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7 Introduction 7

In this volume we meet the major discovering players in 
the recorded history of algebra and trigonometry. We 

also fi nd detail that leads to revealing concepts, applications, 
connective strands, and explanations to enhance our 
understanding of what modern-day students affection-
ately refer to as algebra and trig. What is not lost are the 
human attributes of those who make great discoveries. 
The math, while consisting of incredible ingenuity in 
itself, has come from innovators who had stories of their 
own, people who dealt simultaneously with the same 
common mix that all humans share—desires, fears, pro-
found joy, heartbreak, and agony—all delivered by life and 
carried to our work.

When the layers of mathematical discovery are peeled 
back, the fruit is sweet, though that conclusion might be 
debated by some. Math is not an easy pursuit, and so some 
are fascinated while others dread and even hate it.

Given the diffi culties in learning about algebra and 
trigonometry, perhaps we might stand back in awe when 
we consider that some people actually originated these 
ideas, creating them from whole cloth—a daunting con-
sideration when most of us have found diffi culties with 
math even when shown the way. Somebody at one point 
said, for instance: Oh yes, here’s a way to better investigate 
the problems of three-dimensional geometry. A question 
we mortals might ask is: What kind of person would do 
this? Adults? Children? Men? Women? Where would this 
person have come from? Europe? The Middle East? Asia?

The answer is, all of the above, and more. 
Let’s fi rst consider a child learning Latin, Greek, and 

Hebrew by the age of fi ve. That would be William Rowan 
Hamilton (1805–1865) of Ireland. Before he was 12, he had 
tacked on Arabic, Sanskrit, Persian, Syriac, French, and 
Italian. But that’s language; what about algebra? Hamilton 
was reading Bartholomew Lloyd (analytic geometry), 
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Euclid (Euclidean geometry, of course), Isaac Newton, 
Pierre-Simon Laplace, Joseph-Louis Lagrange, and more 
by the time he was 16.

With hefty youthful pursuits such as Hamilton’s, we 
can suspect that mental groundwork was being laid for 
notable achievement. The crescendo was actually reached 
for Hamilton suddenly. He was walking with his wife 
beside the Royal Canal to Dublin in 1843 when a grand 
thought occurred. We can only imagine the conversation 
on the path: “Dear, I just suddenly realized that the solu-
tion lies not in triplets but quadruplets, which could 
produce a noncommutative four-dimensional algebra.”

“William, are you hallucinating?”
“We could call them quaternions.”
Hamilton actually did engage in a similar dialogue with 

his wife, and they finished that walk but not before paus-
ing at the bridge over the canal. There, Hamilton carved 
fundamentals of his discovery into the stone of the bridge. 
He spent the next 22 years on quaternion theory. His 
work further advanced algebra, dynamics, optics, and 
quantum mechanics. Notable among his achievements 
were his abilities in the languages of the world and his 
penchant for throwing those energetic years filled with 
that tireless strength called youth into mathematics that 
might later change the world. 

Hamilton had to be thankful to some people when he 
reached his innovations. Though undoubtedly a mathe-
matical genius, he hadn’t started from scratch. At least he 
had the letters x, y, and z at his disposal when working out 
equations; not every mathematician since antiquity has had 
the luxury of math symbols. And for that matter, Hamilton 
had equations. Further, with his uncommon linguistic 
skills, he understood the languages of many other mathe-
maticians. Hamilton had a structured algebraic system at 
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his disposal that allowed him to work furiously at, for lack 
of a better expression, the guts of his math. What he took 
for granted, for example, were symbols in math at his 
fingertips, for where would algebra be without the x? 

Actually, the x had been missing from math solutions 
for thousands of years.

The earliest texts (c. 1650 BCE) were in the Egyptian 
Rhind Papyrus scroll. There we find linear equations 
solved but without much use of symbols—it’s all words. 
For example, take this problem from the Rhind Papyrus, 
also found later in the body of this volume:

• Method of calculating a quantity, multiplied by 
11/2 added 4 it has come to 10. 

• What is the quantity that says it? 
• First you calculate the difference of this 10 to 

this 4. Then 6 results.
• Then you divide 1 by 1 1/2. Then 2/3 results. 
• Then you calculate 2/3 of this 6. Then 4 results. 
• Behold, it is 4, the quantity that said it. 
• What has been found by you is correct.

If Sir William Rowan Hamilton were doing this problem, 
instead of writing the eight lines of verbiage and numbers 
above, he would have preferred the crisp:

11/2x + 4 = 10

Then he would have solved that equation in a flash, as 
would most sixth- or seventh-grade math students today.

Verbal problems have traditionally made even capable 
algebra students squirm, but verbal solutions on top of the 
verbal problem? Especially when the teacher says, “And 
write down every step.” One can hear the classroom full of 
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groans. Not only was the solution so protracted in antiq-
uity as to turn a rather simple modern-day math problem 
into a bear, the ancient numbers themselves were not so 
easy to tackle. For instance, in the Rhind Papyrus problem 
above, although a special case symbol existed for the frac-
tion 2/3, the Egyptians wrote all other fractions with only 
unit fractions, where the numerator must be 1. In other 
words, to write 3/4 the sum they wrote 1/2 + 1/4 instead.

We can see then why mathematical progress did not 
fly quickly when newly emerging from the cocoon; the 
tools of math simply were not there. Of course, what was 
required for full flight was the emergence of symbols and 
streamlined numbers. 

But somebody first had to create them. Too late for the 
Rhind Papyrus scrolls, but in plenty of time for Hamilton, 
the Abacists gave introductory symbol usage a nudge. 

Leonardo Pisano (better known as Fibonacci) in 1202 
CE wrote The Book of Abacus, which communicated the 
sleek and manageable Hindu-Arabic numerals to a broader 
and receptive audience in the Latin world. This New Math 
of Italy gave merchants numbers and techniques that 
could be quickly used in calculating deals. What Pisano 
had bridged was the communication gap of different lan-
guages that had kept hidden useful math innovation. 

Pisano’s revelation of the Islamic numbers led to the 
Abacist school of thought, through which symbol use 
grew. Not only was equation solving enhanced, but the 
manageable numbers allowed higher math thought to 
emerge. Eventually negative numbers, complex numbers, 
and the great innovations that culminated in our modern 
technology followed. 

Let’s again step back to antiquity. As Pythagoras (c. 450 
BCE) had neither letter symbols nor Arabic numerals, and 
was not privy to the algebraic structure to come—spurred 
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much later greatly by his own contribution—he never saw 
his own equation regarding the sides and the hypotenuse 
of a right triangle, an equation known by heart to any 
middle-school student of the modern world, namely, c2 = a2 
+ b2 (at least not in that form). One can only imagine 
Pythagoras’s wonderment upon sitting down today before 
a calculator or a computer. His needs were simpler. In real-
ity he probably would have given his left arm simply for 
the numbers, letters, symbols, and equation representa-
tions that would emerge 2,000 years later as the Abacist 
school of thought grew.

Évariste Galois (1811–1832) might’ve given both arms 
for a photocopier. First, it’s worth mentioning his educa-
tion. His father entered him into the Collège Royal de 
Louis-le-Grand, where Galois found his teachers, frankly, 
boring. The fault might have been the teachers’, but it 
should also be noted that Galois was attempting to master 
the Collège Royal at the age of 11. Fortunately, he gained 
exposure to his fellow countrymen Lagrange and Legendre, 
whose brilliance he did not find mundane, and in 1829, at 
age 17, Galois submitted a memoir on the solvability of 
algebraic equations to the French Academy of Sciences. 
Here is where a photocopier might have prevented major 
angst. Galois’s paper was lost (ironically by Augustin-Louis 
Cauchy, a brilliant mathematician and major contributor 
to the algebra discipline himself). Galois seems to have 
been devastated at his lost paper. 

But he regrouped, and rewrote the paper from scratch, 
submitting it a year later, in 1830. This paper was lost, too, 
by Jean-Baptiste-Joseph Fourier, another brilliant contrib-
utor to the math world. He brought Galois’s paper home 
but then died. The paper was never found. Galois, now 
age 19, rewrote the paper a third time and submitted it 
again, in 1831. This time he got consideration from still 
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another brilliant pillar of math, Siméon-Denis Poisson. 
Unfortunately, Poisson rejected the paper and Galois’s 
ideas. Even more unfortunate was Poisson’s reason for the 
rejection. He thought it contained an error, but in fact, he 
was in error. Probably what contributed to the colossal 
oversight was Poisson’s inability to consider that a bril-
liant young mind, a mere kid, if you will, was introducing a 
whole new way of looking at the math.

Galois never knew of his own ultimate mathematical 
success. He died at age 20 from wounds suffered in a duel, 
unaware that his math would reshape the discipline of 
algebra. Galois’s manuscripts were finally published 15 
years later in the Journal de Mathématiques Pures et 
Appliquées, but not until 1870, 38 years after Galois’s death, 
would group theory become a fully established part of 
mathematics.

If clunky symbol use and multiple world languages 
resulted in sluggish though creative and ingenious algebra 
progress over time, we observe the same effects in trigo-
nometry, where angles, arcs, ratios, and algebra together 
form a math that helped shrink the oceans. Spherical trig-
onometry was most useful early for navigation, cartography, 
and astronomy and thus important for global trade. 

Early on, Hipparchus (190–120 BCE) was the first to 
construct a table of values of a trigonometric function. 
One must keep in mind that representations of those trig-
onometric functions were not yet appearing in the tight 
and uncomplicated symbols of modern times. The next 
major contributions to trigonometry would come from 
India and writing there called the Aryabhatiya, initiated a 
word that would undergo many translations and much 
later become very familiar. That word is “sine.” 

Most who have studied trigonometry, no matter how 
far removed from their schooling on the subject, can 
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probably still hear the teacher’s voice ringing in their 
memory from years past with mnemonic devices that 
might cement the sine, cosine, tangent, and ratios onto 
the student brain. For some, during the pressure-packed 
moments of a math examination, the ditty “Soh-Cah-Toa” 
has helped summon the memory that the sine was equal 
to the opposite side over the hypotenuse of a right triangle, 
from those clues an equation might spring up to solve a 
trigonometry problem. 

Again we find that language differences result in 
time needed for evolution. Take the word “sine,” the trigo-
nometry ratio and trigonometry function. Aryabhata (c. 
475–550 CE) coined ardha-jya (for “half-chord”), then 
turned it around to jya-ardha (“chord-half ”), which was 
shortened over time to jya or jiva. With Muslim scholars 
jiva became jaib because it was easier to pronounce. The 
Latin translation was sinus. From this the term sine evolved 
and was spread through European math literature proba-
bly around the 12 century. Sine’s abbreviation as sin was 
first used somewhat ironically by an English minister and 
cabinetmaker (Edmund Gunter, 1624). The other five trig-
onometric functions (cosine, tangent, cotangent, secant, 
and cosecant) followed shortly. But for sine to take about 
1,000 years to travel from India to Europe relates an 
achingly slow journey compared to what we might expect 
today with e-mail, text messaging, and digital informa-
tion spreading new ideas to hungry scholars by the 
nanosecond.

But good news was incapable of traveling fast in past 
centuries. The Alfonsine tables (based on the Ptolemac 
theory that the Earth was the centre of the universe) were 
prepared for King Alfonso of Spain in 1252. They were not 
widely known, but when a Latin version hit Paris some 80 
years later, they sold like hotcakes and provided the best 
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astronomical tables for two centuries. Copernicus learned 
from them and launched an improved work in the 1550s.

Around this time, algebra was spilling over into trigo-
nometry, thanks in major part to the work of three French 
mathematical geniuses: François Viète, Pierre de Fermat, 
and René Descartes. Analytic trigonometry would now 
take the nutrients of algebraic applications, table values, 
and trigonometric ideas and make that garden grow into 
the mathematical language that supports our scientific 
discoveries and shapes our modern world.

Now that language, communication, and instant 
information are readily available for our modern mathe-
maticians, the tools for new discovery in algebra and 
trigonometry hum, ready for action. What we know is 
that people will use those tools, but even modern-day 
people work while living their own lives. In the back of 
their minds, though, crackle the day-to-day of family 
problems, worries, fears, desires, love, absolute joy, and a 
plethora of other emotions. Mathematical discovery may 
happen faster but will nonetheless continue to be affected 
by what is in—and on—the mind of the innovator.
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CHAPTER 1
ALGEBRA

      Algebra is the branch of mathematics in which arith-
metical operations and formal manipulations are 

applied to abstract symbols, known as variables, rather 
than to specifi c numbers. Algebra is fundamental not only 
to all further mathematics and statistics but to the natural 
sciences, computer science, economics, and business. 
Along with writing, it is a cornerstone of modern scientifi c 
and technological civilization. Earlier civilizations—
Babylonian, Greek, Indian, Chinese, and Islamic—all 
contributed in important ways to the development of 
algebra. It was left for Renaissance Europe, though, to 
develop an effi cient system for representing all real 
numbers and a symbolism for representing unknowns, 
relations between them, and operations.   

 HISTORY OF ALGEBRA 

 The notion that there exists a distinct subdiscipline of math-
ematics that uses variables to stand for unspecifi ed numbers, 
as well as the term  algebra  to denote this subdiscipline, 
resulted from a slow historical development. This chapter 
presents that history, tracing the evolution over time of 
the concept of the equation, number systems, symbols for 
conveying and manipulating mathematical statements, 
and the modern abstract structural view of algebra.   

 The Emergence of Formal Equations 

 Perhaps the most basic notion in mathematics is the equa-
tion, a formal statement that two sides of a mathematical 
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expression are equal—as in the simple equation x + 3 = 5—
and that both sides of the equation can be simultaneously 
manipulated (by adding, dividing, taking roots, and so on to 
both sides) in order to “solve” the equation. Yet, as simple 
and natural as such a notion may appear today, its acceptance 
first required the development of numerous mathematical 
ideas, each of which took time to mature. In fact, it took 
until the late 16th century to consolidate the modern con-
cept of an equation as a single mathematical entity.

Three main threads in the process leading to this con-
solidation deserve special attention:
 

1. Attempts to solve equations involving one or 
more unknown quantities. In describing the 
early history of algebra, the word equation is 
frequently used out of convenience to describe 
these operations, although early mathematicians 
would not have been aware of such a concept.

2. The evolution of the notion of exactly what 
qualifies as a legitimate number. Over time this 
notion expanded to include broader domains 
(rational numbers, irrational numbers, negative 
numbers, and complex numbers) that were 
flexible enough to support the abstract 
structure of symbolic algebra.

3. The gradual refinement of a symbolic language 
suitable for devising and conveying generalized 
algorithms, or step-by-step procedures for 
solving entire categories of mathematical 
problems.

These three threads are traced in this chapter, particu-
larly as they developed in the ancient Middle East and 
Greece, the Islamic era, and the European Renaissance.
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Problem Solving in Egypt and Babylon

The earliest extant mathematical text from Egypt is the 
Rhind papyrus (c. 1650 BCE). It and other texts attest to 
the ability of the ancient Egyptians to solve linear equations 
in one unknown. A linear equation is a first-degree equation, 
or one in which all the variables are only to the first power. 
(In today’s notation, such an equation in one unknown 
would be 7x + 3x = 10.) Evidence from about 300 BCE indi-
cates that the Egyptians also knew how to solve problems 
involving a system of two equations in two unknown 
quantities, including quadratic (second-degree, or squared 
unknowns) equations. For example, given that the perim-
eter of a rectangular plot of land is 100 units and its area is 
600 square units, the ancient Egyptians could solve for 
the field’s length l and width w. (In modern notation, they 
could solve the pair of simultaneous equations 2w + 2l =100 
and wl = 600.) However, throughout this period there 

The Rhind papyrus, shown above, is an ancient Egyptian scroll bearing 
mathematical tables and problems. It reveals a great deal about Egyptian math-
ematics, such as the ancient Egyptians’ ability to solve linear equations. British 
Museum, London, UK/The Bridgeman Art Library/Getty Images
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was no use of symbols—problems were stated and solved 
verbally. The following problem is typical: 

• Method of calculating a quantity,
• multiplied by 11/2 added 4 it has come to 10.
• What is the quantity that says it?
• First, you calculate the difference of this 10 to 

this 4. Then, 6 results.
• Then, you divide 1 by 11/2. Then, 2/3 results.
• Then, you calculate 2/3 of this 6. Then, 4 results.
• Behold, it is 4, the quantity that said it.
• What has been found by you is correct.

Note that except for 2/3, for which a special symbol 
existed, the Egyptians expressed all fractional quantities 
using only unit fractions, that is, fractions bearing the 
numerator 1. For example, 3/4 would be written as 1/2 + 1/4.

Babylonian mathematics dates from as early as 1800 
BCE, as indicated by cuneiform texts preserved in clay tab-
lets. Babylonian arithmetic was based on a well-elaborated, 
positional sexagesimal system—that is, a system of base 
60, as opposed to the modern decimal system, which is 
based on units of 10. The Babylonians, however, made no 
consistent use of zero. A great deal of their mathematics 
consisted of tables, such as for multiplication, reciprocals, 
squares (but not cubes), and square and cube roots.

In addition to tables, many Babylonian tablets con-
tained problems that asked for the solution of some 
unknown number. Such problems explained a procedure 
to be followed for solving a specific problem, rather than 
proposing a general algorithm for solving similar problems. 
The starting point for a problem could be relations involv-
ing specific numbers and the unknown, or its square, or 
systems of such relations. The number sought could be 
the square root of a given number, the weight of a stone, or 
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the length of the side of a triangle. Many of the questions 
were phrased in terms of concrete situations—such as 
partitioning a field among three pairs of brothers under 
certain constraints. Still, their artificial character made it 
clear that they were constructed for didactical purposes.

Greece and the Limits of Geometric Expression

The Pythagoreans and Euclid

A major milestone of Greek mathematics was the discovery 
by the Pythagoreans around 430 BCE that not all lengths 
are commensurable, that is, measurable by a common 
unit. This surprising fact became clear while investigating 
what appeared to be the most elementary ratio between 
geometric magnitudes, namely, the ratio between the side 
and the diagonal of a square. The Pythagoreans knew that 
for a unit square (that is, a square whose sides have a length 
of 1), the length of the diagonal must be √2—owing to the 
Pythagorean theorem, which states that the square on the 
diagonal of a triangle must equal the sum of the squares on 
the other two sides (a2 + b2 = c2). The ratio between the two 
magnitudes thus deduced, 1 and √2, had the confounding 
property of not corresponding to the ratio of any two 
whole, or counting, numbers (1, 2, 3,. . .). This discovery of 
incommensurable quantities contradicted the basic meta-
physics of Pythagoreanism, which asserted that all of 
reality was based on the whole numbers.

Attempts to deal with incommensurables eventually 
led to the creation of an innovative concept of proportion 
by Eudoxus of Cnidus (c. 400–350 BCE), which Euclid 
preserved in his Elements (c. 300 BCE). The theory of 
proportions remained an important component of math-
ematics well into the 17th century, by allowing the 
comparison of ratios of pairs of magnitudes of the same 
kind. Greek proportions, however, were very different 
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from modern equalities, and no concept of equation could 
be based on it. For instance, a proportion could establish 
that the ratio between two line segments, say A and B, is 
the same as the ratio between two areas, say R and S. The 
Greeks would state this in strictly verbal fashion, since 
symbolic expressions, such as the much later A:B::R:S 
(read, A is to B as R is to S), did not appear in Greek texts. 
The theory of proportions enabled significant mathemat-
ical results, yet it could not lead to the kind of results 
derived with modern equations. Thus, from A:B::R:S 
the Greeks could deduce that (in modern terms) 
A + B:A − B::R + S:R − S, but they could not deduce in the 
same way that A:R::B:S. In fact, it did not even make sense 
to the Greeks to speak of a ratio between a line and an 
area since only like, or homogeneous, magnitudes were 
comparable. Their fundamental demand for homogeneity 
was strictly preserved in all Western mathematics until 
the 17th century.

When some of the Greek geometric constructions, 
such as those that appear in Euclid’s Elements, are suitably 
translated into modern algebraic language, they establish 
algebraic identities, solve quadratic equations, and pro-
duce related results. However, not only were symbols of 
this kind never used in classical Greek works, but such a 
translation would be completely alien to their spirit. 
Indeed, the Greeks not only lacked an abstract language 
for performing general symbolic manipulations, but they 
even lacked the concept of an equation to support such an 
algebraic interpretation of their geometric constructions.

For the classical Greeks, especially as shown in Books 
VII–XI of the Elements, a number was a collection of units, 
and hence they were limited to the counting numbers. 
Negative numbers were obviously out of this picture, and 
zero could not even start to be considered. In fact, even 
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the status of 1 was ambiguous in certain texts, since it did 
not really constitute a collection as stipulated by Euclid. 
Such a numerical limitation, coupled with the strong 
geometric orientation of Greek mathematics, slowed the 
development and full acceptance of more elaborate and 
flexible ideas of number in the West.

Diophantus

A somewhat different, and idiosyncratic, orientation to 
solving mathematical problems can be found in the work 
of a later Greek, Diophantus of Alexandria (fl. c. 250 CE), 
who developed original methods for solving problems 
that, in retrospect, may be seen as linear or quadratic 
equations. Yet even Diophantus, in line with the basic 
Greek conception of mathematics, considered only posi-
tive rational solutions; he called a problem “absurd” whose 
only solutions were negative numbers. Diophantus solved 
specific problems using ad hoc methods convenient for 
the problem at hand, but he did not provide general solu-
tions. The problems that he solved sometimes had more 
than one (and in some cases even infinitely many) solu-
tions, yet he always stopped after finding the first one. In 
problems involving quadratic equations, he never sug-
gested that such equations might have two solutions.

On the other hand, Diophantus was the first to intro-
duce some kind of systematic symbolism for polynomial 
equations. A polynomial equation is composed of a sum of 
terms, in which each term is the product of some constant 
and a nonnegative power of the variable or variables. 
Because of their great generality, polynomial equations can 
express a large proportion of the mathematical relationships 
that occur in nature—for example, problems involving 
area, volume, mixture, and motion. In modern notation, 
polynomial equations in one variable take the form
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anx
n + an-1x

n-1 + . . . + a2x
2 + a1x + a0 = 0,

where the ai are known as coefficients and the highest 
power of n is known as the degree of the equation (for 
example, 2 for a quadractic, 3 for a cubic, 4 for a quartic, 5 
for a quintic, and so on). Diophantus’s symbolism was a 
kind of shorthand, though, rather than a set of freely 
manipulable symbols. A typical case was:

ΔvΔβ-ζδ-Mβ- Kvβ-ᾱv–

(meaning: 2x4 − x3 − 3x2 + 4x + 2). Here M represents units, 
ζ the unknown quantity, Kν its square, and so forth. Since 
there were no negative coefficients, the terms that corre-
sponded to the unknown and its third power appeared to 
the right of the special symbol  . This symbol did not 
function like the equals sign of a modern equation, how-
ever. There was nothing like the idea of moving terms 
from one side of the symbol to the other. Also, since all of 
the Greek letters were used to represent specific numbers, 
there was no simple and unambiguous method of repre-
senting abstract coefficients in an equation.

A typical Diophantine problem would be: “Find two 
numbers such that each, after receiving from the other a 
given number, will bear to the remainder a given relation.” 
In modern terms, this problem would be stated (x + a)/
(y - a) = r, (y + b)/(x - b) = s.

Diophantus always worked with a single unknown 
quantity ζ. In order to solve this specific problem, he 
assumed as given certain values that allowed him a smooth 
solution: a = 30, r = 2, b = 50, s = 3. Now the two numbers 
sought were ζ + 30 (for y) and 2ζ − 30 (for x), so that the 
first ratio was an identity, 2ζ/ζ = 2, that was fulfilled for any 
nonzero value of ζ. For the modern reader, substituting 
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these values in the second ratio would result in (ζ + 80)
(2ζ − 80) = 3. By applying his solution techniques, 
Diophantus was led to z = 64. The two required numbers 
were therefore 98 and 94.

The Equation in India and China

Indian mathematicians, such as Brahmagupta (598–670 CE) 
and Bhaskara II (1114–1185 CE), developed nonsymbolic, 
yet very precise, procedures for solving first- and second-
degree equations and equations with more than one 
variable. However, the main contribution of Indian math-
ematicians was the elaboration of the decimal, positional 
numeral system. A full-fledged decimal, positional system 
certainly existed in India by the 9th century, yet many of 
its central ideas had been transmitted well before that 
time to China and the Islamic world. Indian arithmetic, 
moreover, developed consistent and correct rules for oper-
ating with positive and negative numbers and for treating 
zero like any other number, even in problematic contexts 
such as division. Several hundred years passed before 
European mathematicians fully integrated such ideas into 
the developing discipline of algebra.

Chinese mathematicians during the period parallel to 
the European Middle Ages developed their own methods 
for classifying and solving quadratic equations by radicals—
solutions that contain only combinations of the most 
tractable operations: addition, subtraction, multiplica-
tion, division, and taking roots. They were unsuccessful, 
however, in their attempts to obtain exact solutions to 
higher-degree equations. Instead, they developed approx-
imation methods of high accuracy, such as those 
described in Yang Hui’s Yang Hui suanfa (1275; “Yang Hui’s 
Mathematical Methods”). The calculational advantages 
afforded by their expertise with the abacus may help 
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explain why Chinese mathematicians gravitated to numer-
ical analysis methods.

Islamic Contributions

Islamic contributions to mathematics began around 825 
CE, when the Baghdad mathematician Muh. ammad ibn 
Mu-sa- al-Khwa- rizmı- wrote his famous treatise al-Kitab al-
mukhtasar fi hisab al-jabr wa’l-muqabala (translated into 
Latin in the 12th century as Algebra et Almucabal, from 
which the modern term algebra is derived).

By the end of the 9th century, a significant Greek math-
ematical corpus, including works of Euclid, Archimedes 
(c. 285–212/211 BCE), Apollonius of Perga (c. 262–190 BCE), 
Ptolemy (fl. 127–145 CE), and Diophantus, had been trans-
lated into Arabic. Similarly, ancient Babylonian and Indian 
mathematics, as well as more recent contributions by 
Jewish sages, were available to Islamic scholars. This 
unique background allowed the creation of a whole new 
kind of mathematics that was much more than a mere 
amalgamation of these earlier traditions. A systematic 
study of methods for solving quadratic equations consti-
tuted a central concern of Islamic mathematicians. A no 
less central contribution was related to the Islamic recep-
tion and transmission of ideas related to the Indian system 
of numeration, to which they added decimal fractions 
(fractions such as 0.125, or 1/8).

Al-Khwa- rizmı-’s algebraic work embodied much of 
what was central to Islamic contributions. He declared 
that his book was intended to be of “practical” value, yet 
this definition hardly applies to its contents. In the first 
part of his book, al-Khwa- rizmı- presented the procedures 
for solving six types of equations: squares equal roots, 
squares equal numbers, roots equal numbers, squares and 
roots equal numbers, squares and numbers equal roots, 
and roots and numbers equal squares. In modern 
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The frontispiece of Muh. ammad ibn Mu-sa- al-Khwa-rizmı-’s al-Kitab al-
mukhtasar fi hisab al-jabr wa’l-muqabala, a seminal work on algebra, 
which was also novel in its incorporation of Euclid ’s geometric concepts. The 
Bodleian Library, University of Oxford, MS. Huntington 214, title page
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notation, these equations would be stated ax2 = bx, ax2 = c, 
bx = c, ax2 + bx = c, ax2 + c = bx, and bx + c = ax2, respectively. 
Only positive numbers were considered legitimate coef-
ficients or solutions to equations. Moreover, neither 
symbolic representation nor abstract symbol manipulation 
appeared in these problems—even the quantities were 
written in words rather than in symbols. In fact, all proce-
dures were described verbally. This is nicely illustrated by 
the following typical problem (recognizable as the mod-
ern method of completing the square):

What must be the square which, when increased by 10 of its 
own roots, amounts to 39? The solution is this: You halve the 
number of roots, which in the present instance yields 5. This 
you multiply by itself; the product is 25. Add this to 39; the sum 
is 64. Now take the root of this, which is 8, and subtract from 
it half the number of the roots, which is 5; the remainder is 3. 
This is the root of the square which you sought.

In the second part of his book, al-Khwa- rizmı- used 
propositions taken from Book II of Euclid’s Elements in 
order to provide geometric justifications for his proce-
dures. As remarked above, in their original context these 
were purely geometric propositions. Al-Khwa- rizmı- 
directly connected them for the first time, however, to the 
solution of quadratic equations. His method was a hallmark 
of the Islamic approach to solving equations—systematize 
all cases and then provide a geometric justification, based 
on Greek sources. Typical of this approach was the Persian 
mathematician and poet Omar Khayyam’s Risalah fi’l-
barahin ’ala masa’il al-jabr wa’l-muqabalah (c. 1070; “Treatise 
on Demonstration of Problems of Algebra”), in which 
Greek knowledge concerning conic sections (ellipses, 
parabolas, and hyperbolas) was applied to questions 
involving cubic equations.
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The use of Greek-style geometric arguments in this 
context also led to a gradual loosening of certain tradi-
tional Greek constraints. In particular, Islamic 
mathematics allowed, and indeed encouraged, the unre-
stricted combination of commensurable and 
incommensurable magnitudes within the same frame-
work, as well as the simultaneous manipulation of 
magnitudes of different dimensions as part of the solution 
of a problem. For example, the Egyptian mathematician 
Abu Kamil (c. 850–930) treated the solution of a quadratic 
equation as a number rather than as a line segment or an 
area. Combined with the decimal system, this approach 
was fundamental in developing a more abstract and gen-
eral conception of number, which was essential for the 
eventual creation of a full-fledged abstract idea of an 
equation.

Commerce and Abacists in the European 
Renaissance

Greek and Islamic mathematics were basically “academic” 
enterprises, having little interaction with day-to-day mat-
ters involving building, transportation, and commerce. 
This situation first began to change in Italy in the 13th and 
14th centuries. In particular, the rise of Italian mercantile 
companies and their use of modern financial instruments 
for trade with the East, such as letters of credit, bills of 
exchange, promissory notes, and interest calculations, led 
to a need for improved methods of bookkeeping.

Leonardo Pisano, known to history as Fibonacci, stud-
ied the works of Kamil and other Arabic mathematicians 
as a boy while accompanying his father’s trade mission to 
North Africa on behalf of the merchants of Pisa. In 1202, 
soon after his return to Italy, Fibonacci wrote Liber Abbaci 
(“Book of the Abacus”). Although it contained no specific 
innovations, and although it strictly followed the Islamic 
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tradition of formulating and solving problems in purely 
rhetorical fashion, it was instrumental in communicating 
the Hindu-Arabic numerals to a wider audience in the 
Latin world. Early adopters of the “new” numerals became 
known as abacists, regardless of whether they used the 
numerals for calculating and recording transactions or 
employed an abacus for doing the actual calculations. 

Hindu-Arabic numerals, the evolution of which is shown above, are used 
throughout the world today, though they originated in India and were first 
introduced to the Europeans by Arab mathematicians. Modified from Karl 
Menninger, Number Words and Number Symbols: A Cultural History of 
Numbers, Cambridge, MA: The MIT Press, 1969
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Soon numerous abacist schools sprang up to teach the 
sons of Italian merchants the “new math.”

The abacists first began to introduce abbreviations for 
unknowns in the 14th century—another important mile-
stone toward the full-fledged manipulation of abstract 
symbols. For instance, c stood for cossa (“thing”), ce for censo 
(“square”), cu for cubo (“cube”), and R for Radice (“root”). 
Even combinations of these symbols were introduced for 
obtaining higher powers. This trend eventually led to 
works such as the first French algebra text, Nicolas 
Chuquet’s Triparty en la science des nombres (1484; “The 
Science of Numbers in Three Parts”). As part of a discus-
sion on how to use the Hindu-Arabic numerals, Triparty 
contained relatively complicated symbolic expressions, 
such as

R214pR2180

(meaning: ).
Chuquet also introduced a more flexible way of denoting 

powers of the unknown—i.e., 122 (for 12 squares) and even 
m12m (to indicate −12x−2). This was, in fact, the first time 
that negative numbers were explicitly used in European 
mathematics. Chuquet could now write an equation as 
follows:

.3.2p.12 egaulx a .9.1

(meaning: 3x2 + 12 = 9x).
Following the ancient tradition, coefficients were 

always positive, and thus the above was only one of several 
possible equations involving an unknown and squares of 
it. Indeed, Chuquet would say that the above was an 
impossible equation, since its solution would involve the 
square root of −63. This illustrates the difficulties involved 
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in reaching a more general and flexible concept of number: 
the same mathematician would allow negative numbers in 
a certain context and even introduce a useful notation for 
dealing with them, but he would completely avoid their 
use in a different, albeit closely connected, context.

In the 15th century, the German-speaking countries 
developed their own version of the abacist tradition: the 
Cossists, including mathematicians such as Michal Stiffel, 
Johannes Scheubel, and Christoff Rudolff. There, one 
finds the first use of specific symbols for the arithmetic 
operations, equality, roots, and so forth. The subsequent 
process of standardizing symbols was, nevertheless, 
lengthy and involved.

Cardano and the Solving of Cubic and Quartic 
Equations

Girolamo Cardano was a famous Italian physician, an avid 
gambler, and a prolific writer with a lifelong interest in 
mathematics.

His widely read Ars Magna (1545; “Great Work”) 
contains the Renaissance era’s most systematic and com-
prehensive account of solving cubic and quartic equations. 
Cardano’s presentation followed the Islamic tradition of 
solving one instance of every possible case and then giving 
geometric justifications for his procedures, based on 
propositions from Euclid’s Elements. He also followed the 
Islamic tradition of expressing all coefficients as positive 
numbers, and his presentation was fully rhetorical, with 
no real symbolic manipulation. Nevertheless, he did 
expand the use of symbols as a kind of shorthand for 
stating problems and describing solutions. Thus, the 
Greek geometric perspective still dominated—for 
instance, the solution of an equation was always a line seg-
ment, and the cube was the cube built on such a segment. 
Still, Cardano could write a cubic equation to be solved as
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cup p: 6 reb aequalis 20

(meaning: x3 + 6x = 20) and present the solution as

R.V: cu.R. 108 p: 10 m: R.V: cu. R. 108m: 10,

meaning 

x = .

Because Cardano refused to view negative numbers as 
possible coefficients in equations, he could not develop 
a notion of a general third-degree equation. This meant 
that he had to consider 13 “different” third-degree equa-
tions. Similarly, he considered 20 different cases for 
fourth-degree equations, following procedures devel-
oped by his student Ludovico Ferrari. However, Cardano 
was sometimes willing to consider the possibility of neg-
ative (or “false”) solutions. This allowed him to formulate 
some general rules, such as that in an equation with  
three real roots (including even negative roots), the sum of 
the roots must, except for sign, equal the coefficient of the 
square’s term.

In spite of his basic acceptance of traditional views on 
numbers, the solution of certain problems led Cardano to 
consider more radical ideas. For instance, he demon-
strated that 10 could be divided into two parts whose 
product was 40. The answer, 5 + √−15 and 5 − √−15, however, 
required the use of imaginary, or complex numbers—that 
is, numbers involving the square root of a negative number. 
Such a solution made Cardano uneasy, but he finally 
accepted it, declaring it to be “as refined as it is useless.”

The first serious and systematic treatment of complex 
numbers had to await the Italian mathematician Rafael 
Bombelli, particularly the first three volumes of his 
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unfinished L’Algebra (1572). Nevertheless, the notion of a 
number whose square is a negative number left most 
mathematicians uncomfortable. Where, exactly, in nature 
could one point to the existence of a negative or imaginary 
quantity? Thus, the acceptance of numbers beyond the 
positive rational numbers was slow and reluctant.

Viète and the Formal Equation

It is in the work of the French mathematician François 
Viète that the first consistent, coherent, and systematic 
conception of an algebraic equation in the modern sense 
appeared. A main innovation of Viète’s In artem analyticam 
isagoge (1591; “Introduction to the Analytic Art”) was its 
use of well-chosen symbols of one kind (vowels) for 
unknowns and of another kind (consonants) for known 
quantities. This allowed not only flexibility and generality 
in solving linear and quadratic equations but also some-
thing absent from all his predecessors’ work, namely, a 
clear analysis of the relationship between the forms of the 
solutions and the values of the coefficients of the original 
equation. Viète saw his contribution as developing a 
“systematic way of thinking” leading to general solutions, 
rather than just a “bag of tricks” to solve specific 
problems.

By combining existing usage with his own innovations, 
Viète was able to formulate equations clearly and to pro-
vide rules for transposing factors from one side of an 
equation to the other in order to find solutions. An exam-
ple of an equation would be:

A cubus + C plano in A aequatus D solido

(meaning: x3 + cx = d).
Note that each of the terms involved was one-

dimensional, that is, after canceling powers, the remaining 
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terms on each side of the equation are to the first power. 
Thus, on the left-hand side, the two-dimensional magni-
tude Z plano (a square) was divided by the one-dimensional 
variable G, leaving one dimension. On the right-hand side, 
a sum of two three-dimensional magnitudes (a third 
power) was divided by a product of two one-dimensional 
variables (which make a square), leaving one dimension. 
Thus, Viète did not break the important Greek tradition 
whereby the terms equated must always be of the same 
dimension. Nevertheless, for the first time it became 
possible, in the framework of an equation, to multiply or 
divide both sides by a certain magnitude. The result was a 
new equation, homogeneous in itself yet not homogeneous 
with the original one.

Viète showed how to transform given equations into 
others, already known. For example, in modern notation, 
he could transform x3 + ax2 = b2x into x2 + ax = b2. He thus 
reduced the number of cases of cubic equations from the 
13 given by Cardano and Bombelli. Nevertheless, since he 
still did not use negative or zero coefficients, he could not 
reduce all the possible cases to just one.

Viète applied his methods to solve, in a general, 
abstract-symbolic fashion, problems similar to those in 
the Diophantine tradition. However, very often he also 
rephrased his answers in plain words—as if to reassure his 
contemporaries, and perhaps even himself, of the validity 
of his new methods.

The Concept of Numbers

The work of Viète, described above, contained a clear, 
systematic, and coherent conception of the notion of 
equation that served as a broadly accepted starting point 
for later developments. No similar single reference point 
exists for the general conception of number, however. 
Some significant milestones may nevertheless be 
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mentioned, and prominent among them was De Thiende 
(Disme: The Art of Tenths), an influential booklet published 
in 1585 by the Flemish mathematician Simon Stevin. De 
Thiende was intended as a practical manual aimed at teach-
ing the essentials of operating with decimal fractions, but 
it also contained many conceptual innovations. It was the 
first mathematical text where the all-important distinc-
tion between number and magnitude, going back to the 
ancient Greeks, was explicitly and totally abolished. 
Likewise, Stevin declared that 1 is a number just like any 
other and that the root of a number is a number as well. 
Stevin also showed how one single idea of number, 
expressed as decimal fractions, could be used equally in 
such separate contexts as land surveying, volume measure-
ment, and astronomical and financial computations. The 
very need for an explanation of this kind illuminates how 
far Stevin’s contemporaries and predecessors were from 
the modern notion of numbers.

Indeed, throughout the 17th century, lively debates 
continued among mathematicians over the legitimacy of 
using various numbers. For example, concerning the irra-
tionals, some prominent mathematicians—such as the 
Frenchman Blaise Pascal and the Britons Isaac Barrow and 
Isaac Newton—were willing only to grant them legitimacy 
as geometric magnitudes. The negative numbers were 
sometimes seen as even more problematic, and in many 
cases negative solutions of equations were still considered 
by many to be “absurd” or “devoid of interest.” Finally, the 
complex numbers were still ignored by many mathemati-
cians, even though Bombelli had given precise rules for 
working with them.

All these discussions dwindled away as the 18th cen-
tury approached. A new phase in the development of the 
concept of number began, involving a systematization and 
search for adequate foundations for the various systems.
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Classical Algebra

François Viète’s work at the close of the 16th century, as 
described earlier in the chapter, marks the start of the 
classical discipline of algebra. Further developments 
included several related trends, among which the follow-
ing deserve special mention: the quest for systematic 
solutions of higher order equations, including approxima-
tion techniques; the rise of polynomials and their study as 
autonomous mathematical entities; and the increased 
adoption of the algebraic perspective in other mathemati-
cal disciplines, such as geometry, analysis, and logic. 
During this same period, new mathematical objects arose 
that eventually replaced polynomials as the main focus of 
algebraic study.

Analytic Geometry

The creation of what came to be known as analytic geometry 
can be attributed to two great 17th-century French think-
ers:  Using algebraic techniques developed by Viète and 
Girolamo Cardano, as described earlier in this chapter, Pierre 
de Fermat and René Descartes, French mathematicians, 
tackled geometric problems that had remained unsolved 
since the time of the classical Greeks. The new kind of 
organic connection that they established between algebra 
and geometry was a major breakthrough, without which the 
subsequent development of mathematics in general—and 
geometry and calculus in particular—would be unthinkable.

In his famous book La Géométrie (1637), Descartes 
established equivalences between algebraic operations 
and geometric constructions. In order to do so, he intro-
duced a unit length that served as a reference for all other 
lengths and for all operations among them. For example, 
suppose that Descartes was given a segment AB and was 
asked to find its square root. He would draw the straight 
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line DB, where DA was defined as the unit length. Then, 
he would bisect DB at C, draw the semicircle on the 
diameter DB with centre C, and finally draw the perpen-
dicular from A to E on the semicircle. Elementary 
properties of the circle imply that DEB = 90°, which in 
turn implies that ADE = AEB and DEA = EBA. 
Thus, ∆DEA is similar to ∆EBA, or in other words, the 
ratio of corresponding sides is equal. Substituting x, 1, and 
y for AB, DA, and AE, respectively, one obtains x/y = y/1. 
Simplifying, x = y2, or y is the square root of x. Thus, in 
what might appear to be an ordinary application of classical 
Greek techniques, Descartes demonstrated that he could 
find the square root of any given number, as represented 
by a line segment. The key step in his construction was the 
introduction of the unit length DA. This seemingly trivial 
move, or anything similar to it, had never been done 
before, and it had enormous repercussions for what could 
thereafter be done by applying algebraic reasoning to 
geometry.

Descartes also introduced a notation that allowed 
great flexibility in symbolic manipulation. For instance, he 
would write 

to denote the cubic root of this algebraic expression. This 
was a direct continuation (with some improvement) of 
techniques and notations introduced by Viète. Descartes 
also introduced a new idea with truly far-reaching con-
sequences when he explicitly eliminated the demand for 
homogeneity among the terms in an equation—although 
for convenience he tried to stick to homogeneity wher-
ever possible.

Descartes’s program was based on the idea that certain 
geometric loci (straight lines, circles, and conic sections) 



45

could be characterized in terms of specific kinds of equa-
tions involving magnitudes that were taken to represent 
line segments. However, he did not envision the equally 
important, reciprocal idea of finding the curve that cor-
responded to an arbitrary algebraic expression. Descartes 
was aware that much information about the properties of 
a curve—such as its tangents and enclosed areas—could 
be derived from its equation, but he did not elaborate.

On the other hand, Descartes was the first to discuss, 
separately and systematically, the algebraic properties of 
polynomial equations. This included his observations on 
the correspondence between the degree of an equation 
and the number of its roots, the factorization of a poly-
nomial with known roots into linear factors, the rule for 
counting the number of positive and negative roots of an 
equation, and the method for obtaining a new equation 
whose roots were equal to those of a given equation, 
though increased or diminished by a given quantity.

The Fundamental Theorem of Algebra

Descartes’s work was the start of the transformation of 
polynomials into an autonomous object of intrinsic 
mathematical interest. To a large extent, algebra became 
identified with the theory of polynomials. A clear notion 
of a polynomial equation, together with existing tech-
niques for solving some of them, allowed coherent and 
systematic reformulations of many questions that had 
previously been dealt with in a haphazard fashion. High 
on the agenda remained the problem of finding general 
algebraic solutions for equations of degree higher than 
four. Closely related to this was the question of the 
kinds of numbers that should count as legitimate solu-
tions, or roots, of equations. Attempts to deal with 
these two important problems forced mathematicians 
to realize the centrality of another pressing question, 
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namely, the number of solutions for a given polynomial 
equation.

The answer to this question is given by the fundamental 
theorem of algebra, first suggested by the French-born 
mathematician Albert Girard in 1629, and which asserts 
that every polynomial with real number coefficients could 
be expressed as the product of linear and quadratic real 
number factors or, alternatively, that every polynomial 
equation of degree n with complex coefficients had n com-
plex roots. For example, x3 + 2x2 − x − 2 can be decomposed 
into the quadratic factor x2 − 1 and the linear factor x + 2, 
that is, x3 + 2x2 − x − 2 = (x2-1)(x+2). The mathematical beauty 
of having n solutions for n-degree equations overcame 
most of the remaining reluctance to consider complex 
numbers as legitimate.

Although every single polynomial equation had been 
shown to satisfy the theorem, the essence of mathematics 
since the time of the ancient Greeks has been to establish 
universal principles. Therefore, leading mathematicians 
throughout the 18th century sought the honour of being 
the first to prove the theorem. The flaws in their proofs 
were generally related to the lack of rigorous foundations 
for polynomials and the various number systems. Indeed, 
the process of criticism and revision that accompanied 
successive attempts to formulate and prove some correct 
version of the theorem contributed to a deeper under-
standing of both.

The first complete proof of the theorem was given by 
the German mathematician Carl Friedrich Gauss in his 
doctoral dissertation of 1799. Subsequently, Gauss pro-
vided three additional proofs. A remarkable feature of all 
these proofs was that they were based on methods and 
ideas from calculus and geometry, rather than algebra. The 
theorem was fundamental in that it established the most 
basic concept around which the discipline as a whole was 
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built. The theorem was also fundamental from the historical 
point of view, since it contributed to the consolidation of 
the discipline, its main tools, and its main concepts.

Impasse with Radical Methods

A major breakthrough in the algebraic solution of higher-
degree equations was achieved by the Italian-French 
mathematician Joseph-Louis Lagrange in 1770.

Rather than trying to find a general solution for 
quintic equations directly, Lagrange attempted to clarify 
first why all attempts to do so had failed by investigat-
ing the known solutions of third- and fourth-degree 
equations. In partic-
ular, he noticed how 
certain algebraic 
expressions con-
nected with those 
solutions remained 
invariant when the 
coefficients of the 
equations were per-
muted (exchanged) 
with one another. 
Lagrange was cer-
tain that a deeper 
analysis of this invari-
ance would provide 
the key to extending 
existing solutions 
to higher-degree 
equations.

Using ideas devel-
oped by Lagrange, 
in 1799 the Italian 
mathematician Paolo Joseph-Louis Lagrange. SSPL/Getty Images
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Ruffini was the first to assert the impossibility of obtain-
ing a radical solution for general equations beyond the 
fourth degree. He adumbrated in his work the notion of a 
group of permutations of the roots of an equation and 
worked out some basic properties. Ruffini’s proofs, how-
ever, contained several significant gaps.

Between 1796 and 1801, in the framework of his 
seminal number-theoretical investigations, Gauss system-
atically dealt with cyclotomic equations: xp − 1 = 0 (p > 2 and 
prime). Although his new methods did not solve the gen-
eral case, Gauss did demonstrate solutions for these 
particular higher-degree equations.

In 1824 the Norwegian mathematician Niels Henrik 
Abel provided the first valid proof of the impossibility of 
obtaining radical solutions for general equations beyond 
the fourth degree. However, this did not end polynomial 
research. Rather, it opened an entirely new field of research 
since, as Gauss’s example showed, some equations were 
indeed solvable. In 1828 Abel suggested two main points 
for research in this regard: to find all equations of a given 
degree solvable by radicals, and to decide if a given equa-
tion can be solved by radicals. His early death in complete 
poverty, two days before receiving an announcement that 
he had been appointed professor in Berlin, prevented Abel 
from undertaking this program.

Galois Theory

Rather than establishing whether specific equations can 
or cannot be solved by radicals, as Abel had suggested, the 
French mathematician Évariste Galois (1811–32) pursued 
the somewhat more general problem of defining neces-
sary and sufficient conditions for the solvability of any 
given equation. Although Galois’s life was short and excep-
tionally turbulent—he was arrested several times for 
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supporting republican causes, and he died at the age of 20 
from wounds incurred in a duel—his work reshaped the 
discipline of algebra.

Galois’s Work on Permutations

Prominent among Galois’s seminal ideas was the clear 
realization of how to formulate precise solvability condi-
tions for a polynomial in terms of the properties of its 
group of permutations. A permutation of a set, say the 
elements a, b, and c, is any re-ordering of the elements, and 
it is usually denoted as follows:

This particular permutation takes a to c, b to a, and c 
to b. For three elements, as here, there are six different 
possible permutations. In general, for n elements there 
are n! permutations to choose from. (Where n! = n(n − 1)
(n − 2)· · ·2·1.) Furthermore, two permutations can be com-
bined to produce a third permutation in an operation 
known as composition. (The set of permutations are 
closed under the operation of composition.) For example,

Here a goes first to c (in the first permutation) and 
then from c to b (in the second permutation), which is 
equivalent to a going directly to b, as given by the permu-
tation to the right of the equation. Composition is 
associative—given three permutations P, Q, and R, then 
(P * Q) * R = P * (Q * R). Also, there exists an identity per-
mutation that leaves the elements unchanged:
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Finally, for each permutation there exists another per-
mutation, known as its inverse, such that their composition 
results in the identity permutation. The set of permuta-
tions for n elements is known as the symmetric group Sn.

The concept of an abstract group developed somewhat 
later. It consisted of a set of abstract elements with an 
operation defined on them such that the conditions given 
above were satisfied: closure, associativity, an identity ele-
ment, and an inverse element for each element in the set.

This abstract notion is not fully present in Galois’s 
work. Like some of his predecessors, Galois focused on 
the permutation group of the roots of an equation. 
Through some beautiful and highly original mathematical 
ideas, Galois showed that a general polynomial equation 
was solvable by radicals if and only if its associated sym-
metric group was “soluble.” Galois’s result, it must be 
stressed, referred to conditions for a solution to exist. It 
did not provide a way to calculate radical solutions in those 
cases where they existed.

Acceptance of Galois Theory

Galois’s work was both the culmination of a main line of 
algebra—solving equations by radical methods—and the 
beginning of a new line—the study of abstract structures. 
Work on permutations, started by Lagrange and Ruffini, 
received further impetus in 1815 from the leading French 
mathematician, Augustin-Louis Cauchy. In a later work of 
1844, Cauchy systematized much of this knowledge and 
introduced basic concepts. For instance, the permutation
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was denoted by Cauchy in cycle notation as (ab)(ced), mean-
ing that the permutation was obtained by the disjoint cycles 
a to b (and back to a) and c to e to d (and back to c).

A series of unusual and unfortunate events involving 
the most important contemporary French mathemati-
cians prevented Galois’s ideas from being published for a 
long time. It was not until 1846 that Joseph Liouville 
edited and published for the first time, in his prestigious 
Journal de Mathématiques Pures et Appliquées, the important 
memoire in which Galois had presented his main ideas 
and that the Paris Academy had turned down in 1831. In 
Germany, Leopold Kronecker applied some of these ideas 
to number theory in 1853, and Richard Dedekind lectured 
on Galois theory in 1856. At this time, however, the impact 
of the theory was still minimal.

A major turning point came with the publication of Traité 
des substitutions et des équations algebriques (1870; “Treatise on 
Substitutions and Algebraic Equations”) by the French math-
ematician Camille Jordan. In his book and papers, Jordan 
elaborated an abstract theory of permutation groups, with 
algebraic equations merely serving as an illustrative applica-
tion of the theory. In particular, Jordan’s treatise was the 
first group theory book and it served as the foundation for 
the conception of Galois theory as the study of the intercon-
nections between extensions of fields and the related Galois 
groups of equations—a conception that proved fundamental 
for developing a completely new abstract approach to alge-
bra in the 1920s. Major contributions to the development 
of this point of view for Galois theory came variously from 
Enrico Betti (1823–92) in Italy and from Dedekind, Henrich 
Weber (1842–1913), and Emil Artin (1898–1962) in Germany.

Applications of Group Theory

Galois theory arose in direct connection with the study of 
polynomials, and thus the notion of a group developed 
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from within the mainstream of classical algebra. However, 
it also found important applications in other mathemati-
cal disciplines throughout the 19th century, particularly 
geometry and number theory.

Geometry

In 1872 Felix Klein suggested in his inaugural lecture at 
the University of Erlangen, Germany, that group theoreti-
cal ideas might be fruitfully put to use in the context of 
geometry. Since the beginning of the 19th century, the 
study of projective geometry had attained renewed 
impetus, and later on non-Euclidean geometries were 
introduced and increasingly investigated. This prolifera-
tion of geometries raised pressing questions concerning 
both the interrelations among them and their relationship 
with the empirical world. Klein suggested that these 
geometries could be classified and ordered within a con-
ceptual hierarchy. For instance, projective geometry 
seemed particularly fundamental because its properties 
were also relevant in Euclidean geometry, while the main 
concepts of the latter, such as length and angle, had no 
significance in the former.

A geometric hierarchy may be expressed in terms of 
which transformations leave the most relevant properties 
of a particular geometry unchanged. It turned out that 
these sets of transformations were best understood as 
forming a group. Klein’s idea was that the hierarchy of 
geometries might be reflected in a hierarchy of groups 
whose properties would be easier to understand. An example 
from Euclidean geometry illustrates the basic idea. The 
set of rotations in the plane has closure: if rotation I 
rotates a figure by an angle α, and rotation J by an angle β, 
then rotation I*J rotates it by an angle α + β. The rotation 
operation is obviously associative, α + (β + γ) = (α + β) + γ. 



53

The identity element is the rotation through an angle of 0 
degrees, and the inverse of the rotation through angle α is 
the angle −α. Thus, the set of rotations of the plane is a 
group of invariant transformations for Euclidean geometry. 
The groups associated with other kinds of geometries is 
somewhat more involved, but the idea remains the same.

In the 1880s and 1890s, Klein’s friend, the Norwegian 
Sophus Lie, undertook the enormous task of classifying all 
possible continuous groups of geometric transformations, 
a task that eventually evolved into the modern theory of 
Lie groups and Lie algebras. At roughly the same time, the 
French mathematician Henri Poincaré studied the groups 
of motions of rigid bodies, a work that helped to establish 
group theory as one of the main tools in modern 
geometry.

Number Theory

The notion of a group also started to appear prominently 
in number theory in the 19th century, especially in Gauss’s 
work on modular arithmetic. In this context, he proved 
results that were later reformulated in the abstract theory 
of groups—for instance (in modern terms), that in a cyclic 
group (all elements generated by repeating the group 
operation on one element) there always exists a subgroup 
of every order (number of elements) dividing the order of 
the group.

In 1854 Arthur Cayley, one of the most prominent 
British mathematicians of his time, was the first explicitly 
to realize that a group could be defined abstractly—without 
any reference to the nature of its elements and only by 
specifying the properties of the operation defined on 
them. Generalizing on Galois’s ideas, Cayley took a set of 
meaningless symbols 1, α, β,. . . with an operation defined 
on them as shown in the table below.
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Cayley demanded only that the operation be closed 
with respect to the elements on which it was defined, 
while he assumed implicitly that it was associative and 
that each element had an inverse. He correctly deduced 
some basic properties of the group, such as that if the 
group has n elements, then θn = 1 for each element θ. 
Nevertheless, in 1854 the idea of permutation groups was 
rather new, and Cayley’s work had little immediate impact.

Fundamental Concepts of Modern Algebra

Prime Factorization

Some other fundamental concepts of modern algebra also 
had their origin in 19th-century work on number theory, 
particularly in connection with attempts to generalize the 
theorem of (unique) prime factorization beyond the natural 
numbers. This theorem asserted that every natural num-
ber could be written as a product of its prime factors in a 
unique way, except perhaps for order (e.g., 24 = 2·2·2·3). 
This property of the natural numbers was known, at least 
implicitly, since the time of Euclid. In the 19th century, 
mathematicians sought to extend some version of this 
theorem to the complex numbers.

One should not be surprised, then, to find the name of 
Gauss in this context. In his classical investigations on 
arithmetic, Gauss was led to the factorization properties 
of numbers of the type a + ib (a and b integers and i = −1), 
sometimes called Gaussian integers. In doing so, Gauss 
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not only used complex numbers to solve a problem involving 
ordinary integers—a fact remarkable in itself—but he also 
opened the way to the detailed investigation of special 
subdomains of the complex numbers.

In 1832 Gauss proved that the Gaussian integers satis-
fied a generalized version of the factorization theorem 
where the prime factors had to be especially defined in 
this domain. In the 1840s the German mathematician 
Ernst Eduard Kummer extended these results to other, 
even more general domains of complex numbers, such as 
numbers of the form a + θb, where θ2 = n for n a fixed inte-
ger, or numbers of the form a + ρb, where ρn = 1, ρ ≠ 1, and 
n > 2. Although Kummer did prove interesting results, it 
finally turned out that the prime factorization theorem 
was not valid in such general domains. The following 
example illustrates the problem.

Consider the domain of numbers of the form a + b√−5 
and, in particular, the number 21 = 21 + 0√−5. 21 can be fac-
tored as both 3·7 and as (4 + √−5)(4 − √−5 ). It can be shown 
that none of the numbers 3, 7, 4 ± √−5 could be further 
decomposed as a product of two different numbers in this 
domain. Thus, in one sense they were prime. However, at 
the same time, they violated a property of prime numbers 
known from the time of Euclid: if a prime number p divides 
a product ab, then it either divides a or b. In this instance, 
3 divides 21 but neither of the factors 4 + √−5 or 4 − √−5.

This situation led to the concept of indecomposable 
numbers. In classical arithmetic any indecomposable num-
ber is a prime (and vice versa), but in more general domains 
a number may be indecomposable, such as 3 here, yet not 
prime in the earlier sense. The question thus remained 
open which domains the prime factorization theorem was 
valid in and how properly to formulate a generalized ver-
sion of it. This problem was undertaken by Dedekind in a 
series of works spanning over 30 years, starting in 1871. 
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Dedekind’s general methodological approach promoted 
the introduction of new concepts around which entire 
theories could be built. Specific problems were then solved 
as instances of the general theory.

Fields

A main question pursued by Dedekind was the precise 
identification of those subsets of the complex numbers 
for which some generalized version of the theorem made 
sense. The first step toward answering this question was 
the concept of a field, defined as any subset of the com-
plex numbers that was closed under the four basic 
arithmetic operations (except division by zero). The larg-
est of these fields was the whole system of complex 
numbers, whereas the smallest field was the rational num-
bers. Using the concept of field and some other derivative 
ideas, Dedekind identified the precise subset of the com-
plex numbers for which the theorem could be extended. 
He named that subset the algebraic integers.

Ideals

Finally, Dedekind introduced the concept of an ideal. A 
main methodological trait of Dedekind’s innovative 
approach to algebra was to translate ordinary arithmetic 
properties into properties of sets of numbers. In this case, 
he focused on the set I of multiples of any given integer 
and pointed out two of its main properties:

1. If n and m are two numbers in I, then their 
difference is also in I.

2. If n is a number in I and a is any integer, then 
their product is also in I.

As he did in many other contexts, Dedekind took 
these properties and turned them into definitions. He 
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defined a collection of algebraic integers that satisfied 
these properties as an ideal in the complex numbers. This 
was the concept that allowed him to generalize the prime 
factorization theorem in distinctly set-theoretical terms.

In ordinary arithmetic, the ideal generated by the 
product of two numbers equals the intersection of the ide-
als generated by each of them. For instance, the set of 
multiples of 6 (the ideal generated by 6) is the intersection 
of the ideal generated by 2 and the ideal generated by 3. 
Dedekind’s generalized versions of the theorem were 
phrased precisely in these terms for general fields of com-
plex numbers and their related ideals. He distinguished 
among different types of ideals and different types of 
decompositions, but the generalizations were all-inclusive 
and precise. More important, he reformulated what were 
originally results on numbers, their factors, and their 
products as far more general and abstract results on spe-
cial domains, special subsets of numbers, and their 
intersections.

Dedekind’s results were important not only for a 
deeper understanding of factorization. He also introduced 
the set-theoretical approach into algebraic research, and 
he defined some of the most basic concepts of modern 
algebra that became the main focus of algebraic research 
throughout the 20th century. Moreover, Dedekind’s ideal-
theoretical approach was soon successfully applied to the 
factorization of polynomials as well, thus connecting itself 
once again to the main focus of classical algebra.

Systems of Equations

In spite of the many novel algebraic ideas that arose in the 
19th century, solving equations and studying properties 
of polynomial forms continued to be the main focus of 
algebra. The study of systems of equations led to the 
notion of a determinant and matrix theory.
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Determinants

Given a system of n linear equations in n unknowns, its 
determinant was defined as the result of a certain combi-
nation of multiplication and addition of the coefficients 
of the equations that allowed the values of the unknowns 
to be calculated directly. For example, given the system 

a1x + b1 y = c1 

a2x + b2 y = c2

the determinant Δ of the system is the number Δ = a1b2 − a2b1, 
and the values of the unknowns are given by

x = (c1b2 - c2b1)/D 

y = (a1c2 - a2c1)/D.

Historians agree that the 17th-century Japanese math-
ematician Seki Kowa was the earliest to use methods of 
this kind systematically. In Europe, credit is usually given 
to his contemporary, the German coinventor of calculus, 
Gottfried Wilhelm Leibniz.

In 1815 Cauchy published the first truly systematic and 
comprehensive study of determinants, and he was the one 
who coined the name. He introduced the notation (al, n) 
for the system of coefficients of the system and demon-
strated a general method for calculating the determinant.

Matrices

Closely related to the concept of a determinant was the 
idea of a matrix as an arrangement of numbers in lines and 
columns. That such an arrangement could be taken as an 
autonomous mathematical object, subject to special rules 
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that allow for manipulation like ordinary numbers, was 
first conceived in the 1850s by Cayley and his good friend 
the attorney and mathematician James Joseph Sylvester. 
Determinants were a main, direct source for this idea, but 
so were ideas contained in previous work on number 
theory by Gauss and by the German mathematician 
Ferdinand Gotthold Max Eisenstein (1823–52).

Given a system of linear equations:

ξ = αx + βy + γz + . . .
 

h = α¢x + β'y + γ'z + . . .
 

z = α²x + β"y + γ"z + . . .
 

. . . = . . . + . . . + . . . + . . .

Cayley represented it with a matrix as follows:

The solution could then be written as:

The matrix bearing the −1 exponent was called the 
inverse matrix, and it held the key to solving the original 
system of equations. Cayley showed how to obtain the 
inverse matrix using the determinant of the original 
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matrix. Once this matrix is calculated, the arithmetic of 
matrices allowed him to solve the system of equations by a 
simple analogy with linear equations: ax = b  x = a−1b.

Cayley was joined by other mathematicians—such as 
the Irish William Rowan Hamilton, the German Georg 
Frobenius, and Camille Jordan—in developing the theory 
of matrices, which soon became a fundamental tool in 
analysis, geometry, and especially in the emerging disci-
pline of linear algebra. A further important point was that 
matrices enlarged the range of algebraic notions. In par-
ticular, matrices embodied a new, mathematically 
significant instance of a system with a well-elaborated 
arithmetic, whose rules departed from traditional number 
systems in the important sense that multiplication was 
not generally commutative.

In fact, matrix theory was naturally connected after 
1830 with a central trend in British mathematics devel-
oped by George Peacock and Augustus De Morgan, among 
others. In trying to overcome the last reservations about 
the legitimacy of the negative and complex numbers, 
these mathematicians suggested that algebra be conceived 
as a purely formal, symbolic language, irrespective of the 
nature of the objects whose laws of combination it stipu-
lated. In principle, this view allowed for new, different 
kinds of arithmetic, such as matrix arithmetic. The British 
tradition of symbolic algebra was instrumental in shifting 
the focus of algebra from the direct study of objects (num-
bers, polynomials, and the like) to the study of operations 
among abstract objects. Still, in most respects, Peacock 
and De Morgan strove to gain a deeper understanding of 
the objects of classical algebra rather than to launch a new 
discipline.

Another important development in Britain concerned 
the elaboration of an algebra of logic. De Morgan and 
George Boole—and somewhat later Ernst Schröder in 
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Germany—were instrumental in transforming logic from 
a purely metaphysical into a mathematical discipline. 
They also added to the growing realization of the immense 
potential of algebraic thinking, freed from its narrow con-
ception as the discipline of polynomial equations and 
number systems.

Quaternions and Vectors

Remaining doubts about the legitimacy of complex 
numbers were finally dispelled when their geometric 
interpretation became widespread among mathemati-
cians. This interpretation—initially and independently 
conceived by the Norwegian surveyor Caspar Wessel and 
the French bookkeeper Jean-Robert Argand—was made 
known to a larger audience of mathematicians mainly 
through its explicit use by Gauss in his 1848 proof of the 
fundamental theorem of algebra. Under this interpreta-
tion, every complex number appeared as a directed 
segment on the plane, characterized by its length and its 
angle of inclination with respect to the x-axis. The num-
ber i thus corresponded to the segment of length 1 that 
was perpendicular to the x-axis. Once a proper arithmetic 
was defined on these numbers, it turned out that i2 = −1, as 
expected.

An alternative interpretation, very much within the 
spirit of the British school of symbolic algebra, was pub-
lished in 1837 by William Rowan Hamilton. Hamilton 
defined a complex number a + bi as a pair (a, b) of real 
numbers and gave the laws of arithmetic for such pairs. 
For example, he defined multiplication as:

(a, b)(c, d) = (ac - bd, bc + ad).

In Hamilton’s notation i = (0, 1) and by the above defi-
nition of complex multiplication (0, 1)(0, 1) = (−1, 0)—that 
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is, i2 = −1 as desired. This formal interpretation obviated 
the need to give any essentialist definition of complex 
numbers.

Starting in 1830, Hamilton pursued intensely, and 
unsuccessfully, a scheme to extend his idea to triplets 
(a, b, c), which he expected to be of great utility in mathe-
matical physics. His difficulty lay in defining a consistent 
multiplication for such a system, which in hindsight is 
known to be impossible. In 1843 Hamilton finally realized 
that the generalization he was looking for had to be found 
in the system of quadruplets (a, b, c, d), which he named 
quaternions. He wrote them, in analogy with the complex 
numbers, as a + bi + cj + dk, and his new arithmetic was 
based on the rules: i2 = j2 = k2 = ijk = −1 and ij = k, ji = −k, jk = i, 
kj = −i, ki = j, and ik = −j. This was the first example of a 
coherent, significant mathematical system that preserved 
all of the laws of ordinary arithmetic, with the exception 
of commutativity.

In spite of Hamilton’s initial hopes, quaternions never 
really caught on among physicists, who generally preferred 
vector notation when it was introduced later. Nevertheless, 
his ideas had an enormous influence on the gradual intro-
duction and use of vectors in physics. Hamilton used  
the name scalar for the real part a of the quaternion, and the 
term vector for the imaginary part bi + cj + dk, and defined 
what are now known as the scalar (or dot) and vector (or 
cross) products. It was through successive work in the 
19th century of the Britons Peter Guthrie Tait, James 
Clerk Maxwell, and Oliver Heaviside and the American 
Josiah Willard Gibbs that an autonomous theory of vec-
tors was first established while developing on Hamilton’s 
initial ideas. In spite of physicists’ general lack of interest 
in quaternions, they remained important inside mathe-
matics, although mainly as an example of an alternate 
algebraic system.



63

The Close of the Classical Age

The last major algebra textbook in the classical tradition 
was Heinrich Weber’s Lehrbuch der Algebra (1895; “Textbook 
of Algebra”), which codified the achievements and cur-
rent dominant views of the subject and remained highly 
influential for several decades. At its centre was a well-
elaborated, systematic conception of the various systems 
of numbers, built as a rigorous hierarchy from the natural 
numbers up to the complex numbers. Its primary focus 
was the study of polynomials, polynomial equations, and 
polynomial forms, and all relevant results and methods 
derived in the book directly depended on the properties 
of the systems of numbers. Radical methods for solving 
equations received a great deal of attention, but so did 
approximation methods, which are now typically covered 
instead in analysis and numerical analysis textbooks. 
Recently developed concepts, such as groups and fields, as 
well as methods derived from Galois’s work, were treated 
in Weber’s textbook, but only as useful tools to help deal 
with the main topic of polynomial equations.

To a large extent, Weber’s textbook was a very fine 
culmination of a long process that started in antiquity. 
Fortunately, rather than bringing this process to a conclu-
sion, it served as a catalyst for the next stage of algebra.

Structural Algebra

At the turn of the 20th century, algebra reflected a very 
clear conceptual hierarchy based on a systematically elab-
orated arithmetic, with a theory of polynomial equations 
built on top of it. Finally, a well-developed set of concep-
tual tools, most prominently the idea of groups, offered a 
comprehensive means of investigating algebraic properties. 
Then, in 1930 a textbook was published that presented a 
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totally new image of the discipline. This was Moderne 
Algebra, by the Dutch mathematician Bartel van der 
Waerden, who since 1924 had attended lectures in 
Germany by Emmy Noether  at Göttingen and by Emil 
Artin at Hamburg. Van der Waerden’s new image of the 
discipline inverted the conceptual hierarchy of classical 
algebra. Groups, fields, rings, and other related concepts 
became the main focus, based on the implicit realization 
that all of these concepts were, in fact, instances of a more 
general, underlying idea: the idea of an algebraic structure. 
Thus, the main task of algebra became the elucidation of 
the properties of each of these structures and of the rela-
tionships among them. Similar questions were now asked 
about all these concepts, and similar concepts and tech-
niques were used where possible. The main tasks of 
classical algebra became ancillary. The systems of real 
numbers, rational numbers, and polynomials were studied 
as particular instances of certain algebraic structures. The 
properties of these systems depended on what was known 
about the general structures of which they were instances, 
rather than the other way round.

Precursors to the Structural Approach

Van der Waerden’s book did not contain many new results 
or concepts. Its innovation lay in the unified picture it 
presented of the discipline of algebra. Van der Waerden 
brought together, in a surprisingly illuminating manner, 
algebraic research that had taken place over the previous 
three decades, and in doing so, he combined the contribu-
tions of several leading German algebraists from the 
beginning of the 20th century.

Hilbert and Steinitz

Of these German mathematicians, few were more important 
than David Hilbert. Among his important contributions, 
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his work in the 1890s on the theory of algebraic number 
fields was decisive in establishing the conceptual approach 
promoted by Dedekind as dominant for several decades. 
As the undisputed leader of mathematics at Göttingen—
then the world’s premiere research institution—Hilbert’s 
influence propagated through the 68 doctoral disserta-
tions he directed as well as through the many students and 
mathematicians who attended his lectures. To a signifi-
cant extent, the structural view of algebra was the product 
of some of Hilbert’s innovations, yet he basically remained 
a representative of the classical discipline of algebra. It is 
likely that the kind of algebra that developed under the 
influence of van der Waerden’s book had no direct appeal 
for Hilbert.

In 1910 Ernst Steinitz published an influential article 
on the abstract theory of fields that was an important 
milestone on the road to the structural image of algebra. 
His work was highly structural in that he first established 
the simplest kinds of subfields that any field contains and 
established a classification system. He then investigated 
how properties were passed from a field to any extension 
of it or to any of its subfields. In this way, he was able to 
characterize all possible fields abstractly. To a great extent, 
van der Waerden extended to the whole discipline of alge-
bra what Steinitz accomplished for the more restricted 
domain of fields.

Noether and Artin

The greatest influence behind the consolidation of the 
structural image of algebra was no doubt Emmy Noether, 
who became the most prominent figure in Göttingen in 
the 1920s. Noether synthesized the ideas of Dedekind, 
Hilbert, Steinitz, and others in a series of articles in which 
the theory of factorization of algebraic numbers and of 
polynomials was masterly and succinctly subsumed under 
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a single theory of abstract rings. She also contributed 
important papers to the theory of hypercomplex systems 
(extensions, such as the quaternions, of complex numbers 
to higher dimensions) that followed a similar approach, 
further demonstrating the potential of the structural 
approach.

The last significant influence on van der Waerden’s 
structural image of algebra was by Artin, above all for the 
latter’s reformulation of Galois theory. Rather than 
speaking of the Galois group of a polynomial equation 
with coefficients in a particular field, Artin focused on the 
group of automorphisms of the coefficients’ splitting 
field (the smallest extension of the field such that the 
polynomial could be factored into linear terms). Galois 
theory could then be seen as the study of the interrela-
tions between the extensions of a field and the possible 
subgroups of the Galois group of the original field. In this 
typical structural reformulation of a classical 19th-century 
theory of algebra, the problem of solvability of equations 
by radicals appeared as a particular application of an 
abstract general theory.

The Structural Approach Dominates

After the late 1930s, it was clear that algebra—and in 
particular the structural approach within it—had become 
one of the most dynamic areas of research in mathematics. 
Structural methods, results, and concepts were actively 
pursued by algebraists in Germany, France, the United 
States, Japan, and elsewhere. The structural approach was 
also successfully applied to redefine other mathematical 
disciplines. An important early example of this was the 
thorough reformulation of algebraic geometry in the hands 
of van der Waerden, André Weil in France, and the Russian-
born Oscar Zariski in Italy and the United States. In 
particular, they used the concepts and approach 
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developed in ring theory by Noether and her successors. 
Another important example was the work of the American 
Marshall Stone, who in the late 1930s defined Boolean 
algebras, bringing under a purely algebraic framework 
ideas stemming from logic, topology, and algebra itself.

Over the following decades, algebra textbooks appeared 
around the world along the lines established by van der 
Waerden. Prominent among these was A Survey of Modern 
Algebra (1941) by Saunders Mac Lane and Garret Birkhoff, 
a book that was fundamental for the next several genera-
tions of mathematicians in the United States. Nevertheless, 
it must be stressed that not all algebraists felt, at least 
initially, that the new direction implied by Moderne Algebra 
was paramount. More classically oriented research was 
still being carried out well beyond the 1930s. The research 
of Georg Frobenius and his former student Issai Schur—
who were the most outstanding representatives of the 
Berlin mathematical school at the beginning of the 20th 
century—and of Hermann Weyl, one of Hilbert’s most 
prominent students, merit special mention.

Algebraic Superstructures

Although the structural approach had become prominent 
in many mathematical disciplines, the notion of structure 
remained more a regulative, informal principle than a real 
mathematical concept for independent investigation. It 
was only natural that sooner or later the question would 
arise how to define structures in such a way that the con-
cept could be investigated. For example, Noether brought 
new and important insights into certain rings (algebraic 
numbers and polynomials) previously investigated under 
separate frameworks by studying their underlying struc-
tures. Similarly, it was expected that a general metatheory 
of structures, or superstructures, would prove fruitful for 
studying other related concepts.
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Bourbaki

Attempts to develop such a metatheory were undertaken 
starting in the 1940s. The first one came from a group of 
young French mathematicians working under the com-
mon pseudonym of Nicolas Bourbaki. The founders of the 
group included Weil, Jean Dieudonné, and Henri Cartan. 
Over the next few decades, the group published a collec-
tion of extremely influential textbooks, Eléments de 
mathématique, that covered several central mathematical 
disciplines, particularly from a structural perspective. Yet, 
to the extent that Bourbaki’s mathematics was structural, 
it was so in a general, informal way. As van der Waerden 
extended to all of algebra the structural approach that 
Steinitz introduced in the theory of fields, so Bourbaki’s 
Eléments extended this approach to a truly broad range of 
mathematical disciplines. Although Bourbaki did define a 
formal concept of structure in the first book of the col-
lection, their concept turned out to be quite cumbersome 
and was not pursued further.

Category Theory

The second attempt to formalize the notion of structure 
developed within category theory. The first paper on the 
subject was published in the United States in 1942 by Mac 
Lane and Samuel Eilenberg. The idea behind their 
approach was that the essential features of any particular 
mathematical domain (a category) could be identified by 
focusing on the interrelations among its elements, rather 
than looking at the behaviour of each element in isolation. 
For example, what characterized the category of groups 
were the properties of its homomorphisms (mappings 
between groups that preserve algebraic operations) and 
comparisons with morphisms for other categories, such as 
homeomorphisms for topological spaces. Another 
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important concept of Mac Lane and Eilenberg was their 
formulation of “functors,” a generalization of the idea of 
function that enabled them to connect different catego-
ries. For example, in algebraic topology functors 
associated topological spaces with certain groups such 
that their topological properties could be expressed as 
algebraic properties of the groups—a process that enabled 
powerful algebraic tools to be used on previously intrac-
table problems.

Although category theory did not become a universal 
language for all of mathematics, it did become the stan-
dard formulation for algebraic topology and homology. 
Category theory also led to new approaches in the study 
of the foundations of mathematics by means of Topos the-
ory. Some of these developments were further enhanced 
between 1956 and 1970 through the intensive work of 
Alexandre Grothendieck and his collaborators in France, 
using still more general concepts based on categories.

New Challenges and Perspectives

The enormous productivity of research in algebra over the 
second half of the 20th century precludes any complete 
synopsis. Nevertheless, two main issues deserve some 
comment. The first was a trend toward abstraction and 
generalization as embodied in the structural approach. 
This trend was not exclusive, however. Researchers moved 
back and forth, studying general structures as well as clas-
sical entities such as the real and rational numbers. The 
second issue was the introduction of new kinds of proofs 
and techniques. The following examples are illustrative.

A subgroup H of a group G is called a normal group if 
for every element g in G and h in H, g−1hg is an element of 
H. A group with no normal subgroups is known as a simple 
group. Simple groups are the basic components of group 
theory, and since Galois’s time, it was known that the 
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general quintic was unsolvable by radicals because its 
Galois group was simple. However, a full characterization 
of simple groups remained unattainable until a major 
breakthrough in 1963 by two Americans, Walter Feit and 
John G. Thomson. They proved an old conjecture of the 
British mathematician William Burnside, namely, that 
the order of noncommutative finite simple groups is 
always even. Their proof was long and involved, but it 
reinforced the belief that a full classification of finite 
simple groups might, after all, be possible. The comple-
tion of the task was announced in 1983 by the American 
mathematician Daniel Gorenstein, following the contri-
butions of hundreds of individuals over thousands of 
pages. Although this classification seems comprehensive, it 
is anything but clear-cut and systematic, since simple groups 
appear in all kinds of situations and under many guises. Thus, 
there seems to be no single individual who can boast of 
knowing all of its details. This kind of very large, collective 
theorem is certainly a novel mathematical phenomenon.

Another example concerns the complex and involved 
question of the use of computers in proving and even for-
mulating new theorems. This now incipient trend will 
certainly receive increased attention in the 21st century.

Finally, probabilistic methods of proof in algebra, and 
in particular for solving difficult, open problems in group 
theory, have been introduced. This trend began with a 
series of papers by the Hungarian mathematicians Paul 
Erdös and Paul Turán, both of whom introduced probabi-
listic methods into many other branches of mathematics 
as well.

BRANCHES OF ALGEBRA

The principles and main functions of the three main 
branches of algebra are described below. These branches 
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are elementary algebra, linear algebra, and modern 
algebra.

Elementary Algebra

Elementary algebra deals with the general properties of 
numbers and the relations between them. More specifi-
cally, it is concerned with the following topics:

1. Real and complex numbers, constants, and 
variables—collectively known as algebraic 
quantities.

2. Rules of operation for such quantities.
3. Geometric representations of such quantities.
4. Formation of expressions involving algebraic 

quantities.
5. Rules for manipulating such expressions.
6. Formation of sentences, also called equations, 

involving algebraic expressions.
7. Solution of equations and systems of 

equations.

Algebraic Quantities

The principal distinguishing characteristic of algebra is 
the use of simple symbols to represent numerical quanti-
ties and mathematical operations. Following a system that 
originated with the 17th-century French thinker René 
Descartes, letters near the beginning of the alphabet 
(a, b, c,. . .) typically represent known, but arbitrary, numbers 
in a problem, while letters near the end of the alphabet, 
especially x, y, and z, represent unknown quantities, or 
variables. The + and − signs indicate addition and subtraction 
of these quantities, but multiplication is simply indicated 
by adjacent letters. Thus, ax represents the product of a by 
x. This simple expression can be interpreted, for example, 
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as the interest earned in one year by a sum of a dollars 
invested at an annual rate of x. It can also be interpreted as 
the distance traveled in a hours by a car moving at x miles 
per hour. Such flexibility of representation is what gives 
algebra its great utility.

Another feature that has greatly increased the range 
of algebraic applications is the geometric representation of 
algebraic quantities. For instance, to represent the real 
numbers, a straight line is imagined that is infinite in both 
directions. An arbitrary point O can be chosen as the origin, 
representing the number 0, and another arbitrary point U 
chosen to the right of O. The segment OU (or the point U) 
then represents the unit length, or the number 1. The rest 
of the positive numbers correspond to multiples of this 
unit length—so that 2, for example, is represented by a 
segment OV, twice as long as OU and extended in the 
same direction. Similarly, the negative real numbers extend 
to the left of O. A straight line whose points are thus 
identified with the real numbers is called a number line. 
Many earlier mathematicians realized there was a relation-
ship between all points on a straight line and all real 
numbers, but it was the German mathematician Richard 
Dedekind who made this explicit as a postulate in his 
Continuity and Irrational Numbers (1872).

In the Cartesian coordinate system (named for 
Descartes) of analytic geometry, one horizontal number 
line (usually called the x-axis) and one vertical number line 
(the y-axis) intersect at right angles at their common origin 
to provide coordinates for each point in the plane. For 
example, the point on a vertical line through some partic-
ular x on the x-axis and on the horizontal line through 
some y on the y-axis is represented by the pair of real 
numbers (x, y). A similar geometric representation exists 
for the complex numbers, where the horizontal axis cor-
responds to the real numbers and the vertical axis 
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corresponds to the imaginary numbers (where the imagi-
nary unit i is equal to the square root of −1). The algebraic 
form of complex numbers is x + iy, where x represents the 
real part and iy the imaginary part.

This pairing of space and number gives a means of pair-
ing algebraic expressions, or functions, in a single variable 
with geometric objects in the plane, such as straight lines 
and circles. The result of this pairing may be thought of as 
the graph of the expression for different values of the 
variable.

Algebraic Expressions

Any of the quantities mentioned so far may be combined 
in expressions according to the usual arithmetic operations 
of addition, subtraction, and multiplication. Thus, ax + by 
and axx + bx + c are common algebraic expressions. 
However, exponential notation is commonly used to avoid 
repeating the same term in a product, so that one writes x2 
for xx and y3 for yyy. (By convention x0 = 1.) Expressions 
built up in this way from the real and complex numbers, 
the algebraic quantities a, b, c, . . ., x, y, z, and the three 
above operations are called polynomials—a word intro-
duced in the late 16th century by the French mathematician 
François Viète from the Greek polys (“many”) and the 
Latin nominem (“name” or “term”). One way of character-
izing a polynomial is by the number of different unknown, 
or variable, quantities in it. Another way of characterizing 
a polynomial is by its degree. The degree of a polynomial 
in one unknown is the largest power of the unknown 
appearing in it. The expressions ax + b, ax2 + bx + c, and 
ax3 + bx2 + cx + d are general polynomials in one unknown 
(x) of degrees 1, 2, and 3, respectively. When only one 
unknown is involved, it does not matter which letter is 
used for it. One could equally well write the above polyno-
mials as ay + b, az2 + bz + c, and at3 + bt2 + ct + d.
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Because some insight into complicated functions can 
be obtained by approximating them with simpler func-
tions, polynomials of the first degree were investigated 
early on. In particular, ax + by = c, which represents a 
straight line, and ax + by + cz = e, which represents a plane 
in three-dimensional space, were among the first algebraic 
equations studied.

Polynomials can be combined according to the three 
arithmetic operations of addition, subtraction, and multi-
plication, and the result is again a polynomial. To simplify 
expressions obtained by combining polynomials in this 
way, one uses the distributive law, as well as the commuta-
tive and associative laws for addition and multiplication. 
Until very recently a major drawback of algebra was the 
extreme tedium of routine manipulation of polynomials, 
but now a number of symbolic algebra programs make this 
work as easy as typing the expressions into a computer.

By extending the operations on polynomials to include 
division, or ratios of polynomials, one obtains the rational 
functions. Examples of such rational functions are 2/3x 
and (a + bx2)/(c + dx2 + ex5). Working with rational functions 
allows one to introduce the expression 1/x and its powers, 
1/x2, 1/x3, . . . (often written x−1, x−2, x−3, . . .). When the degree 
of the numerator of a rational function is at least as large 
as that of its denominator, it is possible to divide the 
numerator by the denominator much as one divides one 
integer by another. In this way one can write any rational 
function as the sum of a polynomial and a rational func-
tion in which the degree of the numerator is less than that 
of the denominator. For example,

(x8 - x5 + 3x3 + 2)/(x3 - 1) = x5 + 3 + 5/(x3 - 1).

Since this process reduces the degrees of the terms 
involved, it is especially useful for calculating the values of 
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rational functions and for dealing with them when they 
arise in calculus.

Solving Algebraic Equations

For theoretical work and applications, one often needs to 
find numbers that, when substituted for the unknown, 
make a certain polynomial equal to zero. Such a number is 
called a “root” of the polynomial. For example, the 
polynomial

-16t2 + 88t + 48

represents the height above Earth at t seconds of a pro-
jectile thrown straight up at 88 feet per second from the 
top of a tower 48 feet high. (The 16 in the formula comes 
from one-half the acceleration of gravity, 32 feet per sec-
ond per second.) By setting the equation equal to zero 
and factoring it as (4t − 24)(−4t − 2) = 0, the equation’s one 
positive root is found to be 6, meaning that the object 
will hit the ground about 6 seconds after it is thrown. 
(This problem also illustrates the important algebraic 
concept of the zero factor property: if ab = 0, then either 
a = 0 or b = 0.)

The theorem that every polynomial has as many 
complex roots as its degree is known as the fundamental 
theorem of algebra and was first proved in 1799 by Carl 
Friedrich Gauss.

Simple formulas exist for finding the roots of the gen-
eral polynomials of degrees one and two, and much less 
simple formulas exist for polynomials of degrees three and 
four. The French mathematician Évariste Galois discov-
ered, shortly before his death in 1832, that no such formula 
exists for a general polynomial of degree greater than four. 
Many ways exist, however, of approximating the roots of 
these polynomials.
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Solving Systems of Algebraic Equations

An extension of the study of single equations involves mul-
tiple equations that are solved simultaneously—so-called 
systems of equations. For example, the intersection of two 
straight lines, ax + by = c and Ax + By = C, can be found 
algebraically by discovering the values of x and y that 
simultaneously solve each equation. The earliest systematic 
development of methods for solving systems of equations 
occurred in ancient China. An adaptation of a problem 
from the 1st-century-CE Chinese classic Nine Chapters on 
the Mathematical Procedures illustrates how such systems 
arise. Imagine there are two kinds of wheat and that you 
have four sheaves of the first type and five sheaves of the 
second type. Although neither of these is enough to pro-
duce a bushel of wheat, you can produce a bushel by adding 
three sheaves of the first type to five of the second type, or 
you can produce a bushel by adding four sheaves of the 
first type to two of the second type. What fraction of a 
bushel of wheat does a sheaf of each type of wheat 
contain?

Using modern notation, suppose we have two types 
of wheat, respectively, and x and y represent the number of 
bushels obtained per sheaf of the first and second types, 
respectively. Then the problem leads to the system of 
equations:

3x + 5y = 1 (bushel) 

4x + 2y = 1 (bushel) 

A simple method for solving such a system is first to 
solve either equation for one of the variables. For example, 
solving the second equation for y yields y = 1/2 − 2x. The 
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right side of this equation can then be substituted for y in 
the first equation (3x + 5y = 1), and then the first equation 
can be solved to obtain x (= 3/14). Finally, this value of x can 
be substituted into one of the earlier equations to obtain 
y (= 1/14). Thus, the first type yields 3/14 bushels per sheaf 
and the second type yields 1/14. Note that the solution 
(3/14, 1/14) would be difficult to discern by graphing tech-
niques. In fact, any precise value based on a graphing 
solution may be only approximate. For example, the point 
(0.0000001, 0) might look like (0, 0) on a graph, but even 
such a small difference could have drastic consequences in 
the real world.

Rather than individually solving each possible system 
of two equations in two unknowns, the general system can 
be solved. To return to the general equations given above:

ax + by = c 

Ax + By = C 

The solutions are given by x = (Bc − bC)/(aB − Ab) and 
y = (Ca − cA)/(aB − Ab). Note that the denominator of each 
solution, (aB − Ab), is the same. It is called the determinant 
of the system, and systems in which the denominator is 
equal to zero have either no solution (in which case the 
equations represent parallel lines) or infinitely many solu-
tions (in which case the equations represent the same line).

One can generalize simultaneous systems to consider 
m equations in n unknowns. In this case, one usually uses 
subscripted letters x1, x2, . . ., xn for the unknowns and a1, 1, 
. . ., a1, n; a2, 1, . . ., a2, n; . . .; am, 1, . . ., am, n for the coefficients of 
each equation, respectively. When n = 3 one is dealing with 
planes in three-dimensional space, and for higher values of 
n one is dealing with hyperplanes in spaces of higher 
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dimension. In general, n equations in m unknowns have 
infinitely many solutions when m < n and no solutions 
when m > n. The case m = n is the only case where there can 
exist a unique solution.

Large systems of equations are generally handled with 
matrices, especially as implemented on computers. 
Matrices are discussed below in the context of linear 
algebra.

Linear Algebra

Linear algebra is a mathematical discipline that deals with 
vectors and matrices and, more generally, with vector spaces 
and linear transformations. Unlike other parts of mathe-
matics that are frequently invigorated by new ideas and 
unsolved problems, linear algebra is very well understood. 
Its value lies in its many applications, from mathematical 
physics to modern algebra and coding theory.

Vectors and Vector Spaces

Linear algebra usually starts with the study of vectors, 
which are understood as quantities having both magni-
tude and direction. Vectors lend themselves readily to 
physical applications. For example, consider a solid object 
that is free to move in any direction. When two forces act 
at the same time on this object, they produce a combined 
effect that is the same as a single force. To picture this, 
represent the two forces v and w as arrows; the direction 
of each arrow gives the direction of the force, and its 
length gives the magnitude of the force. The single force 
that results from combining v and w is called their sum, 
written v + w. In the figure on page 79, v + w corresponds 
to the diagonal of the parallelogram formed from adjacent 
sides represented by v and w.
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Vectors are often expressed using coordinates. For 
example, in two dimensions a vector can be defined by a 
pair of coordinates (a1, a2) describing an arrow going from 
the origin (0, 0) to the point (a1, a2). If one vector is (a1, a2) 
and another is (b1, b2), then their sum is (a1 + b1, a2 + b2). This 
gives the same result as the parallelogram (see the figure on 
page 80).

In three dimensions a vector is expressed using three 
coordinates (a1, a2, a3), and this idea extends to any number 
of dimensions.

Representing vectors as arrows in two or three dimen-
sions is a starting point, but linear algebra has been applied 
in contexts where this is no longer appropriate. For example, 
in some types of differential equations the sum of two 
solutions gives a third solution, and any constant multiple 

One method of adding and subtracting vectors is to place their tails together 
and then supply two more sides to form a parallelogram. The vector from their 
tails to the opposite corner of the parallelogram is equal to the sum of the origi-
nal vectors. The vector between their heads (starting from the vector being 
subtracted) is equal to their difference. Encyclopædia Britannica, Inc.
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of a solution is also a solution. In such cases the solutions 
can be treated as vectors, and the set of solutions is a vector 
space in the following sense. In a vector space, any two 
vectors can be added together to give another vector, 
and vectors can be multiplied by numbers to give “shorter” 
or “longer” vectors. The numbers are called scalars because 
in early examples they were ordinary numbers that altered 
the scale, or length, of a vector. For example, if v is a vector 
and 2 is a scalar, then 2v is a vector in the same direction as 
v but twice as long. In many modern applications of linear 
algebra, scalars are no longer ordinary real numbers, but 
the important thing is that they can be combined among 
themselves by addition, subtraction, multiplication, and 

Vectors can be added together by first placing their tails at the origin of a 
coordinate system such that their lengths and directions are unchanged. Then, 
the coordinates of their heads are added pairwise; e.g., in two dimensions, 
their x-coordinates and their y-coordinates are added separately to obtain the 
resulting vector sum. As shown by the dotted lines, this vector sum coincides 
with one diagonal of the parallelogram formed with the original vectors. 
Encyclopædia Britannica, Inc.
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division. For example, the scalars may be complex num-
bers, or they may be elements of a finite field such as the 
field having only the two elements 0 and 1, where 1 + 1 = 0. 
The coordinates of a vector are scalars, and when these sca-
lars are from the field of two elements, each coordinate is 
0 or 1, so each vector can be viewed as a particular sequence 
of 0s and 1s. This is very useful in digital processing, where 
such sequences are used to encode and transmit data.

Linear Transformations and Matrices

Vector spaces are one of the two main ingredients of linear 
algebra—the other being linear transformations (or “oper-
ators” in the parlance of physicists). Linear transformations 
are functions that send, or “map,” one vector to another 
vector. The simplest example of a linear transformation 
sends each vector to c times itself, where c is some con-
stant. Thus, every vector remains in the same direction, 
but all lengths are multiplied by c. Another example is a 
rotation, which leaves all lengths the same but alters the 
directions of the vectors. Linear refers to the fact that the 
transformation preserves vector addition and scalar mul-
tiplication. This means that if T is a linear transformation 
sending a vector v to T(v), then for any vectors v and w, 
and any scalar c, the transformation must satisfy the 
properties T(v + w) = T(v) + T(w) and T(cv) = cT(v).

When doing computations, linear transformations are 
treated as matrices. A matrix is a rectangular arrangement 
of scalars, and two matrices can be added or multiplied. 
The product of two matrices shows the result of doing one 
transformation followed by another (from right to left), 
and if the transformations are done in reverse order the 
result is usually different. Thus, the product of two matrices 
depends on the order of multiplication. If S and T are 
square matrices (matrices with the same number of rows 
as columns) of the same size, then ST and TS are rarely 
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equal. The matrix for a given transformation is found 
using coordinates. For example, in two dimensions a linear 
transformation T can be completely determined simply by 
knowing its effect on any two vectors v and w that have 
different directions. Their transformations T(v) and T(w) 
are given by two coordinates. Therefore, only four coordi-
nates, two for T(v) and two for T(w), are needed to specify 
T. These four coordinates are arranged in a 2-by-2 matrix. 
In three dimensions, three vectors u, v, and w are needed, 
and to specify T(u), T(v), and T(w), one needs three coordi-
nates for each. This results in a 3-by-3 matrix.

Eigenvectors

When studying linear transformations, it is extremely 
useful to find nonzero vectors whose direction is left 
unchanged by the transformation. These are called eigen-
vectors (also known as characteristic vectors). If v is an 
eigenvector for the linear transformation T, then T(v) = λv 
for some scalar λ. This scalar is called an eigenvalue. The 
eigenvalue of greatest absolute value, along with its asso-
ciated eigenvector, have special significance for many 
physical applications. This is because whatever process 
is represented by the linear transformation often acts 
repeatedly—feeding output from the last transformation 
back into another transformation—which results in every 
arbitrary (nonzero) vector converging on the eigenvector 
associated with the largest eigenvalue, though rescaled 
by a power of the eigenvalue. In other words, the long-
term behaviour of the system is determined by its 
eigenvectors.

Finding the eigenvectors and eigenvalues for a linear 
transformation is often done using matrix algebra, first 
developed in the mid-19th century by the English mathe-
matician Arthur Cayley. His work formed the foundation 
for modern linear algebra.
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Modern Algebra

Modern algebra, also called abstract algebra, is concerned 
with the general algebraic structure of various sets (such 
as real numbers, complex numbers, matrices, and vector 
spaces), rather than rules and procedures for manipulating 
their individual elements.

During the second half of the 19th century, various 
important mathematical advances led to the study of sets 
in which any two elements can be added or multiplied 
together to give a third element of the same set. The 
elements of the sets concerned could be numbers, func-
tions, or some other objects. As the techniques involved 
were similar, it seemed reasonable to consider the sets, 
rather than their elements, to be the objects of primary 
concern. A definitive treatise, Modern Algebra, was written 
in 1930 by the Dutch mathematician Bartel van der 
Waerden, and the subject has had a deep effect on almost 
every branch of mathematics.

Basic Algebraic Structures

Fields

In itself a set is not very useful, being little more than a 
well-defined collection of mathematical objects. 
However, when a set has one or more operations (such 
as addition and multiplication) defined for its elements, it 
becomes very useful. If the operations satisfy familiar 
arithmetic rules (such as associativity, commutativity, 
and distributivity) the set will have a particularly “rich” 
algebraic structure. Sets with the richest algebraic 
structure are known as fields. Familiar examples of 
fields are the rational numbers (fractions a/b where a 
and b are positive or negative whole numbers), the real 
numbers (rational and irrational numbers), and the 
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complex numbers (numbers of the form a + bi where a 
and b are real numbers and i2 = −1). Each of these is 
important enough to warrant its own special symbol: 
null for the rationals, null for the reals, and null for the 
complex numbers. The term field in its algebraic sense is 
quite different from its use in other contexts, such as 
vector fields in mathematics or magnetic fields in phys-
ics. Other languages avoid this conflict in terminology. 
For example, a field in the algebraic sense is called a corps 
in French and a Körper in German, both words meaning 
“body.”

In addition to the fields mentioned above, which all 
have infinitely many elements, there exist fields having 
only a finite number of elements (always some power of a 
prime number), and these are of great importance, par-
ticularly for discrete mathematics. In fact, finite fields 
motivated the early development of abstract algebra. The 
simplest finite field has only two elements, 0 and 1, where 
1 + 1 = 0. This field has applications to coding theory and 
data communication.

Structural Axioms

A set that satisfies all 10 of the basic rules, or axioms, for 
addition and multiplication, as shown in the table of field 
axioms, is called a field. A set satisfying only axioms 1–7 is 
called a ring, and if it also satisfies axiom 9 it is called a ring 
with unity. A ring satisfying the commutative law of multi-
plication (axiom 8) is known as a commutative ring. When 
axioms 1–9 hold and there are no proper divisors of zero (i.e., 
whenever ab = 0 either a = 0 or b = 0), a set is called an integral 
domain. For example, the set of integers {. . ., −2, −1, 0, 1, 2, . . .} 
is a commutative ring with unity, but it is not a field, because 
axiom 10 fails. When only axiom 8 fails, a set is known as a 
division ring or skew field.
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Field Axioms

axiom 1
Closure: the combination (hereafter indicated by 
addition or multiplication) of any two elements 
in the set produces an element in the set.

axiom 2 Addition is commutative: a + b = b + a for any 
elements in the set.

axiom 3
Addition is associative: a + (b + c) = (a + b) + c for 
any elements in the set.

axiom 4 Additive identity: there exists an element 0 
such that a + 0 = a for every element in the set.

axiom 5 Additive inverse: for each element a in the set, 
there exists an element -a such that a + (-a) = 0.

axiom 6
Multiplication is associative: a(bc) = (ab)c for 
any elements in the set.

axiom 7 Distributive law: a(b + c) = ab + ac and (a + b)c = 
ac + bc for any elements in the set.

axiom 8
Multiplication is commutative: ab = ba for any 
elements in the set.

axiom 9
Multiplicative identity: there exists an element 
1 such that 1a = a for any element in the set.

axiom 10 Multiplicative inverse: for each element a in the 
set, there exists an element a-1 such that aa-1 = 1.

Quaternions and Abstraction

The discovery of rings having noncommutative multipli-
cation was an important stimulus in the development of 
modern algebra. For example, the set of n-by-n matrices is 
a noncommutative ring, but since there are nonzero matrices 
without inverses, it is not a division ring. The first example 
of a noncommutative division ring was the quaternions. 
These are numbers of the form a + bi + cj + dk, where a, b, c, 
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and d are real numbers and their coefficients 1, i, j, and k 
are unit vectors that define a four-dimensional space. 
Quaternions were invented in 1843 by the Irish mathema-
tician William Rowan Hamilton to extend complex 
numbers from the two-dimensional plane to three dimen-
sions in order to describe physical processes 
mathematically. Hamilton defined the following rules for 
quaternion multiplication: i2 = j2 = k2 = −1, ij = k = −ji, 
jk = i = −kj, and ki = j = −ik. 

After struggling for some years to discover consistent 
rules for working with his higher-dimensional complex 
numbers, inspiration struck while he was strolling in his 
hometown of Dublin, and he stopped to inscribe these for-
mulas on a nearby bridge. In working with his quaternions, 
Hamilton laid the foundations for the algebra of matrices 
and led the way to more abstract notions of numbers and 
operations.

Rings

Rings in Number Theory

In another direction, important progress in number theory 
by German mathematicians such as Ernst Kummer, Richard 
Dedekind, and Leopold Kronecker used rings of algebraic 
integers. (An algebraic integer is a complex number satisfy-
ing an algebraic equation of the form xn + a1x

n−1 + . . . + an = 0 
where the coefficients a1, . . ., a

n are integers.) Their work 
introduced the important concept of an ideal in such 
rings, so called because it could be represented by “ideal 
elements” outside the ring concerned. In the late 19th 
century, the German mathematician David Hilbert used 
ideals to solve an old problem about polynomials (algebraic 
expressions using many variables x1, x2, x3, . . .). The problem 
was to take a finite number of variables and decide which 
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ideals could be generated by at most finitely many polyno-
mials. Hilbert’s method solved the problem and brought 
an end to further investigation by showing that they all 
had this property. His abstract “hands off ” approach led 
the German mathematician Paul Gordon to exclaim “Das 
ist nicht Mathematik, das ist Theologie!” (“That is not mathe-
matics, that is theology!”). The power of modern algebra 
had arrived.

Rings can arise naturally in solving mathematical 
problems, as shown in the following example: Which 
whole numbers can be written as the sum of two squares? 
In other words, when can a whole number n be written as 
a2 + b2? To solve this problem, it is useful to factor n into 
prime factors, and it is also useful to factor a2 + b2 as (a + bi)
(a − bi), where i2 = −1. The question can then be rephrased in 
terms of numbers a + bi where a and b are integers. This set 
of numbers forms a ring, and, by considering factorization 
in this ring, the original problem can be solved. Rings of 
this sort are very useful in number theory.

Rings in Algebraic Geometry

Rings are used extensively in algebraic geometry. Consider 
a curve in the plane given by an equation in two variables 
such as y2 = x3 + 1. The curve shown in the figure on page 88 
consists of all points (x, y) that satisfy the equation. For 
example, (2, 3) and (−1, 0) are points on the curve. Every 
algebraic function in two variables assigns a value to every 
point of the curve. For example, xy + 2x assigns the value 
10 to the point (2, 3) and −2 to the point (−1, 0). Such func-
tions can be added and multiplied together, and they form 
a ring that can be used to study the original curve. 
Functions such as y2 and x3 + 1 that agree with each other at 
every point of the curve are treated as the same function, 
and this allows the curve to be recovered from the ring. 
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Geometric problems can therefore be transformed into 
algebraic problems, solved using techniques from modern 
algebra, and then transformed back into geometric results.

The development of these methods for the study of 
algebraic geometry was one of the major advances in math-
ematics during the 20th century. Pioneering work in this 
direction was done in France by the mathematicians 
André Weil in the 1950s and Alexandre Grothendieck in 
the 1960s.

Group Theory

In addition to developments in number theory and algebraic 
geometry, modern algebra has important applications to 
symmetry by means of group theory. The word group often 
refers to a group of operations, possibly preserving the 
symmetry of some object or an arrangement of like 
objects. In the latter case the operations are called permu-
tations, and one talks of a group of permutations, or simply 

A simple algebraic curve. Encyclopædia Britannica, Inc.
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a permutation group. If α and β are operations, their com-
posite (α followed by β) is usually written αβ, and their 
composite in the opposite order (β followed by α) is written 
βα. In general, αβ and βα are not equal. A group can also be 
defined axiomatically as a set with multiplication that 
satisfies the axioms for closure, associativity, identity ele-
ment, and inverses (axioms 1, 6, 9, and 10). In the special 
case where αβ and βα are equal for all α and β, the group is 
called commutative, or Abelian; for such Abelian groups, 
operations are sometimes written α + β instead of αβ, using 
addition in place of multiplication.

The first application of group theory was by the French 
mathematician Évariste Galois to settle an old problem 
concerning algebraic equations. The question was to 
decide whether a given equation could be solved using 
radicals (meaning square roots, cube roots, and so on, 
together with the usual operations of arithmetic). By using 
the group of all “admissible” permutations of the solu-
tions, now known as the Galois group of the equation, 
Galois showed whether or not the solutions could be 
expressed in terms of radicals. His was the first important 
use of groups, and he was the first to use the term in its 
modern technical sense. It was many years before his work 
was fully understood, in part because of its highly innova-
tive character and in part because he was not around to 
explain his ideas—due to his death in a duel at the age of 
20. The subject is now known as Galois theory.

Group theory developed first in France and then in 
other European countries during the second half of the 
19th century. One early and essential idea was that many 
groups, and in particular all finite groups, could be decom-
posed into simpler groups in an essentially unique way. 
These simpler groups could not be decomposed further, 
and so they were called “simple,” although their lack of 
further decomposition often makes them rather complex. 
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This is rather like decomposing a whole number into a 
product of prime numbers or a molecule into atoms.

In 1963 a landmark paper by the American mathemati-
cians Walter Feit and John Thompson showed that if a 
finite simple group is not merely the group of rotations 
of a regular polygon, then it must have an even number of 
elements. This result was immensely important because it 
showed that such groups had to have some elements x 
such that x2 = 1. Using such elements enabled mathemati-
cians to get a handle on the structure of the whole group. 
The paper led to an ambitious program for finding all 
finite simple groups that was completed in the early 1980s. 
It involved the discovery of several new simple groups, 
one of which, the “Monster,” cannot operate in fewer than 
196,883 dimensions. The Monster still stands as a challenge 
today because of its intriguing connections with other 
parts of mathematics.
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GREAT ALGEBRAISTS

CHAPTER 2

 The discipline of algebra can be seen as passing through 
three periods in its history. Early algebraists—from 

ancient Egyptian and Babylonian scribes through the 
great Greek and Islamic mathematicians to the thinkers 
of the European Renaissance—laboured to produce what 
are today commonly accepted notions of mathematics, 
such as number, the solvable equation, and the use of 
symbols to represent unknown quantities. The classical 
discipline of algebra began at the end of the 16th century 
with the work of the French mathematician François 
Viète, who presented the fi rst consistent, coherent, and 
systematic conception of an algebraic equation. Finally, 
around 1930 the Dutch mathematician Bartel Van der 
Waerden presented a new image of algebra focused on 
the properties of algebraic structures and the relation-
ships among these structures. Mathematicians who 
contributed to these three periods are presented in this 
chapter.   

 EARLY ALGEBRAISTS (THROUGH 
THE 16TH CENTURY)   

 Bhaskara II 
 (b. 1114, Biddur, India—d.  c.  1185, probably Ujjain)

Bhaskara II (also called Bhaskaracarya, or Bhaskara The 
Learned), the leading mathematician of the 12th century, 
wrote the fi rst work with full and systematic use of the 
decimal number system. 
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Bhaskara II was the lineal successor of the noted 
Indian mathematician Brahmagupta (598–c. 665) as head 
of an astronomical observatory at Ujjain, the leading 
mathematical centre of ancient India.

In his mathematical works—particularly Lilavati 
(“The Beautiful”) and Bijaganita (“Seed Counting”)—he 
not only used the decimal system but also compiled prob-
lems from Brahmagupta and others. He filled many of the 
gaps in Brahmagupta’s work, especially in obtaining a gen-
eral solution to the Pell equation (x2 = 1 + py2) and in giving 
many particular solutions. Bhaskara II anticipated the 
modern convention of signs (minus by minus makes plus, 
minus by plus makes minus) and evidently was the first to 
gain some understanding of the meaning of division by 
zero, for he specifically stated that the value of 30 is an 
infinite quantity. However, his understanding seems to 
have been limited, for he also stated wrongly that a⁄0 × 0 = a. 
Bhaskara II used letters to represent unknown quantities, 
much as in modern algebra, and solved indeterminate equa-
tions of 1st and 2nd degrees. He reduced quadratic 
equations to a single type and solved them and investi-
gated regular polygons up to those having 384 sides, thus 
obtaining a good approximate value of π = 3.141666.

In other of his works, notably Siddhantasiromani (“Head 
Jewel of Accuracy”) and Karanakutuhala (“Calculation of 
Astronomical Wonders”), he wrote on his astronomical 
observations of planetary positions, conjunctions, 
eclipses, cosmography, geography, and the mathematical 
techniques and astronomical equipment used in these 
studies. Bhaskara II was also a noted astrologer, and 
tradition has it that he named his first work, Lilavati, 
after his daughter in order to console her. His astrological 
meddling coupled with an unfortunate twist of fate is 
said to have deprived her of her only chance for marriage 
and happiness.
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Brahmagupta
(b. 598—d. c. 665, possibly Bhillamala [modern Bhinmal], 

Rajasthan, India)

Brahmagupta was one of the most accomplished of the 
ancient Indian astronomers. He also had a profound and 
direct influence on Islamic and Byzantine astronomy.

Brahmagupta was an orthodox Hindu, and his reli-
gious views—particularly the Hindu yuga system of 
measuring the ages of mankind—influenced his work. He 
severely criticized Jain cosmological views and other 
heterodox ideas, such as the view of Aryabhata I (b. 476) 
that the Earth is a spinning sphere, a view that was widely 
disseminated by Brahmagupta’s contemporary and rival 
Bhaskara I.

Brahmagupta’s fame rests mostly on his Brahma-
sphuta-siddhanta (628; “Correctly Established Doctrine of 
Brahma”), an astronomical work that he probably wrote 
while living in Bhillamala, then the capital of the Gurjara-
Pratihara dynasty. It was translated into Arabic in Baghdad 
about 771 and had a major impact on Islamic mathematics 
and astronomy. Late in his life, Brahmagupta wrote 
Khandakhadyaka (665; “A Piece Eatable”), an astronomical 
handbook that employed Aryabhata’s system of starting 
each day at midnight.

In addition to expounding on traditional Indian 
astronomy in his books, Brahmagupta devoted several 
chapters of Brahma-sphuta-siddhanta to mathematics. In 
chapters 12 and 18 in particular, he laid the foundations of 
the two major fields of Indian mathematics, pati-ganita 
(“mathematics of procedures,” or algorithms) and bija-
ganita (“mathematics of seeds,” or equations), which 
roughly correspond to arithmetic (including mensuration) 
and algebra, respectively. Chapter 12 is simply named 
“Mathematics,” probably because the “basic operations,” 
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such as arithmetic operations and proportions, and the 
“practical mathematics,” such as mixture and series, 
treated there occupied the major part of the mathematics 
of Brahmagupta’s milieu. He stressed the importance of 
these topics as a qualification for a mathematician, or 
calculator (ganaka). Chapter 18, “Pulverizer,” is named 
after the first topic of the chapter, probably because no 
particular name for this area (algebra) existed yet.

Among his major accomplishments, Brahmagupta 
defined zero as the result of subtracting a number from 
itself and gave rules for arithmetical operations among 
negative numbers (“debts”) and positive numbers (“prop-
erty”), as well as surds. He also gave partial solutions to 
certain types of indeterminate equations of the second 
degree with two unknown variables. Perhaps his most 
famous result was a formula for the area of a cyclic quadri-
lateral (a four-sided polygon whose vertices all reside on 
some circle) and the length of its diagonals in terms of the 
length of its sides. He also gave a valuable interpolation 
formula for computing sines.

Girolamo Cardano
(b. Sept. 24, 1501, Pavia, duchy of Milan [Italy]—d. Sept. 21, 1576, Rome)

Girolamo Cardano (known in English as Jerome Cardan) 
was an Italian physician, mathematician, and astrologer 
who gave the first clinical description of typhus fever 
and whose book Ars magna (The Great Art; or, The Rules 
of Algebra) is one of the cornerstones in the history of 
algebra.

Educated at the universities of Pavia and Padua, 
Cardano received his medical degree in 1526. In 1534 he 
moved to Milan, where he lived in great poverty until 
he became a lecturer in mathematics. Admitted to the 
college of physicians in 1539, he soon became rector. His 
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fame as a physician 
grew rapidly, and many 
of Europe’s crowned 
heads solicited his 
services; however, he 
valued his indepen-
dence too much to 
become a court phy-
sician. In 1543 he 
accepted a profes-
sorship in medicine 
in Pavia.

Cardano was the 
most outstanding 
mathematician of his 
time. In 1539 he pub-
lished two books on 
arithmetic embodying 
his popular lectures, 
the more important 
being Practica arith-
metica et mensurandi singularis (“Practice of Mathematics 
and Individual Measurements”). His Ars magna (1545) con-
tained the solution of the cubic equation, for which he 
was indebted to the Venetian mathematician Niccolò 
Tartaglia, and also the solution of the quartic equation 
found by Cardano’s former servant, Lodovico Ferrari. His 
Liber de ludo aleae (“The Book on Games of Chance”) pres-
ents the first systematic computations of probabilities, a 
century before Blaise Pascal and Pierre de Fermat. 
Cardano’s popular fame was based largely on books 
dealing with scientific and philosophical questions, espe-
cially De subtilitate rerum (“The Subtlety of Things”), a 
collection of physical experiments and inventions, inter-
spersed with anecdotes.

Girolamo Cardano. SSPL/Getty Images
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Cardano’s favourite son, having married a disreputable 
girl, poisoned her and was executed in 1560. Cardano never 
recovered from the blow. From 1562 he was a professor 
in Bologna, but in 1570 he was suddenly arrested on the 
accusation of heresy. After several months in jail, he was 
permitted to abjure privately, but he lost his position and 
the right to publish books. Before his death he completed 
his autobiography, De propria vita (The Book of My Life).

Diophantus of Alexandria
(fl. c. 250 CE)

Diophantus was a Greek mathematician, famous for his 
work in algebra.

What little is known of Diophantus’s life is circum-
stantial. From the appellation “of Alexandria” it seems 
that he worked in the main scientific centre of the ancient 
Greek world. Because he is not mentioned before the 
4th century, it seems likely that he flourished during 
the 3rd century. An arithmetic epigram from the 
Anthologia Graeca of late antiquity, purported to retrace 
some landmarks of his life (marriage at 33, birth of his son 
at 38, death of his son four years before his own at 84), may 
well be contrived. Two works have come down to us under 
his name, both incomplete. The first is a small fragment 
on polygonal numbers (a number is polygonal if that same 
number of dots can be arranged in the form of a regular 
polygon). The second, a large and extremely influential 
treatise upon which all the ancient and modern fame of 
Diophantus reposes, is his Arithmetica. Its historical 
importance is twofold: it is the first known work to employ 
algebra in a modern style, and it inspired the rebirth of 
number theory.

The Arithmetica begins with an introduction addressed 
to Dionysius—arguably St. Dionysius of Alexandria. After 
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some generalities about numbers, Diophantus explains 
his symbolism—he uses symbols for the unknown (corre-
sponding to our x) and its powers, positive or negative, as 
well as for some arithmetic operations—most of these 
symbols are clearly scribal abbreviations. This is the first 
and only occurrence of algebraic symbolism before the 
15th century. After teaching multiplication of the powers 
of the unknown, Diophantus explains the multiplication of 
positive and negative terms and then how to reduce an 
equation to one with only positive terms (the standard 
form preferred in antiquity). With these preliminaries out 
of the way, Diophantus proceeds to the problems. Indeed, 
the Arithmetica is essentially a collection of problems with 
solutions, about 260 in the part still extant.

The introduction also states that the work is divided into 
13 books. Six of these books were known in Europe in the late 
15th century, transmitted in Greek by Byzantine scholars and 
numbered from I to VI. Four other books were discovered in 
1968 in a 9th-century Arabic translation by Qusta ibn Luqa. 
However, the Arabic text lacks mathematical symbolism, 
and it appears to be based on a later Greek commentary—
perhaps that of Hypatia (c. 370–415)—that diluted 
Diophantus’s exposition. We now know that the number-
ing of the Greek books must be modified: the Arithmetica 
thus consists of Books I to III in Greek, Books IV to VII 
in Arabic, and, presumably, Books VIII to X in Greek (the 
former Greek Books IV to VI). Further renumbering is 
unlikely. It is fairly certain that the Byzantines knew only 
the six books they transmitted and the Arabs no more 
than Books I to VII in the commented version.

The problems of Book I are not characteristic, being 
mostly simple problems used to illustrate algebraic reck-
oning. The distinctive features of Diophantus’s problems 
appear in the later books: they are indeterminate (having 
more than one solution), are of the second degree or are 
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reducible to the second degree (the highest power on 
variable terms is 2, i.e., x2), and end with the determination 
of a positive rational value for the unknown that will 
make a given algebraic expression a numerical square or 
sometimes a cube. (Throughout his book Diophantus uses 
“number” to refer to what are now called positive, rational 
numbers.; thus, a square number is the square of some 
positive, rational number.) Books II and III also teach 
general methods. In three problems of Book II it is 
explained how to represent: (1) any given square number 
as a sum of the squares of two rational numbers; (2) any 
given nonsquare number, which is the sum of two known 
squares, as a sum of two other squares; and (3) any given 
rational number as the difference of two squares. While 
the first and third problems are stated generally, the 
assumed knowledge of one solution in the second problem 
suggests that not every rational number is the sum of two 
squares. Diophantus later gives the condition for an integer: 
the given number must not contain any prime factor of the 
form 4n + 3 raised to an odd power, where n is a non-negative 
integer. Such examples motivated the rebirth of number 
theory. Although Diophantus is typically satisfied to obtain 
one solution to a problem, he occasionally mentions in 
problems that an infinite number of solutions exists.

In Books IV to VII Diophantus extends basic methods 
such as those outlined above to problems of higher degrees 
that can be reduced to a binomial equation of the first or 
second degree. The prefaces to these books state that 
their purpose is to provide the reader with “experience 
and skill.” While this recent discovery does not increase 
knowledge of Diophantus’s mathematics, it does alter the 
appraisal of his pedagogical ability. Books VIII and IX 
(presumably Greek Books IV and V) solve more difficult 
problems, even if the basic methods remain the same. For 
instance, one problem involves decomposing a given 



99

integer into the sum of two squares that are arbitrarily 
close to one another. A similar problem involves decom-
posing a given integer into the sum of three squares; in it, 
Diophantus excludes the impossible case of integers of 
the form 8n + 7 (again, n is a non-negative integer). Book X 
(presumably Greek Book VI) deals with right-angled tri-
angles with rational sides and subject to various further 
conditions.

The contents of the three missing books of the 
Arithmetica can be surmised from the introduction, where—
after saying that the reduction of a problem should “if 
possible” conclude with a binomial equation—Diophantus 
adds that he will “later on” treat the case of a trinomial 
equation, a promise not fulfilled in the extant part.

Although he had limited algebraic tools at his disposal, 
Diophantus managed to solve a great variety of problems, 
and the Arithmetica inspired Arabic mathematicians such 
as al-Karaji (c. 980–1030) to apply his methods. The most 
famous extension of Diophantus’s work was by Pierre de 
Fermat (1601–65), the founder of modern number theory. 
In the margins of his copy of the Arithmetica, Fermat wrote 
various remarks, proposing new solutions, corrections, 
and generalizations of Diophantus’s methods—as well 
as some conjectures such as Fermat’s last theorem, which 
occupied mathematicians for generations to come. 
Indeterminate equations restricted to integral solutions 
have come to be known, though inappropriately, as 
Diophantine equations.

Lodovico Ferrari
(b. Feb. 2, 1522, Bologna, Papal States [Italy]—d. Oct. 5, 1565, Bologna)

Italian mathematician Lodovico Ferrari (also spelled 
Ludovico Ferraro) was the first to find an algebraic solu-
tion to the biquadratic, or quartic, equation (an algebraic 
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equation that contains the fourth power of the unknown 
quantity but no higher power).

From a poor family, Ferrari was taken into the service 
of the noted Italian mathematician Gerolamo Cardano 
as an errand boy at the age of 15. By attending Cardano’s 
lectures, he learned Latin, Greek, and mathematics. In 
1540 he succeeded Cardano as public mathematics lec-
turer in Milan, at which time he found the solution of the 
quartic equation, later published in Cardano’s Ars magna 
(1545; “Great Art”). The publication of Ars magna brought 
Ferrari into a celebrated controversy with the noted Italian 
mathematician Niccolò Tartaglia over the solution of the 
cubic equation. After six printed challenges and counter-
challenges, Ferrari and Tartaglia met in Milan on Aug. 10, 
1548, for a public mathematical contest, of which Ferrari 
was declared the winner. This success brought him imme-
diate fame, and he was deluged with offers for various 
positions. He accepted that from Cardinal Ercole 
Gonzaga, regent of Mantua, to become supervisor of tax 
assessments, an appointment that soon made him wealthy. 
Later, ill health and a quarrel with the cardinal forced 
him to give up his lucrative position. He then accepted a 
professorship in mathematics at the University of Bologna, 
where he died shortly thereafter.

Scipione Ferro
(b. 1465, Bologna—d. 1526, Bologna, Papal States)

Scipione Ferro (also called Dal Ferro) was an Italian mathe-
matician who is believed to have found a solution to the cubic 
equation x3 + px = q where p and q are positive numbers.

Ferro attended the University of Bologna and, in 1496, 
accepted a position at the university as a lecturer in arith-
metic and geometry. He remained at the university until 
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his death. Although none of his work survives, he is known 
to have influenced the study of fractions with irrational 
denominators.

al-Karaji
(b. c. 980, most likely Karaj, Persia, rather than Karkh, near Baghdad, 

Iraq—d. c. 1030)

Abu Bakr ibn Muhammad ibn al-Husayn al-Karaji was a 
mathematician and engineer who held an official position 
in Baghdad (c. 1010–1015), perhaps culminating in the 
position of vizier. During this time he wrote his three 
main works, al-Fakhri fī’l-jabr wa’l-muqabala (“Glorious on 
Algebra”), al-Badi‘ fī’l-hisab (“Wonderful on Calculation”), 
and al-Kāfī fī’l-hisāb (“Sufficient on Calculation”). A now 
lost work of his contained the first description of what 
later became known as Pascal’s triangle.

Al-Karaji combined tradition and novelty in his math-
ematical exposition. Like his Arabic predecessors, he did 
not use symbolism—even writing numbers as words rather 
than using Indian numerals (except for large numbers and 
in numerical tables). However, with his writings Arabic 
algebra began to free itself from the early tradition of 
illustrating formulas and the resolutions of equations 
with geometric diagrams.

As part of his official duties, al-Karaji composed his 
Sufficient, an arithmetic textbook for civil servants on 
calculating with integers and fractions (in both base 10 
and base 60), extracting square roots, and determining 
areas and volumes. He also composed a small and very 
elementary compendium of basic algebra.

The Glorious and the Wonderful are more advanced 
algebraic texts and contain a large collection of problems. 
In particular, the Wonderful contains a useful introduction 
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to the basic algebraic methods of Diophantus of Alexandria 
(fl. c. 250).

Although much of his work was taken from others’ 
writings, there is no doubt that al-Karaji was an able math-
ematician, and traces of his influence were frequent in the 
following centuries. However, the quality of his work was 
uneven. He seems to have worked too hastily at times, as 
he confessed in the closing words of the Sufficient.

After leaving Baghdad for Persia, al-Karaji wrote an 
engineering work on drilling wells and building aqueducts.

al-Khwa-rizmi-

(b. c. 780, Baghdad, Iraq—d. c. 850)

Muh. ammad ibn Mu-sa- al-Khwa- rizmı- was a Muslim math-
ematician and astronomer whose major works introduced 
Hindu-Arabic numerals and the concepts of algebra into 
European mathematics. Latinized versions of his name 
and of his most famous book title live on in the terms 
algorithm and algebra.

Al-Khwa-rizmı- lived in Baghdad, where he worked at the 
“House of Wisdom” (Dar al-Hikma) under the caliphate of 
al-Ma’mun. (The House of Wisdom acquired and translated 
scientific and philosophic treatises, particularly Greek, as 
well as publishing original research.) Al-Khwa- rizmı-’s work 
on elementary algebra, al-Kitab al-mukhtasar fī hisab al-jabr 
wa’l-muqabala (“The Compendious Book on Calculation by 
Completion and Balancing”), was translated into Latin in 
the 12th century, from which the title and term Algebra 
derives. Algebra, as was described in chapter 1, is a compi-
lation of rules, together with demonstrations, for finding 
solutions of linear and quadratic equations based on intui-
tive geometric arguments—rather than the abstract notation 
now associated with the subject. Its systematic, demonstra-
tive approach distinguishes it from earlier treatments of the 
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subject. It also contains sections on calculating areas and vol-
umes of geometric figures and on the use of algebra to solve 
inheritance problems according to proportions prescribed 
by Islamic law. Elements within the work can be traced from 
Babylonian mathematics of the early 2nd millennium BCE 
through Hellenistic, Hebrew, and Hindu treatises.

In the 12th century, a second work by al-Khwa- rizmı-

introduced Hindu-Arabic numerals and their arithmetic to 
the West. It is preserved only in a Latin translation, Algoritmi 
de numero Indorum (“Al-Khwarizmi Concerning the Hindu 
Art of Reckoning”). From the name of the author, rendered 
in Latin as algoritmi, originated the term algorithm.

A third major book was his Kitab surat al-ard (“The 
Image of the Earth”; translated as Geography), which pre-
sented the coordinates of localities in the known world 
based, ultimately, on those in the Geography of Ptolemy 
(fl. 127–145 CE) but with improved values for the length of 
the Mediterranean Sea and the location of cities in Asia 
and Africa. He also assisted in the construction of a world 
map for al-Ma’mun and participated in a project to deter-
mine the circumference of the Earth, which had long been 
known to be spherical, by measuring the length of a degree 
of a meridian through the plain of Sinjar in Iraq.

Finally, al-Khwa- rizmı- also compiled a set of astronom-
ical tables (Zīj), based on a variety of Hindu and Greek 
sources. This work included a table of sines, evidently for 
a circle of radius 150 units. Like his treatises on algebra 
and Hindu-Arabic numerals, this astronomical work (or 
an Andalusian revision thereof) was translated into Latin.

Liu Hui
(fl. c. 263 CE, China)

All that is known about the life of Chinese mathematician 
Liu Hui is that he lived in the northern Wei 
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kingdom during the 3rd century CE. His fame rests on the 
commentary he completed in 263 on Jiuzhang suanshu (The 
Nine Chapters on the Mathematical Art)—a mathematical 
canon of the 1st century BCE or CE that played a similar 
role in the East to Euclid’s Elements in the West. Liu’s com-
mentary on The Nine Chapters proved the correctness of its 
algorithms. These proofs are the earliest-known Chinese 
proofs in the contemporary sense. However, in contrast to 
authors of ancient Greek mathematical texts, Liu did not 
set out to prove theorems so much as to establish the cor-
rectness of algorithms. For example, he rigorously proved 
algorithms for determining the area of circles and the vol-
ume of pyramids by dissecting the regions into infinitely 
many pieces. He also proved algorithms for arithmetic 
and algebraic operations, such as adding fractions and 
solving systems of simultaneous linear equations.

An analysis of Liu’s proofs reveals some recurring 
procedures. For instance, he regularly used what can be 
called algebraic proofs within an algorithmic context, 
perhaps a contribution to the emergence of this specific 
kind of proof in world mathematics. In all these cases, it 
appears that he aimed to show that a small number of 
fundamental operations underlie all the algorithms in The 
Nine Chapters, thereby reducing their diversity.

In his preface to the The Nine Chapters, Liu noted a gap 
in its procedures that did not allow one to tackle problems 
involving celestial distances. He thus appended surveying 
problems and algorithms that amounted to a kind of trigo-
nometry to fill this gap. These problems were gathered, 
probably in the 7th century, in an independent book, 
Haidao suanjing (“Sea Island Mathematical Manual”), 
ascribed to him.

A certain philosophical perspective permeates the 
mathematical work of Liu. He quotes a great variety of 
ancient philosophical texts, such as the Confucian canons, 
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prominently the Yijing (I Ching; Book of Changes); Daoist 
key texts, such as the Zhuangzi; and Mohist texts. More-
over, his commentary regularly echoes contemporary 
philosophical developments. It can be argued that he 
considered an algorithm to be that which, in mathematics, 
embodies the transformations that are at play everywhere 
in the cosmos—thus his philosophical reflections on 
mathematics related to the concept of “change” as a main 
topic of inquiry in China.

Mahavira
(fl. c. 850, Karnataka, India)

Mahavira was an Indian mathematician who made signifi-
cant contributions to the development of algebra.

All that is known about Mahavira’s life is that he was a 
Jain (he perhaps took his name to honour the great Jainism 
reformer Mahavira [c. 599–527 BCE]) and that he wrote 
Ganitasarasangraha (“Compendium of the Essence of 
Mathematics”) during the reign of Amoghavarsha (c. 814–
878) of the Rashtrakuta dynasty. The work comprises 
more than 1,130 versified rules and examples divided in 
nine chapters: the first chapter for “terminology” and the 
rest for “mathematical procedures” such as basic opera-
tions, reductions of fractions, miscellaneous problems 
involving a linear or quadratic equation with one unknown, 
the rule of three (involving proportionality), mixture 
problems, geometric computations with plane figures, 
ditches (solids), and shadows (similar right-angled 
triangles).

At the beginning of his work, Mahavira stresses the 
importance of mathematics in both secular and religious 
life and in all kinds of disciplines, including love and 
cooking. While giving rules for zero and negative quantities, 
he explicitly states that a negative number has no square 
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root because it is not a square (of any “real number”). 
Besides mixture problems (interest and proportions), he 
treats various types of linear and quadratic equations 
(where he admits two positive solutions) and improves on 
the methods of Aryabhata I (b. 476). He also treats various 
arithmetic and geometric, as well as complex, series. For 
rough computations, Mahavira used 3 as an approximation 
for π, while for more exact computations he used the 
traditional Jain value of 10. He also included rules for 
permutations and combinations and for the area of a con-
chlike plane figure (two unequal semicircles stuck together 
along their diameters), all traditional Jain topics.

Qin Jiushao
(b. c. 1202, Puzhou [modern Anyue, Sichuan province], China—d. c. 1261, 

Meizhou [modern Meixian, Guangdong province])

Qin Jiushao (in Wade-Giles spelling, Ch’in Chiu-Shao) was 
a Chinese mathematician who developed a method of 
solving simultaneous linear congruences.

In 1219 Qin joined the army as captain of a territorial 
volunteer unit and helped quash a local rebellion. In 1224–25 
Qin studied astronomy and mathematics in the capital 
Lin’an (modern Hangzhou) with functionaries of the 
Imperial Astronomical Bureau and with an unidentified 
hermit. In 1233 Qin began his official mandarin (govern-
ment) service. He interrupted his government career for 
three years beginning in 1244 because of his mother’s 
death. During the mourning period, he wrote his only 
mathematical book, now known as Shushu jiuzhang (1247; 
“Mathematical Writings in Nine Sections”). He later rose 
to the position of provincial governor of Qiongzhou (in 
modern Hainan), but charges of corruption and bribery 
brought his dismissal in 1258. Contemporary authors 
mention his ambitious and cruel personality.
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His book is divided into nine “categories,” each con-
taining nine problems related to calendrical computations, 
meteorology, surveying of fields, surveying of remote 
objects, taxation, fortification works, construction works, 
military affairs, and commercial affairs. Categories concern 
indeterminate analysis, calculation of the areas and volumes 
of plane and solid figures, proportions, calculation of 
interest, simultaneous linear equations, progressions, and 
solution of higher-degree polynomial equations in one 
unknown. Every problem is followed by a numerical 
answer, a general solution, and a description of the calcu-
lations performed with counting rods.

The two most important methods found in Qin’s 
book are for the solution of simultaneous linear con-
gruences N =- r1 (mod m1) =- r2 (mod m2) =- . . . =- rn (mod mn) 
and an algorithm for obtaining a numerical solution of 
higher-degree polynomial equations based on a process 
of successively better approximations. This method 
was rediscovered in Europe about 1802 and was known 
as the Ruffini-Horner method. Although Qin’s is the 
earliest surviving description of this algorithm, most 
scholars believe that it was widely known in China before 
this time.

CLASSICAL ALGEBRAISTS  
(17TH–19TH CENTURIES)

Niels Henrik Abel
(b. Aug. 5, 1802, island of Finnøy, near Stavanger, Nor.—d. April 6, 

1829, Froland)

Norwegian mathematician Niels Henrik Abel was a pio-
neer in the development of several branches of modern 
mathematics.
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Abel’s father was a 
poor Lutheran minis-
ter who moved his 
family to the parish of 
Gjerstad, near the 
town of Risør in 
southeast Norway, 
soon after Niels 
Henrik was born. In 
1815 Niels entered the 
cathedral school in 
Oslo, where his 
mathematical talent 
was recognized in 
1817 with the arrival 
of a new mathemat-
ics teacher, Bernt 
Michael Holmboe, 
who introduced him 
to the classics in 

mathematical literature and proposed original problems 
for him to solve. Abel studied the mathematical works of 
the 17th-century Englishman Sir Isaac Newton, the 18th-
century German Leonhard Euler, and his contemporaries 
the Frenchman Joseph-Louis Lagrange and the German 
Carl Friedrich Gauss in preparation for his own research.

Abel’s father died in 1820, leaving the family in strait-
ened circumstances, but Holmboe contributed and raised 
funds that enabled Abel to enter the University of 
Christiania (Oslo) in 1821. Abel obtained a preliminary 
degree from the university in 1822 and continued his stud-
ies independently with further subsidies obtained by 
Holmboe.

Abel’s first papers, published in 1823, were on func-
tional equations and integrals. He was the first person to 

Niels Henrik Abel, painting by Johan 
Gorbitz, 1826. Mathematics Institute, 
University of Oslo/The Abel Prize/The 
Norwegian Academy of Science and 
Letters
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formulate and solve an integral equation. His friends urged 
the Norwegian government to grant him a fellowship for 
study in Germany and France. In 1824, while waiting for a 
royal decree to be issued, he published at his own expense 
his proof of the impossibility of solving algebraically the 
general equation of the fifth degree, which he hoped 
would bring him recognition. He sent the pamphlet to 
Gauss, who dismissed it, failing to recognize that the 
famous problem had indeed been settled.

Abel spent the winter of 1825–26 with Norwegian 
friends in Berlin, where he met August Leopold Crelle, 
civil engineer and self-taught enthusiast of mathematics, 
who became his close friend and mentor. With Abel’s 
warm encouragement, Crelle founded the Journal für die 
reine und angewandte Mathematik (“Journal for Pure and 
Applied Mathematics”), commonly known as Crelle’s 
Journal. The first volume (1826) contains papers by Abel, 
including a more elaborate version of his work on the 
quintic equation. Other papers dealt with equation the-
ory, calculus, and theoretical mechanics. Later volumes 
presented Abel’s theory of elliptic functions, which are 
complex functions that generalize the usual trigonometric 
functions.

In 1826 Abel went to Paris, then the world centre for 
mathematics, where he called on the foremost mathema-
ticians and completed a major paper on the theory of 
integrals of algebraic functions. His central result, known 
as Abel’s theorem, is the basis for the later theory of 
Abelian integrals and Abelian functions—a generalization 
of elliptic function theory to functions of several variables. 
However, Abel’s visit to Paris was unsuccessful in securing 
him an appointment, and the memoir he submitted to the 
French Academy of Sciences was lost.

Abel returned to Norway heavily in debt and suffering 
from tuberculosis. He subsisted by tutoring, 
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supplemented by a small grant from the University of 
Christiania and, beginning in 1828, by a temporary teaching 
position. His poverty and ill health did not decrease his 
production. He wrote a great number of papers during 
this period, principally on equation theory and elliptic 
functions. Among them are the theory of polynomial 
equations with Abelian groups. He rapidly developed 
the theory of elliptic functions in competition with the 
German Carl Gustav Jacobi. By this time Abel’s fame had 
spread to all mathematical centres, and strong efforts 
were made to secure a suitable position for him by a group 
from the French Academy, who addressed King Bernadotte 
of Norway-Sweden. Crelle also worked to secure a profes-
sorship for him in Berlin.

In the fall of 1828, Abel became seriously ill, and his 
condition deteriorated on a sled trip at Christmastime to 
visit his fiancée at Froland, where he died. The French 
Academy published his memoir in 1841.

Bernhard Bolzano
(b. Oct. 5, 1781, Prague, Bohemia, Austrian Habsburg domain [now in 

Czech Republic]—d. Dec. 18, 1848, Prague)

Bohemian mathematician and theologian Bernhard Bolzano 
provided a more detailed proof for the binomial theorem 
in 1816 and suggested the means of distinguishing between 
finite and infinite classes.

Bolzano graduated from the University of Prague as an 
ordained priest in 1805 and was immediately appointed 
professor of philosophy and religion at the university. 
Within a matter of years, however, Bolzano alienated 
many faculty and church leaders with his teachings of the 
social waste of militarism and the needlessness of war. He 
urged a total reform of the educational, social, and eco-
nomic systems that would direct the nation’s interests 
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toward peace rather than toward armed conflict between 
nations. Upon his refusal to recant his beliefs, Bolzano was 
dismissed from the university in 1819 and at that point 
devoted his energies to his writings on social, religious, 
philosophical, and mathematical matters.

Bolzano held advanced views on logic, mathematical 
variables, limits, and continuity. In his studies of the phys-
ical aspects of force, space, and time, he proposed theories 
counter to those suggested by the German philosopher 
Immanuel Kant. Much of his work remained unpublished 
during his lifetime and did not have wide impact until the 
late 19th and early 20th centuries, when a number of his 
conclusions were arrived at independently.

Bolzano’s published works include Der binomische 
Lehrsatz (1816; “The Binomial Theorem”), Rein analytischer 
Beweis (1817; “Pure Analytic Proof ”), Functionenlehre (1834; 
“Functions Model”), Wissenschaftslehre, 4 vol. (1834; 
“Scientific Model”), Versuch einer neuen Darstellung der 
Logik, 4 vol. (1837; “An Attempt at a New Presentation of 
Logic”), and Paradoxien des Unendlichen (1851; “Paradoxes of 
Infinity”).

George Boole
(b. Nov. 2, 1815, Lincoln, Lincolnshire, Eng.—d. Dec. 8, 1864, 

Ballintemple, County Cork, Ire.)

English mathematician George Boole helped establish 
modern symbolic logic. His algebra of logic, now called 
Boolean algebra, is basic to the design of digital computer 
circuits.

Boole was given his first lessons in mathematics by his 
father, a tradesman, who also taught him to make optical 
instruments. Aside from his father’s help and a few years 
at local schools, however, Boole was self-taught in mathe-
matics. When his father’s business declined, George had 
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to work to support the family. From the age of 16, he taught 
in village schools in the West Riding of Yorkshire, and he 
opened his own school in Lincoln when he was 20. During 
scant leisure time, he read mathematics journals in the 
Lincoln’s Mechanics Institute. There he also read Isaac 
Newton’s Principia, Pierre-Simon Laplace’s Traité de 
mécanique céleste, and Joseph-Louis Lagrange’s Mécanique 
analytique and began to solve advanced problems in 
algebra.

Boole submitted a stream of original papers to the new 
Cambridge Mathematical Journal, beginning in 1839 with his 
“Researches on the Theory of Analytical Transformations.” 
These papers were on differential equations and the 
algebraic problem of linear transformation, emphasizing 
the concept of invariance. In 1844, in an important paper 
in the Philosophical Transactions of the Royal Society for which 
he was awarded the Royal Society’s first gold medal for 
mathematics, he discussed how methods of algebra and 
calculus might be combined. Boole soon saw that his 
algebra could also be applied in logic.

Developing novel ideas on logical method and confi-
dent in the symbolic reasoning he had derived from his 
mathematical investigations, he published in 1847 a pam-
phlet, “Mathematical Analysis of Logic,” in which he 
argued persuasively that logic should be allied with math-
ematics, not philosophy. He won the admiration of the 
English logician Augustus De Morgan, who published 
Formal Logic the same year. On the basis of his publications, 
Boole in 1849 was appointed professor of mathematics at 
Queen’s College, County Cork, even though he had no 
university degree. In 1854 he published An Investigation 
into the Laws of Thought, on Which Are Founded the 
Mathematical Theories of Logic and Probabilities, which he 
regarded as a mature statement of his ideas. The next 
year he married Mary Everest, niece of Sir George Everest, 
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for whom the mountain is named. The Booles had five 
daughters.

One of the first Englishmen to write on logic, Boole 
pointed out the analogy between algebraic symbols and 
those that can represent logical forms and syllogisms, 
showing how the symbols of quantity can be separated 
from those of operation. With Boole’s influence, in 1847 
and 1854 the algebra of logic, or what is now called Boolean 
algebra, began. Boole’s original and remarkable general 
symbolic method of logical inference, fully stated in Laws 
of Thought (1854), enables one, given any propositions 
involving any number of terms, to draw conclusions that 
are logically contained in the premises. He also attempted 
a general method in probabilities, which would make it 
possible from the given probabilities of any system of 
events to determine the consequent probability of any 
other event logically connected with the given events.

In 1857 Boole was elected a fellow of the Royal Society. 
The influential Treatise on Differential Equations appeared 
in 1859 and was followed the next year by its sequel, Treatise 
on the Calculus of Finite Differences. Used as textbooks for 
many years, these works embody an elaboration of Boole’s 
more important discoveries. Boole’s abstruse reasoning 
has led to applications of which he never dreamed: for 
example, telephone switching and electronic computers 
use binary digits and logical elements that rely on Boolean 
logic for their design and operation.

Arthur Cayley
(b. Aug. 16, 1821, Richmond, Surrey, Eng.—d. Jan. 26, 1895, 

Cambridge, Cambridgeshire)

Arthur Cayley was an English mathematician and leader 
of the British school of pure mathematics that emerged in 
the 19th century.
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Although Cayley was born in England, his first seven 
years were spent in St. Petersburg, Russia, where his par-
ents lived in a trading community affiliated with the 
Muscovy Company. On the family’s permanent return to 
England in 1828, he was educated at a small private school 
in Blackheath, followed by the three-year course at 
King’s College, London. Cayley entered Trinity College, 
Cambridge, in 1838 and emerged as the champion student 
of 1842, the “Senior Wrangler” of his year. A fellowship 
enabled him to stay on at Cambridge, but in 1846 he left 
the university to study the law at Lincoln’s Inn in London. 
Cayley practised law in London from 1849 until 1863, while 
writing more than 300 mathematical papers in his spare 
time. In recognition of his mathematical work, he was 
elected to the Royal Society in 1852 and presented with its 
Royal Medal seven years later. In 1863 he accepted the 
Sadleirian professorship in mathematics at Cambridge—
sacrificing his legal career in order to devote himself 
full-time to mathematical research. In that same year, he 
married Susan Moline, the daughter of a country banker.

Cayley’s manner was diffident but decisive. He was a 
capable administrator who quietly and effectively dis-
charged his academic duties. He was an early supporter of 
women’s higher education and steered Newnham College, 
Cambridge (founded in 1871), during the 1880s. Despite 
aiding the careers of a few students who naturally took to 
pure mathematics, Cayley never established a full-fledged 
research school of mathematics at Cambridge.

In mathematics Cayley was an individualist. He handled 
calculations and symbolic manipulations with formidable 
skill, guided by a deep intuitive understanding of mathe-
matical theories and their interconnections. His ability to 
keep abreast of current work while seeing the wider view 
enabled him to perceive important trends and to make 
valuable suggestions for further investigation.
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Cayley made important contributions to the algebraic 
theory of curves and surfaces, group theory, linear algebra, 
graph theory, combinatorics, and elliptic functions. He 
formalized the theory of matrices. Among Cayley’s most 
important papers were his series of 10 “Memoirs on 
Quantics” (1854–78). A quantic, known today as an algebraic 
form, is a polynomial with the same total degree for each 
term. For example, every term in the following polynomial 
has a total degree of 3:x3 + 7x2y - 5xy2 + y3.

Alongside work produced by his friend James Joseph 
Sylvester, Cayley’s study of various properties of forms 
that are unchanged (invariant) under some transformation, 
such as rotating or translating the coordinate axes, estab-
lished a branch of algebra known as invariant theory.

In geometry Cayley concentrated his attention on 
analytic geometry, for which he naturally employed invari-
ant theory. For example, he showed that the order of 
points formed by intersecting lines is always invariant, 
regardless of any spatial transformation. In 1859 Cayley 
outlined a notion of distance in projective geometry (a 
projective metric), and he was one of the first to realize 
that Euclidean geometry is a special case of projective 
geometry—an insight that reversed current thinking. Ten 
years later, Cayley’s projective metric provided a key for 
understanding the relationship between the various types 
of non-Euclidean geometries.

While Cayley was essentially a pure mathematician, 
he also pursued mechanics and astronomy. He was active 
in lunar studies and produced two widely praised reports 
on dynamics (1857, 1862). Cayley had an extraordinarily 
prolific career, producing almost a thousand mathematical 
papers. His habit was to embark on long studies punctuated 
by rapidly written “bulletins from the front.” Cayley wrote 
French effortlessly and often published in Continental 
journals. As a young graduate at Cambridge, he was 
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inspired by the work of the mathematician Karl Jacobi 
(1804–51), and in 1876 Cayley published his only book, An 
Elementary Treatise on Elliptic Functions, which drew out 
this widely studied subject from Jacobi’s point of view.

Cayley was awarded numerous honours, including the 
Copley Medal in 1882 by the Royal Society. At various 
times he was president of the Cambridge Philosophical 
Society, the London Mathematical Society, the British 
Association for the Advancement of Science, and the 
Royal Astronomical Society.

Évariste Galois
(b. Oct. 25, 1811, Bourg-la-Reine, near Paris, France—d. May 31, 

1832, Paris)

French mathematician 
Évariste Galois is 
famous for his contri-
butions to the part of 
higher algebra now 
known as group theory. 
His theory provided a 
solution to the long-
standing question of 
determining when an 
algebraic equation can 
be solved by radicals 
(a solution containing 
square roots, cube 
roots, and so on, but no 
trigonometry functions 
or other nonalgebraic 
functions).

Galois was the son 
of Nicolas-Gabriel 

Évariste Galois, detail of an engrav-
ing, 1848, after a drawing by Alfred 
Galois. Bibliotheque Nationale, Paris, 
France/The Bridgeman Art Library/
Getty Images
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Galois, an important citizen in the Paris suburb of Bourg-
la-Reine. In 1815, during the Hundred Days regime that 
followed Napoleon’s escape from Elba, his father was 
elected mayor. Galois was educated at home until 1823, 
when he entered the Collège Royal de Louis-le-Grand. 
There his education languished at the hands of mediocre 
and uninspiring teachers. But his mathematical ability 
blossomed when he began to study the works of his 
countrymen Adrien-Marie Legendre on geometry and 
Joseph-Louis Lagrange on algebra.

Under the guidance of Louis Richard, one of his teachers 
at Louis-le-Grand, Galois’s further study of algebra led 
him to take up the question of the solution of algebraic 
equations. Mathematicians for a long time had used 
explicit formulas, involving only rational operations and 
extractions of roots, for the solution of equations up to 
degree four, but they had been defeated by equations  
of degree five and higher. In 1770 Lagrange took the novel 
but decisive step of treating the roots of an equation as 
objects in their own right and studying permutations (a 
change in an ordered arrangement) of them. In 1799 the 
Italian mathematician Paolo Ruffini attempted to prove 
the impossibility of solving the general quintic equation 
by radicals. Ruffini’s effort was not wholly successful, but 
in 1824 the Norwegian mathematician Niels Abel gave a 
correct proof.

Galois, stimulated by Lagrange’s ideas and initially 
unaware of Abel’s work, began searching for the necessary 
and sufficient conditions under which an algebraic equa-
tion of any degree can be solved by radicals. His method 
was to analyze the “admissible” permutations of the roots 
of the equation. His key discovery, brilliant and highly 
imaginative, was that solvability by radicals is possible if 
and only if the group of automorphisms (functions that 
take elements of a set to other elements of the set while 
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preserving algebraic operations) is solvable, which means 
essentially that the group can be broken down into simple 
“prime-order” constituents that always have an easily 
understood structure. The term solvable is used because of 
this connection with solvability by radicals. Thus, Galois 
perceived that solving equations of the quintic and beyond 
required a wholly different kind of treatment than that 
required for quadratic, cubic, and quartic equations. 
Although Galois used the concept of group and other 
associated concepts, such as coset and subgroup, he did 
not actually define these concepts, and he did not con-
struct a rigorous formal theory.

While still at Louis-le-Grand, Galois published one 
minor paper, but his life was soon overtaken by disap-
pointment and tragedy. A memoir on the solvability of 
algebraic equations that he had submitted in 1829 to the 
French Academy of Sciences was lost by Augustin-Louis 
Cauchy. He failed in two attempts (1827 and 1829) to gain 
admission to the École Polytechnique, the leading school 
of French mathematics—his second attempt marred by a 
disastrous encounter with an oral examiner. Also in 1829 
his father, after bitter clashes with conservative elements 
in his hometown, committed suicide. The same year, 
Galois enrolled as a student teacher in the less prestigious 
École Normale Supérieure and turned to political activism. 
Meanwhile he continued his research, and in the spring of 
1830, he had three short articles published. At the same 
time, he rewrote the paper that had been lost and pre-
sented it again to the Academy—but for a second time the 
manuscript went astray. Jean-Baptiste-Joseph Fourier took 
it home but died a few weeks later, and the manuscript was 
never found.

The July Revolution of 1830 sent the last Bourbon 
monarch, Charles X, into exile. But republicans were 
deeply disappointed when yet another king, Louis-Philippe, 
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ascended the throne—even though he was the “Citizen 
King” and wore the tricoloured flag of the French Revolution. 
When Galois wrote a vigorous article expressing pro-
republican views, he was promptly expelled from the École 
Normale Supérieure. Subsequently, he was arrested twice for 
republican activities. He was acquitted the first time but 
spent six months in prison on the second charge. In 1831 he 
presented his memoir on the theory of equations for the 
third time to the Academy. This time it was returned but 
with a negative report. The judges, who included Siméon-
Denis Poisson, did not understand what Galois had written 
and (incorrectly) believed that it contained a significant error. 
They had been quite unable to accept Galois’s original 
ideas and revolutionary mathematical methods.

The circumstances that led to Galois’s death in a duel 
in Paris are not altogether clear, but recent scholarship 
suggests that it was at his own insistence that the duel was 
staged and fought to look like a police ambush. In any case, 
anticipating his death the night before the duel, Galois 
hastily wrote a scientific last testament addressed to his 
friend Auguste Chevalier in which he summarized his work 
and included some new theorems and conjectures.

Galois’s manuscripts, with annotations by Joseph 
Liouville, were published in 1846 in the Journal de 
Mathématiques Pures et Appliquées. But it was not until 1870, 
with the publication of Camille Jordan’s Traité des 
Substitutions, that group theory became a fully established 
part of mathematics.

Carl Friedrich Gauss
(b. April 30, 1777, Brunswick [Germany]—d. Feb. 23, 1855, Göttingen, 

Hanover)

German mathematician Carl Friedrich Gauss is generally 
regarded as one of the greatest mathematicians of all time 
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for his contributions to number theory, geometry, proba-
bility theory, geodesy, planetary astronomy, the theory 
of functions, and potential theory (including 
electromagnetism).

Gauss was was born Johann Friedrich Carl Gauss, the 
only child of poor parents. He was rare among mathemati-
cians in that he was a calculating prodigy, and he retained 
the ability to do elaborate calculations in his head most of 
his life. Impressed by this ability and by his gift for languages, 
his teachers and his devoted mother recommended him to 
the duke of Brunswick in 1791, who granted him financial 
assistance to continue his education locally and then to 
study mathematics at the University of Göttingen from 
1795 to 1798. Gauss’s pioneering work gradually estab-
lished him as the era’s preeminent mathematician, first in 
the German-speaking world and then farther afield, 
although he remained a remote and aloof figure.

Gauss’s first significant discovery, in 1792, was that a 
regular polygon of 17 sides can be constructed by ruler and 
compass alone. Its significance lies not in the result but in 
the proof, which rested on a profound analysis of the fac-
torization of polynomial equations and opened the door 
to later ideas of Galois theory. His doctoral thesis of 1797 
gave a proof of the fundamental theorem of algebra: every 
polynomial equation with real or complex coefficients has 
as many roots (solutions) as its degree (the highest power 
of the variable). Gauss’s proof, though not wholly convinc-
ing, was remarkable for its critique of earlier attempts. 
Gauss later gave three more proofs of this major result, 
the last on the 50th anniversary of the first, which shows 
the importance he attached to the topic.

Gauss’s recognition as a truly remarkable talent, 
though, resulted from two major publications in 1801. 
Foremost was his publication of the first systematic 
textbook on algebraic number theory, Disquisitiones 
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Arithmeticae. This book begins with the first account of 
modular arithmetic, gives a thorough account of the solu-
tions of quadratic polynomials in two variables in integers, 
and ends with the theory of factorization mentioned 
above. This choice of topics and its natural generalizations 
set the agenda in number theory for much of the 19th cen-
tury, and Gauss’s continuing interest in the subject spurred 
much research, especially in German universities.

The second publication was his rediscovery of the 
asteroid Ceres. Its original discovery, by the Italian astron-
omer Giuseppe Piazzi in 1800, had caused a sensation, but 
it vanished behind the Sun before enough observations 
could be taken to calculate its orbit with sufficient accu-
racy to know where it would reappear. Many astronomers 
competed for the honour of finding it again, but Gauss 
won. His success rested on a novel method for dealing 
with errors in observations, today called the method of 
least squares. Thereafter Gauss worked for many years as 
an astronomer and published a major work on the compu-
tation of orbits—the numerical side of such work was 
much less onerous for him than for most people. As an 
intensely loyal subject of the duke of Brunswick—and, 
after 1807 when he returned to Göttingen as an astronomer, 
of the duke of Hanover—Gauss felt that the work was 
socially valuable.

Similar motives led Gauss to accept the challenge of 
surveying the territory of Hanover, and he was often out 
in the field in charge of the observations. The project, 
which lasted from 1818 to 1832, encountered numerous 
difficulties, but it led to a number of advancements. One 
was Gauss’s invention of the heliotrope (an instrument 
that reflects the Sun’s rays in a focused beam that can be 
observed from several miles away), which improved the 
accuracy of the observations. Another was his discovery 
of a way of formulating the concept of the curvature of a 
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surface. Gauss showed that there is an intrinsic measure 
of curvature that is not altered if the surface is bent with-
out being stretched. For example, a circular cylinder and a 
flat sheet of paper have the same intrinsic curvature, 
which is why exact copies of figures on the cylinder can be 
made on the paper (as, for example, in printing). But a 
sphere and a plane have different curvatures, which is why 
no completely accurate flat map of the Earth can be made.

Gauss published works on number theory, the mathe-
matical theory of map construction, and many other 
subjects. In the 1830s he became interested in terrestrial 
magnetism and participated in the first worldwide survey 
of the Earth’s magnetic field (to measure it, he invented 
the magnetometer). With his Göttingen colleague, the 
physicist Wilhelm Weber, he made the first electric tele-
graph, but a certain parochialism prevented him from 
pursuing the invention energetically. Instead, he drew 
important mathematical consequences from this work for 
what is today called potential theory, an important branch 
of mathematical physics arising in the study of electro-
magnetism and gravitation.

Gauss also wrote on cartography, the theory of map 
projections. For his study of angle-preserving maps, he was 
awarded the prize of the Danish Academy of Sciences in 
1823. This work came close to suggesting that complex func-
tions of a complex variable are generally angle-preserving, 
but Gauss stopped short of making that fundamental 
insight explicit, leaving it for Bernhard Riemann, who had 
a deep appreciation of Gauss’s work. Gauss also had other 
unpublished insights into the nature of complex functions 
and their integrals, some of which he divulged to friends.

In fact, Gauss often withheld publication of his dis-
coveries. As a student at Göttingen, he began to doubt the 
a priori truth of Euclidean geometry and suspected that 
its truth might be empirical. For this to be the case, there 



123

must exist an alternative geometric description of space. 
Rather than publish such a description, Gauss confined 
himself to criticizing various a priori defenses of Euclidean 
geometry. It would seem that he was gradually convinced 
that there exists a logical alternative to Euclidean geometry. 
However, when the Hungarian János Bolyai and the 
Russian Nikolay Lobachevsky published their accounts of 
a new, non-Euclidean geometry about 1830, Gauss failed 
to give a coherent account of his own ideas. It is possible 
to draw these ideas together into an impressive whole, in 
which his concept of intrinsic curvature plays a central 
role, but Gauss never did this. Some have attributed this 
failure to his innate conservatism, others to his incessant 
inventiveness that always drew him on to the next new 
idea, still others to his failure to find a central idea that 
would govern geometry once Euclidean geometry was no 
longer unique. All these explanations have some merit, 
though none has enough to be the whole explanation.

Another topic on which Gauss largely concealed his 
ideas from his contemporaries was elliptic functions. He 
published an account in 1812 of an interesting infinite 
series, and he wrote but did not publish an account of the 
differential equation that the infinite series satisfies. He 
showed that the series, called the hypergeometric series, 
can be used to define many familiar and many new functions. 
But by then he knew how to use the differential equation 
to produce a very general theory of elliptic functions and 
to free the theory entirely from its origins in the theory of 
elliptic integrals. This was a major breakthrough, because, 
as Gauss had discovered in the 1790s, the theory of elliptic 
functions naturally treats them as complex-valued func-
tions of a complex variable, but the contemporary theory 
of complex integrals was utterly inadequate for the task. 
When some of this theory was published by the Norwegian 
Niels Abel and the German Carl Jacobi about 1830, Gauss 
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commented to a friend that Abel had come one-third of 
the way. This was accurate, but it is a sad measure of 
Gauss’s personality in that he still withheld publication.

Gauss delivered less than he might have in a variety of 
other ways also. The University of Göttingen was small, and 
he did not seek to enlarge it or to bring in extra students. 
Toward the end of his life, mathematicians of the calibre of 
Richard Dedekind and Riemann passed through Göttingen, 
and he was helpful, but contemporaries compared his writ-
ing style to thin gruel: it is clear and sets high standards for 
rigour, but it lacks motivation and can be slow and wearing to 
follow. He corresponded with many, but not all, of the people 
rash enough to write to him, but he did little to support 
them in public. A rare exception was when Lobachevsky was 
attacked by other Russians for his ideas on non-Euclidean 
geometry. Gauss taught himself enough Russian to follow 
the controversy and proposed Lobachevsky for the 
Göttingen Academy of Sciences. In contrast, Gauss wrote 
a letter to Bolyai telling him that he had already discov-
ered everything that Bolyai had just published.

After Gauss’s death in 1855, the discovery of so many 
novel ideas among his unpublished papers extended his 
influence well into the remainder of the century. 
Acceptance of non-Euclidean geometry had not come 
with the original work of Bolyai and Lobachevsky, but it 
came instead with the almost simultaneous publication of 
Riemann’s general ideas about geometry, the Italian 
Eugenio Beltrami’s explicit and rigorous account of it, and 
Gauss’s private notes and correspondence.

Sir William Rowan Hamilton
(b. Aug. 3/4, 1805, Dublin, Ire.—d. Sept. 2, 1865, Dublin)

Sir William Rowan Hamilton was an Irish mathematician 
who contributed to the development of optics, dynamics, 
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and algebra—in par-
ticular, discovering the 
algebra of quaternions. 
His work proved sig-
nificant for the 
development of quan-
tum mechanics.

Hamilton was the 
son of a solicitor. He 
was educated by his 
uncle, James Hamilton, 
an Anglican priest 
with whom he lived 
from before the age 
of three until he 
entered college. An 
aptitude for languages 
was soon apparent. At 
five he was already 
making progress with 
Latin, Greek, and Hebrew, broadening his studies to 
include Arabic, Sanskrit, Persian, Syriac, French, and 
Italian before he was 12.

Hamilton was proficient in arithmetic at an early age. 
But a serious interest in mathematics was awakened on 
reading the Analytic Geometry of Bartholomew Lloyd at the 
age of 16. (Before that, his acquaintance with mathematics 
was limited to Euclid, sections of Isaac Newton’s Principia, 
and introductory textbooks on algebra and optics.) 
Further reading included works of the French mathemati-
cians Pierre-Simon Laplace and Joseph-Louis Lagrange.

Hamilton entered Trinity College, Dublin, in 1823. He 
excelled as an undergraduate, not only in mathematics 
and physics but also in classics, while he continued with 
his own mathematical investigations. A substantial paper 

William Hamilton. Hulton Archive/
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of his on optics was accepted for publication by the Royal 
Irish Academy in 1827. In the same year, while still an under-
graduate, Hamilton was appointed professor of astronomy 
at Trinity College and Royal Astronomer of Ireland. His 
home thereafter was at Dunsink Observatory, a few miles 
outside Dublin.

Hamilton was deeply interested in literature and meta-
physics, and he wrote poetry throughout his life. While 
touring England in 1827, he visited William Wordsworth. A 
friendship was immediately established, and they corre-
sponded often thereafter. Hamilton also admired the 
poetry and metaphysical writings of Samuel Taylor 
Coleridge, whom he visited in 1832. Hamilton and Coleridge 
were both heavily influenced by the philosophical writings 
of Immanuel Kant.

Hamilton’s first published mathematical paper, “Theory 
of Systems of Rays,” begins by proving that a system of 
light rays filling a region of space can be focused down to a 
single point by a suitably curved mirror if and only if those 
light rays are orthogonal to some series of surfaces. 
Moreover, the latter property is preserved under reflec-
tion in any number of mirrors. Hamilton’s innovation was 
to associate with such a system of rays a characteristic 
function, constant on each of the surfaces to which the 
rays are orthogonal, which he employed in the mathemat-
ical investigation of the foci and caustics of reflected light.

The theory of the characteristic function of an optical 
system was further developed in three supplements. In 
the third of these, the characteristic function depends on the 
Cartesian coordinates of two points (initial and final) and 
measures the time taken for light to travel through the 
optical system from one to the other. If the form of this 
function is known, then basic properties of the optical 
system (such as the directions of the emergent rays) can 
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easily be obtained. In applying his methods in 1832 to the 
study of the propagation of light in anisotropic media, in 
which the speed of light is dependent on the direction and 
polarization of the ray, Hamilton was led to a remarkable 
prediction: if a single ray of light is incident at certain 
angles on a face of a biaxial crystal (such as aragonite), then 
the refracted light will form a hollow cone.

Hamilton’s colleague Humphrey Lloyd, professor of 
natural philosophy at Trinity College, sought to verify this 
prediction experimentally. Lloyd had difficulty obtaining 
a crystal of aragonite of sufficient size and purity, but 
eventually he was able to observe this phenomenon of 
conical refraction. This discovery excited considerable 
interest within the scientific community and established 
the reputations of both Hamilton and Lloyd.

From 1833 onward, Hamilton adapted his optical meth-
ods to the study of problems in dynamics. Out of laborious 
preparatory work emerged an elegant theory, associating a 
characteristic function with any system of attracting or 
repelling point particles. If the form of this function is 
known, then the solutions of the equations of motion of the 
system can easily be obtained. Hamilton’s two major papers 
“On a General Method in Dynamics” were published in 1834 
and 1835. In the second of these, the equations of motion of a 
dynamical system are expressed in a particularly elegant form 
(Hamilton’s equations of motion). Hamilton’s approach was 
further refined by the German mathematician Carl Jacobi, 
and its significance became apparent in the development of 
celestial mechanics and quantum mechanics. Hamiltonian 
mechanics underlies contemporary mathematical research 
in symplectic geometry (a field of research in algebraic 
geometry) and the theory of dynamical systems.

In 1835 Hamilton was knighted by the lord lieutenant 
of Ireland in the course of a meeting in Dublin of the 
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British Association for the Advancement of Science. 
Hamilton served as president of the Royal Irish Academy 
from 1837 to 1846.

Hamilton had a deep interest in the fundamental 
principles of algebra. His views on the nature of real 
numbers were set forth in a lengthy essay, “On Algebra as 
the Science of Pure Time.” Complex numbers were then 
represented as “algebraic couples”—i.e., ordered pairs of 
real numbers, with appropriately defined algebraic opera-
tions. For many years Hamilton sought to construct a 
theory of triplets, analogous to the couplets of complex 
numbers, that would be applicable to the study of three-
dimensional geometry. Then, on Oct. 16, 1843, while 
walking with his wife beside the Royal Canal on his way to 
Dublin, Hamilton suddenly realized that the solution lay 
not in triplets but in quadruplets, which could produce a 
noncommutative four-dimensional algebra, the algebra of 
quaternions. Thrilled by his inspiration, he stopped to 
carve the fundamental equations of this algebra on a stone 
of a bridge they were passing.

Hamilton devoted the last 22 years of his life to the 
development of the theory of quaternions and related 
systems. For him, quaternions were a natural tool for the 
investigation of problems in three-dimensional geometry. 
Many basic concepts and results in vector analysis have 
their origin in Hamilton’s papers on quaternions. A sub-
stantial book, Lectures on Quaternions, was published in 
1853, but it failed to achieve much influence among math-
ematicians and physicists. A longer treatment, Elements of 
Quaternions, remained unfinished at the time of his death.

In 1856 Hamilton investigated closed paths along the 
edges of a dodecahedron (one of the Platonic solids) that 
visit each vertex exactly once. In graph theory such paths 
are known today as Hamiltonian circuits.
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Charles Hermite
(b. Dec. 24, 1822, Dieuze, France—d. Jan. 14, 1901, Paris)

Charles Hermite was a French mathematician whose 
work in the theory of functions included the application 
of elliptic functions to provide the first solution to the 
general equation of the fifth degree, the quintic 
equation.

Although Hermite had proved himself a creative 
mathematician at the age of 20, his difficulty in passing 
his formal examinations forced him to devote five of his 
most productive years to preparing for his examination 
for the bachelor of science degree, which he obtained in 
1848. He was given a minor teaching position at the École 
Polytechnique, Paris, before being appointed to the 
Collège de France, Paris, in the same year. It was not until 
1869, with his appointment as professor at the École 
Normale, Paris, that he attained a position commensurate 
with his ability. In 1870 he became professor of higher 
algebra at the Sorbonne.

In 1873 Hermite published the first proof that e is a 
transcendental number; i.e., it is not the root of any 
algebraic equation with rational coefficients.

Hermite was a major figure in the development of the 
theory of algebraic forms, the arithmetical theory of 
quadratic forms, and the theories of elliptic and Abelian 
functions. He first studied the representation of integers 
in what are now called Hermitian forms. His famous solu-
tion of the general quintic equation appeared in Sur la 
résolution de l’équation du cinquième degré (1858; “On the 
Solution of the Equation of the Fifth Degree”). Many late 
19th-century mathematicians first gained recognition 
for their work largely through the encouragement and 
publicity supplied by Hermite.
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Felix Klein
(b. April 25, 1849, Düsseldorf, Prussia [Ger.]—d. June 22, 1925, 

Göttingen, Ger.)

Christian Felix Klein was a German mathematician whose 
unified view of geometry as the study of the properties of 
a space that are invariant under a given group of transfor-
mations, known as the Erlanger Programm, profoundly 
influenced mathematical developments.

As a student at the University of Bonn (Ph.D., 1868), 
Klein worked closely with the physicist and geometer 
Julius Plücker (1801–68). After Plücker’s death, he worked 
with the geometer Alfred Clebsch (1833–72), who headed 
the mathematics department at the University of 
Göttingen. On Clebsch’s recommendation, Klein was 
appointed professor of mathematics at the University of 
Erlangen (1872–75), where he set forth the views contained 
in his Erlanger Programm. These ideas reflected his close 
collaboration with the Norwegian mathematician Sophus 
Lie, whom he met in Berlin in 1869. Before the outbreak 
of the Franco-German War in July 1870, they were together 
in Paris developing their early ideas on the role of trans-
formation groups in geometry and on the theory of 
differential equations.

Klein later taught at the Institute of Technology in 
Munich (1875–80) and then at the Universities of Leipzig 
(1880–86) and Göttingen (1886–1913). From 1874 he was 
the editor of Mathematische Annalen (“Annals of 
Mathematics”), one of the world’s leading mathematics 
journals, and from 1895 he supervised the great Encyklopädie 
der mathematischen Wissenschaften mit Einschluss iher 
Anwendungen (“Encyclopedia of Pure and Applied 
Mathematics”). His works on elementary mathematics, 
including Elementarmathematik vom höheren Standpunkte 
aus (1908; “Elementary Mathematics from an Advanced 
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Standpoint”), reached a wide public. His technical papers 
were collected in Gesammelte Mathematische Abhandlungen, 
3 vol., (1921–23; “Collected Mathematical Treatises”).

Beyond his own work, Klein made his greatest impact 
on mathematics as the principal architect of the modern 
community of mathematicians at Göttingen, which 
emerged as one of the world’s leading research centres 
under Klein and David Hilbert (1862–1943) during the 
period from 1900 to 1914. After Klein’s retirement, 
Richard Courant (1888–1972) gradually assumed Klein’s 
role as the organizational leader of this still vibrant 
community.

Leopold Kronecker
(b. Dec. 7, 1823, Liegnitz, Prussia [now Legnica, Pol.]—d. Dec. 29, 

1891, Berlin, Ger.)

Leopold Kronecker was a German mathematician whose 
primary contributions were in the theory of equations and 
higher algebra.

Kronecker acquired a passion for number theory from 
Ernst Kummer, his instructor in mathematics at the 
Liegnitz Gymnasium, and earned his doctor’s degree at 
the University of Berlin with a dissertation (1845) on those 
special complex units that appear in certain algebraic 
number fields. He managed the family mercantile and 
land business until age 30, when he was financially able to 
retire. While in business he pursued mathematics as a rec-
reation. From 1861 to 1883, Kronecker lectured at the 
University of Berlin, and in 1883 he succeeded Kummer as 
professor there.

Kronecker was primarily an arithmetician and alge-
braist. His major contributions were in elliptic functions, 
the theory of algebraic equations, and the theory of alge-
braic numbers. In the last field, he created an alternative 
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to the theory of his fellow countryman Julius Dedekind. 
Kronecker’s theory of algebraic magnitudes (1882) pres-
ents a part of this theory. His philosophy of mathematics, 
however, seems destined to outlast his more technical 
contributions. He was the first to doubt the significance 
of nonconstructive existence proofs (proofs that show 
something must exist, often by using a proof through con-
tradiction, but that give no method of producing them), 
and for many years he carried on a polemic against the 
analytic school of the German mathematician Karl 
Weierstrass concerning these proofs and other points of 
classical analysis. Kronecker joined Weierstrass in approv-
ing the universal arithmetization of analysis, but he 
insisted that all mathematics should be reduced to the 
positive whole numbers.

Ernst Eduard Kummer
(b. Jan. 29, 1810, Sorau, Brandenburg, Prussia [Ger.]—d. May 14, 

1893, Berlin)

Ernst Eduard Kummer was a German mathematician 
whose introduction of ideal numbers, which are defined as 
a special subgroup of a ring, extended the fundamental 
theorem of arithmetic (unique factorization of every inte-
ger into a product of primes) to complex number fields.

After teaching in Gymnasium 1 year at Sorau and 10 
years at Liegnitz, Kummer became professor of mathe-
matics at the University of Breslau (now Wrocław, Pol.) in 
1842. In 1855 he succeeded Peter Gustav Lejeune Dirichlet 
as professor of mathematics at the University of Berlin, at 
the same time also becoming a professor at the Berlin War 
College.

In 1843 Kummer showed Dirichlet an attempted proof 
of Fermat’s last theorem, which states that the formula 
xn + yn = zn, where n is an integer greater than 2, has no 
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solution for positive integral values of x, y, and z. Dirichlet 
found an error, and Kummer continued his search and 
developed the concept of ideal numbers. Using this con-
cept, he proved the insolubility of the Fermat relation for 
all but a small group of primes, and he thus laid the foun-
dation for an eventual complete proof of Fermat’s last 
theorem. For his great advance, the French Academy of 
Sciences awarded him its Grand Prize in 1857. The ideal 
numbers have made possible new developments in the 
arithmetic of algebraic numbers.

Inspired by the work of Sir William Rowan Hamilton 
on systems of optical rays, Kummer developed the surface 
(residing in four-dimensional space) now named in his 
honour. Kummer also extended the work of Carl Friedrich 
Gauss on the hypergeometric series, adding developments 
that are useful in the theory of differential equations.

Sophus Lie
(b. Dec. 17, 1842, Nordfjordeid, Nor.—d. Feb. 18, 1899, Kristiania)

Norwegian mathematician Sophus Lie founded the theory 
of continuous groups and their applications to the theory of 
differential equations. His investigations led to one of the 
major branches of 20th-century mathematics, the theory 
of Lie groups and Lie algebras.

Lie attended a broad range of science and mathematics 
courses at the University of Kristiania (now Oslo) from 
1859 to 1865 without deciding on a subject for graduate 
study. He supported himself for the following few years by 
giving private lessons while studying astronomy, mechanics, 
and mathematics on his own. His interest in geometry 
deepened in 1868 and resulted in his first mathematical 
paper being published in Crelle’s Journal in 1869. Awarded a 
scholarship to travel abroad, Lie immediately went to the 
University of Berlin, where he soon began an intense 
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collaboration with the German mathematician Felix 
Klein. They were working together in Paris on a unified 
view of geometry, among other topics, when the Franco-
German War began in July 1870 and Klein returned to 
Berlin. (After Klein went to the University of Erlangen in 
1872, the development of a unified theory of geometry 
became known as the Erlanger Programm.) When Lie 
decided to leave for Italy in August, after the French army 
suffered a major defeat, he was arrested near Fontainebleau 
and detained as a German spy—his mathematical notes 
were taken for coded dispatches. Freed one month later 
through the efforts of the French mathematician Jean-
Gaston Darboux, he returned to Berlin by way of Italy.

In 1871 Lie became an assistant tutor at Kristiania and 
submitted his doctoral dissertation on the theory of con-
tact transformations. Appointed extraordinary professor 
in 1872, he began to research continuous transformation 
groups in 1873. After working in virtual isolation for more 
than 10 years, Lie was joined by the German mathemati-
cian Friedrich Engel (1861–1941), who had just received his 
doctorate from the University of Leipzig in 1883. During a 
nine-year collaboration with Engel, Lie published Theorie 
der Transformationsgruppen, 3 vol. (1888–93; “Theory of 
Transformation Groups”), which contains his investigations 
of the general theory of continuous groups. In 1886 Lie 
succeeded Klein as professor of geometry at Leipzig, where 
Engel had moved in 1885. Over the next 12 years, Lie attracted 
a number of talented students. One of these, Georg Scheffers 
(1866–1945), wrote three introductory texts based on Lie’s 
important Leipzig lecture courses, Differentialgleichungen 
(1891; “Differential Equations”), Vorlesungen über continuierli-
che Gruppen (1893; “Lectures on Continuous Groups”), and 
Geometrie der Berührungstransformationen (1896; “Geometry 
of Contact Transformations”).
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In 1898 Lie returned to Kristiania to accept a special 
post created for him, but his health was already failing and 
he died soon after his arrival. Besides his development of 
transformation groups, he made contributions to differ-
ential geometry. His primary aim, however, was the 
advancement of the theory of differential equations. Lie’s 
mathematical papers are contained in Gesammelte 
Abhandlungen, 7 vol. (1922–60; “Collected Works”).

Joseph Liouville
(b. March 24, 1809, Saint-Omer, France—d. Sept. 8, 1882, Paris)

French mathematician Joseph Liouville is known for his 
work in analysis, differential geometry, and number the-
ory and for his discovery of transcendental numbers—i.e., 
numbers that are not the roots of algebraic equations hav-
ing rational coefficients. He was also influential as a journal 
editor and teacher.

Liouville, the son of an army captain, was educated 
in Paris at the École Polytechnique from 1825 to 1827 
and then at the École Nationale des Ponts et Chaussées 
(“National School of Bridges and Roads”) until 1830. At 
the École Polytechnique, Liouville was taught by André-
Marie Ampère, who recognized his talent and 
encouraged him to follow his course on mathematical 
physics at the Collège de France. In 1836 Liouville founded 
and became editor of the Journal des Mathématiques Pures 
et Appliquées (“Journal of Pure and Applied Mathematics”), 
sometimes known as the Journal de Liouville, which did 
much to raise and maintain the standard of French 
mathematics throughout the 19th century. The manu-
scripts of the French mathematician Évariste Galois 
were first published by Liouville in 1846, 14 years after 
Galois’s death.
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In 1833 Liouville was appointed professor at the École 
Centrale des Arts et Manufactures, and in 1838 he became 
professor of analysis and mechanics at the École 
Polytechnique—a position that he held until 1851, when 
he was elected a professor of mathematics at the Collège 
de France. In 1839 he was elected a member of the astron-
omy section of the French Academy of Sciences, and the 
following year, he was elected a member of the prestigious 
Bureau of Longitudes.

At the beginning of his career, Liouville worked on 
electrodynamics and the theory of heat. During the early 
1830s, he created the first comprehensive theory of frac-
tional calculus, the theory that generalizes the meaning of 
differential and integral operators. This was followed by 
his theory of integration in finite terms (1832–33), the main 
goals of which were to decide whether given algebraic 
functions have integrals that can be expressed in finite 
(or elementary) terms. He also worked in differential 
equations and boundary value problems, and, together 
with Charles-François Sturm—the two were devoted 
friends—he published a series of articles (1836–37) that 
created a completely new subject in mathematical analy-
sis. Sturm-Liouville theory, which underwent substantial 
generalization and rigorization in the late 19th century, 
became of major importance in 20th-century mathemati-
cal physics as well as in the theory of integral equations. In 
1844 Liouville was the first to prove the existence of tran-
scendental numbers, and he constructed an infinite class 
of such numbers. Liouville’s theorem, concerning the 
measure-preserving property of Hamiltonian dynamics 
(conservation of total energy), is now known to be basic to 
statistical mechanics and measure theory.

In analysis Liouville was the first to deduce the theory 
of doubly periodic functions (functions with two distinct 
periods whose ratio is not a real number) from general 
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theorems (including his own) in the theory of analytic 
functions of a complex variable—also known as holomor-
phic functions or regular functions; a complex-valued 
function defined and differentiable over some subset of 
the complex number plane. In number theory he produced 
more than 200 publications, most of which are in the form 
of short notes. Although nearly all of this work was pub-
lished without indication of the means by which he had 
obtained his results, proofs have since been provided. 
Altogether, Liouville’s publications comprise about 400 
memoirs, articles, and notes.

Paolo Ruffini
(b. Sept. 22, 1765, Valentano, Papal States—d. May 9, 1822, Modena, 

duchy of Modena)

Italian mathematician and physician Paolo Ruffini made 
studies of equations that anticipated the algebraic theory 
of groups. He is regarded as the first to make a significant 
attempt to show that there is no algebraic solution to the 
general quintic equation (an equation whose highest-
degree term is raised to the fifth power).

When Ruffini was still a teenager, his family moved to 
Reggio, near Modena, Italy. He entered the University of 
Modena in 1783 and while still a student taught a course 
there in the foundations of analysis for the 1787–88 aca-
demic year. Ruffini received degrees in philosophy, 
medicine, and mathematics from Modena in 1788, and in 
the fall, obtained a permanent position there as a profes-
sor of mathematics. In 1791 he received a license to practice 
medicine from the Collegiate Medical Court of Modena.

Following the conquest of Modena by Napoleon 
Bonaparte in 1796, Ruffini found himself appointed as a 
representative to the Junior Council of the Cisalpine 
Republic (consisting of Bologna, Emilia, Lombardy, and 
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Modena). Although he returned to his academic life early 
in 1788, he soon refused, for religious reasons, to take a 
civil oath of allegiance to the new republic and was there-
fore barred from teaching and public office. Unperturbed, 
Ruffini practiced medicine and continued his mathematical 
research until the defeat of Napoleon in 1814, when he 
returned permanently to the University of Modena as rector, 
in addition to holding professorships in mathematics and 
medicine.

Ruffini’s proof of the unsolvability of the general quin-
tic equation, based on relations between the coefficients 
and permutations discovered earlier by the Italian-French 
mathematician Joseph-Louis Lagrange (1736–1813), was 
published in 1799. His first demonstration was regarded as 
insufficient, and he published a revised version in 1813 
after discussions with several prominent mathematicians. 
This version also was regarded skeptically by some math-
ematicians, but it was approved by Augustin-Louis Cauchy, 
one of the leading French mathematicians of the time. In 
1824 the Norwegian mathematician Niels Henrik Abel 
published a different proof that finally established the 
result with full rigour. Ruffini’s contribution to the under-
standing of groups provided a foundation for more 
extensive work by Cauchy and by the French mathematician 
Évariste Galois (1811–32), leading eventually to a nearly 
complete understanding of the conditions for solving 
polynomial equations.

Seki Takakazu
(b. c. 1640, Fujioka, Japan—d. Oct. 24, 1708, Edo [now Tokyo])

Seki Takakazu (also called Seki Kowa) was the most impor-
tant figure of the wasan (“Japanese calculation”) tradition 
that flourished from the early 17th century until the open-
ing of Japan to the West in the mid-19th century. Seki was 
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instrumental in recovering neglected and forgotten math-
ematical knowledge from ancient Chinese sources and 
then extending and generalizing the main problems.

Little is known about Seki’s life and intellectual forma-
tion. He was the second son of Nagaakira Uchiyama, a 
samurai. He was adopted at an early age by Seki 
Gorozaemon, a samurai official with the Bureau of Supply 
in Edo, to carry on the Seki family name. Seki Takakazu 
assumed various positions as an examiner of accounts for 
the lord of Kofu, Tokugawa Tsunashige (until 1678), and 
then his son, the future shogun Tokugawa Ienobu. The 
functions that he carried out were relatively modest, 
although some anecdotes mention special rewards con-
ferred on him. Even though some of these accounts may 
be disputed, they do suggest that his scientific and techni-
cal skills were encouraged.

The exact source of Seki’s early education is unknown, 
but, as a resident of Edo, the political and cultural centre 
of the times, he was well placed for access to the latest 
publications, and his first writings testify to an uncommon 
knowledge of contemporary mathematics. Zhu Shijie’s 
Suanxue qimeng (1299; “Introduction to Mathematical 
Science”), Yang Hui’s Yang Hui suanfa (13th century; “Yang 
Hui’s Mathematical Methods”), and Cheng Dawei’s Suanfa 
tongzong (1592; “Systematic Treatise on Arithmetic”) were 
among the Chinese treatises that inspired him.

Seki’s most productive research was in algebra, a field 
in which he created powerful new tools and provided 
many definitive solutions. A concern for generality can be 
observed throughout his work, especially in his way of 
reformulating and extending traditional problems. He 
substituted a tabular notational system for the cumber-
some Chinese method of counting rods, thereby 
simplifying the handling of equations in more than one 
unknown. In his Kaifukudai no ho (1683; “Method for 
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Solving Concealed Problems”), he described some impor-
tant properties related to such computations. Another 
topic of Seki’s research was the extraction of roots (solu-
tions) of higher-degree polynomial equations. In Kaiindai 
no ho (1685; “Method for Solving Hidden Problems”), he 
described an ancient Chinese method for obtaining a root 
and extended the method to get all the real roots of the 
equation.

Because of his disciples’ zealous diffusion of his work, 
Seki had an immediate impact on his contemporaries. In 
particular, Takebe Katahiro and his brother Kataaki 
helped to deepen and consolidate Seki’s work, making it 
difficult now to apportion credit properly. The publication 
of Katsuyo sanpo (1712; “Compendium of Mathematics”), 
containing Seki’s research on the measure of circle and 
arc, is due to another disciple who used this work to open 
a Seki School of Mathematics—a prestigious centre that 
attracted the best mathematicians in the country until 
the 19th century.

James Joseph Sylvester
(b. Sept. 3, 1814, London, Eng.—d. March 15, 1897, London)

British mathematician James Joseph Sylvester, along with 
Arthur Cayley, was a cofounder of invariant theory, the 
study of properties that are unchanged (invariant) under 
some transformation, such as rotating or translating the 
coordinate axes. He also made significant contributions to 
number theory and elliptic functions.

In 1837 Sylvester came second in the mathematical 
tripos at the University of Cambridge but, as a Jew, was 
prevented from taking his degree or securing an appoint-
ment there. In 1838 he became a professor of natural 
philosophy at University College, London (the only 
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nonsectarian British university). In 1841 he accepted a 
professorship of mathematics at the University of 
Virginia, Charlottesville, U.S., but resigned after only 
three months following an altercation with a student for 
which the school’s administration did not take his side. 
He returned to England in 1843. The following year he 
went to London, where he became an actuary for an 
insurance company, retaining his interest in mathematics 
only through tutoring (his students included Florence 
Nightingale). In 1846 he became a law student at the Inner 
Temple, and in 1850 he was admitted to the bar. While 
working as a lawyer, Sylvester began an enthusiastic and 
profitable collaboration with Cayley.

From 1855 to 1870, Sylvester was a professor of mathe-
matics at the Royal Military Academy in Woolwich. He 
went to the United States once again in 1876 to become a 
professor of mathematics at Johns Hopkins University in 
Baltimore, Maryland. While there he founded (1878) and 
became the first editor of the American Journal of 
Mathematics, introduced graduate work in mathematics 
into American universities, and greatly stimulated the 
American mathematical scene. In 1883 he returned to 
England to become the Savilian Professor of Geometry at 
the University of Oxford.

Sylvester was primarily an algebraist. He did brilliant 
work in the theory of numbers, particularly in partitions 
(the possible ways a number can be expressed as a sum of 
positive integers) and Diophantine analysis (a means for 
finding whole-number solutions to certain algebraic 
equations). He worked by inspiration, and frequently it is 
difficult to detect a proof in what he confidently asserted. 
His work is characterized by powerful imagination and 
inventiveness. He was proud of his mathematical vocabu-
lary and coined many new terms, although few have 
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survived. He was elected a fellow of the Royal Society in 
1839, and he was the second president of the London 
Mathematical Society (1866–68). His mathematical output 
includes several hundred papers and one book, Treatise on 
Elliptic Functions (1876). He also wrote poetry, although not 
to critical acclaim, and published Laws of Verse (1870).

François Viète
(b. 1540, Fontenay-le-Comte, France—d. Dec. 13, 1603, Paris)

François Viète (Latin: Franciscus Vieta) was a French 
mathematician who introduced the first systematic algebraic 
notation and contributed to the theory of equations.

Viète, a Huguenot sympathizer, solved a complex 
cipher of more than 500 characters used by King Philip II 
of Spain in his war to defend Roman Catholicism from the 
Huguenots. When Philip, assuming that the cipher could 
not be broken, discovered that the French were aware of 
his military plans, he complained to the pope that black 
magic was being employed against his country.

Viète’s Canon mathematicus seu ad triangula (1579; 
“Mathematical Laws Applied to Triangles”) is probably the 
first western European work dealing with a systematic 
development of methods—utilizing all six trigonometric 
functions—for computing plane and spherical triangles. 
Viète has been called “the father of modern algebraic 
notation,” and his In artem analyticem isagoge (1591; 
“Introduction to the Analytical Arts”) closely resembles a 
modern elementary algebra text. His contribution to the 
theory of equations is De aequationum recognitione et 
emendatione (1615; “Concerning the Recognition and 
Emendation of Equations”), in which he presented meth-
ods for solving equations of second, third, and fourth 
degree. He knew the connection between the positive 
roots of an equation (which, in his time, were thought of 
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as the only roots) and the coefficients of the different 
powers of the unknown quantity.

ALGEBRAISTS OF THE STRUCTURAL 
PERIOD (20TH–21ST CENTURIES)

Emil Artin
(b. March 3, 1898, Vienna, Austria—d. Dec. 20, 1962, Hamburg, W.Ger.)

Austro-German mathematician Emil Artin made funda-
mental contributions to class field theory, notably the 
general law of reciprocity.

After one year at the University of Göttingen, Artin 
joined the staff of the University of Hamburg in 1923. He 
emigrated to the United States in 1937, where he taught at 
Notre Dame University (1937–38), Indiana University, 
Bloomington (1938–46), and Princeton University (1946–
58). In 1958 he returned to the University of Hamburg.

Artin’s early work centred on the analytical and arith-
metic theory of quadratic number fields. He made major 
advances in abstract algebra in 1926, and the following year, 
used the theory of formal-real fields to solve the Hilbert 
problem of definite functions. In 1927 he also made notable 
contributions in hypercomplex numbers, primarily the 
expansion of the theory of associative ring algebras. In 
1944 he discovered rings with minimum conditions for 
right ideals, now known as Artin rings. He presented a new 
foundation for and extended the arithmetic of semisimple 
algebras over the rational number field.

His theory of braids, set forth in 1925, was a major con-
tribution to the study of nodes in three-dimensional space. 
Artin’s books include Geometric Algebra (1957) and, with 
John T. Tate, Class Field Theory (1961). Most of his technical 
papers are found in The Collected Papers of Emil Artin (1965).

7 Great Algebraists 7



7 The Britannica Guide to Algebra and Trigonometry 7

144

Richard Ewen Borcherds
(b. Nov. 29, 1959, Cape Town, S.Af.)

Richard Ewen Borcherds was a British mathematician who 
won the Fields Medal in 1998 for his work in algebra.

Borcherds studied undergraduate mathematics at the 
University of Cambridge and went on to finish his doctor-
ate there in 1983. Afterward he held teaching and research 
positions at Cambridge and at the University of California 
at Berkeley.

Borcherds received the Fields Medal at the Inter-
national Congress of Mathematicians in Berlin in 1998 for 
his work on vertex algebras and Kac-Moody Lie algebras, 
which he used to prove the so-called Moonshine conjec-
tures. The Moonshine conjectures asserted a mysterious 
connection between certain families of modular functions 
and the representation theory of the largest sporadic simple 
group (the “Monster”). Borcherds’s work also drew on 
superstring theory and had profound implications for 
conformal field theory.

Nicolas Bourbaki

Nicolas Bourbaki was a pseudonym chosen by eight or 
nine young mathematicians in France in the mid 1930s to 
represent the essence of a “contemporary mathemati-
cian.” The surname, selected in jest, was that of a French 
general who fought in the Franco-German War (1870–71). 
The mathematicians, who collectively wrote under the 
Bourbaki pseudonym at one time, studied at the École 
Normale Supérieure in Paris and were admirers of the 
German mathematician David Hilbert. The founders 
included the Frenchmen Claude Chevalley, André Weil, 
Henri Cartan, and Jean Dieudonné. After World War II, 
they were joined by the Polish American Samuel Eilenberg. 



145

Members agreed to retire from the group at age 50, but 
the group’s ranks were replenished with new recruits.

The group’s purpose was originally to write a rigorous 
textbook in analysis, but it grew to include presentations 
of many branches of algebra and analysis, including topology, 
from an axiomatic point of view. The Bourbaki writings 
commenced in 1939 with the first volume of their Éléments 
de mathématique (“Elements of Mathematics”). The still-
incomplete series of more than 30 monographs soon 
became a standard reference on the fundamental aspects 
of modern mathematics. The various historical notes 
included at the ends of chapters were published as a col-
lection in 1960 in Eléments d ’histoire des mathématiques 
(“History of the Elements of Mathematics”).

Richard Dagobert Brauer
(b. Feb. 10, 1901, Berlin, Ger.—d. April 17, 1977, Belmont, Mass., U.S.)

Richard Dagobert Brauer was a German-born American 
mathematician and educator, a pioneer in the develop-
ment of modern algebra.

Brauer graduated from the University of Königsberg 
and received his Ph.D. in 1925 from the University of 
Berlin. He accepted a teaching position at Königsberg and 
remained there until 1933, when all Jews were dismissed 
from their academic posts in Germany. He immediately 
obtained a position in the United States at the University 
of Kentucky, and the following year, he left to work with 
Hermann Weyl at the Institute for Advanced Study, 
Princeton, New Jersey. Their work later had a bearing on 
Nobel laureate Paul Dirac’s theory of the spinning electron. 
Brauer then became interested in the work of Georg 
Frobenius, who had introduced group characters in 1896. 
Brauer carried forward Frobenius’s work and developed a 
theory of modular characters that gave new insights into 
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the study of group characters and advanced the develop-
ment of algebra.

In 1935 he accepted a position at the University of 
Toronto and was there until 1948, when he left to join the 
faculty at the University of Michigan. He became a pro-
fessor in Harvard University’s mathematics department in 
1952 and remained there until his retirement in 1971. He 
was chairman of the department from 1959 to 1963. In the 
late 1950s, he began formulating a method for classifying 
finite simple groups, a task that absorbed his attention for 
the rest of his life. In 1971 Brauer was awarded the National 
Medal of Science.

His Collected Papers was published in 1980.

Élie-Joseph Cartan
(b. April 9, 1869, Dolomieu, France—d. May 6, 1951, Paris)

French mathematician Élie-Joseph Cartan greatly developed 
the theory of Lie groups and contributed to the theory of 
subalgebras.

In 1894 Cartan became a lecturer at the University of 
Montpellier, where he studied the structure of continuous 
groups introduced by the noted Norwegian mathematician 
Sophus Lie. He later examined theories of equivalence and 
their relation to the theory of integral invariants, mechanics, 
and the general theory of relativity. After he moved to the 
University of Lyon in 1896, he worked on linear associative 
algebra, developing general theorems based on the work of 
Benjamin Peirce of Harvard and exhibiting a subalgebra 
of the German mathematician Ferdinand Georg Frobenius. 
In 1912 Cartan became a professor at the Sorbonne. A year 
later he discovered the spinors, complex vectors that are 
used to transform three-dimensional rotations into two-
dimensional representations.
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Although a profound theorist, Cartan was also able 
to explain difficult concepts to the ordinary student. 
Recognition of his work did not come until late in his life. 
He was made a member of the Academy of Sciences in 
France in 1931 and a fellow of the Royal Society of London 
in 1947. His works include La Géométrie des espaces de Riemann 
(1925; “The Geometry of Riemann Spaces”) and La Théorie 
des groupes continus et des espaces généralisés (1935; “The Theory 
of Continuous Groups and Generalized Spaces”).

George Dantzig
(b. Nov. 8, 1914, Portland, Ore., U.S.—d. May 13, 2005, Stanford, Calif.)

American mathematician George Dantzig devised the 
simplex method, an algorithm for solving problems that 
involve numerous conditions and variables, and in the 
process founded the field of linear programming.

Dantzig earned a bachelor’s degree in mathematics 
and physics from the University of Maryland (1936) and a 
master’s degree in mathematics from the University of 
Michigan (1937), before joining the U.S. Bureau of Labor 
Statistics as a statistician. In 1939 he entered the graduate 
mathematics program at the University of California, 
Berkeley. From 1941 to 1946, Dantzig was the civilian head 
of the Combat Analysis Branch of the U.S. Army Air 
Forces Office of Statistical Control. In 1946 he returned 
for one semester to Berkeley to receive a doctorate in 
mathematics, and then he went back to Washington, D.C., 
to work for the U.S. Department of Defense.

While working on allocation of resources (materials 
and personnel) for various projects and deployments of the 
U.S. Army Air Forces, Dantzig invented (1947) the simplex 
algorithm for optimization. At that time such scheduling 
was called programming, and it soon became apparent that 
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the simplex algorithm was ideal for translating formerly 
intractable problems involving hundreds, or even thou-
sands, of factors for solution by the recently invented 
computer. From 1952 to 1960, he was a research mathema-
tician at the RAND Corporation, where he helped 
develop the field of operations research (essentially, the 
application of computers to optimization problems). 
From 1960 to 1966, he served as chairman of the Operations 
Research Center at Berkeley, and from 1966 until his 
retirement in 1997, he was a professor of operations 
research and computer science at Stanford University.

Among Dantzig’s numerous awards were the John von 
Neumann Theory Prize in operations research (1975), the 
National Medal of Science (1975), and the National 
Academy of Sciences Award in applied mathematics and 
numerical analysis (1977).

Leonard Eugene Dickson
(b. Jan. 22, 1874, Independence, Iowa, U.S.—d. Jan. 17, 1954, 

Harlingen, Texas)

American mathematician Leonard Eugene Dickson made 
important contributions to the theory of numbers and the 
theory of groups.

Appointed associate professor of mathematics at the 
University of Texas at Austin in 1899, Dickson joined the staff 
of the University of Chicago in 1900, where he remained 
until 1939. A prolific mathematician, Dickson published 
the first extensive work on the theory of finite fields and 
expanded the Wedderburn and Cartan theories of linear 
associative algebras. One of his most-engrossing studies 
concerned the relationships between the theory of invari-
ants and number theory. Using the analytic results of the 
Russian mathematician Ivan M. Vinogradov, he proved 
the ideal Waring theorem in his investigations of additive 
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number theory. Of his 18 published books, the most monu-
mental is History of the Theory of Numbers, 3 vol. (1919–23).

Jean Dieudonné
(b. July 1, 1906, Lille, France—d. Nov. 29, 1992, Paris)

Jean Dieudonné, a French mathematician and educator, 
was known for his writings on abstract algebra, functional 
analysis, topology, and his theory of Lie groups.

Jean-Alexandre-Eugène Dieudonné was educated in 
Paris, receiving both his bachelor’s degree (1927) and his 
doctorate (1931) from the École Normale Supérieure. He 
was a founding member of the Nicolas Bourbaki group in 
the mid-1930s. After teaching at universities in Rennes and 
Nancy, France, and in São Paulo, Brazil, Dieudonné came to 
the United States in 1952 and taught mathematics at the 
University of Michigan and at Northwestern University. He 
returned to Paris to teach at the Institute of Advanced 
Scientific Studies (1959–64). He became professor of 
mathematics at the University of Nice in 1964, dean of the 
science faculty in 1965, and professor emeritus in 1970. In 
1968 he was elected to the French Academy of Sciences.

Dieudonné’s publications include La Géométrie des 
groupes classiques (1955), Foundations of Modern Analysis 
(1960), Algèbre linéaire et géométrie élémentaire (1964; “Linear 
Algebra and Elementary Geometry”), and Éléments 
d ’analyse, 9 vol. (1968–82).

Georg Frobenius
(b. Oct. 26, 1849, Berlin, Prussia [Germany]—d. Aug. 3, 1917, Berlin)

Ferdinand Georg Frobenius was a German mathematician 
who made major contributions to group theory.

Frobenius studied for one year at the University of 
Göttingen before returning home in 1868 to study at the 
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University of Berlin. After receiving a doctorate in 1870, 
he taught at various secondary schools before he became 
an assistant professor of mathematics at the University of 
Berlin in 1874. He was appointed a professor of mathematics 
at the Federal Polytechnic in Zürich, Switz., in 1875. 
Frobenius finally returned to the University of Berlin in 
1892 to occupy the mathematics chair vacated by the death 
of Leopold Kronecker. The next year Frobenius was 
elected to the Prussian Academy of Sciences.

As the major mathematics figure at Berlin, Frobenius 
continued the university’s antipathy to applied mathematics, 
which he thought belonged in technical schools. In some 
respects, this attitude contributed to the relative decline 
of Berlin in favour of Göttingen. On the other hand, he 
and his students made major contributions to the devel-
opment of the modern concept of an abstract group—such 
emphasis on abstract mathematical structure became a 
central theme of mathematics during the 20th century. 
With Frobenius’s disdain for applied mathematics, it is 
somewhat ironic that his fundamental work in the theory 
of finite groups was later found to have surprising and 
important applications in quantum mechanics and theo-
retical physics.

Frobenius’s collected works, Gesammelte Abhandlungen 
(1968), in three volumes, were edited by Jean-Pierre Serre.

Aleksandr Osipovich Gelfond
(b. Oct. 24, 1906, St. Petersburg, Russia—d. Nov. 7, 1968, Moscow, 

Russia, U.S.S.R.)

Russian mathematician Aleksandr Osipovich Gelfond 
originated basic techniques in the study of transcendental 
numbers (numbers that cannot be expressed as the root 
or solution of an algebraic equation with rational coeffi-
cients). He profoundly advanced transcendental number 
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theory and the theory of interpolation and approximation 
of complex variable functions.

Gelfond taught mathematics at the Moscow Tech-
nological College (1929–30) and, from 1931, at Moscow 
State University, at various times holding chairs of analysis, 
number theory, and history of mathematics.

In 1934 Gelfond proved that ab is transcendental if a is 
an algebraic number not equal to 0 or 1 and if b is an irra-
tional algebraic number. This statement, now known as 
Gelfond’s theorem, solved the seventh of 23 famous prob-
lems that had been posed by the German mathematician 
David Hilbert in 1900. Gelfond’s methods were readily 
accepted by other mathematicians, and important new 
concepts in transcendental number theory were rapidly 
developed. Much of his work, including the construction 
of new classes of transcendental numbers, is found in his 
Transtsendentnye i algebraicheskie chisla (1952; Transcendental 
and Algebraic Numbers). In Ischislenie konechnykh raznostey 
(1952; “Calculus of Finite Differences”), he summarized 
his approximation and interpolation studies.

David Hilbert
(b. Jan. 23, 1862, Königsberg, Prussia [now Kaliningrad, Russia]—d. 

Feb. 14, 1943, Göttingen, Ger.)

German mathematician David Hilbert reduced geometry 
to a series of axioms and contributed substantially to the 
establishment of the formalistic foundations of mathe-
matics. His work in 1909 on integral equations led to 
20th-century research in functional analysis.

The first steps of Hilbert’s career occurred at the 
University of Königsberg, at which, in 1884, he finished 
his Inaugurel-dissertation (Ph.D.). He remained at 
Königsberg as a Privatdozent (lecturer, or assistant professor) 
in 1886–92, as an Extraordinarius (associate professor) in 
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1892–93, and as an Ordinarius in 1893–95. In 1892 he married 
Käthe Jerosch, and they had one child, Franz. In 1895 
Hilbert accepted a professorship in mathematics at the 
University of Göttingen, at which he remained for the rest 
of his life.

The University of Göttingen had a flourishing tradition 
in mathematics, primarily as the result of the contributions 
of Carl Friedrich Gauss, Peter Gustav Lejeune Dirichlet, 
and Bernhard Riemann in the 19th century. During the 
first three decades of the 20th century, this mathematical 
tradition achieved even greater eminence, largely because 
of Hilbert. The Mathematical Institute at Göttingen drew 
students and visitors from all over the world.

Hilbert’s intense interest in mathematical physics also 
contributed to the university’s reputation in physics. His 
colleague and friend, the mathematician Hermann 
Minkowski, aided in the new application of mathematics 
to physics until his untimely death in 1909. Three winners 
of the Nobel Prize for Physics—Max von Laue in 1914, 
James Franck in 1925, and Werner Heisenberg in 1932—
spent significant parts of their careers at the University of 
Göttingen during Hilbert’s lifetime.

In a highly original way, Hilbert extensively modified 
the mathematics of invariants—the entities that are not 
altered during such geometric changes as rotation, dilation, 
and reflection. Hilbert proved the theorem of invariants—
that all invariants can be expressed in terms of a finite 
number. In his Zahlbericht (“Commentary on Numbers”), 
a report on algebraic number theory published in 1897, he 
consolidated what was known in this subject and pointed 
the way to the developments that followed. In 1899 he 
published the Grundlagen der Geometrie (The Foundations of 
Geometry, 1902), which contained his definitive set of axi-
oms for Euclidean geometry and a keen analysis of their 
significance. This popular book, which appeared in 10 
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editions, marked a turning point in the axiomatic treat-
ment of geometry.

A substantial part of Hilbert’s fame rests on a list of 
23 research problems he enunciated in 1900 at the Inter-
national Mathematical Congress in Paris. In his address, 
“The Problems of Mathematics,” he surveyed nearly all 
the mathematics of his day and endeavoured to set forth 
the problems he thought would be significant for mathe-
maticians in the 20th century. Many of the problems 
have since been solved, and each solution was a noted 
event. Of those that remain, however, one, in part, requires 
a solution to the Riemann hypothesis, which is usually 
considered to be the most important unsolved problem in 
mathematics.

In 1905 the first award of the Wolfgang Bolyai prize of 
the Hungarian Academy of Sciences went to Henri 
Poincaré, but it was accompanied by a special citation for 
Hilbert.

In 1905 (and again from 1918) Hilbert attempted to lay a 
firm foundation for mathematics by proving consistency—
that is, that finite steps of reasoning in logic could not lead 
to a contradiction. But in 1931 the Austrian–U.S. mathe-
matician Kurt Gödel showed this goal to be unattainable: 
propositions may be formulated that are undecidable; 
thus, it cannot be known with certainty that mathematical 
axioms do not lead to contradictions. Nevertheless, the 
development of logic after Hilbert was different, for he 
established the formalistic foundations of mathematics.

Hilbert’s work in integral equations in about 1909 led 
directly to 20th-century research in functional analysis 
(the branch of mathematics in which functions are stud-
ied collectively). His work also established the basis for 
his work on infinite-dimensional space, later called Hilbert 
space, a concept that is useful in mathematical analysis 
and quantum mechanics. Making use of his results on 
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integral equations, Hilbert contributed to the develop-
ment of mathematical physics by his important memoirs 
on kinetic gas theory and the theory of radiations. In 1909 
he proved the conjecture in number theory that for any n, 
all positive integers are sums of a certain fixed number of 
nth powers. For example, 5 = 22 + 12, in which n = 2. In 1910 
the second Bolyai award went to Hilbert alone and, appro-
priately, Poincaré wrote the glowing tribute.

The city of Königsberg in 1930, the year of his retire-
ment from the University of Göttingen, made Hilbert an 
honorary citizen. For this occasion he prepared an address 
entitled “Naturerkennen und Logik” (“The Understanding 
of Nature and Logic”). The last six words of Hilbert’s 
address sum up his enthusiasm for mathematics and the 
devoted life he spent raising it to a new level: “Wir müssen 
wissen, wir werden wissen” (“We must know, we shall 
know”). In 1939 the first Mittag-Leffler prize of the 
Swedish Academy went jointly to Hilbert and the French 
mathematician Émile Picard.

The last decade of Hilbert’s life was darkened by the 
tragedy brought to himself and to so many of his students 
and colleagues by the Nazi regime.

Saunders Mac Lane
(b. Aug. 4, 1909, Taftville, Conn., U.S.—d. April 14, 2005, San 

Francisco, Calif.)

American mathematician Saunders Mac Lane was a cocre-
ator of category theory, an architect of homological algebra, 
and an advocate of categorical foundations for mathematics.

Mac Lane graduated from Yale University in 1930 and 
then began graduate work at the University of Chicago. 
He soon moved to Germany, where he, with a dissertation 
on mathematical logic, received a doctorate degree in 1933 
from the University of Göttingen. While in Germany, he 
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stayed in the homes of Hermann Weyl and Richard 
Courant, and he saw his dissertation adviser Paul Bernays 
barred from teaching by the Nazis. Mac Lane returned 
home and taught at various universities before settling 
permanently at the University of Chicago in 1947.

About 1940 Mac Lane made some purely algebraic 
calculations in group theory, and the Polish American 
mathematician Samuel Eilenberg noticed that they 
applied to the topology of infinitely coiled curves called 
solenoids. To understand and generalize this link between 
algebra and topology, the two men created category theory, 
the general cohomology of groups, and the basis for the 
Eilenberg-Steenrod axioms for homology of topological 
spaces. Mac Lane worked with categorical duality and defined 
categorical universal properties. He defined and named 
Abelian categories, further developed by Alexandre 
Grothendieck to become central to homological algebra.

From the 1960s, Mac Lane pursued aspects of category 
theory, including the work of the American mathematician 
F. William Lawvere on categorical foundations for math-
ematics. Mac Lane served as president of the Mathematical 
Association of America (1951–52), the American Philoso-
phical Society (1968–71), and the American Mathematical 
Society (1973–74). He served as vice president of the 
National Academy of Sciences (1973–81). His works include 
A Survey of Modern Algebra (1941, with Garrett Birkhoff); 
Homology (1963); Categories for the Working Mathematician 
(1971); and Sheaves in Geometry and Logic: A First Introduction 
to Topos Theory (1992, with Ieke Moerdijk).

Gregori Aleksandrovich Margulis
(b. Feb. 24, 1946, Moscow, Russia, U.S.S.R.)

Russian mathematician Gregori Aleksandrovich Margulis 
was awarded the Fields Medal in 1978 for his contributions 

7 Great Algebraists 7



7 The Britannica Guide to Algebra and Trigonometry 7

156

to the theory of Lie groups. Margulis attended Moscow 
State University (Ph.D., 1970).

In 1978 Margulis was awarded the Fields Medal at the 
International Congress of Mathematicians in Helsinki, 
Fin., but was not allowed by the Soviet government to 
travel to Finland to receive the award. In 1990 Margulis 
immigrated to the United States. After brief appointments 
at Harvard University, Cambridge, Mass., and the Institute 
for Advanced Study, Princeton, N.J., he was appointed to a 
position at Yale University, New Haven, Conn. Margulis’s 
work was largely involved in solving a number of problems 
in the theory of Lie groups. In particular, Margulis proved 
a long-standing conjecture by Atle Selberg concerning dis-
crete subgroups of semisimple Lie groups. The techniques 
he used in his work were drawn from combinatorics, ergodic 
theory, dynamical systems, and differential geometry.

Margulis’ publications include Discrete Subgroups of 
Semisimple Lie Groups (1991).

Emmy Noether
(b. March 23, 1882, Erlangen, Ger.—d. April 14, 1935, Bryn Mawr, 

Penn., U.S.)

Emmy Noether was a German mathematician whose 
innovations in higher algebra gained her recognition as 
the most creative abstract algebraist of modern times.

Amalie Emmy Noether received a Ph.D. degree from 
the University of Erlangen in 1907, with a dissertation on 
algebraic invariants. From 1913 she lectured occasionally 
at Erlangen, substituting for her father, Max Noether 
(1844–1921). In 1915 she went to the University of Göttingen 
and was persuaded by the eminent mathematicians David 
Hilbert and Felix Klein to remain there over the objec-
tions of some faculty members. She won formal admission 
as an academic lecturer in 1919.
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The appearance of Moduln in nichtkommutativen 
Bereichen, insbesondere aus Differential- und Differenzen-
Ausdrücken (1920; Concerning Moduli in Noncommutative 
Fields, Particularly in Differential and Difference Terms), writ-
ten in collaboration with a Göttingen colleague, Werner 
Schmeidler, and published in Mathematische Zeitschrift, 
marked the first notice of Noether as an extraordinary 
mathematician. For the next six years, her investigations 
centred on the general theory of ideals (special subsets of 
rings), for which her residual theorem is an important 
part. On an axiomatic basis, she developed a general the-
ory of ideals for all cases. Her abstract theory helped draw 
together many important mathematical developments.

From 1927 Noether concentrated on noncommutative 
algebras (algebras in 
which the order in which 
numbers are multiplied 
affects the answer), their 
linear transformations, 
and their application to 
commutative number 
fields. She built up the 
theory of noncommu-
tative algebras in a 
newly unified and purely 
conceptual way. In col-
laboration with Helmut 
Hasse and Richard 
Brauer, she investigated 
the structure of noncom-
mutative algebras and 
their application to com-
mutative fields by means 
of cross product (a 
form of multiplication 

Emmy Noether. Pictorial Parade/Hulton 
Archive/Getty Images
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used between two vectors). Important papers from this 
period are “Hyperkomplexe Grössen und Darstellungs-
theorie” (1929; “Hypercomplex Number Systems and Their 
Representation”) and “Nichtkommutative Algebra” (1933; 
“Noncommutative Algebra”).

In addition to research and teaching, Noether helped 
edit the Mathematische Annalen. From 1930 to 1933, she was 
the centre of the strongest mathematical activity at 
Göttingen. The extent and significance of her work can-
not be accurately judged from her papers. Much of her 
work appeared in the publications of students and col-
leagues. Many times a suggestion or even a casual remark 
revealed her great insight and stimulated another to com-
plete and perfect some idea.

When the Nazis came to power in Germany in 1933, 
Noether and many other Jewish professors at Göttingen 
were dismissed. In October she left for the United States 
to become visiting professor of mathematics at Bryn 
Mawr College and to lecture and conduct research at the 
Institute for Advanced Study in Princeton, New Jersey.

Daniel Gray Quillen
(b. June 27, 1940, Orange, N.J., U.S.)

American mathematician Daniel Gray Quillen was 
awarded the Fields Medal in 1978 for his contributions to 
algebraic K-theory.

Quillen attended Harvard University, Cambridge, 
Mass. (Ph.D., 1969), and held appointments at the 
Massachusetts Institute of Technology (1973–88) and 
the Mathematical Institute of Oxford (Eng.) University 
(1988– ).

Quillen was awarded the Fields Medal at the 
International Congress of Mathematicians in Helsinki, 
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Fin., in 1978. In addition to Quillen’s application of geo-
metric and topological techniques to the study of 
algebraic K-theory, he made contributions in topology to 
the cobordism theory of René Thom. In 1976 he solved a 
well-known problem that had been posed 20 years earlier 
by Jean-Pierre Serre concerning the structure of certain 
abstract mathematical spaces. He showed that many of 
the highly generalized spaces that have been developed 
so extensively in 20th-century mathematics can be devel-
oped from elementary components, dimension by 
dimension.

Quillen’s publications include Homotopical Algebra (1967) 
and, edited with Graeme B. Segal and Sheung Tsun Tsou, 
The Interface of Mathematics and Particle Physics (1990).

Alfred Tarski
(b. Jan. 14, 1902, Warsaw, Pol., Russian Empire—d. Oct. 26, 1983, 

Berkeley, Calif., U.S.)

Polish-born American mathematician and logician 
Alfred Tarski made important studies of general algebra, 
measure theory, mathematical logic, set theory, and 
metamathematics.

Tarski completed his education at the University of 
Warsaw (Ph.D., 1923). He taught in Warsaw until 1939, 
when he moved to the United States (becoming a natural-
ized citizen in 1945). He joined the staff of the University 
of California at Berkeley in 1942, was appointed professor of 
mathematics (1949), and was research professor of the 
Miller Institute of Basic Research in Science there (1958–
60). In succeeding years he was responsible for influencing 
the careers of many mathematics students. He became 
emeritus in 1968. He wrote a number of works on algebra, 
geometry, and logic.
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Hermann Weyl
(b. Nov. 9, 1885, Elmshorn, near Hamburg, Ger.—d. Dec. 8, 1955, 

Zürich, Switz.)

Hermann Weyl was a German-American mathematician 
who, through his widely varied contributions in mathe-
matics, served as a link between pure mathematics and 
theoretical physics—in particular adding enormously to 
quantum mechanics and the theory of relativity.

As a student at the University of Göttingen (graduated 
1908), Weyl came under the influence of David Hilbert. In 
1913 he became professor of mathematics at the Technische 
Hochschule, Zürich, where he was a colleague of Albert 
Einstein. The outstanding characteristic of Weyl’s work 
was his ability to unite previously unrelated subjects. In 
Die Idee der Riemannschen Fläche (1913; The Concept of a 
Riemann Surface), he created a new branch of mathematics 
by uniting function theory and geometry and thereby 
opening up the modern synoptic view of analysis, geometry, 
and topology.

The outgrowth of a course of lectures on relativity, 
Weyl’s Raum, Zeit, Materie (1918; “Space, Time, Matter”) 
reveals his keen interest in philosophy and embodies the 
bulk of his findings on relativity. He produced the first 
unified field theory for which Maxwell’s equations of 
electromagnetic fields and the gravitational field appear 
as geometric properties of space-time. The influence of 
these studies on differential geometry is exemplified best 
by his treatment of the Italian mathematician Tullio Levi-
Civita’s concept of parallel displacement of a vector. Weyl 
freed the concept from dependence on a Riemann metric 
and thus set the stage for the rapid development of pro-
jective differential geometry by Oswald Veblen of the 
United States and by others.
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From 1923 to 1938, Weyl evolved a general theory of 
continuous groups, using matrix representation. He found 
that most of the regularities of quantum phenomena on 
the atomic level can be most simply understood by using 
group theory. With the findings published in Gruppentheorie 
und Quantenmechanik (1928; “Group Theory and Quantum 
Mechanics”), Weyl helped mold modern quantum theory.

Weyl was appointed professor of mathematics at the 
University of Göttingen in 1930. The Nazi dismissal of 
many of his colleagues prompted him to leave Germany in 
1933 and accept a position at the Institute for Advanced 
Study, Princeton, New Jersey. He became a U.S. citizen in 
1939. After his retirement in 1955, Weyl remained professor 
emeritus of the institute and divided his time between 
Princeton and Zürich.

Efim Isaakovich Zelmanov
(b. Sept. 7, 1955, Khabarovsk, Russia, U.S.S.R.)

Russian mathematician Efim Isaakovich Zelmanov was 
awarded the Fields Medal in 1994 for his work in group 
theory.

Zelmanov was educated at Novosibirsk State Univer-
sity (Ph.D., 1980) and Leningrad (now St. Petersburg) 
State University (D.Sc., 1985). He worked at the Institute 
of Mathematics of the Academy of Sciences of the U.S.S.R. 
in Novosibirsk until 1987. He then left the Soviet Union, 
eventually settling at the University of Wisconsin, 
Madison (U.S.), in 1990. He moved to the University of 
Chicago in 1994 and on to Yale University, New Haven, 
Conn., in 1995.

Zelmanov was awarded the Fields Medal at the 
International Congress of Mathematicians in Zürich in 
1994. Zelmanov’s prizewinning work was not directly 
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related to his main field of research, nonassociative alge-
bras. However, he made spectacular advances in group 
theory by solving the century-old restricted Burnside 
problem, using the theory of Lie algebras. Zelmanov’s 
broad interests were critically important in this work, as a 
proof of his major result probably could not have been 
carried out by a traditional group theorist or Lie theorist. 
Zelmanov also made important contributions to the study 
of Jordan algebras, which are of interest in the study of 
quantum mechanics.

Zelmanov’s publications include Nil Rings and Periodic 
Groups (1992).
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ALGEBRAIC TERMS 
AND CONCEPTS

CHAPTER 3

 An alphabetic compendium of terms and concepts 
commonly encountered in algebra is provided in this 

chapter.   

 ALGEBRAIC EQUATION 

 An algebraic equation is a statement of the equality of two 
expressions formulated by applying to a set of variables 
the algebraic operations, namely, addition, subtraction, 
multiplication, division, raising to a power, and extraction 
of a root. Examples are  x  3  + 1 and ( y  4  x  2  + 2 x  y  –  y )/( x  – 1) = 12. 
One important special case of such equations is that of 
polynomial equations, expressions of the form  a  x   n   + 
b  x   n  − 1  + . . . +  g  x  +  h  =  k . They have as many solutions as their 
degree ( n ), and the search for their solutions stimulated 
much of the development of classical and modern algebra. 
Equations like  x  sin ( x ) =  c  that involve nonalgebraic 
operations, such as logarithms or trigonometric functions, 
are said to be transcendental. 

 The solution of an algebraic equation is the process of 
fi nding a number or set of numbers that, if substituted for 
the variables in the equation, reduce it to an identity. Such 
a number is called a root of the equation.   

 ALGEBRAIC NUMBER 

 An algebraic number is any real number for which there 
exists a polynomial equation with integer coeffi cients 
such that the given real number is a solution. Algebraic 
numbers include all of the natural numbers, all rational 
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numbers, some irrational numbers, and complex numbers 
of the form pi + q, where p and q are rational, and i is the 
square root of −1. For example, i is a root of the polynomial 
x2 + 1 = 0. Numbers, such as that symbolized by the Greek 
letter π, that are not algebraic are called transcendental 
numbers. The mathematician Georg Cantor proved that, 
in a sense that can be made precise, there are many more 
transcendental numbers than there are algebraic numbers, 
even though there are infinitely many of these latter.

ASSOCIATIVE LAW

The associative law is either of two laws relating to number 
operations of addition and multiplication, stated symboli-
cally: a + (b + c) = (a + b) + c, and a(bc) = (ab)c. That is, the 
terms or factors may be associated in any way desired. 
While associativity holds for ordinary arithmetic with 
real or imaginary numbers, there are certain applications—
such as nonassociative algebras—in which it does not hold.

AUTOMORPHISM

An automorphism is a correspondence that associates to 
every element in a set a unique element of the set (perhaps 
itself) and for which there is a companion correspondence, 
known as its inverse, such that one followed by the other 
produces the identity correspondence (i); i.e., the corre-
spondence that associates every element with itself. In 
symbols, if f is the original correspondence and g is its 
inverse, then g(f(a)) = i(a) = a = i(a) = f(g(a)) for every a in the 
set. Furthermore, operations such as addition and multi-
plication must be preserved. For example, f(a + b) = f(a) + f(b) 
and f(a·b) = f(a)·f(b) for every a and b in the set.

The collection of all possible automorphisms for a 
given set A, denoted Aut(A), forms a group, which can be 
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examined to determine various symmetries in the struc-
ture of the set A.

BINOMIAL THEOREM

The binomial theorem is a statement that, for any positive 
integer n, the nth power of the sum of two numbers a and 
b may be expressed as the sum of n + 1 terms of the form

in the sequence of terms, the index r takes on the successive 
values 0, 1, 2, . . ., n. The coefficients, called the binomial 
coefficients, are defined by the formula

in which n! (called n factorial) is the product of the first n 
natural numbers 1, 2, 3,..., n (and where 0! is defined as 
equal to 1). The coefficients may also be found in the array 
often called Pascal’s triangle

by finding the rth entry of the nth row (counting begins 
with a zero in both directions). Each entry in the inte-
rior of Pascal’s triangle is the sum of the two entries 
above it.
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The theorem is useful in algebra as well as for deter-
mining permutations, combinations, and probabilities. 
For positive integer exponents, n, the theorem was known 
to Islamic and Chinese mathematicians of the late medi-
eval period. Isaac Newton stated in 1676, without proof, 
the general form of the theorem (for any real number n), 
and a proof by Jakob Bernoulli was published in 1713, after 
Bernoulli’s death. The theorem can be generalized to 
include complex exponents, n, and this was first proved by 
Niels Henrik Abel in the early 19th century.

BOOLEAN ALGEBRA

Boolean algebra is a symbolic system of mathematical 
logic that represents relationships between entities—
either ideas or objects. The basic rules of this system were 
formulated in 1847 by George Boole of England and were 
subsequently refined by other mathematicians and applied 
to set theory. Today, Boolean algebra is of significance to 
the theory of probability, geometry of sets, and information 
theory. Furthermore, it constitutes the basis for the design 
of circuits used in electronic digital computers. 

In a Boolean algebra a set of elements is closed under 
two commutative binary operations that can be described 
by any of various systems of postulates, all of which can be 
deduced from the basic postulates that an identity ele-
ment exists for each operation, that each operation is 
distributive over the other, and that for every element in 
the set there is another element that combines with the 
first under either of the operations to yield the identity 
element of the other.

The ordinary algebra (in which the elements are the 
real numbers and the commutative binary operations are 
addition and multiplication) does not satisfy all the 
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requirements of a 
Boolean algebra. The 
set of real numbers is 
closed under the two 
operations (that is, the 
sum or the product of 
two real numbers also is 
a real number). Identity 
elements exist—0 for 
addition and 1 for mul-
tiplication (that is, 
a + 0 = a and a × 1 = a for 
any real number a). 
Also, multiplication is 
distributive over addi-
tion (that is, a × [b + c] = 
[a × b] + [a × c]), but addi-
tion is not distributive 
over multiplication (that 
is, a + [b × c] does not, in 
general, equal [a + b]  × [a + c]).

The advantage of Boolean algebra is that it is valid 
when truth-values—i.e., the truth or falsity of a given 
proposition or logical statement—are used as variables 
instead of the numeric quantities employed by ordinary 
algebra. It lends itself to manipulating propositions that 
are either true (with truth-value 1) or false (with truth-
value 0). Two such propositions can be combined to form 
a compound proposition by use of the logical connectives, 
or operators, AND or OR. (The standard symbols for 
these connectives are  and , respectively.) The truth-
value of the resulting proposition is dependent on the 
truth-values of the components and the connective 
employed. For example, the propositions a and b may be 

George Boole, whose work on logic led him to 
develop what is now known as Boolean algebra. 
Keystone/Hulton Archive/Getty Images
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true or false, independently of one another. The connective 
AND produces a proposition, a  b, that is true when 
both a and b are true, and false otherwise.

COMMUTATIVE LAW

The commutative law is either of two laws relating to 
number operations of addition and multiplication, stated 
symbolically: a + b = b + a and ab = ba. From these laws it 
follows that any finite sum or product is unaltered by reor-
dering its terms or factors. While commutativity holds for 
many systems, such as the real or complex numbers, there 
are other systems, such as the system of n × n matrices or 
the system of quaternions, in which commutativity of 
multiplication is invalid. Scalar multiplication of two vec-
tors (to give the so-called dot product) is commutative 
(i.e., a·b = b·a), but vector multiplication (to give the cross 
product) is not (i.e., a × b = −b × a). The commutative law 
does not necessarily hold for multiplication of condition-
ally convergent series.

COMPLEX NUMBER

A complex number is any number of the form x + yi in 
which x and y are real numbers and i is the imaginary unit 
such that i2 = −1.

CRAMER’S RULE

Cramer’s rule is a procedure in linear and multilinear algebra 
for solving systems of simultaneous linear equations by 
means of determinants. Although Cramer’s rule is not an 
effective method for solving systems of linear equations in 
more than three variables, it is of use in studying how the 
solutions to a system AX = B depend on the vector B. If
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is a system of n simultaneous linear equations in n unknowns, 
then a solution of this system is

in which det A is the determinant of the matrix A (in which 
the elements of each row are the coefficients aij of one of the 
equations) and the matrix Bi is formed by replacing the ith 
column of A by the column of constants b1,. . ., bn.

If det A equals zero, the system has no unique solution. 
That is, there is no set x1,. . ., xn that satisfies all of the 
equations.

DEGREE OF FREEDOM

A degree of freedom is any of the number of independent 
quantities necessary to express the values of all the variable 
properties of a system. A system composed of a point mov-
ing without constraints in space, for example, has three 
degrees of freedom because three coordinates are needed 
to determine the position of the point.

The number of degrees of freedom is reduced by con-
straints such as the requirement that a point move along a 
particular path. Thus, a simple pendulum has only one 
degree of freedom because its angle of inclination is 
specified by a single number. In a chemical system, the 
condition of equilibrium imposes constraints: properties 
such as temperature and composition of coexisting phases 
cannot all vary independently.

If, in a statistical sample distribution, there are n 
variables and m constraints on the distribution, there are 
n − m degrees of freedom.
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DETERMINANT

In linear and multilinear algebra, a determinant is a value, 
denoted det A, associated with a square matrix A of n rows 
and n columns. Designating any element of the matrix by 
the symbol arc (the subscript r identifies the row and c the 
column), the determinant is evaluated by finding the sum 
of n! terms, each of which is the product of the coefficient 
(−1)r + c and n elements, no two from the same row or col-
umn. Determinants are of use in ascertaining whether a 
system of n equations in n unknowns has a solution. If B is 
an n × 1 vector and the determinant of A is nonzero, the 
system of equations AX = B always has a solution.

For the trivial case of n = 1, the value of the determinant 
is the value of the single element a11. For n = 2, the matrix is

and the determinant is a11a22 −  a12a21.
Larger determinants ordinarily are evaluated by a step-

wise process, expanding them into sums of terms, each the 
product of a coefficient and a smaller determinant. Any row 
or column of the matrix is selected, each of its elements arc 
is multiplied by the factor (−1)r + c and by the smaller deter-
minant Mrc formed by deleting the rth row and cth column 
from the original array. Each of these products is expanded 
in the same way until the small determinants can be evalu-
ated by inspection. At each stage, the process is facilitated 
by choosing the row or column containing the most zeros.

For example, the determinant of the matrix
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is most easily evaluated with respect to the second column:

DISCRIMINANT

A discriminant is a parameter of an object or system calcu-
lated as an aid to its classification or solution. In the case 
of a quadratic equation ax2 + bx + c = 0, the discriminant 
is b2 − 4ac. For a cubic equation x3 + ax2 + bx + c = 0, the dis-
criminant is a2b2 + 18abc − 4b3 − 4a3c − 27c2. The roots of a 
quadratic or cubic equation with real coefficients are real 
and distinct if the discriminant is positive, are real with at 
least two equal if the discriminant is zero, and include a 
conjugate pair of complex roots if the discriminant is 
negative. A discriminant can be found for the general 
quadratic, or conic, equation ax2 + bxy + cy2 + dx + ey + f = 0. 
It indicates whether the conic represented is an ellipse, a 
hyperbola, or a parabola.

Discriminants also are defined for elliptic curves, finite 
field extensions, quadratic forms, and other mathematical 
entities. The discriminants of differential equations are 
algebraic equations that reveal information about the 
families of solutions of the original equations.

DISTRIBUTIVE LAW

The distributive law is the law relating the operations of 
multiplication and addition, stated symbolically, 
a(b + c) =  ab + ac. That is, the monomial factor a is dis-
tributed, or separately applied, to each term of the 
binomial factor b + c, resulting in the product ab + ac. 
From this law it is easy to show that the result of first 
adding several numbers and then multiplying the sum 
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by some number is the same as first multiplying each 
separately by the number and then adding the 
products.

EIGENVALUE

An eigenvalue is one of a set of discrete values of a 
parameter, k, in an equation of the form Pψ = kψ, in 
which P is a linear operator (that is, a symbol denoting a 
linear operation to be performed), for which there are 
solutions satisfying given boundary conditions. The 
symbol ψ (psi) represents an eigenfunction (proper or 
characteristic function) belonging to that eigenvalue. 
The totality of eigenvalues is a set. In quantum mechan-
ics P is frequently a Hamiltonian, or energy, operator 
and the eigenvalues are energy values, but operators 
corresponding to other dynamical variables such as total 
angular momentum are also used. Experimental mea-
surements of the proper dynamical variable will yield 
eigenvalues.

EQUATION

A mathematical equation is a statement of equality 
between two expressions consisting of variables and/or 
numbers. In essence, equations are questions, and the 
development of mathematics has been driven by 
attempts to find answers to those questions in a system-
atic way. Equations vary in complexity from simple 
algebraic equations (involving only addition or multipli-
cation) to differential equations, exponential equations 
(involving exponential expressions), and integral equa-
tions. They are used to express many of the laws of 
physics.
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FACTOR

A factor is a number or algebraic expression that divides 
another number or expression evenly—i.e., with no 
remainder. For example, 3 and 6 are factors of 12 because 
12 ÷ 3 = 4 exactly and 12 ÷ 6 = 2 exactly. The other factors of 
12 are 1, 2, 4, and 12. A positive integer greater than 1, or an 
algebraic expression, that has only two factors (i.e., itself 
and 1) is termed prime. A positive integer or an algebraic 
expression that has more than two factors is termed com-
posite. The prime factors of a number or an algebraic 
expression are those factors which are prime. By the fun-
damental theorem of arithmetic, except for the order in 
which the prime factors are written, every whole number 
larger than 1 can be uniquely expressed as the product of 
its prime factors. For example, 60 can be written as the 
product 2·2·3·5.

Methods for factoring large whole numbers are of 
great importance in public-key cryptography, and on 
such methods rests the security (or lack thereof) of data 
transmitted over the Internet. Factoring is also a particu-
larly important step in the solution of many algebraic 
problems. For example, the polynomial equation 
x2 − x − 2 = 0 can be factored as (x − 2)(x + 1) = 0. Since in an 
integral domain a·b = 0 implies that either a = 0 or b = 0, 
the simpler equations x − 2 = 0 and x + 1 = 0 can be solved 
to yield the two solutions x = 2 and x = −1 of the original 
equation.

FUNDAMENTAL THEOREM  
OF ALGEBRA

The fundamental theorem of algebra is the theorem of 
equations proved by Carl Friedrich Gauss in 1799. It 
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states that every poly-
nomial equation of 
degree n with complex 
number coefficients 
has n roots, or solu-
tions, in the complex 
numbers

GAUSS 
ELIMINATION

The Gauss elimination 
is a process employed 
in linear and multilinear 
algebra for finding the 
solutions of a system 
of simultaneous linear 
equations by first solving 
one of the equations 
for one variable (in terms 

of all the others) and then substituting this expression 
into the remaining equations. The result is a new system 
in which the number of equations and variables is one less 
than in the original system. The same procedure is applied 
to another variable and the process of reduction contin-
ued until there remains one equation, in which the only 
unknown quantity is the last variable. Solving this equa-
tion makes it possible to “back substitute” this value in 
an earlier equation that contains this variable and one 
other unknown in order to solve for another variable. This 
process is continued until all the original variables have 
been evaluated. The whole process is greatly simplified 
using matrix operations, which can be performed by 
computers.

Carl Friedrich Gauss, whose many contribu-
tions to the field of mathematics include the 
development of the fundamental theorem of 
algebra. Hulton Archive/Getty Images
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GROUP

A mathematical group is a set that has a multiplication 
that is associative [a(bc) = (ab)c for any a, b, c] and that has 
an identity element and inverses for all elements of the 
set. Systems obeying the group laws first appeared in 
1770 in Joseph-Louis Lagrange’s studies of permuta-
tions of roots of equations in his work Reflections sur la 
Theorie Algebrigres des Equations. However, the word 
group was first attached to a system of permutations by 
Évariste Galois in 1831. It was Heinrich Weber, in 1882, 
who first gave a purely axiomatic description of a group 
independently of the nature of its elements. Today, 
groups are fundamental entities in abstract algebra and 
are of considerable importance in geometry, physics, 
and chemistry.

GROUP THEORY

In modern algebra, group theory is a system consisting 
of a set of elements and an operation for combining the 
elements, which together satisfy certain axioms. These 
require that the group be closed under the operation 
(the combination of any two elements produces another 
element of the group); that it obey the associative law; 
that it contain an identity element (which, combined 
with any other element, leaves the latter unchanged); 
and that each element have an inverse (which combines 
with an element to produce the identity element). If the 
group also satisfies the commutative law, it is called a 
commutative, or Abelian, group. The set of integers under 
addition, where the identity element is 0 and the inverse 
is the negative of a positive number or vice versa, is an 
Abelian group.
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HODGE CONJECTURE

In algebraic geometry, the Hodge conjecture is an asser-
tion that for certain “nice” spaces (projective algebraic 
varieties), their complicated shapes can be covered 
(approximated) by a collection of simpler geometric pieces 
called algebraic cycles. The conjecture was first formu-
lated by British mathematician William Hodge in 1941, 
though it received little attention before he presented it 
in an address during the 1950 International Congress of 
Mathematicians, held in Cambridge, Mass., U.S. In 2000 
it was designated one of the Millennium Problems, seven 
mathematical problems selected by the Clay Mathematics 
Institute of Cambridge, Mass., for a special award. The 
solution for each Millennium Problem is worth $1 million. 
In 2008 the U.S. Defense Advanced Research Projects 
Agency (DARPA) listed it as one of the 23 DARPA 
Mathematical Challenges, mathematical problems for 
which it was soliciting research proposals for funding—
“Mathematical Challenge Twenty-one: Settle the Hodge 
Conjecture. This conjecture in algebraic geometry is a 
metaphor for transforming transcendental computations 
into algebraic ones.”

HOMOMORPHISM

A homomorphism (from Greek homoios morphe, “similar 
form”) is a special correspondence between the members 
(elements) of two algebraic systems, such as two groups, 
two rings, or two fields. Two homomorphic systems have 
the same basic structure, and, while their elements and 
operations may appear entirely different, results on one 
system often apply as well to the other system. Thus, if 
a new system can be shown to be homomorphic to a 
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known system, certain known features of one can be 
applied to the other, thereby simplifying the analysis of 
the new system.

In a homomorphism, corresponding elements of two 
systems behave very similarly in combination with other 
corresponding elements. For example, let G and H be 
groups. The elements of G are denoted g, g',. . ., and they 
are subject to some operation ⊕. (Although the symbol 
may be thought of as some operation like multiplication, 
it can just as well indicate rotation or some other non-
arithmetic operation.) Similarly, the elements of H are 
denoted by h, h',. . ., and they are subject to some opera-
tion ⊗. A homomorphism from G to H is a correspondence 
g  h between all elements of G and some elements of H 
that has the following property: if g  h and g'  h', then 
g ⊕ g'  h ⊗ h'. In other words, the element of H corre-
sponding to a product of elements in G is the product, in 
the same order, of the elements of H corresponding to the 
two elements in G. Expressed more compactly, the “image” 
of the product is the product of the images, or the corre-
spondence preserves the operation.

A correspondence between members of two algebraic 
systems may be written as a function f from G to H, and 
one speaks of f as “mapping” G to H. The condition that f 
be a homomorphism of the group G to the group H may 
be expressed as the requirement that f(g ⊕ g') = f(g) ⊗ f(g').

Homomorphisms impose conditions on a mapping f: 
if e is the identity of G, then g ⊕ e = g, so f(g ⊕ e) = f(g). 
Furthermore, since f is a homomorphism, f(g ⊕ e) = 
f(g) ⊗ f(e), so f(g) = f(g) ⊗ f(e). By the cancellation laws for 
groups, this implies that f(e) is equal to the identity in H. 
Thus, homomorphisms map the unique identity element 
of one group to the unique identity element of the other 
group. Similarly, homomorphisms map the inverse of an 
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element g in one group to the inverse of the element 
f(g). This is why homomorphisms are called structure-
preserving maps.

Special types of homomorphisms have their own 
names. A one-to-one homomorphism from G to H is called 
a monomorphism, and a homomorphism that is “onto,” or 
covers every element of H, is called an epimorphism. An 
especially important homomorphism is an isomorphism, 
in which the homomorphism from G to H is both one-to-
one and onto. In this last case, G and H are essentially the 
same system and differ only in the names of their elements. 
Thus, homomorphisms are useful in classifying and enu-
merating algebraic systems since they allow one to identify 
how closely different systems are related.

IDEAL

In modern algebra, an ideal is a subring of a mathematical 
ring with certain absorption properties. The concept of an 
ideal was first defined and developed by German mathe-
matician Richard Dedekind in 1871. In particular, he used 
ideals to translate ordinary properties of arithmetic into 
properties of sets.

A ring is a set having two binary operations, typically 
addition and multiplication. Addition (or another operation) 
must be commutative (a + b = b + a for any a, b) and associative 
[a + (b + c) = (a + b) + c for any a, b, c], and multiplication (or 
another operation) must be associative [a(bc) = (ab)c for 
any a, b, c]. There must also be a zero (which functions as 
an identity element for addition), negatives of all elements 
(so that adding a number and its negative produces the 
ring’s zero element), and two distributive laws relating 
addition and multiplication [a(b + c) = ab + ac and 
(a + b)c = ac + bc for any a, b, c]. A subset of a ring that forms 
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a ring with respect to the operations of the ring is known 
as a subring.

For a subring I of a ring R to be an ideal, ax and xa must 
be in I for all a in R and x in I. In other words, multiplying 
(on the left or right) any element of the ring by an element 
of the ideal produces another element of the ideal. Note 
that ax may not equal xa, as multiplication does not have 
to be commutative.

Furthermore, each element a of R forms a coset (a + I), 
where every element from I is substituted into the expres-
sion to produce the full coset. For an ideal I, the set of all 
cosets forms a ring, with addition and multiplication, 
respectively, defined by: (a + I) + (b + I) = (a + b) + I and (a + I)
(b + I) = ab + I. The ring of cosets is called a quotient ring 
R/I, and the ideal I is its zero element. For example, the 
set of integers (Z) forms a ring with ordinary addition and 
multiplication. The set 3Z formed by multiplying each 
integer by 3 forms an ideal, and the quotient ring Z/3Z has 
only three elements:

1. 0 + 3Z = 3Z = {0, ±3, ±6, ±9,. . .}
2. 1 + 3Z = {. . ., −8, −5, −2, 1, 4, 7,. . .}
3. 2 + 3Z = {. . ., −7, −4, −1, 2, 5, 8,. . .}

IMAGINARY NUMBER

An imaginary number is any product of the form ai, in 
which a is a real number and i is the imaginary unit defined 
as −1.

INJECTION

An injection is a mapping (or function) between two sets 
such that the domain (input) of the mapping consists of all 
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the elements of the first set, the range (output) consists of 
some subset of the second set, and each element of the 
first set is mapped to a different element of the second set 
(one-to-one). The sets need not be different. For example, 
the function that multiplies each integer by two is an 
injection from the set of integers to the set of even inte-
gers, which is a subset of the integers. If the range of a 
mapping consists of all the elements of the second set, it is 
known as a surjection, or onto. A mapping that is both an 
injection and a surjection is known as a bijection.

IRRATIONAL NUMBER

An irrational number is any real number that cannot be 
expressed as the quotient of two integers. For example, 
there is no number among integers and fractions that 
equals the square root of 2. A counterpart problem in 
measurement would be to find the length of the diagonal 
of a square whose side is one unit long. There is no sub-
division of the unit length that will divide evenly into the 
length of the diagonal. It thus became necessary, early in 
the history of mathematics, to extend the concept of 
number to include irrational numbers. Each irrational 
number can be expressed as an infinite decimal expansion 
with no regularly repeating digit or group of digits. 
Together with the rational numbers, they form the real 
numbers.

LINEAR EQUATION

A linear equation is a statement that a first-degree poly-
nomial—that is, the sum of a set of terms, each of which 
is the product of a constant and the first power of a 
variable—is equal to a constant. Specifically, a linear 
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equation in n variables is of the form a0 + a1x1 + . . . + anxn = c, 
in which x1, . . ., xn are variables, the coefficients a0, . . ., an 
are constants, and c is a constant. If there is more than one 
variable, the equation may be linear in some variables and 
not in the others. Thus, the equation x + y = 3 is linear in 
both x and y, whereas x + y2 = 0 is linear in x but not in y. 
Any equation of two variables, linear in each, represents a 
straight line in Cartesian coordinates. If the constant term 
c = 0, the line passes through the origin.

A set of equations that has a common solution is 
called a system of simultaneous equations. For example, in 
the system

both equations are satisfied by the solution x = 2, y = 3. The 
point (2, 3) is the intersection of the straight lines repre-
sented by the two equations.

A linear differential equation is of first degree with 
respect to the dependent variable (or variables) and its (or 
their) derivatives. As a simple example, note dy/dx + Py = Q, 
in which P and Q can be constants or may be functions of 
the independent variable, x, but do not involve the depen-
dent variable, y. In the special case that P is a constant and 
Q = 0, this represents the very important equation for 
exponential growth or decay (such as radioactive decay) 
whose solution is y =  ke−Px, where e is the base of the natural 
logarithm.

LIOUVILLE NUMBER

A Liouville number is any irrational number α such that 
for each positive integer n there exists a rational number 
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p/q for which p/q < |α − (p/q)| < 1/qn. All Liouville numbers are 
transcendental numbers—that is, numbers that cannot be 
expressed as the solution (root) of a polynomial equation 
with integer coefficients. Such numbers are named for the 
French mathematician Joseph Liouville, who first proved 
the existence of transcendental numbers in 1844 and con-
structed the first proven transcendental number, known 
as Liouville’s constant, in 1850.

MATRIX

A matrix is a set of numbers arranged in rows and columns 
so as to form a rectangular array. The numbers are called 
the elements, or entries, of the matrix. Matrices have 
wide applications in engineering, physics, economics, 

and statistics as well  
as in various branches 
of mathematics. His-
torically, it was not the 
matrix but a certain 
number associated 
with a square array of 
numbers called the 
determinant that was 
first recognized. Only 
gradually did the idea 
of the matrix as an alge-
braic entity emerge. 
The term matrix was 
introduced by the 
19th-century English 
mathematician James 
Sylvester, but it was his 
friend the mathemati-
cian Arthur Cayley who 

Arthur Cayley, who helped advance understand-
ing of matrices by making a connection between 
matrices and algebra. SSPL/Getty Images
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developed the algebraic aspect of matrices in two papers 
in the 1850s. Cayley first applied them to the study of 
systems of linear equations, where they are still very use-
ful. They are also important because, as Cayley recognized, 
certain sets of matrices form algebraic systems in which 
many of the ordinary laws of arithmetic (e.g., the associative 
and distributive laws) are valid but in which other laws 
(e.g., the commutative law) are not valid. Matrices have 
also come to have important applications in computer 
graphics, where they have been used to represent rotations 
and other transformations of images. 

If there are m rows and n columns, the matrix is said to 
be an “m by n” matrix, written “m × n.” For example,

is a 2 × 3 matrix. A matrix with n rows and n columns is 
called a square matrix of order n. An ordinary number can 
be regarded as a 1 × 1 matrix. Thus, 3 can be thought of as 
the matrix [3].

In a common notation, a capital letter denotes a 
matrix, and the corresponding small letter with a double 
subscript describes an element of the matrix. Thus, aij is 
the element in the ith row and jth column of the matrix A. 
If A is the 2 × 3 matrix shown above, then a11 = 1, a12 = 3, 
a13 = 8, a21 = 2, a22 = −4, and a23 = 5. Under certain conditions, 
matrices can be added and multiplied as individual entities, 
giving rise to important mathematical systems known as 
matrix algebras.

Matrices occur naturally in systems of simultaneous 
equations. In the following system for the unknowns x and y,
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the array of numbers

is a matrix whose elements are the coefficients of the 
unknowns. The solution of the equations depends entirely 
on these numbers and on their particular arrangement. If 
3 and 4 were interchanged, the solution would not be 
the same.

Two matrices A and B are equal to one another if they 
possess the same number of rows and the same number of 
columns and if aij = bij for each i and each j. If A and B are 
two m × n matrices, their sum S = A + B is the m × n matrix 
whose elements sij = aij + bij. That is, each element of S is 
equal to the sum of the elements in the corresponding 
positions of A and B.

A matrix A can be multiplied by an ordinary number c, 
which is called a scalar. The product is denoted by cA or Ac 
and is the matrix whose elements are caij.

The multiplication of a matrix A by a matrix B to yield 
a matrix C is defined only when the number of columns of 
the first matrix A equals the number of rows of the second 
matrix B. To determine the element cij, which is in the ith 
row and jth column of the product, the first element in 
the ith row of A is multiplied by the first element in the 
jth column of B, the second element in the row by the sec-
ond element in the column, and so on until the last 
element in the row is multiplied by the last element of the 
column. The sum of all these products gives the element 
cij. In symbols, for the case where A has m columns and B 
has m rows,



185

The matrix C has as many rows as A and as many columns 
as B.

Unlike the multiplication of ordinary numbers a and b, 
in which ab always equals ba, the multiplication of matri-
ces A and B is not commutative. It is, however, associative 
and distributive over addition. That is, when the opera-
tions are possible, the following equations always hold 
true: A(BC) = (AB)C, A(B + C) = AB + AC, and 
(B + C)A = BA + CA. If the 2 × 2 matrix A whose rows are 
(2, 3) and (4, 5) is multiplied by itself, then the product, 
usually written A2, has rows (16, 21) and (28, 37).

A matrix O with all its elements 0 is called a zero 
matrix. A square matrix A with 1s on the main diagonal 
(upper left to lower right) and 0s everywhere else is called 
a unit matrix. It is denoted by I or In to show that its order 
is n. If B is any square matrix and I and O are the unit and 
zero matrices of the same order, it is always true that 
B + O = O + B = B and BI = IB = B. Hence O and I behave like 
the 0 and 1 of ordinary arithmetic. In fact, ordinary arith-
metic is the special case of matrix arithmetic in which all 
matrices are 1 × 1.

Associated with each square matrix A is a number that 
is known as the determinant of A, denoted det A. For 
example, for the 2 × 2 matrix

det A = ad − bc. A square matrix B is called nonsingular if 
det B ≠ 0. If B is nonsingular, there is a matrix called the 
inverse of B, denoted B−1, such that BB−1 = B−1B = I. The 
equation AX = B, in which A and B are known matrices 
and X is an unknown matrix, can be solved uniquely if A 
is a nonsingular matrix, for then A−1 exists and both sides 
of the equation can be multiplied on the left by it: 
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A−1(AX) = A−1B. Now A−1(AX) = (A−1A)X = IX = X. Hence, 
the solution is X = A−1B. A system of m linear equations in 
n unknowns can always be expressed as a matrix equation 
AX = B in which A is the m × n matrix of the coefficients of 
the unknowns, X is the n × 1 matrix of the unknowns, and 
B is the n × 1 matrix containing the numbers on the right-
hand side of the equation.

A problem of great significance in many branches of 
science is the following: given a square matrix A of order 
n, find the n × 1 matrix X, called an n-dimensional vector, 
such that AX = cX. Here c is a number called an eigenvalue, 
and X is called an eigenvector. The existence of an eigen-
vector X with eigenvalue c means that a certain 
transformation of space associated with the matrix A 
stretches space in the direction of the vector X by the 
factor c.

MULTINOMIAL THEOREM

The multinomial theorem is a generalization of the bino-
mial theorem to more than two variables. In statistics, the 
corresponding multinomial series appears in the multino-
mial distribution, which is a generalization of the binomial 
distribution.

The multinomial theorem provides a formula for 
expanding an expression such as (x1 + x2 +...+ xk)

n for integer 
values of n. In particular, the expansion is given by

where n1 + n2 +...+ nk = n and n! is the factorial notation for 
1 × 2 × 3 ×...× n.

For example, the expansion of (x1 + x2 + x3)
3 is x1

3 + 3x1
2x2 

+ 3x1
2x3 + 3x1x2

2 + 3x1x3
2 + 6x1x2x3 + x2

3 + 3x2
2x3 + 3x2x3

2 + x3
3.
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PARAMETER

A parameter is any variable for which the range of possible 
values identifies a collection of distinct cases in a problem. 
Any equation expressed in terms of parameters is a para-
metric equation. The general equation of a straight line in 
slope-intercept form, y = mx + b, in which m and b are 
parameters, is an example of a parametric equation. When 
values are assigned to the parameters, such as the slope 
m = 2 and the y-intercept b = 3, and substitution is made, 
the resulting equation, y = 2x + 3, is that of a specific straight 
line and is no longer parametric.

In the set of equations x = 2t + 1 and y = t2 + 2, t is called 
the parameter. As the parameter varies over a given domain 
of values, the set of solutions, or points (x, y), describes a 
curve in the plane. The use of parameters often enables 
descriptions of very simple curves for which it is difficult 
to write down a single equation in x and y.

In statistics, the parameter in a function is a variable 
whose value is sought by means of evidence from samples. 
The resulting assigned value is the estimate, or statistic.

PASCAL’S TRIANGLE

In algebra, Pascal’s triangle is a triangular arrangement of 
numbers that gives the coefficients in the expansion of 
any binomial expression, such as (x + y)n. It is named for 
the 17th-century French mathematician Blaise Pascal, but 
it is far older. Chinese mathematician Jia Xian devised a 
triangular representation for the coefficients in the 11th 
century. His triangle was further studied and popularized 
by Chinese mathematician Yang Hui in the 13th century, 
for which reason in China it is often called the Yanghui 
triangle. It was included as an illustration in Chinese 
mathematician Zhu Shijie’s Siyuan yujian (1303; “Precious 
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Mirror of Four Elements”), where it was already called the 
“Old Method.” The remarkable pattern of coefficients 
was also studied in the 11th century by Persian poet and 
astronomer Omar Khayyam.

The triangle can be constructed by first placing a 1 
(Chinese “—”) along the left and right edges. Then the 

Chinese mathematician Jia Xian devised a triangular representation for 
the coefficients in an expansion of binomial expressions in the 11th century. 
His triangle was further studied and popularized by Chinese mathematician 
Yang Hui in the 13th century, for which reason in China it is often called the 
Yanghui triangle. It was reinvented in 1665 by French mathematician Blaise 
Pascal in the West, where it is known as Pascal’s triangle. By permission of 
the Syndics of Cambridge University Library
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triangle can be filled out from the top by adding together 
the two numbers just above to the left and right of each 
position in the triangle. Thus, the third row, in Hindu-
Arabic numerals, is 1 2 1, the fourth row is 1 4 6 4 1, the fifth 
row is 1 5 10 10 5 1, and so forth. The first row, or just 1, 
gives the coefficient for the expansion of (x + y)0 = 1; the 
second row, or 1 1, gives the coefficients for (x + y)1 = x + y; 

Polish mathematician Wacław Sierpiński described the fractal that bears his 
name in 1915, although the design as an art motif dates at least to 13th-
century Italy. Begin with a solid equilateral triangle, and remove the triangle 
formed by connecting the midpoints of each side. The midpoints of the sides 
of the resulting three internal triangles can be connected to form three new 
triangles that can be removed to form nine smaller internal triangles. The 
process of cutting away triangular pieces continues indefinitely, producing a 
region with a Hausdorff dimension of a bit more than 1.5 (indicating that it 
is more than a one-dimensional figure but less than a two-dimensional figure). 
Encyclopædia Britannica, Inc.

7 Algebraic Terms and Concepts 7



7 The Britannica Guide to Algebra and Trigonometry 7

190

the third row, or 1 2 1, gives the coefficients for (x + y)2 =  
x2 + 2xy + y2; and so forth.

The triangle displays many interesting patterns. For 
example, drawing parallel “shallow diagonals” and adding 
the numbers on each line together produces the Fibonacci 
numbers (1, 1, 2, 3, 5, 8, 13, 21,. . .,), which were first noted 
by the medieval Italian mathematician Leonardo Pisano 
(“Fibonacci”) in his Liber abaci (1202; “Book of the 
Abacus”).

Another interesting property of the triangle is that if 
all the positions containing odd numbers are shaded black 
and all the positions containing even numbers are shaded 
white, a fractal known as the Sierpinski gadget, after 
20th-century Polish mathematician Wacław Sierpiński, 
will be formed.

POLYNOMIAL

A polynomial is an expression consisting of numbers 
and variables grouped according to certain patterns. 
Specifically, polynomials are sums of monomials of the 
form axn, where a (the coefficient) can be any real number 
and n (the degree) must be a whole number. A polynomial’s 
degree is that of its monomial of highest degree. Like 
whole numbers, polynomials may be prime or factorable 
into products of primes. They may contain any number 
of variables, provided that the power of each variable is a 
nonnegative integer. They are the basis of algebraic equa-
tion solving. Setting a polynomial equal to zero results in 
a polynomial equation. Equating it to a variable results in a 
polynomial function, a particularly useful tool in modeling 
physical situations. Polynomial equations and functions 
can be analyzed completely by methods of algebra and 
calculus.
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QUADRATIC EQUATION

A quadratic equation is an algebraic equation of the sec-
ond degree (having one or more variables raised to the 
second power). Old Babylonian cuneiform texts, dating 
from the time of Hammurabi, show a knowledge of how 
to solve quadratic equations, but it appears that ancient 
Egyptian mathematicians did not know how to solve 
them. Since the time of Galileo, they have been important 
in the physics of accelerated motion, such as free fall in a 
vacuum. The general quadratic equation in one variable is 
ax2 + bx + c = 0, in which a, b, and c are arbitrary constants 
(or parameters) and a is not equal to 0. Such an equation 
has two roots (not necessarily distinct), as given by the 
quadratic formula

The discriminant b2 − 4ac gives information concern-
ing the nature of the roots. If, instead of equating the 
above to zero, the curve ax2 + bx + c = y is plotted, it is seen 
that the real roots are the x coordinates of the points at 
which the curve crosses the x-axis. The shape of this curve 
in Euclidean two-dimensional space is a parabola. In 
Euclidean three-dimensional space, it is a parabolic cylin-
drical surface, or paraboloid.

In two variables, the general quadratic equation is ax2 
+ bxy + cy2 + dx + ey + f = 0, in which a, b, c, d, e, and f are 
arbitrary constants and a, c ≠ 0. The discriminant (symbol-
ized by the Greek letter delta, Δ) and the invariant (b2 − 4ac) 
together provide information as to the shape of the curve. 
The locus in Euclidean two-dimensional space of every 
general quadratic in two variables is a conic section or its 
degenerate.
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More general quadratic equations, in the variables x, y, 
and z, lead to generation (in Euclidean three-dimensional 
space) of surfaces known as the quadrics, or quadric 
surfaces.

QUATERNION

A quaternion is a generalization of two-dimensional 
complex numbers to three dimensions. Quaternions and 
rules for operations on them were invented by Irish 
mathematician Sir William Rowan Hamilton in 1843. He 
devised them as a way of describing three-dimensional 
problems in mechanics. Following a long struggle to devise 
mathematical operations that would retain the normal 
properties of algebra, Hamilton hit upon the idea of 
adding a fourth dimension. This allowed him to retain the 
normal rules of algebra except for the commutative law for 
multiplication (in general, ab ≠ ba), so that the quaternions 
only form an associative group—in particular, a non-
Abelian group. The quaternions are the most widely 
known and used hypercomplex numbers, though they 
have been mostly replaced in practice by operations with 
matrices and vectors. Still, the quaternions can be regarded 
as a four-dimensional vector space formed by combining a 
real number with a three-dimensional vector, with a basis 
(set of generating vectors) given by the unit vectors 1, i, j, 
and k such that

i2 = j2 = k2 = ijk = −1.

RATIONAL NUMBER

Rational numbers are numbers that can be represented 
as the quotient p/q of two integers such that q ≠ 0. In 
addition to all the fractions, the set of rational numbers 
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includes all the integers, each of which can be written as a 
quotient with the integer as the numerator and 1 as the 
denominator. In decimal form, rational numbers are 
either terminating or repeating decimals. For example, 
17 = 0.142857, where the bar over 142857 indicates a pattern 
that repeats forever.

A real number that cannot be expressed as a quotient 
of two integers is known as an irrational number.

RING

A mathematical ring is a set having an addition that must 
be commutative (a + b = b + a for any a, b) and associative 
[a + (b + c) = (a + b) + c for any a, b, c], and a multiplication 
that must be associative [a(bc) = (ab)c for any a, b, c]. There 
must also be a zero (which functions as an identity ele-
ment for addition), negatives of all elements (so that 
adding a number and its negative produces the ring’s zero 
element), and two distributive laws relating addition and 
multiplication [a(b + c) = ab + ac and (a + b)c = ac + bc for any 
a, b, c]. A commutative ring is a ring in which multiplication 
is commutative—that is, in which ab = ba for any a, b.

The simplest example of a ring is the collection of 
integers (. . ., −3, −2, −1, 0, 1, 2, 3, . . .) together with the ordi-
nary operations of addition and multiplication.

ROOT

A root is a solution to an equation, usually expressed as a 
number or an algebraic formula.

In the 9th century, Arab writers usually called one of 
the equal factors of a number jadhr (“root”), and their 
medieval European translators used the Latin word radix 
(from which derives the adjective radical). If a is a positive 
real number and n a positive integer, there exists a unique 
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positive real number x such that xn = a. This number—the 
(principal) nth root of a—is written n√a or a1/n. The integer 
n is called the index of the root. For n = 2, the root is called 
the square root and is written √a . The root 3√a is called the 
cube root of a. If a is negative and n is odd, the unique 
negative nth root of a is termed principal. For example, 
the principal cube root of –27 is –3.

If a whole number (positive integer) has a rational nth 
root—i.e., one that can be written as a common fraction—
then this root must be an integer. Thus, 5 has no rational 
square root because 22 is less than 5 and 32 is greater than 5. 
Exactly n complex numbers satisfy the equation xn = 1, and 
they are called the complex nth roots of unity. If a regular 
polygon of n sides is inscribed in a unit circle centred at 
the origin so that one vertex lies on the positive half of the 
x-axis, the radii to the vertices are the vectors represent-
ing the n complex nth roots of unity. If the root whose 
vector makes the smallest positive angle with the positive 
direction of the x-axis is denoted by the Greek letter 
omega, ω, then ω, ω2, ω3, . . ., ωn = 1 constitute all the nth 
roots of unity. For example, ω = −1/2 +  −3/2, ω2 = −1/2 −  √−3/2, 
and ω3 = 1 are all the cube roots of unity. Any root, symbol-
ized by the Greek letter epsilon, ε, that has the property 
that ε, ε2, . . ., εn = 1 give all the nth roots of unity is called 
primitive. Evidently the problem of finding the nth roots 
of unity is equivalent to the problem of inscribing a regular 
polygon of n sides in a circle. For every integer n, the nth 
roots of unity can be determined in terms of the rational 
numbers by means of rational operations and radicals. But 
they can be constructed by ruler and compasses (i.e., 
determined in terms of the ordinary operations of arith-
metic and square roots) only if n is a product of distinct 
prime numbers of the form 2h + 1, or 2k times such a product, 
or is of the form 2k. If a is a complex number not 0, the 
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equation xn = a has exactly n roots, and all the nth roots of 
a are the products of any one of these roots by the nth 
roots of unity.

The term root has been carried over from the equation 
xn = a to all polynomial equations. Thus, a solution of the 
equation f(x) = a0xn + a1x

n − 1 + . . . + an − 1x + an = 0, with a0 ≠ 0, 
is called a root of the equation. If the coefficients lie in the 
complex field, an equation of the nth degree has exactly n 
(not necessarily distinct) complex roots. If the coefficients 
are real and n is odd, there is a real root. But an equation 
does not always have a root in its coefficient field. Thus, 
x2 − 5 = 0 has no rational root, although its coefficients (1 
and –5) are rational numbers.

More generally, the term root may be applied to any 
number that satisfies any given equation, whether a poly-
nomial equation or not. Thus π is a root of the equation 
x sin (x) = 0.

SQUARE ROOT

A square root is any factor of a number that, when multi-
plied by itself, gives the original number. For example, 
both 3 and –3 are square roots of 9. As early as the 2nd 
millennium BCE, the Babylonians possessed effective 
methods for approximating square roots.

SURJECTION

A surjection is a mapping (or function) between two sets 
such that the range (output) of the mapping consists of 
every element of the second set. A mapping that is both an 
injection (a one-to-one correspondence for all elements 
from the first set to elements in the second set) and a 
surjection is known as a bijection.
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SYNTHETIC DIVISION

Synthetic division is a short method of dividing a poly-
nomial of degree n of the form a0xn + a1x

n − 1 + a2x
n − 2 + . . . + an, 

in which a0 ≠ 0, by another of the same form but of lesser 
degree (usually of the form x − a). Based on the remainder 
theorem, it is sometimes called the method of detached 
coefficients.

To divide 2x3 − 7x2 + 11 by x − 3, the coefficients of the 
dividend are written in order of diminishing powers of x, 
zeros being inserted for each missing power. The variable 
and its exponents are omitted throughout. The coefficient 
of the highest power of x (2 in this example) is brought 
down as is, multiplied by the constant term of the divisor 
(−3) with its sign changed, and added to the coefficient 
following, giving −1. The sum −1 is likewise multiplied and 
added to the next coefficient, giving −3, and so on.

The result, 2x2 − x − 3 with a remainder of 2, can be readily 
checked by long division:
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SYSTEM OF EQUATIONS

A system of equations (or simultaneous equations,) are 
two or more equations to be solved together (i.e., the solu-
tion must satisfy all the equations in the system). For a 
system to have a unique solution, the number of equations 
must equal the number of unknowns. Even then a solution 
is not guaranteed. If a solution exists, the system is consis-
tent. If not, it is inconsistent. A system of linear equations 
can be represented by a matrix whose elements are the 
coefficients of the equations. Though simple systems of 
two equations in two unknowns can be solved by substitu-
tion, larger systems are best handled with matrix 
techniques.

VARIABLE

A variable is a symbol (usually a letter) standing in for an 
unknown numerical value in an equation. Commonly used 
variables include x and y (real-number unknowns), z 
(complex-number unknowns), t (time), r (radius), and s 
(arc length). Variables should be distinguished from 
coefficients, fixed values that multiply powers of variables 
in polynomials and algebraic equations. In the quadratic 
equation ax2 + bx + c = 0, x is the variable, and a, b, and c are 
coefficients whose values must be specified to solve the 
equation. In translating word problems into algebraic 
equations, quantities to be determined can be represented 
by variables.

VECTOR

A vector is a quantity that has both magnitude and direc-
tion but not position. Examples of such quantities are 
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velocity and acceleration. In their modern form, vectors 
appeared late in the 19th century when Josiah Willard 
Gibbs and Oliver Heaviside (of the United States and 
Britain, respectively) independently developed vector 
analysis to express the new laws of electromagnetism 
discovered by the Scottish physicist James Clerk Maxwell. 
Since that time, vectors have become essential in physics, 
mechanics, electrical engineering, and other sciences to 
describe forces mathematically.

Vectors may be visualized as directed line segments 
whose lengths are their magnitudes. Since only the magni-
tude and direction of a vector matter, any directed segment 
may be replaced by one of the same length and direction 
but beginning at another point, such as the origin of a 
coordinate system. Vectors are usually indicated by a bold-
face letter, such as v. A vector’s magnitude, or length, is 
indicated by |v|, or v, which represents a one-dimensional 
quantity (such as an ordinary number) known as a scalar. 
Multiplying a vector by a scalar changes the vector’s length 
but not its direction, except that multiplying by a negative 
number will reverse the direction of the vector’s arrow. 
For example, multiplying a vector by 1/2 will result in a 
vector half as long in the same direction, while multiplying 
a vector by −2 will result in a vector twice as long but 
pointed in the opposite direction.

Two vectors can be added or subtracted. For example, 
to add or subtract vectors v and w graphically (see the 
diagram on page 79), move each to the origin and complete 
the parallelogram formed by the two vectors; v + w is then 
one diagonal vector of the parallelogram, and v − w is the 
other diagonal vector.

There are two different ways of multiplying two vectors 
together. The cross, or vector, product results in another 
vector that is denoted by v × w. The cross product magni-
tude is given by |v × w| = vw sin θ, where θ is the smaller 
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angle between the vectors (with their “tails” placed 
together). The direction of v × w is perpendicular to both 
v and w, and its direction can be visualized with the right-
hand rule, as shown in the figure above.

The cross product is frequently used to obtain a “normal” 
(a line perpendicular) to a surface at some point, and it 
occurs in the calculation of torque and the magnetic force 
on a moving charged particle.

The other way of multiplying two vectors together is 
called a dot product, or sometimes a scalar product 
because it results in a scalar. The dot product is given by 
v · w = vw cos θ, where θ is the smaller angle between the 
vectors. The dot product is used to find the angle between 
two vectors. (Note that the dot product is zero when the 

The ordinary, or dot, product of two vectors is simply a one-dimensional number, 
or scalar. In contrast, the cross product of two vectors results in another vector 
whose direction is orthogonal to both of the original vectors, as illustrated by 
the right hand rule. The magnitude, or length, of the cross product vector is 
given by vw sin θ, where θ is the angle between the original vectors v and w. 
Encyclopædia Britannica, Inc.Encyclopædia Britannica, Inc.
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vectors are perpendicular.) A typical physical application 
is to find the work W performed by a constant force F acting 
on a moving object d. The work is given by W = Fd cos θ.

VECTOR OPERATIONS

Vector operations are an extension of the laws of elementary 
algebra to vectors. They include addition, subtraction, 
and three types of multiplication. The sum of two vectors 
is a third vector, represented as the diagonal of the parallel-
ogram constructed with the two original vectors as sides. 
When a vector is multiplied by a positive scalar (i.e., num-
ber), its magnitude is multiplied by the scalar and its direction 
remains unchanged (if the scalar is negative, the direction is 
reversed). The multiplication of a vector a by another 
vector b leads to the dot product, written a · b, and the 
cross product, written a × b. The dot product, also called 
the scalar product, is a scalar real number equal to the prod-
uct of the lengths of vectors a (|a|) and b (|b|) and the cosine 
of the angle (θ) between them: a · b = |a| |b| cos θ. This equals 
zero if the two vectors are perpendicular (see orthogonality). 
The cross product, also called the vector product, is a 
third vector (c), perpendicular to the plane of the original 
vectors. The magnitude of c is equal to the product of the 
lengths of vectors a and b and the sine of the angle (θ) 
between them: |c| = |a| |b| sin θ. The associative law and com-
mutative law hold for vector addition and the dot product. 
The cross product is associative but not commutative.

VECTOR SPACE

A vector space is a set of multidimensional quantities, 
known as vectors, together with a set of one-dimensional 
quantities, known as scalars, such that vectors can be 
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added together and vectors can be multiplied by scalars 
while preserving the ordinary arithmetic properties (asso-
ciativity, commutativity, distributivity, and so forth). 
Vector spaces are fundamental to linear algebra and appear 
throughout mathematics and physics.

The idea of a vector space developed from the notion 
of ordinary two- and three-dimensional spaces as collec-
tions of vectors {u, v, w, . . .} with an associated field of real 
numbers {a, b, c, . . .}. Vector spaces as abstract algebraic 
entities were first defined by the Italian mathematician 
Giuseppe Peano in 1888. Peano called his vector spaces 
“linear systems” because he correctly saw that one can 
obtain any vector in the space from a linear combination 
of finitely many vectors and scalars—av + bw + . . . + cz. A 
set of vectors that can generate every vector in the space 
through such linear combinations is known as a spanning 
set. The dimension of a vector space is the number of 
vectors in the smallest spanning set. (For example, the 
unit vector in the x-direction together with the unit vec-
tor in the y-direction suffice to generate any vector in the 
two-dimensional Euclidean plane when combined with 
the real numbers.)

The linearity of vector spaces has made these abstract 
objects important in diverse areas such as statistics, physics, 
and economics, where the vectors may indicate probabili-
ties, forces, or investment strategies and where the vector 
space includes all allowable states.
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TRIGONOMETRY

CHAPTER 4

 Trigonometry is the branch of mathematics concerned 
with specifi c functions of angles and their application 

to calculations. There are six functions of an angle commonly 
used in trigonometry. Their names and abbreviations 
are sine (sin), cosine (cos), tangent (tan), cotangent (cot), 
secant (sec), and cosecant (csc).  

 Trigonometry developed from a need to compute 
angles and distances in such fi elds as astronomy, map 
making, surveying, and artillery range fi nding. Problems 
involving angles and distances in one plane are covered 
in plane trigonometry. Applications to similar problems in 
more than one plane of three-dimensional space are con-
sidered in spherical trigonometry.   

 HISTORY OF TRIGONOMETRY   

 Classical Trigonometry 

 The word “trigonometry” comes from the Greek words 
 trigonon  (“triangle”) and  metron  (“to measure”). Until about 
the 16th century, trigonometry was chiefl y concerned 
with computing the numerical values of the missing parts 
of a triangle (or any shape that can be dissected into tri-
angles) when the values of other parts were given. For 
example, if the lengths of two sides of a triangle and the 
measure of the enclosed angle are known, the third side 
and the two remaining angles can be calculated. Such 
calculations distinguish trigonometry from geometry, 
which mainly investigates qualitative relations. Of course, 
this distinction is not always absolute: the Pythagorean 
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theorem, for example, is a statement about the lengths of 
the three sides in a right triangle and is thus quantitative 
in nature. Still, in its original form, trigonometry was by 
and large an offspring of geometry. It was not until the 
16th century that the two became separate branches of 
mathematics.

Ancient Egypt and the Mediterranean World

Several ancient civilizations—in particular, the Egyptian, 
Babylonian, Hindu, and Chinese—possessed a considerable 
knowledge of practical geometry, including some concepts 
that were a prelude to trigonometry. The Rhind papyrus, 
an Egyptian collection of 84 problems in arithmetic, algebra, 
and geometry dating from about 1800 BCE, contains five 
problems dealing with the seked. A close analysis of the 
text, with its accompanying figures, reveals that this word 
means the slope of an incline—essential knowledge for 
huge construction projects such as the pyramids. For 
example, problem 56 asks: “If a pyramid is 250 cubits high 
and the side of its base is 360 cubits long, what is its seked?” 
The solution is given as 5125 palms per cubit. And since 
one cubit equals 7 palms, this fraction is equivalent to the 
pure ratio 1825. This is actually the “run-to-rise” ratio of 
the pyramid in question—in effect, the cotangent of the 
angle between the base and face. It shows that the 
Egyptians had at least some knowledge of the numerical 
relations in a triangle, a kind of “proto-trigonometry.”

Trigonometry in the modern sense began with the 
Greeks. Hipparchus (c. 190–120 BCE) was the first to 
construct a table of values for a trigonometric function. 
He considered every triangle—planar or spherical—as 
being inscribed in a circle, so that each side becomes a 
chord (that is, a straight line that connects two points on 
a curve or surface, as shown by the inscribed triangle ABC 
in the figure on page 204.
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To compute the various parts of the triangle, one has 
to find the length of each chord as a function of the cen-
tral angle that subtends it—or, equivalently, the length of a 
chord as a function of the corresponding arc width. This 
became the chief task of trigonometry for the next several 
centuries. As an astronomer, Hipparchus was mainly 
interested in spherical triangles, such as the imaginary tri-
angle formed by three stars on the celestial sphere, but he 
was also familiar with the basic formulas of plane trigo-
nometry. In Hipparchus’s time these formulas were 
expressed in purely geometric terms as relations between 
the various chords and the angles (or arcs) that subtend 
them. The modern symbols for the trigonometric func-
tions were not introduced until the 17th century.

This figure illustrates the relationship between a central angle θ (an angle 
formed by two radii in a circle) and its chord AB (equal to one side of an 
inscribed triangle). Encyclopædia Britannica, Inc.
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The first major ancient work on trigonometry to reach 
Europe intact after the Dark Ages was the Almagest by 
Ptolemy (c. 100–170 CE). He lived in Alexandria, the intel-
lectual centre of the Hellenistic world, but little else is 
known about him. Although Ptolemy wrote works on 
mathematics, geography, and optics, he is chiefly known 
for the Almagest, a 13-book compendium on astronomy 
that became the basis for mankind’s world picture until 
the heliocentric system of Nicolaus Copernicus (1473–
1543) began to supplant Ptolemy’s geocentric system in the 
mid-16th century. In order to develop this world picture—
the essence of which was a stationary Earth around which 
the Sun, Moon, and the five known planets move 

By labeling the central angle A, the radii r, and the chord c in the figure, it can 
be shown that c = 2r sin (A/2). Hence, a table of values for chords in a circle of 
fixed radius is also a table of values for the sine of angles (by doubling the arc). 
Encyclopædia Britannica, Inc.
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in circular orbits—Ptolemy had to use some elementary 
trigonometry. Chapters 10 and 11 of the first book of the 
Almagest deal with the construction of a table of chords, in 
which the length of a chord in a circle is given as a function 
of the central angle that subtends it, for angles ranging 
from 0° to 180° at intervals of one-half degree. This is 
essentially a table of sines, which can be seen by denoting 
the radius r, the arc A, and the length of the subtended 
chord c (see the figure on page 205), to obtain c = 2r sin A/2. 
Because Ptolemy used the Babylonian sexagesimal 
numerals and numeral systems (base 60), he did his 
computations with a standard circle of radius r = 60 units, 
so that c = 120 sin A/2. Thus, apart from the proportionality 
factor 120, his was a table of values of sin A/2 and therefore 
(by doubling the arc) of sin A. With the help of his table, 
Ptolemy improved on existing geodetic measures of the 
world and refined Hipparchus’s model of the motions of 
the heavenly bodies.

India and the Islamic World

The next major contribution to trigonometry came from 
India. In the sexagesimal system, multiplication or divi-
sion by 120 (twice 60) is analogous to multiplication or 
division by 20 (twice 10) in the decimal system. Thus, 
rewriting Ptolemy’s formula as c/120 = sin B, where B = A/2, 
the relation expresses the half-chord as a function of the 
arc B that subtends it—precisely the modern sine function. 
The first table of sines is found in the Aryabhatiya. Its 
author, Aryabhata I (c. 475–550), used the word ardha-jya 
for half-chord, which he sometimes turned around to 
jya-ardha (“chord-half ”). In due time he shortened it to jya 
or jiva. Later, when Muslim scholars translated this work 
into Arabic, they retained the word jiva without translating 
its meaning. In Semitic languages words consist mostly of 
consonants, the pronunciation of the missing vowels being 
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understood by common usage. Thus jiva could also be 
pronounced as jiba or jaib, and this last word in Arabic 
means “fold” or “bay.” When the Arab translation was later 
translated into Latin, jaib became sinus, the Latin word for 
bay. The word sinus first appeared in the writings of 
Gherardo of Cremona (c. 1114–87), who translated many of 
the Greek texts, including the Almagest, into Latin. Other 
writers followed, and soon the word sinus, or sine, was used 
in the mathematical literature throughout Europe. The 
abbreviated symbol sin was first used in 1624 by Edmund 
Gunter, an English minister and instrument maker. The 
notations for the five remaining trigonometric functions 
were introduced shortly thereafter.

During the Middle Ages, while Europe was plunged 
into darkness, the torch of learning was kept alive by Arab 
and Jewish scholars living in Spain, Mesopotamia, and 
Persia. The first table of tangents and cotangents was con-
structed around 860 by Habash al-Hasib (“the Calculator”), 
who wrote on astronomy and astronomical instruments. 
Another Arab astronomer, al-Batta-nı- (c. 858–929), gave a rule 
for finding the elevation θ of the Sun above the horizon in 
terms of the length s of the shadow cast by a vertical gnomon 
of height h. Al-Batta-nı-’s rule, s = h sin (90° − θ)/sin θ, is 
equivalent to the formula s = h cot θ. Based on this rule, he 
constructed a “table of shadows”—essentially a table of 
cotangents—for each degree from 1° to 90°. It was through 
al-Batta-nı-’s work that the Hindu half-chord function—
equivalent to the modern sine—became known in Europe.

Passage to Europe

Until the 16th century, it was chiefly spherical trigonometry 
that interested scholars—a consequence of the predomi-
nance of astronomy among the natural sciences. The first 
definition of a spherical triangle is contained in Book 1 
of the Sphaerica, a three-book treatise by Menelaus of 
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Alexandria (c. 100 CE) in which Menelaus developed the 
spherical equivalents of Euclid’s propositions for planar 
triangles. A spherical triangle was understood to mean a 
figure formed on the surface of a sphere by three arcs of 
great circles, that is, circles whose centres coincide with 
the centre of the sphere. There are several fundamental 
differences between planar and spherical triangles. For 
example, two spherical triangles whose angles are equal in 
pairs are congruent (identical in size as well as in shape), 
whereas they are only similar (identical in shape) for the 
planar case. Also, the sum of the angles of a spherical tri-
angle is always greater than 180°, in contrast to the planar 
case where the angles always sum to exactly 180°.

Several Arab scholars, notably Nas.ı
-r al-Dı-n al-T.u-sı- 

(1201–74) and al-Batta-nı-, continued to develop spherical 
trigonometry and brought it to its present form. Al-T.u-sı-

was the first (c. 1250) to write a work on trigonometry 
independently of astronomy. But the first modern book 
devoted entirely to trigonometry appeared in the Bavarian 
city of Nürnberg in 1533 under the title On Triangles of 
Every Kind. Its author was the astronomer Regiomontanus 
(1436–76). On Triangles contains all the theorems needed 
to solve triangles, planar or spherical—although these 
theorems are expressed in verbal form, as symbolic alge-
bra had yet to be invented. In particular, the law of sines is 
stated in essentially the modern way. On Triangles was 
greatly admired by future generations of scientists. The 
astronomer Nicolaus Copernicus studied it thoroughly, 
and his annotated copy survives.

The final major development in classical trigonometry 
was the invention of logarithms by the Scottish mathema-
tician John Napier in 1614. His tables of logarithms greatly 
facilitated the art of numerical computation—including 
the compilation of trigonometry tables—and were hailed 
as one of the greatest contributions to science.
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Modern Trigonometry

From Geometric to Analytic Trigonometry

In the 16th century, trigonometry began to change its charac-
ter from a purely geometric discipline to an algebraic-analytic 
subject. Two developments spurred this transformation: 
the rise of symbolic algebra, pioneered by the French math-
ematician François Viète (1540–1603), and the invention of 
analytic geometry by two other Frenchmen, Pierre de Fermat 
and René Descartes. Viète showed that the solution of many 
algebraic equations could be expressed by the use of trig-
onometric expressions. For example, the equation x3 = 1 
has the three solutions:

• x = 1,
• cos 120° + i sin 120° = -1 + i√3/2, and
• cos 240° + i sin 240° = -1 - i√3/2.

(Here i is the symbol for √−1, the “imaginary unit.”) 
That trigonometric expressions may appear in the solu-
tion of a purely algebraic equation was a novelty in Viète’s 
time. He used it to advantage in a famous encounter 
between King Henry IV of France and Netherlands’ 
ambassador to France. The latter spoke disdainfully of the 
poor quality of French mathematicians and challenged 
the king with a problem posed by Adriaen van Roomen, 
professor of mathematics and medicine at the University 
of Louvain (Belgium), to solve a certain algebraic equa-
tion of degree 45. The king summoned Viète, who 
immediately found one solution and on the following day 
came up with 22 more.

Viète was also the first to legitimize the use of infinite 
processes in mathematics. In 1593 he discovered the 
infinite product,
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which is regarded as one of the most beautiful formulas in 
mathematics for its recursive pattern. By computing more 
and more terms, one can use this formula to approximate 
the value of π to any desired accuracy. In 1671 James 
Gregory (1638–75) found the power series for the inverse 
tangent function (arc tan, or tan−1), from which he got, by 
letting x = 1, the formula

∏/4 = 1 - 1/3 + 1/5 - 1/7 + · · ·,

which demonstrated a remarkable connection between ∏ 
and the integers. Although the series converged too slowly 
for a practical computation of ∏ (it would require 628 
terms to obtain just two accurate decimal places). This 
was soon followed by Isaac Newton’s (1642–1727) discovery 
of the power series for sine and cosine. Recent research, 
however, has brought to light that some of these formulas 
were already known, in verbal form, by the Indian astron-
omer Madhava (c. 1340–1425).

The gradual unification of trigonometry and algebra—
and in particular the use of complex numbers (numbers of 
the form x + iy, where x and y are real numbers and i = −1) in 
trigonometric expressions—was completed in the 18th 
century. In 1722 Abraham de Moivre (1667–1754) derived, 
in implicit form, the famous formula

(cos ø + i sin ø) n = cos nø + i sin nø, 

which allows one to find the nth root of any complex number. 
It was the Swiss mathematician Leonhard Euler (1707–83), 
though, who fully incorporated complex numbers into trig-
onometry. Euler’s formula eiø = cos ø + i sin ø, where e ≅ 2.71828 

2/∏ = √2/2 · √(2 + √2)/2 · √(2 + √(2 + √2))/2· · ·,
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is the base of natural 
logarithms, appeared in 
1748 in his great work 
Introductio in analysin 
infinitorum—although 
Roger Cotes already 
knew the formula in its 
inverse form øi = log 
(cos ø + i sin ø) in 1714. 
Substituting into this 
formula the value ø = π, 
one obtains eiπ = cos π + i 
sin π = −1 + 0i = −1 or 
equivalently, eiπ + 1 = 0. 
This most intriguing of 
all mathematical for-
mulas contains the 
additive and multipli-
cative identities (0 and 
1, respectively), the two 
irrational numbers that occur most frequently in the physical 
world (π and e), and the imaginary unit (i), and it also employs 
the basic operations of addition and exponentiation—
hence its great aesthetic appeal. Finally, by combining his 
formula with its companion formula

e-iø = cos (-ø) + i sin (-ø) = cos ø - i sin ø,

Euler obtained the expressions

cos ø = eiø + e-iø/2 and
sin ø = eiø - e-iø/2i,

which are the basis of modern analytic trigonometry.

Leonhard Euler, whose work formed much of 
the basis of modern analytic trigonometry. Kean 
Collection/Hulton Archive/Getty Images
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Application to Science

While these developments shifted trigonometry away 
from its original connection to triangles, the practical 
aspects of the subject were not neglected. The 17th and 
18th centuries saw the invention of numerous mechanical 
devices—from accurate clocks and navigational tools to 
musical instruments of superior quality and greater tonal 
range—all of which required at least some knowledge  
of trigonometry. A notable application was the science of 
artillery—and in the 18th century it was a science. Galileo 
Galilei (1564–1642) discovered that any motion—such as 
that of a projectile under the force of gravity—can be 
resolved into two components, one horizontal and the 
other vertical, and that these components can be treated 
independently of one another. This discovery led scientists 
to the formula for the range of a cannonball when its muzzle 
velocity v0 (the speed at which it leaves the cannon) and 
the angle of elevation A of the cannon are given. The the-
oretical range, in the absence of air resistance, is given by 

R = v02 sin2A/g,

where g is the acceleration due to gravity (about 9.81 
metres/second2). This formula shows that, for a given 
muzzle velocity, the range depends solely on A. It reaches 
its maximum value when A = 45° and falls off symmetri-
cally on either side of 45°. These facts, of course, had been 
known empirically for many years, but their theoretical 
explanation was a novelty in Galileo’s time.

Another practical aspect of trigonometry that received 
a great deal of attention during this time period was 
surveying. The method of triangulation was first suggested 
in 1533 by the Dutch mathematician Gemma Frisius 
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(1508–55): one chooses a base line of known length, and 
from its endpoints the angles of sight to a remote object 
are measured. The distance to the object from either 
endpoint can then be calculated by using elementary 
trigonometry. The process is then repeated with the new 
distances as base lines, until the entire area to be surveyed 
is covered by a network of triangles. The method was first 
carried out on a large scale by another Dutchman, 
Willebrord van Roijen Snell (1581–1626), who surveyed a 
stretch of 130 km (80 miles) in Holland, using 33 triangles. 
The French government, under the leadership of the 
astronomer Jean Picard (1620–82), undertook to triangulate 
the entire country, a task that was to take over a century 
and involve four generations of the Cassini family (Gian, 
Jacques, César-François, and Dominique) of astronomers. 
The British undertook an even more ambitious task—the 
survey of the entire subcontinent of India. Known as 
the Great Trigonometric Survey, it lasted from 1800 to 
1913 and culminated with the discovery of the tallest 
mountain on Earth—Peak XV, or Mount Everest.

Concurrent with these developments, 18th-century 
scientists also turned their attention to aspects of the 
trigonometric functions that arose from their periodicity. 
If the cosine and sine functions are defined as the projec-
tions on the x- and y-axes, respectively, of a point moving 
on a unit circle (a circle with its centre at the origin and a 
radius of 1), then these functions will repeat their values 
every 360°, or 2π radians. Hence, the importance of the sine 
and cosine functions in describing periodic phenomena—
the vibrations of a violin string, the oscillations of a clock 
pendulum, or the propagation of electromagnetic waves. 
These investigations reached a climax when Joseph 
Fourier (1768–1830) discovered that almost any periodic 
function can be expressed as an infinite sum of sine and 
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cosine functions, whose periods are integral divisors of 
the period of the original function. For example, the 
“sawtooth” function can be written as

2(sin x - sin 2x/2 + sin 3x/3 - · · ·); 

as successive terms in the series are added, an ever-better 
approximation to the sawtooth function results. These 
trigonometric or Fourier series have found numerous 
applications in almost every branch of science, from optics 
and acoustics to radio transmission and earthquake analy-
sis. Their extension to nonperiodic functions played a key 
role in the development of quantum mechanics in the 
early years of the 20th century. Trigonometry, by and large, 
matured with Fourier’s theorem. Further developments 
(e.g., generalization of Fourier series to other orthogonal, 
but nonperiodic, functions) are well beyond the scope of 
this book.

PRINCIPLES OF TRIGONOMETRY

Trigonometric Functions

A somewhat more general concept of angle is required for 
trigonometry than for geometry. An angle A with vertex at 
V, the initial side of which is VP and the terminal side of 
which is VQ, is indicated in the figure on page 215 by the 
solid circular arc. This angle is generated by the continuous 
counterclockwise rotation of a line segment about the point 
V from the position VP to the position VQ. A second angle 
A' with the same initial and terminal sides, indicated in the 
figure by the broken circular arc, is generated by the clock-
wise rotation of the line segment from the position VP to the 
position VQ. Angles are considered positive when generated 
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by counterclockwise rotations, negative when generated by 
clockwise rotations. The positive angle A and the negative 
angle A' in the figure are generated by less than one com-
plete rotation of the line segment about the point V. All 
other positive and negative angles with the same initial 
and terminal sides are obtained by rotating the line segment 
one or more complete turns before coming to rest at VQ.

Numerical values can be assigned to angles by selecting 
a unit of measure. The most common units are the degree 
and the radian. There are 360° in a complete revolution, 
with each degree further divided into 60' (minutes) and 
each minute divided into 60" (seconds). In theoretical 
work, the radian is the most convenient unit. It is the 
angle at the centre of a circle that intercepts an arc equal 
in length to the radius. Simply put, there are 2π radians in 
one complete revolution. From these definitions, it follows 
that 1° = π/180 radians.

Equal angles are angles with the same measure; i.e., 
they have the same sign and the same number of degrees. 
Any angle −A has the same number of degrees as A but is 
of opposite sign. Its measure, therefore, is the negative of 
the measure of A. If two angles, A and B, have the initial 

This figure shows a positive general angle A, as well as a negative general 
angle A'. Encyclopædia Britannica, Inc.
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sides VP and VQ and the terminal sides VQ and VR, 
respectively, then the angle A + B has the initial and terminal 
sides VP and VR (see the figure above.)

The angle A + B is called the sum of the angles A and B, 
and its relation to A and B when A is positive and B is posi-
tive or negative is illustrated in the figure. The sum A + B 
is the angle the measure of which is the algebraic sum of 
the measures of A and B. The difference A − B is the sum 
of A and −B. Thus, all angles coterminal with angle A (i.e., 
with the same initial and terminal sides as angle A) are 
given by A ± 360n, in which 360n is an angle of n complete 
revolutions. The angles (180 − A) and (90 − A) are the sup-
plement and complement of angle A, respectively.

Trigonometric Functions of an Angle

To define trigonometric functions for any angle A, the 
angle is placed in position (see the figure on the top of page 
217) on a rectangular coordinate system with the vertex of 
A at the origin and the initial side of A along the positive 
x-axis; r (positive) is the distance from V to any point Q on 
the terminal side of A, and (x, y) are the rectangular coor-
dinates of Q. The six functions of A are then defined by six 
ratios exactly as in the earlier case for the triangle given in 
the introduction (see the figure on the bottom of page 217.)

The figure indicates how to add a positive or negative angle ( B) to a positive 
angle (A). Encyclopædia Britannica, Inc.
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The figure shows an angle A in standard position, that is, with initial side on 
the x-axis. Encyclopædia Britannica, Inc.

Based on the definitions, various simple relationships exist among the functions. 
For example, csc A = 1/sin A, sec A = 1/cos A, cot A = 1/tan A, and tan A = sin 
A/cos A. Encyclopædia Britannica, Inc.
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Because division by zero is not allowed, the tangent 
and secant are not defined for angles the terminal side of 
which falls on the y-axis, and the cotangent and cosecant 
are undefined for angles the terminal side of which falls on 
the x-axis. When the Pythagorean equality x2 + y2 = r2 is 
divided in turn by r2, x2, and y2, the three squared relations 
relating cosine and sine, tangent and secant, cotangent 
and cosecant are obtained.

If the point Q on the terminal side of angle A in 
standard position has coordinates (x, y), this point will 
have coordinates (x, −y) when on the terminal side of −A 
in standard position. From this fact and the definitions 
are obtained further identities for negative angles. These 
relations may also be stated briefly by saying that cosine 
and secant are even functions (symmetrical about the 
y-axis), while the other four are odd functions (symmetrical 
about the origin).

It is evident that a trigonometric function has the 
same value for all coterminal angles. When n is an integer, 
therefore, sin (A ± 360n) = sin A; there are similar relations 
for the other five functions. These results may be expressed 
by saying that the trigonometric functions are periodic 
and have a period of 360° or 180°.

When Q on the terminal side of A in standard position 
has coordinates (x, y), it has coordinates (−y, x) and (y, −x) 
on the terminal side of A + 90 and A − 90 in standard 
position, respectively. Consequently, six formulas follow 
which display that a function of the complement of A is 
equal to the corresponding cofunction of A.

Of fundamental importance for the study of trigonom-
etry are the addition formulas, functions of the sum or 
difference of two angles. From the addition formulas are 
derived the double-angle and half-angle formulas. 
Numerous identities of lesser importance can be derived 
from the above basic identities.
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Tables of Natural Functions

To be of practical use, the values of the trigonometric 
functions must be readily available for any given angle. 
Various trigonometric identities show that the values of 
the functions for all angles can readily be found from the 
values for angles from 0° to 45°. For this reason, it is suffi-
cient to list in a table the values of sine, cosine, and tangent 
for all angles from 0° to 45° that are integral multiples of 
some convenient unit (commonly 1'). Before computers 
rendered them obsolete in the late 20th century, such trig-
onometry tables were helpful to astronomers, surveyors, 
and engineers.

For angles that are not integral multiples of the unit, 
the values of the functions may be interpolated. Because the 
values of the functions are in general irrational numbers, 
they are entered in the table as decimals, rounded off at 
some convenient place. For most purposes, four or five 
decimal places are sufficient, and tables of this accuracy 
are common. Simple geometrical facts alone, however, 
suffice to determine the values of the trigonometric func-
tions for the angles 0°, 30°, 45°, 60°, and 90°.

Plane Trigonometry

In many applications of trigonometry, the essential prob-
lem is the solution of triangles. If enough sides and angles 
are known, the remaining sides and angles as well as the 
area can be calculated, and the triangle is then said to be 
solved. Triangles can be solved by the law of sines and the 
law of cosines. To secure symmetry in the writing of these 
laws, the angles of the triangle are lettered A, B, and C and 
the lengths of the sides opposite the angles are lettered a, 
b, and c, respectively. An example of this standardization is 
shown in the figure on the top of page 216.
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The law of sines is expressed as an equality involving 
three sine functions while the law of cosines is an identifi-
cation of the cosine with an algebraic expression formed 
from the lengths of sides opposite the corresponding 
angles. To solve a triangle, all the known values are sub-
stituted into equations expressing the laws of sines and 
cosines, and the equations are solved for the unknown 
quantities. For example, the law of sines is employed when 
two angles and a side are known or when two sides and an 
angle opposite one are known. Similarly, the law of cosines 
is appropriate when two sides and an included angle are 
known or three sides are known.

Texts on trigonometry derive other formulas for solving 
triangles and for checking the solution. Older textbooks fre-
quently included formulas especially suited to logarithmic 
calculation. Newer textbooks, however, frequently include 
simple computer instructions for use with a symbolic 
mathematical program such as Mathematica™ or Maple™.

In addition to the angles (A, B, C) and sides (a, b, c), one of the three heights 
of the triangle (h ) is included by drawing the line segment from one of the 
triangle’s vertices (in this case C) that is perpendicular to the opposite side of 
the triangle. Encyclopædia Britannica, Inc.
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Spherical Trigonometry

Spherical trigonometry involves the study of spherical tri-
angles, which are formed by the intersection of three 
great circle arcs on the surface of a sphere. Spherical tri-
angles were subject to intense study from antiquity 
because of their usefulness in navigation, cartography, and 
astronomy.

The angles of a spherical triangle are defined by the 
angle of intersection of the corresponding tangent lines to 
each vertex. The sum of the angles of a spherical triangle 
is always greater than the sum of the angles in a planar 
triangle (π radians, equivalent to two right angles). The 
amount by which each spherical triangle exceeds two right 
angles (in radians) is known as its spherical excess. The 
area of a spherical triangle is given by the product of its 
spherical excess E and the square of the radius r of the 
sphere it resides on—in symbols, Er2.

By connecting the vertices of a spherical triangle with 
the centre O of the sphere that it resides on, a special 
“angle” known as a trihedral angle is formed. The central 
angles (also known as dihedral angles) between each pair 
of line segments OA, OB, and OC are labeled α, β, and γ to 
correspond to the sides (arcs) of the spherical triangle 
labeled a, b, and c, respectively. Because a trigonometric 
function of a central angle and its corresponding arc have 
the same value, spherical trigonometry formulas are given 
in terms of the spherical angles A, B, and C and, inter-
changeably, in terms of the arcs a, b, and c and the dihedral 
angles α, β, and γ. Furthermore, most formulas from plane 
trigonometry have an analogous representation in spheri-
cal trigonometry. For example, there is a spherical law of 
sines and a spherical law of cosines.

As was described for a plane triangle, the known values 
involving a spherical triangle are substituted in the 
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analogous spherical trigonometry formulas, such as the 
laws of sines and cosines, and the resulting equations are 
then solved for the unknown quantities.

Many other relations exist between the sides and angles 
of a spherical triangle. Worth mentioning are Napier’s 
analogies (derivable from the spherical trigonometry half-
angle or half-side formulas), which are particularly well 
suited for use with logarithmic tables.

Analytic Trigonometry

Analytic trigonometry combines the use of a coordinate 
system, such as the Cartesian coordinate system used in 
analytic geometry, with algebraic manipulation of the 
various trigonometry functions to obtain formulas useful 
for scientific and engineering applications.

Trigonometric functions of a real variable x are defined 
by means of the trigonometric functions of an angle. For 
example, sin x in which x is a real number is defined to 
have the value of the sine of the angle containing x radians. 
Similar definitions are made for the other five trigonomet-
ric functions of the real variable x. These functions satisfy 
the previously noted trigonometric relations with A, B, 
90°, and 360° replaced by x, y, π/2 radians, and 2π radians, 
respectively. The minimum period of tan x and cot x is π, 
and of the other four functions it is 2π.

In the calculus it is shown that sin x and cos x are sums 
of power series. These series may be used to compute 
the sine and cosine of any angle. For example, to compute the 
sine of 10°, it is necessary to find the value of sin π/18 
because 10° is the angle containing π/18 radians. When π/18 
is substituted in the series for sin x, it is found that the 
first two terms give 0.17365, which is correct to five deci-
mal places for the sine of 10°. By taking enough terms of 
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the series, any number of decimal places can be correctly 
obtained. Tables of the functions may be used to sketch 
the graphs of the functions, as shown in the figure above.

Each trigonometric function has an inverse function, 
that is, a function that “undoes” the original function. For 
example, the inverse function for the sine function is 
written arc sin or sin−1, thus sin−1(sin x) = sin (sin−1 x) = x. 
The other trigonometric inverse functions are defined 
similarly.

Coordinates and Transformation  
of Coordinates

Polar Coordinates

For problems involving directions from a fixed origin 
(or pole) O, it is often convenient to specify a point P by 
its polar coordinates (r, θ), in which r is the distance OP 

Note that each of these functions is periodic. Thus, the sine and cosine functions 
repeat every 2π, and the tangent and cotangent functions repeat every π. 
Encyclopædia Britannica, Inc.
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and θ is the angle that the direction of r makes with a given 
initial line. The initial line may be identified with the 
x-axis of rectangular Cartesian coordinates, as shown in 
the figure above.

The point (r, θ) is the same as (r, θ + 2nπ) for any integer 
n. It is sometimes desirable to allow r to be negative, so 
that (r, θ) is the same as (−r, θ + π).

Given the Cartesian equation for a curve, the polar 
equation for the same curve can be obtained in terms of 
the radius r and the angle θ by substituting r cos θ and 
r sin θ for x and y, respectively. For example, the circle 
x2 + y2 = a2 has the polar equation (r cos θ)2 + (r sin θ)2 = a2, 
which reduces to r = a. (The positive value of r is sufficient, 
if θ takes all values from −π to π or from 0 to 2π). Thus, the 
polar equation of a circle simply expresses the fact that 
the curve is independent of θ and has constant radius. In a 
similar manner, the line y = x tan ϕ has the polar equation 
sin θ = cos θ tan ϕ, which reduces to θ = ϕ. (The other 

The point labeled P in the figure resides in the plane. Therefore, it requires two 
dimensions to fix its location, either in Cartesian coordinates (x, y) or in polar 
coordinates (r, θ). Encyclopædia Britannica, Inc.
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solution, θ = ϕ + π, can be discarded if r is allowed to take 
negative values.)

Transformation of Coordinates

A transformation of coordinates in a plane is a change 
from one coordinate system to another. Thus, a point in 
the plane will have two sets of coordinates giving its posi-
tion with respect to the two coordinate systems used, and 
a transformation will express the relationship between 
the coordinate systems. For example, the transformation 
between polar and Cartesian coordinates discussed in the 
preceding section is given by x = r cos θ and y = r sin θ. 
Similarly, it is possible to accomplish transformations 
between rectangular and oblique coordinates.

In a translation of Cartesian coordinate axes, a trans-
formation is made between two sets of axes that are 
parallel to each other but have their origins at different 
positions. If a point P has coordinates (x, y) in one system, 
its coordinates in the second system are given by (x − h, y − k) 
where (h, k) is the origin of the second system in terms of 
the first coordinate system. Thus, the transformation of P 
between the first system (x, y) and the second system (x', y') 
is given by the equations x = x' + h and y = y' + k. The com-
mon use of translations of axes is to simplify the equations 
of curves. For example, the equation 2x2 + y2 − 12x −2y + 17 = 0 
can be simplified with the translations x' = x − 3 and y' = y − 1 
to an equation involving only squares of the variables and 
a constant term: (x')2 + (y')22 = 1. In other words, the curve 
represents an ellipse with its centre at the point (3, 1) in 
the original coordinate system.

A rotation of coordinate axes is one in which a pair of 
axes giving the coordinates of a point (x, y) rotate through an 
angle ϕ to give a new pair of axes in which the point has coor-
dinates (x', y'), as shown in the figure on page 226.
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The transformation equations for such a rotation are 
given by x = x' cos ϕ − y' sin ϕ and y = x' sin ϕ + y' cos ϕ. The 
application of these formulas with ϕ = 45° to the difference 
of squares, x2 − y2 = a2, leads to the equation x'y' = c (where c 
is a constant that depends on the value of a). This equation 
gives the form of the rectangular hyperbola when its 
asymptotes (the lines that a curve approaches without 
ever quite meeting) are used as the coordinate axes.

Rotating the coordinate axes through an angle ϕ changes the coordinates of a 
point from (x, y) to (x', y'). Encyclopædia Britannica, Inc.
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CHAPTER 5
GREAT 

TRIGONOMETRICIANS

 Born in the ancient world as an offspring of geometry, 
trigonometry began in the 16th century to change its 

character from a purely geometric discipline to an algebraic-
analytic subject. Great personalities who contributed to 
this development are presented in this chapter.   

 ARYABHATA I 
 (b. 476, possibly Ashmaka or Kusumapura, India)

Aryabhata I was an astronomer and the earliest Indian 
mathematician whose work and history are available to 
modern scholars. Known as Aryabhata I—or Aryabhata 
the Elder to distinguish him from a 10th-century Indian 
mathematician of the same name—he fl ourished in 
Kusumapura, near Patalipurta (Patna), then the capital of 
the Gupta dynasty. There he composed at least two works, 
Aryabhatiya  (c. 499) and the now lost  Aryabhatasiddhanta . 
Aryabhatasiddhanta  circulated mainly in the northwest of 
India and, through the Sāsānian dynasty (224–651) of Iran, 
had a profound infl uence on the development of Islamic 
astronomy. Its contents are preserved to some extent in 
the works of Varahamihira (fl . c. 550), Bhaskara I (fl . c. 629), 
Brahmagupta (598–c. 665), and others. It is one of the 
earliest astronomical works to assign the start of each day 
to midnight. 

Aryabhatiya  was particularly popular in South India, 
where numerous mathematicians over the ensuing millen-
nium wrote commentaries. Written in verse couplets, this 
work deals with mathematics and astronomy. Following 
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an introduction that contains astronomical tables and 
Aryabhata’s system of phonemic number notation, the 
work is characteristically divided into three sections: 
Ganita (“Mathematics”), Kala-kriya (“Time Calculations”), 
and Gola (“Sphere”).

In Ganita Aryabhata names the first 10 decimal places 
and gives algorithms for obtaining square and cubic roots, 
utilizing the decimal number system. Then, he treats geo-
metric measurements—employing 62,832/20,000 (= 3.1416) 
for π—and develops properties of similar right-angled 
triangles and of two intersecting circles. Utilizing the 
Pythagorean theorem, he obtained one of the two methods 
for constructing his table of sines. He also realized that 
second-order sine difference is proportional to sine. 
Mathematical series, quadratic equations, compound 
interest (involving a quadratic equation), proportions 
(ratios), and the solution of various linear equations are 
among the arithmetic and algebraic topics included. 
Aryabhata’s general solution for linear indeterminate equa-
tions, which Bhaskara I called kuttakara (“pulverizer”), 
consisted of breaking the problem down into new problems 
with successively smaller coefficients—essentially the 
Euclidean algorithm and related to the method of contin-
ued fractions.

With Kala-kriya Aryabhata turned to astronomy—in 
particular, treating planetary motion along the ecliptic. 
The topics include definitions of various units of time, 
eccentric and epicyclic models of planetary motion, plan-
etary longitude corrections for different terrestrial 
locations, and a theory of “lords of the hours and days” (an 
astrological concept used for determining propitious 
times for action).

Aryabhatiya ends with spherical astronomy in Gola, 
where he applied plane trigonometry to spherical 
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geometry by projecting points and lines on the surface of 
a sphere onto appropriate planes. Topics include prediction 
of solar and lunar eclipses and an explicit statement that 
the apparent westward motion of the stars is due to the 
spherical Earth’s rotation about its axis. Aryabhata also 
correctly ascribed the luminosity of the Moon and planets 
to reflected sunlight.

The Indian government named its first satellite 
Aryabhata (launched 1975) in his honour.

AL-BATTA- NI-

(b. c. 858, in or near Haran, near Urfa, Syria—d. 929, near 

Sa-marra-’, Iraq)

Abu- ‘abd Alla-h Muh. ammad ibn Ja-bir ibn Sina-n al-Batta-nı-

al-H. arrani al-S-a-bi’ was an Arab astronomer and 
mathematician who refined existing values for the length 
of the year and of the seasons, for the annual precession of 
the equinoxes, and for the inclination of the ecliptic. He 
showed that the position of the Sun’s apogee, or farthest 
point from the Earth, is variable and that annular (central 
but incomplete) eclipses of the Sun are possible. He 
improved Ptolemy’s astronomical calculations by replac-
ing geometrical methods with trigonometry. From 877 he 
carried out many years of remarkably accurate observa-
tions at Al-Raqqah in Syria.

Al-Batta-nı- was the best known of Arab astronomers in 
Europe during the Middle Ages (frequently under the 
Latin names Albatenius, Albategnus, or Albategni). His 
principal written work, a compendium of astronomical 
tables, was translated into Latin in about 1116 and into 
Spanish in the 13th century. A printed edition, under the 
title De motu stellarum (“On Stellar Motion”), was pub-
lished in 1537.
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ABRAHAM DE MOIVRE
(b. May 26, 1667, Vitry, France—d. Nov. 27, 1754, London, Eng.)

French mathematician Abraham de Moivre was a pioneer 
in the development of analytic trigonometry and in the 
theory of probability.

A French Huguenot, de Moivre was jailed as a 
Protestant upon the revocation of the Edict of Nantes in 
1685. When he was released shortly thereafter, he fled to 
England. In London he became a close friend of Sir Isaac 
Newton and the astronomer Edmond Halley. De Moivre 
was elected to the Royal Society of London in 1697 and 
later to the Berlin and Paris academies. Despite his dis-
tinction as a mathematician, he never succeeded in 
securing a permanent position but eked out a precarious 
living by working as a tutor and a consultant on gambling 
and insurance.

De Moivre expanded his paper “De mensura sortis” 
(written in 1711), which appeared in Philosophical 
Transactions, into The Doctrine of Chances (1718). Although 
the modern theory of probability had begun with the 
unpublished correspondence (1654) between Blaise Pascal 
and Pierre de Fermat and the treatise De Ratiociniis in Ludo 
Aleae (1657; “On Ratiocination in Dice Games”) by 
Christiaan Huygens of Holland, de Moivre’s book greatly 
advanced probability study. The definition of statistical 
independence—namely, that the probability of a com-
pound event composed of the intersection of statistically 
independent events is the product of the probabilities of 
its components—was first stated in de Moivre’s Doctrine. 
Many problems in dice and other games were included, 
some of which appeared in the Swiss mathematician Jakob 
(Jacques) Bernoulli’s Ars conjectandi (1713; “The Conjectural 
Arts”), which was published before de Moivre’s Doctrine 
but after his “De mensura.” He derived the principles of 
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probability from the mathematical expectation of events, 
just the reverse of present-day practice.

De Moivre’s second important work on probability 
was Miscellanea Analytica (1730; “Analytical Miscellany”). 
He was the first to use the probability integral in which 
the integrand is the exponential of a negative quadratic,

He originated Stirling’s formula, incorrectly attributed 
to James Stirling (1692–1770) of England, which states that 
for a large number n, n! equals approximately (2πn)1/2e-nnn; 
that is, n factorial (a product of integers with values 
descending from n to 1) approximates the square root of 
2πn, times the exponential of -n, times n to the nth power. 
In 1733 he used Stirling’s formula to derive the normal fre-
quency curve as an approximation of the binomial law.

De Moivre was one of the first mathematicians to use 
complex numbers in trigonometry. The formula known by 
his name, (cos x + i sin x)n = cos nx + i sin nx, was instrumental 
in bringing trigonometry out of the realm of geometry 
and into that of analysis.

LEONHARD EULER
(b. April 15, 1707, Basel, Switz.—d. Sept. 18, 1783, St. Petersburg, Russia)

Swiss mathematician and physicist Leonhard Euler was 
one of the founders of pure mathematics. He not only 
made decisive and formative contributions to the subjects 
of geometry, calculus, mechanics, and number theory but 
also developed methods for solving problems in observa-
tional astronomy and demonstrated useful applications of 
mathematics in technology and public affairs.

7 Great Trigonometricians 7

π



7 The Britannica Guide to Algebra and Trigonometry 7

232

Euler’s mathematical ability earned him the esteem of 
Johann Bernoulli, one of the first mathematicians in 
Europe at that time, and of his sons Daniel and Nicolas. In 
1727 he moved to St. Petersburg, where he became an asso-
ciate of the St. Petersburg Academy of Sciences and in 1733 
succeeded Daniel Bernoulli to the chair of mathematics.

By means of his numerous books and memoirs that he 
submitted to the academy, Euler carried integral calculus 
to a higher degree of perfection, developed the theory of 
trigonometric and logarithmic functions, reduced analytical 
operations to a greater simplicity, and threw new light on 
nearly all parts of pure mathematics. Overtaxing himself, 
Euler in 1735 lost the sight of one eye. Then, invited by 
Frederick the Great in 1741, he became a member of the 
Berlin Academy, where for 25 years he produced a steady 
stream of publications, many of which he contributed to 
the St. Petersburg Academy, which granted him a pension. 
In 1748, in his Introductio in analysin infinitorum, he developed 
the concept of function in mathematical analysis, through 
which variables are related to each other and in which he 
advanced the use of infinitesimals and infinite quantities. 
He did for modern analytic geometry and trigonometry 
what the Elements of Euclid had done for ancient geometry, 
and the resulting tendency to render mathematics and 
physics in arithmetical terms has continued ever since. He 
is known for familiar results in elementary geometry. For 
example, the Euler line through the orthocentre (the 
intersection of the altitudes in a triangle), the circumcentre 
(the centre of the circumscribed circle of a triangle), and 
the barycentre (the “centre of gravity,” or centroid) of a 
triangle. He was responsible for treating trigonometric 
functions—i.e., the relationship of an angle to two sides 
of a triangle—as numerical ratios rather than as lengths of 
geometric lines and for relating them, through the so-
called Euler identity (eiθ = cos θ + i sin θ), with complex 
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numbers (e.g., 3 + 2√-1). He discovered the imaginary loga-
rithms of negative numbers and showed that each complex 
number has an infinite number of logarithms.

Euler’s textbooks in calculus, Institutiones calculi differ-
entialis in 1755 and Institutiones calculi integralis in 1768–70, 
have served as prototypes to the present because they 
contain formulas of differentiation and numerous meth-
ods of indefinite integration, many of which he invented 
himself, for determining the work done by a force and for 
solving geometric problems. He also made advances in 
the theory of linear differential equations, which are use-
ful in solving problems in physics. Thus, he enriched 
mathematics with substantial new concepts and tech-
niques. He introduced many current notations, such as Σ 
for the sum; ∫n for the sum of divisors of n; the symbol e for 
the base of natural logarithms; a, b, and c for the sides of a 
triangle and A, B, and C for the opposite angles; the letter 
f and parentheses for a function; the use of the symbol 
π for the ratio of circumference to diameter in a circle; and 
i for √-1.

After Frederick the Great became less cordial toward 
him, Euler in 1766 accepted the invitation of Catherine II 
to return to Russia. Soon after his arrival at St. Petersburg, 
a cataract formed in his remaining good eye, and he spent 
the last years of his life in total blindness. Despite this 
tragedy, his productivity continued undiminished, sus-
tained by an uncommon memory and a remarkable facility 
in mental computations. His interests were broad, and his 
Lettres à une princesse d ’Allemagne in 1768–72 were an admi-
rably clear exposition of the basic principles of mechanics, 
optics, acoustics, and physical astronomy. Not a classroom 
teacher, Euler nevertheless had a more pervasive pedagog-
ical influence than any modern mathematician. He had 
few disciples, but he helped to establish mathematical 
education in Russia.
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Euler devoted considerable attention to developing a 
more perfect theory of lunar motion, which was particularly 
troublesome, since it involved the so-called three-body 
problem—the interactions of Sun, Moon, and Earth. (The 
problem is still unsolved.) His partial solution, published 
in 1753, assisted the British Admiralty in calculating lunar 
tables, of importance then in attempting to determine 
longitude at sea. One of the feats of his blind years was to 
perform all the elaborate calculations in his head for his 
second theory of lunar motion in 1772. Throughout his life 
Euler was much absorbed by problems dealing with the 
theory of numbers, which treats of the properties and 
relationships of integers, or whole numbers (0, ±1, ±2, etc.). 
In this, his greatest discovery, in 1783, was the law of qua-
dratic reciprocity, which has become an essential part of 
modern number theory.

In his effort to replace synthetic methods by analytic 
ones, Euler was succeeded by Joseph-Louis Lagrange. But, 
where Euler had delighted in special concrete cases, 
Lagrange sought for abstract generality. And, while Euler 
incautiously manipulated divergent series, Lagrange 
attempted to establish infinite processes upon a sound 
basis. Thus, it is that Euler and Lagrange together are 
regarded as the greatest mathematicians of the 18th century. 
But Euler has never been excelled either in productivity or 
in the skillful and imaginative use of algorithmic devices 
(i.e., computational procedures) for solving problems.

JAMES GREGORY
(b. November 1638, Drumoak [near Aberdeen], Scot.—d. October 

1675, Edinburgh)

Scottish mathematician and astronomer James Gregory (or 
James Gregorie) discovered infinite series representations 
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for a number of trigonometry functions, although he is 
mostly remembered for his description of the first practi-
cal reflecting telescope, now known as the Gregorian 
telescope.

The son of an Anglican priest, Gregory received his 
early education from his mother. After his father’s death 
in 1650, he was sent to Aberdeen, first to grammar school 
and then to Marischal College, graduating from the latter 

James Gregory. © Photos.com/Jupiterimages
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in 1657. (This Protestant college was combined with the 
Roman Catholic King’s College in 1860 to form the 
University of Aberdeen.)

Following graduation, Gregory traveled to London 
where he published Optica Promota (1663; “The Advance of 
Optics”). This work analyzed the refractive and reflective 
properties of lens and mirrors based on various conic sec-
tions and substantially developed Johannes Kepler’s 
(1571–1630) theory of the telescope. In the epilogue, 
Gregory proposed a new telescope design with a secondary 
mirror in the shape of a concave ellipsoid that would collect 
the reflection from a primary parabolic mirror and refocus 
the image back through a small hole in the centre of the 
primary mirror to an eyepiece, as shown in the figure below.

In this work Gregory also introduced estimation of 
stellar distances by photometric methods.

In 1663 Gregory visited The Hague and Paris before 
settling in Padua, Italy, to study geometry, mechanics, and 

James Gregory’s telescope design (1663) uses two concave mirrors—a primary 
parabolic-shaped mirror and a secondary elliptic-shaped mirror—to focus 
images in a short telescope tube. As indicated by the rays in the figure: (1) light 
enters the open end of the telescope; (2) light rays travel to the primary mirror, 
where they are reflected and concentrated at the prime focus; (3) a secondary 
mirror slightly beyond the prime focus reflects and concentrates the rays near a 
small aperture in the primary mirror; and (4) the image is viewed through an 
eyepiece. Encyclopædia Britannica, Inc.
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astronomy. While in Italy he wrote Vera Circuli et Hyperbolae 
Quadratura (1667; “The True Squaring of the Circle and of 
the Hyperbola”) and Geometriae Pars Universalis (1668; 
“The Universal Part of Geometry”). In the former work he 
used a modification of the method of exhaustion of 
Archimedes (c. 285–212/211 BCE) to find the areas of the 
circle and sections of the hyperbola. In his construction of 
an infinite sequence of inscribed and circumscribed geo-
metric figures, Gregory was one of the first to distinguish 
between convergent and divergent infinite series. In the 
latter work Gregory collected the main results then known 
about transforming a very general class of curves into 
sections of known curves (hence the designation “univer-
sal”), finding the areas bounded by such curves, and 
calculating the volumes of their solids of revolution.

On the strength of his Italian treatises, Gregory was 
elected to the Royal Society on his return to London in 
1668 and appointed to the University of St. Andrews, 
Scotland. In 1669, shortly after his return to Scotland, he 
married a young widow and started his own family. He 
visited London only once again, in 1673, to purchase sup-
plies for what would have been Britain’s first public 
astronomical observatory. In 1674, however, he became 
dissatisfied with the University of St. Andrews and left for 
the University of Edinburgh.

Although Gregory did not publish any more mathemat-
ical papers after his return to Scotland, his mathematical 
research continued. In 1670 and 1671 he communicated to 
the English mathematician John Collins a number of 
important results on infinite series expansions of various 
trigonometry functions, including what is now known as 
Gregory’s series for the arctangent function: 

arctan x = x -  x3
/3 +  x5

/5 -  x7
/7 + . . . 

7 Great Trigonometricians 7



7 The Britannica Guide to Algebra and Trigonometry 7

238

Knowing that the arctangent of 1 is equal to π/4 led 
to the immediate substitution of 1 for x in this equation to 
produce the first infinite series expansion for π. 
Unfortunately, this series converges too slowly to π for the 
practical generation of digits in its decimal expansion. 
Nevertheless, it encouraged the discovery of other, more 
rapidly convergent infinite series for π.

The extent of Gregory’s work has only been known 
and appreciated since the publication of James Gregory: 
Tercentenary Memorial Volume (ed. by H.W. Turnbull; 1939), 
which contains most of his letters and posthumous 
manuscripts.

HIPPARCHUS
(b. Nicaea, Bithynia [now Iznik, Turkey]—d. after 127 BCE, Rhodes?)

Hipparchus (or Hipparchos), a Greek astronomer and 
mathematician, made fundamental contributions to the 
advancement of astronomy as a mathematical science and 
to the foundations of trigonometry. Although he is com-
monly ranked among the greatest scientists of antiquity, 
very little is known about his life, and only one of his many 
writings is still in existence. Knowledge of the rest of his 
work relies on second-hand reports, especially in the 
great astronomical compendium the Almagest, written by 
Ptolemy in the 2nd century CE.

Lover of Truth

As a young man in Bithynia, Hipparchus compiled records 
of local weather patterns throughout the year. Such 
weather calendars (parapegmata), which synchronized the 
onset of winds, rains, and storms with the astronomical 
seasons and the risings and settings of the constellations, 
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Hipparchus, depicted above, indulged interests in both astronomy and math-
ematics. His contributions in both fields are still relevant today, though much 
of his work lives on only through secondary accounts. Archive Photos/
Getty Images
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were produced by many Greek astronomers from at least 
as early as the 4th century BCE.

Most of Hipparchus’s adult life, however, seems to 
have been spent carrying out a program of astronomical 
observation and research on the island of Rhodes. Ptolemy 
cites more than 20 observations made there by Hipparchus 
on specific dates from 147 to 127, as well as three earlier 
observations from 162 to 158 that may be attributed to 
him. These must have been only a tiny fraction of 
Hipparchus’s recorded observations. In fact, his astro-
nomical writings were numerous enough that he published 
an annotated list of them.

Hipparchus also wrote critical commentaries on some 
of his predecessors and contemporaries. In Ton Aratou kai 
Eudoxou Phainomenon exegeseos biblia tria (“Commentary on 
the Phaenomena of Aratus and Eudoxus”), his only surviv-
ing book, he ruthlessly exposed errors in Phaenomena, a 
popular poem written by Aratus and based on a now-lost 
treatise of Eudoxus of Cnidus that named and described 
the constellations. Apparently his commentary Against the 
Geography of Eratosthenes was similarly unforgiving of loose 
and inconsistent reasoning. Ptolemy characterized him 
as a “lover of truth” (philalethes)—a trait that was more 
amiably manifested in Hipparchus’s readiness to revise his 
own beliefs in the light of new evidence. He communi-
cated with observers at Alexandria in Egypt, who provided 
him with some times of equinoxes, and probably also with 
astronomers at Babylon.

Solar and Lunar Theory

Hipparchus’s most important astronomical work con-
cerned the orbits of the Sun and Moon, a determination 
of their sizes and distances from the Earth, and the study 
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of eclipses. Like most of his predecessors—Aristarchus of 
Samos was an exception—Hipparchus assumed a spherical, 
stationary Earth at the centre of the universe (the geocen-
tric cosmology). From this perspective, the Sun, Moon, 
Mercury, Venus, Mars, Jupiter, and Saturn (all of the solar 
system bodies visible to the naked eye), as well as the stars 
(whose realm was known as the celestial sphere), revolved 
around the Earth each day.

Every year the Sun traces out a circular path in a west-
to-east direction relative to the stars (this is in addition to 
the apparent daily east-to-west rotation of the celestial 
sphere around the Earth). Hipparchus had good reasons 
for believing that the Sun’s path, known as the ecliptic, is 
a great circle, i.e., that the plane of the ecliptic passes 
through the Earth’s centre. The two points at which the 
ecliptic and the equatorial plane intersect, known as 
the vernal and autumnal equinoxes, and the two points 
of the ecliptic farthest north and south from the equato-
rial plane, known as the summer and winter solstices, 
divide the ecliptic into four equal parts. However, the 
Sun’s passage through each section of the ecliptic, or season, 
is not symmetrical. Hipparchus attempted to explain how 
the Sun could travel with uniform speed along a regular 
circular path and yet produce seasons of unequal length.

Hipparchus knew of two possible explanations for the 
Sun’s apparent motion, the eccenter and the epicyclic 
models. These models, which assumed that the apparent 
irregular motion was produced by compounding two or 
more uniform circular motions, were probably familiar to 
Greek astronomers well before Hipparchus. His contri-
bution was to discover a method of using the observed 
dates of two equinoxes and a solstice to calculate the size 
and direction of the displacement of the Sun’s orbit. With 
Hipparchus’s mathematical model one could calculate not 
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only the Sun’s orbital location on any date, but also its 
position as seen from the Earth. The history of celestial 
mechanics until Johannes Kepler (1571–1630) was mostly 
an elaboration of Hipparchus’s model.

Hipparchus also tried to measure as precisely as possible 
the length of the tropical year—the period for the Sun to 
complete one passage through the ecliptic. He made 
observations of consecutive equinoxes and solstices, but 
the results were inconclusive: he could not distinguish 
between possible observational errors and variations in the 
tropical year. However, by comparing his own observations 
of solstices with observations made in the 5th and 3rd cen-
turies BCE, Hipparchus succeeded in obtaining an estimate 
of the tropical year that was only 6 minutes too long.

He was then in a position to calculate equinox and 
solstice dates for any year. Applying this information to 
recorded observations from about 150 years before his 
time, Hipparchus made the unexpected discovery that 
certain stars near the ecliptic had moved about 2° relative 
to the equinoxes. He contemplated various explana-
tions—for example, that these stars were actually very 
slowly moving planets—before he settled on the essen-
tially correct theory that all the stars made a gradual 
eastward revolution relative to the equinoxes. Since 
Nicolaus Copernicus (1473–1543) established his heliocen-
tric model of the universe, the stars have provided a fixed 
frame of reference, relative to which the plane of the equa-
tor slowly shifts—a phenomenon referred to as the 
precession of the equinoxes.

Hipparchus also analyzed the more complicated 
motion of the Moon in order to construct a theory of 
eclipses. In addition to varying in apparent speed, the Moon 
diverges north and south of the ecliptic, and the periodici-
ties of these phenomena are different. Hipparchus 
adopted values for the Moon’s periodicities that were 
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known to contemporary Babylonian astronomers, and he 
confirmed their accuracy by comparing recorded observa-
tions of lunar eclipses separated by intervals of several 
centuries. It remained, however, for Ptolemy (c. 100–170 
CE) to finish fashioning a fully predictive lunar model.

In On Sizes and Distances (now lost), Hipparchus report-
edly measured the Moon’s orbit in relation to the size of 
the Earth. He had two methods of doing this. One method 
used an observation of a solar eclipse that had been total 
near the Hellespont (now called the Dardanelles) but only 
partial at Alexandria. Hipparchus assumed that the differ-
ence could be attributed entirely to the Moon’s observable 
parallax against the stars, which amounts to supposing 
that the Sun, like the stars, is indefinitely far away. (Parallax 
is the apparent displacement of an object when viewed 
from different vantage points). Hipparchus thus calcu-
lated that the mean distance of the Moon from the Earth 
is 77 times the Earth’s radius. In the second method he 
hypothesized that the distance from the centre of the 
Earth to the Sun is 490 times the Earth’s radius—perhaps 
chosen because that is the shortest distance consistent 
with a parallax that is too small for detection by the 
unaided eye. Using the visually identical sizes of the solar 
and lunar discs, and observations of the Earth’s shadow 
during lunar eclipses, Hipparchus found a relationship 
between the lunar and solar distances that enabled him to 
calculate that the Moon’s mean distance from the Earth is 
approximately 63 times the Earth’s radius. (The true value 
is about 60 times.)

Other Scientific Work

The eccenter and epicyclic models sufficed to describe 
the motion of a body that has a single periodic variation in 
apparent speed, which so far as Hipparchus knew was the 
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case with the Sun and Moon. According to Ptolemy, 
Hipparchus was aware that the movements of the planets 
were too complex to be accounted for by the same simple 
models, but he did not attempt to devise a satisfactory 
planetary theory.

According to Pliny the Elder (23–79 CE), Hipparchus 
created a star catalog that assigned names to each star 
along with his measurements of their positions. However, 
the direct evidence for this catalog is very poor and does 
not reveal either the number of stars that it contained or 
how the positions were expressed—whether in terms of a 
coordinate system or by location within various constella-
tions. In the Almagest, Ptolemy presents a catalog of 1,022 
stars grouped by constellations, with apparent magnitudes 
(measure of brightness) and coordinates in degrees mea-
sured along the ecliptic and perpendicular to it. Although 
Ptolemy stated that his catalog was based on personal 
observations, some historians argue that it was derived in 
large part from Hipparchus’s catalog, with a simple adjust-
ment for the intervening precessional motion. This 
remains one of the most controversial topics in the study 
of ancient astronomy.

Hipparchus lived just before the rise of Greco-Roman 
astrology, but he surely knew about the Near Eastern 
traditions of astral divination that were already spread-
ing in the classical world. In later astrological texts, he is 
occasionally cited as an authority, most credibly as a source 
for astrological correspondences between constellations 
and geographical regions.

Hipparchus’s principal interest in geography, as quoted 
from Against the Geography of Eratosthenes by the Greek 
geographer Strabo (c. 64 BCE–23 CE), was the accurate 
determination of terrestrial locations. Ancient authors 
preserved only a few tantalizing allusions to Hipparchus’s 
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other scientific work. For instance, On Bodies Carried 
Down by Their Weight speculated on the principles of 
weight and motion, and a work on optics adhered to 
Euclid’s theory from the Optics that vision is produced by 
an emanation of rays from the eyes. Hipparchus’s calcula-
tion of the exact number (103,049) of possible logical 
statements constructible from 10 basic assertions accord-
ing to certain rules of Stoic logic is a rare surviving instance 
of Greek interest in combinatoric mathematics. 
Hipparchus’s most significant contribution to mathemat-
ics may have been to develop—if not actually invent—a 
trigonometry based on a table of the lengths of chords in 
a circle of unit radius tabulated as a function of the angle 
subtended at the centre. Such a table would, for the first 
time, allow a systematic solution of general trigonometric 
problems, and clearly Hipparchus used it extensively for 
his astronomical calculations. Like so much of 
Hipparchus’s work, his chord table has not survived.

MENELAUS OF ALEXANDRIA
(fl. 1st century CE, Alexandria and Rome)

Greek mathematician and astronomer Menelaus of 
Alexandria first conceived and defined a spherical triangle 
(a triangle formed by three arcs of great circles on the 
surface of a sphere).

Menelaus’s most important work is Sphaerica, on the 
geometry of the sphere, extant only in an Arabic transla-
tion. In Book I he established the basis for a mathematical 
treatment of spherical triangles analogous to Euclid’s treat-
ment of plane triangles. Furthermore, he originated the 
use of arcs of great circles instead of arcs of parallel circles 
on the sphere, a major turning point in the development 
of spherical trigonometry. Book II established theorems 
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whose principal interest is their (unstated) application to 
problems in spherical astronomy. Book III, the last, con-
centrates on spherical trigonometry and introduces 
Menelaus’s theorem. The form of this theorem for plane 
triangles, well known to his contemporaries, was expressed 
as follows: if the three sides of a triangle are crossed by a 
straight line (one of the sides is extended beyond its vertices), 
then the product of three of the nonadjacent line seg-
ments thus formed is equal to the product of three other 
line segments.

Although Book III contains the first-known extension 
of Menelaus’s theorem for spherical triangles, it is quite 
possible that the theorem was already known and 
Menelaus simply transmitted it to later generations. In 
the form stated in Book III, the theorem became of fun-
damental importance in spherical trigonometry and 
astronomy, and the theorem has since been known by his 
name. Other works are attributed to him, including one 
on setting times of the signs of the zodiac, one (in six 
books) on chords in a circle, and one (in three books) on 
elements of geometry, but his only extant work is 
Sphaerica. Menelaus was not just a theoretical astronomer, 
as attested by the Almagest where Ptolemy (c. 100–170 
CE) reports Menelaus’s observations of lunar occultations 
of stars.

PTOLEMY
(b. c. 100 CE—d. c. 170)

(Latin: Claudius Ptolemaeus) was an Egyptian astronomer, 
mathematician, and geographer of Greek descent who 
flourished in Alexandria during the 2nd century CE. In 
several fields his writings represent the culminating 
achievement of Greco-Roman science, particularly his 
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geocentric (Earth-centred) model of the universe now 
known as the Ptolemaic system.

Virtually nothing is known about Ptolemy’s life except 
what can be inferred from his writings. His first major 
astronomical work, the Almagest, was completed about 

Ptolemy was notable for a number of reasons, including his application of 
mathematics to problems he encountered during his work in astronomy. 
Hulton Archive/Getty Images
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150 CE and contains reports of astronomical observations 
that Ptolemy had made over the preceding quarter of a 
century. The size and content of his subsequent literary 
production suggests that he lived until about 170 CE.

Astronomer

The book that is now generally known as the Almagest 
(from a hybrid of Arabic and Greek, “the greatest”) was 
called by Ptolemy He mathematike syntaxis (“The 
Mathematical Collection”) because he believed that its 
subject, the motions of the heavenly bodies, could be 
explained in mathematical terms. The opening chapters 
present empirical arguments for the basic cosmological 
framework within which Ptolemy worked. The Earth, he 
argued, is a stationary sphere at the centre of a vastly larger 
celestial sphere that revolves at a perfectly uniform rate 
around the Earth, carrying with it the stars, planets, Sun, 
and Moon—thereby causing their daily risings and set-
tings. Through the course of a year, the Sun slowly traces 
out a great circle, known as the ecliptic, against the rota-
tion of the celestial sphere. (The Moon and planets 
similarly travel backward—hence, the planets were also 
known as “wandering stars”—against the “fixed stars” 
found in the ecliptic.) The fundamental assumption of the 
Almagest is that the apparently irregular movements of 
the heavenly bodies are in reality combinations of regular, 
uniform, circular motions.

How much of the Almagest is original is difficult to 
determine because almost all of the preceding technical 
astronomical literature is now lost. Ptolemy credited 
Hipparchus (mid-2nd century BCE) with essential ele-
ments of his solar theory, as well as parts of his lunar theory, 
while denying that Hipparchus constructed planetary 
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models. Ptolemy made only a few vague and disparaging 
remarks regarding theoretical work over the intervening 
three centuries. Yet the study of the planets undoubtedly 
made great strides during that interval. Moreover, 
Ptolemy’s veracity, especially as an observer, has been 
controversial since the time of the astronomer Tycho 
Brahe (1546–1601). Brahe pointed out that solar observa-
tions Ptolemy claimed to have made in 141 are definitely 
not genuine, and there are strong arguments for doubting 
that Ptolemy independently observed the more than 
1,000 stars listed in his star catalog. What is not disputed, 
however, is the mastery of mathematical analysis that 
Ptolemy exhibited.

Ptolemy was preeminently responsible for the geocen-
tric cosmology that prevailed in the Islamic world and in 
medieval Europe. This was not due to the Almagest so 
much as a later treatise, Hypotheseis ton planomenon 
(Planetary Hypotheses). In this work he proposed what is 
now called the Ptolemaic system—a unified system in 
which each heavenly body is attached to its own sphere 
and the set of spheres nested so that it extends without 
gaps from the Earth to the celestial sphere. The numerical 
tables in the Almagest (which enabled planetary positions 
and other celestial phenomena to be calculated for arbi-
trary dates) had a profound influence on medieval 
astronomy, in part through a separate, revised version of 
the tables that Ptolemy published as Procheiroi kanones 
(“Handy Tables”). Ptolemy taught later astronomers how 
to use dated, quantitative observations to revise cosmo-
logical models.

Ptolemy also attempted to place astrology on a sound 
basis in Apotelesmatika (“Astrological Influences”), later 
known as the Tetrabiblos for its four volumes. He believed 
that astrology is a legitimate, though inexact, science that 
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describes the physical effects of the heavens on terrestrial 
life. Ptolemy accepted the basic validity of the traditional 
astrological doctrines, but he revised the details to recon-
cile the practice with an Aristotelian conception of nature, 
matter, and change. Of Ptolemy’s writings, the Tetrabiblos 
is the most foreign to modern readers, who do not accept 
astral prognostication and a cosmology driven by the 
interplay of basic qualities such as hot, cold, wet, and dry.

Mathematician

Ptolemy has a prominent place in the history of mathe-
matics primarily because of the mathematical methods he 
applied to astronomical problems. His contributions to 
trigonometry are especially important. For instance, 
Ptolemy’s table of the lengths of chords in a circle is the 
earliest surviving table of a trigonometric function. He 
also applied fundamental theorems in spherical trigonom-
etry (apparently discovered half a century earlier by 
Menelaus of Alexandria) to the solution of many basic 
astronomical problems.

Among Ptolemy’s earliest treatises, the Harmonics 
investigated musical theory while steering a middle course 
between an extreme empiricism and the mystical arith-
metical speculations associated with Pythagoreanism. 
Ptolemy’s discussion of the roles of reason and the senses 
in acquiring scientific knowledge have bearing beyond 
music theory.

Probably near the end of his life, Ptolemy turned to 
the study of visual perception in Optica (“Optics”), a work 
that only survives in a mutilated medieval Latin transla-
tion of an Arabic translation. The extent to which Ptolemy 
subjected visual perception to empirical analysis is remark-
able when contrasted with other Greek writers on optics. 
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For example, Hero of Alexandria (mid-1st century CE) 
asserted, purely for philosophical reasons, that an object 
and its mirror image must make equal angles to a mirror. 
In contrast, Ptolemy established this principle by measur-
ing angles of incidence and reflection for planar and curved 
mirrors set upon a disk graduated in degrees. Ptolemy also 
measured how lines of sight are refracted at the boundary 
between materials of different density, such as air, water, 
and glass, although he failed to discover the exact law 
relating the angles of incidence and refraction.

Geographer

Ptolemy’s fame as a geographer is hardly less than his fame 
as an astronomer. Geographike hyphegesis (Guide to Geography) 
provided all the information and techniques required to 
draw maps of the portion of the world known by Ptolemy’s 
contemporaries. By his own admission, Ptolemy did not 
attempt to collect and sift all the geographical data on 
which his maps were based. Instead, he based them on the 
maps and writings of Marinus of Tyre (c. 100 CE), only 
selectively introducing more current information, chiefly 
concerning the Asian and African coasts of the Indian 
Ocean. Nothing would be known about Marinus if 
Ptolemy had not preserved the substance of his carto-
graphical work.

Ptolemy’s most important geographical innovation 
was to record longitudes and latitudes in degrees for 
roughly 8,000 locations on his world map, making it 
possible to make an exact duplicate of his map. Hence, we 
possess a clear and detailed image of the inhabited world 
as it was known to a resident of the Roman Empire at its 
height—a world that extended from the Shetland Islands 
in the north to the sources of the Nile in the south, from 
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the Canary Islands in the west to China and Southeast 
Asia in the east. Ptolemy’s map is seriously distorted in 
size and orientation compared to modern maps, a reflection 
of the incomplete and inaccurate descriptions of road 
systems and trade routes at his disposal.

Ptolemy also devised two ways of drawing a grid of 
lines on a flat map to represent the circles of latitude and 
longitude on the globe. His grid gives a visual impression 
of the Earth’s spherical surface and also, to a limited 
extent, preserves the proportionality of distances. The 
more sophisticated of these map projections, using circular 
arcs to represent both parallels and meridians, anticipated 
later area-preserving projections. Ptolemy’s geographical 
work was almost unknown in Europe until about 1300, 
when Byzantine scholars began producing many manu-
script copies, several of them illustrated with expert 
reconstructions of Ptolemy’s maps. The Italian Jacopo 
d’Angelo translated the work into Latin in 1406. The 
numerous Latin manuscripts and early print editions of 
Ptolemy’s Guide to Geography, most of them accompanied 
by maps, attest to the profound impression this work 
made upon its rediscovery by Renaissance humanists.

REGIOMONTANUS
(b. June 6, 1436, Königsberg, archbishopric of Mainz [Ger.]—d. July 6, 

1476, Rome, Papal States [Italy])

Johannes Müller von Königsberg, known by his Latin 
name, Regiomontanus, was the foremost mathematician 
and astronomer of 15th-century Europe, a sought-after 
astrologer, and one of the first printers.

Königsberg means “King’s Mountain,” which is what 
the Latinized version of his name, Joannes de Regio monte 
or Regiomontanus, also means. A miller’s son, he entered 
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the University of Leipzig at the age of 11 and in 1450 went 
to the University of Vienna. Regiomontanus was awarded 
a baccalaureate in 1452, but university regulations forced 
him to wait until he turned 21 to receive his master’s 
degree. He eventually collaborated with his teacher, the 
mathematician-astronomer Georg von Peuerbach (d. 
1461), on various astronomical and astrological projects, 

A page from Tabulae directionum, one of the published works of 
Regiomontanus. SSPL/Getty Images
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including observations of eclipses and comets, the manu-
facture of astronomical instruments, and the casting of 
horoscopes for the court of the Holy Roman Emperor 
Frederick III.

The papal legate to the Holy Roman Empire, Cardinal 
Bessarion, during a diplomatic visit to Vienna (1460–61), 
asked Peuerbach to write an epitome, or abridgment, of 
Ptolemy’s Almagest to remedy the problems in George 
of Trebizond’s 1450 translation of and commentary on 
that great work. When Peuerbach died in 1461, 
Regiomontanus left for Rome as a member of Bessarion’s 
extended household and completed Peuerbach’s half-
finished Epitome (c. 1462; first printed in 1496 as Epytoma . . . 
in Almagestum Ptolomei). His demonstration of an alterna-
tive to Ptolemy’s models for the orbits of Mercury and 
Venus with respect to the Sun gave Nicolaus Copernicus 
(1473–1543) the geometric key to reorient planetary 
motions around the Sun. The Epitome is still one of the 
best critical introductions to Ptolemy’s astronomy.

Although he admired the Almagest, Regiomontanus was 
keenly aware that its geometric models led to inconsisten-
cies (notably between predictions of planetary position 
and predictions of planetary size). To remedy these incon-
sistencies, he tried to eliminate the nonconcentric, 
two-dimensional eccentrics and epicycles that were the 
mainstays of Ptolemy’s models. Three-dimensional models 
using concentric spheres would, he believed, yield good 
mathematical predictions of planetary positions without 
jeopardizing the physical principles of natural philosophy.

In Italy (1461–c. 1465), Regiomontanus perfected his 
Greek, lectured at the University of Padua, read widely in 
Bessarion’s Greek library, and fought in the latter’s long 
feud with George of Trebizond. The controversy prompted 
Regiomontanus to write his longest expository work, the 
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“Defense of Theon Against George of Trebizond,” which 
later fueled rumours, entirely unsubstantiated, that 
George’s sons had him poisoned.

Regiomontanus thoroughly mastered Hellenistic and 
medieval mathematics. His own contributions to the 
subject range from the formalization of plane and spheri-
cal trigonometry in De triangulis omnimodis (1464; “On 
Triangles of All Kinds”) to his discovery of a Greek manu-
script (incomplete) of the Arithmetica, the great work of 
Diophantus of Alexandria (fl. c. 250 CE). His writings also 
show his interest in perfect numbers (numbers equal to 
the sum of their proper divisors), the Platonic solids, and the 
solution of quadratic, cubic, and higher-dimensional 
equations.

From 1467 to 1471, Regiomontanus lived in Hungary as 
astrologer to King Matthias I of Hungary and Archbishop 
Janós Vitéz. In 1471 he moved to Nürnberg, Germany, 
where he established an instrument shop, set up a printing 
press, and continued his planetary observations in col-
laboration with the merchant Bernhard Walther. He 
announced plans to print 45 works, mostly in the classical, 
medieval, and contemporary mathematical sciences. 
However, only nine editions appeared, including 
Peuerbach’s Theoricae novae planetarum (1454; “New 
Theories of the Planets”), his own attack (“Disputationes”) 
on the anonymous 13th-century Theorica planetarum 
communis (the common “Theory of the Planets”), his 
German and Latin calendars, and his 896-page Ephemerides 
(daily planetary positions for 32 years, which showcase his 
computational skills). His editions pioneered the printing 
of astronomical diagrams and numerical tables. Several of 
the works that he prepared and had hoped to print, 
including editions of Euclid and Archimedes, his own 
astronomical Tabulae directionum (1467; “Tables of 
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Directions”), and a table of sines that he had computed to 
seven decimal places, proved influential when circulated 
in the 15th and 16th centuries in manuscript and in print.

In 1475 Regiomontanus traveled to Rome to advise 
Pope Sixtus IV about calendar reform. He died there the 
following year, probably from the plague precipitated by 
the Tiber River overflowing its banks.

NAS. I
-R AL-DI-N AL-T. U- SI-

(b. Feb. 18, 1201, T- u-s, Khora-sa-n [now Iran]—d. June 26, 1274, 

Baghdad, Iraq)

Muh.ammad ibn Muh.ammad ibn al-H. asan al-T.u-sı- was an out-
standing Persian philosopher, scientist, and mathematician.

Educated first in T- u-s, where his father was a jurist in 
the Twelfth Imam school, the main sect of Shi’ite Muslims, 
al-T.u-sı- finished his education in Neysha-bu-r, about 75 km 
(50 miles) to the west. This was no doubt a prudent move 
as Genghis Khan (d. 1227), having conquered Beijing in 
1215, turned his attention to the Islamic world and reached 
the region around T- u-s by 1220. In about 1227 the Isma- ‘ilite 
governor Na-s. ir al-Dı-n ‘Abd al-Rah. ı-m offered al-T.u-sı- sanc-
tuary in his mountain fortresses in Khora-sa-n. Al-T.u-sı- in 
turn dedicated his most famous work, Akhlaq-i na-s.irı- (1232; 
Nasirean Ethics), to the governor before being invited to 
stay in the capital at Alamu-t, where he espoused the 
Isma- ‘ilite faith under the new imam, Alauddin Muh.ammad 
(reigned 1227–1255). (This Isma- ‘ilite state began in 1090 
with the conquest of Alamut by H. asan-e S. abba-h.  and 
ended with the fall of the city to the Mongols in 1256.) 
During this period, al-T.u-sı- wrote on Isma-‘ilite theology 
(Tas.awwura-t; “Notions”), logic (Asa-s al-iqtiba-s; “Foundations 
of Inference”), and mathematics (Tah. rı-r al-Majist. i; 
“Commentary on the Almagest”).
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With the fall in 1256 of Alamut to Hülegü Khan (c. 
1217–1265), grandson of Genghis Khan, al-T.u-sı- immedi-
ately accepted a position with the Mongols as a scientific 
adviser. (The alacrity with which he went to work for them 
fueled accusations that his conversion to the Isma- ‘ilite 
faith was feigned, as well as rumours that he betrayed the 
city’s defenses.) Al-T.u-sı- married a Mongol and was then 
put in charge of the ministry of religious bequests. The 
topic of whether al-T.u-sı- accompanied the Mongol capture 
of Baghdad in 1258 remains controversial, although he 
certainly visited nearby Shi’ite centres soon afterward. 
Profiting from Hülegü’s belief in astrology, al-T.u-sı- obtained 
support in 1259 to build a fine observatory (completed in 
1262) adjacent to Hülegü’s capital in Ma-ragheh (now in 
Azerbaijan). More than an observatory, Hülegü obtained a 
first-rate library and staffed his institution with notable 
Islamic and Chinese scholars. Funded by an endowment, 
research continued at the institution for at least 25 years 
after al-T.u-sı-’s death, and some of its astronomical instru-
ments inspired later designs in Samarkand (now in 
Uzbekistan).

Al-T.u-sı- was a man of exceptionally wide erudition. He 
wrote approximately 150 books in Arabic and Persian and 
edited the definitive Arabic versions of the works of 
Euclid, Archimedes, Ptolemy, Autolycus, and Theodosius. 
He also made original contributions to mathematics and 
astronomy. His Zı-j-i Ilkha-nı- (1271; “Ilkhan Tables”), based 
on research at the Ma-ragheh observatory, is a splendidly 
accurate table of planetary movements. Al-T.u-sı-’s most 
influential book in the West may have been Tadhkirah fi 
‘ilm al-hay‘a (“Treasury of Astronomy”), which describes a 
geometric construction, now known as the al-T.u-sı- couple, 
for producing rectilinear motion from a point on one circle 
rolling inside another. By means of this construction, 
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al-T.u-sı- succeeded in reforming the Ptolemaic planetary 
models, producing a system in which all orbits are 
described by uniform circular motion. Most historians of 
Islamic astronomy believe that the planetary models 
developed at Ma-ragheh found their way to Europe (per-
haps via Byzantium) and provided Nicolaus Copernicus 
(1473–1543) with inspiration for his astronomical models.

Today al-T.u-sı-’s Tajrı-d (“Catharsis”) is a highly esteemed 
treatise on Shi’ite theology. He made important contribu-
tions to many branches of Islamic learning, and under his 
direction Ma-ragheh sparked a revival of Islamic mathemat-
ics, astronomy, philosophy, and theology. In the East, al-T.u-sı- is 
an example par excellence of the h. akı-m, or “wise man.”
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CHAPTER 6
TRIGONOMETRIC 

TERMS AND CONCEPTS

  An alphabetic compendium of terms and concepts com-
monly encountered in trigonometry is given below.   

 ALFONSINE TABLES

 The Alfonsine Tables   (also spelled Alphonsine Tables,) 
were the fi rst set of astronomical tables prepared in 
Christian Europe. They enabled calculation of eclipses 
and the positions of the planets for any given time based 
on the Ptolemaic theory, which assumed that the Earth 
was at the centre of the universe. The introduction states 
that the work was prepared in Toledo, Spain, for King 
Alfonso X of León and Castile under the direction of 
Jehuda ben Moses Cohen and Isaac ben Sid. Although no 
Castilian version survives, internal evidence—they were 
calculated for 1252, the initial year of the reign of Alfonso, 
and at the meridian of Toledo—supports the introduction. 
The tables were not widely known, however, until a Latin 
version was prepared in Paris in the 1320s. Copies rapidly 
spread throughout Europe, and for more than two centuries, 
they were the best astronomical tables available. First 
printed in 1483, the Alfonsine Tables were an important 
source of information for the young Nicolaus Copernicus 
before his own work superseded them in the 1550s. 

ALMAGEST 

 The  Almagest  is an astronomical manual written about 150 
CE by Ptolemy (Claudius Ptolemaeus of Alexandria). 
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Ptolemy’s Almagest, the frontispiece of which is shown above, is a significant 
work in both astronomy and mathematics. SSPL/Getty Images
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It served as the basic guide for Islamic and European 
astronomers until about the beginning of the 17th century. 
Its original name was Mathematike Syntaxis (“The 
Mathematical Arrangement”). Almagest arose as an Arabic 
corruption of the Greek word for “greatest” (megiste). It 
was translated into Arabic about 827 and then from Arabic 
to Latin in the last half of the 12th century. Subsequently, 
the Greek text circulated widely in Europe, although the 
Latin translations from Arabic continued to be more 
influential.

The Almagest is divided into 13 books. Book 1 gives 
arguments for a geocentric, spherical cosmos and intro-
duces the necessary trigonometry, along with a 
trigonometry table, that allowed Ptolemy in subsequent 
books to explain and predict the motions of the Sun, 
Moon, planets, and stars. Book 2 uses spherical trigonom-
etry to explain cartography and astronomical phenomena 
(such as the length of the longest day) characteristic of 
various localities. Book 3 deals with the motion of the Sun 
and how to predict its position in the zodiac at any given 
time, and Books 4 and 5 treat the more difficult problem 
of the Moon’s motion. Book 5 also describes the con-
struction of instruments to aid in these investigations. 
The theory developed to this point is applied to solar and 
lunar eclipses in Book 6.

Books 7 and 8 mainly concern the fixed stars, giving 
ecliptic coordinates and magnitudes for 1,022 stars. This 
star catalog relies heavily on that of Hipparchus (129 BCE), 
and in the majority of cases Ptolemy simply converted 
Hipparchus’s description of the location of each star to 
ecliptic coordinates and then shifted these values by a 
constant to account for precession over the intervening 
centuries. These two books also discuss the construction 
of a star globe that adjusts for precession. The remaining 
five books, the most original, set forth in detail geometric 
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models for the motion of the five planets visible to the 
naked eye, together with tables for predicting their posi-
tions at any given time.

LAW OF COSINES

The law of cosines is a generalization of the Pythagorean 
theorem relating the lengths of the sides of any triangle. If 
a, b, and c are the lengths of the sides and C is the angle 
opposite side c, then c2 = a2 + b2 − 2ab cos C.

FOURIER SERIES

A Fourier series is an infinite series used to solve special 
types of differential equations. It consists of an infinite 
sum of sines and cosines, and because it is periodic (i.e., its 
values repeat over fixed intervals), it is a useful tool in 
analyzing periodic functions. Though investigated by 
Leonhard Euler, among others, the idea was named for 
Joseph Fourier, who fully explored its consequences—
including important applications in engineering, 
particularly in heat conduction.

HYPERBOLIC FUNCTION

The hyperbolic functions (also called hyperbolic trigono-
metric functions) are: the hyperbolic sine of z (written 
sinh z); the hyperbolic cosine of z (cosh z); the hyperbolic 
tangent of z (tanh z); and the hyperbolic cosecant, secant, 
and cotangent of z. These functions are most conveniently 
defined in terms of the exponential function, with 
sinh z = 1/2(ez − e−z) and cosh z = 1/2(ez + e−z) and with the other 
hyperbolic trigonometric functions defined in a manner 
analogous to ordinary trigonometry.
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Just as the ordinary sine and cosine functions trace (or 
parameterize) a circle, so the sinh and cosh parameterize a 
hyperbola—hence the hyperbolic appellation. Hyperbolic 
functions also satisfy identities analogous to those of the 
ordinary trigonometric functions and have important 
physical applications. For example, the hyperbolic cosine 
function may be used to describe the shape of the curve 
formed by a high-voltage line suspended between two 
towers. Hyperbolic functions may also be used to define a 
measure of distance in certain kinds of non-Euclidean 
geometry.

LAW OF SINES

The law of sines is a principle of trigonometry stating that 
the lengths of the sides of any triangle are proportional to 
the sines of the opposite angles. That is,

when a, b, and c are the sides and A, B, and C are the oppo-
site angles.

TRIGONOMETRIC FUNCTION

The six trigonometric functions (sine, cosine, tangent, 
cotangent, secant, and cosecant) represent ratios of the 
sides of right triangles. They are also known as the circular 
functions, since their values can be defined as ratios of the 
x and y coordinates of points on a circle of radius 1 that 
correspond to angles in standard positions. Such values 
have been tabulated and programmed into scientific cal-
culators and computers. This allows trigonometry to be 
easily applied to surveying, engineering, and navigation 
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problems in which one of a right triangle’s acute angles 
and the length of a side are known and the lengths of the 
other sides are to be found. The fundamental trigonometric 
identity is sin2θ + cos2θ = 1, in which θ is an angle. Certain 
intrinsic qualities of the trigonometric functions make 
them useful in mathematical analysis. In particular, their 
derivatives form patterns useful for solving differential 
equations.

TRIGONOMETRY TABLE

A trigonometry table is a set of tabulated values for some 
or all of the six trigonometric functions for various angular 
values. Once an essential tool for scientists, engineers, 
surveyors, and navigators, trigonometry tables became 
obsolete with the availability of computers. (The six trig-
onometric functions in relation to a right triangle are 
displayed in the figure on the bottom of page 217.)

The Greek astronomer Hipparchus (d. c. 127 BCE) 
was the first to compose a table of trigonometric func-
tions (based on the chords in a circle), which he 
calculated at increments of 7° 30'. Ptolemy improved on 
Hipparchus’s tables by calculating the values at 30' 
increments. Ptolemy’s Almagest, the greatest astronomi-
cal work of antiquity, would be unimaginable without his 
table of chords.

The earliest table of the sine function (although still 
not with its modern definition) is found in the Surya 
Siddhanta, a Hindu astronomical handbook from the 4th 
or 5th century CE.

The astronomers of medieval Islam were consummate 
calculators who constructed tables of all six trigonometric 
functions as a basis for astronomy and astronomical time-
keeping. The crown of this endeavour was Sultan Ulugh 
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Beg’s tables, published in 1440 in Samarkand (now in 
Uzbekistan). The sine and tangent functions (although 
still not given their modern definitions in terms of ratios), 
calculated at 1' increments, were accurate to the equivalent 
of 9 decimal places.

From Muslim Spain, trigonometric tables spread to 
Latin Europe. Regiomontanus (1436–76), German astron-
omer and mathematician, composed the first tables with 
decimal values. Similarly, Georg Joachim Rheticus (1514–74), 
a student of Nicolaus Copernicus, prepared a magnificent 
set of tables of all six trigonometric functions at 10" 
increments accurate to 10 decimal places. Rheticus also 
took the decisive steps of defining the trigonometric func-
tions in terms of angles rather than arcs and as ratios rather 
than lengths.

The French mathematician François Viète published 
tables of all six trigonometric functions in Canon Mathematicus 
(1579). The value of this work was not, however, in the 
tables, in which he calculated the functions at 1' increments, 
accurate to five decimal places. Instead, Viète’s work was 
important because he had discovered various trigonometry 
relationships with which he demonstrated how to use 
trigonometry to solve equations of degree three and 
higher. Henceforth, trigonometric tables were useful 
not only in surveying, astronomy, and navigation but in 
algebra as well.

The climax for the construction of trigonometric 
tables in this period occurred with the German 
Bartholomeo Pitiscus. It was Pitiscus who coined the 
word trigonometry, and his Thesaurus Mathematicus (1615) 
contained tables of sines and cosines calculated at 10' 
intervals that were accurate to 15 decimal places. Later, 
still more accurate tables were constructed with the help 
of logarithms, invented by John Napier in 1614.
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TRIANGULATION

In navigation, surveying, and civil engineering, triangula-
tion is a technique for precise determination of a ship’s 
or aircraft’s position, and the direction of roads, tunnels, or 
other structures under construction. It is based on the 

Two surveyors with a theodolite take triangulation readings. J. Baylor 
Roberts/National Geographic/Getty Images
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laws of plane trigonometry, which state that, if one side 
and two angles of a triangle are known, the other two 
sides and angle can be readily calculated. One side of the 
selected triangle is measured; this is the baseline. The two 
adjacent angles are measured by means of a surveying 
device known as a theodolite, and the entire triangle is 
established. By constructing a series of such triangles, 
each adjacent to at least one other triangle, values can be 
obtained for distances and angles not otherwise measurable. 
Triangulation was used by the ancient Egyptians, Greeks, 
and other peoples at a very early date, with crude sighting 
devices that were improved into the diopter, or dioptra 
(an early theodolite), and were described in the 1st century 
CE by Heron of Alexandria.
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GLOSSARY

algebra  The branch of mathematics in which arithmetical 
operations and formal manipulations are applied to 
abstract symbols rather than specifi c numbers.

automorphism  A correspondence that associates to 
every element in a set a unique element of the set and 
for which there is a companion correspondence, 
known as its inverse, such that one followed by the 
other produces the identity correspondence.

bisect  Division of something into two equal or congruent 
parts, usually by a line, which is then called a bisector.

coeffi cient  A constant multiplicative factor of a 
specifi c object.

coordinate  A system for assigning an n-tuple of numbers 
or scalars to each point in an n-dimensional space.

dimension  The measure of the size of an object, such as 
a box, usually given as length, width, and height.

equation  Statement of equality between two expressions 
consisting of variables and/or numbers.

formulation  The product of a systematized statement 
or expression.

function  An expression, rule, or law that defi nes a relation-
ship between one variable (the independent variable) 
and another variable (the dependent variable).

geometry  The branch of mathematics concerned with the 
shape of individual objects, spatial relationships among 
various objects, and the properties of surrounding space.

hierarchy  A graded or ranked series.
homomorphism  A special correspondence between the 

members (elements) of two algebraic systems, such as 
two groups, two rings, or two fi elds.
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integer  Whole-valued positive or negative number or 0.
irrational numbers  Any real number that cannot be 

expressed as the quotient of two integers.
magnitude  A numerical quantitative measure expressed 

usually as a multiple of a standard unit.
metaphysics  The philosophical study whose object is to 

determine the real nature of things—to determine 
the meaning, structure, and principles of whatever is 
insofar as it is.

perpendicular  Two lines or planes (or a line and a plane), 
are considered perpendicular (or orthogonal) to each 
other if they form congruent adjacent angles.

polynomials  An expression consisting of numbers and 
variables grouped according to certain patterns.

ratio  Quotient of two values.
rational numbers  A number that can be represented as 

the quotient p/q of two integers such that q ≠ 0. In 
addition to all the fractions, the set of rational numbers 
includes all the integers, each of which can be written 
as a quotient with the integer as the numerator and 
1 as the denominator.

scalar  A physical quantity that is completely described 
by its magnitude.

tangent  Straight line (or smooth curve) that touches a 
given curve at one point; at that point, the slope of 
the curve is equal to that of the tangent.

theorem  A proposition or statement that is demonstrated; 
a statement to be proved.

trigonometry  The branch of mathematics concerned 
with specific functions of angles and their application 
to calculations.

variable  A symbol (usually a letter) standing in for an 
unknown numerical value in an equation.

vector  A quantity that has both magnitude and direction 
but not position.
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