, profits, and stakeholder wealth.Ajax is one method by
which we might help facilitate a richer and more real time
experience for our end users. Because it can help eliminate what
would otherwise be unnecessary round-trips for interactions
within our browser, user interactions can happen more quickly.
Users can zoom in or zoom out without waiting for server
responses, drop-down menus can be prepopulated based on pre-
vious entries, and users typing query strings into search bars can
start to see potential search strings in which they might be inter-
ested to better guide their exploration.The asynchronous nature
of Ajax can also help us load mail results into a client browser by
repetitively fetching mail upon certain user actions without
requiring the user to hit a “next page” button.

But some of these actions can also be detrimental to cost-
effective scale of our platforms. Let’s take the case of a user
entering a search term for a specific product on a Web site.We
may want to query a product catalog to populate suggested
search terms for a user as he types in search terms.Ajax could
help with such an implementation by using each successive key-
stroke to send a request to our servers, return a result based on
what was typed thus far, and populate that result in a drop-down
menu without a browser refresh as the user types. Or the
returned result may be the full search results of an as yet uncom-
pleted string as the user types! Examples of both implementa-
tions can be found in many search engines and commerce sites
today. But allowing each successive keystroke to ultimately result
in a search query to a server is both costly for our backend sys-
tems and might be wasteful.A user typing “beanie baby” for
instance may cause 11 successive searches to be performed
where only one is absolutely necessary.The user experience
might be fantastic, but if the user types quickly as many as 8 to
10 of those searches may never actually return results before he
finishes typing.

97Rule 22—Cache Ajax Calls

There is another way to achieve your goals without a 10x
increase in traffic while achieving the same result and as you
might expect given the theme of this chapter; it involves
caching.With a little work, we can cache the results of previous
Ajax interactions within the client browser and potentially with-
in our CDNs (Rule 20), page caches (Rule 23), and application
caches (Rule 24). Let’s first look at how we can make sure that
we leverage the cache in the browser.

Three key elements in ensuring that we can cache our con-
tent in the browser are the Cache-Control header, the
Expires header, and the Last-Modified header of our HTTP
response.Two of these we discussed in detail in Rule 21. For
Cache-Control we want to avoid the no-store option and
where possible we want to set the header to public so that
any proxies and caches (such as a CDN) in between our end
points (clients) and our servers can store result sets and serve
them up to other requests. Of course we don’t want private data
set to public, but where possible we certainly want to leverage
the high degree of caching that “public” offers us.

Remember that our goal is to eliminate round-trips to both
decrease user perceived response time and decrease server load.
As such, the Expires header of our response should be set far
enough out into the future that the browser will cache the first
result locally and read from it with subsequent requests. For stat-
ic or semistatic objects, such as profile images or company logos,
this might be set days or more out into the future. Some objects
might have greater temporal sensitivity, such as the reading of a
feed of friends’ status updates. In these cases, we might set
Expires headers out by seconds or maybe even minutes to both
give the sense of real time behavior while reducing overall load.

The Last-Modified header helps us handle conditional GET
requests. In these cases, consistent with the HTTP 1.1 protocol,
the server should respond with a 304 status if the item in cache is
appropriate or still valid.The key to all these points is, as the
“Http” portion of the name XMLHttpRequest implies, that Ajax
requests behave (or should behave) the same as any other HTTP
request and response. Using our knowledge of these requests will
aid us in ensuring that we increase the cacheability, usability, and
scalability of all the systems that enable these requests.

98 Chapter 6 Using Caching Aggressively

While the previous approaches will help when we have con-
tent that we can modify in the browser, the problem becomes a
bit more difficult when we use expanding search strings such as
those we might find when a user interacts with a search page
and starts typing a search string.There simply is no simple solu-
tion to this particular problem. But using public as the argu-
ment in the Cache-Control header will help to ensure that all
similar search strings are cached in intermediate caches and
proxies.Therefore common beginnings of search strings and
common intermediate search strings have a good chance of
being cached somewhere before we get them.This particular
problem can be generalized to other specific objects within a
page leveraging Ajax. For instance, systems that request specific
objects such as an item for sale in an auction, a message in a
social networking site, or an e-mail system should use specific
message IDs rather than relative offsets when making requests.
Relative names such as “page=3&item=2” that identify the sec-
ond message in the third page of a system can change and cause
coherency and consistency problems. Better terms would be
“id=124556”, with this ID representing an atomic item that
does not change and can be cached for this user or future users
where the item is public.

Easier to solve are the cases where we know that we have a
somewhat static set or even semidynamic set of items such as a
limited or context-sensitive product catalog.We can fetch these
results, asynchronously from the client perspective, and both
cache them for later use by the same client or perhaps more
importantly ensure they are cached by CDNs and intermediate
caches or proxies for other clients performing similar searches.

We close this rule by giving an example of a bad response to
an Ajax call and a good response.The bad response may look
like this:

HTTP Status Code: HTTP/1.1 200 OK

Date: Thu, 21 Oct 2010 20:03:38 GMT

Server: Apache/2.2.9 (Fedora)

X-Powered-By: PHP/5.2.6

Expires: Mon, 26 Jul 1997 05:00:00 GMT

Last-Modified: Thu, 21 Oct 2010 20:03:38 GMT

Pragma: no-cache

99Rule 22—Cache Ajax Calls

Vary: Accept-Encoding,User-Agent

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

Using our three topics, we notice that our Expires header
occurs in the past.We are missing the Cache-Control header
completely, and the last modified header is consistent with the
date that the response was sent; together, these force all GETs to
grab new content.A more easily cached Ajax result would look
like this:

HTTP Status Code: HTTP/1.1 200 OK

Date: Thu, 21 Oct 2010 20:03:38 GMT

Server: Apache/2.2.9 (Fedora)

X-Powered-By: PHP/5.2.6

Expires: Sun, 26 Jul 2020 05:00:00 GMT

Last-Modified: Thu, 31 Dec 1970 20:03:38 GMT

Cache-Control: public

Pragma: no-cache

Vary: Accept-Encoding,User-Agent

Transfer-Encoding: chunked

Content-Type: text/html; charset=UTF-8

In this example, we set the Expires header out to be well into
the future, set the Last-Modified header to be well into the
past, and told intermediate proxies that they can cache and reuse
the object for other systems through Cache-Control:
public.

Rule 23—Leverage Page Caches

Rule 23: What, When, How, and Why
What: Deploy page caches in front of your Web services.

When to use: Always.

How to use: Choose a caching system and deploy.

Why: Decrease load on Web servers by caching and delivering
previously generated dynamic requests and quickly answering
calls for static objects.

Key Takeaways: Page caches are a great way to offload dynamic
requests and to scale cost effectively.

100 Chapter 6 Using Caching Aggressively

A page cache is a caching server you install in front of your Web
servers to offload requests for both static and dynamic objects
from those servers. Other common names for such a system or
server are reverse proxy cache, reverse proxy server, and reverse
proxy.We use the term page cache deliberately, because whereas
a proxy might also be responsible for load balancing or SSL
acceleration, we are simply focused on the impact that these
caching servers have on our scalability.When implemented, the
proxy cache looks like Figure 6.4.

101Rule 23—Leverage Page Caches

Figure 6.4 Proxy cache

Page caches handle some or all the requests until the pages or
data that are stored in them is out of date or until the server
receives a request for which it does not have the data.A failed

w
w

w.
ak

fp
ar

tn
er

s.
co

m

Internet

Reverse
Proxy
Server

End Users

Internet
Service
Provider

request is known as a cache miss and might be a result of either a
full cache with no room for the most recent request or an
incompletely filled cache having either a low rate of requests or
a recent restart.The cache miss is passed along to the Web server,
which answers and populates the cache with the request, either
replacing the least recently used record or taking up an unoccu-
pied space.

There are three key arguments that we make in this rule.The
first is that you should implement a page (or reverse proxy)
cache in front of your Web servers and that in doing so you will
get a significant scalability benefit.Web servers that generate
dynamic content do significantly less work as calculated results
(or responses) are appropriately cached for the appropriate time.
Web servers that serve static content do not need to look up
that content, and you can use fewer of them.We will, however,
agree that the benefit of a page cache for static content isn’t
nearly as great as the benefit for dynamic content.

The second point is that you need to use the appropriate
HTTP headers to ensure the greatest (but also business appro-
priate) cache potential of your content and results. For this, refer
to our brief discussion of the Cache-Control, Last-Modified,
and Expires headers in Rules 21 and 22. Section 14 of RFC
2616 has a complete description of these headers, their associat-
ed arguments, and the expected results.7

Our third point is that where possible you should include
another HTTP header from RFC 2616 to help maximize the
cacheability of your content.This new header is known as the
ETag.The ETag, or entity tag, was developed to facilitate the
method of If-None-Match conditional get requests by clients of
a server. ETags are unique identifiers issued by the server for an
object at the time of first request by a browser. If the resource
on the server side is changed, a new ETag is assigned to it.
Assuming appropriate support by the browser (client), the object
and its ETag are cached by the browser and subsequent If-
None-Match requests by the browser to the Web server will
include the tag. If the tag matches, the server may respond with
an HTTP 304 Not Modified response. If the tag is inconsistent
with that on the server, the server will issue the updated object
and its associated ETag.

102 Chapter 6 Using Caching Aggressively

The use of an ETag is optional, but to help ensure greater
cacheability within page caches as well as all other proxy caches
throughout the network transit of any given page or object, we
highly recommend their use.

Rule 24—Utilize Application
Caches

Rule 24: What, When, How, and Why
What: Alleviate temporal constraints in your system whenever
possible.

When to use: Any time you are considering adding a constraint
that an item or object maintains a certain state between a user’s
actions.

How to use: Relax constraints in the business rules.

Why: The difficulty in scaling systems with temporal constraints
is significant because of the ACID properties (see definition in
Chapter 2, “Distribute Your Work”) of most RDBMSs (Relational
Database Management Systems).

Key takeaways: Carefully consider the need for constraints such
as items being available from the time a user views it until they
purchase. Some possible edge cases where users are disap-
pointed are much easier to compensate for than not being able
to scale.

This isn’t a section on how to develop an application cache.
That’s a topic for which you can get incredible, and free, advice
by performing a simple search on your favorite Internet search
engine. Rather we are going to make two basic but important
points:

n The first is that you absolutely must employ application
level caching if you want to scale in a cost-effective man-
ner.

n The second is that such caching must be developed from a
systems architecture perspective to effective long term.

We’ll take it for granted that you agree wholeheartedly with our
first point and spend the rest of this rule on our second point.

103Rule 24—Utilize Application Caches

In both Rule 8 and Rule 9 (see Chapter 2), we hinted that
the splitting of a platform (or an architecture) functionally by
service or resource (Y Axis—Rule 8), or by something you
knew about the requester or customer (Z Axis—Rule 9),
could pay huge dividends in the cacheability of data to service
requests.The question is which axis or rule to employ to gain
what amount of benefit.The answer to that question likely
changes over time as you develop new features or functions with
new data requirements.The implementation approach, then,
needs to change over time to accommodate the changing needs
of your business.The process to identify these changing needs,
however, remains the same.The learning organization needs to
constantly analyze production traffic, costs per transaction, and
user perceived response times to identify early indications of
bottlenecks as they arise within the production environment and
feed that data into the architecture team responsible for making
changes.

The key question to answer here is what type of split, or
refinement of a split, will gain the greatest benefit from a scala-
bility and cost perspective? It is entirely possible that through
an appropriate split implementation, and with the resulting
cacheability of data within the application servers, that 100 or
even 100,000 servers can handle double, triple, or even 10x the
current production traffic.To illustrate this, let’s walk through a
quick example of a common ecommerce site, a fairly typical
SaaS site focused on servicing business needs and a social net-
working or social interaction site.

Our ecommerce site has a number of functions, including
search, browse, image inspection (including zooming), account
update, sign-in, shopping cart, checkout, suggested items, and so
on.Analysis of current production traffic indicates that 80% of
our transactions across many of our most heavily used functions,
including searching, browsing, and suggested products, occur
across less than 20% of our inventory. Here we can leverage the
Pareto Principle and deploy a Y axis (functional) split for these
types of services to leverage the combined high number of hits on
a comparatively small number of objects by our entire user base.
Cacheability will be high, and our dynamic systems can benefit
from the results delivered pursuant to similar earlier requests.

104 Chapter 6 Using Caching Aggressively

We may also find out that we have a number of power
users—users who are fairly frequent in their requests. For these
user-specific functions, we can decide to employ a Z axis split
for user-specific functionality such as sign-in, shopping cart,
account update (or other account information), and so on.While
we can probably hypothesize about these events, clearly it is
valuable to get real production data from our existing revenue
producing site to help inform our decisions.

As another example, let’s imagine that we have a SaaS busi-
ness that helps companies handle customer support operations
through hosted phone services, e-mail services, chat services, and
a relationship management system. In this system, there are a
great number of rules unique to any given business. On a per-
business basis, these rules might require a great deal of memory
to cache the rules and data necessary for a number of business
operations. If you’ve immediately jumped to the conclusion that
a customer-oriented or Z axis split is the right approach you are
correct. But we also want to maintain some semblance of multi-
tenancy both within the database and the application. How do
we accomplish this and still cache our heaviest users to scale
cost-effectively? Our answer, again, is the Pareto Principle.We
can take the 20% of our largest businesses that might represent
80% of our total transaction volumes (such a situation exists
with most of our customers) and spread them across several
swimlanes of database splits.To gain cost leverage, we take the
80% of our smaller users and sprinkle them evenly across all
these swimlanes.The theory here is that the companies with
light utilization are going to experience low cache hit rates even
if they exist among themselves.As such, we might as well take
our larger customers and allow them to benefit from caching
while gaining cost leverage from our smaller customers.Those
smaller customer experiences aren’t going to be significantly
different unless we host them on their own dedicated systems,
which as we all know runs counter to the cost benefits we
expect to receive in a SaaS environment.

Our last example deals with a social network or interaction
site.As you might expect, we are again going to apply the Pareto
Principle and information from our production environment to
help guide our decisions. Social networks often involve a small

105Rule 24—Utilize Application Caches

number of users with an incredibly skewed percentage of traffic.
Sometimes these users are active consumers, sometimes they are
active producers (destinations where other people go), and
sometimes they are both.

Our first step might be to identify whether there is a small
percentage of information or subsites that have a disproportion-
ately high percentage of the “read” traffic. Such nodes within
our social network can help guide us in our architectural consid-
erations and might lead us to perform Z axis splits for these pro-
ducers such that their nodes of activity are highly cacheable
from a read perspective.Assuming the Pareto Principle holds
true (as it typically does), we’ve now serviced nearly 80% of our
read traffic with a small number of servers (and potentially
page/proxy caches—see Rule 23). Our shareholders are happy
because we can service requests with very little capital intensity.

What about the very active producers of contents and/or
updates within our social network? The answer may vary
depending on whether their content also has a high rate of con-
sumption (reads) or sits mostly dormant. In the case where these
users have both high production (write/update) rates and high
consumption (read) rates, we can just publish their content
directly to the swimlane or node in which it is being read. If
read and write conflicts start to become a concern as these
“nodes” get hot, we can use read replication and horizontal scale
techniques (the X axis or Rule 7), or we can start to think about
how we order and asynchronously apply these updates over time
(see Chapter 11,“Asynchronous Communication and Message
Buses”).As we continue to grow, we can mix these techniques. If
we still have troubles, after caching aggressively from the browser
through CDNs to page and application caches (the rules in this
chapter), we can continue to refine our splits. Maybe we enforce
a hierarchy within a given user’s updates and start to split them
along content boundaries (another type of Y axis split—Rule 8),
or perhaps we just continue to create read replicas of data
instances (X axis—Rule 7). Maybe we identify that the informa-
tion that is being read has a unique geographic bias as is the
case with some types of news and we begin to split the data
along geolocation determined boundaries by request, which is

106 Chapter 6 Using Caching Aggressively

something we know about the requester and therefore another
type of Z axis split (Rule 9).

With any luck, you’ve identified a pattern in this rule.The
first step is to hypothesize as to likely usage and determine ways
to split to maximize cacheability.After implementing these splits
in both the application and supporting persistent data stores,
evaluate their effectiveness in production. Further refine your
approach based on production data and iteratively apply the
Pareto Principle and the AKF Scale Cube (Rules 7, 8, and 9) to
refine and increase cache hit rates. Lather, rinse, repeat.

Rule 25—Make Use of Object
Caches

Rule 25: What, When, How, and Why
What: Implement object caches to help your system scale.

When to use: Any time you have repetitive queries or computa-
tions.

How to use: Select any one of the many open source or vendor
supported solutions and implement the calls in your application
code.

Why: A fairly straightforward object cache implementation can
save a lot of computational resources on application servers or
database servers.

Key takeaways: Consider implementing an object cache any-
where computations are performed repeatedly, but primarily this
is done between the database and application tiers.

Object caches are simply in-process data stores (usually in mem-
ory) that store a hashed summary of each item.These caches are
used primarily for caching data that may be computationally
expensive to regenerate, such as the result set of complex data-
base queries.A hash function is a mathematical function that
converts a large and variable-sized amount of data, into a small
hash value.8 This hash value (also called a hash sum or check-
sum) is usually an integer that can be used as an index in an
array.This is by no means a full explanation of hash algorithms

107Rule 25—Make Use of Object Caches

as the design and implementation of them are a domain unto
itself, but you can test several of these on Linux systems with
cksum, md5sum, and sha1sum as shown in the following code.
Notice how variable lengths of data result in consistent 128-bit
hashes.

echo 'AKF Partners' | md5sum

90c9e7fd09d67219b15e730402d092eb -

echo 'Hyper Growth Scalability AKF Partners' | md5sum

faa216d21d711b81dfcddf3631cbe1ef -

There are many different varieties of object caches such as the
popular Memcached,Apache’s OJB, and NCache just to name a
few.As varied as the choice of tools are the implementations.
Object caches are most often implemented between the database
and the application to cache result sets from SQL queries.
However, some people use object caches for results of complex
application computations such as user recommendations, product
prioritization, or reordering advertisements based on recent past
performance.The object cache in front of a database tier is the
most popular implementation because often the database is the
most difficult and most expensive to scale. If you have the ability
to postpone the split of a database or the purchase of a larger
server, which is not a recommended approach to scaling, by
implementing an object cache this is an easy decision. Let’s talk
about how to decide when to pull the trigger and implement an
object cache.

Besides the normal suspects of CPU and memory utilization
by the database, one of the most telling pieces of data that indi-
cates when your system is in need of an object cache is the Top
SQL report.This is a generic name for any report or tool that is
used to mean any report generated to show the most frequently
and most resource-intensive queries run on the database. Oracle’s
Enterprise Manager Grid Control has a Top SQL Assessment
built in for identifying the most resource intensive SQL state-
ments. Besides using this data to identify and prioritize the
improvement of slow running queries, this data can also be used
to show which queries could be eliminated from the database by
adding caching.There are equivalent reports or tools either built
in or offered as add-ons for all the popular databases.

108 Chapter 6 Using Caching Aggressively

Once you’ve decided you need an implementation of an
object cache, you then need to choose one that best fits your
needs and implement it.A word of caution for those engineer-
ing teams that at this point might be considering building a
home-grown solution.There are more than enough production-
grade object cache solutions to choose from.As an example,
Facebook uses more than 800 servers supplying more than 28
terabytes of memory for its system.9 While there are possible
reasons that might drive you to make a decision to build an
object cache instead of buying/using an open source product
this decision should be highly scrutinized.

The next step is to actually implement the object cache,
which depending on the product selected is straightforward.
Memcached supports clients for many different programming
languages such as Java, Python, and PHP. In PHP the two pri-
mary commands are get and set. In the following example you
can see that we connect to the memcached server. If that fails
we just query the database through a function we call dbquery,
not shown in the example. If the memcached connection suc-
ceeds we attempt to retrieve the $data that is associated with a
particular $key. If that get fails, then we query the db and set
the $data into memcached so that the next time we look for
that data it is in memcached.The false flag in the set command
is for compression and the 90 is for the expiration time in
seconds.

$memcache = new Memcache;

If ($memcache->connect('127.0.0.1', 11211)) {

If ($data = $memcache->get('$key')) {

} else {

$data = dbquery($key);

$memcache->set('$key',$data, false, 90);

}

} else {

$data = dbquery($key);

}

The final step in implementing the object cache is to monitor it
for the cache hit rate.This ratio is the number of times the sys-
tem requests an object that is in the cache compared to the total

109Rule 25—Make Use of Object Caches

number of requests. Ideally this ratio is 85% or better, meaning
that the requests for objects is not in cache or expired in cache
only 15% or less of the time. If the cache hit ratio drops, you
need to consider adding more object cache servers.

Rule 26—Put Object Caches on
Their Own “Tier”

Rule 26: What, When, How, and Why
What: Use a separate tier in your architecture for object caches.

When to use: Any time you have implemented object caches.

How to use: Move object caches onto their own servers.

Why: The benefits of a separate tier are better utilization of mem-
ory and CPU resources and having the ability to scale the object
cache independently of other tiers.

Key takeaways: When implementing an object cache it is sim-
plest to put the service on an existing tier such as the applica-
tion servers. Consider implementing or moving the object cache
to its own tier for better performance and scalability.

In Rule 25 we covered the basics of implementing an object
cache.We left off with you monitoring the object cache for
cache hit ratio and when this dropped below ~85% we sug-
gested that you consider expanding the object cache pool. In
this rule, we’re going to discuss where to implement the object
cache pool and whether it should reside on its own tier within
your application architecture.

Many companies start with the object cache on the Web or
application servers.This is a simple implementation that works
well to get people up and running on an object cache without
an investment in additional hardware or virtual instances if
operating within a cloud.The downside to this is that the
object cache takes up a lot of memory on the server, and it can’t
be scaled independently of the application or Web tier when
needed.

A better alternative is to put the object cache on its own tier
of servers.This would be between the application servers and the

110 Chapter 6 Using Caching Aggressively

database, if using the object cache to cache query result sets. If
caching objects created in the application tier, this object cache
tier would reside between the Web and application servers. See
Figure 6.5 for a diagram of what this architecture would look
like.This is a logic architecture in that the object cache tier
could be a single physical tier of servers that are used for both
database object caching as well as application object caching.

111Rule 26—Put Object Caches on Their Own “Tier”

Figure 6.5 Object cache

The advantage of separating these tiers is that you can size the
servers appropriately in terms of how much memory and CPU
are required, and you can scale the number of servers in this
pool independently of other pools. Sizing the server correctly
can save quite a bit of money since object caches typically
require a lot of memory—most all store the objects and keys in
memory—but require relatively low computational processing
power.You can also add servers as necessary and have all the
additional capacity utilized by the object cache rather than split-
ting it with an application or Web service.

Web Servers

Database

Application Server
Object Cache

Application Servers

Database
Object Cache

Database Servers

Summary
In this chapter, we offered seven rules for caching.We have so
many rules dedicated to this one subject because there are a
myriad of caching options to consider but also because caching
is a proven way to scale a system. By caching at every level from
the browser through the network all the way through your
application to the databases, you can achieve significant improve-
ments in performance as well as scalability.

Endnotes
1. Akamai Solution, “Dynamic Site Accelerator,” 2008, http://www.

akamai.com/dl/brochures/akamai_dsa_sb.pdf.

2. Mark Tsimelzon et al., W3C, “ESI Language Specification 1.0,”

http://www.w3.org/TR/esi-lang.

3. R. Fielding et al., Networking Group Request for Comments 2616,

June 1999, “Hypertext Transfer Protocol—HTTP/1.1,” http://www.

ietf.org/rfc/rfc2616.txt.

4. Apache HTTP Server Version 2.0, “Apache Module mod_expires,”

http://httpd.apache.org/docs/2.0/mod/mod_expires.html.

5. Apache HTTP Server Version 2.0, Apache Core Features, “KeepAlive

Directive,” http://httpd.apache.org/docs/current/mod/core.html#

keepalive.

6. Jesse James Garrett, “Ajax: A New Approach to Web Applications,”

Adaptive Path.com, “Ideas: Essays and Newsletter,” February 18,

2005, http://www.adaptivepath.com/ideas/essays/archives/

000385.php.

7. Fielding et al., Hypertext Transfer Protocol/1.1, “Header Field

Definitions,” http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.

html.

8. Wikipedia, “Hash function,” http://en.wikipedia.org/wiki/

Hash_function.

9. Paul Saab, “Scaling memcached at Facebook,” December 12, 2008,

http://www.facebook.com/note.php?note_id=39391378919&

ref=mf.

112 Chapter 6 Using Caching Aggressively

http://www.akamai.com/dl/brochures/akamai_dsa_sb.pdf
http://www.akamai.com/dl/brochures/akamai_dsa_sb.pdf
http://www.w3.org/TR/esi-lang
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://httpd.apache.org/docs/2.0/mod/mod_expires.html
http://httpd.apache.org/docs/current/mod/core.html#keepalive
http://httpd.apache.org/docs/current/mod/core.html#keepalive
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://en.wikipedia.org/wiki/Hash_function
http://en.wikipedia.org/wiki/Hash_function
http://www.facebook.com/note.php?note_id=39391378919&ref=mf
http://www.facebook.com/note.php?note_id=39391378919&ref=mf

7
Learn from

Your Mistakes

Research has long supported the position that we learn more
from our failures than from our successes. But we can only truly
learn from our failures if we foster an environment of open,
honest communication and fold in lightweight processes that
help us repeatedly learn and get the most from our mistakes and
failures. Rather than emulate the world of politics, where failures
are hidden from others and as a result bound to be repeated over
time, we should strive to create an environment in which we
share our failures as antipatterns to best practices.To be success-
ful, we need to learn aggressively, rely on organizations like
Quality Assurance (QA) appropriately, expect systems to fail, and
design for those failures appropriately and treat each failure as a
precious learning opportunity.

Rule 27—Learn Aggressively

Rule 27: What, When, How, and Why
What: Take every opportunity to learn.

When to use: Be constantly learning from your mistakes as well
as successes.

How to use: Watch your customers or use A/B testing to deter-
mine what works. Use postmortems to learn from incidents and
problems in production.

Why: Doing something without measuring the results or having an
incident without learning from it are wasted opportunities that
your competitors are taking advantage of.

Key takeaways: Be constantly and aggressively learning. The
companies that learn best, fastest, and most often are the ones
that grow the fastest and are the most scalable.

Do people in your organization think they know everything
there is to know about building great, scalable products? Or per-
haps your organization thinks it knows better than the customer.
Have you heard someone say that customers don’t know what
they want? Although it might be true that customers can’t nec-
essarily articulate what they want, that doesn’t mean they don’t
know it when they see it. Failing to learn continuously and
aggressively, meaning at every opportunity, will leave you vulner-
able to competitors who are willing to constantly learn.

Our continuing research on social contagion (also known as
viral growth) of Internet-based products and services has
revealed that organizations that possess a learning culture are far
more likely to achieve viral growth than those that do not. In
case you’re not familiar with the terms social contagion or viral
growth, the term viral derives from epidemiology (the study of
health and illness in populations) and is used in reference to
Internet-based companies to explain how things spread from
user to user.The exponential growth of users is known as viral
growth and implies the intentional sharing of information by
people. In nature most people do not intentionally spread virus-
es, but on the Internet they do in the form of information or
entertainment, and the resulting spread is similar to a virus. Once
this exponential growth starts it is possible to accurately predict
its rate because it follows a power law distribution until the
product reaches a point of nondisplacement. Figure 7.1 shows
the growth in cumulative users for a product achieving viral
growth (solid line) and one that just barely misses the tipping
point by less than 10%.

114 Chapter 7 Learn from Your Mistakes

Figure 7.1 Viral growth

The importance of creating a culture of learning cannot be
underestimated. Even if you’re not interested in achieving viral
growth but want to produce great products for your customers,
you must be willing to learn.There are two areas in which
learning is critical.The first, as we have been discussing, is
from the customers.The second is from the operations of the
business/technology.We discuss each briefly in turn. Both rely
on excellent listening skills.We believe that we were given two
ears and one mouth to remind us to listen more than we talk.

Focus groups are interesting because you get an opportunity
to sit down with your customers and hear what they think.The
problem is that they, like most of us, can’t really know how they
will react to a product until they get to see and feel it in their
own living room/computer. Not to delve too deeply into the
philosophical realm, but this in part is caused by what is known
as social construction. Put very simply, we make meaning of every-
thing (and we do mean everything—it’s been argued that we do
this for reality itself) by labeling things with the meaning that is
most broadly held within our social groups.While we can form
our own opinions, they are most often just reflections or built

115Rule 27—Learn Aggressively

Time Periods

1 2 3 4 5 6 7 8 9

C
u

m
u

la
ti

ve
 U

se
rs

18,000,000

16,000,000

14,000,000

12,000,000

10,000,000

8,000,000

6,000,000

4,000,000

2,000,000

-

on what others believe. So, how do you get around this problem
of not being able to trust what customers say? Launch quickly
and watch your customers’ reactions.

Watching your customers can be done in a number of ways.
Simply keeping track of usage and adoption of new features is a
great start.The more classic A/B testing is even better.This is
when you segment your customers into A-group and B-group
randomly and allow A-group to have access to one version of
the product and B-group to the other version. By comparing
results, such as abandonment rates, time spent on site, conversion
rates, and so on you can decide which version performs better.
Obviously some forethought must be put into the metrics that
are going to be measured, but this is a great and fairly accurate
way to compare product versions.

The other areas in which you must constantly learn if you
want to achieve scalability are technology and business opera-
tions.We’ll talk more about this topic in Rule 30, but you must
not let incidents or problems pass without learning from them.
Every site issue, outage, or downtime is an opportunity to learn
how to do things better in the future. If you don’t take time to
perform a postmortem on the incident, get to the real root
cause, and put that learning back into the organization so that
you don’t have that same failure again, then you are bound to
repeat your failures. Our philosophy is that while mistakes are
unavoidable, making the same mistake twice is unacceptable. If a
poor performing query doesn’t get caught until it goes into pro-
duction and results in a site outage, then we must get to the real
root cause and fix it. In this case the root cause goes beyond the
poorly performing query and includes the process and people
that allowed it to get to production. By establishing a peer
review of all code, DBA review of all queries, or even a load and
performance test, we can minimize the chance that we allow
poor performing queries into our production environment.
The key here is to learn from everything—mistakes as well as
successes.

116 Chapter 7 Learn from Your Mistakes

Rule 28—Don’t Rely on QA to Find
Mistakes

Rule 28: What, When, How, and Why
What: Use QA to lower the cost of delivered products, increase
engineering throughput, identify quality trends, and decrease
defects—not to increase quality.

When to use: Whenever you can get greater throughput by hiring
someone focused on testing rather than writing code. Use QA to
learn from past mistakes—always.

How to use: Hire a QA person anytime you get greater than one
engineer’s worth of output with the hiring of a single QA person.

Why: Reduce cost, increase delivery volume/velocity, decrease
the number of repeated defects.

Key takeaways: QA doesn’t increase the quality of your system,
as you can’t test quality into a system. If used properly, it can
increase your productivity while decreasing cost and most impor-
tantly it can keep you from increasing defect rates faster than
your rate of organization growth during periods of rapid hiring.

Rule 28 has an ugly and slightly misleading and controversial
title meant to provoke thought and discussion. Of course it
makes sense to have a team responsible for testing products to
identify defects.The issue is that you shouldn’t rely solely on
these teams to identify all your defects anymore than airlines rely
on flight attendants for safe landings of their planes.At the heart
of this view is one simple fact:You can’t test quality into your
system.Testing only identifies issues that you created during
development, and as a result it is an identification of value that
you destroyed and can recapture.Testing typically only finds mis-
takes, which often requires rework that in turn increases the
marginal cost per unit of work (functionality) delivered. It is rare
that testing, or the group that performs it, identifies untapped
opportunities that might create additional value.

Don’t get us wrong—QA definitely has an important role in
an engineering organization. It is a role that is even more
important when companies are growing at an incredibly fast rate
and needing to scale their systems.The primary role of QA is to

117Rule 28—Don’t Rely on QA to Find Mistakes

help identify product problems at a lower cost than having engi-
neers perform the same task.Two important derived benefits
from this role are to increase engineering velocity and to
increase the rate of defect detection.

These benefits are achieved similarly to the fashion in which
the industrial revolution reduced the cost of manufacturing and
increased the number of units produced. By pipelining the
process of engineering and allowing engineers to focus primarily
on building products (and of course unit testing them), less time
is spent per engineer in the setup and teardown of the testing
process. Engineers now have more time per day to focus on
building applications for the business.Typically we see both out-
put per hour and output per day increase as a result of this. Cost
per unit drops as a result of higher velocity at static cost.
Additionally, the headcount cost of a great QA organization
typically is lower on a per-head basis than the cost of an engi-
neering organization, which further reduces cost. Finally, as the
testing organization is focused and incented to identify defects,
they don’t have any psychological conflicts with finding prob-
lems within their own code (as many engineers do) or the code
of a good engineering friend who sits next to them.

When to Hire a QA Person
You should hire a QA person anytime you can get one or more
engineer’s worth of productivity out of hiring someone in QA. The
math is fairly simple. If you have 11 engineers, and each of them
spends roughly 10% of her time on testing activities that could
be done by a single QA person, then by hiring that QA person you
can get 1.1 engineer’s worth of productivity back by hiring a sin-
gle QA person. Typically that person will also come at lower cost
than an engineer, so you get 1.1 engineer’s worth of work at .8 or
.9 the cost of an engineer.

None of this argues against pairing engineers and QA personnel
together as in the case of well run Agile processes. In fact, for
many implementations, we recommend such an approach. But
the division of labor is still valuable and typically achieves the
goals of reducing cost, increasing defect identification, and
increasing throughput.

118 Chapter 7 Learn from Your Mistakes

But the greatest as of yet unstated value of QA organizations
arises in the case of hyper growth companies. It’s not that this
value doesn’t exist within static companies or companies of
lower growth, but it becomes even more important in situations
where engineering organizations are doubling (or more) in size
annually. In these situations, standards are hard to enforce.
Engineers with greater tenure within the organization simply
don’t have time to keep up with and enforce existing standards
and even less time to identify the need for new standards that
address scale, quality, or availability needs. In the case where a
team doubles year over year, beginning year three of the dou-
bling, half of the existing “experienced” team only has a year or
less of company experience!

That brings us to why this rule is in the chapter on learning
from mistakes. Imagine an environment in which managers
spend nearly half of their time interviewing and hiring engineers
and in which in any given year half of the engineers (or more)
have less than a full year with the company. Imagine how much
time the existing longer tenured engineers will be spending
trying to teach the newer engineers about the source code man-
agement system, the build environments, the production envi-
ronments, and so on. In such an environment too little time is
spent validating that things have been built correctly, and the
number of mistakes released into QA (but hopefully not produc-
tion) increases significantly.

In these environments, it is QA’s job to teach the organiza-
tion what is happening from a quality perspective and where it is
happening such that the engineering organization can adapt and
learn. QA then becomes a tool to help the organization learn
what mistakes it is making repeatedly, where those mistakes lie,
and ideally how the organization can keep from making them in
the future. QA is likely the only team capable of seeing the
recurring problems.

Newer engineers, without the benefit of seeing their failures
and the impacts of those failures, will likely not only continue to
make them, but the approaches that lead to these failures will
become habit.Worse yet, they will likely train those bad habits
in the newly hired engineers as they arrive.What started out as a
small increase in the rate of defects will become a vicious cycle.

119Rule 28—Don’t Rely on QA to Find Mistakes

Everyone will be running around attempting to identify the root
cause of the quality nightmare, when the nightmare was bound
to happen and is staring them in the face: a failure to learn from
past mistakes!

QA must work to identify where a growing organization is
having recurring problems and create an environment in which
those problems are discussed and eliminated.And here, finally, is
the most important benefit of QA—it helps an organization
learn from engineering failures. Understanding that they can’t
test quality into the system, and unwilling to accept a role as a
safety screen behind a catcher in baseball to stop uncaught balls,
the excellent QA organization seeks to identify systemic failures
in the engineering team that lead to later quality problems.This
goes beyond the creation of burn down charts and find/fix
ratios; it involves digging into and identifying themes of prob-
lems and their sources. Once these themes are identified, they
are presented along with ideas on how to solve the problems.

Rule 29—Failing to Design for
Rollback Is Designing for Failure

Rule 29: What, When, How, and Why
What: Always have the ability to roll back code.

When to use: Ensure all releases have the ability to roll back,
practice it in a staging or QA environment, and use it in produc-
tion when necessary to resolve customer incidents.

How to use: Clean up your code and follow a few simple proce-
dures to ensure you can roll back your code.

Why: If you haven’t experienced the pain of not being able to roll
back, you likely will at some point if you keep playing with the
“fix-forward” fire.

Key takeaways: Don’t accept that the application is too complex
or that you release code too often as excuses that you can’t roll
back. No sane pilot would take off in an airplane without the abili-
ty to land, and no sane engineer would roll code that they could
not pull back off in an emergency.

120 Chapter 7 Learn from Your Mistakes

To set the right mood for this next rule we should all be gath-
ered around a campfire late at night telling scary stories.The
story we’re about to tell you is your classic scary story, including
the people who hear scary noises in the house but don’t get out.
Those foolish people who ignored all the warning signs were us.
As head of engineering and Chief Technology Officer (CTO),
we believed and had been told by almost every manager, archi-
tect, and engineer that the application was too complex and not
capable of being rolled back.We had several outages/issues after
code releases that required a mad scramble to “fix-forward” and
get a hot fix out later that same day to fully restore service.We
lived with these minor inconveniences because we believed that
the application was too complex to roll back.

Along came a major infrastructure release that, like all releases
that came before, could not be rolled back.This release was the
release-from-hell. Everything looked fine during the wee hours
of the morning, but when traffic picked up as the East Coast
woke up, the site went down. Had we been able to roll back, we
could have done so at that point with a few upset customers and
a bruised ego but nothing worse. But we couldn’t. So we cod-
dled the site all day adding capacity, throttling traffic, and so on,
trying to keep things working until we had a fix.We pushed a
patch late that evening and without the traffic on the site,
thought we’d fixed it.The next morning, as traffic increased, the
site started having problems again.This pattern of push a fix at
night, without traffic think it’s fixed, only to find out the next
day that the site still had issues carried on for more than a week.

By the end of that week everyone was exhausted from being
up literally days in a row.We finally pushed a patch that com-
pletely bypassed the original changes and were able to stabilize
the site.While many lessons were learned from that incident,
including failures of leadership, the one most relevant for this
rule is that all that pain, to us as well as to our customers, could
have been avoided had we been able to roll back the code.

One of the actions that came out of our postmortem was no
more code was allowed to be released that couldn’t be rolled
back.At that point we had no choice but to make that edict, the
business had zero tolerance for any more pain of that nature, and
every single engineer understood that need as well. Six weeks

121Rule 29—Failing to Design for Rollback Is Designing for Failure

later, when the next release was ready, we had the ability to roll
back.What we all thought were insurmountable challenges
turned out to be reasonably straightforward.

The following bulleted points provided us and many other
teams since then the ability to roll back.As you’d expect the
majority of the problem with rolling back is in the database. By
going through the application to clean up any outstanding issues
and then adhering to some simple rules every team should be
able to roll back.

n Database changes must only be additive—Columns
or tables should only be added, not deleted, until the next
version of code is released that deprecates the dependency
on those columns. Once these standards are implemented
every release should have a portion dedicated to cleaning
up the last release’s data that is no longer needed.

n DDL and DML scripted and tested—The database
changes that are to take place for the release must be
scripted ahead of time instead of applied by hand.This
should include the rollback script.The two reasons for this
are that 1) the team needs to test the rollback process in
QA or staging to validate that they have not missed some-
thing that would prevent rolling back and 2) the script
needs to be tested under some amount of load condition
to ensure it can be executed while the application is utiliz-
ing the database.

n Restricted SQL queries in the application—The
development team needs to disambiguate all SQL by
removing all SELECT * queries and adding column
names to all UPDATE statements.

n Semantic changes of data—The development team
must not change the definition of data within a release.An
example would be a column in a ticket table that is cur-
rently being used as a status semaphore indicating three
values such as assigned, fixed, or closed.The new version
of the application cannot add a fourth status until code is
first released to handle the new status and then code can
be released to utilize the new status.

122 Chapter 7 Learn from Your Mistakes

n Wire On/Wire Off—The application should have a
framework added that allows code paths and features to be
accessed by some users and not by others, based on an
external configuration.This setting can be in a configura-
tion file or a database table and should allow for both role-
based access as well as random percentage based.This
framework allows for beta testing of features with a limited
set of users and allows for quick removal of a code path in
the event of a major bug in the feature, without rolling
back the entire code base.

We learned a painful but valuable lesson that left scars so deep
we never pushed another piece of code that couldn’t be rolled
back. Even though we moved on to other positions with other
teams, we carried that requirement with us.As you can see from
the preceding guidelines these are not overly complex but rather
straightforward rules that any team can apply and have rollback
capability going forward.

Rule 30—Discuss and Learn from
Failures

Rule 30: What, When, How, and Why
What: Leverage every failure to learn and teach important les-
sons.

When to use: Always.

How to use: Employ a postmortem process and hypothesize fail-
ures in low failure environments.

Why: We learn best from our mistakes—not our successes.

Key takeaways: Never let a good failure go to waste. Learn from
every one and identify the technology, people, and process issues
that need to be corrected.

Many of us, when discussing world events at social gatherings,
have likely uttered sentences something to the effect of “We
never seem to learn from history.” But how many of us truly

123Rule 30—Discuss and Learn from Failures

apply that standard to ourselves, our inventions, and our organi-
zations within our work? There exists an interesting paradox
within our world of highly available and highly scalable technol-
ogy platforms:Those systems that are initially built the best fail
less often and as a result the organizations have less opportunity
to learn. Inherent to this paradox is the notion that each failure
of process, systems, or people offers us an opportunity to per-
form a “postmortem” of the event for the purposes of learning
and modifying our systems.A failure to leverage these precious
events to improve our people, processes, and technology dooms
us to continuing to operate exactly as we do today, which in
turn means a failure to improve.A failure to improve, when
drawn on a business contextual canvas of hyper growth and
therefore a need for aggressive scale, becomes a painting depict-
ing business failure.Too many things happen in our business
when we are growing quickly to believe that a solution that we
designed two years or even one year ago will be capable of sup-
porting a business 10x the size of the time we built the system.

The world of nuclear power generation offers an interesting
insight into this need to learn from our mistakes. In 1979, the
TMI-2 reactor at Three Mile Island experienced a partial core
meltdown, creating the most significant nuclear power accident
in U.S. history.This accident became the source of several books,
at least one movie, and two important theories on the source
and need for learning in environments in which accidents are
rare but costly.

Charles Perrow’s Normal Accident Theory hypothesizes that
the complexity inherent to modern coupled systems makes acci-
dents inevitable.1 The coupling inherent to these systems allows
interactions to escalate rapidly with little opportunity for
humans or control systems to interact successfully.Think back to
how often you might have watched your monitoring solution go
from all “green” to nearly completely red before you could
respond to the first alert message.

Todd LaPorte, who developed the theory of High Reliability
Organizations, believes that even in the case of an absence of
accidents from which an organization can learn, there are orga-
nizational strategies to achieve higher reliability.2 While the

124 Chapter 7 Learn from Your Mistakes

authors of these theories do not agree on whether these theories
can coexist, they share certain common elements.The first is that
organizations that fail often have greater opportunities to learn
and grow than those that do not, assuming of course that they
take an opportunity to learn from them.The second, which sort
of follows from the first, is that systems that fail infrequently
offer little opportunity to learn and as a result in the absence of
other approaches the teams and systems will not grow and
improve.

Having made the point that learning from and improving
after mistakes is important, let’s depart from that subject briefly
to describe a lightweight process by which we can learn and
improve. For any major issue that we experience, we believe an
organization should attack that issue with a postmortem process
that addresses the problem in three distinct but easily described
phases:

n Phase 1 Timeline—Focus on generating a timeline of
the events leading up to the issue or crisis. Nothing is dis-
cussed other than the timeline during this first phase.The
phase is complete once everyone in the room agrees that
there are no more items to be added to the timeline.We
typically find that even after we’ve completed the timeline
phase, people will continue to remember or identify time-
line worthy events in the next phase of the postmortem.

n Phase 2 Issue Identification—The process facilitator
walks through the timeline and works with the team to
identify issues.Was it okay that the first monitor identified
customer failures at 8 a.m. but that no one responded until
noon? Why didn’t the auto-failover of the database occur
as expected? Why did we believe that dropping the
user_authorization table would allow the application to
start running again? Each and every issue is identified from
the timeline, but no corrections or actions are allowed to
be made until the team is done identifying issues.
Invariably, team members will start to suggest actions, but
it is the responsibility of the process facilitator to focus the
team on issue identification during Phase 2.

125Rule 30—Discuss and Learn from Failures

n Phase 3 State Actions—Each item should have at least
one action associated with it.The process facilitator walks
down the list of issues and works with the team to identify
an action, an owner, an expected result, and a time by
which it should be completed. Using the SMART princi-
ples, each action should be specific, measurable, attainable,
realistic, and timely.A single owner should be identified,
even though the action may take a group or team to
accomplish.

No postmortem should be considered complete until it has
addressed the people, process, and technology issues responsible
for the failure.Too often we find that clients stop at “a server
died” as a root cause for an incident. Hardware fails, as do people
and processes, and as a result no single failure should ever be
considered the “true root cause” of any incident.The real ques-
tion for any failure of scalability or availability is to ask “why
didn’t the holistic system act more appropriately?” If a database
fails due to load, why didn’t the organization identify the need
earlier? What process or monitoring should have been in place
to help the organization find the issue? Why did the failure take
so long to recover? Why isn’t the database split up such that any
failure has less of an impact on our customer base or services?
Why wasn’t there a read replica that could be quickly promoted
as the write database? In our experience, you are never finished
unless you can answer “Why” at least five times to cover five dif-
ferent potential problems.

Now that we’ve discussed what we should do, let’s return to
the case where we don’t have many opportunities to develop
such a system.Weick and Sutcliffe have a solution for organiza-
tions lucky enough to have built platforms that scale effectively
and fail infrequently.3 Their solution, as modified to fit our
needs, is described as follows:

n Preoccupation with failure—This practice is all about
monitoring our product and our systems and reporting
errors in a timely fashion. Success, they argue, narrows
perceptions and breeds overconfidence.To combat the

126 Chapter 7 Learn from Your Mistakes

resulting complacency, organizations need complete trans-
parency into system faults and failures. Reports should be
widely distributed and discussed frequently such as in a
daily meeting to discuss the operations of the platform.

n Reluctance to simplify interpretations—Take nothing
for granted and seek input from diverse sources. Don’t try
to box failures into expected behavior and act with a
healthy bit of paranoia.The human tendency here is to
explain small variations as being “the norm,” whereas they
can easily be your best early indicator of future failure.

n Sensitivity to operations—Look at detail data at the
minute level. Include the usage of real time data and make
ongoing assessments and continual updates of this data.

n Commitment to resilience—Build excess capability by
rotating positions and training your people in new skills.
Former employees of eBay operations can attest that
DBAs, SAs, and network engineers used to be rotated
through the operations center to do just this. Furthermore,
once fixes are made the organization should be quickly
returned to a sense of preparedness for the next situation.

n Deference to expertise—During crisis events, shift the
leadership role to the person possessing the greatest
expertise to deal with the problem. Consider creating a
competency around crisis management such as a “technical
duty officer” in the operations center.

Never waste an opportunity to learn from your mistakes, as they
are your greatest source of opportunity to make positive change.
Put a process, such as a well run postmortem, in place to extract
every ounce of learning that you can from your mistakes. If you
have a well-designed system that fails infrequently, even under
extreme scale, practice organizational “mindfulness” and get close
to your data to better identify future failures easily. It is easy to
be lured into a sense of complacency in these situations, and you
are well served to hypothesize and brainstorm on different fail-
ure events that might happen.

127Rule 30—Discuss and Learn from Failures

Summary
This chapter has been about learning. Learn aggressively,
learn from others’ mistakes, learn from your own mistakes, and
learn from your customers. Be a learning organization and a
learning individual.The people and organizations that constantly
learn will always be ahead of those who don’t.As Charlie
“Tremendous” Jones, the author of nine books and numerous
awards, said,“In ten years you will be the same person you are
today except for the people you meet and the books you read.”
We like to extend that thought that an organization will be the
same tomorrow as they are today except for the lessons they
learn from their customers, themselves, and others.

Endnotes
1. Charles Perrow, Normal Accidents (Princeton, NJ: Princeton University

Press, 1999).

2. Todd R. LaPorte and Paula M. Consolini, “Working in Practice But

Not in Theory: Theoretical Challenges of ‘High-Reliability

Organizations,’” Journal of Public Administration Research and

Theory, Oxford Journals, http://jpart.oxfordjournals.org/content/

1/1/19.extract.

3. Karl E. Weick and Kathleen M. Sutcliffe, “Managing the

Unexpected,” http://www.hetzwartegat.info/assets/files/Managing%

20the%20Unexpected.pdf.

128 Chapter 7 Learn from Your Mistakes

http://www.hetzwartegat.info/assets/files/Managing%20the%20Unexpected.pdf
http://www.hetzwartegat.info/assets/files/Managing%20the%20Unexpected.pdf
http://jpart.oxfordjournals.org/content/1/1/19.extract
http://jpart.oxfordjournals.org/content/1/1/19.extract

8
Database Rules

In Chapter 4,“Use the Right Tools,” we discussed Maslow’s
Hammer (aka the Law of the Instrument), which put simply is
an overreliance, to a fault, on a familiar tool.We discussed that
one common example of overuse is the relational database.
Recall that relational databases typically give us certain benefits
outlined by an acronym called ACID described in Table 8.1.

Table 8.1 ACID Properties of Databases

Atomicity All of the operations in the transaction will com-
plete, or none will.

Consistency The database will be in a consistent state when
the transaction begins and ends.

Isolation The transaction will behave as if it is the only
operation being performed upon the database.

Durability Upon completion of the transaction, the
operation will not be reversed.

ACID properties are really powerful when we need to split up
data into different entities with each entity having some number
of relationships with other entities within the database.They are
even more powerful when we want to process a large number of
transactions through these entities and relationships; transactions
consisting of reads of the data, updates to the data, the addition
of new data (inserts or creates), and removal of certain data
(deletes).While we should always strive to find more lightweight
and faster ways to perform transactions, sometimes there simply

isn’t an easy way around using a relational database, and some-
times the relational database is the best option for our imple-
mentation given the flexibility it affords.Whereas Rule 14
argued against using databases where they were not necessary,
this chapter when used in conjunction with the rules of Chapter
2 (“Distribute Your Work”) helps us make the most out of data-
bases without causing major scalability problems within our
architecture.

Rule 31—Be Aware of Costly
Relationships

Rule 31: What, When, How, and Why
What: Be aware of relationships in the data model.

When to use: When designing the data model, adding
tables/columns, or writing queries consider how the relationships
between entities will affect performance and scalability in the
long run.

How to use: Think about database splits and possible future
data needs as you design the data model.

Why: The cost of fixing a broken data model after it has been
implemented is likely 100x as much as fixing it during the design
phase.

Key takeaways: Think ahead and plan the data model carefully.
Consider normalized forms, how you will likely split the database
in the future, and possible data needs of the application.

In our personal lives, unless we’re masochistic, we all strive to
establish and build relationships that are balanced. Ideally we put
into a relationship roughly the same that we get out.When a
personal relationship becomes skewed in one person’s favor the
other person may become unhappy, reevaluate the relationship,
and potentially end it.Although this book isn’t about personal
relationships, the same cost = benefit balance that exists in our
personal relationships is applicable to our database relationships.

Database relationships are determined by the data model,
which captures the cardinality and referential integrity rules of
the data.To understand how this occurs and why it is important

130 Chapter 8 Database Rules

we need to understand the basic steps involved in building a data
model that results in the data definition language (DDL) state-
ments that are used to actually create the physical structure to
contain the data, that is, tables and columns.While there are all
types of variations on this process, for a relational model the first
step generally is to define the entities.

An entity is anything that can exist independently such as a
physical object, event, or concept. Entities can have relationships
with each other, and both the entity and the relationship can
both have attributes describing them. Using the common gram-
mar analogy, entities are nouns, relationships are verbs, and attrib-
utes are adjectives or adverbs, depending on what they modify.

Entities are single instances of something, such as a customer’s
purchase order, which can have attributes such as an order ID
and total value. Grouping of the same type of entities together
produces an entity set. In our database the entity is the equiva-
lent of the row, and the entity set is the table.The unique attrib-
ute that describes the entity is the primary key of the table.
Primary keys enforce entity integrity by uniquely identifying
entity instances.The unique attributes that describe the relation-
ship between entities are the foreign keys. Foreign keys enforce
referential integrity by completing an association between two
entities of different entity sets. Most commonly used to diagram
entities, relationships and attributes are entity relationship dia-
grams (ERD). ERDs show the cardinality between entity sets,
one-to-one, one-to-many, or many-to-many relationships.

Once the entities, relationships, and attributes are defined and
mapped, the last step in the design of the data model is to con-
sider normalization.The primary purpose of normalizing a data
model is to ensure the data is stored in a manner that allows for
insert, update, select, and delete (aka CRUD: Create Read
Update Delete) with data integrity. Non-normalized data models
have a high degree of data redundancy, which means that the
risk of data integrity problems is greater. Normal forms build
upon each other meaning that for a database to satisfy the
requirements for second normal form it first must satisfy first
normal form.The most common normal forms are described in
the sidebar. If a database adheres to at least the third normal
form it is considered normalized.

131Rule 31—Be Aware of Costly Relationships

Normal Forms
Here are the most common normal forms used in databases.
Each higher normal form implies that it must satisfy lower forms.
Generally a database is said to be in normal form if it adheres to
third normal form.

n First normal form—Originally, as defined by Codd,1 the
table should represent a relation and have no repeating
groups. While “relation” is fairly well defined by Codd, the
meaning of “repeating groups” is a source of debate.
Controversy exists over whether tables are allowed to exist
within tables and whether null fields are allowed. The most
important concept is the ability to create a key.

n Second normal form—Nonkey fields cannot be described
by only one of the keys in a composite key.

n Third normal form—All nonkey fields must be described by
the key.

n Boyce-Codd normal form—Every determinant is a candi-
date key.

n Fourth normal form—A record type should not contain two
or more multivalued facts.

n Fifth normal form—Every nontrivial join dependency in the
table is implied by the candidate keys.

n Sixth normal form—No nontrivial join dependencies exist.

An easy mnemonic for the first three normal forms is “1 — The
Key, 2 — The Whole Key, and 3 — Nothing But the Key.”

As you have probably figured out by now, the relationships
between entities dramatically affect how efficiently the data is
stored, retrieved, and updated. It also plays a large role in scala-
bility as these relationships define how we are able to split or
shard our database. If we are attempting to perform a Y axis split
of our database by pulling out the order confirmation service,
this might prove problematic if the order entity is extensively
related to other entities.Trying to untangle this web of relation-
ships is difficult after the fact. It is well worth the time spent up
front in the design phase to save you 10x or 100x the effort
when you need to split your databases.

132 Chapter 8 Database Rules

One last aspect of data relationships that is important to scala-
bility is how we join tables in our queries.This, of course, is also
very much dictated by the data model but also by our develop-
ers who are creating reports, new pages in our applications, and
so on.We won’t attempt to cover the steps to query optimiza-
tion in detail here, but suffice it to say that new queries should
be reviewed by a competent DBA who is familiar with the data
model, and should be analyzed for performance characteristics
prior to being placed into the production environment.

You have probably noticed that there is a relationship
between a desire for increased data integrity through normaliza-
tion and the degree to which relationships must be used in a
database.The higher the normal form, the greater the number of
potential relationships as we create tables specific to such things
as repeating values.What was once taught as a law years ago in
database design (moving up in normal form is good) is now seen
as more of a tradeoff in high transaction system design.This
tradeoff is similar to the tradeoff between risk and cost, cost and
quality, time and cost, and so on; specifically a decrease in one
side typically implies an increase in the other. Often to increase
scale, we look to reduce normal forms.

When SQL queries perform poorly because of the require-
ments to join tables there are several alternatives.The first is to
tune the query. If this doesn’t help another alternative is to cre-
ate a view, materialized view, summary table, and so on that can
preprocess the joins.Another alternative is to not join in the
query but rather pull the data sets into the application and join
in memory in the application.While this is more complex it
removes the processing of the join off the database, which is
often the most difficult to scale and puts it in the application
server tier, which is easier to scale out with more commodity
hardware.A final alternative is to push back on the business
requirements. Often our business partners will come up with
different solutions when it is explained that the way they have
requested the report requires a 10% increase in hardware while
the removal of a single column may make the report trivial in
complexity and nearly as equivalent in business value.

133Rule 31—Be Aware of Costly Relationships

Rule 32—Use the Right Type of
Database Lock

Rule 32: What, When, How, and Why
What: Be cognizant of the use of explicit locks and monitor
implicit locks.

When to use: Anytime you employ relational databases for your
solution.

How to use: Monitor explicit locks in code reviews. Monitor data-
bases for implicit locks and adjust explicitly as necessary to mod-
erate throughput. Choose a database and storage engine that
allows flexibility in types and granularity of locking.

Why: Maximize concurrency and throughput in databases within
your environment.

Key takeaways: Understand the types of locks and manage their
usage to maximize database throughput and concurrency. Change
lock types to get better utilization of databases and look to split
schemas or distribute databases as you grow. When choosing
databases, ensure you choose one that allows multiple lock
types and granularity to maximize concurrency.

Locks are a fact of life within a database; they are the way in
which databases allow concurrent users while helping to ensure
the consistency and isolation components of the ACID proper-
ties of a database. But there are many different types of database
locks, and even different approaches to implementing them.
Table 8.2 offers a brief and high-level overview of different lock
types supported in many different open source and third-party
proprietary database management systems. Not all of these locks
are supported by all databases, and the lock types can be mixed.
For instance, a row lock can be either explicit or implicit.

Table 8.2 Lock Types

Type of Lock Description

Implicit Implicit locks are those generated by the
database on behalf of a user to perform certain
transactions. These are typically generated when
necessary for certain DML (Data Manipulation
Language) tasks.

134 Chapter 8 Database Rules

Type of Lock Description

Explicit These are locks defined by the user of a data-
base during the course of his interaction with
entities within the database.

Row Row level locking locks a row in a table of a
database that is being updated, read, or created.

Page Page level locking locks the entire page that
contains a row or group of rows being updated.

Extent Typically, these are locks on groups of pages.
They are common when database space is being
added.

Table Locks an entire table (an entity within a
database).

Database Locks the entirety of entities and relationships
within a database.

If you search a bit, you will find many other types of locks.
There are, depending on the type of database, key and index
locks that work on the indices that you create over your tables.
You may also find a discussion of column locking and ways in
which different databases might support that notion.To our
knowledge, few if any databases actually support this type of
locking, and if it is supported it isn’t used very frequently within
the industry.

While locking is absolutely critical to the operations of a
database to facilitate both isolation and consistency, it is obvious-
ly costly.Typically databases allow reads to occur simultaneously
on data, while blocking all reads during the course of a write
(an update or insertion) on an element undergoing an operation.
Reads then can occur very fast, and many of them can happen
at one time while typically a write happens in isolation.The
finer the granularity of the write operation, such as in the case
of a single row, the more of these can happen within the data-
base or even within a table at a time. Increasing the granularity
of the object being written or updated, such as updating multi-
ple rows at a time, may require an escalation of the type of lock
necessary.

135Rule 32—Use the Right Type of Database Lock

The size or granularity of lock to employ ultimately impacts
the throughput of transactions.When updating many rows at a
single time within a database, the cost of acquiring multiple row
locks and the competition for these rows might result in fewer
transactions per second than just acquiring a larger lock of a
page, extent, or table. But if too large a lock is grabbed, such as
a page when only updating a small number of rows, then
transaction throughput will decrease while the lock is held.

Often a component of the database (commonly called an
optimizer within many databases) determines what size of
element should be locked in an attempt to allow maximum
concurrency while ensuring consistency and isolation. In most
cases, initially allowing the optimizer to determine what should
be locked is your best course of action.This component of the
database has more knowledge about what is likely to be updated
than you do at the time of the operation. Unfortunately, these
systems are bound to make mistakes, and this is where it is criti-
cal that we monitor our databases in production and make
changes to our DML to make it more efficient as we learn from
what happens in our production environments.

Most databases allow performance statistics to be collected
that allow us to understand the most common locking condi-
tions and the most common events causing transactions to wait
before being processed. By analyzing this information historical-
ly, and by monitoring these events aggressively in the production
environment, we can identify when the optimizer is incorrectly
identifying the type of lock it should use and force the database
to use an appropriate type of locking. For instance, if through
our analysis we identify that our database is consistently using
table locking for a particular table and we believe we would get
greater concurrency out of row level locking, we might be able
to force this change.

Perhaps as important as the analysis of what is causing bottle-
necks and what type of locking we should employ is the notion
of determining if we can change the entity relationships to
reduce contention and increase concurrency.This of course
brings us back to the concepts we discussed in Chapter 2.We
can, for instance, split our reads across multiple copies of the

136 Chapter 8 Database Rules

database and force writes to a single copy as in the X axis of
scale (Rule 7). Or we can split up our tables across multiple
databases based partially on contention such as in the Y axis of
scale (Rule 8). Finally, we may just reduce table size by pulling
out certain customer-specific data into multiple tables to allow
the contention to be split across these entities such as in the Z
axis of scale (Rule 9).

Finally, where we employ databases to do our work we
should try to ensure we are choosing the best solution.As we’ve
said time and again, we believe that you can scale nearly any
product using nearly any set of technologies.That said, most
decisions we make will have an impact on either our cost of
operating our product or our time to market.There are, for
example, some database storage engine solutions that limit the
types of locks we can employ within the database, and as a result
limit our ability to tune our databases to maximize concurrent
transactions. MySQL is an example where the selection of a
storage engine such as MyISAM can limit you to table level
locks and, as a result, potentially limits your transaction
throughput.

Rule 33—Pass on Using
Multiphase Commits

Rule 33: What, When, How, and Why
What: Do not use a multiphase commit protocol to store or
process transactions.

When to use: Always pass or alternatively “never use” multi-
phase commits.

How to use: Don’t use it; split your data storage and processing
systems with Y or Z axis splits.

Why: Multiphase commits are blocking protocols that do not per-
mit other transactions from occurring until it is complete.

Key takeaways: Do not use multiphase commit protocols as a
simple way to extend the life of your monolithic database. It will
likely cause it to scale even less and result in an even earlier
demise of your system.

137Rule 33—Pass on Using Multiphase Commits

Multiphase commit protocols, which include the popular
two-phase commit (2PC) and three-phase commit (3PC), are
specialized consensus protocols.The purpose of these protocols is
to coordinate processes that participate in a distributed atomic
transaction to determine whether to commit or abort (roll back)
the transaction.2 Because of these algorithms’ capability to
handle systemwide failures of the network or processes, they
are often looked to as solutions for distributed data storage or
processing.

The basic algorithm of 2PC consists of two phases.The first
phase, voting phase, is where the master storage or coordinator
makes a “commit request” to all the cohorts or other storage
devices.All the cohorts process the transaction up to the point of
committing and then acknowledge that they can commit or vote
“yes.”Thus begins the second phase or completion phase, where
the master sends a commit signal to all cohorts who begin the
commit of the data. If any cohorts should fail during the com-
mit then a rollback is sent to all cohorts and the transaction is
abandoned.An example of this protocol is shown in Figure 8.1.

138 Chapter 8 Database Rules

Figure 8.1 2PC example

A
)

In
iti

at
e

Tr
an

sa
ct

io
n

C
) C

onfirm
 Transaction

Application Server

Master
DB

Cohort
DB

Phase 1 (voting)

Send query

Vote = “yes”

Phase 2 (complete)

Send commit

Vote = “yes”

B) Two-Phase Commit

So far this protocol probably sounds pretty good since it pro-
vides atomicity of transactions within a distributed database
environment. Hold off on your judgment just a short while
longer. In the example Figure 8.1, notice that the app server ini-
tiated the transaction, step A.Then all the 2PC steps started hap-
pening and had to complete, step B, before the master database
could acknowledge back to the app server that indeed that
transaction was completed, step C. During that entire time the
app server thread was held up waiting for the SQL query to
complete and the database to acknowledge the transaction.
This example is typical of almost any consumer purchase, regis-
tration, or bidding transaction on the Web where you might
try to implement 2PC. Unfortunately, locking up the app server
for that long can have dire consequences.While you might
think that you either have plenty of capacity on your app servers
or that you can scale them out pretty cost effectively since they
are commodity hardware, the locking also occurs on the data-
base. Because you’re committing, all rows of data, assuming you
have row-level locking capabilities because it’s even worse for
block level, you are locking up all those rows until everything
commits and gives the “all clear.”

We’ve implemented (or rather failed to implement) 2PC on a
large scale, and the results were disastrous and entirely due to the
lock and wait nature of the approach. Our database could initial-
ly handle thousands of reads and writes a second prior to the
2PC implementation.After introducing 2PC for just a fraction
of the calls (less than 2%), the site completely locked up before
processing a quarter of the total number of transactions it could
previously handle.While we could have added more application
servers, the database was not able to process more queries
because of locks on the data.

While 2PC might seem like a good alternative to actually
splitting your database by a Y or Z axis split (Rules 8 and 9),
think again. Pull (or separate) database tables apart the smart way
instead of trying to extend the life of your monolithic database
with a multiphase commit protocol.

139Rule 33—Pass on Using Multiphase Commits

Rule 34—Try Not to Use “Select
For Update”

Rule 34: What, When, How, and Why
What: Minimize the use of the FOR UPDATE clause in a
SELECT statement when declaring cursors.

When to use: Always.

How to use: Review cursor development and question every
SELECT FOR UPDATE usage.

Why: Use of FOR UPDATE causes locks on rows and may slow
down transactions.

Key takeaways: Cursors are powerful constructs that when prop-
erly used can actually make programming faster and easier while
speeding up transactions. But FOR UPDATE cursors may cause
long held locks and slow transactions. Refer to your database
documentation for whether you need to use the FOR READ
ONLY clause to minimize locks.

When leveraged properly, cursors are powerful database control
structures that allow us to traverse and process data within some
result set defined by the query (or operation) of the cursor. Cursors
are useful when we plan to specify some set of data and “cursor
through” or process the rows in the data set in an iterative fashion.
Items within the data set can be updated, deleted, or modified or
simply read and reviewed for other processing.The real power of
the cursor is as an extension of the capability of the programming
language, as many procedural and object-oriented programming
languages don’t offer built-in capabilities of managing data sets
within a relational database. One potentially troublesome approach
in very high transaction systems is the FOR UPDATE clause in
SELECT cursors as we often are not in control of how long the
cursor will be active, the resulting lock on records can cause
slow-downs or even near deadlock scenarios in our product.

In many databases, when the cursor with a FOR UPDATE
clause is opened, the rows identified within the statement are
locked until either a commit or rollback is issued within the
session.The COMMIT statement saves changes and a ROLLBACK
cancels any changes.With the issuing of either statement, the

140 Chapter 8 Database Rules

locks associated with the rows in the database are released.
Additionally, after issuing the commit or rollback, you lose your
position within the cursor and will not be able to execute any
more fetches against it.

Pause for a second now and think back to Rule 32 and our
discussion of database locks. Can you identify at least two
potential problems with the “Select for Update” cursor? The
first problem is that the cursor holds locks on rows within the
database while you perform your actions. Granted, in many cases
this might be useful, and in some smaller number of cases it
might either be unavoidable or may be the best approach for the
solution. But these locks are going to potentially cause other
transactions to block or wait while you perform some number of
actions. If these actions are complex or take some time you may
stack up a great number of pending transactions. If these other
transactions also happen to be cursors expecting to perform a
“select for update” we may create a wait queue that simply will
not be processed within our users’ acceptable timeframe. In a
Web environment, impatient users waiting on slowly responding
requests may issue additional requests with the notion that per-
haps the subsequent requests will complete more quickly.The
result is a disaster; our systems come to a halt as pending requests
stack up on the database and ultimately cause our Web servers to
fill up their TCP ports and stop responding to users.

The second problem is the mirror image of our first problem
and hinted at previously. Future cursors desiring a lock on one
or more rows that are currently locked will wait until other
locks clear. Note that these locks don’t necessarily need to be
placed by other cursors; they can be explicit locks from users or
implicit locks from the RDBMS.The more locking that we have
going on within the database, even while some of it is likely
necessary, the more likely we will have transactions backing up.
Very long held locks will engender slower response times for
frequently requested data. Some databases, such as Oracle,
include the optional keyword “NOWAIT” that releases control
back to the process to perform other work or to wait before try-
ing to reacquire the lock. But if the cursor must be processed for
some synchronous user request, the end result to the user is the
same—a long wait for a client request.

141Rule 34—Try Not to Use “Select For Update”

Be aware that some databases default to “for update” for cur-
sors. In fact, the American National Standards Institute (ANSI)
SQL standard indicates that any cursor should default to FOR
UPDATE unless it includes the clause FOR READ ONLY on the
DECLARE statement. Developers and DBAs should refer to their
database documentation to identify how to develop cursors with
minimal locks.

Rule 35—Don’t Select Everything

Rule 35: What, When, How, and Why
What: Don’t use Select * in queries.

When to use: Always use this rule (or put another way, never
select everything).

How to use: Always declare what columns of data you are select-
ing or inserting in a query.

Why: Selecting everything in a query is prone to break things
when the table structure changes and it transfers unneeded
data.

Key takeaways: Don’t use wildcards when selecting or inserting
data.

This is a pretty simple and straightforward rule. For most of us
the first SQL we learned was

Select * from table_name_blah;

When it returned a bunch of data we were thrilled.
Unfortunately, some of our developers either never moved
beyond this point or regressed back to it over the years. Selecting
everything is fast and simple but really never a good idea.There
are several problems with this that we’ll cover, but keep in mind
that this mentality of selecting unnamed data can be seen in
another DML statement, Insert.

There are two primary problems with the Select *.The
first is the probability of data mapping problems, and the second
is the transfer of unnecessary data.When we execute a select
query we’re often expecting to display or manipulate that data
and to do so requires that we map the data into some type of

142 Chapter 8 Database Rules

variable. In the following code example there are two functions,
bad_qry_data and good_qry_data.As the name should give
away, bad_qry_data is a bad example of how you can map a
query into an array, and good_qry_data shows a better way of
doing it. In both functions, we are selecting the values from the
table bestpostpage and mapping them into a two-dimensional
array. Since we know there are four columns in the table we
might feel that we’re safe using the bad_qry_data function.The
problem is when the next developer needs to add a column to
the table they might issue a command such as this:

ALTER TABLE bestpostpage ADD remote_host varchar(25) AFTER id;

The result is that your mapping from column 1 is no longer the
remote_ip but instead is now remote_host.A better solution
is to simply declare all the variables that you are selecting and
identify them by name when mapping.

function bad_qry_data() {

$sql = "SELECT * "

. "FROM bestpostpage "

. "ORDER BY insert_date DESC LIMIT 100";

$qry_results = exec_qry($sql);

$i = 0;

while($row = mysql_fetch_array($qry_results)) {

$ResArr[$i]["id"] = $row[0];

$ResArr[$i]["remote_ip"] = $row[1];

$ResArr[$i]["post_data"] = $row[2];

$ResArr[$i]["insert_date"] = $row[3];

$i++;

} // while

return $ResArr;

} //function qry_data

function good_qry_data() {

$sql = "SELECT id, remote_ip, post_data, insert_date "

. "FROM bestpostpage "

. "ORDER BY insert_date DESC LIMIT 100";

$qry_results = exec_qry($sql);

$i = 0;

while($row = mysql_fetch_assoc($qry_results)) {

$ResArr[$i]["id"] = $row["id"];

143Rule 35—Don’t Select Everything

$ResArr[$i]["remote_ip"] = $row["remote_ip"];

$ResArr[$i]["post_data"] = $row["post_data"];

$ResArr[$i]["insert_date"] = $row["insert_date"];

$i++;

} // while

return $ResArr;

} //function qry_data

The second big problem with Select * is that usually you
don’t need all the data in all the columns.While the actual
lookup of additional columns isn’t resource consuming, the
transfer of all that additional data from the database server to the
application server can add up to significant amounts when that
query gets executed dozens or even hundreds of times per
minute for different users.

Lest you think this is all about the much-maligned Select
statement, Insert can fall prey to the exact same problem of
unspecified columns.The following SQL statement is perfectly
valid as long as the column count of the table matches the num-
ber of values being entered.This will break when an additional
column is added to the table, which might cause an issue with
your system but should be able to be caught early in testing.

INSERT INTO bestpostpage VALUES (1, '10.97.23.45', 'test
data', '2010-11-19 11:15:00');

A much better way of inserting the data is to use the actual col-
umn names, like this:

INSERT INTO bestpostpage (id, remote_ip, post_data,
insert_date) VALUES (1, '10.97.23.45', 'test data',
'2010-11-19 11:15:00');

As a best practice, do not get in the habit of using Select or
Insert without specifying the columns. Besides wasting
resources and being likely to break or potentially even corrupt
data, it also prevents you from rolling back.As we discussed in
Rule 29 building the capability to roll back is critical to both
scalability and availability.

144 Chapter 8 Database Rules

Summary
In this chapter we discussed rules that will help your database
scale. Ideally, we’d like to avoid the use of relational databases
because they are more difficult to scale than other parts of sys-
tems, but sometimes their use is unavoidable. Given that the
database is often the most difficult part of the application to
scale, particular attention should be paid to these rules.When the
rules presented in this chapter are combined with rules from
other chapters such as Chapter 2, you should have a strong base
of do’s and don’ts to ensure your database scales.

Endnotes
1. E. F. Codd, “A Relationship Model of Data for Large Shared Data

Banks,” Communications of the ACM 13 (6): 377-387.

2. Wikipedia, “Two-phase commit,” http://en.wikipedia.org/wiki/Two-

phase_commit_protocol.

145Endnotes

http://en.wikipedia.org/wiki/Twophase_commit_protocol
http://en.wikipedia.org/wiki/Twophase_commit_protocol

This page intentionally left blank

9
Design for

Fault Tolerance and
Graceful Failure

In our experience, the second most common scalability related
failure behind “Not designed to scale” is “Not designed to fail.”
While this may sound a bit odd, it is in fact the most common
type of scale failure in sites that are designed to be nearly infi-
nitely scalable.Very often, small unexpected failures of certain
key features will back up transactions and bring the whole busi-
ness to its knees.After all, what good is a site that can scale infi-
nitely if it isn’t resilient to failures? We all know that there is no
way around systems or software failing, and as we add systems
and software, our rate of failure will increase.While increasing
our number of systems and associated services 1000x may not
result in 1000x more failures, we should expect some significant
increase. If we can’t handle this increase in failures, have we real-
ly delivered on the promise of scalability to our business? We
think not.

In our business, availability and scalability go hand in hand.A
product that isn’t highly available really doesn’t need to scale and
a site that can’t scale won’t be highly available when the demand
comes.As such, you really can’t work on one without thinking
about the other.This chapter offers rules that help ensure sites
can both scale AND be resilient to and tolerant of failures while
still delivering value to the customer.

Rule 36—Design Using Fault
Isolative “Swimlanes”

Rule 36: What, When, How, and Why
What: Implement fault isolation or swimlanes in your designs.

When to use: Whenever you are beginning to split up databases
to scale.

How to use: Split up databases and services along the Y or Z
axis and disallow synchronous communication or access between
services.

Why: Increase availability and scalability and reduce incident
identification and resolution as well as time to market and cost.

Key takeaways: Fault isolation consists of eliminating synchro-
nous calls between fault isolation domains, limiting asynchronous
calls and handling synchronous call failure, and eliminating the
sharing of services and data between swimlanes.

Our terminology in splitting up services and data is rich with
confusing and sometimes conflicting terms. Different organiza-
tions often use words such as pod, pool, cluster, and shard.Adding
to this confusion is that these terms are often used interchange-
ably by the same organization. In one context, a team may use
“shard” to identify groupings of services and data while in
another it only means the separation of data within a database.
Given the confusion and differentiation in usage of the existing
terms, we created the term swimlane in our practice to try to
hammer home the important concept of fault isolation.While
some of our clients started adopting the term to indicate fault
isolative splits of services or customer segmentation in produc-
tion, its most important contribution is in the design arena.Table
9.1 is a list of common terms, their most common descriptions,
and an identification of how and when they are used inter-
changeably in practice.

148 Chapter 9 Design for Fault Tolerance and Graceful Failure

Table 9.1 Types of Splits

Split Description
Name

Pod Pods are self-contained sets of functionality containing
app servers, persistent storage (such as a database or
other persistent and shared file system), or both. Pods
are most often splits along the Z axis, as in a split of
customers into separate pods. “Pod” is sometimes used
interchangeably with the term “swimlane.” It has also
been used interchangeably with the term “pool” when
referring to Web or application services.

Cluster Clusters are sometimes used for Web and application
servers in the same fashion as a “pool” identified next.
In these cases a cluster refers to an X axis scale of sim-
ilar functionality or purpose configured such that all
nodes or participants are “active.” Often a cluster will
share some sort of distributed state above and beyond
that of a pool, but this state can cause scalability bottle-
necks under high transaction volumes. Clusters might
also refer to active/passive configuration where one (or
more) devices sit “passive” and become “active” on the
failure of a peer device.

Pool Pools are servers that group similar functionality or poten-
tially separate groups of customers. The term typically
refers to front end servers, but some companies refer to
database service pools for certain characteristics. Pools
are typically X axis replicated (cloned) servers that are
demarcated by function (Y axis) or customer (Z axis).

Shard Shards are horizontal partitions of databases or search
engines. Horizontal partitioning means the separation of
data across database tables, database instances, or
physical database servers. Shards typically occur along
the Z axis of scale (for instance splitting up customers
among shards), but some companies refer to functional
(Y axis) splits as shards as well.

Swimlane A swimlane is a term used to identify a fault isolation
domain. Synchronous calls are never allowed across
swimlane boundaries. Put another way, a swimlane is
defined around a set of synchronous calls. The failure of
a component within one swimlane does not affect com-
ponents in other swimlanes. As such, no component is
shared across swimlanes.

149Rule 36—Design Using Fault Isolative “Swimlanes”

From our perspective, the most important differentiation among
these terms is the notion of design.Whereas pool, shard, cluster,
and pod might refer to either how something is implemented in
a production environment or how one might split up customers
or services, swimlane is a design concept around creating fault
isolation domains.A fault isolation domain is an area in which,
should a physical or logical service fail to work appropriately,
whether that failure is in a slow response time or an absolute
failure to respond, the only services affected are those within the
failure domain. Swimlanes extend the concepts provided within
shards and pods by extending the failure domain to the front
door of your services—the entry into your data center.At the
extreme it means providing separate Web, application, and data-
base servers by function or fault isolation zone.At its heart, a
swimlane is about both scalability and availability, rather than just
a mechanism by which one can scale transactions.

We borrowed the concept from CSMA/CD (carrier sense
multiple access with collision detection—commonly referred to
as Ethernet), where fault isolation domains were known as colli-
sion domains.To offset the effects of collisions in the days before
full duplex switches, Ethernet segments would contain collisions
such that their effects weren’t felt by all attached systems.We felt
the term swimlane was a great metaphor for fault isolation as in
pools the lines between lanes of swimmers help keep those
swimmers from interfering with each other during the course of
their swim. Similarly,“lines” between groupings of customers or
functionality across which synchronous transactions do not
occur, can help ensure that failures in one lane don’t adversely
affect the operations of other lanes.

The benefits of fault isolative swimlanes go beyond the
notion of increasing availability through the isolation of faults.
Because swimlanes segment customers and/or functionality
shared across customers, when failures occur you can more
quickly identify the source. If you’ve performed a Z axis seg-
mentation of your customers from your Web servers through
your persistence tier, a failure that is unique to a single customer
will quickly be isolated to the set of customers in that swimlane.
You’ll know you are looking for a bug or issue that is triggered
by data or actions unique to the customers in that swimlane. If

150 Chapter 9 Design for Fault Tolerance and Graceful Failure

you’ve performed a Y axis segmentation and the “shopping cart”
swimlane has a problem, you’ll know immediately that the prob-
lem is associated with either the code, database, or servers com-
prising that swimlane. Incident detection and resolution as well
as problem detection and resolution both clearly benefit from
fault isolation.

Other benefits from fault isolation include better scalability,
faster time to market, and lower cost. Because we focus on parti-
tioning our systems, we begin to think of scaling horizontally,
and hence our scalability increases. If we’ve separated our swim-
lanes by the Y axis of scale, we can separate our code base and
make more efficient use of our engineers as discussed in Chapter
2,“Distribute Your Work.”As such, we get better engineering
throughput and therefore lower cost per unit developed.And if
we are getting greater throughput, we are obviously delivering
our product to market faster. Ultimately all of these benefits
allow us to handle the “expected but unexpected”: those things
that we know will happen sooner or later but which we cannot
clearly identify the impact. In other words, we know things are
going to break we just don’t know what will break or when it
will happen. Fault isolation allows us to more gracefully handle
these failures.Table 9.2 summarizes the benefits of fault isolation
(or swimlanes).

Table 9.2 Fault Isolation Benefits

Area Benefit

Availability Availability is increased as a failure within one failure
domain does not impact other services (Y axis) or
other customers (Z axis) depending on how the
swimlane is architected.

Incident Incidents are detected faster as fewer components
detection or services need to be investigated during an event.

Isolation helps identify what exactly is failing.

Scalability Horizontal scale is achieved when fault isolated
services can grow independently of each other.

Cost Development cost is reduced through higher engineer
throughput achieved from focus and specialization.

Time to As throughput increases, time to market for functions
market decreases.

151Rule 36—Design Using Fault Isolative “Swimlanes”

Having discussed why we should swimlane or fault isolate our
product offerings, we turn our attention to the more important
question of how to achieve fault isolation.We rely on four prin-
ciples that both define swimlanes and help us in designing them.
The first is that nothing is shared between swimlanes.We typi-
cally exempt major network components such as inbound bor-
der routers and some core routers but include switches unique
to the service being fault isolated. It is also common to share
some other devices such as a very large switched storage area
network or load balancers in a smaller site.Wherever possible,
and within your particular cost constraints, try to share as little as
possible. Databases and servers should never be shared. Because
swimlanes are partially defined by a lack of sharing, the sharing
of servers and databases is always the starting point for identify-
ing where swimlane boundaries truly exist. Due to the costs of
network gear and storage subsystems these are sometimes shared
across swimlanes during the initial phases of growth.

The second principle of swimlanes is that no synchronous
calls happen between swimlanes. Because synchronous calls tie
services together, the failure of a service being called can propa-
gate to all other systems calling it in a synchronous and blocking
fashion.Therefore, it would violate the notion of fault isolation if
a failure of a service we hoped to be in one swimlane could
cause the failure of a service in another swimlane.

The third principle limits asynchronous calls between swim-
lanes.While asynchronous calls are much less likely than syn-
chronous calls to propagate failures across systems, there still
exists an opportunity to reduce our availability with these calls.
Sudden surges in requests may make certain systems slow, such as
in the case of messages being generated subsequent to a denial of
service attack.An overwhelming number of these messages may
back up queues, start to fill up TCP ports, and even bring data-
base processing of synchronous requests to a standstill if not
properly implemented.As such, we try to limit the number of
these transactions crossing swimlane boundaries.

The last principle of swimlanes addresses how to implement
asynchronous transmissions across swimlane boundaries when
they are absolutely necessary. Put simply, anytime we are going
to communicate asynchronously across a swimlane, we need the

152 Chapter 9 Design for Fault Tolerance and Graceful Failure

ability to “just not care” about the transaction. In some cases, we
may timeout the transaction and forget about it. Potentially we
are just “informing” another swimlane of some action, and we
don’t care to get a response at all. In all cases we should imple-
ment logic to “wire off ” or “toggle off ” the communication
based on a manual switch, an automatic switch, or both. Our
communications should be able to be switched off by someone
monitoring the system and identifying a failure (the manual
switch) and should sense when things aren’t going well and stop
communicating (the automatic switche

These principles are summarized in Table 9.3.

Table 9.3 Fault Isolation Principles

Principle Description

Share nothing Swimlanes should not share services. Some
sharing of network gear such as border
routers and load balancers is acceptable. If
necessary, storage area networks can be
shared. Databases and servers should never
be shared.

No synchronous Synchronous calls are never allowed across
calls between swimlane boundaries. Put another way, a
swimlanes swimlane is the smallest unit across which

no synchronous calls happen.

Limit asynchronous Asynchronous calls should be limited across
calls between swimlanes. They are permitted, but the more
swimlanes calls that are made, the greater the chance of

failure propagation.

Use timeouts and Asynchronous calls should be implemented
Wire-On/Wire-Off with timeouts and the ability to turn off the
with asynchronous call when necessary due to failures in other
calls services. See Rule 39.

How about the case where we want fault isolation but need
synchronous communication or access to another data source?
In the former case, we can duplicate the service that we believe
we need and put it in our swimlane. Payment gateways are one
example of this type of approach. If we were to swimlane
along a Z axis by customer, we probably don’t want each of our

153Rule 36—Design Using Fault Isolative “Swimlanes”

customer swimlanes synchronously (blocking) calling a single
payment gateway for a service like checkout.We could simply
implement N payment gateways where N is the degree of cus-
tomer segmentations or number of customer swimlanes.

What if there is some shared information to which we need
access in each of these swimlanes such as in the case of login
credentials? Maybe we have separated authentication and
signin/login into its own Y axis split, but we need to reference
the associated credentials from time to time on a read-only basis
within each customer (Z axis) swimlane.We often use read repli-
cas of databases for such purposes, putting one read replica in
each swimlane. Many databases offer this replication technology
out of the box, and even allow you to slice it up into smaller
pieces, meaning that we don’t need to duplicate 100% of the
customer data in each of our swimlanes. Some customers cache
relevant information for read-only purposes in distributed object
caches within the appropriate swimlane.

One question that we commonly get is how to implement
swimlanes in a virtualized server world.Virtualization adds a
new dimension to fault isolation—the dimension of logical (or
virtual) in addition to physical failures. If virtualization is imple-
mented primarily to split up larger machines into smaller ones,
then you should continue to view the physical server as the
swimlane boundary. In other words, don’t mix virtual servers
from different swimlanes on the same physical device. Some of
our customers, however, have such a variety of product offerings
with varying demand characteristics of the year that they rely on
virtualization as a way of flexing capacity across these product
offerings. In these cases, we try to limit the number of swimlanes
mixed on a virtual server. Ideally, you would flex an entire
physical server in and out of a swimlane rather than mix
swimlanes on that server.

Swimlanes and Virtualization
When using virtualization to carve larger servers into smaller
servers, attempt to keep swimlanes along physical server bound-
aries. Mixing virtual servers from different swimlanes on one
physical server eliminates many of the fault isolative benefits of
a swimlane.

154 Chapter 9 Design for Fault Tolerance and Graceful Failure

Rule 37—Never Trust Single Points
of Failure

Rule 37: What, When, How, and Why
What: Never implement and always eliminate single points of
failure.

When to use: During architecture reviews and new designs.

How to use: Identify single instances on architectural diagrams.
Strive for active/active configurations.

Why: Maximize availability through multiple instances.

Key takeaways: Strive for active/active rather than active/pas-
sive solutions. Use load balancers to balance traffic across
instances of a service. Use control services with active/passive
instances for patterns that require singletons.

In mathematics, singletons are sets that have only one element
{A}. In programming parlance, the singleton pattern is a design
pattern that mimics the mathematical notion and restricts the
instantiation of a class to only one object.This design pattern is
useful for coordination of a resource but is often overused by
developers in an effort to be expeditious—more on this later.
In system architecture, the singleton pattern, or more aptly the
singleton antipattern, is known as a single point of failure (SPOF).
This is when there exists only one instance of a component
within a system that when it fails will cause a systemwide
incident.

SPOFs can be anywhere in the system from a single Web
server or single network device but most often the SPOF in a
system is the database.The reason for this is that the database is
often the most difficult to scale across multiple nodes and there-
fore gets left as a singleton. In Figure 9.1, even though there are
redundant login, search, and checkout servers the database is a
SPOF.What makes it worse is that all the service pools are
reliant on that single database.While any SPOF is bad, the bigger
problem with a database as a SPOF is if the database slows down
or crashes, all services pools with synchronous calls to that data-
base will also experience an incident.

155Rule 37—Never Trust Single Points of Failure

156 Chapter 9 Design for Fault Tolerance and Graceful Failure

Figure 9.1 Database SPOF

We have a mantra that we share with our clients, and it is simply
“everything fails.”This goes for servers, storage systems, network
devices, and datacenters. If you can name it, it can fail, and we’ve
probably seen it happen.While most people think of datacenters
as never failing, we have personal experience with more than a
dozen datacenter outages in as many years.The same goes for
highly available storage area networks.While they are remarkably
more reliable than the old SCSI disk arrays, they still can and
do fail.

The solution to most SPOFs is simply requisitioning another
piece of hardware and running two or more of every service by
cloning that service as described in our X axis of scale.
Unfortunately, this isn’t always so easy. Let’s retrace our steps to
the programming singleton pattern.While not all singleton class-
es will prevent you from running a service on multiple servers,
some implementations absolutely will prevent you from this
without dire consequences.As a simplified example, if we have
a class in our code that handles the subtraction of funds from a

Login
 ServerLogin

 Server

Login
 ServerSearch

 Server

Login
 ServerCheckout

 Server

Database SPOF

user’s account this might be implemented as a singleton to
prevent unpleasant things from happening to a user’s balance
such as it going negative. If we place this code on two separate
servers without additional controls or semaphores it is possible
that two simultaneous transactions attempt to debit a users
account, which could lead to erroneous or undesired conditions.
In this case we need to either fix the code to handle this condi-
tion or rely on an external control to prevent this condition.
While the most desirable solution is to fix the code so that the
service can be implemented on many different hosts, often we
need an expeditious fix to remove a SPOF.As the last focus of
this rule, we’ll discuss a few of these quick fixes next.

The first and simplest solution is to use an active-passive con-
figuration.The service would run actively on one server and
passively (not taking traffic) on a second server.This hot/cold
configuration is often used with databases as a first step in
removing a SPOF.The next alternative would be to use another
component in the system to control the access to data. If the
SPOF was a service, then the database can be used to control
access to data through the use of locks. If the SPOF is the data-
base, a master-slave configuration can be set up, and the applica-
tion can control access to the data with writes/updates going to
the master and reads/selects going to the slave.A last configura-
tion that can be used to fix a SPOF is a load balancer. If the
service on a Web or application server was a SPOF and could
not be eliminated in code the load balancer can often be used
to fix a user’s request to only one server in the pool.This is
done through session cookies, which are set on the user’s
browser and allow the load balancer to redirect that user’s
requests to the same Web or application server each time
resulting in a consistent state.

We covered several alternative solutions to SPOFs that can be
implemented quickly when code changes cannot be made in a
timely manner.While the best and final solution should be to fix
the code to allow for multiple instances of the service to run on
different physical servers the first step is to eliminate the SPOF
as soon as possible. Remember,“everything fails” so don’t be
surprised when your SPOF fails.

157Rule 37—Never Trust Single Points of Failure

Rule 38—Avoid Putting Systems
in Series

Rule 38: What, When, How, and Why
What: Reduce the number of components that are connected in
series.

When to use: Anytime you are considering adding components.

How to use: Remove unnecessary components or add multiple
versions of them to minimize the impact.

Why: Components in series have a multiplicative effect of failure.

Key takeaways: Avoid adding components to your system that
are connected in series. When necessary to do so add multiple
versions of that component so that if one fails others are avail-
able to take its place.

Components in electrical circuits can be connected in a variety
of ways; the two simplest are series and parallel. Circuits in series
have components such as resistors and capacitors that are con-
nected along a single path. In this type of circuit the current
flows through every component, and the resistance and voltage
are additive. Figure 9.2 shows two circuits one with three resis-
tors and one with three batteries and the resulting resistance and
voltage. Notice that in this diagram if any of the components
fail, such as a resistor blows, then the entire circuit fails.

Figure 9.3 shows two parallel circuits, the top one with three
resistors (and a voltage source or capacitor) and the bottom one
with three batteries. In this circuit, the total resistance is calculat-
ed by summing the reciprocals of each resistance and then taking
the reciprocal of that sum.The total resistance by definition must
be less than the smallest resistance. Notice also that the voltage
does not change but instead the batteries only contribute a frac-
tion of the current, which has the effect of extending their use-
ful life. Notice that in these circuits the failure of a component
does not cause a failure across the entire circuit.

158 Chapter 9 Design for Fault Tolerance and Graceful Failure

159Rule 38—Avoid Putting Systems in Series

B
at

te
ry

1.5V

B
at

te
ry

1.5V

B
at

te
ry

1.5V

2.5

To
ta

l R
es

is
ta

nc
e

=
 7

.5

2.5

2.5

Total Voltage = 4.5V

The similarities between the architecture of your system
and a circuit are many.Your servers and network gear are
components. Some components in your system are Web servers,
some are application servers, some are load balancers, and others
are database servers.These can be connected in parallel or in
series.As a simple example let’s take a static Web site that has a
lot of traffic.You could put ten Web servers all with the same
static site on them to serve traffic.You could either use a load
balancer to direct traffic or assign all ten separate IP addresses
that you associate with your domain through DNS.These Web
servers are connected in parallel just like the batteries in Figure
9.3.The total current or amount of traffic that one Web server
has to handle is a fraction of the total, and if one Web server fails
the site remains available as it still has nine other Web servers.

Figure 9.2 Circuits in series

Figure 9.3 Circuits in parallel

As an example of a more typical architecture in series, let’s
add some layers. If we take a standard three tier site that has a
single Web server, one application server, and one database server
then we have an architecture connected in series. For a request
to be fulfilled, the Web server must accept it and pass a request
to the application server, which queries the database.The appli-
cation server then receives the data back, manipulates the data,
and sends it back to the Web server, which finally fulfills the
request to the customer. If any component in this circuit or
architecture breaks, then the entire system is down.

This brings us back to your real world architecture.Almost
always there are going to be requirements to have components
in series.When you take into consideration the load balancer,
the Web and application tier, the database, the storage system,

160 Chapter 9 Design for Fault Tolerance and Graceful Failure

B
at

te
ry

1.5V
B

at
te

ry
1.5V

B
at

te
ry

1.5V

To
ta

l R
es

is
ta

nc
e

=
 0

.8
3

2.5

2.5

2.5

Total Voltage = 1.5V

and so on there are many components required to keep your
system running. Certainly adding components in parallel, even
when tiers are connected in series, helps reduce the risk of total
system failure caused by a component failure. Multiple Web
servers spread the traffic load and prevent a system failure if only
one Web server fails. On the Web and application tiers most
people readily acknowledge this concept.Where most people
overlook this problem is in the database and network layers. If
Web and application servers connected in parallel all are con-
nected in series to a single database we can have a single compo-
nent result in catastrophic failure.This is why it is important to
pay attention to the rules in Chapter 2 about splitting your data-
base and in Chapter 3,“Design to Scale Out Horizontally,”
about scaling horizontally.

In regards to the network components we often see architec-
tures that pay a lot of attention to connecting servers in parallel
but completely ignore the network devices, especially firewalls. It
is not uncommon to see firewalls inside and outside the net-
work; see Rule 15 for further discussion regarding firewalls. In
this case we have traffic going through a firewall, through a load
balancer, through a firewall, through a switch, then to a Web
server, an application server, a database server, and all the way
back.There are at least seven components twice. So what’s the
big deal about adding another component if you’re already
going through a half dozen?

Items in series have a multiplicity effect on risk of failure.As a
simple example if we have two servers in series, each with a
99.9% availability or uptime, then our total availability of the
system cannot be greater than 99.9% × 99.9% = 99.8%. If we
add a third component, in series, at the same 3-9’s availability of
99.9% we get an even lower availability of 99.9% × 99.9% ×
99.9% = 99.7%.The more components that are placed in series,
the lower the system’s availability.Table 9.4 lists some simple
calculations that demonstrate the lowered availability and the
resulting increase in downtime per month. For every component
(at 99.9% availability) that we add to the system in series, we are
adding ~43 minutes of downtime per month.

161Rule 38—Avoid Putting Systems in Series

Table 9.4 Components in Series at 99.9% Availability

of Minutes of
Components Total Downtime
in Series Availability per Month

1 99.9% 43.2

2 99.8% 86.4

3 99.7% 129.5

4 99.6% 172.5

5 99.5% 215.6

6 99.4% 258.6

7 99.3% 301.5

8 99.2% 344.4

9 99.1% 387.2

Because your system, just like most circuits today, are much more
complicated than a simple series or parallel connection, the exact
calculations for your expected availability are much more com-
plicated than our simple example. However, what you can take
away from this is that components in series significantly increase
our system’s risk of experiencing downtime.You can of course
mitigate this by reducing the items in series or adding multiple
numbers of those components, in parallel

Rule 39—Ensure You Can Wire On
and Off Functions

Rule 39: What, When, How, and Why
What: Create a framework to disable and enable features of
your product.

When to use: Risky, very high use, or shared services that
might otherwise cause site failures when slow to respond or
unavailable.

How to use: Develop shared libraries to allow automatic or
on-demand enabling and disabling of services. See Table 9.5 for
recommendations.

162 Chapter 9 Design for Fault Tolerance and Graceful Failure

Why: Graceful failure (or handling failures) of transactions can
keep you in business while you recover from the incident and
problem that caused it.

Key takeaways: Implement Wire On/Wire Off Frameworks
whenever the cost of implementation is less than the risk and
associated cost of failure. Work to develop shared libraries that
can be reused to lower the cost of future implementation.

We introduced the notion of what we call Wire On/Wire Off
frameworks in Chapter 7,“Learn from Your Mistakes,” while dis-
cussing rollbacks and mentioned it again in this chapter while
we were discussing fault isolation as a method of design.
Ultimately these types of frameworks help to ensure that your
systems can either fail gracefully (in the event of self-diagnosing
frameworks) or can operate with certain functionality disabled
by human intervention. Sometimes companies refer to similar
functionality as Mark Up/Mark Down functionality or more sim-
ply enabling and disabling functionality.

There are several approaches for Wire On/Wire Off in the
past, each with certain benefits and drawbacks.The approach to
enabling and disabling services probably depends on the capabil-
ities of your engineering team, your operations team, and the
business criticality of the service in question.Table 9.5 covers
some of these approaches.

Table 9.5 isn’t meant to be an all encompassing list of the
possibilities for enabling and disabling functionality. In fact,
many companies blend some of these options.They may read in
variables from a database or a file at startup, but also implement
synchronous communication and automatic failure detection. In
the case of payment gateways they may decide to automatically
“auth” credit cards for some period of time, and then past a
threshold of time determined by their appetite for risk, decide to
just queue authorizations and move to an asynchronous method
of authorization.

163Rule 39—Ensure You Can Wire On and Off Functions

Table 9.5 Wire On/Wire Off Approaches

Approach Description Pro Con

Automatic
markdown
based on
timeouts

Useful for
synchronous
calls for internal
and external
services. Calls
are not made
upon markdown
at all, and service
is considered
“offline.”

Fastest way to mark
down a service that
might bring several
other services
down when slow or
unavailable.

Sensitive to “false
failures” or incor-
rect identification
of a failing serv-
ice. When coupled
with auto markup,
may cause a
“pinging” effect of
the service. Every
service needs to
make its own
decision.

Stand in
service

Replace a service
with an auto
responder with a
dummy response
that indicates
service
unavailable or a
cached response
of “likely good
data.”

Easy to implement,
at least on the
service side.
May allow user
determination of
failure.

Each calling
service needs to
understand the
“failure”
response. May
be slower to mark
down and may
require user inter-
vention to mark
up.

Synch-
ronous
markdown
command

User intervention
sends a
command to
services to stop
using the failed
or slow service.

Allows user
determination of
failed service.

Slower than
automatic mark-
down. Also, if
services have TCP
ports full due to
slow or failed
service, the com-
mand may not
work as desired.
Requires user
intervention to
mark up.

Config file
markdown

Change con-
figuration file
variable to
indicate the “wire
off” of a service.

Doesn’t rely on
request/reply commu-
nication as in a
synchronous
command.

Likely requires
restart of a server
to implement.

164 Chapter 9 Design for Fault Tolerance and Graceful Failure

Equally important issues to tackle when considering Wire
On/Wire Off frameworks are the decisions of where and when
they should be used. Clearly the work to implement the frame-
work represents additional work and as a result additional cost to
the business. Let’s start with the (unlikely and probably incor-
rect) position that certain features would never fail. If we could
tell which features would never fail, we would never want to
implement this functionality for those features as it represents a
cost with no return.With that starting point, we can identify
where this investment has value or provides the business with a
return.Any feature that has a high rate of usage (high through-
put) and whose failure will impact other important features on
the site is a candidate.Another candidate is any feature that is
undergoing fairly significant change in a given release.The idea

165Rule 39—Ensure You Can Wire On and Off Functions

Approach Description Pro Con

File
markdown

Presence of a file
(or absence of a
file) indicates
service up or
down (can be
used or not).

Doesn’t rely on
request/reply
communication as
in a synchronous
command. Might not
require server restart.

May slow down
processes
“polling” for files.

Database
markdown

Use of a variable
(column) per
service in a
database to
enable or disable
features.

Can be done on
restart or per
request. Easy to
communicate to all
servers by changing
one location.

Requires one or
more “control
tables” that need
to be highly avail-
able and may
need to be repli-
cated so as not to
cross swimlane
boundaries. If
done on a trans-
action basis can
be costly.

Runtime
Variable

Read at startup
as an argument
to the program for
daemon-like server
processes.

Similar to config file. Similar to config
file.

in both of these areas is that the cost of implementing Wire
On/Wire Off is less than the risk (where risk is a function of
both likelihood of a failure and the impact of that failure) to our
business. If the development of a feature with this functionality is
an extra $1,000 and an unhandled failure of the feature might
cost us $10,000 in business is the cost justified?

When done well, engineering teams can reduce the cost
of implementing a Wire On/Wire Off framework by imple-
menting a set of shared libraries to be used across functions.
This approach doesn’t reduce the cost of implementing the
framework to zero for any new development, but it does help
to reduce the cost for future generations of framework-enabled
features.

We recommend implementing Wire On/Wire Off frame-
works for any shared, heavily used services such as payment
gateways and computationally expensive processes such as the
calculation of social network graphs.Any shared service is a
shared failure point, and it is worthwhile thinking about how to
work around that service should it fail.Any significant new
development also carries risk equal to its development cost, and
should at least be considered for such a framework.To be clear,
we don’t believe that everything should be capable of being
enabled and disabled; such an approach is costly and ill-advised.
But well run teams should be able to identify risky and shared
components and implement the appropriate safeguards.

Summary
We believe that availability and scalability go hand in hand.A
product that isn’t highly available doesn’t need to scale because
users will soon stop coming.A site that can’t scale won’t be
highly available when the demand comes because the site will be
slow or completely down. Because of this you can’t work on
one without thinking about the other.This chapter offered four
rules that help ensure your site stays highly available as well as
continues to scale. Don’t let a focus on scalability cause you to
forget how important availability is to your customer.

166 Chapter 9 Design for Fault Tolerance and Graceful Failure

10
Avoid or

Distribute State

The state that we hate the most can’t be found on a map of the
United States or any other country for that matter.The state we
hate most is persistent state (and session information) held with-
in the application of an Internet site.And why, you might ask, do
we hate state so? Session and state destroy the ultimate value
promised by multitenancy within Internet (SaaS, commerce, and
so on) applications. If we must keep great amounts of data asso-
ciated with a user’s interactions at any given time, then we can
house fewer users on any given system at any given time. In the
desktop world, we rarely needed to be concerned with this as
we often had a lot of power and memory available for a single
user at any given time. In the multitenant world, our goal is to
house as many users as possible on a single system while still
delivering a stellar user experience.As such, we strive to elimi-
nate any approach that will limit the degree of tenancy on any
system. State and session cost us both in terms of memory and
processing power, and as a result is an enemy to our cost-
effective scale goals.

While we would prefer to avoid state at all cost, it is some-
times valuable to the business. Indeed, the very nature of some
applications (such as some workflow systems) requires us to
model a state machine, which in turn requires some notion
of state. If state is necessary, we need to implement it in a
fault-tolerant, highly available, and cost-effective way such as

distributing it to our end users (Rule 41) or positioning it on a
special service within our infrastructure (Rule 42).

Figure 10.1 depicts, diagrammatically both our feelings on
state and how to approach decisions on how to implement state.

168 Chapter 10 Avoid or Distribute State

Figure 10.1 Decision flowchart for
implementing state in a Web application

Develop without
state and scale

on!

Need
state? Rule 41

Rule 42
You are probably

wrong. Check
again.

Need
state?

You really
need state?

Push to
browser?

No

No

Yes Yes

YesNo

Yes

Yes No

Rule 40—Strive for Statelessness

Rule 40: What, When, How, and Why
What: Design and implement stateless systems.

When to use: During design of new systems and redesign of
existing systems.

How to use: Choose stateless implementations whenever possi-
ble. If stateful implementations are warranted for business rea-
sons, refer to Rules 41 and 42.

Why: The implementation of state limits scalability and increases
cost.

Key takeaways: Always push back on the need for state in any
system. Use business metrics and multivariate (or A/B) testing to
determine whether state in an application truly results in the
expected user behavior and business value.

Paradoxically it is both a sad and exciting day when our applica-
tions grow beyond the ability of a single server to meet the
transaction processing needs of our product. It is exciting
because our business is growing and sad because we embark
upon a new era of development requiring new skills to scale our
systems. Depending on our implementation, we can sometimes
rely on clustering software with state or session replication to
help us scale, but such an approach only delays the inevitable if
our business continues to experience power-curve or even linear
but aggressive growth. If your company is successful you will
quickly grow out of this rather costly session synchronization
method.As we describe in Chapter 2,“Distribute Your Work,”
you will soon find yourself replicating too much information in
memory across too many application servers.Very likely you will
need to perform a Y or Z axis split.

Many of our clients simply stop at these splits and rely on
affinity maintained through a load balancer to handle session and
state needs. Once a user logs in, or starts some flow specific to a
pool of application servers, she maintains affinity to that applica-
tion server until the function (in the case of Y axis splits where
different pools provide different functions) or session (in the case
of a Z axis split where customers are segmented into pools) is
complete.This is an adequate approach for many products where
growth has slowed or where customers have more relaxed avail-
ability requirements.

Maintaining affinity comes with some fairly high costs hinted
at previously; capacity planning can become troublesome when
several high volume or long running sessions become bound to
a handful of servers, and availability for certain customers will be
impacted when the application server on which they are run-
ning fails.While we can rely on session replication to create
another host to which we might move in the event of a system
failure, as described previously this approach is costly in terms of
duplicated memory consumption and system capacity.

169Rule 40—Strive for Statelessness

Ultimately, the solution that serves a majority of our hyper
growth clients the best is to eliminate the notion of state wher-
ever possible.We prefer to start discussions on the topic of state
with “Why do you need it at all?” Our clients are often taken
aback, and the typical response is “Well, that’s the way it’s always
been and we need to know what just happened to make the
next move.”When pressed to back up their responses with data
showing the efficacy of state in terms of revenue, increased trans-
action volume, and so on they are often at a loss. Granted there
are certain solutions that probably need state, such as solutions
that implement state machines like workflow processes. But
more often than not, state is a luxury and a costly one at that.

Never underestimate the power of “simple and easy” in an
application as an effective weapon against “rich and complex.”
Craigslist won the local classifieds war against eBay with a large-
ly text-based and stateless application. eBay, while always
attempting to stay as stateless as possible had a competing classi-
fieds product with a significantly greater number of features and
“richness” years ahead of rival Craigslist.Yet simple won the day
in the local classifieds war. Not convinced? How about Google
against all comers in the search market? While others invested
in rich interfaces, Google at least initially built on the concept
that your last search was the only thing that mattered, and what
you really want is good search results. No state, no session, no
nonsense.

The point is that session and state cost money and you should
only implement them where there is a clear competitive advan-
tage displayed in key operating metrics determined through A/B
or multivariate analysis. Session (and state) require memory and
imply greater complexity in code, which means at least slightly
longer running transactions.This reduces the number of transac-
tions we can handle per second per server, which increases the
number of systems that we need.The systems may also need to
be larger and more costly given the memory requirements to
house state on or off the systems. Potentially we need to develop
“state farms” as we describe later in this chapter, which means
more devices.And of course more devices mean more space,
power, and cooling or in the virtual world more cloud resources
for which we are paying. Remember that every server (or virtual

170 Chapter 10 Avoid or Distribute State

machine) we need costs us three times over as we need to pro-
vide space for it, cool it, and power it. Cloud resources have the
same costs; they are just passed on to us in a bundle.

You are best served to have a principle that always questions
the need for state in any application or service. State this princi-
ple strongly—something along the lines of “We develop stateless
applications.” Be clear that state distribution (the movement of
state to the browser or distributed state server or cache) is not
the same as stateless. Rules 41 and 42 exist to allow us to create
rich business functionality where there is a clear competitive
advantage, displayed through operating metrics that drive rev-
enue and transactions, not as an alternative to this rule.

Rule 41—Maintain Sessions in the
Browser When Possible

Rule 41: What, When, How, and Why
What: Try to avoid session data completely, but when needed,
consider putting the data in users’ browsers.

When to use: Anytime that you need session data for the best
user experience.

How to use: Use cookies to store session data on the users’
browsers.

Why: Keeping session data on the users’ browsers allows the
user request to be served by any Web server in the pool and
takes the storage requirement away from your system.

Key takeaways: Using cookies to store session data is a com-
mon approach and has advantages in terms of ease of scale but
also has some drawbacks. One of the most critical cons is that
unsecured cookies can easily be captured and used to log into
people’s accounts.

If you have to keep sessions for your users, one way to do so is
in the users’ browsers.We’ll talk about how to do this but first
let’s talk about the pros and cons of this approach. One benefit
of putting the session data in a browser is that your system
doesn’t have to store the data.As we explain in Rule 42, keeping
session data within the system can amount to a large overhead of

171Rule 41—Maintain Sessions in the Browser When Possible

storage and retrieval. Not having to do this relieves the system of
a large burden in terms of storage and workload.A second bene-
fit of this approach is that the browser’s request can be serviced
by any server in the pool.As you scale your Web servers along
the X axis (horizontally) with the session data in the browser,
any server in the pool can handle the request.

Of course since everything has its tradeoffs, one of the cons
of this approach is that the data must be transferred back and
forth between the browser and the servers that need this data.
Moving this data back and forth for every request can be expen-
sive, especially if the amount of data starts to become significant.
Be careful not to dismiss this last statement too quickly.While
your session data might not be too large now, let a couple dozen
developers have access to storing data in cookies and after a
couple code releases you will be wondering why the pages
are loading so slowly.Another very serious con that was brought
to light by the Firefox plug-in Firesheep is that session data
can be easily captured on an open WiFi network and used to
nefariously log in to someone else’s account.With the aforemen-
tioned plug-in, session cookies from most of the popular sites
such as Google, Facebook,Twitter, and Amazon, just to name a
few, can be compromised.We suggest a way to protect your
users’ cookies against this type of hack or attack, commonly
called sidejacking, but first let’s talk about storing session data in
browser cookies.

Storing cookies in browsers is simple and straightforward. In
PHP, as shown in the following example, it is as simple as calling
setcookie with the parameters of the cookie name, value,
expiration, path, domain, and secure (whether it should be
set only over HTTPS).To destroy the cookie when you’re
done with it just set the same cookie but with the expire to
time()-3600, which sets the expiration time to one hour ago.

setcookie("SessionCookie", $value, time()+3600, '/', '.akf-
partners.com', true);

Some sessions are stored in multiple cookies, and other session
data is stored in a single cookie. One factor to consider is the
maximum size of cookies.According to RFC2965 browsers
should support cookies at least up to 4KB in size and up to
20 cookies from the same domain.1 Most browsers, however,

172 Chapter 10 Avoid or Distribute State

support these as maximums.To our earlier point, the larger the
cookie the slower your pages will load since this data has to be
transmitted back and forth with each request.

Now that we’re using cookies to support our sessions and
we’re keeping them as small as possible so that our system can
scale, the next question is how do we protect them from being
sidejacked? Obviously you can transmit your pages and cookies
all in HTTPS.The Secure Socket Layer (SSL) protocol used for
HTTPS requires encrypting and decrypting all communication
and requests.While this might be a requirement for a banking
site, this doesn’t make sense for a news or social networking site.
Instead we recommend a method using at least two cookies.
One cookie is an authorization cookie that is requested via
HTTPS on each HTTP page using a JavaScript call such as the
following.This allows the bulk of the page (content, CSS, scripts,
and so on) to be transferred by unsecure HTTP but a single
authorization cookie to be transferred via HTTPS.2

<script type="text/javascript" src="https://verify.akfdemo.
com/authenticate.php"></script>

For ultimate scalability we recommend avoiding sessions all
together. However, we understand that this isn’t always the case.
In these cases we recommend storing the session data on the
user’s browser.When implementing this it is critical to maintain
control of the size of the cookie data. Excessive amounts of data
slow the performance of the page load as well as the Web servers
on the system.

Rule 42—Make Use of a
Distributed Cache for States

Rule 42: What, When, How, and Why
What: Use a distributed cache when storing session data in your
system.

When to use: Anytime you need to store session data and cannot
do so in users’ browsers.

How to use: Watch for some common mistakes such as a ses-
sion management system that requires affinity of a user to a Web
server.

173Rule 42—Make Use of a Distributed Cache for States

Why: Careful consideration of how to store session data can help
ensure your system will continue to scale.

Key takeaways: Many Web servers or languages offer simple
server-based session management, but these are often fraught
with problems such as user affiliation with specific servers.
Implementing a distributed cache allows you to store session
data in your system and continue to scale.

Per our recommendations in Figure 10.1, we hope that you’ve
taken your time in arriving at the conclusion to maintain state
in your application or system and in deciding that you cannot
push that state out to the end user. It is a sad, sad day that you’ve
come this far and you should hang your head in shame that you
were not enough of an engineer to figure out how to develop
the system without state or without the ability to allow the end
users to maintain state.

Of course we are kidding as we have already acknowledged
that there are some systems that must maintain state and even a
small number where that state is best maintained within the
service, application, or infrastructure of your product. Granting
that point, let’s move on to a few rules on what not to do when
you maintain state within your application.

First and foremost, stay away from state systems that require
affinity to an application or Web server. It goes without saying that
these implementations will have lower availability than those that
allow remote access of state from any of a number of servers. If
the server dies, all of the session information (including state) on
that server will likely go away as well requiring those customers
(potentially numbering into the thousands) to restart whatever
process they were in. Even if you persist the data in some local or
network enabled storage, the user will need to start again on
another server, and there will be some interruption of service.

Second, don’t use state or session replication services such as
those within some application servers or third-party “clustering”
servers.As stated previously in this chapter, such systems simply
don’t scale well as modifications to session need to be propagat-
ed to multiple nodes. Furthermore, in choosing to do this type
of implementation we are creating a new concern for scalability
in how much memory we use on our systems.

174 Chapter 10 Avoid or Distribute State

Third, when choosing a session or state cache or persistence
engine, locate that cache away from the servers performing the
actual work.While this is a bit of a nit, it does help with avail-
ability as when you lose a server you either lose the cache asso-
ciated with that server or the service running on it and not
both. Creating a cache (or persistent) tier also allows us to scale
that tier based on the cache accesses alone rather than needing
to accommodate both the application service and the internal
and remote cache services.

Distributed Session/State Cache Don’ts
Here are three approaches to avoid in implementing a cache to
manage session or state:

n Don’t implement systems that require affinity to a server to
function properly.

n Don’t use state or session replication to create duplicates
of data on different systems.

n Don’t locate the cache on the system doing the work (this
doesn’t mean you shouldn’t have a local application
cache—just that session information is best handled in its
own tier of servers).

If you abide by the rules governing what not to do, the choice
of what to do becomes pretty easy.We strive to be agnostic in
our approaches to such matters, and as such we care more about
designs and less about the implementation details such as which
open source caching or database solution you might want to
implement.We do feel strongly that there is rarely a need to
develop the caching solution yourself.With all of the options
from distributed object caches like memcached to open source
and third-party databases, it seems ludicrous that one would
implement their own caching solution for session information.

This brings us to the question of what we should use for a
cache.To us, the question really comes down to reliability and
persistence versus cost. If you expect to keep session or state
information for quite some time such as in the case of a
shopping cart, you may decide that for some or all of your
session information you are going to rely on a solution that
allows lengthy and durable persistence. In many cases we’ve seen

175Rule 42—Make Use of a Distributed Cache for States

databases used for these implementations. Clearly, however, a
database will cost you more per transaction than a simpler
solution such as a nonpersisting distributed object cache.

If you don’t need persistence and durability, you can choose
from one of many object caches. Refer to Chapter 6,“Use
Caching Aggressively,” for a discussion on object caches and their
uses. In some cases, you may decide that you want both the per-
sistence of a database and the relative low cost for performance
of a cache in front of that database. Such an implementation
gives you the persistence of a database while allowing to scale
the transactions more cost effectively through a cache that front
ends that database.

Distributed Session/State Cache Considerations
Here are three common implementations for distributed caches
and some notes on their benefits and drawbacks:

n Database-only implementations are the most costly overall,
but allow all data to be persisted and handle conflicts
between updates and reads very well in a distributed envi-
ronment.

n Nonpersistent object caches are fast and comparatively
inexpensive, but do not allow data to be recovered upon
failure and aren’t good for implementations with long peri-
ods between accesses by users.

n Hybrid solutions with databases providing persistency and
caches providing cost-effective scale are great when
persistency is required and low relative cost is preferred.

Summary
Our first recommendation is to avoid state at all cost, but we
understand that session data is sometimes a necessity. If state is
necessary, we first recommend trying to store the session data in
the users’ browsers (Rule 41). Doing so eliminates the need to
store data in your system and allows for the servicing of requests
by any Web server in the pool. If not possible we recommend
making use of a distributed caching system for session data
(Rule 42). Following these rules will help ensure your system
continues to scale.

176 Chapter 10 Avoid or Distribute State

Endnotes
1. D. Kristol and L. Montulli, Networking Working Group Request for

Comments 2965, “HTTP State Management Mechanism,” October

2000, http://www.ietf.org/rfc/rfc2965.txt.

2. This solution was developed by Randy Wigginton, as explained and

demonstrated on our blog, http://akfpartners.com/techblog/2010/

11/20/slaying-firesheep/.

177Endnotes

http://www.ietf.org/rfc/rfc2965.txt
http://akfpartners.com/techblog/2010/11/20/slaying-firesheep/
http://akfpartners.com/techblog/2010/11/20/slaying-firesheep/

This page intentionally left blank

11
Asynchronous

Communication and
Message Buses

Asynchronous communication between applications and
services has been both the savior and the downfall of many
platforms.And the vehicle (pun intended) most often used on
this journey to paradise or inferno is the message bus.When
implemented properly, asynchronous communication is
absolutely a valuable rung in the ladder of near infinite scale.
When implemented haphazardly, it merely hides the faults and
blemishes of a product and is very much akin to putting “lipstick
on a pig.”

As a rule, we favor asynchronous communication whenever
possible.As we discuss in this chapter, this favorable treatment
requires that one not only communicates in an asynchronous
fashion but actually develops the application to be asynchronous
in behavior.This means, in a large part, the move away from
request/reply protocols—at least those with temporal constraints
on responses.At the very least it requires aggressive timeouts and
exception handling when responses are required within a
specified period.

As the most often preferred implementation of asynchronous
communication, the message bus is often underimplemented. In
our experience, it is often thrown in as an afterthought without
the appropriate monitoring or architectural diligence.The result

is often delayed catastrophe; as critical messages back up, the
system appears to be operating properly until the entire bus
grinds to a halt or crashes altogether.As a critical portion of
the product infrastructure, the site goes “off the air.”The purpose
of this chapter is to keep such brown, gray, or black-outs from
happening.

Rule 43—Communicate
Asynchronously As Much As
Possible

Rule 43: What, When, How ,and Why
What: Use asynchronous instead of synchronous communication
as often as possible.

When to use: Consider for all calls between services and tiers.

How to use: Use language specific calls to ensure the requests
are made and not waited on.

Why: Synchronous calls stop the entire program’s execution wait-
ing for a response, which ties all the services and tiers together
resulting in cascading failures.

Key takeaways: Use asynchronous communication techniques to
ensure that each service and tier is as independent as possible.
This allows the system to scale much farther than if all compo-
nents are closely coupled together.

In general asynchronous calls, no matter whether they are
within a service or between two different services, are much
more difficult to implement than synchronous calls.The reason
is that asynchronous calls often require coordination to commu-
nicate back to the service that first sent a message that the
request has been completed. If you’re firing and forgetting then
there is no requirement for communication or coordination
back to the calling method.This can easily be done a variety
of ways including something as simple as the following PHP
function, which makes use of the ampersand & to run the
process in the background.

180 Chapter 11 Asynchronous Communication and Message
Buses

function asyncExec($filename, $options = ‘’) {

exec(“php -f {$filename} {$options} >> /dev/null &”);

}

However, firing and forgetting is not always an option. Often the
calling method wants to know when the called method is com-
plete.The reason for this could be that other processing has to
happen before results can be returned.We can easily imagine a
scenario in an ecommerce platform where the postage needs to
be recalculated along with crediting discount codes. Ideally we’d
like to perform these two tasks simultaneously instead of having
to calculate the shipping, which might require a third-party call
to a vendor, and then processing the discount codes on the items
in the shopping cart. But we can’t send the final results back to
the user until both are complete.

In most languages there are mechanisms designed to allow for
the coordination and communication between the parent
method and the asynchronous child method called callbacks. In
C/C++, this is done through function pointers; in Java, it is
done through object references.There are many design patterns
that use callbacks, such as the delegate design pattern and the
observer design pattern. Buy why go to all this hassle to call
other methods or services asynchronously?

We go through the hassle of making some of our calls asyn-
chronously because when all the methods, services, and tiers are
tied together through synchronous calls, a slow down or failure
in one causes a delayed but nevertheless cascading failure in the
entire system.As we discussed in Rule 38 (Chapter 9,“Design
for Fault Tolerance and Graceful Failure”), putting all your com-
ponents in series has a multiplicative effect of failure.We covered
this concept with availability, but it also works for the risk of a
bug per KLOC (thousand lines of code). If methods A, B, and C
have a 99.99% chance of being bug free and one calls the other,
which calls the other, all synchronously, the chance of a bug
affecting that logic stream of the system is 99.99% × 99.99% ×
99.99% = 99.97%.

The same concept of reducing the risk of propagating failures
was covered in Rule 36 (Chapter 9). In that rule we covered the
idea of splitting your system’s pools into separate lanes for differ-
ent sets of customers.The benefit being that if there is a problem

181Rule 43—Communicate Asynchronously As Much As Possible

in one swimlane it will not propagate to the other customers’
lanes, which minimizes the impact.Additionally, fault detection
is much easier because there are multiple versions of the same
code that can be compared.This ability to more easily detect
faults when an architecture has swimlanes also applies to mod-
ules or methods that have asynchronous calls.

Asynchronous calls prevent the spreading of failures or slow-
downs, and they aid in the determination of where the bug
resides when there is a problem. Most people who have had a
database problem have seen it manifest itself in the app or Web
tier because a slow query causes connections to back up and
then sockets to remain open on the app server.The database
monitoring might not complain, but the application monitoring
will. In this case you have synchronous calls between the app
and database servers, and the problem becomes more difficult to
diagnose.

Of course you can’t have all asynchronous calls between
methods and tiers in your system, so the real question is which
ones should be made asynchronous.To start with calls that are
not asynchronous should have timeouts that allow for gracefully
handling errors or continued processing when a synchronously
called method or service fails.The way to determine which calls
are asynchronous candidates is to analyze each call based on the
criteria such as the following:

n External API/third party—Is the call to a third party or
external API? If so these absolutely should be made into
asynchronous calls.Way too many things can go wrong
with external calls to make these synchronous. If any way
possible, you do not want the health and availability of
your system tied to a system that you can’t control.

n Long running processes—Is the process being called
notorious for being long running? Are the computational
or I/O requirements significant? If so these calls are great
candidates for asynchronous calls. Often the more prob-
lematic issues are with slow running processes rather than
outright failures.

182 Chapter 11 Asynchronous Communication and Message
Buses

n Error prone/changed frequently methods—Is the call
to a method that gets changed frequently? The greater the
number of changes the more likely there is to be a bug
within the code.Avoid tying critical code with code that
needs to be changed frequently.That is asking for an
increased number of failures.

n Temporal constraint—When there does not exist a
temporal constraint between two processes consider firing
and forgetting the child process.This might be the sce-
nario when a new registrant receives a welcome e-mail.
While your system should care if the e-mail doesn’t go
out, the results of the registration page back to the user
should not be stalled waiting for it to be sent.

These are just a few of the most important criteria to use in
determining whether a call should be made asynchronously.A
full set of considerations is left as an exercise for the reader and
the reader’s team.While we could list out another ten of these
criteria as we increase in numbers they become more specific to
particular systems.Also, going through the exercise with your
team of developers for an hour will make everyone aware of the
pros and cons of using synchronous and asynchronous calls,
which is more powerful in terms of following this rule and thus
scaling your systems than any list that we could provide.

Rule 44—Ensure Your Message
Bus Can Scale

Rule 44: What, When, How, and Why
What: Message buses can fail from demand like any other
physical or logical system. They need to be scaled.

When to use: Anytime a message bus is part of your
architecture.

How to use: Employ the Y and Z AKF Axes of Scale.

Why: To ensure your bus scales to demand.

Key takeaways: Treat message buses like any other critical
component of your system. Scale them ahead of demand using
either the Y or Z axes of scale.

183Rule 44—Ensure Your Message Bus Can Scale

One of the most common failures we identify within technolo-
gy architectures is a giant single point of failure often dubbed
the enterprise service bus or message bus.While the former is typi-
cally a message bus on steroids that often includes transformation
capabilities and interaction APIs, it is also more likely to have
been implemented as a single artery through the technology
stack replete with aged messages clinging to its walls like so
much cholesterol.When asked, our clients most often claim the
asynchronous nature of messages transiting this bus as a reason
why time wasn’t spent on splitting up the bus to make it more
scalable or highly available.While it is true that applications
designed to be asynchronous are often more resilient to failure,
and while these apps also tend to scale more efficiently, they are
still prone to high demand bottlenecks and failure points.The
good news is that the principles you have learned so far in this
book will as easily resolve the scalability needs of a message bus
as they will solve the needs of a database.

Asynchronous systems tend to scale more easily and tend to
be more highly available than synchronous systems.This attribute
is due in a large part to the component systems and services
being capable of continuing to function in the absence or tardi-
ness of certain data. But these systems still need to offload and
accept information to function.When the system or service that
allows them to “fire and forget” or to communicate but not
block on a response becomes slow or unavailable, they are still
subject to the problems of having logical ports fill up to the
point of system failure. Such failures are absolutely possible in
message buses, as the “flesh and blood” of these systems is still
the software and hardware that run any other system.While
in some cases the computational logic that runs the bus is dis-
tributed among several servers, systems and software are still
required to allow the passing and interpretation of messages
sent over the bus.

Having dispelled the notion that message buses somehow
defy the laws of physics that bind the rest of our engineering
endeavors, we can move on to how to scale them.We know
that one of anything, whether it is physical or logical, is a bad

184 Chapter 11 Asynchronous Communication and Message
Buses

idea from both an availability and scalability perspective, so we
need to split it up.As you may have already surmised from our
previous hint, a good approach is to apply the AKF Scale Cube
to the bus. In this particular case, though, we can remove the X
axis of scale (see Rule 7, Chapter 2,“Distribute Your Work”) as
cloning the bus probably won’t buy us much. By simply dupli-
cating the bus infrastructure and the messages transiting the bus
we would potentially raise our availability (one bus fails, the
other could continue to function), but we would still be left
with a scale problem. Potentially we could send 1/Nth the mes-
sages on each of the N buses that we implement, but then all
potential applications would need to listen to all buses.We still
potentially have a reader congestion problem.What we need is a
way to separate or differentiate our messages by something
unique to the message or data (the Y axis—Rule 8, Chapter 2)
or something unique to the customer or user (the Z axis—Rule
9, Chapter 2). Figure 11.1 is a depiction of the AKF’s Three Axes
of Scale repurposed to message queues.

185Rule 44—Ensure Your Message Bus Can Scale

Figure 11.1 AKF Scale Cube for message buses

Rule 8: Y Axis – Split by Service
or Message Attribute

Rule 9: Z Axis – Split by Customer,
User, or Site Attribute

Rule 7: X Axis – Horizontal
Duplication: Does Not Work

Well for Message Buses

Having discarded the X axis of scale, let’s further investigate
the Y axis of scale.There are several ways in which we might
discriminate or separate messages by attribute. One easy way is
to dedicate buses to particular purposes. For a commerce site, we
may choose a resource-oriented approach that transits customer
data on one bus (or buses), catalog data on another, purchase
data on another, and so on.We may also chose a services-
oriented approach and identify affinity relationships between
services and implement buses unique to affinity groups.“Hold
on,” you cry,“if we choose such an approach of segmentation,
we lose some of the flexibility associated with buses.We can’t
simply hook up some new service capable of reacting to all
messages and adding new value in our product.”

The answer, of course, is that you are absolutely correct. Just
as the splitting of databases reduces the flexibility associated with
having all of your data comingled in a single place for future
activity, so does the splitting of a service bus reduce flexibility in
communication. But remember that these splits are to enable the
greater good of enabling hyper growth and staying in business!
Do you want to have a flat business that can’t grow past the lim-
itations of your monolithic bus, or be wildly successful when
exponentially increasing levels of demand come flooding into
your site?

We have other Y axis options as well.We can look at things
we know about the data such as its temporal qualities. Is the data
likely to be needed quickly or is it just a “for your information”
piece of datum? This leads us to considerations of quality of
service, and segmenting by required service level for any level of
data means that we can build buses of varying quality levels and
implied cost to meet our needs.Table 11.1 summarizes some of
these Y axis splits, but it is by no means meant to be an all-
encompassing list.

186 Chapter 11 Asynchronous Communication and Message
Buses

Table 11.1 AKF Y Axis Splits of Message Bus

Attribute Split Pro Con

Temporal Monitoring for failures Not all messages are
to meet response times created equal. Some
is easy—just look for may be small and fast
the oldest message but not necessary for
against an absolute critical function
standard. completion.

Service Only connects systems Reduction in flexibility
that need to with various nodes
communicate with each connected in affinity
other. fashion.

Quality of Costs to scale and Likely to still need a way
service make any bus highly to scale buses with a

available can scale in lot of traffic for either
accordance with the highly important or
importance of the unimportant messages.
message.

Resource Similar types of data May require some
(rather than the services to listen for
services) share a bus. infrequent messages
Simple logical on a bus.
implementation.

Returning to Figure 11.1, we now apply the AKF Z axis of scale
to our problem.As previously identified this approach is most
often implemented by splitting buses by customer. It makes most
sense when your implementation has already employed a Z axis
split, as each of the swimlanes or pods can have a dedicated mes-
sage bus. In fact, this would need to be the case if we truly
wanted fault isolation (see Chapter 9).That doesn’t mean that
we can’t leverage one or more message buses to communicate
asynchronously between swimlanes. But we absolutely do not
want to rely on a single shared infrastructure among the swim-
lanes for transactions that should complete within the swimlane.

The most important point in determining how to scale a
message bus is to ensure that the approach is consistent with the
approach applied to the rest of the technology architecture. If,
for instance, you have scaled your architecture along customer

187Rule 44—Ensure Your Message Bus Can Scale

boundaries using the AKF Z axis of scale then it makes most
sense to put a message bus in each of these pods of customers. If
you have split up functions or resources as in the Y axis of scale,
then it makes sense that the message buses should follow a simi-
lar trend. If you have done both Y and Z axis and need only one
method for the amount of message traffic you experience, the Z
axis should most likely trump the Y axis to allow for greater
fault isolation.

Rule 45—Avoid Overcrowding Your
Message Bus

Rule 45: What, When, How, and Why
What: Limit bus traffic to items of higher value than the cost to
handle them.

When to use: On any message bus.

How to use: Value and cost justify message traffic. Eliminate low
value, high cost traffic. Sample low value/low cost and high
value/high cost traffic to reduce the cost.

Why: Message traffic isn’t “free” and presents costly demand on
your system.

Key takeaways: Don’t publish everything. Sample traffic to
ensure alignment between cost and value.

Nearly anything, if done to excess, can have severe and negative
consequences. Physical fitness, for example, if taken to an extreme
over long periods of time can actually depress the immune sys-
tem of the body and leave the person susceptible to viruses. Such
is the case with publishing absolutely everything that happens
within your product on one (or if you follow Rule 43—several)
message buses.The trick is to know which messages have value,
determine how much value they have, and determine whether
that value is worth the cost of publishing the message at volume.

Why, having just explained how to scale a message bus, are
we so interested in how much information we send to this now
nearly infinitely scalable system? The answer is the cost and
complexity of our scalable solution.While we are confident that

188 Chapter 11 Asynchronous Communication and Message
Buses

following the advice in Rule 42 will result in a scalable solution,
we want that solution to scale within certain cost constraints.We
often see our clients publishing messages for nearly every action
taken by every service. In many cases, this publication of infor-
mation is duplicative of data that their application also stores in
some log file locally (as in a Web log).Very often they will claim
that the data is useful in troubleshooting problems or in identify-
ing capacity bottlenecks (even while it may actually create some
of those bottlenecks). In one case we’ve even had a client claim
that we were the reason they published everything on the bus!
This client claimed that they took our advice of “Design your
systems to be monitored” (See Rule 49 in Chapter 12,
“Miscellaneous Rules”) to mean “Capture everything your
system does.”

Let’s start with the notion that not all data has equivalent
value to your business. Clearly in a for-profit business, the data
that is necessary to complete revenue producing transactions is
more important in most cases than data that helps us analyze
transactions for future actions. Data that helps us get smarter
about what we do in the future is probably more important than
data that helps us identify bottlenecks (although the latter is
absolutely very important). Clearly most data has some “option
value” in that we might find use for it later, but this value is
lower than the value of data that has a clear and meaningful
impact on our business today. In some cases, having a little bit of
data gives us nearly as much value as having all of it as in the
case of statistically significant sampling of lower value data in a
high transaction system.

In most systems and especially across most message buses
(except when we segment by quality of service in Rule 44) data
has a somewhat consistent cost. Even though the value of a
transaction or data element (datum) may change by the type of
transaction or even value of the customer, the cost of handling
that transaction remains constant.This runs counter to how we
want things to work. Ideally we want the value of any element
of our system to significantly exceed the cost of that element or
in the worst case do no more than equal the cost. Figure 11.2
shows a simple illustration of this relationship and explains the
actions a team should take with regard to the data.

189Rule 45—Avoid Overcrowding Your Message Bus

Figure 11.2 Cost/value relationship of data
and corresponding message bus action

The upper-left quadrant of Figure 11.2 is the best possible
case—a case where the value of the data far exceeds the cost
of sending it across the bus. In commerce sites clear examples of
these transactions would be shopping cart transactions.The
lower-right quadrant is an area in which we probably just
discard the data altogether.A potential case might be where
someone changes his profile picture on a social networking site
(assuming that the profile picture change actually took place
without a message being produced).

The rate at which we publish something has an impact on its
cost on the message bus.As we increase the demand on the bus,
we increase the cost of the bus(es) as we need to scale it to meet
the new demand. Sampling allows us to reduce the cost of those
transactions, and in some cases as we’ve described previously may
still allow us to retain 100% of the value of those transactions.
The act of sampling serves to reduce the cost of the transaction
and move us from right to left and may allow us to get the value
of the data to exceed the cost thereby allowing us to keep some
portion of the data. Reducing the cost of the transaction means
we can reduce the size and complexity of our message bus(ses) as
we reduce the total number of messages being sent.

190 Chapter 11 Asynchronous Communication and Message
Buses

Data Value

Data Cost

Low Cost
High Value

Publish 100%

High Cost
High Value

Sample

Low Cost
Low Value

Sample

High Cost
Low Value

Do Not Publish

The overall message here is that just because you have imple-
mented a message bus doesn’t mean that you have to use it for
everything.There will be a strong urge to send more messages
than are necessary, and you should fight that urge.Always
remember that not every datum is created equally in terms of
value, while its cost is likely equal to that of its peers. Use the
technique of sampling to reduce the cost of handling data, and
throw away (or do not publish) those things of low value.We
return to the notion of value and cost in Rule 47 (Chapter 12)
when we discuss storage.

Summary
This chapter is about asynchronous communication, and while it
is the preferred method of communication it is generally more
difficult, more expensive (in terms of development and system
costs), and can actually be done to excess.We started this chapter
by providing an overview of asynchronous communication and
then offering a few of the most critical guidelines for when to
implement asynchronous communication.We then followed up
with two rules dealing with message buses, which are one of the
most popular implementations of asynchronous communication.

In Rules 43 and 44, we covered how to scale a message bus
and how to avoid overcrowding it.As we mentioned in the
introduction to this chapter the message bus, while often the
preferred implementation of asynchronous communication, is
also often underimplemented. Being thrown in as an after-
thought without the appropriate monitoring or architectural
diligence, this can turn out to be a huge nightmare instead of an
architectural advantage.

Pay attention to these rules to ensure that the communication
within and between services can scale effectively as your system
grows.

191Summary

This page intentionally left blank

12
Miscellaneous Rules

We’re not going to lie to you—we ran out of themes and
catchy titles for the rules in this chapter. But even without a
theme these rules are important.Two of these rules deal with the
competencies of your team; one cautions you not to over-rely
on third-party solutions for scale, and the other urges you to
build the necessary competencies to be world class for each por-
tion of your technology architecture and infrastructure. One rule
outlines the foolishness of relying on stored procedures for busi-
ness logic, including the hazards to scale and long-term costs to
your company.Yet another rule examines the need for products
to be designed from day one with monitoring in mind.

Rule 46—Be Wary of Scaling
Through Third Parties

Rule 46: What, When, How, and Why
What: Scale your own system; don’t rely on vendor solutions to
achieve scalability.

When to use: Whenever considering whether to use a new fea-
ture or product from a vendor.

How to use: Rely on the rules of this book for understanding how
to scale and use vendor provided products and services in the
most simplistic manner possible.

Why: Three reasons for following this rule: Own your destiny, keep
your architecture simple, and reduce your total cost of ownership.

Key takeaways: Do not rely on vendor products, services, or fea-
tures to scale your system. Keep your architecture simple, keep
your destiny in your own hands, and keep your costs in control.
All three of these can be violated by using a vendor’s proprietary
scaling solution.

As you climb the management track in technology organizations
you invariably start to attend vendor meetings and eventually get
solicited by vendors almost constantly. In a world where global
IT spending of over $781 billion fell 6.9% in 2009,1 you can
safely bet that vendors are recruiting the best salespeople possible
and are working their hardest to sell you their products and
services.These vendors are often sophisticated in their approach-
es and truly consider it a long-term relationship with clients.
Unfortunately, this long-term relationship is actively managed
for the clients to end up spending more and more with the ven-
dor.This is all great business and we don’t fault the vendors for
trying, but we do want to caution you as a technologist or busi-
ness leader to be aware of the pros and cons of relying on ven-
dors to help you scale.We’re going to cover three reasons that
you should avoid relying on vendors to scale.

First, we believe that you should want the fate of your com-
pany, your team, and your career in your own hands. Looking
for vendors to relieve you of this burden will likely result in a
poor outcome because to the vendor you’re just one of many
customers so they are not going to respond to your crisis like
you will respond.As a CTO or technology leader, if the vendor
you vetted and selected fails, causing downtime for your busi-
ness, you are just as responsible as if you had written every line
of code.All code has bugs, even vendor provided code, and if
you don’t believe this ask the vendor for how many patches
they’ve produced for a specific version. Just like all code the
patches are 99% bug fixes with the major versions reserved for
new features.We would rather have the source code to fix a
problem than have to rely on a vendor to find the problem and
provide you with a patch, which often takes days if it ever
occurs.This should not be taken to imply that you should do
everything yourself such as writing your own database or fire-
wall. Use vendors for things that they can do better than you

194 Chapter 12 Miscellaneous Rules

and that are not part of your core competency. Ultimately we
are talking about ensuring that you can split up your application
and product to allow it to scale as scaling should be a core com-
petency of yours.

Second, with scalability, as with most things in life, simple is
better.We teach a simple cube (see Chapter 2,“Distribute Your
Work”) to understand how to build scalable architectures.The
more complex you make your system the more you are likely to
suffer from availability issues. More complex systems are more
difficult and more costly to maintain. Clustering technologies are
much more complex than straightforward log shipping for creat-
ing read replicas. Recall Rules 1 and 3 from this book: Do not
overengineer the solution and simplify the solution three times
over.

Third, let’s talk about the real total cost of trying to scale
with vendors. One of our architectural principles, and should be
one of yours as well, is that the most cost-effective way to scale
is to be vendor neutral. Locking yourself into a single vendor
gives them the upper hand in negotiations.We’re going to pick
on database vendors for a bit, but this discussion applies to
almost all technology vendors.The reason database companies
build additional features into their systems is that their revenue
streams faster than just the adoption of new customers would
normally allow.The way to achieve this is through a technique
called up-selling and involves getting existing customers to pur-
chase more or additional features or services.

One of the most prevalent add-on features for databases is
clustering. It’s a perfect feature in that it supposedly solves a
problem that customers who are growing rapidly need solving—
scalability of the customer’s platform.Additionally, it is propri-
etary, meaning that once you start using one vendor’s clustering
service you can’t just switch to another’s solution. If you’re a
CTO of a hyper growth company that needs to continue pro-
ducing new features for your customers and might not be that
familiar with scaling architectures, when a vendor waltzes in and
tells you that they have a solution to your biggest, scariest prob-
lem, you’re anxious to jump on board with them.And, often the
vendor will make the jump very easy by throwing in this addi-
tional feature for the first year contract.The reason they do this

195Rule 46—Be Wary of Scaling Through Third Parties

is that they know this is the hook. If you start scaling with
their technology solution you’ll be reluctant to switch, and
they can increase prices dramatically with you having very few
alternatives.

For these three reasons, control of your own destiny, addition-
al complexity, and total cost of ownership, we implore you to
consider scaling without relying on vendors.The rules in this
book should more than adequately arm you and your team with
the knowledge to get started scaling in a simple but effective
manner.

Rule 47—Purge, Archive, and
Cost-Justify Storage

Rule 47: What, When, How, and Why
What: Match storage cost to data value, including removing data
of value lower than the costs to store it.

When to use: Apply to data and its underlying storage infrastruc-
ture during design discussions and throughout the lifecycle of the
data in question.

How to use: Apply recency, frequency, and monetization analysis
to determine the value of the data. Match storage costs to data
value.

Why: Not all data is created equal (that is, of the same value),
and in fact it often changes in value over time. Why then should
we have a single storage solution with equivalent cost for that
data?

Key takeaways: It is important to understand and calculate the
value of your data and to match storage costs to that value.
Don’t pay for data that doesn’t have a stakeholder return.

Storage has been getting cheaper, faster, and denser just as
processors have been getting faster and cheaper.As a result, some
companies and many organizations within companies just
assume that storage is virtually free. In fact, a marketing profes-
sional asked us in 2002 why we were implementing mail file size
maximum constraints while companies like Google and Yahoo!
were touting free unlimited personal e-mail products. Our

196 Chapter 12 Miscellaneous Rules

answer was twofold and forms the basis for this rule. First, the
companies offering these solutions expected to make money off
their products through advertising, whereas it was unclear how
much additional revenue the marketing person was committing
to while asking for more storage. Second, and most importantly,
while the marketing professional considered a decrease in cost to
be virtually “free,” the storage in fact still costs money in at least
three ways:The storage itself costs money to purchase, the space
it occupied costs us money (or lost opportunity relative to high-
er value services where we owned the space), and the power and
HVAC to spin and cool the drives was increasing rather than
decreasing in cost on a per-unit basis.

Discussing this point with our marketing colleague, we came
upon a shared realization and a solution to the problem.The
realization was that not every piece of data (or e-mail), whether
it be used for a product or to run an IT back office system, is of
equivalent value.We hinted at this concept in Chapter 11,
“Asynchronous Communication and Message Buses,” Rule 44,
while discussing message buses and asynchronous communica-
tion. Order history in commerce systems provides a great exam-
ple of this concept; the older the data the less meaningful it is to
our business and our customer. Our customers aren’t likely to go
back and view purchase data that is ten years, five years, or possi-
bly even two years old, and even if they are the frequency of that
viewing is likely to decay over time. Furthermore, that data isn’t
likely as meaningful to our business in determining product rec-
ommendations as more recent purchase information (except in
the case of certain durable goods that get replaced in those
intervals like vehicles). Given this reduction in value both to the
customer and to our business, why would we possibly want to
store it on systems that cost us the same as more recent data?

The solution was to apply a marketing concept known as
RFM, which stands for recency, frequency, and monetization analysis.
Marketing gurus use this technique to make recommendations
to people or send special offers to keep high value customers
happy or to “reactivate” those who haven’t been active recently.
The concept is extensible to our storage needs (or as the case
may be our storage woes). Many of our clients tell us that the
largest growing portion of their budget and in some cases the

197Rule 47—Purge, Archive, and Cost-Justify Storage

largest single component of their budget is storage.We’ve applied
this RFM technique within their businesses to help both mature
their understanding of the data residing on their storage subsys-
tems and ultimately solve the problem through a tiered storage
archival and purge strategy.

First we need an understanding of the meaning of the terms
within RFM analysis. Recency accounts for how recently the data
item in question has been accessed.This might be a file in your
storage system or rows within a database. Frequency speaks to
how frequently that data is accessed. Sometimes this is captured
as the mean period between access and the rough inverse of
this—the number of accesses over some time interval.
Monetization is the value that a specific piece of data has to
your business in general.When applied to data, these three terms
help us calculate overall business value and access speeds.As you
might expect, we are moving toward applying our proprietary
cube to yet another problem! By matching the type of storage to
the value of the data in an RFM-like approach, we might have a
cube that has high cost storage mapped to high value data in the
upper right and an approach to delete and/or archive data in the
bottom left.The resulting cube is shown in Figure 12.1.

198 Chapter 12 Miscellaneous Rules

Figure 12.1 AKF Scale Cube applied to RFM
storage analysis

Now

Never

Low Value
Never Accessed:
Purge

Frequency

M
on

et
iz

at
io

n

Never Always
Low Dollar Value

High Value
Always Accessed:
Striped/Mirrored
SSDs

High Dollar Value
Recency

The X axis of our repurposed cube addresses the frequency
of access.The axis moves from data that is “never” (or very
infrequently) accessed to that which is accessed constantly or
always.The Y axis of the cube identifies recency of access and has
low values of never to high values of the data being accessed right
now.The Z axis of the cube deals with monetization, from values
of no value to very high value. Using the cube as a method of
analysis, one could plot potential solutions along the multiple
dimensions of the cube. Data in the lower left and front portion of
the cube has no value and was never accessed, meaning that we
should purge this data if regulatory conditions allow us to do so.
Why would we incur a cost for data that won’t return value to
our business? The upper right and back portion of our three-
dimensional cube identifies the most valuable pieces of business
data.We strive to store these on the solutions with the highest
reliability and fastest access times such that the transactions that use
them can happen quickly for our clients. Ideally we would cache
this data somewhere as well as having it on a stable storage
solution, but the underlying storage solution might be the fastest
solid state disks that current technology supports.These disks might
be striped and mirrored for access speed and high availability.

The product of our RFM analysis might yield a score for the
value of the data overall. Maybe it’s as simple as a product or
maybe you’ll add some magic of your own that actually applies
some dollar value to the resulting score. If we employed this
dollar value score to a value curve that matched the resulting
RFM value to the cost of a solution to support it we might end
up with a diagram similar to that of Figure 12.2.

We purge very low value data, just as we did in our analysis
of the cube of Figure 12.1. Low value data goes on low cost sys-
tems with slow access times. If you need to access it, you can
always do it offline and e-mail a report or whatever to the
requester. High value systems might go on very fast but relatively
costly SSDs or some storage area network equivalent.The curve
of Figure 12.2 is purely illustrative and was not developed with
actual data. Because data varies in value across businesses, and
because the cost of the solutions to support this data change
over time, you should develop your own solution. Some data
might need to be kept for some period of time due to

199Rule 47—Purge, Archive, and Cost-Justify Storage

Figure 12.2 RFM value, cost, and
solution curve

It is important to keep in mind that data ages, and the RFM
cube recognizes this fact.As a result, it isn’t a one-time analysis
but rather a living process.As datum ages and decays in value, so
too do we want to move it to storage cost consistent with that
declining value.As such, we need to have processes and proce-
dures to “archive” data or to move it to lower cost systems. In
rare cases, data may actually increase in value with age and so we
may also need systems to move data to higher cost (more reliable
and faster) storage over time. Make sure you address these needs
in your architecture.

200 Chapter 12 Miscellaneous Rules

RFM
Value

Cost

High Speed SAN w/Cache

Low Cost SAN or NAS

Distributed Storage System

MAID or Compress – Cloud?

Archive – Disk

Archive – Tape

Purge

SSDs – Striped/Mirrored

regulatory or legal reasons. In these cases we look to put the data
on the cheapest solution possible to meet our legal/regulatory
requirements while not making the data dilutive in terms of
shareholder value.

Rule 48—Remove Business
Intelligence from Transaction
Processing

Rule 48: What, When, How, and Why
What: Separate business systems from product systems and
product intelligence from database systems.

When to use: Anytime you are considering internal company
needs and data transfer within, to, or from your product.

How to use: Remove stored procedures from the database and
put them in your application logic. Do not make synchronous
calls between corporate and product systems.

Why: Putting application logic in databases is costly and repre-
sents scale challenges. Tying corporate systems and product sys-
tems together is also costly and represents similar scale chal-
lenges as well as availability concerns.

Key takeaways: Databases and internal corporate systems can
be costly to scale due to license and unique system characteris-
tics. As such, we want them dedicated to their specific tasks. In
the case of databases, we want them focused on transactions
rather than product intelligence. In the case of back office sys-
tems (business intelligence), we do not want our product tied to
their capabilities to scale. Use asynchronous transfer of data for
business systems.

We often tell our clients to steer clear of stored procedures with-
in relational databases. One of their first questions is typically
“Why do you hate stored procedures so much?”The truth is
that we don’t dislike stored procedures. In fact, we’ve used them
with great effect on many occasions.The problem is that stored
procedures are often overused within solutions, and this overuse
sometimes causes scalability bottlenecks in systems that would
otherwise scale efficiently and almost always results in a very
high cost of scale. Given the emphasis on databases, why didn’t
we put this rule in the chapter on databases? The answer is that
the drivers of our concerns over stored procedures are really
driven by the need to separate business intelligence and product
intelligence from transaction processing. In general, this concept

201Rule 48—Remove Business Intelligence from Transaction
Processing

can be further abstracted to “Keep like transactions together (or
alternatively separate unlike transactions) for the highest possible
availability and scalability and best possible cost.”Those are a lot
of words for a principle, so let’s first return to our concern over
stored procedures and databases as an illustration as to why this
separation should occur.

Databases tend to be one of the most expensive systems or
services within your architecture. Even in the case where you are
using an open source database, in most cases the servers upon
which these systems exist are attached to a relatively high cost
storage solution (compared to other solutions you might own),
have the fastest and largest number of processors, and have the
greatest amount of memory. Often, in mature environments,
these systems are tuned to do one thing well—perform relation-
al operations and commit transactions to a stable storage engine
as quickly as possible.The cost per compute cycle on these sys-
tems tends to be higher than the remainder of the solutions or
services within a product’s architecture (for example, application
servers or Web servers).These systems also tend to be the points
at which certain services converge and the defining points for a
swimlane. In the most extreme sense, such as in a young prod-
uct, they might be monolithic in nature and as a result the clear
governor of scale for the environment.

For all these reasons, using this expensive compute resource
for business logic makes very little sense. Each transaction will
only cost us more as the system is more expensive to operate.
The system is likely also a governor to our scale, so why would
we want to steal capacity by running other than relational trans-
actions on it? For all these reasons, we should limit these systems
to database (or storage related or NoSQL) transactions to allow
the systems to do what they do best. In so doing we can both
increase our scalability and reduce our cost for scale.

Using the database as a metaphor, we can apply this separa-
tion of dissimilar services to other pieces of our architecture.We
very likely have back office systems that perform functions like
e-mail sending and receiving (nonplatform related), general
ledger and other accounting activities, marketing segmentation,
customer support operations, and so on. In each of these cases,
we may be enticed to simply bolt these things onto our

202 Chapter 12 Miscellaneous Rules

platform. Perhaps we want a transaction purchased in our ecom-
merce system to immediately show up in our CFO’s Enterprise
Resource Planning system. Or maybe we want it to be immedi-
ately available to our customer support representatives in case
something goes wrong with the transaction. Similarly, if we are
running an advertising platform we might want to analyze data
from our data warehouse in real time to suggest even better
advertising.There are a number of reasons why we might want
to mix our business process related systems with our product
platform.We have a simple answer: Don’t do it.

Ideally we want these systems to scale independently relative
to their individual needs. By tying these systems together, each
of them needs to scale at the same rate as the system making
requests of them. In some cases, as was the case with our data-
base performing business logic, the systems may be more costly
to scale.This is often the case with ERP systems that have
licenses associated with CPUs to run them.Why would we pos-
sibly want to increase our cost of scale by making a synchronous
call to the ERP system for each transaction? Moreover, why
would we want to reduce the availability of our product plat-
form by adding yet another system in series as we discussed in
Chapter 9,“Design for Fault Tolerance and Graceful Failure,”
Rule 38?

Just as product intelligence should not be placed on databases,
business intelligence should not be tied to product transactions.
There are many cases where we need that data resident within
our product, and in those cases we should do just that—make it
resident within the product.We can select data sets from these
other systems and represent them appropriately within our prod-
uct offering. Often this data will be best served with a new or
different representation—sometimes of a different normal form.
Very often we need to move data from our product back to our
business systems such as in the case of customer support systems,
marketing systems, data warehouses, and ERP systems. In these
cases, we will also likely want to summarize and/or represent the
data differently. Furthermore, to increase our availability we will
want these pieces of data moved asynchronously back and forth
between the systems. ETL, or extract, transform, and load, sys-
tems are widely available for such purposes, and there are even

203Rule 48—Remove Business Intelligence from Transaction
Processing

open source tools available to allow you to build your own ETL
processes.

And remember that asynchronous does not mean “old” or
“stale” data.There is little reason why you can select elements
of data over small time periods and move them around between
systems.Additionally, you can always publish the data on some
sort of message bus for use on these other systems.The lowest
cost solution will be batch extraction, but if temporal constraints
don’t allow such cost-efficient movement then message buses
are absolutely an appropriate solution. Just remember to revisit
our rules on message buses and asynchronous transactions in
Chapter 11.

Rule 49—Design Your Application
to Be Monitored

Rule 49: What, When, How, and Why
What: Think about how you will need to monitor your application
as you are designing it.

When to use: Anytime you add or change modules of your code
base.

How to use: Build hooks into your system to record transaction
times.

Why: Having insight into how your application is performing will
help answer many questions when there is a problem.

Key takeaways: Adopt as an architectural principle that your
application must be monitored. Additionally, look at your overall
monitoring strategy to make sure you are first answering the
question of “Is there a problem?” and then the “Where” and
“What.”

When it comes to monitoring, most SaaS companies start by
installing one of the open source monitoring tools such as Cacti,
Ntop, or Nagios, just to name a few.This is a great way to check
in on network traffic or the servers’ CPU and memory but

204 Chapter 12 Miscellaneous Rules

requires someone to pay attention to the monitors.The next
step for most companies is to set up an automatic alerting
system, which is a nice step forward.The problem with this
scenario is that if you follow these steps by now you’re at a point
where you are paging out at least one person in the middle of
the night when a server starts consuming too much memory. If
your reaction is “great!” then let me ask the question “Is there a
problem with your site?”The reality is that you don’t know.

Just because a server has a high CPU or memory utilization
does not mean that your customers are having any issue with
your site at all.And while reacting to every bump in the night
on your system is better than ignoring them, the best solution is
to actually know the impact of that bump on your customers to
determine the most appropriate response.The way to achieve
this is to monitor your system from the perspective of a business
metric. For example, if you have an ecommerce site you might
want to monitor the number of items put into shopping carts or
the total value of purchases per time period (sec, minute, 10
mins, and so on). For an auction site you might want to monitor
the number of items listed or the number of searches performed
per time period.The correct time period is the one that
smoothes out the data points enough that the normal variation
doesn’t obscure real issues.When you plot these business metrics
on a graph against the data from a week ago (week-over-week)
you can start to easily see when there is a problem.

Figure 12.3 shows a graph of new account signups for a site.
The solid line represents data from last week, and the dotted
line represents data from this week. Notice the drop starting
around 9:00 a.m. and lasting until 3:00 p.m. From this graph it
is obvious that there was a problem. If the cause of this problem
had been a network issue with your ISP, monitoring your
servers would not have caught this.Their CPU and memory
would have been fine during these six hours because very little
processing was taking place on them.The next step after plotting
this data is to put an automated check that compares today’s
values against last week’s and alerts when it is out of statistical
significance.2

205Rule 49—Design Your Application to Be Monitored

Figure 12.3 Monitoring business metrics

Once you know there is a problem affecting your customers,
you can react appropriately and start asking the other questions
that monitoring is designed to answer.These questions include
“Where is the problem?” and “What is the problem?” Figure
12.4 shows two triangles.The one on the left represents the
scope of the question being asked, and the one on the right rep-
resents how much data is required to answer that question.
Answering the question “Is there a problem?” doesn’t require
much data but is very large in terms of scope.This as we previ-
ously discussed is best answered by monitoring business metrics.
The next question “Where is the problem?” requires more data,
but the scope is smaller.This is the level at which monitoring of
the application will help answer this question.We cover this in
more detail later in the chapter.The last question “What is the
problem?” requires the most data but is the most narrow in
scope.This is where the Nagios, Cacti, and so on can be used to
answer the question.

206 Chapter 12 Miscellaneous Rules

45

40

35

30

25

20

15

10

5

0

12
:0

0:
00

 A
M

1:
00

:0
0

A
M

2:
00

:0
0

A
M

3:
00

:0
0

A
M

4:
00

:0
0

A
M

5:
00

:0
0

A
M

6:
00

:0
0

A
M

7:
00

:0
0

A
M

8:
00

:0
0

A
M

9:
00

:0
0

A
M

10
:0

0:
00

 A
M

11
:0

0:
00

 A
M

12
:0

0:
00

 P
M

1:
00

:0
0

P
M

2:
00

:0
0

P
M

3:
00

:0
0

P
M

4:
00

:0
0

P
M

5:
00

:0
0

P
M

6:
00

:0
0

P
M

7:
00

:0
0

P
M

8:
00

:0
0

P
M

9:
00

:0
0

P
M

10
:0

0:
00

 P
M

11
:0

0:
00

 P
M

12
:0

0:
00

 A
M

Figure 12.4 Monitoring scope versus amount
of data

Rule 16 covered the importance of trapping exceptions, logging
them, and monitoring the logs.We’re going to expand on the
concept by discussing how you not only should catch errors and
exceptions but also should adopt as an architectural principle the
concept of “design to be monitored.”This simply stated is the
idea that your application code should make it easy to place
hooks in for watching the execution of transactions such as
SQL,API, RPC, or method calls. Some of the best monitored
systems have asynchronous calls before and after a transaction to
record the start time, transaction type, and end time.These are
then posted on a bus or queue to be processed by a monitoring
system.Tracking and plotting this data can yield all types of
insights into answering the question of “Where is the problem?”

Once you’ve mastered answering these three questions of “Is
there a problem?”;“Where is the problem?”; and “What is the
problem?” there are a couple of advanced monitoring questions
that you can start to ask.The first is “Why is there a problem?”
This question usually gets asked during the postmortem process
as discussed in Rule 30.When performing continuous deploy-
ments, answering this problem requires a much faster cycle than
a typical postmortem.Your organization must integrate learning

207Rule 49—Design Your Application to Be Monitored

Scope or Specificity of the Question

Is there a problem?

Where is the problem?

What is the problem?

Amount of Data Necessary to Answer
the Question

from answering “Why” into the next hour’s code release. Insights
from answering this question might include adding another test
to the smoke or regression test to ensure future bugs similar to
this one get caught before being deployed.

A final question that monitoring can help answer is “Will
there be a problem?”This type of monitoring requires the com-
bination of business monitoring data, application monitoring
data, and hardware monitoring data. Using statistical tools such
as control charts or machine learning algorithms such as neural
nets or Bayesian belief networks, this data can be analyzed to
predict whether a problem is likely to occur.A final step to this
and perhaps the holy grail of monitoring would be for the sys-
tem to take action when it thinks a problem will occur and fix
itself. Considering that today most automatic failover monitors
mess up and failover inappropriately we know automatic or self-
healing systems are a long way off.

While predicting problems sounds like a fun computer sci-
ence project, don’t even think about it until you have all the
other steps of monitoring in place and working well. Start mon-
itoring from the customer’s perspective by using business met-
rics.This will start you off on the appropriate level of response
to all the other monitoring.

Rule 50—Be Competent

Rule 50: What, When, How, and Why
What: Be competent, or buy competency in/for each component
of your architecture.

When to use: For any Internet service or commerce solution.

How to use: For each component of your infrastructure,
identify the team responsible and level of competency with that
component.

Why: To a customer, every problem is your problem. You can’t
blame suppliers or providers. You provide a service—not
software.

Key takeaways: Don’t confuse competence with build versus buy
or core versus context decisions. You can buy solutions and still
be competent in their deployment and maintenance. In fact, your
customers demand that you do so.

208 Chapter 12 Miscellaneous Rules

Maybe you think that this particular rule goes without saying.
“Of course we are competent in what we do—how else could
we remain in business?” For the purpose of this rule, we are
going to assume that you have an Internet offering—some sort
of SaaS platform, ecommerce offering, or some other solution
delivered over the Internet.

How well does your team really understand the load bal-
ancers that you use? How often are you required to get outside
help to resolve problems or figure out how to implement some-
thing on those load balancers? What about your databases? Do
your developers or DBAs know how to identify which tables
need indices and which queries are running slowly? Do you
know how to move tables around on file systems to reduce con-
tention and increase overall capacity? How about your applica-
tion servers? Who is your expert with those?

Perhaps your answer to all these questions is that you
don’t really need to do those things. Maybe you’ve read books,
including at least one other that these authors have written, that
indicate you should identify the things in which you have value
producing differentiation capabilities and specialize in those
areas.The decision that something is “non-core” or that one
should buy versus build (as in the case of a build versus buy
decision) should not be confused with whether your team
should be competent in the technology that you buy. It
absolutely makes sense for you to use a third-party or open
source database, but that doesn’t mean that you don’t have to
understand and be capable of operating and troubleshooting that
database.

Your customers expect you to deliver a service to them.
To that end, the development of unique software to create that
service is a means to an end.You are, at the end of the day, in
the service business. Make no mistake about that. It is a mindset
requirement that when not met has resulted in the deterioration
and even death of companies. Friendster’s focus on the
“F-graph,” the complex solution that calculated relationships
within the social network, was at least one of the reasons
Facebook won the private social network race.At the heart of
this focus was an attitude held within many software shops—a
focus that the challenging problem of the F-graph needed to be

209Rule 50—Be Competent

solved.This focus led to a number of outages within the site, or
very slow response times as systems ground to a halt while
attempting to compute relationships in near real time. Contrast
this with a focus on a service, where availability and response
time are more important than any particular feature. Software is
just a means for providing that service.

But in our world you also need more than just software.
Infrastructure is also important to help us get transactions
processed on time and in a highly available manner. Just as we
might focus too much on the solution to a single problem, so
might we overlook the other components within our architec-
ture that deliver that service. If we must be competent in our
software to deliver a service, so must we be competent in every-
thing else that we employ to deliver that service. Our customers
expect superior service delivery.They don’t understand and
don’t care that you didn’t develop and aren’t an expert in the
particular component of your architecture that is failing.

So it is that while we don’t need to develop every piece of
our solution (in fact we should not develop every piece), we do
need to understand each piece. For anything we employ, we
need to know that we are using it correctly, maintaining it prop-
erly, and restoring it to service promptly when it fails.We can do
this by developing those skills within our own team or by enter-
ing into relationships to help us.The larger our team and the
more we rely on the component in question, the more likely it
is that we should have some in-house expertise.The smaller our
team and the less important the component, the more willing
we should be to outsource the expertise. But in relying on part-
ners for help, the relationship needs to go beyond that provided
by most suppliers of equipment.The provider of the service
needs to have “skin in the game.” Put another way, they need to
feel your pain and the pain of the customer when your service
fails.You can’t be caught in a wait queue for second level sup-
port while your customers scream at you for service restoration.

210 Chapter 12 Miscellaneous Rules

Summary
This chapter is a mix of rules that don’t fit well in other chapters
but are extremely important. Starting with a warning to avoid
letting vendors provide scalability solutions through their
products and continuing with advice about keeping business
logic in the most appropriate place, monitoring appropriately,
and finally being competent, we covered a wide variety of
topics.While all of these rules are important perhaps no other
rule than Rule 50,“Be Competent,” brings it all together.
Understanding and implementing these 50 rules is a great way
to ensure that you and your team are competent when it comes
to ensuring that your systems will scale.

Endnotes
1. “Gartner: Global Technology Spending Likely to Increase 33% in

2010,” TOPNEWS, http://topnews.us/content/27798-gartner-global-

technology-spending-likely-increase-33-2010.

2. That the data is unlikely to have occurred because of chance.

Wikipedia, “Statistical significance,” http://en.wikipedia.org/wiki/

Statistical_significance.

211Endnotes

http://topnews.us/content/27798-gartner-globaltechnology-spending-likely-increase-33-2010
http://topnews.us/content/27798-gartner-globaltechnology-spending-likely-increase-33-2010
http://en.wikipedia.org/wiki/Statistical_significance
http://en.wikipedia.org/wiki/Statistical_significance

This page intentionally left blank

13
Rule Review and

Prioritization

In addition to being a handy aggregation of the rules for future
reference, this chapter introduces a method by which these rules
may be analyzed for application in your architecture. If you are
building something from scratch, we highly recommend the
inclusion of as many of the 50 rules as makes sense in your
product. If you are attempting to redesign your existing system
in an evolutionary fashion for greater scale, the method of risk-
benefit analysis represented herein may help you prioritize the
application of these rules in your reengineering efforts.

A Risk–Benefit Model for
Evaluating Scalability Projects and
Initiatives
Before we begin describing a risk-benefit model, let’s first
review why we are interested in scalability.The desire to have a
highly available and usable (to some specified or implied quality
of service metric) product or service, even under conditions of
moderate to extreme growth, is why we invest in making our
product scalable. If we weren’t interested in what would happen
to our product’s availability or quality of service as demand
increased on our site, we wouldn’t be interested in attempting to
scale it.This is the approach we think that most state govern-
ments take in implementing their Department of Motor Vehicles

services.The government simply doesn’t appear to care that
people will line up and wait for hours during periods of peak
demand. Nor do they care that the individuals providing service
couldn’t care less about the customer.The government knows it
offers a service that customers must use if they want to drive and
any customers who are dissatisfied and leave will simply come
back another day. But most of the products that we build won’t
have this state sanctioned and protected monopoly.As a result,
we must be concerned about our availability and hence our
scalability.

It is within this context of concern over availability and
scalability that we represent our concept of risk.The risk of an
incident caused by the inability to scale manifests itself as a threat
to our quality of service or availability. One method of calculat-
ing risk is to look at the probability that a problem will happen
multiplied by its impact should it happen (or move from risk to
issue). Figure 13.1 shows this method of risk decomposition.

214 Chapter 13 Rule Review and Prioritization

Figure 13.1 Scalability and availability risk
composition

The impact might be further broken down into components of
the percentage impact to your user base and the actual impact
such as downtime (the amount of time your service is unavail-
able), data loss, and response time degradation. Percentage impact
might be further broken down into the percentage of the
customers impacted and the percentage of the functionality

Risk

X

X + +()

Probability of
Problem

% Customers
Impacted

% Functionality
Impacted

Impact

Response
Time Impact

% Impact Downtime % Data Loss

impacted.There is certainly further decomposition possible; for
instance, some customers may represent significantly greater
value on either a license or transaction fee basis. Furthermore,
downtime may have a different multiplier applied to it than
response time; data loss may trump both of these.

This model isn’t meant to hold true for all businesses. Rather
it is meant to demonstrate a way in which you can build a
model to help determine which things you should focus on in
your business. One quick note before we proceed with how to
use the model:We highly recommend that businesses calculate
actual impact to revenue when determining the system’s actual
availability rather than attempting to model it as we’ve done
here. For instance, if you can show or believe that you lost 10%
of your expected revenue in a given day you should say your
availability was 90%.Wall clock time is a terrible measure of
availability as it treats every hour of every day equivalently, and
most businesses don’t have an equal distribution of traffic or rev-
enue producing transactions. Now back to our regularly sched-
uled show.

The terminal nodes (nodes without children) of the decom-
position graph of Figure 13.1 are leaves within our risk tree:
Probability of a Problem, % Customers Impacted, %
Functionality Impacted, Downtime, % Data Loss, and Response
time Impact. Looking at these leaves, we can see that many of
our rules map to these leaves. For instance, Rule 1 is really about
decreasing the probability of a problem happening by ensuring
that the system is easily understood and therefore less likely to
be problematic. It may also decrease downtime as the solution is
likely to be easier to troubleshoot and resolve. Using a bit
of subjective analysis, we may decide that this rule has a small
(or low) benefit to impact and a medium change to the
probability of a problem happening.The result of this may
be that the rule has an overall medium impact to risk
(low + medium = ~medium).

We want to take just a minute and discuss how we arrived at
this conclusion.The answer is that we used a simple High (H),
Medium (M), and Low (L) analysis.There’s no rocket science
here (nor “rocket surgery” depending on how you prefer to coin
a phrase); we simply used our experiences on how the rule

215A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

might apply to the tree we developed for our particular view of
risk and scalability. So while the answer was largely subjective, it
was informed by 70 years of combined experience within our
partnership.While you can certainly invest in creating a more
deterministic model, we are not convinced that it will yield sig-
nificantly better results than having a team of smart people
determine how these rules impact your risk.

We are now going to assume that a change in risk serves as a
proxy for benefit.This is a fairly well understood concept within
business, so we won’t spend a great deal of time explaining it.
Suffice it to say that if you can reduce your risk, you reduce the
likelihood of a negative impact to your business and therefore
increase the probability of achieving your goals.What we need
to do now is determine the cost of this risk reduction. Once we
know that, we can take our benefit (risk reduction) and subtract
our costs to develop the solution.This combination creates a
prioritization of work.We suggest a simple High, Medium, and
Low for cost. High cost might be anything more than $10M for
a very large company to more than $10K for a very small com-
pany. Low cost could be anything less than $1M for a very large
company or verging on zero for a very small company.This is
often derived from the cost of developer days. For example if
your average developer’s salary and benefits cost the business
$100,000 per year, then each day a developer needs to work on
a project, assuming ~250 days of work per year, you add $400 to
the cost.

Our prioritization equation then becomes risk reduction
minus cost equals priority or (R – C = P).Table 13.1 shows
how we computed the nine permutations of risk and cost and
the resulting priority.The method we chose was simple.The
benefit for any equation where risk and cost were equivalent was
set to medium and the priority set to the midrange of 3.Where
risk reduction was two levels higher than cost, the benefit was
set to Very High, and the Priority set to 1.Where risk reduction
was two levels lower than cost (Low Risk, High Cost) the bene-
fit was set to Very Low, and priority set to 5. Differences of one
were either Low (Risk Reduction Low and Cost Medium) with
a priority score of 4or High (Risk Reduction Medium and Cost
Low) with a priority score of 2.The projects with the lowest

216 Chapter 13 Rule Review and Prioritization

priority score have the highest benefit and are the first things we
will do.

Table 13.1 Risk Reduction, Cost, and Benefit Calculation

Risk Reduction Cost Resulting Benefit/Priority

High High Medium 3

High Medium High 2

High Low Very High 1

Medium High Low 4

Medium Medium Medium 3

Medium Low High 2

Low High Very Low 5

Low Medium Low 4

Low Low Medium 3

Using the previous approach, we now rate each of our 50 rules.
The sidebars from each chapter for each rule are repeated in the
following sections with the addition of our estimation of risk
reduction, cost, and the calculated benefit/priority.As we men-
tioned earlier the way we arrived at these values was the result
of our experience of more than 70 years (combined) with more
than 150 companies and growing.Your particular risk reduction,
cost, and benefit may vary, and we encourage you to calculate
and prioritize these yourselves. Our estimates should be good for
smaller action-oriented companies that simply want to know
what to do today. Note that these estimates are to “rework” an
existing solution.The cost of designing something from scratch
will be significantly different—typically a lower cost but with
equivalent benefit.

For the sake of completeness, there are many other approach-
es to determining cost and benefit.You may, for instance, replace
our notion of risk reduction with the ability to achieve specific
KPIs (Key Performance Indicators) within your company.The
previous method would be appropriate if you had a KPI regard-
ing the scalability and availability of your product (something all
Web-enabled businesses should have). If you are a business with
contractual obligations another approach might be to determine
the risk reduction of not meeting specific SLAs (Service Level

217A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Agreements) outlined within your contracts. Many other possi-
bilities exist. Just choose the right approach to prioritize for your
business and get going!

Rule 1—Don’t Overengineer the Solution
What: Guard against complex solutions during design.
When to use: Can be used for any project and should be used
for all large or complex systems or projects.
How to use: Resist the urge to overengineer solutions by
testing ease of understanding with fellow engineers.
Why: Complex solutions are costly to implement and have
excessive long-term costs.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Systems that are overly complex limit your
ability to scale. Simple systems are more easily and cost
effectively maintained and scaled.

Rule 2—Design Scale into the Solution
(D-I-D Process)
What: An approach to provide JIT (Just In Time) Scalability.
When to use: On all projects; this approach is the most cost-
effective (resources and time) to ensure scalability.
How to use:

n Design for 20x capacity.
n Implement for 3x capacity.
n Deploy for ~1.5x capacity.

Why: D-I-D provides a cost-effective, JIT method of scaling
your product.
Risk reduction: L
Cost: L
Benefit and priority: Medium - 3
Key takeaways: Teams can save a lot of money and time by
thinking of how to scale solutions early, implementing (coding)
them a month or so before they are needed, and implementing
them days before the customer rush or demand.

218 Chapter 13 Rule Review and Prioritization

Rule 3—Simplify the Solution 3 Times Over
What: Used when designing complex systems, this rule simpli-
fies the scope, design, and implementation.
When to use: When designing complex systems or products
where resources (engineering or computational) are limited.
How to use:

n Simplify scope using the Pareto principle.
n Simplify design by thinking about cost-effectiveness and

scalability.
n Simplify implementation by leveraging the experience of

others.

Why: Focusing just on “not being complex” doesn’t address the
issues created in requirements or story and epoch development
or the actual implementation.
Risk reduction: L
Cost: L
Benefit and priority: Medium - 3
Key takeaways: Simplification needs to happen during every
aspect of product development.

Rule 4—Reduce DNS Lookups
What: Reduce the number of DNS lookups from a user per-
spective.
When to use: On all Web pages where performance matters.
How to use: Minimize the number of DNS lookups required
to download pages, but balance this with the browser’s limitation
for simultaneous connections.
Why: DNS lookups take a great deal of time, and large numbers
of them can amount to a large portion of your user experience.
Risk reduction: L
Cost: L
Benefit and priority: Medium - 3
Key takeaways: Reduction of objects, tasks, computation, and
so on is a great way of speeding up page load time, but division
of labor must be considered as well.

219A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Rule 5—Reduce Objects Where Possible
What: Reduce the number of objects on a page where possible.
When to use: On all Web pages where performance matters.
How to use:

n Reduce or combine objects, but balance this with maxi-
mizing simultaneous connections.

n Test changes to ensure performance improvements.

Why: The number of objects impacts page download times.
Risk reduction: L
Cost: L
Benefit and priority: Medium - 3
Key takeaways: The balance between objects and methods that
serve them is a science that requires constant measurement and
adjustment; it’s a balance between customer usability, usefulness,
and performance.

Rule 6—Use Homogenous Networks
What: Don’t mix the vendor networking gear.
When to use: When designing or expanding your network.
How to use:

n Do not mix different vendors’ networking gear (switches
and routers).

n Buy best of breed for other networking gear (firewalls,
load balancers, and so on).

Why: Intermittent interoperability and availability issues simply
aren’t worth the potential cost savings.
Risk reduction: H
Cost: H
Benefit and priority: Medium - 3
Key takeaways: Heterogeneous networking gear tends to cause
availability and scalability problems. Choose a single provider.

Rule 7—Design to Clone Things (X Axis)
What: Typically called horizontal scale, this is the duplication of
services or databases to spread transaction load.

220 Chapter 13 Rule Review and Prioritization

When to use:

n Databases with a very high read to write ratio (5:1 or
greater—the higher the better).

n Any system where transaction growth exceeds data
growth.

How to use:

n Simply clone services and implement a load balancer.
n For databases, ensure the accessing code understands the

difference between a read and a write.

Why: Allows for fast scale of transactions at the cost of duplicat-
ed data and functionality.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: X axis splits are fast to implement and can
allow for transaction but not data scalability.

Rule 8—Design to Split Different Things
(Y Axis)
What: Sometimes referred to as scale through services or
resources, this rule focuses on scaling data sets, transactions, and
engineering teams.
When to use:

n Very large data sets where relations between data are not
necessary.

n Large, complex systems where scaling engineering
resources require specialization.

How to use:

n Split up actions by using verbs or resources by using nouns
or use a mix.

n Split both the services and the data along the lines defined
by the verb/noun approach.

Why: Allows for efficient scaling of not only transactions but
also very large data sets associated with those transactions.

221A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Risk reduction: M
Cost: M
Benefit and priority: Medium - 3
Key takeaways:Y axis or data/service-oriented splits, allow for
efficient scaling of transactions, large data sets, and can help with
fault isolation.

Rule 9—Design to Split Similar Things (Z Axis)
What: This is often a split by some unique aspect of the
customer such as customer ID, name, geography, and so on.
When to use:Very large, similar data sets such as large and
rapidly growing customer bases.
How to use: Identify something you know about the
customer, such as customer ID, last name, geography, or device
and split or partition both data and services based on that
attribute.
Why: Rapid customer growth exceeds other forms of data
growth or you have the need to perform “fault isolation”
between certain customer groups as you scale.
Risk reduction: H
Cost: H
Benefit and priority: Medium - 3
Key takeaways: Z axis splits are effective at helping you to
scale customer bases but can also be applied to other very large
data sets that can’t be pulled apart using the Y axis methodology.

Rule 10—Design Your Solution to Scale
Out—Not Just Up
What: Scaling out is the duplication of services or databases to
spread transaction load and is the alternative to buying larger
hardware, known as scaling up.
When to use: Any system, service, or database expected to
grow rapidly.
How to use: Use the AKF Scale Cube to determine the
correct split for your environment. Usually the horizontal split
(cloning) is the easiest.
Why: Allows for fast scale of transactions at the cost of
duplicated data and functionality.

222 Chapter 13 Rule Review and Prioritization

Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Plan for success and design your systems to
scale out. Don’t get caught in the trap of expecting to scale up
only to find out that you’ve run out of faster and larger systems
to purchase.

Rule 11—Use Commodity Systems
(Goldfish Not Thoroughbreds)
What: Use small, inexpensive systems where possible.
When to use: Use this approach in your production
environment when going through hyper growth.
How to use: Stay away from very large systems in your
production environment.
Why: Allows for fast, cost-effective growth.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Build your systems to be capable of relying on
commodity hardware and don’t get caught in the trap of using
high margin, high end servers.

Rule 12—Scale Out Your Data Centers
What: Design your systems to have three or more live data cen-
ters to reduce overall cost, increase availability, and implement
disaster recovery.
When to use: Any rapidly growing business that is considering
adding a disaster recovery (cold site) data center.
How to use: Split up your data to spread across data centers
and spread transaction load across those data centers in a “multi-
ple live” configuration. Use spare capacity for peak periods of
the year.
Why: The cost of data center failure can be disastrous to your
business. Design to have three or more as the cost is often less
than having two data centers. Make use of idle capacity for peak
periods rather than slowing down your transactions.

223A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Risk reduction: H
Cost: H
Benefit and priority: Medium - 3
Key takeaways: When implementing DR, lower your cost of
disaster recovery by designing your systems to leverage three or
more live data centers. Use the spare capacity for spiky demand
when necessary.

Rule 13—Design to Leverage the Cloud
What: This is the purposeful utilization of cloud technologies to
scale on demand.
When to use: When demand is temporary, spiky, and inconsis-
tent and when response time is not a core issue in the product.
How to use:

n Make use of third-party cloud environments for temporary
demands, such as large batch jobs or QA environments
during testing cycles.

n Design your application to service some requests from a
third-party cloud when demand exceeds a certain peak
level.

Why: Provisioning of hardware in a cloud environment takes a
few minutes as compared to days or weeks for physical servers in
your own collocation facility.When utilized temporarily this is
also very cost effective.
Risk reduction: L
Cost: M
Benefit and priority: Low - 4
Key takeaways: Design to leverage virtualization and the cloud
to meet unexpected spiky demand.

Rule 14—Use Databases Appropriately
What: Use relational databases when you need ACID properties
to maintain relationships between your data. For other data stor-
age needs consider more appropriate tools.
When to use: When you are introducing new data or data
structures into the architecture of a system.

224 Chapter 13 Rule Review and Prioritization

How to use: Consider the data volume, amount of storage,
response time requirements, relationships, and other factors to
choose the most appropriate storage tool.
Why: RDBMSs provide great transactional integrity but are
more difficult to scale, cost more, and have lower availability than
many other storage options.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Use the right storage tool for your data. Don’t
get lured into sticking everything in a relational database just
because you are comfortable accessing data in a database.

Rule 15—Firewalls, Firewalls Everywhere!
What: Use firewalls only when they significantly reduce
risk and recognize that they cause issues with scalability and
availability.
When to use: Always.
How to use: Employ firewalls for critical PII, PCI compliance,
and so on. Don’t use them for low-value static content.
Why: Firewalls can lower availability and cause unnecessary
scalability chokepoints.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: While firewalls are useful, they are often
overused and represent both an availability and a scalability
concern if not designed and implemented properly.

Rule 16—Actively Use Log Files
What: Use your application’s log files to diagnose and prevent
problems.
When to use: Put a process in place that monitors log files and
forces people to take action on issues identified.
How to use: Use any number of monitoring tools from cus-
tom scripts to Splunk to watch your application logs for errors.
Export these and assign resources for identifying and solving the
issue.

225A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Why: The log files are excellent sources of information about
how your application is performing for your users; don’t throw
this resource away without using it.
Risk reduction: L
Cost: L
Benefit and priority: Medium - 3
Key takeaways: Make good use of your log files and you will
have fewer production issues with your system.

Rule 17—Don’t Check Your Work
What: Avoid checking things you just did or reading things you
just wrote within your products.
When to use: Always (see rule conflict discussion in Rule 17
in Chapter 5).
How to use: Never read what you just wrote for the purpose
of validation. Store data in a local or distributed cache if it is
required for operations in the near future.
Why: The cost of validating your work is high relative to the
unlikely cost of failure. Such activities run counter to cost-
effective scaling.
Risk reduction: L
Cost: M
Benefit and priority: Low - 4
Key takeaways: Never justify reading something you just wrote
for the purposes of validating the data. Read and act upon errors
associated with the write activity instead.Avoid other types of
reads of recently written data by storing that data locally.

Rule 18—Stop Redirecting Traffic
What: Avoid redirects when possible; use the right method
when they are necessary.
When to use: Use redirects as little as possible.
How to use: If you must have them, consider server
configurations instead of HTML or other code-based solutions.
Why: Redirects in general delay the user, consume computation
resources, and are prone to errors.
Risk reduction: L
Cost: L

226 Chapter 13 Rule Review and Prioritization

Benefit and priority: Medium - 3
Key Takeaways: Use redirect correctly and only when
necessary.

Rule 19—Relax Temporal Constraints
What: Alleviate temporal constraints in your system whenever
possible.
When to use: Anytime you are considering adding a constraint
that an item or object maintains a certain state between a user’s
actions.
How to use: Relax constraints in the business rules.
Why:The difficulty in scaling systems with temporal constraints
is significant because of the ACID properties of most RDMSs.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1
Key takeaways: Carefully consider the need for constraints
such as items being available from the time a user views them
until the user purchases them. Some possible edge cases where
users are disappointed are much easier to compensate for than
not being able to scale.

Rule 20—Leverage CDNs
What: Use CDNs to offload traffic from your site.
When to use: Ensure it is cost justified and then choose which
content is most suitable.
How to use: Most CDNs leverage DNS to serve content on
your site’s behalf.
Why: CDNs help offload traffic spikes and are often economical
ways to scale parts of a site’s traffic.
Risk reduction: M
Cost: M
Benefit and priority: Medium - 3
Key takeaways: CDNs are a fast and simple way to offset
spikiness of traffic as well as traffic growth in general. Ensure you
perform a cost-benefit analysis and monitor the CDN usage.

227A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Rule 21—Use Expires Headers
What: Use Expires headers to reduce requests and improve
the scalability and performance of your system.
When to use: All object types need to be considered.
How to use: Headers can be set on Web servers or through
application code.
Why: The reduction of object requests increases the page
performance for the user and decreases the number of requests
your system must handle per user.
Risk reduction: L
Cost: L
Benefit and priority: Medium - 3
Key takeaways: For each object type (image, html, css, php,
and so on) consider how long the object can be cached for and
implement the appropriate header for that timeframe.

Rule 22—Cache Ajax Calls
What: Use appropriate HTTP response headers to ensure
cacheability of Ajax calls.
When to use: Every Ajax call but those absolutely requiring
real time data that is likely to have been recently updated.
How to use: Modify Last-Modified, Cache-Control, and
Expires headers appropriately.
Why: Decrease user-perceived response time, increase user satis-
faction, and increase the scalability of your platform or solution.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Leverage Ajax and cache Ajax calls as much as
possible to increase user satisfaction and increase scalability.

Rule 23—Leverage Page Caches
What: Deploy Page Caches in front of your Web services.
When to use: Always.
How to use: Choose a caching system and deploy.
Why: Decrease load on Web servers by caching and delivering
previously generated dynamic requests and quickly answering
calls for static objects.

228 Chapter 13 Rule Review and Prioritization

Risk reduction: M
Cost: M
Benefit and priority: Medium - 3
Key takeaways: Page caches are a great way to offload dynamic
requests and to scale cost effectively.

Rule 24—Utilize Application Caches
What: Alleviate temporal constraints in your system whenever
possible.
When to use: Anytime you are considering adding a constraint
that an item or object maintains a certain state between a user’s
actions.
How to use: Relax constraints in the business rules.
Why: The difficulty in scaling systems with temporal constraints
is significant because of the ACID properties of most RDMSs.
Risk reduction: M
Cost: M
Benefit and priority: Medium - 3
Key takeaways: Carefully consider the need for constraints
such as items being available from the time a user views it until
the user purchases it. Some possible edge cases where users are
disappointed are much easier to compensate for than not being
able to scale.

Rule 25—Make Use of Object Caches
What: Implement object caches to help your system scale.
When to use: Anytime you have repetitive queries or
computations.
How to use: Select any one of the many open source or
vendor supported solutions and implement the calls in your
application code.
Why: A fairly straightforward object cache implementation can
save a lot of computational resources on application servers or
database servers.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1

229A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Key takeaways: Consider implementing an object cache
anywhere computations are performed repeatedly, but primarily
this is done between the database and application tiers.

Rule 26—Put Object Caches on Their
Own “Tier”
What: Use a separate tier in your architecture for object caches.
When to use: Anytime you have implemented object caches.
How to use: Move object caches onto their own servers.
Why: The benefits of a separate tier are better utilization of
memory and CPU resources and having the ability to scale the
object cache independently of other tiers.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: When implementing an object cache it is sim-
plest to put the service on an existing tier such as the application
servers. Consider implementing or moving the object cache to
its own tier for better performance and scalability.

Rule 27—Learn Aggressively
What: Take every opportunity to learn.
When to use: Be constantly learning from your mistakes as
well as successes.
How to use: Watch your customers or use A/B testing to
determine what works. Use postmortems to learn from incidents
and problems in production.
Why: Doing something without measuring the results or having
an incident without learning from it are wasted opportunities
that your competitors are taking advantage of.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Be constantly and aggressively learning.The
companies that do this best are the ones that grow the fastest
and are the most scalable.

230 Chapter 13 Rule Review and Prioritization

Rule 28—Don’t Rely on QA to Find Mistakes
What: Use QA to lower cost of delivered products, increase
engineering throughput, identify quality trends, and decrease
defects—not to increase quality.
When to use: Whenever you can get greater throughput by
hiring someone focused on testing rather than writing code.
Use QA to learn from past mistakes—always.
How to use: Hire a QA person anytime you get greater than
one engineer’s worth of output with the hiring of a single QA
person.
Why: Reduce cost, increase delivery volume/velocity, and
decrease the number of repeated defects.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: QA doesn’t increase the quality of your sys-
tem, as you can’t test quality into a system. If used properly, it
can increase your productivity while decreasing cost, and most
importantly it can keep you from increasing defect rates faster
than your rate of organization growth during periods of rapid
hiring.

Rule 29—Failing to Design for Rollback Is
Designing for Failure
What: Always have the ability to roll back code.
When to use: Ensure all releases have the ability to roll back,
practice it in a staging or QA environment, and use it in
production when necessary to resolve customer incidents.
How to use: Clean up your code and follow a few simple
procedures to ensure you can roll back your code.
Why: If you haven’t experienced the pain of not being able to
roll back, you likely will at some point if you keep playing with
the “fix-forward” fire.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1

231A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Key takeaways: Don’t accept that the application is too com-
plex or that you release code too often as excuses that you can’t
roll back. No sane pilot would take off in an airplane without
the ability to land, and no sane engineer would roll code that
they could not pull back off in an emergency.

Rule 30—Discuss and Learn from Failures
What: Leverage every failure to learn and teach important
lessons.
When to use: Always.
How to use: Employ a postmortem process and hypothesize
failures in low failure environments.
Why: We learn best from our mistakes—not our successes.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1
Key takeaways: Never let a good failure go to waste. Learn
from every one and identify the technology, people, and process
issues that need to be corrected.

Rule 31—Be Aware of Costly Relationships
What: Be aware of relationships in the data model.
When to use: When designing the data model, adding
tables/columns, or writing queries consider how the
relationships between entities will affect performance and
scalability in the long run.
How to use: Think about database splits and possible future
data needs as you design the data model.
Why: The cost of fixing a broken data model after it has been
implemented is likely 100x as much as fixing it during the
design phase.
Risk reduction: L
Cost: L
Benefit and priority: Medium - 3
Key takeaways: Think ahead and plan the data model carefully.
Consider normalized forms, how you will likely split the data-
base in the future, and possible data needs of the application.

232 Chapter 13 Rule Review and Prioritization

Rule 32—Use the Right Type of Database Lock
What: Be cognizant of the use of explicit locks and monitor
implicit locks.
When to use: Anytime you employ relational databases for
your solution.
How to use: Monitor explicit locks in code reviews. Monitor
databases for implicit locks and adjust explicitly as necessary to
moderate throughput. Choose a database and storage engine that
allows flexibility in types and granularity of locking.
Why: Maximize concurrency and throughput in databases
within your environment.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1
Key takeaways: Understand the types of locks and manage
their usage to maximize database throughput and concurrency.
Change lock types to get better utilization of databases and look
to split schemas or distribute databases as you grow.When
choosing databases, ensure you choose one that allows multiple
lock types and granularity to maximize concurrency.

Rule 33—Pass on Using Multiphase Commits
What: Do not use a multiphase commit protocol to store or
process transactions.
When to use: Always pass, or alternatively never use multiphase
commits.
How to use: Don’t use it; split your data storage and processing
systems with Y or Z axis splits.
Why: Multiphase commits are blocking protocols that do not
permit other transactions from occurring until it is complete.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Do not use multiphase commit protocols as a
simple way to extend the life of your monolithic database. It will
likely cause it to scale even less and result in an even earlier
demise of your system.

233A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Rule 34—Try Not to Use “Select For Update”
What: Minimize the use of the FOR UPDATE clause in a SELECT
statement when declaring cursors.
When to use: Always.
How to use: Review cursor development and question every
SELECT FOR UPDATE usage.
Why: Use of FOR UPDATE causes locks on rows and may slow
down transactions.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Cursors are powerful constructs that when
properly used can actually make programming faster and easier
while speeding up transactions. But FOR UPDATE cursors may
cause long held locks and slow transactions. Refer to your data-
base documentation for whether you need to use the FOR READ
ONLY clause to minimize locks.

Rule 35—Don’t Select Everything
What: Don’t use Select * in queries.
When to use: Never select everything (unless of course you are
going to use everything).
How to use: Always declare what columns of data you are
selecting or inserting in a query.
Why: Selecting everything in a query is prone to break things
when the table structure changes and it transfers unneeded data.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1
Key takeaways: Don’t use wildcards when selecting or insert-
ing data.

Rule 36—Design Using Fault Isolative
“Swimlanes”
What: Implement fault isolation or “swimlanes” in your designs.
When to use: Whenever you are beginning to split up databas-
es to scale.

234 Chapter 13 Rule Review and Prioritization

How to use: Split up databases and services along the Y or Z
axis and disallow synchronous communication or access between
services.
Why: Increase availability, scalability, and reduce incident identi-
fication and resolution as well as time to market and cost.
Risk reduction: H
Cost: H
Benefit and priority: Medium - 3
Key takeaways: Fault isolation consists of eliminating synchro-
nous calls between fault isolation domains, limiting asynchronous
calls and handling synchronous call failure, and eliminating the
sharing of services and data between swimlanes.

Rule 37—Never Trust Single Points of Failure
What: Never implement and always eliminate single points of
failure.
When to use: During architecture reviews and new designs.
How to use: Identify single instances on architectural diagrams.
Strive for active/active configurations.
Why: Maximize availability through multiple instances.
Risk reduction: H
Cost: M
Benefit and priority: High - 2
Key takeaways: Strive for active/active rather than active/
passive solutions. Use load balancers to balance traffic across
instances of a service. Use control services with active/passive
instances for patterns that require singletons.

Rule 38—Avoid Putting Systems in Series
What: Reduce the number of components that are connected
in series.
When to use: Anytime you are considering adding
components.
How to use: Remove unnecessary components or add multiple
versions of them to minimize the impact.
Why: Components in series have a multiplicative effect of
failure.
Risk reduction: M

235A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Cost: M
Benefit and priority: Medium - 3
Key takeaways: Avoid adding components to your system that
are connected in series.When necessary to do so add multiple
versions of that component so that if one fails others are
available to take its place.

Rule 39—Ensure You Can Wire On and Off
Functions
What: Create a framework to disable and enable features of
your product.
When to use: Risky, very high use, or shared services that
might otherwise cause site failures when slow to respond or
unavailable.
How to use: Develop shared libraries to allow automatic or
on-demand enabling and disabling of services. See Table 9.4 for
recommendations.
Why: Graceful failure (or handling failures) of transactions can
keep you in business while you recover from the incident and
problem that caused it.
Risk reduction: M
Cost: H
Benefit and priority: Low - 4
Key takeaways: Implement Wire On/Wire Off frameworks
whenever the cost of implementation is less than the risk and
associated cost of failure.Work to develop shared libraries that
can be reused to lower the cost of future implementation.

Rule 40—Strive for Statelessness
What: Design and implement stateless systems.
When to use: During design of new systems and redesign of
existing systems.
How to use: Choose stateless implementations whenever
possible. If stateful implementations are warranted for business
reasons, refer to Rules 41 and 42.
Why: The implementation of state limits scalability and increases
cost.
Risk reduction: H

236 Chapter 13 Rule Review and Prioritization

Cost: H
Benefit and priority: Medium - 3
Key takeaways: Always push back on the need for state in any
system. Use business metrics and multivariate (or A/B) testing to
determine whether state in an application truly results in the
expected user behavior and business value.

Rule 41—Maintain Sessions in the Browser
When Possible
What: Try to avoid session data completely, but when needed,
consider putting the data in users’ browsers.
When to use: Anytime that you need session data for the best
user experience.
How to use: Use cookies to store session data on the users’
browsers.
Why: Keeping session data on the users’ browsers allows the
user request to be served by any Web server in the pool and
takes the storage requirement away from your system.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Using cookies to store session data is a com-
mon approach and has advantages in terms of ease of scale but
also has some drawbacks. One of the most critical cons is that
unsecured cookies can easily be captured and used to log into
people’s accounts.

Rule 42—Make Use of a Distributed Cache for
States
What: Use a distributed cache when storing session data in your
system.
When to use: Anytime you need to store session data and
cannot do so in users’ browsers.
How to use: Watch for some common mistakes such as a
session management system that requires affinity of a user to a
Web server.
Why: Careful consideration of how to store session data can
help ensure your system will continue to scale.

237A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Many Web servers or languages offer simple
server-based session management, but these are often fraught
with problems such as user affiliation with specific servers.
Implementing a distributed cache will allow you to store session
data in your system and continue to scale.

Rule 43—Communicate Asynchronously As
Much As Possible
What: Use asynchronous instead of synchronous
communication as often as possible.
When to use: Consider for all calls between services and tiers.
How to use: Use language-specific calls to ensure the requests
are made and not waited on.
Why: Synchronous calls stop the entire program’s execution
waiting for a response, which ties all the services and tiers
together resulting in cascading failures.
Risk reduction: H
Cost: M
Benefit and priority: High - 2
Key takeaways: Use asynchronous communication techniques
to ensure that each service and tier is as independent as possible.
This allows the system to scale much farther than if all
components are closely coupled together.

Rule 44—Ensure Your Message Bus Can Scale
What: Message buses can fail from demand like any other
physical or logical system.They need to be scaled.
When to use: Anytime a message bus is part of your
architecture.
How to use: Employ the Y and Z AKF axes of scale.
Why: To ensure your bus scales to demand.
Risk reduction: H
Cost: M
Benefit and priority: High - 2

238 Chapter 13 Rule Review and Prioritization

Key takeaways: Treat message buses like any other critical
component of your system. Scale them ahead of demand using
either the Y or Z axes of scale.

Rule 45—Avoid Overcrowding Your
Message Bus
What: Limit bus traffic to items of higher value than the cost to
handle them.
When to use: On any message bus.
How to use: Value and cost justify message traffic. Eliminate
low value, high cost traffic. Sample low value/low cost and high
value/high cost traffic to reduce the cost.
Why: Message traffic isn’t “free” and presents costly demand on
your system.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Don’t publish everything. Sample traffic to
ensure alignment between cost and value.

Rule 46—Be Wary of Scaling Through Third
Parties
What: Scale your own system; don’t rely on vendor solutions to
achieve scalability.
When to use: When considering whether to use a new feature
or product from a vendor.
How to use: Rely on the rules of this book for understanding
how to scale and use vendor provided products and services in
the most simplistic manner possible.
Why: Three reasons for following this rule: Own your destiny,
keep your architecture simple, and reduce your total cost of
ownership.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1

239A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Key takeaways: Do not rely on vendor products, services, or
features to scale your system. Keep your architecture simple, keep
your destiny in your own hands, and keep your costs in control.
All three of these can be violated by using a vendor’s proprietary
scaling solution.

Rule 47—Purge, Archive, and Cost-Justify
Storage
What: Match storage cost to data value, including removing
data of value lower than the costs to store it.
When to use: Apply to data and its underlying storage
infrastructure during design discussions and throughout the
lifecycle of the data in question.
How to use: Apply recency, frequency, and monetization
analysis to determine the value of the data. Match storage costs
to data value.
Why: Not all data is created equal (that is, of the same value)
and in fact it often changes in value over time.Why then should
we have a single storage solution with equivalent cost for that
data?
Risk reduction: M
Cost: M
Benefit and priority: Medium - 3
Key takeaways: It is important to understand and calculate the
value of your data and to match storage costs to that value.
Don’t pay for data that doesn’t have a stakeholder return.

Rule 48—Remove Business Intelligence from
Transaction Processing
What: Separate business systems from product systems and
product intelligence from database systems.
When to use: Anytime you are considering internal company
needs and data transfer within, to, or from your product.
How to use: Remove stored procedures from the database and
put them in your application logic. Do not make synchronous
calls between corporate and product systems.

240 Chapter 13 Rule Review and Prioritization

Why: Putting application logic in databases is costly and
represents scale challenges.Tying corporate systems and product
systems together is also costly and represents similar scale
challenges as well as availability concerns.
Risk reduction: H
Cost: M
Benefit and priority: High - 2
Key takeaways: Databases and internal corporate systems
can be costly to scale due to license and unique system
characteristics.As such, we want them dedicated to their
specific tasks. In the cases of databases, we want them focused
on transactions rather than product intelligence. In the case of
back office systems (business intelligence), we do not want our
product tied to their capabilities to scale. Use asynchronous
transfer of data for business systems.

Rule 49—Design Your Application to Be
Monitored
What: Think about how you will need to monitor your
application as you are designing it.
When to use: Anytime you are adding or changing modules of
your code base.
How to use: Build hooks into your system to record
transaction times.
Why: Having insight into how your application is performing
will help answer many questions when there is a problem.
Risk reduction: M
Cost: L
Benefit and priority: High - 2
Key takeaways: Adopt as an architectural principle that your
application must be monitored.Additionally, look at your overall
monitoring strategy to make sure you are first answering the
question of “Is there a problem?” and then the “Where” and
“What.”

241A Risk–Benefit Model for Evaluating Scalability Projects
and Initiatives

Rule 50—Be Competent
What: Be competent, or buy competency in/for each
component of your architecture.
When to use: For any Internet service or commerce solution.
How to use: For each component of your infrastructure,
identify the team responsible and level of competency with that
component.
Why: To a customer, every problem is your problem.You can’t
blame suppliers or providers.You provide a service—not
software.
Risk reduction: H
Cost: L
Benefit and priority: Very High - 1
Key takeaways: Don’t confuse competence with build versus
buy or core versus context decisions.You can buy solutions and
still be competent in their deployment and maintenance. In fact,
your customers demand that you do so.

A Benefit/Priority Ranking of the
Scalability Rules
As you would expect the distribution of rules is fairly normal
but shifted toward the high end of benefit and priority.There are
of course no rules that were ranked Very Low since they would
not have made the cut for inclusion in the list.The following
sections group the 50 rules by Benefit/Priority for ease of
reference.

Very High – 1
Rule 19 Relax Temporal Constraints

Rule 25 Make Use of Object Caches

Rule 29 Failing to Design for Rollback Is Designing for
Failure

Rule 30 Discuss and Learn from Failures

Rule 32 Use the Right Type of Database Lock

Rule 35 Don’t Select Everything

Rule 46 Be Wary of Scaling Through Third Parties

Rule 50 Be Competent

242 Chapter 13 Rule Review and Prioritization

High – 2
Rule 1 Don’t Overengineer the Solution

Rule 7 Design to Clone Things (X Axis)

Rule 10 Design Your Solution to Scale Out—Not Just Up

Rule 11 Use Commodity Systems (Goldfish Not
Thoroughbreds)

Rule 14 Use Databases Appropriately

Rule 15 Firewalls, Firewalls, Everywhere!

Rule 22 Cache Ajax Calls

Rule 26 Put Object Caches on Their Own “Tier”

Rule 27 Learn Aggressively

Rule 28 Don’t Rely on QA to Find Mistakes

Rule 33 Pass on Using Multiphase Commits

Rule 34 Try Not to Use “Select For Update”

Rule 37 Never Trust Single Points of Failure

Rule 41 Maintain Sessions in the Browser When Possible

Rule 42 Make Use of a Distributed Cache for States

Rule 43 Communicate Asynchronously As Much As
Possible

Rule 44 Ensure Your Message Bus Can Scale

Rule 45 Avoid Overcrowding Your Message Bus

Rule 48 Remove Business Intelligence from Transaction
Processing

Rule 49 Design Your Application to Be Monitored

Medium – 3
Rule 2 Design Scale into the Solution (D-I-D Process)

Rule 3 Simplify the Solution 3 Times Over

Rule 4 Reduce DNS Lookups

Rule 5 Reduce Objects Where Possible

Rule 6 Use Homogenous Networks

Rule 8 Design to Split Different Things (Y Axis)

Rule 9 Design to Split Similar Things (Z Axis)

Rule 12 Scale Out Your Data Centers

Rule 16 Actively Use Log Files

243A Benefit/Priority Ranking of the Scalability Rules

Rule 18 Stop Redirecting Traffic

Rule 20 Leverage CDNs

Rule 21 Use Expires Headers

Rule 23 Leverage Page Caches

Rule 24 Utilize Application Caches

Rule 31 Be Aware of Costly Relationships

Rule 36 Design Using Fault Isolative “Swimlanes”

Rule 38 Avoid Putting Systems in Series

Rule 40 Strive for Statelessness

Rule 47 Purge, Archive, and Cost-Justify Storage

Low – 4
Rule 13 Design to Leverage the Cloud

Rule 17 Don’t Check Your Work

Rule 39 Ensure You Can Wire On and Off Functions

Very Low – 5
N/A

Summary
This chapter was a summary of the 50 rules in this book.
Additionally we provided a method by which these rules can
be prioritized for a generic Web-based business looking to
re-architect its platform in an evolutionary fashion.The
prioritization does not mean as much for a business just
starting to build its product or platform because it is much
easier to build in many of these rules at relatively low cost
when you are building something from scratch.

As with any rule there are exceptions, and not all of these
rules will apply to your specific technology endeavors. For
instance, you may not employ traditional relational databases in
which case our database rules will not apply to you. In some
cases, it does not make sense to implement or employ a rule due
to cost constraints and the uncertainty of your business.After all,

244 Chapter 13 Rule Review and Prioritization

as many of our rules imply, you don’t want to overcomplicate
your solution, and you want to incur costs at an appropriate time
so as to maintain profitability. Rule 2 is a recognition of this
need to scale cost effectively; where you can’t afford the time or
money to implement a solution today, at least spend some
amount of comparatively cheap time deciding how the solution
will look when you do implement it. One example might be to
wait to implement a scalable (fault isolated and Y or Z axis
scaled) message bus. If you don’t implement the solution in code
and systems infrastructure, you should at least discuss how you
will make such an implementation in the future if your business
becomes successful.

Similarly there are exceptions with our method of
prioritizing these rules.We have applied a repeatable model that
encapsulates our collective learning across many companies.
Because the result is, in a fashion, an average, it is subject to the
same problem as all averages: In attempting to describe an entire
population it is going to be wrong for many specific data points.
Feel free to modify our mechanism to fit your specific needs.

A great use for this chapter is to select a number of rules that
fit your specific needs and codify them as architectural principles
within your organization. Use these principles as the standards
employed within software and infrastructure reviews.The exit
criteria for these meetings can be complete adherence to the
set of rules that you develop.Architectural reviews and joint
architectural development sessions can similarly employ these
rules to ensure adherence to principles of scalability and
availability.

Whether your system is still in the design phase on the
whiteboard or ten years old with millions of lines of code, incor-
porating these rules into your architecture will help improve its
scalability. If you’re an engineer or an architect, make use of
these rules in your designs. If you are a manager or an executive,
share these rules with your teams.We wish you the best of luck
with all your scalability projects.

245Summary

This page intentionally left blank

Index

Symbols/Numbers
* wildcard (SELECT statement),

142-144, 234

2PC (two-phase commit), 138-139

37signals, 10

3PC (three-phase commit), 138

80-20 rule, 10

300 Multiple Choices status
code, 77

301 Moved Permanently status
code, 77

302 Found status code, 77

303 See Other status code, 77

304 Not Modified status code, 77

305 Use Proxy status code, 78

306 (Unused) status code, 78

307 Temporary Redirect status
code, 78

A
ACID properties, 26, 54, 129-130

actions, identifying, 126

aggregating log files, 66-67

“Ajax: A New Approach to Web
Applications” (Garrett), 96

Ajax (Asynchronous JavaScript and
XML), 95-100, 228

AKF Partners’ D-I-D (Design-
Implement-Deploy) approach,
218

deployment, 8-9

design, 7

explained, 6-7

implementation, 8

AKF Scale Cube

explained, 24

illustrated, 24-25

message buses, 185, 188

RFM (recency, frequency, and
monetization) analysis, 198

X axis splits, 25-29, 220

Y axis splits, 29-31, 221

Z axis splits, 32, 222

Apache

Hadoop, 59

log files, 66

mod_alias module, 79

mod_expires module, 93

mod_rewrite module, 80

OJB, 108

application caches, 103-107, 229

applications, monitoring,
204-208, 241

archiving, 196-200, 240

The Art of Scalability, 23

asterisk (*) wildcard,
142-144, 234

asynchronous communication,
179-180

advantages of, 180

and fault isolation swimlanes,
152-154

asynchronous completion, 76

message buses

overcrowding, 188-190, 239

scaling, 183, 186, 238

Asynchronous JavaScript and XML
(Ajax), 95-100, 228

atomicity, 26

automatic markdowns, 164

avoiding overengineering, 2-5, 218

248 AKF Partners’ D-I-D (Design-Implement-Deploy) approach

B
backbones, 88

BASE (Basically Available, Soft
State, and Eventually Consistent)
architecture, 83

BigTable, 56

Boyce-Codd normal form, 132

browsers, maintaining session data
in, 171-173, 237

business intelligence, removing
from transaction processing,
201-204, 240

business operations, learning
from, 116

C
cache misses, 102

Cache-Control headers, 92-93, 98

caching, 87-88

Ajax calls, 95-100, 228

application caches, 103-107, 229

cache misses, 102

CDNs (content delivery
networks), 88-90, 227

distributed cache, 173-176, 237

Expires headers, 91-95, 228

Last-Modified headers, 98

object caches, 107-111, 229-230

page caches, 100-103, 228

Cagan, Marty, 10

Cassandra, 56

CDNs (content delivery networks),
88-90, 227

Ceph, 55

checking work, avoiding,
72-76, 226

circuits

in parallel, 160

in series, 158-159

clauses, FOR UPDATE,
140-142, 234

cloning, 25-29, 220

cloud computing, 48-50, 224

clusters, 148-149, 195

Codd, Edgar F., 26, 54

commands, header(), 93

commodity systems, 39-42, 223

communication. See asynchronous
communication

competence, 208-210, 242

competitive differentiation, 75

complexity

avoiding, 2-5, 218

reducing, 9-10, 219

design, 11

implementation, 12

scope, 10-11

config file markdowns, 164

consistency, 26

Constraint Satisfaction Problems
(CSP), 82

constraints, temporal, 81-84, 227

content delivery networks (CDNs),
88-90, 227

Cost-Value Data Dilemma, 61

CouchDB, 57

Craigslist, 170

CSP (Constraint Satisfaction
Problems), 82

customers, learning from, 115-116

D
D-I-D (Design-Implement-Deploy)

approach, 218

deployment, 8-9

design, 7

explained, 6-7

implementation, 8

data centers, scaling out,
42-47, 223

249design

data definition language
(DDL), 131

databases

ACID properties, 129-130

alternatives to, 55-61

cloning and replication,
25-29, 220

clustering, 195

entities, 131

locks, 134-137, 233

markdowns, 165

multiphase commits, 137-139, 233

normal forms, 132

normalization, 131

optimizers, 136

relationships, 130-133, 232

SELECT statement

FOR UPDATE clause,
140-142, 234

* wildcard, 142-144, 234

when to use, 54-61, 224

dbquery function, 109

DDL (data definition
language), 131

decision flowchart for
implementing state, 168

deployment, 8-9

design

D-I-D (Design-Implement-
Deploy) approach, 7

designing for fault tolerance

series, 158-162, 235

SPOFs (single points of
failure), 155-157, 235

swimlanes (fault isolation),
148-154, 234

Wire On/Wire Off
frameworks, 162-163,
166, 236

rollback, 120-123, 231

scaling out, 36-39, 222

simplifying, 11

Design-Implement-Deploy (D-I-D)
approach, 6-9

directives, 92

disabling services, 163, 166

distributed cache, 173-176, 237

distributing work

cloning and replication,
25-29, 220

explained, 23-24

separating functionality or
services, 29-31, 221

splitting similar data sets across
storage and application systems,
32-34, 222

DNS lookups, reducing number of,
12-14, 219

document stores, 57

duplicated work, avoiding, 71

avoiding checking work,
72-76, 226

avoiding redirects, 76-81, 226

relaxing temporal constraints,
81-84, 227

duplication of services/databases,
25-29, 220

durability, 26

E
eBay, 170

edge servers, 88

enabling services, 163, 166

enterprise service buses.
See message buses

entities, 131

ERDs (entity relationship
diagrams), 131

errors in log files, 68

ETag headers, 102-103

Expires headers, 91-95, 98, 228

ExpiresActive module, 93

explicit locks, 135

250 Design-Implement-Deploy approach

extensible record stores, 56

extent locks, 135

F
failures, learning from

designing for rollback,
120-123, 231

importance of, 113-116, 230

postmortem process, 123-127, 232

QA (quality assurance),
117-120, 231

SPOFs (single points of failure),
155-157, 235

fault isolation (swimlanes), 26,
148-154, 234

fault tolerance

series, 158-162, 235

SPOFs (single points of failure),
155-157, 235

swimlanes (fault isolation),
148-154, 234

Wire On/Wire Off frameworks,
162-166, 236

fifth normal form, 132

file markdowns, 165

file systems, 55

files, log files, 66-68, 225

aggregating, 66-67

errors in, 68

monitoring, 67

Firesheep, 172

firewalls, 62-65, 225

first normal form, 132

flexibility, 57-58

focus groups, 115

FOR UPDATE clause (SELECT
statement), 140-142, 234

foreign keys, 26

fourth normal form, 132

frequency, 198

functionality, separating,
29-31, 221

functions

dbquery, 109

setcookie, 172

G
Garrett, Jesse James, 96

GFS (Google File System), 55

Google

BigTable, 56

GFS (Google File System), 55

MapReduce, 59

H
Hadoop, 59

header() command, 93

headers

Cache-Control, 92-93, 98

ETag, 102-103

Expires, 91-95, 98, 228

Last-Modified, 98

High Reliability Organizations, 124

homogenous networks, 19-20, 220

horizontal scale, 25-29, 220. See
also scaling out

HTML meta tags, 91

HTTP (Hypertext Transfer
Protocol), 77

headers, 91

Cache-Control, 92-93, 98

ETag, 102-103

Expires, 91-95, 98, 228

Last-Modified, 98

keep-alives, 93

status codes, 77-78

251log files

I
implementation

D-I-D (Design-Implement-
Deploy) approach, 8

simplifying, 12

implicit locks, 134

International Obfuscated C Code
Contest, 5

isolating faults, 26, 148-154, 234

issue identification
(postmortems), 125

J-K
java.util.logging, 66

JIT (Just In Time) Scalability, D-I-D
approach, 218

deployment, 8-9

design, 7

explained, 6-7

implementation, 8

keep-alives, 93

key-value stores, 56

L
LaPorte, Todd, 124

Last-Modified headers, 98

learning from mistakes

designing for rollback,
120-123, 231

importance of, 113-116, 230

postmortem process, 123-127, 232

QA (quality assurance),
117-120, 231

legal requirements, 75

locks (database), 134-137, 233

log files, 66-68, 225

aggregating, 66-67

errors in, 68

monitoring, 67

Log4j logs, 66

lookups (DNS), reducing number
of, 12-14, 219

M
MapReduce, 59

Mark Up/Mark Down functionality,
163, 166

Maslow’s hammer, 53

Maslow, Abraham, 53

master-slave relationship, 28

max-age directive, 92

mean time to failure (MTTF), 73

Memcached, 56, 108

memory caching. See caching

message buses

overcrowding, 188-190, 239

scaling, 183, 186, 238

meta tags, 91

minimum viable product, 10

mistakes, learning from

designing for rollback,
120-123, 231

importance of, 113-116, 230

postmortem process, 123-127, 232

QA (quality assurance),
117-120, 231

mod_alias module, 79

mod_expires module, 93

mod_rewrite module, 80

MogileFS, 55

monetization, 198

monitoring, 67, 204-208, 241

Moore’s Law, 39

Moore, Gordon, 39

MTTF (mean time to failure), 73

multiphase commits,
137-139, 233

multiple live sites, 47-48

multiplicity effect, 161

252 Log4j logs

N
NCache, 108

networks

CDNs (content delivery
networks), 88-90, 227

homogenous networks, 19-20, 220

no-cache directive, 92

nodes, 88

Normal Accident Theory, 124

normal forms, 132

normalization, 131

NoSQL, 56

O
object caches, 107-111, 229-230

objects

object caches, 107-111, 229

reducing number of, 16-19, 220

XMLHttpRequest, 96

OJB, 108

OLTP (On Line Transactional
Processing), 26, 54

on-demand enabling/disabling of
services, 163, 166

optimizers, 136

overcrowding message buses,
188-191, 239

overengineering, avoiding, 2-5, 218

P
page caches, 100-103, 228

page locks, 135

Pareto Principle, 10

Perrow, Charles, 124

PNUTS, 57

pods, 32-34, 148-149

pools, 148-149

postmortem process,
123-127, 232

PRG (Post/Redirect/Get), 77

private directive, 92

public directive, 92

purging storage, 196-200, 240

Q-R
QA (quality assurance),

117-120, 231

RDBMSs (Relational Database
Management Systems), 26

alternatives to, 55-61

when to use, 54-61, 224

recency, frequency, and monetiza-
tion (RFM) analysis, 197-200

redirects, avoiding, 76-81, 226

reducing

complexity, 9-10, 219

design, 11

implementation, 12

scope, 10-11

DNS lookups, 12-14, 219

objects, 16-19, 220

regulatory requirements, 75

Reis, Eric, 10

Relational Database Management
Systems. See RDBMSs

“A Relational Model of Data for
Large Shared Data Banks”
(Codd), 26, 54

relationships, 57-58, 130-133, 232

relaxing temporal constraints,
81-84, 227

replication of services/databases,
25-29, 220

reverse proxy cache, 101, 103

reverse proxy servers, 101, 103

RFM (recency, frequency, and mon-
etization) analysis, 197-200

253servers

risk management

firewalls, 62-65, 225

risk-benefit model, 213-218

rolling back code, 120-123, 231

row locks, 135

runtime variables, 165

S
Saas (Software as a Service)

solution, 13

scaling out, 222

cloud computing, 48-50, 224

commodity systems, 39-42, 223

data centers, 42-47, 223

defined, 36

design, 36-39, 222

multiple live sites, 47-48

scaling up, 36

scope

scope creep, 3

simplifying, 10-11

second normal form, 132

Secure Socket Layer (SSL), 173

security

firewalls, 62-65, 225

sidejacking, 172

SSL (Secure Socket Layer), 173

SELECT statement

* wildcard, 142-144, 234

FOR UPDATE clause,
140-142, 234

separating functionality or
services, 29-31, 221

series, 158-162, 235

servers

edge servers, 88

page caches, 100-103, 228

services

cloning and replication,
25-29, 220

enabling/disabling on demand,
163, 166

scale through, 32-34, 222

separating, 29-31, 221

session data, maintaining in
browser, 171-173, 237

setcookie function, 172

shards, 32-34, 148-149

sidejacking, 172

simple solutions, 9-10, 219

design, 11

implementation, 12

importance of, 2-5, 218

scope, 10-11

SimpleDB, 57

single points of failure (SPOFs),
155-157, 235

singleton antipattern, 155

singletons, 155

sixth normal form, 132

social construction, 115

social contagion, 114

Software as a Service (SaaS)
solution, 13

solutions

importance of simple solutions,
2-5, 218

overengineering, 2-5, 218

simplifying, 9-10, 219

design, 11

implementation, 12

scope, 10-11

spinning up, 49

splits

of message bus, 183-188, 238

of similar data sets across
storage and application systems,
32-34, 222

254 services

X axis splits (AKF Scale Cube),
25-29, 220

Y axis splits (AKF Scale Cube),
29-31, 221

Z axis splits (AKF Scale Cube),
32-34, 222

SPOFs (single points of failure),
155-157, 235

SSL (Secure Socket Layer), 173

stand-in services, 164

state, 167-168

decision flowchart for
implementing state, 168

distributed cache, 173-176, 237

session data, maintaining in
browser, 171-173, 237

statelessness, 168-171, 236

statelessness, 43, 168-171, 236

statements, SELECT

* wildcard, 142-144, 234

FOR UPDATE clause,
140-142, 234

status codes (HTTP), 77-78

storage

archiving, 196-200, 240

databases. See databases

document stores, 57

extensible record stores, 56

file systems, 55

Hadoop, 59

key-value stores, 56

MapReduce, 59

NoSQL, 56

purging, 196-200, 240

RFM (recency, frequency, and
monetization) analysis, 197-200

scalability versus flexibility, 57-58

swimlanes (fault isolation),
148-154, 234

synchronous markdown
commands, 164

SystemErr logs, 66

SystemOut logs, 66

T
table locks, 135

tags, meta tags, 91

TCSP (Temporal Constraint
Satisfaction Problem), 82

temporal constraints, relaxing,
81-84, 227

third normal form, 26, 132

third-party scaling products, 193,
195-196, 239

Three Mile Island nuclear
accident, 124

three-phase commit (3PC), 138

timelines, 125

Tokyo Tyrant, 56

Tomcat log files, 66

traffic redirection, avoiding,
76-81, 226

transactions

multiphase commits, 137-139, 233

removing business intelligence
from transaction processing,
201-204, 240

two-phase commit (2PC), 138-139

U-V
usefulness, 2

vendor scaling products,
193-196, 239

viral growth, 114

virtualization, 41, 154

Voldemort, 56

255Z axis splits

W
webpagetest.org, 94

Websphere log files, 66

wildcards, * (asterisk),
142-144, 234

Wire On/Wire Off frameworks,
162-163, 166, 236

work distribution

cloning and replication,
25-29, 220

explained, 23-24

separating functionality or
services, 29-31, 221

splitting similar data sets across
storage and application systems,
32-34, 222

X-Y-Z
X axis splits (AKF Scale Cube),

25-29, 220

XMLHttpRequest object, 96

Y axis splits (AKF Scale Cube),
29-31, 221

Z axis splits (AKF Scale Cube),
32-34, 222

Your purchase of Scalability Rules includes access to a free online
edition for 45 days through the Safari Books Online subscription
service. Nearly every Addison-Wesley Professional book is available
online through Safari Books Online, along with more than 5,000 other
technical books and videos from publishers such as Cisco Press,
Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer,
cut and paste code, download chapters, and stay current with
emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: HNMNVFA.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing
the online edition, please e-mail customer-service@
safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Contents
	Preface
	Acknowledgments
	About the Authors
	1 Reduce the Equation
	2 Distribute Your Work
	3 Design to Scale Out Horizontally
	4 Use the Right Tools
	5 Don’t Duplicate Your Work
	6 Use Caching Aggressively
	7 Learn from Your Mistakes
	8 Database Rules
	9 Design for Fault Tolerance and Graceful Failure
	10 Avoid or Distribute State
	11 Asynchronous Communication and Message Buses
	12 Miscellaneous Rules
	13 Rule Review and Prioritization
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V
	W
	X-Y-Z

