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Preface 

One morning, back in the spring of 1961, I found myself sitting at the end of 
a truly impressive oak table in the Summer Common Room of Magdalen 
College, Oxford, defending some of my research work before the Fellows of 
the College in the oral part of a Fellowship examination. Since I was a 
physicist, with some mathematical leanings, most of the questioning came 
from the scientists and mathematicians present. These questions centred for a 
while on some rather arcane mumbo-jumbo about mathematical objects 
known as 'Green's functions' which, at the time, were rather in vogue in my 
immediate field of theoretical research, but represented hardly more than 
voodoo mathematics to non-specialists-even among scientists. In fact, to be 
quite honest, most scientists of the day had probably never heard of them. 
Nevertheless to me, at the time, they were important and I felt that I was 
fielding the questions quite well. 

It was at this moment (by which time I was beginning to grow a little in 
confidence) that the questioning was opened up to the audience at large, most 
of whom, though eminent in their own fields, were not scientifically oriented 
and had almost certainly been struggling to stay awake during the mathe­
matical ramblings of the preceding forty minutes. One of them, a long-serving 
Fellow of the College, resplendent in gown, and fixing me with a piercing 
glare, rose slowly to his feet. Evidently annoyed by the fact that all the prior 
discourse had been utterly unintelligible to him (and presumably to most of 
the others present) he posed a question which haunts me to this day. 'These 
Green's functions that I hear you talking so much about,' he said, 'how would 
you explain one of those to a medieval historian?' The fact that I recall the 
question word for word to this day, without having any recollection 
whatsoever of my answer, probably speaks eloquently for the quality of the 
response. 

Several years later, I found my way to Bell Research Laboratories, New 
Jersey, USA, where I plied my trade as a solid state physicist. This was the 
period of the computer revolution, with the company purchasing bigger and 
faster 'number-crunchers' every few years, making it ever more convenient to 
think less and compute more. Occasionally, however, when I had a mathe­
matical problem for which I felt it likely that the equations possessed exact 
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(or what mathematicians call analytic) solutions, I would resist looking for 
numerical answers on the computer and go to the office of one of my older 
colleagues, a kind and gentle man who had had the good fortune to mature 
scientifically in the years when thinking was less avoidable. 'I feel sure that 
these equations have an analytic solution: I would say, 'but I can't seem to 
find it. Am I being stupid?' 'Perhaps, just a little', he would often respond with 
an understanding half-smile, before leading me gently in the direction of the 
proper solutions. 

One afternoon, in the summer of 1980, while on just such a mission, I 
found him to be uncharacteristically effervescent. He jumped to his feet and, 
before I could ask my customary question, thrust some papers into my hand. 
'Read this: he said, 'it is some of the most fascinating work that I have ever 
seen; wonderfully profound but so elegantly simple: I resisted drawing the 
unintended inference--that its simplicity was of a degree that even I (or dare I 
say a medieval historian) might appreciate its essentials. It was, in fact, the 
early work on the theory of the onset of chaos, about which you will learn 
more later, should you decide to read on in this book. 

During this same period of time, my wife and I would socialize about once 
a month with a younger couple who lived a few doors away. He was a builder 
and she a housewife and part-time designer-dress distributor. The evenings 
were always relaxing and pleasant and the conversation not particularly 
academic. In fact, we would often while away the hours half-playing Mah­
Jongg (a Chinese game with tiled pieces which, I am told, was all the rage in 
the 1920s) while simultaneously recounting any worthwhile anecdotes 
pertaining to our experiences since we had last met. And then, on one 
occasion, without any interruption in the flow of the conversation, my hostess 
surprised me by saying 'I hear that you are thinking of writing a book about 
numbers. Are you going to say anything about the Fibonacci's?' 

My purpose in recalling these 'verbal snapshots' from the past is not, of 
course, to try to suggest that historians of any kind secretly thirst for 
knowledge about Green's functions, nor that the new and fascinating field of 
chaotic motion can be appreciated in all its details by the completely 
uninitiated. It is to make three separate points. Firstly, that someone who 
claims to understand, and be excited by, any aspect of science (and yes, even 
mathematics) ought to be able to pass on the essence of that knowledge and 
enthusiasm to any reasonably intelligent layperson who is interested. 
Secondly, that many of the most exciting advances of this kind do lend 
themselves admirably to just such exposition. And finally, and perhaps most 
importantly, that there may be a much wider potential interest 'out there' than 
anyone suspects-if only authors would make a serious effort to bridge the 
verbal chasm between the specialized jargon of the learned journals and the 
normal vocabulary of the population at large. This book is a modest effort to 
encourage such a trend. 

Malcolm E Lines 
August 1989 
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Introduction 

Throughout the ages, ever since man first acquired an interest in counting and 
measuring, the concept of 'number' has gradually developed to fascinate and 
sometimes torment him. From the simplest ideas concerning the familiar 1,2,3, 
through negative numbers, to fractions, decimals and worse, the basic 
understanding of what one ought to mean by 'number' in its most general 
sense steadily increased. And growing with it in an equally relentless fashion 
was a set of fascinating questions and speculations concerning the many 
weird and wonderful properties of these numerical notions. Some of the 
related problems were quickly 'cleared away' to the satisfaction of the experts 
of the day. Others yielded after much longer periods of effort-sometimes 
decades, and occasionally even centuries. A few live on in infamy, and 
continue to baffle the world's greatest mathematicians (with or without the 
assistance of their powerful latterday allies, the electronic digital computers) 
and to test their ingenuity and sanity. 

Evidently, by its title, this book is about numbers in some sense. But this 
time not so much about the properties of numbers themselves (which have 
already been probed in the companion book A Number for your Thoughts) as of 
the interplay of numbers with 'nature' in a very general sense. Some of the 
examples seem, outwardly at least, to be of a lighter vein; involving 
hailstorms, taxi-cabs, patio decor, pine cones, bicycle assembly and colouring 
books (numbers at 'play', if you will). Others are concerned with seemingly 
weightier topics such as secret codes and national security, symmetry and 
atomic physics, meteorology, the bending of space in the fourth dimension 
(or even the 3!th) and information network systems. Here, the interaction of 
numbers and the problems of the real world seems to have more serious 
consequences-one perhaps more akin to 'work'. In fact, I was tempted to 
entitle the book 'Numbers at Work and at Play' at one time--but it 
sounded too much like an elementary arithmetic book for pre-school children, 
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and that it most certainly is not. Each story told in this book, whether it 
depicts numbers at work or at play according to my definition, gives insight 
(in what I hope is an entertaining fashion) into problems involving deep­
down mathematical notions, often with very important consequences. Many 
pursue ideas which have evolved over centuries of study, others are of 
extremely recent origin. Some are now fully understood, others are now only 
at the very beginning of their development. Some have required the 'number­
crunching' impact of today's most powerful computers to reveal their secrets, 
others have yielded to an inspired moment of pure thought. 

In spite of taking us to the 'cutting-edge' of today's research in many 
instances, our stories require very little knowledge of mathematics to 
understand them. In fact, anyone who remembers even one half of his first 
year's high-school algebra can happily skip the rest of this introduction and 
move right along to 'The Fibonacci Saga' of Chapter 2. For the rest of you it 
is perhaps a good idea to go over the meaning of a few words that might 
appear without explanation in the text (and which may not have been a 
regular part of your recent mathematical conversation!). 

Firstly, the counting numbers (that is, the whole numbers 1,2,3,4, and so 
on) are referred to as integers. Those integers which can be divided exactly (or, 
in other words, without remainder) only by themselves and by 1, are called 
prime numbers. Examples might be 3, or 11, or 29. All the other integers are 
then said to be composite. It follows that all composite numbers can be formed 
by multiplying together smaller integers; for example, 32 = 4 x 8. These 
smaller integers are called factors of the larger one, and one set of factors is 
rather special, namely the prime factors. Since neither 4 nor 8 in the example 
above is a prime number, each can be 'factorized' further (and possibly further 
still) until eventually only prime numbers are left. For the particular case of the 
composite number 32 this happens when we reach 

32 = 2 x 2 x 2 x 2 x 2. 

These five twos are the prime factors of 32, and prime factors are special 
because every composite number has one, and only one, such set. The prime 
numbers therefore represent, in a way, the atoms (or smallest parts) from 
which all other numbers are uniquely formed by multiplication. We say that 
all integers are the product of their prime factors. Product therefore means 
multiplication. Thirty-two is the product of 8 and 4 as well as of five twos. 
The equivalent term for addition is sum, as in 32 is the sum of 28 and 4. 

One other thing which we notice about the equation above is that it does 
not look very elegant with all those twos on the right-hand side. We should 
really be in trouble if our composite number called for say 50, rather than five, 
twos. To deal with this, mathematics has invented a shorthand in which the 
above equation is restated as 

32 = 25. 

The superscript 5 in this form is called a power or exponent, and tells you how 
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many twos to multiply together. Another example might be 

8 = 23. 

3 

By forming the product of 32 and 8 (i.e., 32 X 8 = 256) and factorizing the 
result as 256 = 28, we can now write 

25 X 23 = 28 

and notice something important. It is that when we multiply together 
numbers which are written in this way, we add the exponents (5 + 3 = 8). 

Among other things this shorthand enables us to write down statements 
involving extremely large numbers and know that they are true, even though 
our pocket calculators (or even large computers) have no idea what these 
numbers look like when written out in full (or in decimal notation as the 
mathematician would say). We know, for example, that 31712 X 31712 = 
31724 in spite of the fad that the number on the right-hand side contains no 
less than 61 digits in decimal notation. But moreover, since 31712 is just a 
number like any other it can, when multiplied by itself, also be expressed in 
the new shorthand form as (31712)2. It therefore follows that 

(31712)2 = 31724 

from which we learn the rule that a power raised to another power gives a 
new exponent which is just the product of the two originals (i.e., 12 x 2 = 

24). 
Since 31712 means twelve 317s multiplied together, it is quite obvious 

what 317" implies so long as n is a positive integer. It is true that for 3171, 
the literal extension to 'one 317 multiplied together' sounds a bit odd, but it 
must be equal to 317 because, only in this way would 

3171 x 3171 = 3172 

make sense using our power-addition rule (1 + 1 = 2). And what about 317 
to the power zero? In words it should be 'no 317s multiplied together' and, if 
anything ought to be equal to zero, surely this should. But it is not! This we 
know by again using our one trusty power-addition rule in the form 

317° X 3171 = 3171 

which has to be true since the exponents, or powers, add up correctly in the form 
0+1 = 1. And since 3171 is just 317, as set out above, this equation becomes 

317° x 317 = 317 

and can only be true if the zeroth power of 317 is equal to 1. Now, of course, 
the number 317 plays no significant role in all of this and I could have used 
any other number in its place with the same result. It follows that any number 
raised to the zeroth power is equal to 1. Did I say any number? WelL nearly 
any number; there is a little bit of trouble with that most unlikely looking 
number 0°, but I will return to that in a moment. 
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First let us ponder the question of what some number raised to a fractional 
power means. Once again, our power-addition rule comes to the rescue. 
Using it, it must be true that 

2112 x 2112 = 21 = 2 

and 

because, in each case, the powers add up properly. Thus, 2 to the one-half 
power is just that number which, when multiplied by itself, makes 2 (i.e., it is 
the square root of 2 or, on my calculator, 1.414213 562 ... ). In the same way 2 
to the one-third power is the quantity which when multiplied by itself, and 
then by itself again, makes 2; this is the cube root of 2 or 1.259921050 .... Just 
as simply 21110 or equivalently 20 I is the tenth root of 2 and so on. Fractions 
which do not have a 1 on the top are no more difficult in principle. For 
example, 

32/3 X 32/3 X 32/3 = 32 = 9 

tells us immediately that 32/3 is the cube root of 9. 
Negative powers can also be understood via such equations as 

2 I X 2 - I = 20 = 1 

from which we see that 2 - I must be equal to 112. In fact, 2 - n = 11 (2n) for 
any n. Negative numbers do occasionally get us into trouble on our 
calculators. For example, if you have a key labelled yX on your pocket 
calculator and 'punch in' values y = - 1, x = 0.5 (asking for the square root 
of -1), it will say something like DATA ERROR. This message of despair is 
telling us that the answer cannot be given in terms of the 'everyday numbers' 
like 1.8 or - 2.7 which calculators can understand. It requires so-called 
'complex numbers' about which, mercifully, neither you nor your calculator 
need worry while reading this book. 

But this still leaves us with 00. Entering y = a and x = a via the yX button 
into my trusty Hewlett-Packard still produces that cry of frustration 'DATA 

ERROR'. With no negative numbers involved the problem cannot possibly 
involve complex numbers. So why can the calculator not give me an answer? 
Although of no direct relevance to the topics discussed in this book, it is a 
useful exercise in exponents to find the answer. Suppose first that I let y = 

x = n, and make n get smaller and smaller; 0.001, 0.000 01, and so on. Via 
my yX button I now get answers (0.9931..., 0.9998 ... , and so on) which get 
closer and closer to 1. 

So why is 00 not equal to I? The answer is best understood by thinking of 
x and y as the axes on a piece of graph paper with x = y = a at its centre (or 
origin). We have so far only considered approaching the origin along the line 
x = y. If we approach from other directions (say along the x-axis, with y = a 
and x non-zero but getting smaller and smaller) we get other answers (like 
zero). The number 00 therefore has a limiting value which depends on how 
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you approach it. The limiting value can be anything between 0 and 1 
depending on the manner in which x and yare related as they both get 
smaller and smaller. Only very special ways of approaching the limit produce 
answers other than 1. In a sense, therefore, 00 is 1 unless you are unlucky! 
This is a true but painfully unmathematical statement. More precisely, to 
obtain a limiting value for 00 different from 1, it is necessary to approach the 
origin of the piece of x-y graph paper closer to the x-axis than any power of 
x, or (for the experts) logarithmically close. 
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The Fibonacci Family 
and Friends 

The so-called Hindu-Arabic system of numbers 1,2,3,4, ... was first spread 
into Europe primarily by the publication of certain books which both 
introduced them and demonstrated their many advantages over the older 
systems. By far the most influential of these was a book called Liber Abaci 
(which translates to 'a book about the abacus'), written by a remarkable Italian 
mathematician Leonardo Fibonacci. This book, written by the then 27 year 
old Fibonacci (whose surname literally means 'son of Bonacci') in the year 
1202, has survived to this day in its second edition, which dates from 1228. 

Now Liber Abaci is a book of considerable size, and records within its 
covers a large fraction of the known mathematics of those times. In particular, 
the use of algebra is illustrated by many examples of varying degrees of 
difficulty and importance. Strangely, one and one alone has achieved a fame 
far beyond the others. It is found on pages 123-4 of the surviving second 
edition of 1228 and concerns the unlikely problem of breeding rabbits. In 
essence it poses the following question: how many pairs of rabbits can be 
produced from a single pair in one year if every month each pair produces one 
new pair, and new pairs begin to bear young two months after their own 
birth? There is here, presumably, a subtle assumption that every pair referred 
to is composed of a male and a female (a condition which severely strains the 
laws of probability) but setting that aside as biology rather than mathematics, 
the remaining computation is not a difficult one. With a little thought one can 
easily derive the build-up of population to obtain the following sequence of 
numbers which counts the numbers of rabbit pairs munching on their food in 
each of the calendar months between January (when the first infant pair was 
introduced) and December: 

1, 1,2,3,5,8, 13,21,34,55,89, 144 
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Looking at this sequence we soon observe that it is made up in an 
extremely simple fashion which in words may be stated as follows: each 
number (except, of course, the first two) is composed of the sum, which means 
addition, of the two preceding ones. Thus, for example, at the end of the 
above sequence, the December number 144 is obtained by simply adding 
together the October and November numbers 55 and 89. 

This is all very well I suppose, but why on earth should it create any 
excitement even among mathematicians (whose threshold for jubilation often 
confounds the layman)? If this chapter serves its intended purpose, at least a 
few of the weird and wonderful properties which are spawned by these 
'Fibonacci numbers' should make their fascination more understandable. But 
first let us generalize the sequence. Ignoring the mortality of rabbits, or even 
any decline with age in their ability to reproduce with this clockwork 
regularity, it is quite clear that the above list of numbers can be continued 
indefinitely to ever larger quantities. Indeed, we can even forget all about 
rabbits and just define the whole list as the infinite series of numbers for which 
the nth member, which we write as F n (with the F in honour of Fibonacci), is 
simply defined as the sum of the two preceding numbers Fn - l and Fn - Z• In 
this form the series of Fibonacci numbers is written as 

where the dots imply a continuation ad infinitum. Using this notation we can 
now write down the very simple equation which, once F 1 = 1 and F z = 1 are 
given, enables us to determine all the subsequent numbers in turn: it is 

If n = 3 we obtain F3 = Fz + FI = 1 + 1 = 2. In a similar way we find 
F4 = 3, Fs = 5 and so on, the defining equation being valid for any value of n 
greater than or equal to 3. 

As the Fibonacci numbers are continued beyond the value F 12 = 144, 
which was the largest set out in the original rabbit problem, they begin to 
grow quite rapidly. For example, the 25th member of the series is already 
75 025 while the lOath member, F 100' is a whopping 

354224848179261915075 

with 21 digits. Moreover, as they grow they are in a sense settling down into 
an even simpler pattern than their defining equation would at first sight 
suggest. This pattern is most easily recognized if we write down the ratio 
formed when each Fibonacci number is divided by its next larger neighbour. 
Thus, starting at the beginning with the first two ratios F/Fz = 1, F/F3 = 
t (or 0.5 in decimals) and continuing along the sequence, we generate the 
successive numbers 
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1.000000 
0.500000 
0.666666 
0.600000 
0.625 000 
0.615385 
0.619048 
0.617647 
0.618182 
0.617978 
0.618056 
0.618026 
0.618037 
0.618033 
0.618034 
0.618034 

which settle down to this strange value 0.618 034 ... , where the dots indicate 
the existence of more decimal places if we work to a greater accuracy than the 
six decimals given in the numbers above. In fact, in the limit of taking these 
'Fibonacci ratios' on and on for ever, the number generated approaches closer 
and closer to (J5 -1)/2 which, to the accuracy obtainable from my pocket 
calculator, is 

0.618033989 

but which, more exactly, is a number for which the decimal expansion 
continues endlessly without ever repeating. Such a number is called irrational, 
not for any reasons concerning lack of sanity (which you may be forgiven for 
suspecting), but in a mathematical sense concerning the fact that it can never 
be expressed as the ratio of any two whole numbers. 

The Fibonacci family of numbers has been the subject of intense interest 
over the centuries for three separate reasons. The first involves the manner in 
which the smaller members of the sequence repeatedly tum up in the most 
unexpected places in nature relating to plants, insects, flowers and the like. 
The second is concerned with the significance of the limiting ratio 
0.618033989 ... , often called the 'golden ratio', a number which seems to be 
the mathematical basis of everything from the shape of playing cards to 
Greek art and architecture. The third focuses on the fascinating properties of 
the numbers themselves, which find all sorts of unexpected uses in the theory 
of numbers. In fact, the literature on the Fibonacci numbers has now become 
so large that a special journal, The Fibonacci Quarterly, is devoted entirely to 
their properties, and produces several hundred pages of research on them 
each year as well as organizing occasional international conferences to boot. 

Let us first look at the manner in which the smaller Fibonacci numbers 
appear in nature. You can, to begin with, nearly always find the Fibonacci 
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numbers in the arrangement of leaves on the stem of a plant or on the twigs 
of a tree. If one leaf is selected as the starting point and leaves are counted up 
or down the stem until one is reached that is exactly above or below the 
starting point (which may require going around the stem more than once), 
then the number of leaves recorded is different for different plants, shrubs and 
trees, but is nearly always a Fibonacci number. But what is more, the number 
of complete turns around the stem which need to be negotiated in the leaf 
counting ritual before the process begins to repeat itself, is also a Fibonacci 
number. Thus, for example, the beech tree has cycles of three leaves involving 
one complete turn, while the pussy willow has 13 leaves involving five turns. 

In general, botany seems to be a veritable goldmine of Fibonacci numbers. 
Daisies are usually found with a Fibonacci number of petals so that as one 
earlier commentator has put it, 'a successful outcome of "she loves me, she 
loves me not" is more likely to depend upon a knowledge of the statistics of 
the distribution of Fibonacci numbers than on chance or the intervention of 
Lady Luck'. Which Fibonacci number appears most frequently in the context 
of daisies I do not know (it is unfortunately winter as I write this; otherwise I 
would naturally do the necessary research myself) although reports of 21, 34, 
55, and even 89 have been made. 

Perhaps the most famous of all the appearances of Fibonacci numbers in 
nature is in association with the sunflower. In the head of a sunflower the 
seeds are found in small diamond-shaped pockets whose boundaries form 
spiral curves radiating out from the centre to the outside edge of the flower as 
shown in figure 1. If you count the number of clockwise and counterclockwise 
spirals in the pattern you will almost always be rewarded with consecutive 
numbers of the Fibonacci sequence. There are 13 clockwise and 21 anticlock­
wise spirals (count them!) in figure 1: these numbers are smaller than normally 
found in nature but they do make the picture drawing easier. Most real 
sunflower heads seem to have spirals of 34 and 55, although some smaller 
ones do have 21 and 34, while larger ones often contain 55 and 89; even 
examples with 89 and 144 spirals have been reported. But the sunflower is in 
no way special except that its seeds are particularly large and the spirals 
correspondingly easy to identify, and to count. The seed heads of most 
flowers, and many other plant forms such as the leaves of the head of a 
lettuce, the layers of an onion, and the scale patterns of pineapples and pine 
cones, all contain the Fibonacci spirals. 

Some of the most careful studies have been carried out for cones on various 
types of pine trees. The spiral counts are most easily made when the cones are 
still closed; that is, fresh and green. Older open cones can be persuaded to 
close up again (in which state the spirals are much more easily seen) by 
soaking them in water. Further interesting questions may then be asked such 
as whether the cones are left-handed or right-handed. By this we mean does 
the higher-numbered spiral always go clockwise, anti-clockwise, or sometimes 
one and sometimes the other? The answer seems to be that overall there are 
about as many left-handed as right-handed cones, but that some trees are 
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Figure 1 

quite dominantly one or the other. What is particularly baffling is the fact 
that, even within a single particular species of pine, one tree can be 
dominantly left-handed while its neighbour is dominantly right-handed. The 
reason remains a complete mystery as far as I know. However, virtually all 
trees, no matter how left- or right-handed they may be, do produce some 
cones of each type. 

Are any cones found which are not Fibonacci cones, you may ask? The 
answer is yes; but very few. Some, typically one or two per cent (and most 
often from a few specific species of pine), do possess 'maverick' cones. But 
even these are very often closely related to Fibonacci cones possibly having, 
for example, a double-Fibonacci spiral with a number pair like 10 and 6, rather 
than the more normal 5 and 3. 

Since this chapter is entitled The Fibonacci Family and Friends', the time has 
now arrived to ask about the identity of some of these 'friends'. If we think 
back to how the Fibonacci numbers were made up, that is, from the equation 

Fn = Fn _ 1 + Fn- 2 

which calculates the nth number from its two smaller neighbours, it becomes 
apparent that the whole sequence is not completely determined until the first 
two numbers have been chosen. The Fibonacci series starts with F I = 1 and 
F 2 = 1, after which the above equation determines the rest. But there is really 
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nothing obviously special about these two starting numbers and you could 
choose any other values for them and, using the same defining equation, 
derive a completely different sequence of numbers. 

The most famous of these related families of numbers is the sequence of 
Lucas numbers, named after the French mathematician Edouard Lucas. It 
chooses the next simplest starting assumption with FJ = 1 and F2 = 3. Note 
that putting Fl = 1 and F2 = 2 (which looks simpler) merely repeats the 
Fibonacci series in a very slightly perturbed form and so does not present us 
with anything new. The Lucas numbers, on the other hand, are a quite 
different set from their Fibonacci relatives and begin as follows: 

L 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, .... 

They are usually represented by the symbols Ln, with the L in honour of Mr 
Lucas. Although it is obvious from what was said above that the Lucas 
sequence is only one of many such related sets, it is also of interest in the 
present context because these numbers sometimes show up in nature as well. 
For example, Lucas sunflowers have been reported. They are certainly rarer 
than their Fibonacci counterparts, but specimens with as many as 123 right­
spirals and 76 left-spirals have been observed and carefully classified. 

No-one really knows why these Fibonacci patterns, or less frequently Lucas 
patterns, appear in nature. In fact there are nearly as many proposed 
explanations as there are scientists willing to express an opinion. One of the 
less bizarre is a suggestion that the Fibonacci spiralling of leaves around a 
stem gives the most efficient exposure of the surfaces to sunlight. This 
possibility could actually be checked out mathematically, but I do not know 
whether anyone has yet gone to the trouble of performing such a calculation. 
Other less likely (and certainly less verifiable) explanations have involved 
some supposed preference of pollinating insects for 'numerical patterns' 
leading eventually, via an evolutionary process, to a dominance of Fibonacci 
geometries. In truth, your guess is probably about as good as anybody else's. 

Let us now think a little more about that limiting ratio 0.618033989 ... , 
the so-called golden ratio, which is eventually generated by both the 
Fibonacci and the Lucas number sequences as they make their way steadily 
and laboriously out to infinity. Fascination with this particular number goes 
back for more than 2000 years. Although the 'ancients' probably did not 
understand its mathematical basis in the manner we have discussed, they 
certainly knew that art and architecture based on the golden ratio were 
unusually pleasing to the eye. They were therefore led to define the golden 
ratio in terms of geometry; specifically as the point which divides a straight 
line into two parts such that the ratio of the smaller to the larger is exactly 
equal to the ratio of the larger to the whole line. 

For those of you who remember just a little of your school algebra we can 
now, by labelling the smaller part x and the larger part 1, write this geometric 
statement as 

x/I = 11(1 +x) 
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where the solidus (I) means 'divided by' and where I +x is, of course, the 
length of the whole line. That this equation is indeed satisfied by the golden 
ratio can be checked directly by using your pocket calculator to verify that I 
divided by 1.618033989 ... is equal to 0.618033989 .... But even better, if 
you can recall a little more school algebra, you can transform this statement 
into the quadratic form 

x2 +x-1 = 0 

and obtain the exact solution x = (J5 - 1)/2. 
If you draw a rectangle in which the ratio of the shorter to the longer side 

length is the golden ratio, then an extremely famous piece of artwork results 
known as the golden rectangle. The early Greeks referred to this even more 
reverently as the Divine Section. We show it in figure 2 and although at first 
sight it may not appear particularly worthy of such an accolade, it is in many 
ways a most remarkable construction. This is because over countless gener­
ations right up to the present day, most people see it as the most pleasing to 
the eye of all rectangles. As a result, a very large fraction of the thousands and 
thousands of rectangles which we meet in everyday life have dimensions 
which approximate those of the golden rectangle. Windows, parcels, book 
pages, photographs, match boxes, suitcases, playing cards, flags, writing pads, 
newspapers, and countless other examples all fall into this category. Without 
knowing why, the designers subconsciously prefer rectangular shapes close to 
that Divine Section. Why do they do it? Somehow the golden rectangle just 
'looks right'; others are either too short and fat or too long and thin. For some 
reason not fully understood either by artists or psychologists the golden 
rectangle just has an aesthetic appeal. 

Figure 2 
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The golden ratio and Divine Section are frequently observed in Greek 
architecture and Greek pottery, as well as in sculpture, painting, furniture 
design and artistic design. It has been pointed out that the front of the 
Parthenon when it was intact would have fitted almost exactly into a golden 
rectangle. The golden ratio can also be found in the dimensions of some of 
the pyramids of Egypt, and Leonardo da Vinci became so fascinated by 
golden rectangles that he even co-authored a book about them. 

Many of the great masters have proportioned their canvasses with 
scrupulous regard to the golden ratio. Artistically two different kinds of 
geometric symmetry have been used which are related to the 'divine 
proportion'. One is the more obvious static relationship involving the number 
0.61803 ... via golden proportions or rectangles, but the other involves 
movement (or at least an imagined movement). The origin of this unlikely 
effect lies in another very special property possessed by the golden rectangle. 
It is that if this rectangle is divided into a square and a smaller rectangle, as 
shown in figure 2, then the smaller rectangle is also 'golden'. Moreover, 
continuing in this same vein, the smaller rectangle can also be divided into 
another square and another even smaller rectangle, and this rectangle too is 
golden. The process can obviously be continued in principle ad infinitum, 
creating an endless sequence of smaller and smaller squares and golden 
rectangles which spiral inward eventually to a point. Now, if we connect the 
comers or centres of these squares of ever decreasing size (or indeed of the 
golden rectangles, it makes no difference) by a smooth curve as shown in the 
figure, we generate a spiral popularly known as (yes, you guessed it) the 
golden spiral. 

Looking at figure 2 with the eye of an artist we can now get a picture of 
'whirling squares'. When incorporated into works of art in subtle forms this 
principle can be used to produce illusions of movement. The term 'dynamic 
symmetry' has been used to describe this and a number of artists, in particular 
the early 20th century American painter George Bellows, have made 
extensive use of illusions induced by whirling squares in their work. However, 
vestiges of the style can be traced way back to early Greek work. 

The spiral generated by the whirling squares in figure 2 is not just any old 
spiral; in fact, it is very special and is the very same one which appears in the 
sunflower head of figure 1. Its proper mathematical name is the equiangular 
spiral or logarithmic spiral. It is 'logarithmic' because the algebraic equation 
which most simply defines it is written in terms of logarithms. But for those of 
you whose everyday life does not often bring you into contact with 
logarithms, the special nature of the golden spiral is much more simply 
grasped via its 'equiangular' property. This is the fact that any straight line 
drawn out from the centre of the spiral always crosses it at precisely the same 
angle as does any other such line; check this out using the figures. 

Amazingly, it is this very special spiral which, for some reason, seems to be 
overwhelmingly favoured in nature. Shellfish, snails, most of nature's horns, 
tusks and claws, as well as all the Fibonacci-related cones and flowers 
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discussed earlier, are nearly always found to be portions of equiangular 
spirals. Fibonacci's whirling squares generate a curve which, for some reason, 
nature finds particularly appealing. Even the great galaxies of outer space 
have arms of stars which whirl outward in gigantic equiangular spirals. 
Presumably, it is this subtle presence everywhere in nature of Fibonacci, his 
numbers, ratio and spiral, which makes these same proportions so pleasing in 
art. However, even quite apart from nature and art, the Fibonacci numbers and 
the golden ratio also have a purely mathematical fascination, and it is to some 
of these unlikely attributes that we now turn. 

One of the more unimaginable concepts ever dreamed up by mathema­
ticians is the so-called continued fraction. Everybody (at least everybody who 
has an inclination to pick up a book like this one) has a pretty good idea of 
what a fraction is. In particular, a rational fraction, which is the simplest kind, 
is just one whole number divided by another. Perhaps the simplest example of 
all is one-half, or !. In a valiant attempt to make the simple look more 
complicated we could rewrite it as 

1 
1+ l' 

But suppose that we got a little more ambitious and invented a fraction based 
on this simple form but which went on one step further in the fashion 

1 

1+ 1 
1+1 

Those of you who still remember the rules for combining fractions will be 
able to evaluate the above and obtain the answer ~. Similarly, if we proceed 
one step further in this same pattern to produce 

1 
1 + 1 

1+ 1 
1+1 

those who know the rules can again find the simple rational fraction to which 
this peculiar object is equal; it is ~. Continuing in the by now obvious pattern 
for yet one more 'storey' of fractional construction, we find that we have 
deduced a very complicated way of expressing the simple fraction %. 

But now for the big step conceptually. What if this fraction went on and on 
in the same pattern forever 
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1 

1 + 1 

1 + 1 
------

1 + 1 
-----

1 + 1 
----
1+1 

to become a 'continued fraction' in the sense of continuing ad infinitum7 What 
would this number be7 And how on earth could one ever calculate it7 One 
clue is contained in the first four building-block fractions which we have 
already evaluated. They were equal to i, t, t, and %, and these are just the 
Fibonacci ratios F /F 3' F /F 4' F iF 5' and F /F 6. Is this mere coincidence or does it 
really imply that, when continued to more and more storeys, this odd looking 
fraction approaches closer and closer to the golden ratio 0.618033989 ... 7 In 
the infinite limit could the continued fraction set out above actually be equal 
to the golden ratio7 And how can one get to infinity to find out7 

Surprisingly, it is much easier to answer the question concerning the 
infinite limit than it is to calculate what number the 10th storey or 20th storey 
fraction is equal to. The secret is to look at the very top-most line of the 
infinite fraction and to think of it as '1 divided by (pause) 1 plus something'. 
Now we ask the question 'what is this something?' In general the answer is 
'something pretty awful'. However, in the infinite limit, and only in this limit, 
the answer is easy; the 'something' is exactly the same infinitely continued 
fraction that we started with. If we call its value x then it is clear that this x 
must be equal to '1 divided by (pause) 1 plus x'. Written as an equation this 
looks like 

x = I1(I+x). 

This is exactly the equation which we obtained earlier in the chapter when 
defining the golden section, and its solution x = (J5 -1)12 is indeed the 
golden ratio. It follows that the simplest possible infinitely continued fraction 
(that is, one which is made up entirely of ones) is once again equal to that 
very special number 0.618033989 .... That one has to continue the fraction 
all the way to infinity to get this is just another verification of the fact that the 
golden ratio is an irrational number. 

Another mathematical quirk of the Fibonacci numbers is of particular 
interest since it was (to the best of my knowledge) first pointed out by Lewis 
Carroll, the creator of Alice in Wonderland. Lewis Carroll's interest in such 
things derived from the fact that he was, in real life, Charles L Dodgson, an 
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accomplished mathematician and, for most of the latter half of the 19th 
century, mathematics tutor at Christ Church College, Oxford University. It 
was there that he first met the real-life Alice who was one of the daughters of 
the Dean of Christ Church; but that is another story. His Fibonacci puzzle was 
usually presented as a geometrical paradox (or inconsistency) and used, in its 
simplest form, as a method of 'proving' without words that 65 is equal to 64 . 

....... 1'--
........ r-.... 

............. 
1 

II 

I 
1/ 

AmtBi 
(b) 0 

(al 

Figure 3 (a) Figure 3 (b) 

Let us look at figure 3. Suppose that we first cut up a square of size 8 by 8 into 
four pieces as shown in figure 3(a). These four pieces, consisting of two 
identical triangles and two also-identical four-sided pieces, can then be taken 
apart and reassembled in the manner shown in figure 3(b). In their new 
arrangement the pieces form a rectangle but, and this is the puzzling part, the 
side lengths of the new rectangle are 5 by 13. It therefore has an area of 5 
times 13, or 65, compared with the original area of 8 times 8, or 64. What has 
happened? A check of the side lengths of all the pieces which make up the 
two areas reveals no obvious signs of cheating. Where then has the extra unit 
of area come from in going from figure 3(a) to figure 3(b)? Think about it for a 
little while before reading on. Can you see where the deception is? 

You will discover the secret if you draw the diagram exactly to scale on a 
piece of graph paper, cut out the pieces according to the prescription of figure 
3(a), and then try to reassemble them in the pattern of figure 3(b). For those of 
you who have not made the effort, or whose unscientific everyday life does 
not provide them with ready access to a piece of graph paper, let me explain. 
It happens that, convincing though the figures are, the four pieces of figure 
3(a) can in fact never be precisely fitted together to exactly make figure 3(b). 
The points marked A, B, C and D on the figure should, if drawn accurately, 
not be on a straight line (as they appear to be) but at the corners of a very 
long and thin four-sided area (called a parallelogram) which makes up the 
missing unit. 

Very clever, you may say, but what has it got to do with Fibonacci? If you 
look one more time at the figures you will notice that the integer side lengths 
of the four component pieces are 3, 5 and 8, which are three consecutive 
Fibonacci numbers. The important point is that there is nothing special about 
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the three particular numbers which we have used other than the fact that they 
are small and therefore easy to measure. We could have chosen any three 
consecutive 'Fibonaccis' and set up a similar paradox. If, for example, we 
start with a 13 by 13 square and cut it up in the same pattern as for the 
smaller example but using whole number side lengths of 5 and 8, then we can 
reassemble it to form an 8 by 2 I rectangle to 'prove' without words that 13 
times 13 is equal to 8 times 21 or, more explicitly, that 169 = 168. However, 
as we move to larger and larger Fibonacci numbers, the geometric 'misfit' 
which explains the paradox becomes more and more difficult to spot since the 
missing area of one 'unit' becomes an ever decreasing fraction of the whole 
picture. If, for example, we physically took a square piece of paper of side 
length 8.9 inches (which is quite large) and converted it in Lewis Carroll 
fashion to a rectangle of 5.5. by 14.4 inches (where 55, 89 and 144 are three 
consecutive Fibonacci numbers), then the greatest width of the 'slit' which 
makes up the misfit parallelogram is only about one-tenth of an inch and quite 
difficult to spot by eye. 

Other kinds of mathematical fun can be had with Fibonaccis by arranging 
peculiar addition sums like this one below: 

0.1 
I 

2 
3 

5 
8 
13 

21 
34 

55 
89 
144 

233 

0.112359550561 ... 

in which the Fibonacci numbers are added together, but writing each 
successive number so that it 'moves over' one digit to the right. Incredibly, 
this rather preposterous addition sum, when continued to infinity, has been 
proven to be exactly equal to the simple fraction ~. Now my pocket 
calculator, which can only manage nine decimal places, assures me that ~ = 
0.112359551, .where it has obviously 'rounded off' the last decimal place 
that it can reach. Nevertheless, since ~ is a rational fraction, and all such 
fractions are known to repeat their digit patterns sooner or later, the above 
decimals must eventually 'cycle', and so they do--after 44 decimal places. If 
the same addition pattern is set out using the Lucas numbers rather than the 
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Fibonaccis then another simple fraction ~ is obtained. This too has a decimal 
form which repeats after 44 digits. 

If similar addition sums are carried out moving each Fibonacci number over 
two digits to the right instead of one then we generate a decimal which 
begins as O.OlD lD2 030 508 .... Its exact sum to infinity is also known and 
again is rational; 9~~9 to be exact. In like fashion, moving over three digits at 
each stage generates yet another 'rational' namely 99~0999' Simple fraction 
answers are also known for equivalent summations using Lucas numbers, as 
well as hosts of others which add and subtract the participating Fibonacci or 
Lucas numbers in an alternating fashion or which add only every other (or 
every third) sequence number and so on. Why should all these infinite sums 
lead to rational numbers i.e., to repeating decimal patterns? After all there are 
known to be infinitely many more (non-repeating decimal) irrationals than 
rationals among decimal numbers in general. I leave that to you to ponder at 
your leisure. Why should I be the only one with sleepless nights? 

One other thought may now have crossed your mind. Earlier in the chapter 
I implied that, since the golden ratio was generated by an infinite continued 
fraction, it was irrational. With all these infinite sums leading to rational 
numbers some doubt may be in order. Fortunately, the irrational nature of the 
golden ratio is very easy to prove for anyone who ever got through the first 
chapter of his first algebra book. We merely start from its defining equation 
x2 + x-I = 0 and assume that a rational solution pi q exists with p and q 
whole numbers. Reducing this fraction to its simplest possible form by 
dividing top and bottom by the same number whenever possible (e.g., I:: = 
~ = Ti;) we can always make sure that no integer (except 1) exactly divides 
both p and q. Writing x = pi q now makes the defining equation look like 

(plq)2+(plq)_1 = O. 

Multiplying through by q2 and rearranging the terms leads us to p2 + pq = 

p(p+q) = l, or equivalently 

(p+q) = q2lp. 

Since the left-hand side is a whole number, this equation says that p divides l 
exactly (that is, without remainder). But if there is no integer which exactly 
divides both p and q (in mathematical language, if p and q have no 'common 
factor') then this is clearly impossible. It follows that the golden ratio x just 
cannot be written as pi q if P and q are whole numbers; in other words it is 
irrational. 

Clearly, the Fibonacci numbers and their various offspring play a most 
extraordinary role in nature, art and mathematics. New mathematical exten­
sions (such as the 'T ribonaccis' 

1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, ... 

in which the general term is made up by adding together the three preceding 
ones) seem to appear with every new issue of The Fibonacci Quarterly. 
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Applications also abound, although some interpretations with respect to art 
are arguably more romantic than reliable. But even if we allow for the fact 
that Fibonacci addicts will often twist almost any observation into some form 
of approximate relationship with these numbers (some have seen a golden 
spiral in the shoreline of Cape Cod while others have found approximate 
Fibonacci sequences in the sizes of insects on flowers, the distances of moons 
from their planets and in the radii of atoms in the Periodic Table of elements) 
the sum total of evidence is indeed persuasive. The Fibonacci sequence and 
the golden spiral are an important part of some recurring growth pattern; but 
the 'how' and the 'why' of it all remain a complete mystery. And all this from 
a theoretical family of 'abracadabric' rabbits conjured up in the mind of a 13th 
century lad who, it is recorded, was not exactly held in awe by his neighbours 
who referred to him disparagingly as Bigollone, 'the blockhead'. 
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Rising and Falling with the 
Hailstone Numbers 

If anything at all is certain about the 'hailstone number' problem it is that its 
origin is shrouded in mystery. It certainly did not begin with an historic 
publication or even with any recorded exchange of letters between mathema­
ticians insofar as I am aware. It does not appear to be of very great age, but 
seems to have turned up in a rather haphazard fashion at centres of learning 
all over the world during the last fifty years or so. Whether passed on by 
word of mouth or 'rediscovered' independently over and over again is not 
clear. In truth, the problem does not even have a name that is universally 
accepted. Some refer to it as the 3N + 1 problem, others as the Collatz 
problem (after a certain Lothar Collatz who, as a student in the 1930s, is 
credited by some as a possible originator). The description in terms of 
hailstone numbers is of recent vintage but, as we shall soon see, it does seem 
to offer a particularly apt visual perception of the entire phenomenon. In any 
event, nothing of significance was recorded in print about the problem until 
the 1950s. Since then, however, and particularly since 1970, it has become the 
focus of rapidly increasing attention. Prizes have been offered for its solution 
and a deluge of false proofs has unsuccessfully chased the prize money. 

So what are hailstone numbers and why all the fuss? Perhaps, given their 
short and decidedly sketchy history, too much significance has been attached 
to them. On the other hand, they are unbelievably easy to define and yet they 
not only give rise to an unsolved problem, but one which (according to 
today's best mathematical minds) is likely to remain unsolved for many years 
to come. At least one such expert has been quoted as saying that 'mathemat­
ics is just not yet ready for such problems'. So let us give these numbers the 
benefit of the doubt and delve a little into their particular brand of mystery. 

Hailstone numbers are produced in an extremely simple way by using the 
following rules. Think of a number; if it is odd, triple it and add one; if it is 

20 
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even, halve it. Repeat this recipe over and over to each new number so 
obtained and see what happens as the progression continues. Let us 
investigate the very simplest cases by looking at the smallest possible starting 
numbers 1, 2, 3, and so on. Applying the rules we calculate the respective 
sequences: 

1, 4, 2, 1, 4, 2, 1, 4, 2, ... 

2, 1, 4, 2, 1, 4, 2, 1, 4, 2, ... 

3, 10, 5, 16, 8, 4, 2, 1, 4, 2, ... 

which all quickly enter the same 142142142 loop. Let us try again with a 
slightly larger starting number, say 7: 

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, .... 

This time it takes a little longer and the sequence gets up to a respectable high 
of 52, but then it crashes back down again and the final result is as before, an 
entry into the 142142142 endless loop. 

The simple question to be answered is 'must all such sequences, regardless 
of starting number, eventually meet their demise in this same manner?' 
Although, as I have implied above, the answer to this question is not known 
at the time of writing, we can at least give a little bit of 'less than rigorous' 
consideration to the general situation. One might reason, for example, that 
since odd and even numbers occur with equal likelihood in the boundless sea 
of whole numbers, then one should at any point in the sequence be just as 
likely to be at an odd or an even value. Then, since the rules require that the 
odd number be more than tripled in going to the following step while the 
even number only gets reduced by a factor of two, the 'general' series (if by 
that we mean the usual situation, excepting some 'unlucky' specific cases) 
should increase forever. Could we then, perhaps, merely have been a bit 
unlucky in our first few specific examples above? 

A little more testing is evidently called for. But, wait a moment, we do not 
have to try all the starting numbers in order. We can immediately see the 
demise of any number which has already appeared in any of the above 
sequences. Also, since any even starting number gets halved at the first step, 
we need not consider these either; some smaller odd number is bound to 
generate the same sequence (namely, the first odd number which appears in the 
even-number sequence). This reduces our continuing labour to the examin­
ation of the starting numbers 9, 15, 19, ... etc. These you can easily examine 
for yourselves and none survives long (all quickly crashing to the 142142 
loop) until we reach starting number 27. And then, at last, we meet with a 
little adventure: 

27,82,41, 124,62,31,94,47, 142, 71, 214, 

107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 

137, 412, 206, 103, 310, 155, 466, 233, 700, 350, 

175, 526, 263, 790, 395, 1186, 593, 1780, .... 
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At this point in the sequence (the 39th number, or the 38th step of 
generation) we are safely past the 1000 barrier and seem to be going strong. 
If the sequence is followed still further, it gains even more in strength and 
finally reaches a 'high' of 9232 at the 77th step. But then disaster strikes and 
the 'crash' begins: 

9232, 4616, 2308, 1154, 577, 1732, 866, 433, ... , 

until finally at the 111th step (112th number) we reach 1, the end of the line, 
or more precisely entry yet again into the 142142 loop. But this time, at least, 
we did get a ride for our money. The full saga of the trip is shown pictorially 
in figure 4. 

9232 ...... 
9000~--------------------------~----------~ 

8000~------------------------~----------~ 

7288 ..... 
7000~----------------------~~r---------~ 

6000~--------------------~~~~--------~ 

5000~----------------------~~~----------~ 

4000~----------------------fi+-H+r----------~ 

3000~--------------------~4-~+---------~ 

2000~--------17-8-0-,--------~~~-+--------~ 

III 
1 OOOI----.-J1-Hi-1---IJ\--IN\f-:i, A tr--t----\H-il-rr\A-----I 
O~VV'I VV''4'' I I '~.A. ~ 
o 38 67 77 111 

STEP NUMBER 

Figure 4 The sequence of hailstone numbers beginning with 27. 
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It was from pictures of this sort that the name 'hailstone numbers' was 
derived. The numbers rise and fall in a manner not at all unlike that of 
growing hailstones in a thundercloud-first caught in a strong up-draft and 
carried to great heights, then passing out of the supporting current of air to 
fall under their own weight, only to be caught up once more in an even more 
powerful draft to repeat the cycle. Within the thundercloud, however, the real 
hailstone is continuously growing in size so that eventually its fate is assured; 
sooner or later its weight exceeds the ability of even the most powerful up­
draft available to support it and it plunges to earth. Must this same fate also 
inevitably await our hailstone number? 

Clearly, something must have been wrong with our initial reasoning. 
Regardless of whether all hailstone numbers eventually fall 'back to earth' it 
now seems very clear that a great many of them certainly do. The weakness 
of the earlier argument can be seen by examining the sequence above for the 
starting number 27. Thus, whereas the number which follows an odd member 
of the sequence is always even by definition, the number which follows an 
even number need not necessarily be odd. Therefore, odd and even numbers 
do not have the equal probability of appearing in the series which the earlier 
argument assumed. Even numbers will inevitably outnumber their odd 
counterparts and therefore tend to offset the three-to-two advantage which 
the 'rules of the game' seemed at first glance to have given to the odd 
numbers. In fact, it is immediately apparent that only three sorts of nearest­
neighbour pairs can occur in a hailstone sequence, namely, odd followed by 
even, even followed by odd, and even followed by even. 

Suppose that we now ask 'what if the likelihood of these three combi­
nations occurring at any point in the sequence is equal?' Well, since the first 
(odd followed by even) increases the hailstone number by a factor of three 
(the 'add one' part of the rule becomes negligible for general estimates 
involving primarily large numbers) while the second and third both decrease 
the hailstone number by a factor of two, the average result per step is a 
multiplication of 3 times 1 times l' which is ~. The suggestion now is that on 
average, when all the jaggedness is smoothed out of the hailstone curves, any 
large starting number, say one trillion or 1012, would decrease by about 25% 
at each step and therefore inevitably finally reach 1 (in about 90 to 100 steps 
for the particular example cited). 

Now I do not know how many steps are actually needed to reduce the 
hailstone series which starts with one trillion all the way down to 1 (although 
it apparently has been studied by computer and is known to fall finally into 
the 142142 loop) but, since it takes over 100 steps to settle the question for 
starting number 27, there must be enormous fluctuations in the number of 
steps required for similar starting numbers, even if the above reasoning is 
qualitatively correct on average. In fact, this reasoning still does not exclude 
the possibility of a fluctuation so large that for some starting number the 
hailstone may never come down. Now, although no computer will ever 
establish the existence of such a hailstone beyond doubt, since even the most 
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powerful computers imaginable can only sample a finite number of steps, it is 
instructive to probe the hailstone sequences simply by generating them to as 
high a starting number as we can; that is, by 'number-crunching'. To start 
with, such a computer program is extremely easy to compose and, in addition, 
once it is running we do not have to do any more thinking for a while, but 
simply sit back and watch the hailstorms in action. 

At the time of writing (I989) the most ambitious undertaking of this kind 
of which I am aware has been reported by the University of Tokyo. 
Apparently all numbers up to one trillion have already been tested and every 
single one eventually collapses to the 142142 loop. It certainly looks as if 
what goes up must indeed come down! And yet for many hailstones the 'trip 
through the thundercloud' is found to be quite eventful and some great 
heights are reached. Let us look at a few of the findings for the first 100 000 
starting numbers. 

Among the first 50 starting integers, 27 has the longest path back to unity. 
It is one of III steps (involving 112 numbers counting the starting number). 
As can be seen from figure 4 it sweeps up to the lofty height of 7288 at the 
67th step, then falls dramatically to 911 before being caught in a new up-draft 
which carries it to even greater heights (specifically 9232 at step 77) before 
yet another plunge forces it finally, after a few lingering gasps, all the way 
down to 1 at the III th step. 

Beyond the first 50 starting integers the 'peak' at 9232 proves to be quite a 
barrier and is not surpassed until the starting number 255 is reached. This 
sequence is shorter than the one starting with 27, but rises dramatically up to 
13 120 before coming rapidly back to earth. In fact, the peak at 9232 triggers 
the demise of all the longest sequences until we get all the way up to starting 
number 703 which continues for 170 steps and reaches a peak of 250 504. 
This starting number 703 is one of only two greater than 27 (and less than 
100 000) which create both new records for length and height together. The 
other is 26 623 which continues for 307 steps and reaches a peak value of 
106358020. 

It seems clear from the above snippets of numerical information that the 
number-of-steps record increases rather slowly with increasing starting 
number. It is already 111 at starting number 27 and has reached only 350 at 
starting number 77031 (which has the longest sequence for any starting 
number below 100 000). The peak values, on the other hand, increase much 
more dramatically, reaching the value 1570824736 at starting number 
77 671 (which is the highest peak for any starting number below 100 000). 
Think about this for a moment. It means that by this stage of our 
investigation the peak value to which the hailstone rises is more than 20 000 
times its starting value. Moreover, this ratio of peak height to starting value 
appears to be growing rapidly with increasing starting number. Those up­
drafts and sudden falls are quickly becoming more and more dramatic. 

It has been suggested that for extremely large starting numbers N (with, 
say, a few hundred digits or more) the sequence length is reasonably 'well 
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behaved', settling down, on average, to a value of about 24.64D-lOl, where 
D is the number of digits in the starting number N. This formula has no great 
theoretical foundation but has been based on many 'spot checks' of randomly 
chosen, extremely large starting numbers. For example, believe it or not, the 
sequence with starting number N = I ... (998 zeroes) ... I has been followed 
by computer and descends to the 142142 cycle in 23 069 steps. With D = 

1000 digits the formula would have predicted 24 539 steps, an error of about 
10%. 

It is easy to see that the peak value reached by a hailstone number must 
always be even. It has also been proven that only an odd starting number can 
ever set a new peak record. In the case of starting numbers which set new 
sequence length records, however, there appears to be no theoretical 
restriction to odd or even. On the other hand, it does appear that most of the 
new length record holders are odd; the only exceptions below 100 000 are 6 
(with sequence length 8), 18 (sequence length 20) and 54 (sequence length 
112). 

If a listing is made of all the sequence lengths and peak heights for the first 
(say) 100 starting numbers, a peculiar distribution is obtained-one which is 
definitely not random yet not easy to fathom. This you can easily do for 
yourself with the aid of a pocket calculator to hurry things along. One 
hundred starting numbers sounds like a lot until you realize that you do not 
have to do them all separately. Think back to the series for starting number 7 
which we generated earlier: 

7, 22, II, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, I, ..... 

Not only does it tell us that the sequence length is 16 with a peak value of 52 
but (since the second number is 22) it also tells us that the sequence length for 
22 is 15 with a peak value of 52 and (since the third number is I I) that the 
sequence length for I I is 14 with a peak value of 52, and so on. In fact this 
single 'hailstorm' gives us all the information we need for no less than 16 
starting numbers. It also gives us a little bit of understanding as to why the 
same peak value arises for so many different starting numbers e.g., 52 is 
obviously the peak for not only the starting number 7, but also for 22, II, 34 
and 17. A supreme example of this is the peak value 9232 which appears in 
the sequence for 27. Since it occurs at step number 77, all 76 numbers before 
it must necessarily have this same peak value. In fact, of the first 1000 starting 
numbers, more than one third have this same peak value. 

It is now clear why the distribution of peak values will be far from random; 
but what about the sequence lengths? Every possible length can certainly 
occur (this is very easy to prove by thinking of the starting numbers that 
are powers of two, namely 2, 4, 8, 16, 32, 64, ... which generate sequence 
lengths of I, 2, 3, 4, 5, 6, ... etc) but, once again, some lengths appear far more 
often than others. Actually, they tend to form clusters and, in the year 1976, a 
string of no less than 52 consecutive starting numbers all with the same 
sequence length was published. What can it all mean? A smaller string, but 
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with much smaller starting numbers, exists for the series from 386 through 
391. This group is particularly interesting in that its members all have not 
only equal lengths but also equal peak values (of 9232 of course). Check them 
out for yourselves. 

So where do we now stand concerning the 'hailstone conjecture'? Since 
every starting number up to 1 000 000 000 000 (that is, one trillion) is now 
known without doubt to fall back eventually to 1 and into the 142142 endless 
loop, it seems highly likely that all numbers do. Whether a simple proof exists 
or, if it does, whether it will be found in our lifetime, is uncertain. The problem 
is not really important enough to occupy the attention of serious research 
workers, although a great many mathematicians have given it more than a 
passing thought. So many, in fact, that at one time the current joke was that 
the problem was probably part of a foreign conspiracy to undermine serious 
mathematical research in the United States. 

One thing seems particularly amazing to me as I ponder those one trillion 
sequences of numbers. It is that not a single one of them, no matter how long, 
contains the same number twice. This is truly astounding if you consider that 
with its 'hailstones' sweeping up and down, a sequence constantly passes 
through the same regions of number space. How do we know that a repeated 
number never occurs? Simply because if it did the pattern of numbers would 
repeat endlessly in a cycle (or loop if you prefer) and never fall finally down 
to 1, which we are informed that they all do. In a simple probability argument 
like the one which we used to persuade ourselves that the hailstone 
sequence fell on average by a factor % at each step, such coincidences would 
be bound to occur eventually. The chances of getting through a trillion such 
sequences without finding a single coincidence of this kind would be 
unbelievably small. Think about it! Every time our sequence reaches an odd 
number after falling through a series of consecutive even ones, it starts to 
move back into a number territory where it has been before. This it does over 
and over again in almost all of the trillion hailstone sequences which have so 
far been checked through, and yet not a single repeated number has been 
found. 

It is almost unthinkable that we could have been that lucky (or unlucky 
depending on your point of view) by sheer chance. We are driven to the 
conclusion that the numbers generated in the hailstone sequences are 
(appearances notwithstanding) far from random. They must have imbedded in 
them some precisely determined mathematical restrictions, one of which we 
have presumably stumbled upon. But if they are not random-like, then any 
probability argument concerning them is doomed. This immediately spells the 
demise of our % argument, the only one we possessed which pointed to the 
inability of any hailstone number to 'fly forever'. Maybe, therefore, we should 
maintain an element of doubt. The book is not closed. Perhaps some hailstone 
numbers really can fly forever to higher and higher values in a boundless 
fashion-and, if not, at least get hung up in a loop a little more distinguished 
than the 142142 terminus. Since it has been claimed that there are no other 
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cycles with a period of less than 400 000, such a loop, should it exist, would 
be impressive indeed. 

All of this is quite fun to read about, you may be thinking, but what can I 
do to contribute, armed only with a modest pocket calculator (if that)? For the 
actual hailstone problem set out above the answer is evidently little, since 
powerful computers have already been set loose upon it. On the other hand, all 
hailstorms are not the same, they can come in many guises. In fact there are 
countless numbers of them, on most of which 'the hand of man has never set 
foot' (to use one of my favourite mixed metaphors). For example, instead of 
multiplying an odd number by 3 and adding 1, you could multiply by 3 and 
add absolutely any designated odd number, say 3, 5, 7, or even larger. For all 
these 'hailstorms' our earlier i argument (to the extent that it retains any 
credibility among you at all) remains intact to suggest that no sequences of 
this kind can go on increasing forever. But now, at least in some instances, 
other loops can be generated. 

Consider, for example, the hailstorm with an odd-number rule of 'times 3 
and add 7' and the usual even-number rule of 'divide by 2'. The sequence 
generated by starting number 1 is 

1, 10, 5, 22, 11, 40, 20, 10, 5, 22, 11, ... 

where we immediately get caught in an endless 5, 22, 11, 40, 20, 10, 5, loop. 
Starting number 7 finds another loop in the form 

7, 28, 14, 7, 28, 14, 7, ... 

while starting number 9 comes down to 1 after a 25-step ride as follows: 

9,34,17,58,29,94,47,148,74,37,118,59, 184,92,46,23,76,38, 19,64, 
32, 16, 8, 4, 2, 1, .... 

This sequence, as we can see, crashes because it 'hits' a power of two (namely 
64, which is 26 ) which drops it all the way to 1 'like a stone'. Interestingly, 
this suggests another (shaky) probability argument. It might be claimed that 
eventually (since the powers of two are infinite in number) any hailstone 
number sequence must, if it goes on long enough, be certain to alight on one 
of them if it is not cycling, and thus come tumbling down to earth. In fact this 
argument, to the extent that it is worth anything, can be used equally well for 
other hailstone types in which we multiply odd numbers by 5, or 7, or 9, and 
add (say) 1, again (as always) dividing even numbers by 2. For the latter 
sequences the old i argument no longer applies (check it out) but moves to a 
i, ~ or i argument which predicts that (on average) each number will now be 
larger than its predecessor by a factor of %, ~ or i, etc. The implication is that 
these new hailstone sequences will, unless they are unlucky, go on forever, 
getting larger and larger without bound. 

Here, therefore, we have a particularly interesting situation. Our two 
probability arguments are clearly in conflict. For example, in the 'hailstorm' for 
which we multiply odd numbers by 5 and add 1, one argument says that each 
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term, on average, should be % times as large as the one before it and that the 
sequence should consequently grow forever; the other argument concerning 
the powers of two says that any such sequence which has pretensions of 
tending to infinity is (in spite of the % rule) bound to be 'unlucky' and never 
make it. Which do we believe? 

To my knowledge no vast amount of research has been performed on this 
hailstorm, so that the road is open for your own efforts. I shall accompany 
you only a small way. Thus, for starting number 1 we find 

1, 6, 3, 16, 8, 4, 2, 1. 

The power of two argument soon won that one! Since starting numbers 2, 3 
and 4 are already included in the above series, they also crash to a final value 
of 1 (or to a 1, 6, 3, 16, 8, 4, 2, 1, ... loop if you prefer). The next starting 
number of interest is therefore 5. Following its sequence we find 

5, 26, 13, 66, 33, 166, 83, 416, 208, 104, 52, 26, 13, ... 

and generate a 'non-trivial' loop (by which we mean a loop which does not 
contain the number 1) running from 13 up to 416 and back again to 13. As for 
starting number 7 I will tell you only that it is quite an adventure. Go ahead 
and investigate. Try some other starting numbers. Then try any of the other 
almost limitless kinds of hailstorms and perhaps uncover some 'conjectures' of 
your own. Unless, of course, you fear becoming part of that international 
conspiracy to undermine the study of 'serious' mathematics in this, or any 
other, country. 
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Lies, Damned Lies, and Statistics 

It was the British Prime Minister Benjamin Disraeli who once warned his 
parliamentary colleagues that 'there are lies, there are damned lies, and there 
are statistics'. Just how the science of statistics has gained such a poor 
reputation is not clear, but the implication is that the average 'layperson', 
intelligent or otherwise, knows so little about this science that he or she can 
easily be persuaded to accept completely unfounded conclusions by the 
devious or merely by the innocently ill-informed. The major problem is that 
in matters of probability common sense and intuition are often very poor 
guides. Indeed, there are a great many simple illustrations of this fact so that it 
is, perhaps, a good idea to start with a little example; one which might well 
confront any good citizen in the execution of his duties as a jury member. 

The case in question involves a hit-and-run accident to which there was an 
eyewitness. This witness reported that the vehicle involved was a taxi and 
that its colour was blue. Now it so happens that in the city in which the 
accident occurred there are only two taxi companies, one which operates 
green vehicles and one which operates blue ones. The case seems clear 
enough; in all probability the hit-and-run driver should be sought among the 
drivers of the 'blue-cab' company (excluding for the moment the unlikely 
possibility that the vehicle in question had been stolen). 

But wait a minute, there is a slight complication. It was getting dusk when 
the accident happened and, under test conditions, the witness was only able 
to correctly identify the colour of a green or blue vehicle 80% of the time. 
Well, you may say, that does make the identification a little less certain but 
still (and surely without question) the most probable situation remains that it 
was a blue taxi which was involved in the incident. What other conclusion 
could a responsible juror possibly come to? This piece of evidence should 
therefore take its place alongside all the additional information which is 
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presented in helping to come to a fair verdict. Do any of you quarrel with that 
assessment? I doubt it very much and yet, for this particular event (as we shall 
set out below), it is completely unfounded. 

The reason is that a vitally important question, without which the 
information so far gleaned is quite useless, has not yet been asked. It is 'what 
percentage of the taxi-cabs in this particular city belong respectively to the 
green-cab and blue-cab companies?'. It turns out that the answer to this 
question for our case is that the green-cab company is much larger than the 
blue-cab company and operates no less than 85% of the taxi-cabs in the city. 
If the witness incorrectly determines the taxi-cab colour 20% of the time then 
the whole picture now changes. Let us see why. 

Without getting into any details of complicated mathematics or probability 
formulas we can quickly get into the spirit of statistics simply by imagining 
that the witness observed many (say 100) such accidents, instead of just one, 
and reported observations on all of them as regards the colour of the vehicle 
involved. By the laws of probability, about 85 of these accidents might be 
expected to involve green taxis and about 15 of them blue taxis. Of the 85 
green ones the witness would incorrectly identify about 20%, or 17, as blue. 
And of the 15 accidents involving blue taxi-cabs he will correctly identify 
about 80%, or 12, as blue. Thus, of the 29 times that the witness reports 
seeing a blue taxi-cab involved in an accident he is wrong no less than 17 
times-an error rate of almost 60%. The report of the witness that the taxi­
cab involved was blue is therefore most probably a misidentification of a 
green taxi-cab. 

The correct conclusion to be drawn from the evidence presented is 
therefore that the taxi involved was most likely a green one--although the 
odds are now so close to even that it would perhaps be best for the juror to 
disregard this particular piece of evidence altogether. We can now begin to 
appreciate Disraeli's hearty scepticism of statistics. Many of the conclusions of 
the theory of probability do indeed seem to run counter to the dictates of 
'good old common sense'. 

This troubling tendency of statistical theory, in spite of being mathemati­
cally quite sound, to present the mind with unbelievable conclusions goes 
way back through the centuries. One of the most fascinating of the earlier 
examples was first discussed in the 1730s by the Swiss mathematician Daniel 
Bernoulli and involved a game of chance. The idea was to toss a coin until it 
came down 'tails'. If this happened on the very first toss then it would be 
designated as worth a 'win' of 21 (that is 2 to the first power, or 2) tokens, 
with a token being valued at whatever you choose, say a dollar in modern 
money. If the tail did not appear until the second toss then the 'win' would be 
designated as 22 (or 4) dollars. If it did not occur until the third toss the win 
would be worth 23 (or 8) dollars, and so on. The question to be answered was 
'what would be a fair amount of money for a coin tosser to pay the 'bank' for 
the privilege of playing this game?' By 'fair', of course, we mean that if the 
game were to be played over and over an endless number of times then the 
bank and player would 'come out even'. 
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Now mathematically speaking this is not a difficult question to answer. The 
problem is that the answer is difficult, if not impossible, to believe. We reason 
as follows. Since there is one chance in two of tossing a tail at the first try, 
there is one chance in two of winning 2 dollars at the first throw. If this were 
the only way of winning then a 'fair' price to pay for playing would obviously 
be 1 dollar. However, one can also argue that there is one chance in four that 
the game will finish after two tosses and therefore net you 4 dollars. Again, if 
the game 'payed off' only for this particular situation, then it is again clear 
that a 'fair' price to pay would be 1 dollar. In fact, the argument is quite 
general; if we ask 'what would be a fair payment for the privilege of playing 
the game in which I win only if a tail appears first on the nth toss (with n being 
any integer I choose)?' then the answer is always just 1 dollar. But the real 
game entitles me to win no matter when it finishes; that is, on all values of n. 
The 'fair' entry fee must therefore be the sum (or addition) of all these 1 dollar 
contributions for every possible end point; i.e., 

1+1+1+1+1+1+1+ ... 

where the dots symbolize continuing forever. But this is an infinite amount 
and implies that no amount of money in the entire world would be sufficient 
to make this a fair game. In other words the game would favour the player 
even if he was required to pay a billion dollars for the privilege of playing. 
But would you be willing to offer up your entire wealth (be it sadly less than a 
'billion') to play this game just one time? The mathematics says that you 
should jump at the chance. What has gone wrong? 

One problem centres on the fact that the 'bank', in real-life games, has only 
a finite amount of money to payout in possible winnings. Suppose, for 
example, that our particular banker could payout wins up to 220 (or a little 
over one million) dollars. All games which took more than 20 tosses to get a 
tail would then have to be counted null and void. With this restriction, what 
now would be a fair amount to pay for the privilege of 'having a gamble'? 
Using the earlier arguments we now only have to add 20 ones together in the 
previously infinite addition sum to obtain the answer, namely, 20 dollars. 
With this bet you would lose if a tail came up on any of the first four tosses, 
but win if it did not appear until the fifth toss or later-and the win might 
possibly be as much as a million dollars. Now the game does not seem quite 
such a bad proposition, does it? Has our intuition failed us again? Maybe, but 
that infinite limit still seems a bit hard to swallow. And so it was back in 
Bernoulli's day. This was a time before a sound mathematical grasp of the 
infinite was available and the result was the object of a great deal of 
controversy. 

There is, moreover, an additional complexity. It concerns the fact that in 
real life the brain does not find an infinitesimal chance of winning an infinite 
amount of money a very tempting proposition, regardless of what mathe­
matics has to say about the odds involved. And this is particularly true if the 
privilege of playing is costly. Let us, for example, consider a lottery in which 
there is one chance in a million of winning one million dollars. The' fair' price 
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of participation would be 1 dollar and (as the State Lottery system in America, 
which offers far poorer odds, has so convincingly demonstrated) most people 
are more than happy to participate. But now suppose that there was one 
chance in a million of winning a billion (109) dollars. The fair price for one 
ticket would now be 1000 dollars. This lottery is just as 'fair' from the point 
of view of mathematical odds as was the former, but now the almost certain 
(999999 out of 1000 000) loss of a very substantial amount of money (1000 
dollars) would deter a far greater proportion of potential players from taking 
the risk. This effect becomes stronger as the amounts are raised. Who, for 
example, would risk 100 000 dollars (even if he could borrow it) on a one-in­
a-million chance of winning 100 billion dollars (or even a trillion dollars), even 
though the last bet would be a fantastically good one from the sole point of 
view of strict mathematical odds? 

The brain, you see, interprets things quite differently. The almost certain 
loss of a lifetime's potential earnings is far too great a price to pay for the 
remote chance of winning an amount of money so large that one could not 
conceivably spend more than a tiny fraction of it, even by indulging in every 
luxury and vice imaginable. Real-life goals are simply not determined by the 
favourability, or otherwise, of mathematical odds alone. Unless inflation really 
gets away from us, winning 1090 dollars is, from a practical point of view, no 
different from winning 109 dollars. 

At the opposite end of the monetary scale, people are almost always ready 
to risk a trifling amount on a gamble even if the odds are absurdly adverse. 
The reasoning presumably goes something like 'we shall never miss the small 
amount needed to enter and, after alL somebody has to win, and we stand as 
good a chance as anyone else!' For example, if you are on the average 'junk­
mail' list you may well, over the years, have received several notices of the 
kind which announce that 'you may already have won $100 000'. The 
implication is that some company has allocated a number to each family so 
notified and has already selected the winning number, which just might be the 
one in your envelope. However, you can collect only if you reply. Is it really 
worth answering these? 

In the United States the larger operations involved in these kinds of 
'giveaways' may easily mail such offerings to a substantial fraction of all the 
homes in the country-lO million could well be a conservative estimate. If 
one accepts this 10 million figure, then your chances of winning are one in 10 
million. It follows that you can expect to win, on average, $100 000 divided 
by 10 million, which works out to be just 1 cent! This is far less than the cost 
of the postage stamp necessary to return the 'blurb' and enter the game. 
Cool-headed statistics therefore shout aloud that (on average) you can expect 
to lose more than 20 cents each time you play and that consequently only a 
fool would enter such a scheme. But try telling that to the winner! In fact such 
giveaways are joyfully entered by a substantial fraction of the persons 
solicited, who remain convinced that, as something for nothing, it is the best 
of all possible wagers. 
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The above scenario is one for which practicality overrides mathematical 
pronouncements for perfectly logical reasons. For some people the relief from 
the dull repetition of everyday life which is afforded by the excitement of an 
(usually short lived) anticipation of $100 000 may well be worth the price of a 
postage stamp in some very real sense. On the other hand, many other cases 
are readily found for which common sense reaches erroneous conclusions in 
matters of statistics with no redeeming features whatsoever. Perhaps the most 
common of all such misconceptions involves what the statistician loftily refers 
to as 'the principle of regression to the mean'. This principle was initially the 
notion of Sir Francis Galton, an English gentleman-scientist of the 19th 
century. It says quite simply that in any series of purely random events 
clustered about some average value, an extraordinary event is (just by the 
'luck of the draw') most likely to be followed by a more ordinary event. Thus, 
it has been pointed out, very tall fathers tend to have slightly shorter sons on 
average, and very short fathers somewhat taller sons. If this were not so there 
would by now be a large number of 100 feet tall and 1 foot tall gentlemen 
walking about. 

In the United States, particularly among sports fans, the strongest manifes­
tation of this is the so-called 'sophomore jinx'. It refers to the fact that a new 
sports hero or heroine who bursts upon the scene with an unbelievably 
impressive first season very often has, by comparison, a disappointing second 
(or sophomore) year. In order to be more specific let us express the 
phenomenon in baseball terms. The choice is not exactly an arbitrary one 
since baseball, being so swamped with statistical data, is an ideal breeding 
ground for misconceptions of this kind. Consider a pool of equally talented 
pitchers who on average would be expected to win, say, 60% of their games 
in a season. Statistics, by their very nature, will (of course) not allow this ideal 
conformity to take place in a real season. Some of these pitchers will do better 
and others worse than their talent-determined 60% win percentage would 
justify. In particular, one or two will post win percentages well above 60%, 
possibly as high as 80%, purely as a virtually unavoidable consequence of 
perfectly normal statistical fluctuations. 

But what will the press and the fans conclude? Will they make any 
reference to statistical fluctuations? Of course not! These few sporting 
fortunates (fortunate at least for one season) will be hailed as super-heroes. 
Very occasionally the designation may be justified but usually, come the 
second season, the principle of regression to the mean exerts itself. As a result 
there is an overwhelming probability that these same 'super heroes' will now 
post significantly worse records. The sophomore jinx surfaces and inevitably 
enters the vocabulary of the sports commentator. The cause will naturally be 
attributed to every imagined pressure or post-super-hero overindulgence in 
the good life. The overwhelmingly most likely explanation of 'regression to 
the mean' would have little journalistic appeal. even if it were recognized. It 
has never, to my knowledge, made the sports pages. 

This very same 'regression' principle is also frequently misinterpreted to 
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imply that criticism is a much more efficient inducement to progress than is 
praise. Let us see how this comes about. Imagine, for example, a number of 
pupils engaged in any endeavour whatsoever. With effort they will presum­
ably increase their skills as the days and the weeks go by but (again because 
of the dreaded statistical fluctuations) this improvement will not take place in 
a manner which is predictable and smooth. In any particular test some, just by 
sheer good (or bad) fortune, will perform above (or below) their capability, 
where by capability we mean the level at which they would perform if 
averaged over a large number of such tests. Those who overachieve on the 
test will doubtless receive the lion's share of the praise and, by our now 
familiar statistical law of regression to the mean, are likely to revert closer to 
their (lower) true capability in a subsequent test. Exactly the reverse is true for 
those who underachieve on the first test for statistical reasons and are thereby 
subjected to criticism. All the evidence, to those unfamiliar with the true 
nature of statistical fluctuations, therefore points to the value of criticism over 
praise in inducing an improvement in performance. Possibly Disraeli, to his 
credit, would have been more sceptical. 

A closely related sporting misconception is that of 'momentum' or 'the hot 
streak'. Although such concepts are not necessarily entirely without sub­
stance, it is overwhelmingly likely that the events which are interpreted as 
examples of this phenomenon are nothing more than randomness in action. 
Let us take a look at a typical season of play in a sport where (for simplicity) 
we assume that tied games are not allowed (baseball and basketball are two 
good examples). Let us also for simplicity assume that all teams in a particular 
league are of exactly equal ability. This means that the result of any particular 
game has the same probability of going to team A or team B as a coin toss 
has of coming down heads or tails. Statistically, what can we expect to take 
place during a season's play? Will all teams finish up with exactly equal won­
lost records? Of course not! In fact it may be of some interest to you to play 
out a season of this kind, using a coin flip to decide matches. At the end of the 
'season' there will be a most successful team and a least successful one, and 
sports writers would no doubt attribute the success of the one and the failure 
of the other to everything under the sun except statistics. Our point is not 
that the differences of talent between teams play no important role, but that 
the most talented team will often fail to win the 'championship', not through 
any lack of determination or imagined lack of character, but simply because of 
the inevitable role played by statistics. 

Within a season, involving (say) 100 games for each team, other dramatic 
effects can be expected in our coin toss league of teams with identical abilities. 
Strings of games will be won consecutively or lost consecutively. This is the 
'momentum' effect. If, for example, your last game was lost, then there is 
statistically one chance in 2" that your next n games will also be lost due to 
no particular fault on your part. With n = 6, this leads to a probability of one 
in 64 that a string of seven games will either be won or lost consecutively by 
sheer chance, and such a string is quite likely to occur in a 100 game season. If 
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these are losses then the team will be 'in a slump' and concerned about how to 
'snap out of it'. On the other hand, if they are wins, then the team will have 
'momentum going for it' and possibly even be credited with having 
discovered some 'winning formula'. Inevitably, however, the law of re­
gression takes over and these moments of depression or elation pass. 

It is, of course, possible to establish whether any effects other than 
statistical fluctuations are playing a role, but sports analysts rarely do, and 
even the players often come to completely false conclusions when any effort 
is made to establish some credibility for 'momentum'. One very informative 
piece of statistical research was recently carried out on professional basketball 
players. Both players and fans tend to believe that players shoot in streaks; 
that during a game a player has a time when he is 'hot' and every shot goes 
in. So ingrained is this belief that team members will actually try to get the 
ball to the player with the 'hot hand' in order to cash in on this effect. 

But does the effect really exist? Research workers at Cornell University 
studied the detailed records of about 50 games of a professional basketball 
team. Although the players themselves thought that they were about 25% 
more likely to make a basket after a hit than after a miss, the researchers found 
that the opposite was true. In fact, a player was up to 6% more likely to make 
a basket after a miss than after a hit. Thus, in this case all those hot and cold 
streaks which inevitably occur due to statistical fluctuations were, in fact, 
slightly less impressive than if chance alone were responsible. Momentum 
was not only absent. but its imagined presence was quite probably actually 
hurting the team's overall performance. The most likely explanation is that a 
player who has (by chance) made a few consecutive hits, thinks of himself as 
'hot' and eilher attempts a more difficult shot than he otherwise would or is 
more carefully guarded by defenders. The player who has missed a few, on 
the other hand, searches for a safer shot to restore his confidence, or is 
perhaps less closely pursued by defenders. 

Whether or not a similar situation (in terms of overconfidence) exists in the 
winning and losing streaks of teams has not, to my knowledge, been studied. 
But regardless of this, nothing is going to deter the sportswriter from 
searching for an explanation for every conceivable statistical fluctuation. Long 
exposure to chance processes by no means guarantees that any more people 
recognize them as such. There is no sales potential for the sportswriter in 
discussing the subtleties of statistics, even if the reader (or writer) were able to 
appreciate them. 

Quite generally it is very easy to demonstrate the complete abandonment 
of logic by the majority of people by asking questions concerning the making 
of choices based on the probable outcome of certain events. In this context, 
mathematically identical situations can induce unbelievably different re­
sponses depending solely on the manner in which the question is posed. Thus, 
for example, research workers have found that when people are offered the 
choice of a sure gain of $3200 or an 80% chance of winning $4000 and a 
20% chance of winning nothing, they overwhelmingly opt for the sure gain 
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of $3200. If the situation is reversed and the choice is between a sure loss of 
$3200 or an 80% chance of losing $4000 and a 20% chance of avoiding lose; 
altogether, the response is almost exactly the opposite with up to 90% of 
respondents now opting for the gamble, thereby hoping to avoid the loss. 
From a purely mathematical standpoint there should be no preference for 
either option in either case. But apparently, in the real world, statistics count 
for little and a dramatic pattern emerges; people tend to avoid risks when 
pursuing gains, but will accept almost any risk to avoid taking a loss 
reg3rdless of what the mathematics dictates. 

Perhaps the kinds of statistics which have lent most credibility to Disraeli's 
original quotation are those which contain so-called 'confounding factors'. 
These are hidden complications (usually unrecognized and often completely 
unknown) which actually make any mathematically sound conclusions im­
possible to draw. They can most often be found in what we think of as 
sampling errors. How, for example, can we be sure that two groups of people 
who are about to be compared in some way are 'random' as regards other 
properties which may (in a manner completely unknown to us) dramatically 
influence the results? The often disastrous consequences of ignoring the 
dreaded 'confounding factors' are easily illustrated by giving an example or 
two. 

Consider first the matters of living and dying in two fictitious towns of 
Worksville and Snooze ville, each with a population of about 100000. In a 
comparison of mortality rates, it is found that Snoozeville has about 1500 
deaths per year while Worksville's undertakers are less active in dealing with 
only about 1000 deaths annually. The conclusion which so obviously 
suggests itself is that W orksville is (for some reason) a healthier place to dwell 
than Snooze ville. How can it be otherwise? Statistics do not lie! But then 
some slightly more diligent statistician notes a peculiar thing. In spite of the 
above numbers, it turns out that for every single age group (that is children 
0-10 years, teenagers, twenties, etc, all the way up to the eldest citizens in the 
'over 100 years' category) there are more deaths per year in Worksville than 
in Snoozeville. This (equally obviously?) establishes exactly the opposite 
conclusion, and from the very same set of data. 

Has our computer made an error? Has somebody mixed up the figures? 
Apparently not; careful rechecking shows that all the data are correct. The 
problem can therefore only reside in our interpretations of the findings. One 
of them is quite evidently false. The clue has been provided by the names of 
the towns. W orksville is primarily a town with lots of new job opportunities 
and is consequently populated by many young families. Snooze ville, on the 
other hand, is largely a retirement community with little in the way of 
employment for the younger set. Not surprisingly, therefore, the confounding 
factor here is age. The age distribution in the two towns is completely 
different. With most of its inhabitants in their retirement years it is hardly 
surprising that the total mortality rate should be greater in Snoozeville--and 
this would be expected regardless of the local health environment. The 
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essential point is that, without some knowledge of the respective age 
distributions, no conclusions whatsoever can be drawn from the gross 
mortality figures regarding the environmental health factor. The correct 
interpretation (if there are no more unrecognized confounding factors around) 
is that deduced by including age; i.e., in spite of the overall death rate, 
Snoozeville does appear to be a healthier place to live than Works ville. 

A more ludicrous (but perhaps more amusing) example of the 'age' 
confounding factor has been given in the story of an enthusiastic amateur 
statistician who, comparing scholastic performance with every conceivable 
variable, finally noted an impressive correlation with shoe size. After giving a 
standardized test to all students at a series of elementary schools he was 
confronted with the inescapable fact that pupils with the largest feet 
consistently obtained the highest scores. Only later, to his great embarrass­
ment, did it finally dawn on him that shoe size also correlated rather well with 
age. The correct conclusion was therefore the remarkably unsurprising one 
that older children tended to outperform the younger ones both in accumu­
lated knowledge and in shoe size. 

The general problem indicated by these rather obvious examples is 
nonetheless a very serious one. It is probably the statistician's most difficult 
task of all to assure himself or herself that no unrecognized confounding 
factor lies hidden in the sampling groups which are being tested. In fact, it is 
generally impossible to be absolutely certain that such a factor does not exist. 
A very good example of this involves the early work done on lung cancer 
mortality rates before the role played by cigarette smoking was suspected. 
Many completely false statistical correlations and conclusions were recorded 
in those years due to the significantly different proportion of smokers in the 
groups under study. At the time, smoking was completely unsuspected as 
possibly influencing the results in any way. With hindsight we now judge all 
of these early studies to be biased, and reject them all as completely 
unfounded due to the 'smoking confounding factor'. 

A quite different, but equally disastrous, situation can arise when persons 
without statistical expertise genuinely misinterpret statistical events. This 
usually occurs when the errors made are systematic rather than random. In 
such a case, for example, the several members of a committee may all (in the 
absence of proper statistical counsel by experts) come to the very same 
unjustified conclusions from the data and hence not feel any need for expert 
opinion. In a political context this can often result in tax money less than well 
spent. One example (happily of no political consequence) is often cited in the 
form of the question 'how many persons must be in a room before there is a 
greater than even chance of at least one shared birthday?' The correct answer 
is 23, and it is claimed that the overwhelming majority of non-statisticians in 
the population-at-large find this to be an unbelievably small number-guesses 
in the 50 to 70 range being most common. 

The implications of systematic subjective errors of this kind can sometimes 
have serious implications for public policy. One which has surfaced in recent 
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years concerns the incidence of rare diseases in small communities. The 
problem has two separate facets. Firstly, one cannot expect that small 
numbers of cases of rare diseases will be equally distributed among towns and 
villages of comparable populations even if the chances of contracting them 
are exactly equal in the various locations. Natural statistical fluctuations, 
governed by a law known as the 'Poisson distribution', produces clusters of 
events in some locations and none in others. Thus, for example, if there are an 
average of two deaths per community from a particular disease per year, then 
the Poisson distribution tells us (in any particular year) to expect about 13% 
of the communities to have no deaths at all, and about 5% to have as many as 
five or six deaths, and this for statistical reasons alone. But confusing the issue 
further is the fact that, if statistics are gathered for more than one rare disease, 
then the shared-birthday misconception may also intrude to make a correct 
assessment of the situation even less likely. By this we mean that a 
community with a seemingly high incidence of more than one related disease 
may also arise by sheer chance much more often than the 'intelligent 
layperson' would be likely to expect. The situation is fraught with danger 
since, when people are randomly mistaken in their assessment of risk, then the 
errors tend to cancel out and no great harm is done. If, on the other hand, as 
in the shared-birthday and Poisson-distribution phenomena, the errors are 
systematically biased to an overwhelming degree, then they can lead to a 
serious waste of scarce resources in a misguided effort to protect us all from 
imagined hazards of all kinds. 

Finally, before passing on to a new chapter, some mention should perhaps 
be made of the most sensationalized misuse of statistics, sometimes referred 
to as the hidden message phenomenon. It generally goes like this: in some 
ancient structure extraterrestrials have left, for us of the future generations, 
some secret message which is just asking to be decoded. The Great Pyramid 
of Giza has often been used as a favourite hunting ground for 'messages' of 
this kind. The idea is to measure every conceivable length and angle to be 
found, and then to correlate them with some other more noteworthy numbers 
like pi, or the earth's diameter, or the distance to the moon (or the sun or the 
stars, it does not particularly matter) measured in whatever units are most 
favourable. Shifting the decimal point, of course, is always allowed since this 
not only enables us to better appreciate the inscrutable nature of the aliens, 
but also gives us a much better chance of producing startling 'coincidences' 
from perfectly random events. 

After finding such a coincidence the reasoning then proceeds with 
statements like 'the ratio of this column height to that diagonal room 
dimension is almost exactly the square root of pi. The Egyptians of the Giza 
building period could not have known pi to that kind of accuracy. Where 
could they possibly have got the information from?' Here comes the 
extraterrestrial implication, and the sensationalism follows from an eager 
press without too much encouragement. 

The secret of success in this misuse of statistics is first to generate a 
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veritable garden of 'significant' numbers. You can produce thousands of them 
just by looking at the solar system; planetary dimensions, masses, densities, 
and every conceivable ratio between them. Mix in an occasional multiplica­
tion by pi or one of its simpler powers or roots and you are all set to go. 
Because the rules of the hidden message game allow you to play around with 
the decimal point (finding something 100 times bigger or smaller than a 
particular significant number is, after all, really just as impressive as finding 
something actually equal to the number), obtaining a truly impressive 
coincidence even amongst the dimensions within your own house is almost 
guaranteed. Not that the press would be easily convinced of extraterrestrial 
involvement in the building of your house. The final secret (from a publicity 
point of view) is therefore to go off and find yourself a suitably ancient 
monument. the more ancient the more impressive. Good luck! 

The reason that these number coincidences so often convince the layperson 
of the presence of something supernatural is that the entire list of thousands 
of 'significant numbers' is, of course, never revealed. Attention is entirely 
focused on that single coincidence which has been discovered, as if it were 
virtually the only candidate available. The possibilities are endless. For 
example, if you divide the height of the Sears Tower in Chicago (which is the 
world's tallest building) by the height of the Woolworth building in New 
York (which was also the world's tallest building when completed in 1913) 
you get the result 1.836. This is precisely one thousandth of what you also 
get if you divide the mass of the proton by the mass of the electron. Think 
about it! 
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The Pluperfect Square; 
An Ultimate Patio Decor 

Be the first in your neighbourh'ood (and possibly the first in the entire world) 
to tile your garden patio in a manner not only unique but, until very recently, 
unknown. What a conversation piece for a slow news day (providing, of 
course, that you know at least a little about its fascinating story). But what is 
this story? What is this tiling pattern? And why all the fuss? In order to 
answer these questions we need to go back at least to the 1920s, and possibly 
a little earlier. 

It was in the summer of 1925 when the question of dividing up a rectangle 
into squares which are all of different sizes first made its appearance in the 
mathematics literature. In fact, two specific examples were actually given at 
that time, and are reproduced here in figure 5, with the lengths of the sides of 
the component squares expressed in integers as marked on the figures. It is 
true that the problem of dividing large rectangles into smaller rectangles had 
been mentioned several years earlier, but this is the first known reference to a 
division into squares-and, after alL squares are rather special, being in a 
sense the ultimate rectangle. But if this is so then, presumably, the ultimate 
problem of this kind should involve the dividing of a large square into smaller 
squares, all of which are of different sizes. This last restriction, concerning the 
fact that all the component squares must be different, is extremely important. 
Without it the problem becomes trivial-even I can divide a square into four 
equal quarters; but that is not what it is all about. 

The origin of this ultimate problem, sometimes referred to as 'squaring the 
square', is something of a mystery. The renowned puzzlist Sam Lloyd, in the 
early years of this century, presented a patchwork qUilt problem, the solution 
of which required the division of a square into smaller squares, but not all the 
squares were unequal. This requirement of all-different sizes is particularly 
crucial to the problem of 'squaring the square' since, at the time of Sam 
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Lloyd's quilt puzzle, it was not even known whether such a separation into 
all-different squares was possible, no matter how many smaller squares were 
involved. In fact, one of the very first references in print to the problem, 
which appeared in 1930, was a proposition (communicated by Professor N N 
Lusin, of Moscow University) that it is not possible to decompose a square 
into any finite number of smaller squares with no two equal. 

15 
18 
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7 8 

14 1 
10 9 

24 19 22 

51 
6\ 11 3 

23 25 
17 

Figure 5 

The first emphasis in attacking the problem of 'squaring the square' was 
therefore to try to establish a general proof that a solution did or did not 
exist. In fact, such a proof was never achieved, the first positive step being 
taken by a group of four mathematicians at the University of Cambridge with 
the discovery of an actual example. This first 'perfect' square, as solutions of 
the squared-square problem came increasingly to be known, was discovered 
in 1938, and was decomposed into 69 smaller squares. It was therefore 
referred to as a 'perfect square of order 69'. This example was followed the 
next year by a second (discovered by a German group) and this one, which 
was in fact the first to be published, was smaller than the Cambridge one in 
the sense that it was decomposed into fewer smaller squares; 55 to be exact. 

At this time there was no well-defined method of producing perfect 
squares, so that the approach was one of a great deal of effort and a 'little bit 
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of luck'. However, more methodical progress was being made on the related, 
but simpler, problem of 'squaring the rectangle'; that is, dividing up rectangles 
into squares with no two equal. In that context a general method was 
obtained for constructing all the squared rectangles of any given order, where 
the 'order' is the number of squares into which the rectangle is divided. 
Although we shall not be able to understand the method in any detail, it 
consisted of relating the problem to an equivalent one involving an electrical 
network of a particular type called a c-net. It was shown that every squared 
rectangle could be derived from a c-net in a prescribed, if somewhat tedious, 
manner. In this way it was quickly established that the smallest possible 
squared rectangles were of order nine (that is, contained nine squares) and that 
there were just two of them. Unfortunately neither of these rectangles had 
equal sides (Le., were squares) so that the smallest perfect square, which we 
shall refer to as the pluperfect square, must be at least of order 10. 

It therefore turns out that one of the two squared rectangles which were 
already known in 1925 (the upper one in figure 5) is a squared rectangle of 
lowest possible order. And although it is not itself a square (but note that, 
with sides of 33 and 32, it is enticingly close) a general, if rather inefficient, 
procedure for searching for the pluperfect square is now established. It is to 
locate all the squared rectangles of each order and to check them out to see if 
any just happens to be a square. This sounds just fine and dandy, but there is a 
problem, and a big one at that. You see, the time and effort required to find all 
the squared rectangles of a particular order increases extremely rapidly with 
the numerical value of the order; 9, 10, 11, 12, ... and so on. In fact, in the pre­
computer era of the 1940s, only the complete sets of squared rectangles up to 
order 13 were known and (alas!) none of them happened to have equal sides. 
The pluperfect square therefore remained unlocated with an order somewhere 
between 14 and 55. 

With the development of the electronic computer in the 1950s it was only 
to be expected that the procedure for examining c-nets (and thereby for 
deducing sets of squared rectangles) should be adapted for machine use. By 
the year 1960 a Dutch group had succeeded in using computer speed to list 
all the squared rectangles up to order IS (that is, composed of up to IS 
squares) but still, none was a perfect square. To give you an idea of the 
magnitude of the task at hand, there are no less than 2609 simple squared 
rectangles of order IS. The word 'simple', in this context, implies that the 
rectangle does not contain within it any smaller rectangle which is also made 
up of squares. If such a smaller rectangle does exist, then the large squared 
rectangle is said to be 'compound'. Obviously, by definition, the smallest 
squared rectangle of figure 5 must be simple. However, if you think about it a 
little, it does not necessarily follow that the smallest squared square (that is, 
the pluperfect square) is simple, although it might be. 

The emphasis on 'simple' squared rectangles results from the fact that from 
every simple squared rectangle it is trivial to derive a whole infinite family of 
related compound rectangles, which are consequently of no great intellectual 
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challenge. For example, from any given squared rectangle, simple or com­
pound, a larger compound one can be formed by merely adding to it a square 
with side length equal to one or the other sides of the original rectangle. 
Moreover, it is apparent that this technique of generating new compound 
rectangles can be continued indefinitely. Equally apparent, however, is the fact 
that none of these compound rectangles can be squares (since they involve 
adding squares to an existing rectangle). Does this mean that we can forget 
about compound rectangles in our search for the pluperfect square? Unfortu­
nately not! You see, not all squared rectangles are of the above type, and 
compound perfect squares are certainly possible. This adds another compli­
cation to our quest. Since the general c-net method generates only all the 
simple squared rectangles, a 'low-order' compound pluperfect square could 
elude our c-net. Although this was not considered likely (i.e., there was a 
general feeling, though no proof. that the pluperfect square would be simple) 
it was obviously something to worry about at the appropriate time. 

Using the c-net method, and ever increasing computer speed, all the simple 
squared rectangles up to order 18 had been generated by the early 1960s. A 
complete list of the number of simple squared rectangles is shown below: 

Order Number Order Number 

9 2 14 744 
10 6 IS 2609 
11 22 16 9016 
12 67 17 31427 
13 213 18 II0384 

well over 150000 squared rectangles and not a single one with equal sides! In 
1962 the list was extended to order 19; but still there was not a single perfect 
square among them. By this time, therefore, it was clear that the pluperfect 
square would (if it was simple, as expected) contain at least 20 smaller squares 
within it. 

In actuality, rather more than that was now known, since less methodic 
activity by enthusiastic amateurs picked up after the Second World War, 
encouraged by the order-69 and order-55 successes of the immediate pre-war 
years. Although this did not take place in any systematic fashion and was, 
perhaps, as much of an art as a science, it did meet with further success which 
gradually (through the discovery of actual perfect squares) reduced the 
maximum possible order which the pluperfect square could have. In this 
context, the most noteworthy discovery, by far, was made in 1948 by T H 
Willcocks, an employee of the Bank of England in BristoL UK. Being a chess 
enthusiast and an amateur mathematician, he maintained an active interest in 
recreational mathematics and, in this manner, became aware of the problem of 
'squaring the square' and of the earlier achievements in this field. However, he 
made no use of the growing catalogue of squared rectangles, but constructed 
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his own stock. From them, by using various ingenious techniques of his own 
design, he eventually managed to discover several perfect squares, the 
smallest of which was a compound perfect square of order 24. The magnitude 
of this achievement can only now, with full hindsight, be fully appreciated. 
Willcocks' compound perfect square of order 24 is now known to be the very­
lowest-order compound perfect square which exists. It was also, until the 
moment of discovery of the pluperfect square itself in 1978, the lowest-order 
perfect square known. It is therefore quite worthy of reproduction here and is 
shown in figure 6. 
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Figure 6 The smallest compound perfect square. 

But let us now return to the year 1964 and rejoin the search for the 
ultimate lowest-order perfect square. It had to contain at least 20 smaller 
squares and, by virtue of Willcocks' amazing discovery, could contain at most 
only 24 such squares. But where was it, and what did it look like? The general 
procedure of squaring rectangles had ground to a halt since the computers 
available in 1964 were just not capable of generating all the solutions for 
order 20 in an acceptable time span or at a tolerable expense. The next 
significant step in the search for perfect squares came from the introduction of 
a completely new method. 

This new method involved the preparation of squares which were divided 



The Pluperfect Square; An Ultimate Patio Decor 45 

into unequal smaller squares except for one remaining rectangle. These 
objects were called 'deficient squared squares' and were easy to construct by a 
general method which also used an electrical network analogy. After 
preparing these deficient squared squares, a search was then made in the 
rapidly expanding catalogue of known squared rectangles to see if any 
existed with the ratio of side lengths necessary to fill the 'hole' in the deficient 
square. If so, a new perfect square had been formed. We note that all these 
perfect squares were, by the method of their formation, of the compound 
rather than simple category. The new method therefore nicely complemented 
the earlier one which located only simple perfect squares. 

The method, which was first introduced in 1963, qUickly led to the 
discovery of more than 20 new compound perfect squares of low order (less 
than order 29) the smallest being two of order 25. The procedure was 
programmed for computer, and many hours of computer time were used in an 
effort to beat the square shown in figure 6. But no example smaller than this 
order-24 square (which Willcocks found with just paper and pencil) was ever 
found, in spite of all the effort. However, by use of this method it is possible 
to create compound perfect squares of medium or high order with relative 
ease (even by hand). As a result, little significance is now attached to higher­
order perfect squares in spite of the fact that their very existence was in 
question until only a few decades ago. They can be generated in their tens of 
thousands; more than 2000 are now known with order 33 or less. The 
smallest still remains the Willcocks square, next come two of order 25 and 
then 13 of order 26. 

In the late 1960s the focus of attention returned once more to simple 
perfect squares. These, you will remember, are those which do not contain 
within them any smaller squared rectangle. By this time several larger simple 
perfect squares (with order down to 31) had been discovered, but not via any 
method which could be expanded for more general use. In 1967 the PhD 
thesis of John C Wilson of the University of Waterloo, Ontario, Canada, set 
out the first general method which could be used to generate simple squared 
squares. It did not claim to be able to generate all possible simple squared 
squares of any particular order, but it qUickly increased the numbers of such 
squares known by leaps and bounds. In fact Wilson's techniques, which were 
graphical in nature, soon succeeded in lowering the order of the smallest 
known simple perfect square down to 25. To be more speCific, Wilson found 
no less than five simple perfect squares of order 25 and as many as 24 
different examples of order 26. But still Willcocks' order-24 square stubbornly 
refused to be beaten. Could it possibly be the pluperfect square after all? 

By the year 1978 the situation had changed little and efforts seemed to be 
stalled. The lowest-order perfect square known was still T H Willcocks' 
compound square. Some 10 perfect squares of order 25 were known (eight of 
them simple and two compound) and 41 perfect squares of order 26 (28 
simple and 13 compound). Of the 13 compound squares of order 26, one even 
contained two separate smaller squared rectangles and is thought to be the 
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smallest perfect square of this kind. Computer efficiency had improved further 
over the years and the complete set of perfect rectangles of order 20 had now 
been completed, but yet again without the appearance of an equal-sided one. 
All this therefore still left open the question of whether perfect squares of 
order 21 to 23 existed. 

The answer finally flashed across the computer screen like a bolt of 
lightning on the night of March 22 1978. It was at the Twente University of 
Technology in Enschede, The Netherlands. There Dr A J W Duijvestijn was 
employing a new and highly sophisticated computer program in an effort to 
push the 'brute force' method of constructing all possible simple perfect 
squared rectangles and testing them for equality of sides to order 21. 
Thousands of perfect order-21 rectangles had already been found, and the 
checking for equality of sides was progressing in an orderly fashion when 
suddenly there it was!-a beautiful 21 element perfect square. We show it in 
figure 7 where, as you can see, with a side length of 112 units, it has a largest 
component square of 50 by 50 and a smallest of 2 by 2. After 40 years of 
effort the smallest simple perfect square had been found. 

But questions remained. Firstly, was it unique? That is to say, were there 
any more order-21 perfect squares among the thousands of perfect rectangles 
which the computer continued to unearth? Following many more hours of 
careful analysis this question was settled. After completing the derivation of 
all order-21 squared rectangles, only this single example of a simple perfect 
square existed. It was indeed unique. But was it also the pluperfect square? 
Duijvestijn was using a technique which was capable only of locating simple 
perfect squares and, although almost everyone with an opinion seemed to 
expect the pluperfect square to be simple, a nagging doubt remained. Could a 
smaller compound perfect square possibly exist? Fortunately, the doubt did 
not last long. Later that same year a proof was presented that the smallest 
compound square must have at least 22 components. Duijvestijn's square of 
figure 7 is indeed the pluperfect square. It holds a truly unique spot in the 
geometrical world. No other square will ever be found which is made up of as 
few, or fewer, different smaller squares. Finally, in 1982, it was established 
that there are no compound perfect squares below order 24, and that there is 
one, and only one, compound perfect square with 24 components, namely 
Willcocks' perfect square of figure 6. 

The task of categorizing all of the lower-order perfect squares is still far 
from complete at the time of writing. In particular, the construction of 
complete sets of simple perfect squares has still not been accomplished by any 
efficient method which might speed up the process. The production of 
compound perfect squares has progressed more methodically but, even here, 
the computer time needed to locate all possible examples of a given order is 
still too long to progress beyond the few smallest orders 24, 25, 26, .... 

From our point of view, however, the story is complete. Both the smallest 
simple perfect square (figure 7) of order 21 and the smallest compound perfect 
square (figure 6) of order 24 are now known. Each is unique in the sense of 
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Figure 7 The pluperfect square. 

being the only example of its order. Any stencil prepared in either of these 
configurations could easily be used to imprint a concrete patio Roor. Surely 
the result of more than 40 years of concerted effort by some of the world's 
most competent mathematicians (both amateur and professional) is worthy of 
some commemorative effort on your part. Let the patio begin! 

Before we take our leave of the pluperfect square it is interesting to note 
that the existence of perfect squared squares has also led to a very simple 
solution of a related problem; namely, is it possible to tile an infinite plane 
with squares, no two of which are the same size? The problem is very nearly 
solved by setting up a whirling Fibonacci spiral with squares of side length 1, 
1,2,3,5, 8, 13, ... as shown in figure 8. If the spiral is continued forever it will 
obviously eventually cover the infinite plane with squares whose side lengths 
correspond to the infinite Fibonacci series discussed in an earlier chapter. 
There is just one problem. The Fibonacci sequence starts off with two ones. 
This means that the pattern contains just two squares (the smallest ones in the 
middle of the spiral; labelled with a 1 in figure 8) which are of the same size, 
and the problem asks for all-different-sized squares. More than 40 years ago, 
when no squared squares were known to exist, we would have been stumped 
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at this point; so near and yet so far. But now we can partition one of these 
two equal squares into any of the thousands of perfect squares which are now 
known, and the tiling problem is solved. 

8 

13 

2 ~ 
5 

3 

.. i--
21 

i--

Figure 8 

May I now leave you with an unnerving suggestion? Having successfully 
squared the square, how about 'cubing the cube'? By this I mean dividing up a 
cube into smaller cubes, no two of which are the same size. What, in 
particular, does the pluperfect cube look like? Fortunately for you the answer 
is already known. It is not possible to cut up a cube into any finite number of 
smaller cubes of all different sizes. The proof is one of the most beautiful in all 
of geometry. If this situation disappoints you do not despair. The three­
dimensional version of the tiling problem is still, to my knowledge, unsolved. 
Spelled out in full this problem is 'can all three-dimensional space be filled 
with cubes no two of which are the same size?' Please feel free to ponder the 
situation. 



6 

The Trouble with 
Euclid's Fifth 

Euclid, let us face it, would not be included by many in a list of most popular 
authors. We still associate him far too closely with the trials and tribulations 
of high-school geometry and, after such an experience, are not inclined 
towards forgiveness. Nevertheless, Euclid's most famous work, a treatise 
called 'Elements', was used as a text for some two thousand years after it first 
appeared. Even today, a modified version of its first few chapters forms the 
basis of all school geometry texts. Both he and it are therefore perhaps 
worthy of our attention for a few brief moments. 

We are all vaguely aware of the fact that Euclid was the 'father' of 
geometry in the sense that it was he who first set out the explicit 'rules of the 
game'. Less well known is the enormous controversy which persisted over the 
centuries concerning these rules. Even less known is the fact that it was just 
these controversies which finally led to the development of completely new 
geometries; geometries which were invaluable in assisting the birth of 20th 
century physics and, in particular, of that science of time and space known as 
general relativity. But all of this seems a far cry from the work of the ancient 
geometers who first set out to formulate a science of the properties of space 
and measurement by carefully defining five 'axioms', which mean self-evident 
truths. 

Now these self-evident truths were meant to be just that; so obviously true 
that they were beyond question. They could not be proved in any formal 
sense since, until they were stated as the 'rules of geometry', there was no 
framework within which to prove anything. Nevertheless, to the early Greek 
geometers they were far more than a set of non-contradictory rules; they 
actually represented the real properties of real space to the extent that the 
latter were self-evident. Let us now take a look at these rules to see if we can 
spot any 'truth' which might be a little less self-evident than the rest. 

49 
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The first axiom was that there is exactly one straight line which connects 
any two distinct points. Our first question here might be 'what do you mean 
by a straight line?' I suppose that we all have a pretty good idea what a 
straight line is but, for our game of geometry to be precise, we must be careful 
to leave no room for misunderstanding. We therefore define this straight line 
to be the shortest distance between the two points in question. Since the 
relative lengths of lines can always be compared (at least in principle), this 
provides a practical method of establishing 'straightness'. Fair enough! On to 
the next axiom. 

The second axiom states that 'every straight line can be continued 
endlessly'. There is a bit of a problem here, since we can never actually go out 
towards infinity to see whether this statement is necessarily true for the space 
in which we actually live. Nevertheless, if you try to picture in your mind a 
universe of empty space, it is difficult to avoid the implication of 'going on 
endlessly'. How can you possibly envisage a boundary of empty space? 
Euclid's assumption does seem the more comfortable concept to live with. 

The third axiom is that it is possible to draw a circle with any centre and 
with any radius. At first sight, this axiom has an odd look about it. What 
statement is it trying to make about the properties of space? Well, the 
implication is that the local properties of space (such as the ratio of the 
circumference of a circle to its radius) do not change as you move from one 
part of space to another. Once again this seems to be in accord with 
experience. Circles in China (and presumably on the moon) have the same 
properties as those in the United States. 

The fourth axiom is that 'all right angles are equal to one another'. This 
statement does not make any sense until we have spelled out precisely what a 
'right angle' is in a purely geometric sense; so let us first do this. When two 
straight lines meet, they define four angles (two equal pairs) at the crossing 
point. If the lines are oriented so that the four angles are all equaL then each 
angle is said to be a 'right angle'. The axiom then says that these equal 
crossing angles will have the same size no matter which particular pair of 
straight lines we are concerned with, or where in space this crossing takes 
place. Yet again it is difficult to find fault with this assumption. 

Finally, therefore, we come to the fifth axiom, which is the centrepiece of 
our present story. The original statement of this by Euclid himself seemed 
rather cumbersome but, for the record, we shall first give it in the original 
form. It proceeds as follows: if two straight lines lying in a plane are met by 
another straight line, and if the sum of the inside angles on one side is less 
than two right angles, then the lines will meet if extended sufficiently on the 
side on which the sum of the angles is less than two right angles. If you draw 
a picture, the statement, in spite of its length, becomes quite clear. It implies, 
in particular, that if two lines (and lines always imply straight lines in the 
present context) are crossed by a third, which makes exactly a set of right 
angles with each, then the two original lines will never meet. 

Now, straight lines which never meet are called 'parallel' by definition. It 
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follows that the fifth axiom (or 'Euclid's fifth' as it is often called, possibly in 
friendly allusion to the Amendments of the United States Constitution) can be 
restated using the notion of 'parallel'. In this form, usually attributed to the 
Scottish mathematician and physicist John Playfair (1748-1819), it is some­
times referred to as Euclid's Parallel Postulate and takes the much simpler form 
'only one line can be drawn through a given point parallel to a given line'. 
From it can be proven all sorts of familiar recollections from school geometry 
such as 'the angles of a triangle add up to 180 degrees' (or two right angles as 
Euclid would have more formally stated it). But is it true for the space in 
which we actually live? Euclid's fifth axiom, like the second one, makes a 
statement about infinity. If parallel lines never meet it implies that we know 
something about the behaviour of space infinitely far away. However, unlike 
the second axiom which required only that space continue forever, the fifth 
implies that we actually know a very precise property of space outside any 
region which we can possibly check out experimentally. 

The modem approach to this dilemma would be simply to say 'don't 
worry, just let the above axioms define the space in which we are going to 
play our game of geometry'. Since Euclid first came up with the rules, we call 
it Euclidean space in his honour. However, we now have a considerable 
benefit of hindsight concerning other possible 'spaces', as we shall set out 
below. The early Greeks did not. They were concerned with measuring 'real 
space', that is the space in which we and the stars and the galaxies dwell. The 
all-important question was 'does the fifth axiom hold for the empty space in 
which all the matter in the universe is contained?' Spelled out in this fashion 
the question was not at all easy to answer in a convincing manner. Certainly, 
as far as a !>mall local region of space is concerned, parallel lines do not seem 
to have any tendency to come together or to move apart. But how confident 
can we be that something of that kind might not slowly begin to happen if we 
could follow the lines far enough 7 

There certainly seems to be a practical reason for doubt. Nevertheless, for 
many centuries after Euclid, the general consensus was that the fifth axiom 
just had to be true. There were two sorts of arguments presented. The first 
was a religious one. The empty space into which all of God's creations had 
been placed had to be perfect in His sight. As such it would hardly be likely to 
contain a vilely converging and diverging morass of straight lines. Euclid's 
fifth axiom defines by far the simplest and most orderly of spaces which can 
exist. The divine beauty of creation therefore requires that this be the 'true 
space'; God would not have botched his work. The second argument, which 
gained much support in the 18th century, was that the mere idea of an infinite 
space was necessarily a creation of the mind. Since the mind was not able to 
imagine a non-Euclidean space, the argument continued, it followed that the 
fifth axiom must hold. This is a very interesting point of view, but is now 
unfortunately not one which it is possible to adhere to since, as we shall soon 
see, it is no longer at all difficult to picture in one's mind a non-Euclidean 
universe. 
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But let us not get too far ahead in the saga of Euclid's fifth. There was, 
among many mathematicians and geometers of the early years, a much less 
philosophical point of view. It was a feeling that the fifth axiom was not an 
independent statement at all, but that it somehow must be provable from the 
first four. If this were true, then it would end once and for all any doubts 
about the geometry of space in the far reaches of the universe. Scores of 
erroneous 'proofs' appeared over the years, always to be demolished by 
closer examination. Even some of the world's greatest mathematicians tricked 
themselves into believing that they had finally proved Euclid's fifth. For 
example, a story is told of the famous 18th century French geometer Joseph 
Louis Lagrange who, at one point in his career, was convinced that he had 
proved that the angles of a triangle add up to two right angles, just by using 
the first four axioms. It is said that in the middle of a lecture to the French 
Academy on his 'proof' he suddenly stopped, muttered 'I shall have to think 
this over again', and abruptly left the hall. 

Finally, in spite of all the claims to the contrary, it was established, beyond 
any shadow of doubt, that Euclid's fifth could not be proven from the other 
axioms. It was a completely independent statement. Although the year was 
1868, 'proofs' of the parallel postulate continued to appear well into the 20th 
century. In fact, so great was the obsession that Euclid's fifth just had to be 
true that, over the years, many perfectly good non-Euclidean systems of 
geometry were developed time and time again only to be discarded out of an 
obstinate worship of the Euclidean ideal. On the other hand, it is easy to 
sympathize with the 'Euclideans' since some of the consequences of dropping 
Euclid's fifth from the rules of geometry lead to findings which are extremely 
'difficult to swallow'. For example, if you draw two perpendiculars of equal 
length from the same side of a straight line, and then join the ends to 
complete a rectangle then, without Euclid's fifth, one can only establish the 
presence of two right angles. The other two angles can only be proven equal; 
they can just as happily be less than or greater than a right angle as be equal 
to a right angle. But that is absurd, I can almost hear you saying. How can a 
construction like that possibly give anything but right angles? We must use 
our common sense. 

Just how far that 'common sense' can lead us from the truth is most easily 
demonstrated by a visit to Flatland. Flatland is a universe which contains only 
two dimensions instead of the three which are familiar to us. The Flatlanders, 
who inhabit Flatland, are also naturally two-dimensional folks, and are as 
ignorant of the existence of a third dimension as we are of a fourth. Their 
world is measured solely by east-west and north-south coordinates. 

In Flatland life proceeds quite happily, and Flatland geometers have 
constructed their own rules of geometry in order to measure the properties of 
the space in which they live. In fact, the five axioms of Euclid suffice just as 
well for Flatland geometry as they do for us, so that Flatlanders are also 
confronted with the problem of Euclid's fifth. But now there is a big 
difference. We three-dimensional people possess a god-like advantage over 
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Flatlanders in that we can easily imagine the existence of a third dimension. 
To the poor Flatlanders, who have never even considered the possibility of 
such a thing, the third dimension is utterly incomprehensible. We, on the 
other hand, can actually see what the three-dimensional shape of their 
universe is. 

Let us suppose, for example, that the Flatland universe is actually the 
surface of a large sphere, like a perfectly smoothed earth's surface. Doing 
geometry on a local scale is no problem for them. Everything seems quite 
Euclidean. In particular, drawing two equal-length perpendiculars from the 
same side of a straight line and joining the ends appears to give just as good a 
'four right-angle' rectangle for them as it does for us. But now we have (to 
Flatlanders) that god-like ability to imagine a dimension beyond their 
experience. We know that a straight line in their space (that is, the shortest 
distance between two points on a sphere) is actually a small arc on what we 
see as a 'great circle' of the sphere which is their universe. 

Being a god in the universe of the Flatlander, you (the reader) can now 
actually carry out their 'rectangle' drawing experiment on a scale which to 
them is unthinkable. Find yourself a ball. Its surface is the Flatland universe. It 
looks quite small to you; but then you are now a god. To the Flatlander this 
ball is possibly billions of Flatland light-years across. Just take a pen or pencil 
and draw a 'straight' line on the ball (that means straight in Flatland-the 
shortest distance between two points on the ball moving along the surface) 
and raise two perpendiculars of equal length on the same side of this line. 
Now join the two ends to complete a Flatland rectangle, and what do you 
observe? The angles formed are equal, but they are not right angles. They are, 
in fact, larger than right angles. It seems clear that Euclid's fifth is not valid in 
Flatland. Indeed, it is easy to see that all straight lines in Flatland eventually 
meet. There are no parallel lines at all. Lines which look parallel on a local 
scale are like lines of longitude on earth; they eventually meet at the poles. 
But what about lines of latitude, you may say, they never meet. True, but 
they are not straight lines in Flatland. Except for the equator, there is always a 
shorter distance between two points on a line of latitude than the latitude line 
itself. 

We three-dimensional beings do not find this non-Euclidean behaviour of 
Flatland to be at all puzzling. We would say to the Flatlanders 'your universe 
is not really flat; it is the surface of a sphere and only appears flat to you 
because the diameter of your spherical universe is so immense that its 
curvature in your locality is far too small for you to measure'. They would 
likely respond 'Sphere? Whatever in Flatland is a sphere?' And we would 
smile knowingly to ourselves-the concept of a third dimension is simply 
beyond their imaginative powers. 

But now let us raise the discussion by one dimension and sense our own 
intellectual limitations. Who is to say that, if we were able to construct 
geometrical figures over unimaginable distances in our own universe, some­
thing akin to the Flatlander experiment might not occur? Might we not obtain 
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rectangles with angles which add up to more than four right angles? And 
what if we did? Would it be because our universe was really curved in the 
fourth dimension? Could we perhaps be living in a space which is really the 
'surface' of a four-dimensional sphere? But what on earth is a four-dimensional 
sphere, you ask? Do we not now sound a little like the Flatlanders, 
experiencing the problem this time from the side of the less intellectually 
capable species? 

Looking once again at Flatland, we can now also get some idea of what is 
required for Euclid's geometry to be valid. The Flatland universe would be 
Euclidean if, from the point of view of three-dimensional beings, it was truly 
flat (that is, a plane). If the Flatlanders merely adopted all of Euclid's axioms in 
order to define their space, they would be supposing that their universe 
contained no curvature at all in the third dimension; not that they would truly 
appreciate what that statement meant. In the same way, if we merely adopt all 
of Euclid's axioms in our three-dimensional world, then we are assuming that 
our space has no curvature whatsoever in the fourth dimension. We, in tum, 
find that statement a bit tricky to understand in any physical sense. 

Now clearly if our space is curved in the fourth dimension in any manner at 
all, then Euclid's fifth will not be valid. Since we cannot in practice follow 
supposedly parallel lines all the way out to infinity, any tests for 'Euclidity' 
must necessarily take some other form. What might these be? WelL it is easy 
to show that, if our space is very slightly curved in the region where we live, 
then it should (in principle at least) be detectable by examining closely the 
properties of geometrical figures like circles and triangles. You may recall 
from school days that the angles of a triangle add up to two right angles, and 
that the circumference of a circle is related to its diameter by that most famous 
of all irrational numbers pi (or 3.1415926535897932 ... where the dots 
imply a continuation of decimal places to infinity). What the school books 
possibly did not tell you was that both these statements are true only if we 
adhere to the truth of Euclid's infamous fifth. This therefore suggests that we 
look very closely at the triangles and circles around us. 

In slightly non-Euclidean space the angles of a triangle will add up to a 
little more or a little less than two right angles, and the ratio of the 
circumference to the diameter of a circle will be a little more or a little less 
than pi. Take out your ball once more, that universe of the Flatlanders, and 
draw a Flatland triangle or a Flatland circle and test them for yourself. In 
Flatland we find that the angles of a triangle add up to more than two right 
angles and that the circumference of a circle with a unit-length diameter is less 
than pi. The deviations become very large if we can construct triangles and 
circles which are almost as large as the universe itself, but become very small 
on a local scale. We might also note that the mighty theorem of Pythagoras 
for a right-angled triangle with side lengths a, b, and ( (namely a2 + b2 = (2) 

also fails. Since none of these strange events has ever been observed to occur 
in our local vicinity of three-dimensional space (to the accuracy with which it 
is possible at present to measure them) we must presume that any curvature 
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of our space in the fourth dimension must be very small indeed, at least on a 
local scale. But then we are also very small compared with the size of the 
galaxy or, even more ambitiously, with the size of the visible universe. Who 
is to say what really happens to empty space far enough 'out there'? 

One particularly interesting consequence of the idea of having a curved or 
non-Euclidean universe is that it makes it much easier to imagine a boundless 
space without having to confront the concept of infinity. To grasp this idea it 
is best to go once more to Flatland, since there we are as gods. The idea of an 
infinite universe is just as baffling to the Flatlander as it is to us. He thinks that 
he lives in one, even though to us it is just the surface of a ball and, in the 
three-dimensional experience, there is nothing perplexing or infinite about 
that. 

Although we know that Flatland is really a three-dimensional spherical 
surface, there is no way in which we can physically communicate this idea of a 
third dimension to the citizens of Flatland. As far as they are concerned their 
land seems to be locally Euclidean (i.e., a plane surface). They possess no 
instruments accurate enough to detect third-dimensional curvature in their 
own back yard. To them their universe is a plane and it is essentially 
impossible for them to imagine how it can be anything but infinite in size. 
'How could it possibly be otherwise?' they ask, 'What kind of barrier could 
conceivably mark the end of the universe, and what would be beyond it?' 

But suppose that one particularly robust and adventurous Flatlander should 
decide to set out on a trek to test this theory; just in case there really is an 
'end of the universe' out there. What would happen? Well, from a three­
dimensional point of view the answer is obvious. Starting out along a straight 
line in Flatland our traveller will imagine himself moving forever away from 
his starting point towards the edge of the universe. In three dimensions, 
however, we see him, like a Flatland Ferdinand Magellan, gradually circum­
navigating his spherical universe. Should he persist long enough then one day, 
to his complete astonishment, but in accord with our every expectation, he 
will find himself back at his starting point. 'This is crazy', he will think. 'I have 
travelled all the time in a straight line, moving ever farther from home. Yet, 
just when I feel sure that the universe does indeed go on forever, so that I 
may as well tum around and wend my weary way back home with the news, I 
find that I am home. I must have messed up the navigation somehow and, 
like a person lost in a fog, travelled in a circle'. But no, we assure him, his line 
of travel was a true straight line in Flatland, deviating neither to the left nor to 
the right. The explanation is that the Flatland universe is curved in the third 
dimension so that, although it has no boundary or 'edge', it is nevertheless of 
a quite finite size, this size being the surface area of an (to them) unbelievably 
gigantic sphere. All this, of course, makes little or no sense to our Flatland 
traveller, who merely mutters that there is no such thing as a third dimension 
of space, so 'how could anything possibly be curved in it?' 

Let us now, once again, raise our complete picture by one dimension. 
Suppose, at some time in the future, it becomes possible to set out at or near 
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the speed of light aboard spaceship Enterprise to probe the outer reaches of 
our own universe. Is it conceivable that a fate similar to that of our Flatland 
traveller might also befall our Enterprise crew? After travelling directly away 
from the Earth in a straight line towards the farthest reaches of distant space, 
might they also suddenly find the vicinity beginning to look a little familiar? 
Could planet Earth also be 'out there'? If our universe were the three­
dimensional 'surface' of a four-dimensional sphere then such an event would 
be a certainty. 'There is nothing very baffling about that', a four-dimensional 
observer would say, 'the path which the spaceship Enterprise took was indeed 
a straight line in three dimensions, but it was curved in the fourth dimension'. 
'What do you mean', we reply, 'there is no fourth dimension of space, so how 
could anything possibly be curved in it?' Oh how easy it is to understand if 
you are just one dimension larger than the problem! 

The idea that our 'real' three-dimensional universe may be curved in some 
manner in the fourth dimension is not science fiction; it is a real possibility. 
And the geometry necessary to describe such a situation is just that of Euclid, 
but with the fifth axiom changed. The first person to take a non-Euclidean 
geometry seriously was that most famous of all German mathematicians Karl 
Friedrich Gauss (1777-1855). It is not known for certain when Gauss first 
created a fully self-consistent geometry without the presence of 'Euclid's 
fifth', since he never published it, but it is certain that he was in possession of 
many of the main results well before the Russian Nikolai Lobachevski (I 793-
1856) or the Hungarian Janos Bolyai (1802-1860) published complete 
theories in the late 1820s and early 1830s. In these first non-Euclidean 
geometries an infinite number of lines could be drawn through any point 
parallel to a given line. Such pronouncements were met with great doubts, 
misunderstandings and misgivings. The idea seemed to verge on madness. 
Indeed, Bolyai's father wrote to him and implored him to 'For God's sake give 
it up (before it) deprives you of your health, peace of mind, and happiness in 
life'. Surprisingly, the conceptually simpler geometry which holds for a 
spherical surface in two dimensions and for which no two straight lines can 
ever be parallel, appeared later (in 1854) and is credited to another German 
mathematician Georg Bernhard Riemann (1826-1866). 

This liberation of geometry from the stranglehold of Euclid's fifth has been 
described by many as one of the major revolutions in all thought. In 
particular, in the early 20th century it enabled the genius of Albert Einstein to 
construct a non-Euclidean physical theory of space and time. Einstein was 
interested in the motion of material bodies (that is, sticks and stones and the 
like) and had constructed a theory which applied to objects moving at a 
constant velocity with respect to others. It was called 'special relativity', and 
first saw the light of day in the year 1906. In an effort to generalize this 
theory to include changes in velocity (or accelerations) he realized that 
gravity, as a physical force, is unique. This is because all bodies which fall 
freely under gravity travel (in space) along the same path no matter how 
heavy they are or what they are made of. This implies that gravity is actually 



The Trouble with Euclid's Fifth 57 

a geometrical property of space itself (or more strictly speaking, of space and 
time together). 

Within this new theory (the so-called 'general theory of relativity') gravity 
causes a departure of space from Euclidean form-that is, produces a 
'curvature' of space. From this point of view the planets do not revolve 
around the sun in response to the gravitational force upon them (as the earlier 
Euclidean theory of Isaac Newton had supposed) but because gravity actually 
distorts space itself. The motion of the planets is then seen as a completely 
free motion in a curved space. And the difference between the Newtonian and 
Einsteinian descriptions is not simply one of 'two ways of looking at the same 
thing'. Intriguingly, the two descriptions do not produce identical predicted 
paths for the planets, although the differences are small in the comparatively 
small gravitational fields experienced in our region of the galaxy. Neverthe­
less, the tiny corrections of Einstein's non-Euclidean approach to the earlier 
Euclidean picture are measurable, and were first confirmed by a careful study 
of the orbit of the planet Mercury, for which the sun's gravitational effects are 
strongest. 

There is, therefore, convincing evidence that the real space in which we live 
is slightly curved (or non-Euclidean) in our neighbourhood. Most signifi­
cantly, this curvature also affects rays of light. Since light travels at such a 
great speed, the effects of gravity upon it are far smaller than upon most 
material objects. Moreover, such effects are completely absent in the Eucli­
dean space of Newton. It follows that any direct observation of the bending 
of light by gravity would also confirm the non-Euclidean nature of our own 
'three-dimensional' space. And such effects have been seen. In particular, such 
a bending can be observed by precise instrumentation during an eclipse of the 
sun, when the images of stars in directions close to the sun's edge appear to 
shift. An observation of this kind was first made in 1919, a few years after 
Einstein's prediction of this non-Euclidean event, and was another early 
triumph of general relativity. 

Now although the universe seems to be mostly empty, the amount of 
cosmic 'maHer' (from dust, to planets, stars, and even black holes) which it 
contains is extremely large, simply because the universe itself is so vast. As 
long ago as 1915 Einstein realised that the countless numbers of small 
curvatures of local space caused by gravitational effects may not average out 
to zero as one progresses through space. If that were the case, then there 
might eventually be enough overall curvature to 'close' space in a manner 
similar to that experienced by the two-dimensional Flatlanders in their 
spherical universe. If so, then the real universe in which we live may, like 
Flatland, be finite yet unbounded; that is, possess a finite three-dimensional 
volume just as Flatland had a finite two-dimensional area. 

Such a universe could, in principle at least, be circumnavigated by a 
sufficiently adventurous Enterprise crew. It might even be possible, by 
looking through a powerful enough telescope, to see the back of one's own 
head! Do not laugh too heartily; this may sound a bit bizarre, but some 
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astronomers claim that already there is a 'higher-than-chance' proportion of 
radio stars at diametrically opposite points in the sky. Could it be that these 
pairs of stars are really one and the same star seen from two opposite 
directions? If they are, then the suggested 'diameter' of our universe is about 
1010 light years or, in more earthly units of measure, approximately 
60 000 000 000 000 000 000 000 miles. 

And if all of this is not bizarre enough for you, it should be remembered 
that a sphere (or any shape that can be obtained from a sphere by stretching 
or continuously distorting it in any way) is by no means the only three­
dimensional object on the surface of which Flatlanders might dwell. Still more 
perplexing (at least to the Flatlander) properties can be obtained by imagining 
their two-dimensional universe to be some other kind of curved surface. 
Consider, for example, the surface formed by a long strip of paper into which 
one twist has been inserted before joining the ends. If both surfaces of this 
strip are thought of as the same 'space' (as if the paper had no thickness or 
even substance) then a journey once around the loop of this new Flatland 
changes right-handedness into left-handedness. Make a paper strip and see for 
yourself. 

Now what would a three-dimensional universe analogous to this twisted 
Flatland be like? In any small region of space it would appear to be just as 
'Euclidean' as the space we see around us. But now, any space adventurer who 
set out to probe the 'edge of the universe' by travelling away from earth in a 
straight line would not only eventually reach earth again but would find it 
both familiar yet strangely different. Everything would be the mirror image of 
what it was when he left. To the traveller, the book which he took with him is 
still perfectly readable while the rest of the earth's books have become 
unreadable until held up to a mirror. From the point of view of the non­
travelling population it is the traveller's book which has become strangely 
mirror reversed. The only way out of this dilemma is for our space adventurer 
to go around the universe one more time and then, as a reward for his 
perseverance, everything will be back to normal. 

Although no-one, to my knowledge, has ever seriously suggested any­
thing quite as bizarre as the above 'twisted model' for our own universe, 
Einstein himself believed that we dwell on the three-dimensional 'surface' of a 
somewhat roughened four-dimensional sphere; that is, in a universe which has 
a finite volume but is unbounded. This conclusion resulted from the equations 
of general relativity on the assumption that the amount of matter in the 
universe is about the same everywhere in it, always has been, and always will 
be. However, since Einstein's day strong experimental evidence has accumu­
lated that this essentially unchanging nature of the universe on a large scale 
is not correct. On the contrary it is now thought that the universe began with 
a 'big bang' and may well end eventually with a 'gib gnab' (or whatever the 
reverse of a big bang is called). Since the degree of non-Euclidean curvature in 
various parts of the universe depends on the distribution of mass, the 'shape' 
of our universe may well be changing with time; as if we did not have enough 
problems already! 
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Perhaps only one thing is certain; there is indeed 'trouble with Euclid's 
fifth'. Local regions of the universe in which we live do not obey the rules of 
high-school geometry if the measurements are carried out with sufficient 
accuracy. And what is the moral of all this? It is that intuition is a powerful 
tool in mathematics and science, but it cannot always be trusted. The structure 
of the universe, like pure mathematics itself, tends to be much stranger than 
even the greatest mathematicians and scientists suspect. 



7 

Clock Numbers; 
An Invention of the Master 

What is a clock but a counting machine? It counts minutes, it counts hours, 
and sometimes even seconds. What is more, so long as its source of power 
(whether old fashioned or modem) remains intact, it goes on counting 
essentially forever. On the other hand, there is something different about the 
way in which a clock counts because, even though it counts (ideally) forever, 
it never seems to get up to any large numbers. For example, every time the 
number of hours reaches 12 it starts all over again. If it is 2 o'clock and we 
wait for 12 or 24 hours it tells us that it is 2 o'clock all over again. It seems 
not to care about how many lots of 12 hours have gone by, even though it 
has painstakingly recorded them, choosing to 'remember' only the remainder 
that is left over after 12 o'clock. 

All this is so familiar to us that it does not seem at all strange. And yet it 
certainly leads to some very odd looking arithmetic. Suppose, for example, 
that it is 8 o'clock and we wish to know what the time will be if we 'add on' 6 
hours. The problem is not exactly one which requires superior mathematics 
and we readily deduce the answer-namely 2 o'clock. Thus, from the clock's 
point of view 

8+6 = 2. 

Looked at as a statement of arithmetic, rather than of time, this equation 
certainly has an unusual appearance. Nevertheless, this 'clock arithmetic' is 
quite self-consistent and we may quickly verify such other correct statements 
as 2 - 4 = 10, 2 + 12 = 2 and 6 + 38 = 8. What we are doing is counting in 
sets of 12 and recording only the remainder. 

Quite obviously there is nothing magic about the number 12 in all of this. 
Most clocks also count both minutes and seconds and again they attach 
importance only to remainders, although this time they disregard how many 

60 
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sets of 60 have passed by. From the second hand's point of view 8+6 = 14, 
just as it does in conventional arithmetic, but 8 + 62 = 10. 

Although each of these equations makes sense if we spell out exactly what 
it is we are doing in each case, it is clear that enormous confusion will result 
unless we devise some simple way to signify just what we intend. For 
example, when the teacher asks Johnny or Jill to complete the equation 8 + 
6 = 7, which is written on the blackboard, the answer 2 (which makes perfect 
sense to the hour hand of a clock) is frowned upon by scholastic authority and 
firmly denounced as 'wrong'. On the other hand, what would normally be 
thought of as 14 really does become 2 in clock arithmetic, or at least in clock 
arithmetic according to the hour hand. To make this clear it has become 
customary to write something like 

14 = 2 (mod 12) 

where the (mod 12) implies counting in sets of 12 and caring only about the 
remainder. Mathematicians refer to this relationship in the rather pompous 
fashion '14 is congruent to 2 modulo 12' and often use a new symbol == 
instead of = (presumably on the notion that if you make it too simple no-one 
will be impressed and, even worse, everybody will be able to understand it). 
We can read it as '14 is the same as 2 on a 12-clock' and understand it more 
precisely as '14 has a remainder of 2 when counting in sets of 12'. 

We can quickly get used to the notation by considering an example or two 
of more general form. Thus 49 = 1 (mod 8) says that 49 has a remainder of 1 
when counting in eights, which is clearly true. Equally obviously 55 = 7 
(mod 8); that is, 55 has a remainder of 7 when counting in eights. Simple 
enough! However, we can go a little further and introduce the idea of a 
negative remainder without too great a stretch of the imagination. Clearly, if 
55 is seven units more than a complete number of eights (as set out above) it 
can equally well be thought of as one unit less than a completed number of 
sets of eight or, as a 'clock equation', 

55 = -1 (mod 8). 

In a like manner we have 99 = -1 (mod 10). 

This is all well and good, you may be saying, but what use is it? Good 
question! Its use lies in the fact that both sides of a 'clock number' equation 
can be added to, subtracted from, multiplied or raised to a power, and still 
remain true. In other words, except for the operation of division (which has to 
be treated more carefully and will be discussed a little later in the chapter) the 
two sides of a clock equation are just as equal as if we were dealing with 
ordinary equations and we may treat them accordingly. 

Consider, for example, 

49 = 1 (mod 8) 

and add 2 to each side. It becomes 51 = 3 (mod 8), and is quite obviously still 
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true. Just as trivially we could subtract 2 from each side to get 47 = -1 
(mod 8). Perhaps not quite so trivial is the result obtained by multiplying both 
sides by the same number; say 49. It gives 

492 = 49 (mod 8). 

Since 49 on an eight-clock is the same as 1, and 492 is equal to 2401, the 
above result translates finally to 

2401 = 1 (mod 8). 

The correctness of this finding is easily confirmed by dividing 2401 by 8 and 
verifying a remainder of 1. But still, you may think, such a statement (though 
true) is hardly astounding. 

It is in taking powers of both sides of a clock equation where the first mind 
boggling results begin to emerge. Suppose we start once more with 49 = 1 
(mod 8) and raise each side to (say) the 100th power. Since 1 raised to any 
power, no matter how large, is still 1, we immediately obtain the result 

(mod 8). 

Now 49100 is a number far larger than the number of atoms in the entire 
universe. It contains 170 digits when written out in full, more digits than 
almost any of today's computers can deal with. And yet, from the above clock 
equation we know immediately that when divided by 8 it has a remainder of 
1. We therefore also know, by subtracting 1 from each side, that the equally 
immense number 49100 - 1 is exactly divisible by 8. This you could still 
possibly verify by straightforward 'number-crunching' (if you had a few 
months at your disposal and were very fond of doing careful arithmetic) but 
with clock arithmetic we can just as easily progress to numbers which even 
the world's fastest computers could never deal with by direct methods. 

Starting once more from the same trivial clock statement 49 = 1 (mod 8), 
why not raise each side to the 1000 oooth power? No problem! We get 

491000000 = 1 (mod 8) 

done in a snap! That number on the left-hand side now contains well over 
1 500 000 digits when expressed in decimal form, and would completely fill 
up several books of this size. Yet we still know that when divided by 8 it has 
a remainder of 1, and that 491000000 - 1 is exactly divisible by 8. 

That is all very well, you may say, if a 1 or a 0 happens to be on the right­
hand side of the clock equation (since we immediately know the values of 1" 
and 0" for any n-value no matter how large) but is this not a bit restrictive? 
Well, surprisingly it is not, since one can nearly always arrange to produce a 
right-hand side of 1 or 0 by using a little bit of ingenuity. 

Suppose, for example, that your best friend asked you whether the very 
large number consisting of a 1 followed by 999 999 zeroes and a 9 was 
divisible by 13. Your first reaction might range anywhere from 'you must be 
joking!' to 'with friends like that who needs enemies?'. Nevertheless, with our 
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newly found clock-fashion arithmetic all is not lost. The number in question 
can be rewritten as 101000000 + 9. Since we are asked about divisibility by 13 
we evidently want to work with a (mod 13) clock, and the simplest place to 
start is with an obvious relationship like 

10 = -3 (mod 13). 

This is merely a statement that, when counting in sets of 13, the number 10 
has a remainder of - 3. Multiplying this clock equation by itself (that is, 
squaring both sides) and remembering that - 3 times - 3 is equal to + 9, 
gives us 

(mod 13) 

or (in words) one hundred has a remainder of nine when counting in sets of 
thirteen. The truth of this statement is easily verified since seven thirteens 
make 91 and therefore another 9 is needed to reach 100. 

Now how can we most simply produce a 1 or a 0 on the right-hand side? 
WelL how about multiplying the two relationships set out above together? 
Since 10 times 100 is 1000 (or 103) on the left side, and - 3 times + 9 is - 27 
on the right, this translates to 

103 = - 27 (mod 13). 

But any number which has - 27 left over when counting in thirteens must 
also have - 1 left over as well since - 27 = - 13 - 13 - 1. It follows that 

(mod 13) 

and this finding still involves numbers small enough to be checked directly. 
Since 77 times 13 is 1001, 1000 is indeed the same thing as -Ion a '13-
clock'. 

The important thing is that we have now arranged for a 1 to appear on the 
right-hand side. Well, it is actually a -1, but that does not matter since we 
know that - 1 raised to any power (say n) is equal to - 1 if n is odd and to 
+ 1 if n is even. Let us now raise both sides of this last clock equation to the 
power n = 333 333. As it is odd we immediately obtain 

(mod 13). 

Since when we raise a power to a power we just multiply the exponents {e.g., 
(I03)2 = 106 or, in words, a thousand times a thousand is a million) the above 
can be re-expressed as 

10999999 = -1 (mod 13). 

We are now getting close to our target number of 101000000 + 9 but we are 
still not quite there. We could use another power of 10 on the left-hand side. 
So let us go back to our starting relationship of 10 = - 3 (mod 13) and 
multiply by it. Once again, remembering that a minus times a minus is a plus, 
we find that 

101000000 = 3 (mod 13). 
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It now only remains to add 9 to each side to reach, at last, our final 
destination, namely 

101000000+9 = 12 (mod 13) 

which says that the number in question is not exactly divisible by 13 but, 
when divided by 13, has 12 (or equivalently, since 12 and - 1 are the same 
on a '13-clock' -1) left over. It follows that it is the number 101000000 + 10 
which is exactly divisible by 13, even though by outward appearances it does 
not look to be a very likely candidate for this distinction. In the above spirit 
armed with clock numbers, it is now possible for you to examine numbers of 
almost unthinkable size and to test them for divisibility by any number which 
is not too large for simple manipulation. 

We have so far avoided any operations involving division because the 
rules for dividing clock numbers are a bit more restrictive than the other rules. 
To start with, one is only allowed to divide both sides of a clock equation by 
the same number if it does not give rise to fractions. Thus, for example, we 
can divide 12 = 2 (mod 5) by 2 to get 6 = 1 (mod 5), which is still obviously 
true, but a division by 3 to obtain 4 = ~ (mod 5) has no meaning, at least 
within the simplest notational system which we are concerned with in this 
book. One further restriction also applies. It is that, if the number we are 
dividing by also exactly divides the grouping (or mod) number as well, then 
the latter must also be so divided. For example, we can divide the clock 
equation 15 = 6 (mod 9) by 3 only in the form 5 = 2 (mod 3) and not as 
5 = 2 (mod 9). A quick examination of simple relationships like these makes 
the rule quite clear; after all 5 = 2 (mod 9) is plainly not true! 

Although we have as yet barely touched upon the possible uses of clock 
arithmetic (and the idea can be applied to much more than numerical 
calculations) it is already clear that the method opens up a powerful new 
approach to the study of the properties of numbers. Let us, therefore, set aside 
a few moments to review briefly the life of their inventor, Karl Friedrich 
Gauss. Gauss was a child prodigy. Born in Brunswick, in what is now West 
Germany, in the year 1777, it is said that he first demonstrated his unique 
mathematical genius at the tender age of eight when his teacher, in order to 
keep the students occupied for a while, asked them to add up all the numbers 
from 1 to 100. There is, of course, a formula for problems like this which the 
teacher knew but the children did not. He therefore expected to get an hour­
or-so's peace and quiet out of this exercise while the students carefully 
performed their arduous task. Possibly one or two would actually complete 
the chore without error, although it hardly seemed likely. To his great 
surprise, young Karl Gauss immediately walked up to the front of the room 
and presented the correct answer: 5050. 

Gauss, it turned out, knew the formula too. But unlike the teacher, he had 
not learned it; he had qUickly deduced it for himself. The trick is not difficult 
once you know it: you simply add 1 to 99 (to get 100), then 2 to 98 (IOO 
again), then 3 to 97, 4 to 96 and so on all the way to 49 to 51, getting 100 at 
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each step. That makes 49 lots of 100 which, when added to the 50 in the 
middle and the 100 at the end delivers the correct answer of 5050. Luckily for 
the subsequent development of mathematics the teacher recognized this 
event as a sign of genius in the boy, and thus began the career of the man 
considered by many to be the greatest mathematician of all time. 

By the age of 18 he had already established the impossibility of construct­
ing the regular heptagon (that is a seven-sided figure with all sides of equal 
length and all interior angles equal) with a ruler and pair of compasses alone. 
This was something which mathematicians and geometers had been attempt­
ing in vain for more than 2000 years. For his doctoral thesis he submitted a 
proof concerning the number of solutions which algebraic equations could 
have. This theorem is still called 'the fundamental theorem of algebra' and had 
also eluded the best mathematical minds for centuries. In his spare moments 
he turned his mind to astronomy and, in fact, he was the director of the 
observatory at the University of Gottingen as well as the professor of 
mathematics at that same institution from 1807 until his death in 1855. 
Nevertheless his principal work was in mathematics and theoretical physics. 
In recognition of his work in the latter field, the unit of magnetic field 
intensity is today called the 'gauss' and perhaps the most fundamental 
theorem of electrostatics is still known as 'Gauss' Theorem'. His work also 
embraced the field of statistics in which today the most basic and best known 
of all probability distributions is known as (what else) a 'Gaussian'. 

Gauss' most important work on the theory of numbers was the book 
Disquisitions Arithmeticae which appeared, when he was still but 24 years old, 
in the year 1801. It was in the opening sections of this book that Gauss first 
introduced the theory of congruences, those clock numbers that ever since 
have put their stamp on virtually all research in number theory. In the 
following sections many problems, some of them previously attacked without 
success by earlier generations of prominent mathematicians, here received 
their solution for the first time. The extent of his genius may be judged from 
the fact that in some of these cases he presented as many as three quite 
different proofs of the same theorem. In other words, what no-one else had 
been able to prove at all, Gauss proved once and then twice more for good 
measure. 

After that short 'aside' concerning their inventor, let us now take a look at 
the way clock numbers can be used to establish proofs in number theory 
proper. Do not be alarmed by this rather formal sounding context; clock 
equations (or congruences, as they are more usually known) are just as easy to 
understand here as they were before. With their assistance we can, for 
example, demonstrate one of the most famous of all number theorems, called 
Fermat's Little Theorem (after the French mathematician Pierre de Fermat, 
1601-1665, who first established and proved it, although his original proof 
was never published). This theorem is fun since it leads to a method whereby 
a number can be proven to have factors even though none of them is known. 

Consider an arbitrary prime number, say 7. Write down all the integers 
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1, 2, 3, 4, 5, 6 smaller than it, and multiply each by 2. We obtain the new 
sequence 2, 4, 6, 8, 10, 12 which, if we count on a 'seven-clock' (or, more 
formally, modulo 7) translates to 2, 4, 6, 1, 3, 5. This is merely the original set 
in a different order. It follows that, when counting 'modulo 7', the numbers 1 
to 6 multiplied together (which is usually written in the shorthand fashion 6! 
and called 'factorial six') must be exactly equal to the numbers 2, 4, 6, 8, 10, 
12 multiplied together. But each member of this second set is just a factor of 
two times its corresponding member in the first set. It follows, since there are 
six members in the set, that the numbers 2, 4, 6, 8, 10, 12 multiplied together 
must also be equal to 26 times 6!. We have therefore established that 

26 x 6! = 6! (mod 7). 

Now since 6! (by its definition) does not contain any factor which exactly 
divides the modulo number 7, we can (according to the rules for division set 
out earlier) divide both sides by 6! to get 

(mod 7). 

As 26 is 64, which is 9 lots of 7 plus a 'remainder' of 1, the correctness of the 
result is easy to verify by direct calculation and therefore does not yet 
represent anything particularly worthy of adulation. 

The important point is that the method can be generalized. If, for example, 
we multiply the original sequence of integers 1 through 6 by 3 (instead of 2) 
the resulting numbers 3, 6, 9, 12, 15, 18 are equal to 3, 6, 2, 5, 1, 4 (mod 7) 
which, once again, is the original set in 'jumbled' order. The same multiplica­
tion argument now generates the congruence 

36 = 1 (mod 7). 

In exactly the same way we can go on to multiply, in turn, by 4, 5 and 6 to 
establish 

(mod 7) 
(mod 7) 
(mod 7) 

as well. Only when we get up to the 'clock number' itself (in this case seven) 
does the pattern change since 76 (which is just six sevens multiplied together) 
is exactly divisible by 7 to give 76 = ° (mod 7). 

As long as we count (mod p), where p is a prime number, it is not difficult to 
establish that the set of integers from 1 up to P - 1 will always transform into 
themselves (mod p) when multiplied by 2 or 3 or any integer up to p - 1. On 
the other hand, if p is not a prime this will not usually happen. For example, 
for p = 6, the numbers 1, 2, 3, 4, 5, when multiplied by 2 become 2, 4, 0, 2, 4, ° (mod 6) and, when multiplied by 3, become 3, 0, 3, 0, 3, 0. The appearance 
of zeroes occurs because both 2 and 3 exactly divide into 6. If you experiment 
a little with a few more primes and non-primes you will quickly become 
familiar with what is happening. 
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The final discovery, therefore, is that for any prime number p, and any 
other number n not equal to p (or an exact number of times p) 

or, subtracting 1 from each side, 

nP- 1-l = 0 

(mod p) 

(mod p). 

Stated in words this says that the number nP- 1-l is always exactly divisible 
by p if P is prime, unless n itself is also divisible by p. Let us check out a few 
examples to see how this works. We shall, for simplicity, look first at the 
numerically easiest examples with n equal to 2. In this manner we quickly 
verify that 22 - 1 = 3 is indeed divisible by 3 (which is a prime); 23 - 1 = 7 
is not divisible by 4 (which is not a prime); 24 - 1 = 15 is divisible by 5 (a 
prime); 25 - 1 = 31 is not divisible by 6 (not a prime); 26 - 1 = 63 is 
divisible by 7 (a prime) and so on. 

At first sight it looks as though we have here a method of testing for prime 
numbers. In fact, the Chinese, as long ago as 500 Be expressed the belief that 
the number 2p- l _ 1 is always divisible by p when p is prime, and never when 
p is not prime (or is 'composite' to use the proper word). But is this true? We 
must be careful here. Our proof was established for p equal to a prime. It did 
not, however, rule out the possibility that np- l -1 (in general) and 2p- l _ 1 
(in particular) might just accidentally also be divisible by p for some 
occasional non-prime p. For the case of 2p- 1-l the Chinese were never able 
to discover one and, in fact, no such examEle was found until the year 1819 
when it was first noted that the number 2 40 -1 is exactly divisible by 341, 
and 341 (being 11 times 31) is not a prime. 

Numbers which satisfy the congruence shown at the top of this page when 
p is not a prime are comparative rarities. Nevertheless there are an infinite 
number of cases and they define the so-called 'pseudoprimes' p. The case with 
n = 2 is the most thoroughly studied. For this case there are 14884 
pseudoprimes smaller than 1010 compared with the very much larger number 
of 455 052 512 real prime numbers less than this same limit. It follows that only 
about three thousandths of one per cent of the numbers p which pass the 

2P- 1 = 1 (mod p) 

test are not real prime numbers. Most of the 'impostors', that is, the n = 2 
pseudoprimes, are odd. In fact it was not until 1950 that the first even 
pseudoprime (161038) was found, and they remain quite difficult to locate. 

In addition to the n = 2 pseudoprimes, equivalent studies can be carried 
out for n = 3, 4, 5, ... and so on. The smallest pseudoprimes for n = 2 
through n = 10 are now known to be 341, 91, 15, 124, 35, 25, 9, 28 and 33 
respectively. In fact, the n = 2 pseudoprime 341 is the largest 'smallest 
pseudoprime' for all n up to 100 (although the same value 341 occurs not 
only for n = 2 but also for n = 15,60,63 and 78 as well). This explains why 
the Chinese were unable to locate it. You see, 2340 - 1 is quite a large number, 
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containing 103 digits when written out in full decimal form. To calculate this 
form and then test for divisibility by 341 is a major undertaking. Unless, of 
course, you know clock arithmetic (which the Chinese did not). But we do 
and, using the rules as set out earlier in the chapter, the fact that 2340 -1 is 
divisible by 341, i.e., that 

2340 = 1 (mod 341) 

can be verified in just a few steps. Give it a try! 
Beyond the concept of ordinary pseudoprimes come the 'super-pseudo­

primes'. These are numbers p for which np- 1 -1 is exactly divisible by p for 
all n which are mutually prime to p. They are called 'Carmichael numbers' and 
there may be infinitely many of them, although this is not yet known for sure. 
The smallest is 561, which is 3 x 11 x 17, and it is known that such numbers 
must be the product (that is the multiplication) of at least three forime 
numbers. Thus, 2560 -1 is exactly divisible by 561, as also is 4560 -1,55 0 -1, 
7560 -1, and so on over all n-values except those divisible by 3, 11 or 17. The 
next Carmichael numbers in increasing order are 1105, 1729, 2465, 2821, 
6601 and 8911, and these are the only ones less than 10 000. There are, in 
fact, only 1547 Carmichael numbers (or super-pseudoprimes) less than 1010 
compared with the more than 455 million real primes below this limit. 

Although Fermat's little theorem does not (alas!) provide us with a 
'watertight' recipe for locating prime numbers, because of the ever-present 
(though small) possibility of generating a pseudo prime masquerading as a 
prime, it does enable us to do something almost as impressive. Since any odd 
number p which does not satisfy Fermat's little theorem cannot possibly be 
prime, it allows us to establish that certain (possibly very large) odd numbers 
must have factors even though we have not got the faintest idea what they 
are. There are, in fact, many large numbers of particular interest to mathema­
ticians which, by this and like methods, are known to be composite but for 
which, as yet, no actual factors have been located. 

One final story about Gauss and his clock numbers will suffice to round off 
this chapter. In our proof of Fermat's little theorem we met the set of numbers 
1, 2, 3, ... , p-l where p is prime. Suppose that we multiply all these numbers 
together to get (p - I)! in the factorial notation. To what would this number 
be congruent if we counted on a (mod p) clock? Well, let us first try it out for a 
few of the very smallest primes. For p = 2, (p-l)! is 1 and 1 = -1 (mod 2). 
For p = 3, (p-l)! = 2 and 2 = -1 (mod 3). For p = 5, (p-l)! = 24 and 
24 = -1 (mod 5); while for p = 7, (p-l)! = 720 and yet again 720 = -1 
(mod 7). There seems to be a pattern here with (p-l)! wanting to be the 
same as - 1 when counting on a 'p-c1ock'. You can establish that the rule is 
indeed quite general by noting that the factors which make up (p-l)! can 
always be taken in pairs, 1 times p - 1 giving - 1 (mod p) and the others all 
giving + 1 (mod pl. For example, with p = 11 we have 2 times 6, 3 times 4, 5 
times 9 and 7 times 8 all equal to + 1 (mod 11) which, when multiplied by the 
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-1 (mod 11) of the end-member product (1 times 10) gives the final result. 
We therefore conclude that 

(p-l)! = -1 (mod p) 

for all prime numbers p. If, on the other hand, p is not a prime, then two of the 
numbers multiplied together in (p-l)! must have the product p; that is, must 
be equal to 0 (mod pl. Since zero times anything is still zero, it follows that 

(p-l)!=O (mod p) 

if P is composite. Aha! Here we really do have a watertight test for primeness. 
The number (p-l)! has a remainder of -1 when divided by p if P is prime, 
and no remainder at all if p is not prime. The bad news is, unfortunately, that 
the test is of no practical value since factorials, unlike powers, are not 
adaptable for easy manipulation using clock arithmetic. That is to say, it 
takes longer to find the remainder of (p - I)! divided by p, than it does to look 
for factors of p directly. Nevertheless the general result is interesting since it 
tells us that there are methods of testing for primeness which do not involve 
checking out all the possible divisors. 

The above result for prime numbers is known as Wilson's theorem and has 
an unusual history. You see Wilson, or Sir John Wilson, to give him his full 
title, was a fairly unobtrusive English judge, and few people have ever 
become immortalized for less reason. He was neither the first to state the 
theorem nor to prove it. In fact, he never was able to prove it and never 
published anything about it. Likely it would have amounted to nothing at all 
if, by chance, he had not mentioned it over lunch one day to a friend of his 
who happened to be a professor of mathematics at Cambridge University. 
The professor then published it as a 'speculation', citing Sir John as its 
originator. It was this publication which caught the eye of the mathematical 
fraternity and, as a result, Wilson's name became associated with the theorem. 
Although there is now ample evidence that the result was known to Baron 
Gottfried von Leibnitz (German philosopher and mathematician 1646-1716) 
almost 100 years before all of this took place, Wilson's name stuck and is now 
forever enshrined in all textbooks concerning the theory of numbers. 

Even more amusing is the related 'Gaussian' story. Apparently, accompany­
ing the first publication of 'Wilson's theorem' in 1770 was the prediction 
that this 'conjecture', as it then was, was not likely ever to be proven because 
there was no known notation for dealing with prime numbers. When this 
statement was first communicated to Gauss, he proceeded to prove the 
theorem by 'clock numbers' in five minutes, commenting that what was 
needed was not notations but notions. In truth, however, Gauss' proof of 
Wilson's theorem was not the first to be published. That honour went to the 
French mathematician and astronomer Joseph Louis Lagrange (1736-1813) 
who presented his proof less than one year after the 'conjecture' first appeared 
in print. 
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One final comment on Wilson's theorem is perhaps of some interest to the 
number addict. The original theorem states that (p-l)! + 1 is always exactly 
divisible by p when, and only when, p is a prime number. This same 
expression is, on very rare occasions, divisible not only by p but by p2 as well. 
The only primes less than 105 for which this is true are 5, 13, and 563. 
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Cryptography; The Science of 
Secret Writing 

I suppose that as children we have all, at one time or another, made an effort 
to write down a message in code; a 'secret' message which hopefully can be 
understood (or deciphered, to use the proper word) only by the intended 
receiver who has been given the 'key' to the code in advance. Most of us 
probably used that simplest of all coding systems (or 'encryptions' as the 
experts call it), the substitution of one letter of the alphabet for another. 
Suppose, for example, I replace A by B, B by C C by 0, and so on right up to 
replacing Z by A, then the delightfully uninteresting message 'I HAVE A 
RED PENCIL BOX' takes on its coded form 

JIBWFBSFEQFODJMCPY 

and certainly looks mysterious enough at first sight. 
Since we could have chosen any letter of the alphabet to substitute for any 

other, there are a vast number of different schemes of this simple substitu­
tional kind. To be precise, there are 26! (factorial 26) of them, a number whose 
value is about 4 times 1026. With this almost unthinkably large number of 
choices for our coding, the chances of anyone discovering the key (or 
'breaking' the code) might appear to be extremely remote. And if we wish to 
transmit only a single message of very short length (such as the red pencil 
box gem set out above) then this is true so long as we avoid the extremely 
simplistic patterns such as the A to B, B to C C to 0, etc example of the first 
paragraph. 

Unfortunately, if the same code is required for use in transmitting lar~e 
amounts of information then, in spite of the size of numbers like 4 times 10 6, 

it is very easy to 'break'. The villain is the non-random nature of the 
appearance of letters and letter combinations in any particular language. In 
English, for example, e is the letter which occurs most frequently, q is always 
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followed by u, certain combinations like 'in', 'it', 'the' and 'and' are very 
common, while others like 'pbv', 'bcd' and 'pxq' do not occur at all. Using 
these language 'fingerprints', and countless other statistical clues from the 
pattern in which various combinations of letters arise, it is possible for a 
'decoder' to qUickly break any code formed by a simple letter substitution 
scheme. This remains true even if a sequence of meaningless squiggles is used 
to replace the letters; the pattern of the language still eventually identifies 
them and our secret messages soon become common knowledge. 

A second kind of coding scheme that suggests itself is one which calls for 
a 'transposing' or shuffling of the letters rather than a substitution. For 
example, suppose that I write down as my 'key' the sequence of numbers 3, 1, 

5, 2, 6, 4. I now transform my message into coded form by moving the first 
letter to the third place, the second letter to the first place, the third to the 
fifth place, and so on up to the sixth letter in fourth place (following the 
number pattern of the key). After transposing the first six letters in this 
manner, the pattern can be repeated endlessly by transposing the second six 
letters in the same way, then the third six, and fourth, and so on to the end of 
the message. Thus, my prototype message 'I HAVE A RED PENCIL BOX' 
has its first six letters transposed to AIEHA V, its second six letters to 
DREENP, and so on to the completed form 

AIEHA VDREENPLCOIXB. 

Although very short messages using this scheme can often not be unambi­
guously broken (e.g., the coded message, or 'cipher' TEQIU could equally 
well be QUITE using the key 35412, or QUIET using the key 35421), longer 
messages are again quite insecure and general methods for their 'solution' 
were published as long ago as 1878 for ordinary English text, even if the 
length of the sequence of numbers in the key was completely unknown at the 
outset. Thus, the simplest transpositional coding scheme, like its substitutional 
counterpart, provides only an extremely limited degree of security. 

What can be done to make the codes a little more difficult to break? Well, 
one idea is to strengthen the substitutional scheme such that each letter of the 
original is not always replaced by the same substitute in the coded form. One 
way to accomplish this is to think of a word (let us choose LOUNGE as an 
example) and to write it in repeated form below the message to be coded as 
follows, 

I HAVE A RED PENCIL BOX 

L OUNG E LOU NGELOU NGE 

Since T is the ninth letter of the alphabet and the 'L' below it is the 12th letter 
of the alphabet. we can code the first letter of the message by adding 9 to 12 
to reach the 21st letter of the alphabet 'U'. In similar fashion, for the second 
letter of the message, H(8) is 'added' to the 0(15) below it to produce the 
coded substitute W(23). If this addition procedure should lead to a number 
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larger than 26, then we simply start the alphabet over again by associating 'A' 
with 27, '8' with 28 and so forth. Using this particular 'key' the full message 
above translates into 

UWVJLFDTYJLSOXGPVC 

where we have again closed up the spacing between the words to make the 
decipherment more difficult. 

This kind of coding system, often referred to as a Vigenere cipher, 
obviously does not always replace a particular letter of the original message 
by the same substitute. Thus, the first T of the message above codes into a 
'U' while the second T of the message codes into an 'X'. Surely this would 
help to confuse anyone attempting to break the code, and make it more secure 
than either of the first two methods set out before it. Unfortunately, even 
though this statement may possibly be true, the fact remains that Vigenere 
ciphers like that set out above can still readily be decoded. In fact, once again 
a rather general method of attack was developed well over 100 years ago. 
The weakness is the repetition in the key-word line (for example, LOUNGE­
LOUNGELOUNGE ... above). For a six letter key like this, common words 
such as 'and' and 'the' are always replaced by one of only six particular 
combinations of three letters. Clues like this eventually identify the key and 
the code is broken. The problem once again is the non-random occurrence of 
letters and words in the English language (or any other language for that 
matter). 

However, what if we used for the key a text which did not repeat itself­
ever71In these 'running-key Vigenere ciphers' the giveaway common words 
and letters would never repeat in the coded form so that surely, at last, this 
would lead to an unbreakable code. In fact, for almost three centuries after 
they were first invented, these running-key ciphers were thought to be just 
that, completely secure. However, in 1883 a method was described for 
breaking down codes even of this kind. The clue to their solution again 
involves the non-random frequency of occurrence of letters and words which 
now run through both the message and the key. For example, the letter 'E' has 
a probability of being replaced by another 'E' about 1.69% of the time, 
compared with a smaller (but still known) probability of being replaced by 
any other particular letter. Obviously, this kind of code breaking is much 
more difficult than the others discussed above, and a very considerable length 
of cipher is required in order for the tell-tale correlations to show up. But 
sooner or later they do appear and once again the code can be broken. What 
is more, the development of fast computer techniques since the 1950s has 
made these running-key ciphers more vulnerable than ever. 

What can be done? Well, the weakness of the code is evidently contained 
in using a piece of English text for the running key. Suppose that the running 
key was to be made up of a completely random sequence of never repeating 
letters. In this case, each letter of the text, whether it be the most probable 'E' 
or the least probable 'Q' or 'Z', is equally likely to be replaced in the cipher by 
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any other. In such a scheme all inter-symbol correlations or periodicities on 
which code breaking is based would be totally removed. At last the system 
would be completely secure. Unfortunately, however, this system is also 
highly impracticable since it requires one symbol or key (to be exchanged 
between the sender and receiver in advance of communication) for each and 
every symbol of text to be transmitted. This, it might be argued, is true for 
any running-key Vigenere cipher, random or not. The essential difference is 
that a non-random key of (say) an English text could be taken from 
convenient locations such as designated parts of well-known (or not so well­
known) books. The random key, on the other hand, would have to be carried 
with, or kept by, the intended receiver and because of its unusual appearance 
would immediately arouse suspicion if it fell into 'enemy' hands. One 
possible way around this problem, it was first thought, might be to use a still 
lengthy, but repeating, random key which could be memorized. However, the 
periodicity of the key, even though the repeated part is random in its 
frequency of letter selection, proves to be quite sufficient to enable the code 
to be broken, given a sufficient length of message. 

The inescapable conclusion is that for complete security the key must be 
random, must never repeat, and must therefore be as long as the complete 
sum of messages to be coded. However, even this statement needs a final 
clarification. It is true only in so long as the code contains at least an equal 
degree of complexity (the word 'entropy' is sometimes used) as the message. 
In essence, this requires that the key should possess at least as many different 
symbols in it as does the alphabet. Thus, if the key is a random selection of all 
26 letters of the alphabet the message is secure. On the other hand, it is quite 
possible to set up a completely random and never repeating sequence of 
smaller 'entropy' than the message which would not be secure. 

As an extreme example of this let us consider a completely random 
sequence of ones and twos such as 

11212222212 1222 12 121111... 

actually obtained by me at my desk by tossing a penny (1 for heads, 2 for 
tails). If we interpret a 1 to mean 'replace this letter of the message by the 
next letter of the alphabet' (that is, A by B, B by C etc) and a 2 to mean 
'replace this letter of the message by the next-but-one in the alphabet' (that is, 
A by C B by 0, etc) then my original message concerning the red pencil box 
becomes encoded as 

JICWGCTGFQGOEKNCQY. 

If the possibility of a 'one and two shift' key were suspected, then I believe 
that you will easily convince yourself that decipherment can be obtained 
without great difficulty. 

Random letter-for-Ietter substitution with a one-time full alphabetic key is 
therefore the solution to the unbreakable cipher. Because of its assured 
security, one-time keys of this kind have frequently been found on the person 
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of detained foreign secret agents-one of the more celebrated being Colonel 
Rudolph Abel of the Soviet Union when he was apprehended in New York in 
1957. It has also been reported that the 'hot-line' between Washington and 
Moscow uses this same kind of system (fully mechanized of course) with a 
one-time key. 

In spite of their absolute security, however, these one-time key systems are 
obviously not at all suited for transmissions of vast quantities of classified 
information, such as would be required, for example, in times of war. In fact, 
during the Second World War the best systems for permanent transmission 
purposes used one-for-one letter substitution with a very long, but for 
practicality eventually repeating, key. Such well-known super-secret wartime 
codes as the German ENIGMA, British TYP EX, American SIGABA and Japanese 
RED and PURPLE machine codes were all of this kind. They were therefore all 
susceptible to 'breaking' by use of sophisticated statistical methods. This, 
perhaps, was the golden age of code breaking and the task was often quite a 
formidable one. Indeed, it took America well over one year of painstaking 
'cryptoanalysis' by a veritable army of code breakers to finally 'crack' the 
Japanese code PURPLE in the summer of 1940. 

As a general rule, codes are more difficult to break if they deny the would­
be code-breaker as much statistical evidence as possible. Short of using the 
never ending and never repeating random key, some additional confusion can 
be added to letter-substitutional systems by substituting letters two or three 
at a time rather than singly. Although this can never completely remove the 
statistical evidence of language patterns, it does lend itself to the production 
of very simple keys and it certainly muddies the statistical waters for the 
potential code-breaker. 

The simplest conceivable scheme of this kind sets up the letters of the 
alphabet in the form of a five-letter by five-letter square (with J omitted since 
it can be replaced in English by I without unduly confusing messages). The 
letters are placed within this square in some random fashion such as 

TZRME 
KOAYP 
FVDBN 
UHGXS 
C L W Q I 

and pairs of letters are substituted by other pairs according to some simple 
rule. For example, if the two letters are not in the same row or column then 
the simple transformation pattern made clear by the examples of TO going to 
KZ, PR to EA, and RS to GE, would suffice. For letters in the same row one 
might perhaps use a rule like 'move up a row' so that, for example, GH goes 
to DV, and TE to CI (if we imagine the square key repeating itself like a 
wallpaper pattern with no 'edges'). Similarly, for letters in the same column, 
we might move them (say) one column to the right e.g., W A goes to QY, and 
PI goes to KC. Using this scheme my pencil box message 



76 Think of a Number 

IHA VEAREDPENCILBOX 

now transforms to the ciphered form 

SLDOPRWIANTFUSVQHY 

as can easily be verified by using the square key and the associated rules as set 
out above. 

Methods of this kind can be made increasingly complex and correspond­
ingly harder to break by inventing schemes for transposing letters three, four, 
or even five at a time. In this way, they can be made extremely difficult for the 
code-breaker to 'solve'. Their advantage is the unusually compact form of the 
key (if the methods for transposing the letters are committed to memory). 
Their major weakness is the comparatively difficult and time consuming 
nature of both the coding and decoding processes, together with the 
increasing probability of making errors as the procedure is made more and 
more complex in striving for added security. 

All these systems of coding so far discussed, in spite of their varied forms 
and degrees of security, have one thing in common; they are symmetric in the 
sense that both the coder and the intended recipient have to be in possession 
of the relevant key to the code before any information can be transmitted. 
Now this is a great inconvenience and is also a very great threat to security 
since it means that, not only must one identify in advance every possible 
individual or organization to whom information might need to be supplied, 
but every one of them must also be provided with (and must therefore protect 
the secrecy of) the key. Should any single one of these intended receivers fall 
into 'enemy' hands with their key then the entire system breaks down and 
is rendered useless. 

The general reaction to this, until very recently, has always been 'too bad, 
but that is the way it has to bel' Amazingly, however, such is not the case, 
and this astounding realization was first made in the mid-1970s. And if you 
have been wondering where numbers (either at work or at play) entered into 
the context of the present chapter, then the answer is 'right here' in the 
concept of an asymmetric code. The idea was first published in 1976 by 
research workers at Stanford University in California. They called it a 'public­
key' coding system because, in using it (in the manner to be set out below), a 
person can announce to all the world the manner in which anyone wishing to 
send him a secret message should encode it. This could be done, for example, 
via a public catalogue. Now, incredibly, even though everyone can encode a 
message to him, only he is able to decipher it. Consequently, it becomes 
completely unnecessary for each potential pair of users to exchange, and 
guard with their lives, the same key in advance of their decision to 
communicate. Each receiver possesses his own decoding secret; he, and only 
he, needs to protect it. 

Consider, for example, a military commander who has a number of patrols 
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out scouting in enemy territory, each of which must be able to report its 
intelligence back to him in secrecy from the enemy. It now matters not one 
iota whether the enemy captures one of the encoding machines and hence 
discovers the encoding 'key' since, when they intercept other ciphers using 
the same code, this information will be of no help whatsoever in assisting 
them to decode the information. The system remains secure; only the 
commander possesses the decoding secret (or, in practice, the decoding 
machine). 

In publishing the instructions for coding, to make them universally 
available, the potential receiver is deliberately giving half the cryptographic 
secret away. His motive for doing this is that then absolutely anyone (with 
the necessary ability) can code information to him, even people whose very 
existence he is completely unaware of, and yet he remains the only individual 
on earth with a knowledge of the other half of the key which is absolutely 
necessary to decode it. This all sounds a bit like black magic and since, in its 
actual machine application, it does involve a manipulation of extremely large 
numbers, it will be necessary for us to trivialize the procedure to see how it 
works. Instead of dealing with large numbers, the sheer size of which 
introduces the complexity that defeats the would-be code-breaker, we shall 
illustrate the technique using numbers small enough to manage with pencil 
and paper (or, at the very worst, with the help of a pocket calculator). 

Think of a number made up by multiplying two prime numbers together. 
Let me choose for demonstration purposes the number 14, which is 2 x 7 
(both primes). Now subtract 1 from each of these primes to give 1 and 6, and 
multiply the latter together. But 'Why?', you ask. Trust me ... trust me, for the 
moment. Let me symbolize this new number 1 x 6 = 6 by the Greek letter <p, 
since it plays a very special role in the coding and decoding systems as we 
shall see. I now pick a number which has no factor in common with <p. Since 2 
and 3 are the factors of <p = 6, this leaves open to my choice any number 
which is not exactly divisible by 2 or 3. Let me choose 5 since it is the 
smallest such number available, and I want to keep my numbers as small as 
possible for my 'trivial' demonstration. 

This number 5, together with my original number 14, are the ones which I 
publish to the world in my public catalogue. In order to code a message to me 
you are to proceed as follows. First replace the letters of the alphabet by 
numbers in the obvious fashion A = 1, B = 2, C = 3, and so on. The coding 
is then performed by replacing the number corresponding to any particular 
letter by that number raised to the fifth power (5 being the first of my 
catalogue numbers) but recording only the remainder when counting in 
groups of 14 (my second catalogue number). In the language of the last 
chapter, we count on a 14-clock, or (mod 14). 

Let us see how this works by coding one very short and easy word BED. 
Firstly, translating it to numbers via the A = 1, B = 2, C = 3, ... recipe, it 
becomes 254. It is now encoded by noting that 
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25 = 32 = 2 X 14 + 4 
55 = 3125 = 223 X 14+3 
45 = 1024 = 73 X 14+2 

or equivalently, in clock language, 

25 = 4 
55 = 3 
45 = 2 

(mod 14) 
(mod 14) 
(mod 14) 

which presents us with the remainder sequence 432. It follows that 432 is the 
ciphered form of the word BED for this particular scheme. In order to decode 
it is necessary to have the 'key' which will tum 432 back into 254, or its 
alphabetic equivalent BED. What is this key? It is, in essence, a number known 
only to the receiver of the cipher. To obtain it requires a knowledge of cp. In 
detail, it is the number which, when multiplied by the first catalogue number 
(in our case 5), leaves a remainder of I when counting in groups of cp (in our 
case 6). This secret 'code breaking' number for our trivial example is therefore 
II since 

5 X II = 55 = 9 X 6+ I 

or, in modular form, 

5XII=1 (mod 6). 

Decoding is now performed exactly as the coding was carried out, but using 
the secret number I I as the new power to which the cipher numbers must be 
raised. Thus, taking the coded form 432 we proceed to calculate the 
remainders 

411 = 2 
3 11 = 5 
211 = 4 

(mod 14) 
(mod 14) 
(mod 14) 

which, marvel of marvels, regenerate the original uncoded 254 or BED. 
Exactly why this particular prescription, involving cp, always gives a number 
which perfectly decodes in the manner set out above, is a question wrapped 
up in the mysteries of higher mathematics and clock numbers. But work it 
does, no matter how large are the numbers with which we are dealing. This is 
the essential point because unless we move to extremely large numbers 
(using, of course, a computer to do the coding and decoding) we have not 
really achieved anything new. 

For example, the trivial exercise set out above is only a complicated 
manner of achieving a letter-for-Ietter substitution. In fact, it even fails in that 
because, since it counts (mod 14), it can have only 13 different remainders and 
there are 26 letters of the alphabet. even if we do not code punctuation marks, 
spaces, and the like. Also, it does not distinguish between 254 = BED and 
another possibility 254 = YO (Y being the 25th letter of the alphabet). This 
last problem is easily overcome by using two digits for each letter; i.e., A = 
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01, B = 02, C = 03, ... , X = 24, Y = 25, Z = 26. In this system BED has 
the numerical form 020504 while YO now appears quite different as 2504. 
This new system also has the added advantage that all the numbers from 27 
up to 99 remain open for other uses such as representing more exotic symbols 
such as !, @, ~, *, C ), $, %, &, 7, and many others. 

The enormous power of the asymmetric coding system appears in two 
separate ways when large numbers are involved. Suppose, for example, that I 
chose as my starting number (taking the place of 14 in the trivial example) a 
60-digit number formed by multiplying together two 3D-digit primes. I am 
now able to code 30 consecutive letters and symbols (two digits per symbol) 
at a time. The code is therefore no longer equivalent to a one-for-one (letter) 
substitution, but to a 30-for-30 substitution of an extremely unusual kind. For 
example, the change of a single letter, say letter number 14, in the original 
first 30 'letters' of text, may well alter all 30 two-digit 'characters' in the 
coded form of this same set. The code is therefore essentially unbreakable 
unless the secret decoding number (11 in my trivial example) can be deduced 
by the would-be code-breaker. I can derive it since I know the exact identity 
of the two original prime numbers involved. I can therefore calculate cp, and 
from it choose coding and decoding exponents exactly as was done in the 
trivial example. The code-breaker can do likewise only if he or she can 
factorize my 60-digit number into its two 3D-digit prime factors. 

Now the whole secret of success for the asymmetric coding system as 
described in the preceding paragraph is that the problem of testing 3D-digit 
numbers for primeness is (for a modern-day computer) a comparatively easy 
one, while the problem of factorizing a 60-digit number into two 3D-digit 
primes is an extremely hard one. I can therefore publish my 60-digit number 
as part of my 'public catalogue' information with reasonable confidence that, 
even though everyone knows what it is, no-one will be able to factorize it and 
'break' the code. However, spurred on precisely by this challenge to break 
asymmetric codings, factorization methods are improving by leaps and 
bounds at the present time (as will be discussed in the following chapter). As a 
result, 60-digit coding numbers have already become very 'shaky' from a 
security standpoint, and numbers up to and exceeding 100 digits in length are 
now preferred. 

This discovery of secure asymmetric coding schemes seems likely, in the 
near future, to completely revolutionize the science of cryptography. Prob­
lems do remain, perhaps the most serious of which is the complexity of the 
coding and decoding processes which, at the present time at least, use up far 
greater computer time than equivalent amounts of comparably secure codings 
of the symmetric variety. If this difference is inescapable, then it may mean 
that both the symmetric and asymmetric coding systems will continue to 
exist and be used according to the requirements of each particular application. 
Neither, as used in practice, is unbreakable (in spite of the newspaper banner 
headlines asserting just that when the discovery of asymmetric coding was 
first announced to the public in the late 1970s). Just as the symmetric 
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substitutional methods become unbreakable only in the limit of having a 
never repeating random key of sufficient 'entropy', so the asymmetric scheme 
becomes unbreakable only in the academic limit of using numbers of infinite 
length. The essential advantage of the latter is that the full key need be held 
only by the potential receiver. It is therefore exceptionally secure from a 
physical (as opposed to a technological) point of view. 
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Numbers and National Security 

What are the prime factors of 2193 -1 and who cares? Factors, you will 
recall, are those numbers which, when multiplied together, make up the 
number in question. With this definition the answer to the first part of our 
question is 13 821503, 61654440233248340616559 and the even larger 
14732265321145317331353282383, prime numbers all. The answer to 
the second part of the question is, incredibly, the United States Government. 
'You must be joking', I hear you say; but this, most certainly, is not a joking 
matter. The topic in question is computer security and the rapidly growing 
problems of computer fraud, theft and spying. 

Large computer systems need an adequate level of protection and, since 
such computers have not been around for too long, company executives and 
government officials are only just beginning to understand how to provide 
protection. In the past it was obvious to all that sensitive papers were to be 
locked up. It is not so easy to grasp how to secure electrons flowing in wires, 
or pulses of light travelling through hair-thin glass fibres. Computer systems 
have progressed rapidly from the era of large metal cabinets and whirling 
magnetic tapes all collected in one air-conditioned room (which could be 
secured by simply locking the door) to systems involving terminals which 
may be scattered throughout a building, a city, or even around the world. 

These networks are vulnerable in surprising and unexpected ways. Physical 
protection of the system is no longer possible, and focus switches to 
safeguards written into the computer programs themselves-for example, the 
use of secret codes such as those discussed in the last chapter. Associated 
situations may involve the transfer of funds between banks (major banks, for 
example, electronically process tens of billions of dollars a day for their 
customers) or may even involve national security. Couple this with the fact 
that there are more than 100000 computer sites in the United States and 
Europe that are constantly talking to one another-transferring funds and 
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transmitting critical data-and the extent of the problem becomes apparent. 
Some estimates of the losses attributable to computer-assisted crime already 
run into the billions of dollars per year. And what has all this got to do with 
factorizing numbers? Those of you who survived the ramblings of the last 
chapter to the bitter end already know. For the rest (shame on you!) I will 
briefly explain. 

About a decade ago, when the problem of computer security was first 
becoming apparent, a protective system was proposed that involved a coding 
scheme based on very large numbers which are made up of the product, that 
is, multiplication, of two large prime numbers. By this we mean that the code 
can only be broken if, given the product number, its two prime factors can be 
determined. The entire idea is based on the fact that, while large prime 
numbers are comparatively easy to determine by computer calculation (and 
are even easier to multiply together), the reverse problem of deducing large 
prime factors of large numbers is extremely difficult. For example, it would 
only take a few minutes, using the most modern computer algorithms, to 
locate two 40-digit prime numbers and multiply them together to form a 
number with about 80 digits. At the present time, the reverse problem of 
factorizing this 80-digit 'composite' number (by anyone other than the 
persons who carefully prepared it) is at the very limits of research capabilities. 
It follows that a coding system based on such a number would today be fairly 
secure. But for how long? Factoring research, once one of the very loneliest of 
mathematical backwaters, is now a veritable hot-bed of activity due almost 
entirely to its association with coding and computer security. We shall 
therefore reflect a little on numbers and their factors. 

Every whole number is made up out of prime numbers in a very special 
way such that each, in essence, has a unique personality. This occurs because 
every whole number can be formed by multiplying together one, and only 
one, particular set of prime numbers. As an example, the number 60 is 2 times 
2 times 3 times 5. These numbers, 2, 2, 3 and 5, are called the prime factors of 
60. Given the number 60, these factors can be found by testing each prime 
number in turn in increasing order (2, 3, 5, 7, 11, ... ) for divisibility without 
remainder until the smallest 'factor' is found, dividing by this factor, and 
continuing the process to larger prime values. Evidently, as the number gets 
larger it becomes more tedious to factor, although the method, in principle at 
least, is valid for any finite integer. If no factors have been found when all 
primes up to the square root of the number have been tested, then the number 
can have no factors other than itself and one. Accordingly, it must be a prime 
number. 

It follows that all numbers of comparable size (say with 10 digits) are by no 
means equally hard to factor. Those with many small prime factors will 
decompose into their ultimate fully factorized form much more easily than 
those which have no small factors. The latter kind are referred to as 'hard 
numbers' to factorize as opposed to 'easy numbers' of the same digit length. 
The brute force method of factorizing set out above soon becomes impractical 
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for 'hard numbers' as digit length increases. Thus, for example, that hard 
number referred to at the start of this chapter has 58 digits when written out 
in its full decimal form. Even using the fastest of modem-day computers 
which can perform, say, one division every nanosecond (or one billionth of a 
second) it would still take more than 35 000 years of computer time to find 
the factors shown by that method. Clearly, the factors were not obtained by 
that method. They were in fact obtained in 1983 in a little less than 100 
minutes by a group of workers at the Sandia National Laboratories in 
Albuquerque, New Mexico, using a powerful computer, but with a much 
faster method of factorizing. 

This new method was the most recent breakthrough in factoring dis­
covered by the Dutch mathematician Hendrik Lenstra. The method surprised 
and delighted the mathematical community both by its simplicity and 
ingenuity. Nevertheless, it has one unfortunate (or fortunate if you are a 
cryptographer) weakness in that it works efficiently only for cases which 
possess prime factors of significantly different sizes. For numbers whose prime 
factors are approximately equal in size, the new approach is only about as fast 
as the best previously known methods. Lenstra's breakthrough is of immense 
importance to number 'purists', since most numbers do not fall into the latter 
category. However, the large numbers used in asymmetric cryptography are, 
as discussed in the last chapter, purposely 'cooked up' to have just two prime 
factors of comparable size. They therefore still remain safe from the latest 
factoring breakthrough. But for how long? 

In the short term Lenstra's method will probably divide the factoring 
community into two parts; the purists and the code-breakers. Purists factor 
numbers simply because they are there. They are, it has been said, like stamp 
collectors who try to fill in missing gaps in their number collection. They 
build up lists of 'wanted' and 'most-wanted' numbers, examples which have 
long resisted factorization, and gradually 'knock them off' one by one. The 
code-breakers are more militant. Supported by the National Security Agency 
and the Defense Department, they have no special number favourites but are 
out to bring any number to its knees. The question they confront is 'is 
factoring necessarily a 'difficult' problem?'. Lenstra's method, which at least 
makes most factoring much easier than it was once considered, is really the 
first effort to make use of 20th century mathematics for factoring purposes. 
Previous methods used ideas from the 18th century (primarily those of Gauss). 
Could it be that Lenstra's efforts represent only a new beginning-a first 
focus of mathematical 'big-guns' on this until recently relatively neglected 
pursuit? Maybe the really big breakthrough in factoring has yet to come. 
Until someone actually proves that the factoring of 'hard numbers' is 
necessarily hard in some absolute sense, you have to wonder. If Federal 
money can crack the problem then, presumably, cracked it will be. Maybe 10 
or 20 years from now people will no longer be talking about factoring 
because it will be easy to do. If so, then neither will they be talking about 
asymmetric cryptography since its security will have disappeared. 
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In the light of all this glamour and news-focus on the number factorers of 
today, it is now only fair to go back and give a little credit to those earlier 
academics and pencil pushers who struggled with the problems of factoring 
long before it was profitable to do so. Let us go right back to the beginning. 
There have always been mathematicians and amateurs interested in factoriz­
ing even though, until the last few years, it was primarily the domain of the 
proven eccentric. The earliest tables of factors were constructed in association 
with research on prime numbers. Such a table for all the numbers up to 24 000 
existed as long ago as the early 17th century and, in the year 1668, it was 
extended to 100 000. Publication of these results was not easy since, not 
surprisingly, there was little interest (let alone demand) for such works among 
the population at large. In this context perhaps the most ill-fated table was 
that painstakingly assembled by the Viennese schoolmaster Antonio Felkel 
who, in 1776, with the assistance of a distinguished German mathematician of 
the day, managed to persuade the Austrian Imperial Treasury to finance its 
publication. It contained factorization decompositions for all numbers up to 
over 400 000. However, there were so few subscribers to the volume that the 
Treasury shortly recalled almost the entire edition and converted the paper 
into cartridges to be used for making war against the Turks. 

In the 19th century, mathematicians made use of a human lightning mental 
calculator named Z Oase to extend the factor table to 10 000 000. Such 
lightning calculators appear in history from time to time and normally have 
no great aptitude for formal mathematics. They possess the one very speCific 
and exceptional talent associated with rapid numerical calculation, usually 
achieving these mental feats by methods as unknown to themselves as to 
anyone else. The pinnacle of factorizing achievement of the 19th century was 
the work of a certain J P Kulik, a professor of mathematics at the University of 
Prague. His unpublished manuscript, the result of a more than 20 year hobby, 
covered all numbers up to 100000000. Unfortunately (and perhaps not 
surprisingly), it is now known to contain more than a few errors. 

Nothing approaching this magnitude of effort has ever, to my knowledge, 
been actually published. Also, as our interest expands to numbers of 20, 30, 
40 digits, or even longer, it is clear that no such table is feasible even in 
principle. Interest is rather transferred to the problem of factoring anyone 
particular integer, not in listing the factors of all numbers up to some limit. As 
the reader will have grasped by this time, there is no simple efficient means 
known for achieving such a task. Many methods have been developed over 
the centuries for factoring certain specific kinds of numbers but none is 
general. One can test the number in question by the various methods and 
hope--or nowadays, of course, one can turn to a machine for help. 

The earliest such machine which met with impressive success was con­
structed by Dr 0 H Lehmer of the University of California, and his father. It 
was assembled in the early 1930s (long before the invention of the transistor 
which ushered in the age of the electronic computer) and was wholly 
mechanical. Inside the machine were sets of identical disc gears each having 
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100 teeth and mounted rigidly on a common drive shaft. Each of these gears 
enmeshed at either end of a diameter to other disc gears with different prime 
numbers of teeth. Each of the 'prime number' gears had holes in them, one for 
each tooth, and a beam of light could shine through these holes when, and 
only when, they were lined up. Although the theory behind the exact 
operation of the device cannot be detailed here, the basic set-up was arranged 
such that a simultaneous alignment of all the holes (signified by a beam of 
light passing through and falling on a photodetector) located a successful 
factorization. 

The thrill of stepping into unknown number realms to search for divisors 
has been set out by the inventors themselves in an article entitled 'Hunting 
Big Game in the Theory of Numbers' in Scripta Mathematica 1 (1933). 'It 
would have surprised you', Dr Lehmer Senior said, 'to see the excitement in 
the group of professors and their wives, as they gathered around a table in the 
laboratory to discuss, over coffee, the mysterious and uncanny powers of this 
curious machine. It was agreed that it would be unsportsmanlike to use it on 
small numbers such as could be handled by factor tables and the like, but to 
reserve it for numbers which lurk as it were, in other galaxies than ours, 
outside the range of ordinary telescopes: 

The first task given to the machine 'in the outer galaxies of numbers' was 
to find the factors of the great unconquered factor 1 537228672 093 301 419 
of 293 + 1. This number was already known (by methods of the kind 
discussed in chapter 7) to be composite, but it had no small divisors within the 
reach of factor tables. In about three seconds, as Dr Lehmer recalls the event, 
the 'eye' of the machine at the side of the whirling wheels gave the signal and 
the machine came to a stop. Upon examination it was found that this 19-digit 
number had been decomposed into two prime factors 529510 939 and 
2903 110321. It was a breathtaking moment-success in three seconds on a 
problem which had defied solution for years. Excitement was indeed rampant 
in those early heady days of adventure into the unknown. Many unci imbed 
numerical mountains were surveyed and many finally conquered. Little did 
they know how relatively feeble these efforts would appear only a decade or 
two later when the real power of electronic computing was brought to bear 
on the problems of factoring. 

The modern era of factoring large numbers on digital computers really 
begins in 1971 when a famous 40-digit number succumbed. It may seem 
strange to the amateur that any large number should be termed 'famous', but 
mathematicians know which numbers are hard to factor and, at any given 
moment, they always have a short list of 'most-wanted numbers'. These are 
not just long numbers with no obviously small factors, but they are often 
numbers whose factors are important to engineers or pure mathematicians for 
doing specialized algebraic tasks. About this same time, the American 
Mathematical Society decided to sponsor mathematicians in their search for 
factors of large numbers. The idea was to make a table of all the factors of 
numbers of the form an + 1 and an -1 where a is a small whole number and n 
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is a large integer. These numbers have always been of particular importance in 
number theory and are also used by engineers to generate random numbers. 
The American Mathematical Society Table was to be called the Cunningham 
Project Table in memory of a British colonel who, around the turn of the 
century, compiled a partial table of numbers of this kind. With this induce­
ment, a concerted attack on these 'Cunningham numbers' was mounted 
during the 1970s, and methods of attack were refined. Numbers up to 50 
digits seemed possibly to be within reach, dwarfing the 20-digit specimens 
which yielded to Lehmer's bicycle-sprocket and chain contraption. 

Although today's computers are extremely fast they are still not, as we 
have seen, capable of finding factors of very large numbers by brute force 
methods. Special tricks have to be devised and, basically, what mathema­
ticians end up doing is taking the problem of factoring one large number and 
breaking it down into related problems of factoring thousands of smaller 
numbers. Not all these smaller numbers have to be factored completely; it 
may only, for example, be necessary to know if particular prime numbers do 
or do not divide them exactly. But each of these smaller problems provides 
some information about the original factorization and together they can be 
combined to achieve the ultimate objective. 

By constantly refining the computer process, the pursuers of factors had, by 
1982, reached what they considered to be the effective limit of the method 
using the fastest computer then available (the Cray 1). This limit brought 
within range hard numbers of approximately 50 digits. Unfortunately, the 
1982 list of 'most-wanted numbers' contained several of 60 digits or more and 
the prognosis seemed 'guarded' at best. Each autumn since about 1970 a 
group of mathematicians interested in the factorization problem had met in 
Winnipeg, Canada, to discuss progress, and the 1982 meeting therefore 
seemed destined to close-off the subject as far as the present generation of 
computers was concerned. It was agreed to go to press with a paper which 
summarized the situation and, interestingly enough, Dr 0 H Lehmer (inventor 
of the original mechanical factorizing machine of the 1930s) was still involved 
to the extent of being co-author. As one of the attendees at that Winnipeg 
meeting has said 'you could have collected money from anyone there if you 
bet that a 60-digit hard number would be factored in the next year'. 

What suddenly changed the picture was not faster computers but a 
developing interest in examining the details of exactly how the computer 
hardware performed its numerical tasks. The breakthrough occurred over a 
beer at the Winnipeg meeting. After a day at the conference, the factoring 
group just happened to be discussing the major difficulties associated with 
time limitations on computers in generaL and on the fast Cray computer in 
particular, when a Cray Research Engineer joined them. This fortuitous 
coming together of the minds soon had everyone buzzing with excitement 
because it transpired that the specific repetitious tasks which needed to be 
performed to attack factoring problems were ideally suited to the architecture 
of the Cray. Many thousands of very long numbers had to be modified many 
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thousands of times, but only at a small and very specific number of places 
each time. It so turned out that the Cray design enabled these changes to be 
made in a time proportional to the number of changes and not to the lengths 
of the numbers. 

This news sent the factoring buffs rushing back to their Crays and, sure 
enough, what the engineer had said was true. The advantages were immediate 
and obvious. Numbers with 52-, 53-, and 54-digit lengths were successfully 
factored in a few hours. These were numbers which had beaten earlier efforts, 
some of which had used in excess of 100 hours of computer time. Then, fresh 
from these successes, they took on a 58-digit one from the very top of the 
'most-wanted' list. It was that 2193 - I number cited at the very beginning of 
the chapter. And to the delight of alL after about eight hours, it was beaten 
and its prime factors discovered. However, since each three-digit increase in 
number length tended to more than double the time needed to factor the 
hardest numbers by this method, they were again approaching a time barrier. 
It looked as though 60 digits might be close to a practical limit. But then came 
further technical improvements and, using them, they refactored the old 58-
digit favourite 2193 - I in less than two hours-a further fivefold improve­
ment in speed. Shortly thereafter a 60-digit number was conquered, and then 
another 'most-wanted' number, this time with 63 digits, in a little over five 
hours. 

Since 1983, improvements in technique have continued apace. The compe­
tition is both between the algorithms used to attack the factoring problem 
itself. and between the computers which are best adapted to efficiently carry 
out these algorithms. Significantly, one very new computer which belongs to 
NASA (and is to be primarily used for analysing satellite data) seems to be 
ideally suited for factoring, possessing both the right architecture and the 
right kinds of languages. It is currently being programmed for factoring and 
the expectation is that it will routinely be able to do even the hardest 70-digit 
numbers in less than one hour. All but the very hardest will, using Lenstra's 
techniques, now fall in much shorter times. 

Perhaps the ultimate effort is being made by a group of researchers who are 
actually building their own computer, which will specifically be designed to 
do factoring, and only factoring, in the most efficient manner which they can 
devise. The effort is being made as a joint effort of Purdue University and the 
University of Georgia. The machine is to be called EPOC (for extended 
precision operand computer) in official publications, but is more popularly 
referred to as the Georgia Cracker. The expectation is that most numbers up 
to 80 digits in length will be within reach of EPOC using times of less than 
one day. 

However, the pinnacle of factoring achievement as I write (1989) has not 
been achieved by any single 'super-computer', but by the cooperative efforts 
of many. The latest trend has been to combine the calculations of large 
numbers of different computers, each working (usually during their off-peak 
night-time hours) on separate aspects of a single factorization problem. These 
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then report back, via electronic mail, to an operations centre in order to 
coordinate their activities. The most successful use of this approach, using 
hundreds of computers in several different countries over the period of nearly 
a month, was recently reported in a triumphant first-breaking of the 100-digit 
barrier. Specifically, the number was the 100-digit 'hard' part of 11 104 + 1 
which remains after the 'easy' factor 118 + 1 has been removed. Its factoriza­
tion into two (60- and 41-digit) primes was announced on 11 October 1988, 
at two o'clock in the morning, California time (milestone factorizations now 
being timed to the minute-somewhat like the birth of a child). Although this 
achievement could hardly be considered routine, it does suggest that any 
number much shorter than 100 digits may already be in danger. In fact, a 
successful 9S-digit factorization was also accomplished in 1988 by means of 
personal computers alone-albeit using a veritable army of them over a three 
month period! 

And where does all this leave national security? Well, the first asymmetric 
code developed for the government (called RSA after the last initials of its 
inventors) was based on the supposed inability of anyone to successfully 
factorize a hard 80-digit number. In the late 1970s, when the coding was 
being perfected, 80-digit numbers seemed very secure indeed. We now see 
that this code must already be a bit shaky. Consequently, it is now being 
proposed that newer codings be based on significantly larger numbers­
possibly up to 200 digits. Surely these would be safe-at least for a while. 

But is there necessarily a limit to the size of a number which can be 
factored? Is factoring necessarily hard? And even if it is, what about the 
foreseeable future? The limit, using present techniques, is essentially set by 
cost. As of today (1989) it has been estimated that it would take about ten 
million dollars to 'buy' the factorization of a 140-digit number in, say, one 
year. And what about that 200-digit number? By extrapolation, that would 
seem to come close to 100 billion dollars-an astronomical amount to be 
sure, but in truth only about half the annual interest on the national debt of 
the United States. 

But there are more than mere secret coding systems which depend on the 
inability of people to factorize large numbers. Methods ensuring fairness in all 
manner of business transactions via computer have also been devised using 
these same ideas. The problem is easy to state. How do you keep the other 
fellow from cheating when each of you is sitting in front of a computer 
terminal? Suppose, for example, that you want to exchange important 
business information. Who is to give his information first, and what is to stop 
the other party from then refusing to honour the exchange deal? In short, is it 
possible for two people to exchange secrets without the help of a trusted 
third party? And, anyway, how trustworthy is the third party? Once again 
factoring has come to the rescue. 

Let us set up the simplest possible situation involving fairness. I sit in front 
of my computer terminal and you in front of yours. We agree to a small 
wager on next week's football game, but favour the same team. Alright then, 
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let us toss a coin to see who takes which team. But who tosses, and how does 
the other person know for sure which way the coin fell? Can we be trusted 
not to cheat? The problem is overcome by the following ingenious math­
ematical method invented in 1981 by Manuel Blum of the University of 
California and Michael Rabin of Harvard. 

Just as was done for the asymmetric coding routine, I take two large prime 
numbers and multiply them together to obtain an even larger number which, 
due to its length (say 150 digits), is impossible to factorize. I transmit this 
number N to you and ask you to factor it. You cannot, of course; but you are 
able (that is, there are computer methods which enable you) to verify that the 
number given is not a prime and therefore really does have factors. You pick 
at random a number M which is less than NI2 and try it. Almost certainly it 
will not be a factor. You now square this randomly chosen number M and 
record (using the clock arithmetic of chapter 7) the remainder R left over 
when you count up to M2 in groups of N. You send this remainder R, and 
only R, back to me. Now there is a method, using the original factors (which 1, 
of course, know but you do not) for me to generate all the other numbers less 
than NI2 which lead to this particular remainder. Normally there are only two 
such numbers and therefore I find myself with two numbers, one of which is 
your arbitrarily chosen M, but I do not know which one. I now choose one of 
these and transmit it to you. This is the equivalent of my coin toss. In doing it 
I have exactly a fifty-fifty chance of transmitting back to you the number M 
which you originally chose. If I do, then you have no increase in information 
and still cannot factor my original number. You therefore lose. If, however, I 
choose the other number then, after transmission, you possess two different 
numbers connected with the same remainder. With this information a simple 
method exists which enables you now to factor my original number and you 
win. 

If you think carefully about this process, there is a fifty-fifty chance of 
either 'player' winning and there is no chance whatsoever of cheating. If I give 
you a number which has no non-trivial factors (i.e., is prime) you can check it 
out. If I give you back a number which does not have the appropriate 
remainder R, then again you can discover my effort to cheat. This basic 
procedure, which is called an 'oblivious transfer', provides the basis for 
protecting both parties' interests in all kinds of telephone or computer 
transactions. The whole concept of oblivious transfer can now be expanded to 
allow certified mail, such as contracts, to be sent directly from one computer 
to another without the need for an intermediary. The sender automatically 
gets a receipt that also confirms the nature of the message. The essential 
procedure is to encode the message as a string of digits in several numbers 
which are sent for factoring. Running through the 'coin toss' routine for each 
of these numbers eventually (possibly after several unsuccessful 'tosses' for 
some of them) enables the receiver to decode the message. The sender's 
record of the 'coin toss' events is his receipt. If there were a dispute, a judge 
could determine from the record of the transaction that enough information 
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was supplied to enable the receiver to decode the message, and therefore that 
the message must have been received. The procedure can even be embellished 
to cover the simultaneous signing of contracts at different locations. Although 
these ideas are all very new, the expectation is that they will become essential 
features of business transactions in future decades-unless, of course, the 
unthinkable happens and someone devises a simple routine for factorizing any 
number, no matter how long or 'hard'. Perhaps this is one case where 
mankind will benefit most from mathematical failure. 



10 

Are Four Colours Enough? 

Few things are more associated with childhood than the activity of colouring 
a picture book. Adults just do not colour picture books. Stressing this point is 
the political joke concerning the candidate who, wishing to emphasize the 
naivety and immaturity of his opponent, remarked that rumour had it that a 
fire had recently destroyed his opponent's house and library 'causing the 
unfortunate loss of both his books, one of which he had not even coloured 
yet!' Assuredly, then, colouring at its most rudimentary level is not generally 
considered to require great intellect. 

The only basic principle involved in colouring a picture from a picture 
book seems to be that any two areas which possess a common boundary line 
(and which we shall refer to as being adjacent) should have a different colour. 
With this as the only restriction, brightly coloured pictures involving every 
colour in the box can now be created with varying degrees of subtlety and 
aesthetic appeal. From this delight, only a mathematician could extract a 
problem. Nevertheless, after a while, one question does suggest itself to the 
more mathematical rather than artistic practitioner; what is the smallest 
number of different colours necessary to complete any conceivable picture? 

A little experimentation quickly reveals that three colours are certainly not 
enough. On the other hand it does seem difficult to create a picture which 
needs as many as five. The answer, therefore, is probably four. In any case, I 
think you will agree, whatever is the correct answer it does not seem to be 
one of the world's weightier mathematical concerns. But how deceiving first 
impressions can be. This so-called 'four-colour problem' defeated the world's 
best mathematical minds for well over 100 years! Even today it still creates a 
distinctly uneasy feeling among many of the 'old school' of mathematicians 
because its proof, which finally appeared in 1976, requires a vast amount of 
machine computation. It can therefore only be verified by experts who have 
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access to powerful computer electronics. What sort of mathematical proof is 
that? And why should anyone believe a computer anyway? 

The controversy arises because this is the first time in which a computer 
has been involved in an essential fashion in an important mathematical proof. 
Of course, one can always hope that a much shorter and simpler proof is still 
'out there' somewhere, just waiting to be discovered by a new generation of 
fertile mathematical minds. However, it is quite possible that no easier proof 
exists, in which case the four-colour problem has (among all its other claims to 
fame) given birth to a new kind of mathematical proof-one whose essential 
complexity requires the use of fast computing facilities. Unsettling though this 
may be to those of us who sense something of a 'loss of innocence' in all of 
this, such could well be the wave of the future. 

In spite of the 'tour de force' aspects of its final solution, the four-colour 
problem had much humbler beginnings. It was in the year 1852 that a certain 
21-year-old Francis Guthrie, who had recently been a student in London, 
wrote to his brother Frederick commenting that it seemed to him that every 
map could always be coloured with only four colours if adjacent countries 
were required to have different colours. By adjacent countries he implied 
those having a common border of finite length, excluding the case of contact 
at a point. Thus, for example, one can colour a chess board with only two 
colours, even though it possesses many points at which four different squares 
touch. Also, by countries he implied single areas completely surrounded by a 
border, making the rules exactly those of the colouring book situation with 
which we introduced the chapter. 

Now Francis' brother was still at University College, London, and was 
attending the lectures of a certain Professor DeMorgan, a prominent math­
ematician of his time. It was to this learned gentleman that Frederick took his 
brother's comment, since he could not find any way to determine for himself 
whether the four-colour conjecture was true or false. It was certainly quite 
clear that at least four different colours were necessary because it was quite 
easy to draw a pattern of four areas (or countries) each of which was adjacent 
to the other three. An example is shown in figure 9 with colours labelled A, B, 
e D. But how would one proceed from here? 

Figure 9 
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Professor DeMorgan took up the challenge and proceeded to investigate 
the possibility of having a situation in which five countries were each 
neighbours of (that is, adjacent to) the other four. If such a configuration could 
be drawn, then it would immediately be apparent that at least five colours 
were necessary. However, not only was OeM organ unable to find an example 
of this type of connection, he actually succeeded in proving that no such set 
of five regions could possibly exist. This was a very considerable achievement 
and at first he was led to believe that with it the problem was solved. But 
unfortunately it is not, and in order to see why, let us go back to the case of 
figure 9 with four regions each in contact with three others. 

Suppose that we draw a map which does not contain any regions like 
figure 9. Would such a map be colourable with only three colours? It is very 
easy to show that the answer is 'probably not!' Why not? Well, consider the 
map drawn in figure 10. It contains six countries, and within it there is no 
collection of four in which each is adjacent to the other three; and yet the map 
still requires four colours-three for the countries in the outer ring and one 
for the country in the centre. It follows that maps requiring four colours do 
not necessarily have to contain a configuration of four countries each adjacent 
to three others. By analogy, it may therefore equally well be true that maps 
requiring five colours do not necessarily have to contain that situation which 
Professor DeMorgan proved to be impossible-namely a group of five 
countries each adjacent to four others. The possibility that more than four 
colours were necessary for some maps consequently remained. The door was 
still ajar, but it is doubtful that any of the original participants in the drama 
would have believed that it would remain so for their lifetimes and some 
generations beyond. 

Figure 10 

The story now moves on some twenty years or more to 1878 in which 
year the eminent British mathematician Arthur Cayley, unable to determine 
for himself the truth or falseness of the four-colour conjecture, decided to set 
the problem before the London Mathematical Society. Shortly thereafter, one 
of the members of that Society named Arthur Kempe (who was a lawyer by 
profession) published a paper claiming to prove that the conjecture was 
true. 
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Although the full details of this proof cannot be given here the steps 
involved are easily explained. Firstly, it was useful to introduce the concept of 
a 'normal' map. A map is called normal if no more than three countries meet 
at any point and if no country completely surrounds any other. In this sense 
(thinking in terms of states rather than countries) the map of the continental 
United States is not quite normal since the four states of Utah, Colorado, 
Arizona and New Mexico all meet at a single point. The country of Lesotho, 
which is completely surrounded by South Africa, is an example of the other 
kind of non-normal situation. Clearly, these situations are rarities in the real 
world of maps, and it is therefore comforting to find that they can 
immediately be excluded from consideration because it is very easy to modify 
any non-normal map to produce a closely related normal one which requires 
at least as many colours. If, for example, a map requiring five colours does 
exist, then a normal map requiring five colours also exists. We need therefore 
concern ourselves only with normal maps. 

With this simplification Mr Kempe then proceeded to prove that every 
normal map must possess at least one country with five or fewer neighbours. 
He then showed that if any map requiring five colours had a country with 
fewer than six neighbours (which as he had just shown, it must have) then 
another five-colour map could be constructed from it which contained less 
countries overall. The argument then was the classic one known as 'reductio 
ad absurdum' or literally reducing the situation to an absurdity. For example, 
taking the new smaller five-colour map, one could repeat this operation to 
obtain yet another with still fewer countries ... and so on and so on ad 
infinitum. However, if in this way we start out with a non-infinite number of 
countries, then we must eventually reach a map with so few countries that 
five colours cannot possibly be needed. The argument is therefore reduced to 
an absurdity which implies that the original supposition, namely the existence 
of a map requiring five colours, must necessarily be false. 

The problem therefore appeared to be settled and the 'proof' was accepted 
for a little over 11 years, until the year 1890 to be precise when, horror of 
horrors, an error was discovered and, even more distressingly, an error which 
did not seem at all easy to rectify. What had gone wrong? Well, Kempe's 
'proof' consisted of two parts and the first, namely the demonstration that 
every normal map must contain at least one country with five or fewer 
neighbours, was sound. It was therefore in the 'reducing' part that the 
difficulty arose. The reducing argument is trivial for countries with only two 
or three neighbours (the one neighbour situation is equally trivial and has 
already been used to eliminate non-normal maps) so that we can easily follow 
it. 

If there exists a map which requires five colours, then there must also exist 
a map of this kind with the fewest possible countries. Consider a country in 
this 'smallest' five-colour map which has only two neighbours, and centre all 
attention on this group of three countries. Suppose we remove the border 
with one of the two neighbours, thereby 'uniting' two countries into one. The 
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new map has one fewer country than the smallest five-colour map and must 
therefore by definition be colourable with four colours. Let us so colour it and 
then replace the border. The recreated country is in contact with only two 
others whose colours are, say, colours A and B of the four choices available A, 
B, C, D. It may therefore be recoloured in either C or 0, making the original 
map colourable using only four colours, in contradiction to the initial five­
colour assumption. It follows that no smallest five-colour map can contain a 
country with two neighbours. 

The same trivial argument can be carried out for a country with three 
neighbours, since we still always have one of the four colours A, B, C, 0 left 
to colour it with. The situation for a country with four neighbours is a little 
more difficult and requires the examination of more than just the immediate 
neighbours. In particular, it becomes necessary to show that it is always 
possible to avoid colouring the four adjacent neighbours with four different 
colours, in which case the fourth colour is always available to use for the 
centre country in question. Kempe, however, was able to produce a simple 
and extremely elegant proof of this which was also quite sound. It was in the 
final, and most involved, argument for a country with five neighbours, that an 
error was discovered in Kempe's work. The possibility of the existence of a 
five-colour map therefore still existed, even though no-one had actually been 
able to discover a specific example. 

As the year 1890 drew to a close, the situation was therefore as follows. At 
least four colours were undoubtedly needed to colour a general map (or 
picture book). If a map needing five colours did exist, then the smallest such 
map had to contain at least one country with five neighbours, and none with 
less. The final step in the 'four-colour' proof could therefore focus on this 
country with five neighbours. Can such a country, together with its local 
environment, always be 'reduced' in the sense that one boundary (i.e., 
country) can be removed from the supposedly smallest five-colour map 
without decreasing the number of colours necessary to colour it? If it can, 
then no smallest five-colour map can exist, and four colours are indeed 
enough! Kempe's efforts in this regard, though flawed in some final details, 
are instructive. 

The method of approach for the five-neighbour situation contains two 
parts. Firstly, an examination is made of the possible local configurations of 
countries which can exist in the general neighbourhood of a five-adjacent 
complex. From this one extracts what is called a 'complete set of unavoidable 
configurations', which is a set of local patterns of countries, one at least of 
which must occur in a real map. The second part is to establish that every 
single one of the patterns in this set can be reduced in the now familiar sense 
that one country can be eliminated without decreasing the number of colours 
necessary for colouring. Now there are an enormous number of quite separate 
unavoidable sets of configurations, some with few members, others with 
thousands of members. Kempe chose one with relatively few members and 
claimed that each was reducible. Unfortunately, one member could not be 
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reduced in the manner which Kempe claimed-in fact it could not be reduced 
at all. On such a single weak link in an otherwise impressive chain of 
reasoning did the whole proof collapse. 

In spite of Kempe's gallant failure, his approach to the problem remained 
by far the most promising available and was taken up again and again by 
many mathematicians over the next few decades. Most of the earlier work 
centred on reducibility; that is, of looking at various commonly occurring 
patterns and establishing whether or not they are reducible. In this manner a 
whole catalogue of reducible configurations was gradually built up. Those 
patterns for which no reducibility argument could be found had then to be 
avoided in choosing a set of unavoidable configurations. Some success was 
achieved for maps with not too many countries contained in them since, for 
these, the number of possible patterns (or configurations) is much smaller. By 
the year 1950 it had been established that every map with fewer than 36 
countries could be coloured with only four different colours. 

With respect to the general problem, however, things did not look good. 
Sets of unavoidable configurations with a manageable number of members 
always seemed to contain some which were irreducible. Sets which avoided 
these problem members always seemed to have many thousands of compo­
nents, each of which would have to be proved reducible before the four­
colour problem was solved. However, after 1950 a new ingredient was added; 
high-speed digital computers were becoming available and the possibility of 
adapting the problem for computer attack became attractive. The extreme 
pessimism of those earlier researchers whose efforts were restricted to hand 
computations now had to be re-evaluated. 

Computer programs were soon developed to test for reducibility (at least 
for the more obvious forms of reducibility) and great progress was soon made 
in designating and cataloguing ever larger numbers of reducible configur­
ations. In fact, although certain improvements in the attacks on reducibility 
have since been made, all the ideas on reducibility needed for the proof of the 
four-colour theorem were basically understood by the late 1960s. Unfortu­
nately, comparable advances in the other phase of the operation-namely, the 
finding of unavoidable sets of configurations which did not contain any 
'problem members' for which reducibility was doubted and certainly not 
proven-had not been made. Also it seemed as though configurations 
involving up to at least 18 countries would have to be included and, with 
configurations of this size, one ran into a computer-time bottle-neck. The 
problem was that the computer tests for (simple) reducibility took a period of 
time which increased fourfold for every country added to the configuration. 
Now although configurations of up to 11 or 12 countries could be handled at 
acceptable time and expense, this was close to the limit for the computers of 
the late 1960s. Indeed, it was estimated at the time that a single reducibility 
test for an 18-country pattern would take about 100 hours of computer time 
and much more storage than was currently available. 

Further progress seemed to require a wait for the development of faster 
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computers with larger memories. How much bigger and faster was not really 
known since no-one knew with any great assurance how many patterns 
would occur in a reducible unavoidable set, but it seemed likely that the 
number would be in the thousands. This was the situation when Kenneth 
Appel and Wolfgang Haken took up the problem at the University of Illinois 
in 1972. They began by looking for unavoidable sets which avoided members 
with more than a certain limiting number (say 15 or 16) of countries. These 
sets they called 'good configurations' in the sense that they might possibly, in 
the not too distant future, be testable for reducibility in a realistic time. 

Over the next three years or so they continuously improved their 
techniques untiL by the summer of 1975, they believed that they finally had a 
good chance of mounting a successful attack on the four-colour conjecture. 
From January to June 1976 the last details of the procedure were refined using 
the IBM 360 computer at the University of Illinois. Finally, in July 1976, the 
final triumph was announced. An unavoidable set of reducible configurations 
had at last been found. Over 1000 hours of time on three computers were 
used to finally pin it down, and the task required a demonstration of the 
reducibility of about 1500 configurations. 

The programs and computer solution have since been checked by other 
groups and verified completely. Four colours do indeed suffice, as the proud 
Post Office of Urbana, Illinois, firmly stamped as part of its cancellation 
postmark on all the mail leaving that city in the days following the 
announcement of success. Why then do we still feel a bit uneasy about the 
whole thing? It is, of course, that none of us reading this or any other book 
can follow in detail or check out the proof for himself. 

There is no denying that acceptance of this computerized proof involves 
certain acts of faith which are not necessary in more normal proofs. This is 
because, even if I read and understand every single line that the proof 
contains, I still have to believe that the computer is doing correctly the 
calculations which it is supposed to perform. So my belief in the proof of the 
four-colour conjecture is reduced to a belief that computers have been 
correctly programmed and carry out their calculations without error. I can test 
this (should I be an expert) only by appealing for assistance from another 
computer. It is therefore in some sense 'out of my hands'. 

One mathematician has put it as follows: 'When I first heard that the four­
colour theorem had been proved, my reaction was "Wonderful! How did 
they do it7". I expected some brilliant new insight, an idea whose beauty 
would transform my day. But when I learned the truth, I felt disheartened. My 
reaction was "So it goes to show that it wasn't a good problem after all" '. 
Unquestionably, a sense of disappointment remains. Even though we might 
accept the fact that the four-colour conjecture is true on computer evidence, 
there is a gnawing feeling that a simpler, more elegant proof must surely be 
around somewhere, just waiting to be discovered. That may well be the case, 
but unfortunately it is by no means certain. It is now known that mathe­
matical problems which are simple to pose do not necessarily possess 
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proofs which are simple to understand. In some cases, amazingly, proofs may 
not even exist in principle, even though the assertion stated in the problem is 
true. 

The conclusion is that some simple conjectures may indeed be true, but 
either may not possess a proof at aIL or if they do, may not have a simple 
proof in the normal sense. We now know that the four-colour problem does 
have a proof; we still do not know whether it has the sort of proof which can 
be verified by pencil and paper. But even if it does, maybe the time has come 
to recognize the possible existence of classes of problems which are better 
suited for attack by computer techniques. These would possess proofs which 
do not require the use of strong theoretical tools but have solutions of this 
new type, requiring individual steps which are very easy-but so many of 
them that the completion of the project is just not possible by pencil and 
paper in a human lifetime, or even in the lifetime of the universe. 

There is, perhaps, an intuitive feeling that the verification of one com­
puter's results by another's is still not satisfactory in some sense. But this 
argument is weak since, in calculations requiring excessive amounts of 
straightforward computation, computers are likely to be far more accurate 
than humans. A parallel argument, that all existing proofs (except the four­
colour proof) are acceptably short and directly verifiable by humans, is also 
easily countered. After aIL if you only use tools which are capable of 
providing short proofs, then that is all that you are likely to get. Other 
problems, accessible to computer attack alone, will simply be shelved in the 
'unsolved' box forever. 

So what, if anything, has come out of all of this effort? Quite obviously, 
whether or not a map requires four or more colours is of very little 
importance to map makers themselves. Has anything of serious mathematical 
consequence emerged? The answer, fortunately, is yes! One very important 
offshoot of the 120-year attack on the four-colour problem has been the 
development of a completely new branch of mathematics known as 'Graph 
Theory'. It concerns itself with ways of connecting paths between points in 
particularly efficient ways. How, for example, should we create airline routes 
or telephone lines which will serve the most people in the most efficient (that 
is, least expensive and most convenient) manner? What is the most efficient 
rerouting within the system if a problem should develop from overloading or 
breakdown? Such questions are of enormous importance in today's transpor­
tation and communications industries. In so far as progress has been made 
along these lines to make our lives more enjoyable, the four-colour problem 
has made a Significant contribution. 

However, over and above this, Drs Appel and Haken, who finally 
computer-solved the problem, hope that it will lead to an eventual cooper­
ation, rather than confrontation, between the traditional methods of pure 
mathematics and the developing techniques of machine computation. Histori­
cally, they say, there is a precedent. From the time of the early Greeks right 
up until the Middle Ages, mathematics was considered to be a superior 
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science to physics. It, after aIL was built upon the firm foundations of logic 
and simple 'self-evident truths', while physics required messy experimentation 
and involved less-than-precise answers containing errors of measurement. 
Such an attitude set back the development of experimental physics for 2000 
years until the arrival of Galileo Galilei (1564-1642) who, with a single 
measurement, disproved the erroneous assertions of Aristotle concerning the 
free fall of bodies under the influence of gravitation. These assertions of 
Aristotle were the result of pure thought processes alone and, on the strength 
of the assumed superiority of such abstract reasoning, had remained unchal­
lenged for 20 centuries. 

As soon as the importance of experimentation was accepted, the two 
disciplines (mathematics and experimental physics) achieved far more via their 
interaction than either could have achieved alone. Appel and Haken feel that 
their computerized solution to the four-colour problem may help to highlight 
the limitations of traditional approaches to mathematical proofs, and hope 
that it will lead to a successful cooperation in the future between man and 
computer within the framework of pure mathematics. 

An interesting postsLript to all of this concerns the fact that the four-colour 
restriction refers only to maps drawn on a plane or sphere (or surface which 
can be derived from either of these in a continuous deformation). For other 
fundamentally more complicated surfaces containing handles or twists, more 
colours are needed. Way back in the 1890s, Percy Heawood (who had first 
pointed out the error in Kempe's 'proof' of the four-colour conjecture) 
investigated some of these doughnut-like generalizations of the original 
problem. If a number n of non-intersecting tunnels are bored through a 
sphere, a surface of 'genus n' is said to be formed. The sphere is therefore a 
surface of genus 0, and a doughnut or a lifebelt a surface of genus l. 
Surprisingly, Heawood showed that the colouring problem for these genus 1, 
2, 3, 4, ... surfaces was simpler than that of the original four-colour problem, 
and he gave the general solutions for these seemingly more complicated 
situations. 

Thus, the number of different colours required to colour any map on a 
doughnut surface was known some 80 years before the equivalent answer for 
a flat surface or sphere. For the record the answer is seven. Examples have 
been given in which all seven colours are needed, although they are by no 
means easy to invent. One of these sleepless nights you may like to inflate an 
inner tube and try your luck. One way is to construct a pattern in which each 
region of a given colour touches six other regions of different colours. On the 
other hand, as was demonstrated earlier in this chapter, it may be possible to 
stumble upon a more subtle arrangement (analogous to the four-colour 
pattern of figure 10). The real enthusiast will naturally not be satisfied until he 
or she has located examples of both types. It is certainly an interesting way to 
get to know your inner tube better. 

Amazingly, except for the genus 1 (doughnut) surface, Heawood's proofs 
were also incomplete, although all his answers turned out to be correct. In 
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fact, he presented a general formula which gave the largest number g(n) of 
colours needed to colour any map on a genus n surface, valid for any n-value 
larger than zero. Thus, for example, g(I) = 7, g(2) = 8, g(3) = 9, ... (and no!, 
the sequence does not continue forever in the simple manner suggested by 
the first three terms). Heawood's oversight was that, although he proved that 
no map of genus n would ever need more than g(n) colours, he did not 
establish (except for the doughnut) that less than g(n) colours might not 
sometimes suffice. For example, it is very easy to prove that no more than five 
colours are ever necessary to colour a map on a plane or sphere but this does 
not establish the five-colour theorem for conventional maps. Happily, it 
turned out that Heawood's numbers were all correct although the final proof 
did not appear until 1969. Finally, it is interesting to note that, by sheer good 
fortune, if n = 0 is substituted in Heawood's g(n) formula, it also correctly 
gives the four-colour answer g(O) = 4. Heawood, however, was never under 
any illusion that his method could be applied to that seemingly simplest 
geometry of all-genus zero-which gave birth to the infamous four-colour 
problem. 
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Rulers, Ominoes, and 
Professor Golomb 

Few objects are more familiar than a one foot ruler. It enables us to measure 
and, in particular, if we focus attention (only) on its one inch markings, then it 
allows us to measure any integer distance between one and 12 inches. There 
is nothing very earth shattering about that, you may be saying to yourself; 
but have you ever considered the fact that this particular scheme is not a very 
efficient one? Why, if we label the 13 inch markings as ° (say at the left-hand 
extreme of the ruler), through 1, 2, 3" ... all the way out to 12 at the right­
hand extreme, then there are, for example, no less than seven different ways 
of measuring a length of six inches. We could, you see, use any of the 
combinations of inch markings (0,6); (1,7); (2,8); (3,9); (4,10); (5,11); or (6,12). 
Things are almost as bad for longer distances (there are four different ways of 
measuring a nine inch length) and are even worse for shorter ones. It is 
particularly easy to see that a single inch, for example, can be measured in no 
less than 12 ways. 

Alright, you say, I accept that! But why should it bother me? I shall come 
to this point later in the chapter. But first, if you are willing to accept my 
promise of an eventual explanation, we can perhaps give some thought to the 
ways in which this general redundancy of measurement in all conventional 
rulers can be reduced, or even avoided altogether. As a general policy it is 
always wise to start such a project by thinking about the simplest possible 
cases. In the present context the ultimate in measuring simplicity is a ruler 
containing only two marks (which we label ° and 1) just one inch apart. This 
is the 'trivial prototype ruler' which is, in spite of being of ridiculously little 
practical use, nevertheless perfectly efficient. By this I mean that it can 
measure its one possible distance in only one way. 

The next step up in complexity is to think of a ruler with three markings. If 
we place them at positions 0, 1 and 2 (that is a two inch ruler with marks at 
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each end and one in the middle), we have already generated an inefficient 
measuring device since it can measure a one inch distance in two different 
ways (0,1) and (1,2). This is a depressing situation so early in the game but do 
not despair, we are not yet defeated. Suppose that the three marks are placed 
instead in positions 0, 1, and 3. This is a three inch ruler with three marks on it 
and is rather clever since it can measure one inch (0,1), two inches (1,3) and 
three inches (0,3), but each in one way only. It is therefore perfectly efficient 
and is our first non-trivial example of a perfect ruler if, by the label 'perfect', 
we imply a ruler of general length N (say inches) which is capable of 
measuring all integer lengths from 1 up to N each in one way only. It follows 
that there are perfect rulers of length 1 and 3 but not 2. 

A little bit of trial and error considering rulers with four marks soon 
establishes that there are no perfect rulers of length 4 or 5, but that the next­
longer perfect ruler is one of length 6 with four marks at positions 0, 1, 4, 6. It 
can measure one inch (0,1), two inches (4,6), three inches (1,4), four inches 
(0,4), five inches (1,6) and six inches (0,6) and again each in only one way. 
This idea of perfect (i.e., perfectly efficient) rulers is an invention of Solomon 
Golomb, professor of mathematics at the University of Southern California. 
Surprisingly, they are not merely of academic interest. They have already 
been applied in coding theory, X-ray crystallography, radio astronomy and 
other fields in ways we shall expand upon when we have learned a little more 
about them. 

The first further bit of information which we learn about them is seemingly 
the death knell of the entire subject, since a rather elegant proof has been 
given by Golomb that the three perfect rulers set out above are, in fact, the 
only three which exist. We may list them by their unit markings as follows 

0, 1 
0,1,3 

0,1,4,6. 

A ruler with five marks can (if you think about it) measure 10 distances. If it 
were perfect it would therefore be of length 10, measuring 1,2,3, ... up to 10 
units, each in one way only. However, for rulers with more than four marks, 
perfection is lost in one of two possible ways: either some distances can be 
measured in more than one way or some distances just cannot be measured at 
all. Given this rather unhappy situation, mathematicians, inspired by Professor 
Golomb's ideas, have forged ahead to look for the next best thing. For 
example, the next best thing to the non-existent perfect five-mark ruler might 
possibly be defined as one that contains each measurable distance only once, 
but which (unavoidably) cannot measure every possible distance up to the 
length of the ruler. But this alone is not a useful definition because there are 
countless numbers of this kind which can be invented at will. Consider, for 
example, the five-mark ruler 0, 4, 10, 27, 101; numbers which I have just 
picked out of the air. It can measure the distances 4 (0,4), 6 (4,10), 10 (0,10), 
17 (10,27), 23 (4,27),27 (0,27), 74 (27,101), 91 (10,101), 97 (4,101), and 101 
(0,101), each one way only. What is a challenge is to find the very shortest 
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ruler which contains five marks and is not 'redundant', by which we mean 
does not measure anyone distance in more than one way. 

The shortest five-mark ruler is in fact of length 11, just one unit longer than 
the 'hoped-for' perfect 10. It has marks at the positions 

0, 1,4,9, 11 

and can measure all distances up to 11 with the exception only of 6. This 
comes as a bit of a disappointment if we are not previously aware of 
Golomb's proof, since the search for a possible perfect length-lO five-mark 
ruler seems to be going well if we set off systematically in increasing lengths 
starting from the known perfect four-mark ruler of length 6. Thus, for 
example, we can find a five-mark length-7 ruler 

0, 1,3,6, 7 

which has a threefold 'redundancy' in the sense that it can measure three 
lengths (namely 1,3, and 6) in each of two separate ways. Next we can find a 
five-mark length-8 ruler 

0, 1,4,6,8 

which is only twofold redundant, measuring 2 and 4 in two separate ways, 
and then a five-mark length-9 ruler which is only onefold redundant. The latter 
has marks at 

0, 1, 4, 7, 9 

and, if you check it out, measures all the lengths between 1 and 9 in one way 
only with the exception of 3 which can be achieved in two ways (1,4) and 
(4,7). 

The trend seems inescapable. The next step just has to be a five-mark 
perfect length-lO ruler with no degeneracy. But try as we will we cannot find 
it, because It simply does not exist. Oh! cruel world. In order to get a length-
10 ruler which will measure all lengths from one to 10, it is necessary to 
introduce a sixth mark, e.g., 

0, 1, 3, 6, 8, 10 

and the ruler is then embarrassingly redundant; in fact fivefold redundant 
since it can measure 3, 5 and 7 in two ways each, and 2 in no less than three 
ways. This seems incredibly wasteful. Numbers really should be better 
behaved than this. But swallowing this bitter pill of experience we can now 
march on to six-mark rulers. First we find one which is fourfold redundant, 
e.g., 

0, 1, 4, 7, 9, 11 

of length 11, followed by a threefold redundant one 

0, 1, 4, 7, 10, 12 

of length 12. 
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Again we seem to be marching encouragingly towards a perfect six-mark 
length-IS ruler with no degeneracy, but once again it does not exist. Note, 
however, that at this stage we have answered at least one question of practical 
interest. It is 'how many of the 13 marks on a one foot ruler (marked in 
inches) can be erased without affecting its ability to measure all integer 
lengths between 1 and 12 inches?' The answer is that we can remove seven of 
them, leaving just the six marks, for example, shown in the pattern 0, 1, 4, 7, 
10, 12 set out above. This will measure 3 (inches) in three different ways: (1,4), 
(4,7), (7,10); 6 in two ways, (1,7) and (4,10), and all the others in one way 
only. 

In general the shortest ruler with n-marks is called the 'n-mark Golomb 
ruler' in honour of its inventor. The six-mark Golomb ruler proves to be of 
length 17, rather than the hoped-for perfect 15, and all the Golomb rulers 
with up to 15 marks are now known. Beyond 15 marks we enter the zone of 
active research for which the Golomb rulers are, at the time of writing, not yet 
known. In the listing below we show all the known Golomb rulers: 

Number of marks Golomb length 

2 1 
3 3 
4 6 
5 11 
6 17 
7 25 
8 34 
9 44 

10 55 
11 72 
12 85 
13 106 
14 127 
15 151 

For the record the largest known {IS-mark) Golomb ruler has marks at 

0,6, 7, 15, 28, 40, 51, 75, 89, 92, 94, 121, 131, 147, lSI. 

The gradual increase in the length of Golomb rulers as the number of marks 
progresses is a fairly steady one although it has no easily recognizable 
pattern. For example, the increase in length in going from one Golomb ruler 
to the next larger generates the sequence 

2,3,5,6,8,9, 10, 11, 17, 13,21,21,24,7, 

and already the 'smoothness' of the pattern is beginning to break up. That 13, 
for example, between the 17 and 21, would certainly not have been guessed 
in advance. And how long will the next discovered {I6-mark) Golomb ruler 
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be? Using the difference pattern one might guess at some value in the range 
173-178. A 16-mark ruler of length 179 is already known which has no 
redundancy. It might just possibly be the next 'Golomb' but computers have 
not yet settled the question for sure. 

Moving into the 'research zone', we list below the shortest known (1989) 
non-redundant rulers for rulers with between 16 and 24 marks. 

Number of marks Shortest known Lower bound 

16 179 154 
17 199 177 
18 216 201 
19 246 227 
20 283 254 
21 333 283 
22 358 314 
23 372 346 
24 425 380 

Included in this table is a column labelled 'Lower bound'. This results from 
a known formula which locates the shortest length which a Golomb ruler with 
any particular number of marks can possibly have. For the 16-mark ruler it is 
154 so that, as of this writing, the 16-mark Golomb ruler can possibly be of 
any length between 154 and 179. 

We note that, in the research zone, the gaps between the shortest non­
redundant rulers known and the lower bound (when expressed as the ratio of 
these two numbers) vary between limits of about 1.075 and 1.177. If these 
ratios are any indication, the 'best' estimates (lowest ratios) in the zone of 
research are for 18-mark and 23-mark rulers, while the worst (highest ratio) is 
for the 21-mark ruler. Although, by the time you read this book, the research 
will almost certainly have progressed further, there is opportunity for the 
amateur here. In cooperation with a personal computer it is quite likely that 
the enthusiast can improve on some of the 'shortest' rulers in the above table, 
although a demonstration that the actual Golomb ruler has been located is 
probably beyond all but the most powerful of today's computers. Unless, of 
course, someone comes up with a method of 'Golomb testing' more efficient 
than the present pedestrian procedure of simply generating and checking out 
every possible candidate. 

Although all of this is quite fun as a computational exercise it is, believe it 
or not, also of practical scientific use. Not that usefulness has traditionally 
been a requirement for probing interesting properties of numbers. For the true 
'number buff', numbers at play are every bit as intriguing as numbers at work. 
To this extent, the practical significance is mere 'icing on the cake'. One of the 
more recent applications has been in the field of radio astronomy, a science 
which studies the long-wavelength electromagnetic radiation coming to Earth 
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from distant 'radio sources' way out in space. These sources are so far away 
that, to terrestrial observers, they are the very best approximation in the sky 
to 'point sources' or, if you like, objects with no measurable area. If only 
scientists can measure with extreme accuracy the direction in space from 
which such a radiation is coming, then it can be used to compute earth lengths 
(like the distance between the top of the Empire State Building in New York 
and the top of the Eiffel Tower in Paris) to an accuracy of inches. 

The radiation, when it reaches Earth from its travels over countless light 
years of distance in space, is in the form (as far as our measurements are 
concerned) of exactly parallel wavefronts; like parallel waves breaking at an 
angle to the shore. To measure the angle at which they arrive from space 
(with respect to ground level in the vicinity of the experiment) a number of 
antennas are placed in a straight line several miles long. The precise time at 
which each wave in the incoming signal arrives at each antenna is determined 
with the greatest possible accuracy. Let us suppose, in a simplistic way, that 
each antenna records the time that the crest of a wave arrives. The problem 
which confronts the scientists at two different antennas is 'was it the same 
crest which they each observed or different ones?' For two people with stop 
watches at different points along the beach, doing a cruder version of the 
experiment on a sea wave, the answer would be easy to give because they 
could literally see the entire wavefront all the way along. In the radio-wave 
experiment the situation is more difficult. It turns out that the answer can be 
obtained, however, by positioning several antennas at the 'marks' of a 
Golomb ruler. If the distance between one pair of antennas is the same as the 
distance between any other pair then the two pairs provide redundant 
information. It follows that the greatest accuracy of angle computation for 
any given number of antennas is obtained when they are placed at Golomb 
ruler positions. 

The final result of all this expensive experimentation is the ability to 
measure distances on Earth, or angular orientations, with unprecedented 
accuracy. Thus, for example, such fundamental quantities as the Earth's 
diameter, the orientation of the axis about which it spins, and the length of a 
day etc can be measured at the respective accuracies of centimetres, fractions 
of a second of angular arc and microseconds of time. This in turn makes 
possible the measurement of annual, seasonal, and even meteorological 
variations in these quantities which, as of today, are mostly baffling and 
mysterious, but which may soon lead to great strides forward in the physical 
understanding of the world in which we live. 

Professor Golomb, in his earlier days as a student at Harvard, was also 
responsible for another mathematical brain-teaser which still defies solution. It 
concerns the object which he defines as a 'polyomino'. Now a polyomino 
(which I think of as a general member of the 'omino' family) is a figure formed 
by joining equal sized squares together at their edges. It follows that the 
simplest example (other than the trivial 'monomino', which consists just of 
one isolated square) is the familiar domino, from which the entire 'omino' 
nomenclature was derived. 
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Now there is really only one way of forming a domino from two equal 
sized (we shall call them 'unit') squares since we are not concerned here about 
orientation in space. That is to say, that for us a 'north-south' domino and an 
'east-west' one are, so far as shape is concerned, the same. However, when 
one comes to the tromino (formed from three squares, remember, and nothing 
to do with those more recently retailed triangular tri-ominoes) it can be made 
up in two distinctly different fashions as regards shape. They are shown in 
figure 11. One is a chain-like creature while the other is shaped like a capital L. 
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domino trominoes 
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Figure 11 

Quite obviously, this notion of dominoes and trominoes can be extended 
to ominoes made up of 4, 5, 6, 7, ... unit squares of ever increasing 
complexity. The four-square versions, or tetrominoes, come in five distinct 
shapes, and the five-square versions, the pentominoes, in no less than 12 
forms (see also figure II). Thus, in attempting to answer the question of 'how 
many fundamentally different polyominoes are there with I, 2, 3, 4, 5, ... unit­
square components?' the answer begins with the series of numbers 

I, I, 2, 5, 12, .... 

But how does it continue7 What is the formula which gives the answer for the 
general polyomino made up of n unit squares7 Does such a formula even 
exist? Those were Professor Golomb's questions and, at the present writing, 
their answers are still not known. 
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On the other hand, since we now have access to large and powerful 
computing facilities, specific numerical answers for polyominoes up to at least 
18 unit squares have been 'number-crunched' out of the machines. Up to n = 
18, the sequence proceeds as follows: 

1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 
3426576, 13079255,50107911, 192622052. 

Mirror reflections are not counted, but shapes with interior holes are included. 
The ratios between successive terms seem to be settling down to the 3.8 to 
3.9 region; in other words, each number near the end of the above sequence is 
a liHle less than four times the one before it. However, although formulas are 
known which give upper and lower bounds for the general problem, none is 
known which pins down the exact number. 

The analogous problem is also unresolved for shapes made up when 
identical eqUilateral triangles are assembled into 'ominoes' by joining along 
their edges. You may like to find the first few sets of triangular polyominoes 
and see whether they lead to larger or smaller numbers than their square-unit 
relatives. The more ambitious of you can even go on to form hexagonal 
polyominoes made out of regular (that is equal-angled and equal-sided) six­
sided units. All these problems remain unsolved in the general context. From 
a computational point of view they all appear to be 'hard' problems in the 
sense defined in the following chapter. However, to my knowledge, the 
question of whether they are truly NP complete (in the terminology of that 
chapter) remains uncertain. 
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What on Earth is an 
NP Problem? 

Dr Ronald Graham, of AT & T Bell Laboratories, once told a fascinating story 
about a fictitious bicycle assembly plant with a scheduling problem. It seems 
that (at least according to the story) a bicycle assembly consists of 10 separate 
operations such as frame preparation, wheel assembly, gear installation and 
the like. If we label these 10 jobs by letters (say A to J) then skilled assemblers 
were able to complete the various tasks according to the following table: 

Task ABC D E F G H I J 
Time 7 7 7 2 3 2 2 8 818 

with the time in minutes. That rather lengthy job J was the final attachments, 
mountings and adjustments (involving handle bars, seat, brakes, etc). 

Adding together the times as set out above, it would evidently take a 
single assembler 64 minutes to complete the job. Now it appears that this 
particular company had a bit of a space problem in the assembly plant to the 
extent that its 20 skilled assemblers just did not have the room to work 
independently each on a separate bicycle. They were therefore arranged into 
10 teams of two workers, each team working together on one bicycle, 
with the expectation that each team would now be able to assemble a bicycle 
in half the time (that is 32 minutes) needed for a single worker to do the 
complete job. Looking at the table above, this could be accomplished, for 
example, by separating the job assignments in the following way: 

Worker 1 

Worker 2 

Task 
Time 

Task 
Time 

A D E F 
7 

B 
7 

109 

2 

C 
7 

3 2 18 

G H I 
2 8 8 
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There was unfortunately a difficulty. It is, you see, not possible to put 
together the separate parts of a bicycle in just any old sequence. Some jobs, 
like mounting the pedals, cannot be performed until others, like installing the 
gear assembly, are completed. It follows that some restrictions had to be 
recognized during assembly due simply to the practical realities of the job. In 
our lettering 'shorthand' it happens that these restrictions were as follows: 

These jobs 

J 
C 
E,F 
H,I 
G 
B 

could not be performed before these jobs 

A,B,C,D,E 
D,E,A 

° E,F,G 
F 
A 

Needless to say, this complicated matters considerably. In particular, it 
immediately ruled out the 32 minute plan given above. This is because the 
schedule requires job C (by worker 2) to begin after only jobs A and B have 
been completed whereas the table of restrictions says that C cannot be 
performed until jobs 0, E and A have been finished. The work schedule 
obviously had to be rethought and, after a large amount of trial and error, the 
company eventually settled on the arrangement below for their 'standard': 

Worker I 
Time 

Worker 2 
Time 

A 
7 

I D I FIG I E 
2 2 2 3 

B 
7 

C 
7 

8 

18 

H 
8 

which, if you check it out, does conform to all the practical restrictions but, 
unfortunately, takes 34 minutes, two longer than was originally hoped for. 
However, in spite of this, it did seem eminently acceptable since it also 
conformed to two other company rules-introduced generally to avoid time 
wasting-as follows. 

Rule 1. No assembler can be idle if there is some job he or she can be 
doing. 

Rule 2. Every job started must be completed as qUickly as possible. 

This procedure worked quite well for a while, until a backlog of orders began 
to pile up as the season of good cheer approached. It was at this moment that 
the company called in an efficiency expert to attempt to improve output by 
carrying out a time and motion study. After wasting numerous pieces of 
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paper in an unsuccessful attempt to improve the scheduling, he opted to 
obtain the desired increase of output by renting all-electric tools. These tools, 
though expensive to rent, did enable every individual job to be performed 
one minute quicker than was possible with the old manual tools. Since there 
are 10 individual jobs to be done, and a minute can be saved on each, an 
improvement of about five minutes per two-worker team was anticipated. In 
other words it was hoped to crack the 30 minute barrier for single bicycle 
assembly-a target which the company had set for itself in order to meet the 
Christmas rush. 

Starting off by retaining the old 34 minutes 'standard' job order, things did 
not go well. Some scheduling changes could not be avoided unless workers 
were to remain idle for periods of time when they could be occupied-a 
violation of work efficiency rule 1. Let us see what happened. Starting off on 
the 'standard' schedule, as set out above, a problem arose at the point 

Worker I 
Time 

Worker 2 
Time 

A 
6 

IDIFIGI E I C? 
1 1 1 2 

since worker 2 could not begin his standard schedule job C at the five minute 
point because worker 1 had not yet finished job A (and C cannot be done 
until A is complete). Since waiting for worker 1 to finish A would be a 
violation of efficiency rule 1, worker 2 had to find some other job which he 
could do, namely H or 1. Obeying the efficiency rules to the letter then led 
amazingly to a two-worker single bicycle assembly time of 35 minutes-even 
longer than the time taken using the slower manual tools. Again, let us see 
precisely how this came about by setting out the exact work schedule: 

Worker 1 
Time 

Worker 2 
Time 

A 
6 

IDIFIGi E I 
1 1 1 2 

B 
6 

7 

H 
7 

C 
6 17 

This is absolutely absurd, thought the efficiency expert. I obviously have to 
give a bit of thought to rearranging the work schedule to take proper 
advantage of the shorter job times. Unfortunately, try as he might, he could 
find no other schedule which could better the 35 minutes of that shown 
above. And no wonder, because none exists if the company 'efficiency rules' 
are adhered to. 

In final desperation the rented tools were returned and the decision made 
to put more workers on the job. Fifty per cent more workers were hired which 
enabled three assemblers to work on each bicycle. Although the company 
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recognized that this would not be cost effective in the long run, there was a 
desperate need to get out bicycles quickly over the Christmas period and it 
seemed time to panic. A little thought was obviously going to be necessary 
to arrange an efficient work order but, since the ideal situation should now 
approach a limit of 64/3 (or about 21) minutes per bicycle, even a relatively 
inefficient scheme should surely now be able to break the 30 minute barrier 
without too much trouble. 

However, it was just at this moment that the real horrors began. Firstly, 
there is no way that all three workers can start the assembly in an active 
fashion since only two jobs, namely job A and job 0, can be started without 
prior assembly. Newly hired worker 3 therefore is forced to start his 
assignment by sitting and watching. Not a very promising beginning! But 
worse was to follow. The best arrangement which the efficiency expert could 
find, using three workers and obeying all company efficiency regulations, was 
one requiring 32 minutes per assembly. Not only was this still outside the 30 
minute target, but it was only two minutes better than the original 
'standard' two-man schedule. The best three-man work arrangement obeying 
all the rules and restrictions was: 

Worker 1 A B 
Time 7 7 8 

Worker 2 101 E IG I C 
Time 2 3 2 7 18 

Worker 3 I F I H 
Time 2 2 3 8 

Rumour has it that the efficiency expert was last seen running screaming from 
the premises. Had he known one other fact, he might well have been heading 
for the nearest cliff! You see, a two-man schedule exists which is better than 
the original 'standard' set out earlier. In fact, at 32 minutes, it is not only 
the equivalent of the three-man effort of the efficiency expert, but is perfectly 
efficient for the two-man team. Can you find it? Should I give it to you, or 
make you struggle to fully appreciate the difficulty of the task? I will relent (so 
that you can cheat if you wish!). The perfect solution is: 

Worker 1 
Time 

Worker 2 
Time 

A 
7 

101 ElF I 
2 3 2 

B 
7 

C 
7 

I G I 
2 

18 

8 
H 
8 

Although treated in a light-hearted vein this story has a very serious side 
to it. You see, some of the earliest motivation for studying this kind of 
scheduling problem arose from work on the design of computer programs for 
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anti-ballistic missile defence systems. There it was discovered that decreasing 
job times, by increasing computer efficiency for individual component tasks, 
did not automatically make for a more time efficient complete project. For the 
military this realization was clearly a cause of some concern. 

But going back to the bicycle company; what really had gone wrong? On 
the surface everything seemed to be geared for optimum performance. 
Actually, the villains were the 'effiCiency rules'. They always imposed a short­
sighted greediness without any regard for possibly serious problems which 
they were unwittingly creating further down the line. Workers were forced to 
start working on jobs which they were not allowed to interrupt when a more 
urgent job eventually came up. If only, in the rented-tools application, worker 
2 at that critical five minute point had been allowed to twiddle his thumbs for 
one minute to allow job A to be completed. If he had, then the subsequent 
scheduling arrangement could have been very different; for example 

Worker I 
Time 

Worker 2 
Time 

A 
6 

IDIFIGI E I I 
1 1 1 2 1 

B 
6 

C 
6 

7 

17 

H 
7 

resulting in a joyous breaking of the 30 minute target (29 minutes to be 
precise). All the panic and final dementia of the efficiency expert would have 
been avoided, and the company's Christmas Season would have been just that 
little bit more financially jolly. 

In a more general context, the difficulty is that it is often rather simple to 
program a computer to look for the most efficient next-step in a problem, but 
it is extremely difficult to program it to 'look ahead' or anticipate possible 
undesirable consequences of that short-term decision. Not all problems are 
plagued with unpleasant aspects of this kind. For some, a consecutive 
sequence of most efficient next-step decisions actually leads to the overall 
most efficient answer. Unfortunately, it now appears that a large fraction of 
the more important scheduling problems are of the other hair-tearing kind. 
These are, in some absolute sense, problems of a higher order of difficulty­
and it is this particularly stubborn class of mathematical conundrums which 
has now come to be called NP problems. They were first identified as a group 
by computer scientists in the early 1970s and, for reasons far too complex to 
bother us, the NP actually stands for 'non-deterministic polynomial'. 

These NP problems are not difficult in principle; only in practice. In 
principle, they can always be solved exactly by calculating (or more likely 
computing) every possible configuration and simply picking out the most 
efficient which satisfies the restrictions imposed (if any). What could possibly 
be simpler than that? The problem, of course, is that for all except the very 
simplest of NP problems, the number of different configurations is so 
unimaginably large. For them, even the most powerful of today's (and 
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probably even tomorrow's) computers would take so much time as to make 
the obvious method of solution completely impracticable. In fact, many of the 
more important NP problems of interest in today's technological world would 
keep the computers busy for centuries (some for times even longer than the 
universe has existed) in order to locate with certainty the absolutely most 
efficient solution. 

Not all of these NP problems are new. Some have been around for decades 
and they crop up in many practical situations. The important recognition, that 
these seemingly unrelated problems were all, in some mathematical sense, 
members of the same family, was made in 1971 by Stephen Cook of the 
University of Toronto. By this statement we mean that any efficient 
approximate method for finding a good (though not necessarily the best) 
solution for one of these problems is also an efficient approximate method for 
the others. Previously, mathematicians had been looking at each of these 
problems separately and searching for 'good' solutions to each as a separate 
task. After Cook's work the scientific community scrambled to see just how 
many of these previously unrelated scheduling problems could now be 
included in what was shortly to become known as the class of Np-complete 
(or simply NP) problems. At this writing several hundred have now been 
located and it would perhaps be fun to take a qUick glance at a few of the 
most famous. 

The NP problem which has perhaps received the most publicity of all is the 
travelling salesman problem. Suppose a travelling salesman wishes to visit 10 
towns in a cross-country swing and then return home. It is obviously to his 
advantage, both in terms of time and petrol expense, if the route can be 
arranged to clock-up the smallest amount of mileage. From a purely 
mathematical point of view he has a choice of any of the 10 possible towns 
for his first stop, then nine further choices for his second stop, then eight and 
so on, making a total number of different possible schedules of 1O! = 
3 628 800. However, since half of these routes are just reverse direction 
travelling from the other half, the more proper number is one-half times 1O! or 
1814400. This problem already seems formidable enough from a formal 
standpoint. In practice, of course, the vast majority of these mathematically 
allowed possibilities could immediately be ruled out by a simple 'common 
sense' survey. In all probability our salesman would be able to deduce the 
ideal itinerary by simply testing a comparatively small number of the more 
likely looking schemes. 

What if the number of cities was larger, say the 48 state capitals of the 
continental United States? The problem is now already an extremely difficult 
one requiring considerable computer time, although the exact solution has 
been known for many years. Suppose the salesman starts and returns to one 
particular capital, visiting 47 others en route. Without using any 'insight' at all 
this problem would then have one-half times 47! possible inequivalent routes, 
or approximately 1.3 X 1059. Using a computer which can do one million such 
operations per second it would take about 4 X 1045 years to complete the 
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task, or some 1036 times the age of the universe. Again, common sense 
obviously helps enormously and, in fact, the solution, first obtained in 1948, 
used a special method of linear programming which could obtain the exact 
best route for a salesman problem of this size, although the publication of this 
result was something of a landmark in travelling salesman history. But what if 
we are concerned with several hundred locations? The problem now, even 
with no additional restrictions, is already beyond the exact solution capabili­
ties of modern-day computers. 

Although it would seem hard on our travelling salesman to schedule him to 
visit several hundred cities, analogous problems with numbers of this 
magnitude are not difficult to imagine. For example, collecting money from 
coin telephones or vending machines, or even parking meters, might tax our 
optimum scheduling objective. At a more technical level one might consider 
the enormously more complex problem of routing telephone calls, which 
could today easily involve millions of calls between millions of locations, 
together with devising alternative routing arrangements when possible 
congestion or breakdowns occur. A better solution to this kind of NP problem 
can mean millions of dollars in savings to the telephone company. 

Another hard or NP problem which has received considerable attention is 
the so-called bin packing problem. Suppose, for example, that there are a 
certain number of identical bins and a collection of rather odd-shaped 
packages. What, one might ask, is the smallest number of bins necessary in 
order to get all the packages in without any of the bins overflowing? Once 
again this basic problem is just one example of a whole range of related 
problems, which might include such more contemporary ones as the schedul­
ing of television commercials of unequal length into one minute time slots, or 
the cutting up of standard-length boards to produce pieces of particular 
lengths for use in housing construction. Other examples are easy to envisage; 
for instance, those concerned with cargo loading, warehouse storage and 
budget planning. 

The bin packing problems are ones which, in effect, turn the earlier 
scheduling problem around. Instead of asking how qUickly a fixed number of 
workers can complete a given job subject to certain restrictions, we now ask 
questions which are mathematically akin to finding how few workers can be 
used and still complete a job by a given deadline. Translated into bin packing 
language the bins take the place of the workers, and packages play the role of 
component tasks which together make up the complete job. It follows that 
bin packing is also an NP problem and therefore extremely difficult to solve in 
the sense of finding the absolute best arrangement. It also follows that there 
are no known methods of exact solution except for the obvious, and usually 
impossibly time consuming one, of setting out (at least in principle) every 
possible configuration and looking at each in turn. If, for example, we are 
given 100 randomly chosen numbers less than a billion (109) which add up to 
a little less than 50 billion, then the problem of deciding whether or not they 
can possibly be packed into 10 bins of capacity five billion is at present 
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beyond all the computing capacity in the world. This situation seems to strain 
credibility since we are only talking about 100 numbers (or packages) and 
there are certainly bin packing problems which go far beyond this degree of 
complexity. But then we were only talking about a few tens (or at most a few 
hundreds) of cities in our travelling salesman problem as well. 

With the bin packing problem it is particularly simple to count the number 
of possible combinations which have to be tried to find out the answer. If, for 
example, we have only two bins A and B and two packages a and b, then the 
number of possible arrangements is four, or 22. We can put (1) a in A and b in 
B; (2) b in A and a in B; (3) a and b in A, nothing in B; and finally (4) a and b in 
B and nothing in A. If we now have three packages and two bins, a quick 
check locates eight or 23 combinations, and with four packages a total of 16 or 
24 combinations. The pattern is suggestive and quite correct as it turns out. 
That is, there are 2" ways of putting n packages into two bins. And if there are 
three bins this becomes 3" and so on, so that the most general result is that 
the problem of packing n packages into N bins can be carried out in no less 
than N" ways. 

Since there are 'only' about 1075 atoms in the entire universe, it follows 
that the problem of packing 75 parcels into 10 bins has about as many 
possible solutions as there are atoms in the universe. The number problem set 
out above concerning the packing of 100 numbers into 10 bins therefore, with 
a now-known 10100 (which some call a googol) of possible solutions, has a 
complexity which can now more readily be appreciated. This googol is a 
number bigger than the number of atoms in a billion trillion universes. From 
what has been said above, concerning the capacity of computers, it is quite 
evident that no computer is ever going to be able to solve a problem like this 
(even the fastest and most ideally efficient futuristic computer that can be 
imagined) unless some fundamental mathematical breakthrough comes to its 
aid-and none is on the horizon at present. 

What then is to be done? Do we just give up? Of course not! We merely 
humble ourselves a little and say that if we can find no viable method of 
obtaining the absolute best solution, then we can at least try to discover a 
much simpler method that will give an answer which is close to the best. What 
we need is called an 'algorithm', which is the word computer scientists use for 
a set of step-by-step instructions needed by the machine to tackle the 
problem. More precisely, what we need is a 'good algorithm', since we 
already have the 'bad algorithm' of computing every single possible solution 
and checking each of them out. 

The difference between 'good' and 'bad' as far as the algorithms go is 
therefore something to do with time. In particular, an algorithm is bad if the 
computer time taken increases exponentially (that is, as some number to the 
power n) when we have a problem involving n packages. An algorithm is 
good if the time is related to the number of packages in a manner which does 
not involve an exponential increase of this sort. If, for example, the time 
involved was simply proportional to n (or even some power of n) then this 
time required for 'solution' would not 'explode' at such a phenomenal rate 
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when n increased to modest values (say in the hundreds or thousands) as it 
does for the bad algorithms. Thus, for a good algorithm you can proceed 
much further up the n-ladder in a feasible amount of time (and at a tolerable 
expense) than would be possible with a bad algorithm. One can appreciate 
this by comparing two imagined algorithms, one with time varying as n2 (i.e., 
a good algorithm according to our definition) and one varying as 2" (a bad 
algorithm). The sense in which they are good and bad is clearly evident if we 
compare a bin packing kind of problem with 100 packages. For this case the 
bad algorithm requires 2100 divided by 1002 times as long to complete the 
computer run. This works out to be more than 1026 times as long. Put another 
way, what the good algorithm could achieve in one second the bad algorithm 
would require more than a billion billion years to accomplish. 

Quite obviously, 'good' algorithms are immensely important if only they 
can do an acceptable job in the sense of finding a 'schedule' or 'packing 
arrangement' sufficiently close to the absolute best. One of the most common 
of the good algorithms for constructing schedules is called the 'critical path' 
method. The basic idea is to try to choose, at each step, the 'most urgent' task 
to next start working on. By most urgent we mean the one that begins the 
chain of unexecuted tasks which has the longest time allocation remaining. 
These are the jobs which are most likely to create the bottle-necks further 
down the line. Such a criterion, in fact, gives the ultimate solution to the 
bicycle building example with which we started this whole discussion. On the 
other hand, it by no means assures us of an ultimate solution in every case; in 
fact, it can perform very poorly on some examples, so poorly that some 
scheduling problems can even be invented for which it gives absolutely the 
worst solution. In generaL it works best when there are fewest time-ordering 
constraints among the tasks. 

In the context of bin packing one of the simplest possible good algorithms 
is the so-called 'first-fit' method. In this we first arrange the items to be packed 
in order of decreasing size. We then fill bins by proceeding along the package 
line filling each bin as much as possible before proceeding to the next, and 
always returning to an earlier bin when an allowably small sized package is 
reached further down the line. As an example, we consider the task of fitting 
packages of 'size' 10,9, 8, 8, 6, 6, 5, 5, 3 (of total size 60) into bins of capacity 
20. The minimum number of bins is therefore three, although there is no 
guarantee that a solution requiring this ideal minimum exists. 

Using the first-fit method we start by putting packages 10 and 9 into bin 1. 
The next package 8 is too much for bin 1 so that it goes into bin 2, as does 
the next package 8. The first 6-package will now have to go into bin 3 and so 
on. Proceeding down the package line we arrive at the 'solution' requiring 
four bins: 

9 
10 

Bin 1 

3 
8 
8 

Bin 2 

5 
6 
6 

Bin 3 

5 

Bin 4 
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Not bad! But does a three-bin solution exist? Yes, this time it does; it is 

5 
5 

10 

Bin 1 

3 
8 
9 

Bin 2 

6 
6 
8 

Bin 3 

Does the first-fit method ever get the best possible arrangement? The answer 
is yes, and an example might be that of arranging the package sizes 14, 10, 8, 
7, 6, 6, 4, 3, 2 (again adding up to 60) in the same three 20-capacity bins. This 
time the first-fit method leads to 

6 
14 

Bin 1 

2 
8 

10 

Bin 2 

3 
4 
6 
7 

Bin 3 

which is a perfect packing. Generally, the method can do no worse than 
about 22% more bins than the optimum packing for problems involving large 
numbers of bins. Even so, some 'bicycle-like' frustration can confront the first­
fit packing scheme in certain instances. For example, cases can be found for 
which the removal of some of the packages from the problem actually 
increases the number of bins required by use of this algorithm. These NP­
complete problems just do not seem to like 'good' algorithms and conspire to 
frustrate them if at all possible. 

Perhaps the greatest advance in computer algorithms for NP-complete 
problems was announced in 1984 by Narendra Karmarkar of AT & T Bell 
Laboratories in New Jersey. Although not leading to any exact solutions, it 
does reduce very markedly the time necessary for obtaining the best available 
approximate solutions. Moreover, its improvement over the previous best 
algorithm (the so-called simplex method, devised as long ago as 1947 by a 
mathematician named George Dantzig) becomes more and more impressive 
as the size of the problem increases. As a result, many problems can now be 
attacked which were simply 'beyond reach' before Karmarkar's breakthrough. 

The startling degree of improvement has had an immediate application in 
the telephone business where this algorithm now helps to guide the routing 
of millions of calls between millions of locations. The associated problems 
were of a degree of complexity far beyond the capability of the old simplex 
algorithm, and the potential monetary saving to the telephone company is 
enormous. AT & T has filed for patents on various aspects of the applications 
of Karmarkar's algorithm and the achievement has already brought Karmarkar 
two major awards from the international scientific community. The method is 
still being 'polished' and will undoubtedly be improved as more and more of 
its details are refined. 
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How Many Balls Can you 
Shake into a Can 1 

Take a large known quantity of equal-sized balls and pour them into a cube­
shaped can. Shake them up gently and measure the level in the container. 
Repeat the procedure and measure again, ... , and again. You qUickly find that 
this level is remarkably stable if the shaking is performed in a thorough 
fashion, even though it seems inconceivable that the exact arrangement of 
balls in the can could be absolutely identical each time. Nevertheless, the 
effect is well known in real life; not only grocers, but their customers too, 
believe that the volume of a box containing one pound of coffee is well­
defined. Although neither the grocer nor his customer may know how to 
calculate it, they feel sure that the first mathematician they meet on the street 
surely does. Their confidence in the abilities of those pursuing mathematical 
interests is commendable, but unfortunately it is misplaced. You see, no 
mathematician on earth knows how to do it either! 

What we are looking for is the best way of packing spheres into a specified 
volume; we talk about finding the maximum 'packing fraction' which is 
defined as that fraction of the 'can' which is ultimately taken up by the balls. If 
this fraction is denoted by f, then the inevitable spaces between the balls must 
account for the rest of the volume fraction 1 - f such that the sum of the two 
parts (occupied and unoccupied) add up to one. What we are therefore saying 
is that no-one has yet been able to calculate the number f for the densest 
possible arrangement of spheres in three-dimensional space, a situation which 
we refer to as 'dense random packing'. Still more distressingly, we do not 
even have a convenient mathematical description of what random packing 
really is. Nevertheless, it seems quite clear from experiment that the number f 
exists, is reproducible with considerable accuracy, and is about f = 0.64. 

But now suppose that I change the question a little. What if I do not merely 
shake up the balls, but place them carefully one by one in a manner which is 
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not random but possesses some repeating pattern? A few minutes experiment­
ing with golf balls or billiard balls will soon convince you that there is an 
ordered dense packing which seems to be particularly efficient in three 
dimensions. It is that often seen in fruit stands, or in piles of cannonballs at 
war memorials, and is started by first arranging three spheres on a flat surface 
with each one touching the other two. The centres then form an equilateral 
triangle (which is one with equal sides and equal angles of sixty degrees) and 
we continue the packing by adding spheres on the surface so that each new 
one touches at least two of those already in place. In this manner we obtain a 
layer of spheres in which each touches six others, except for those on the 
'outside' where (for lack of time, balls, or patience) we decided to stop. 

We now build a second layer of spheres on top of the first by placing them 
in the indentations or depressions left at the centre of each triangle of spheres 
in the first layer. The finished second layer is identical with the first, although 
it is 'moved horizontally' in the sense that the centres of no two balls are 
stacked vertically. More layers can now be added in the indentations of the 
preceding ones until a complete three-dimensional ordered arrangement is 
built up. The result is called the 'face-centred-cubic' packing and, by use of a 
little bit of algebra and geometry, it is found to have a packing fraction I equal 
to pi divided by the square root of 18, an irrational number which begins 
0.74048 .... In this packing arrangement the balls therefore take up very 
nearly 75% of the available space, and it is known that this is the densest (i.e., 
largest I-value) that can be achieved with an ordered packing, the proof being 
first given by Gauss in 1831. 

The improvement over that experimental value 0.64 for dense random 
packing is impressive, and it is perhaps not surprising that careful planning 
can do better than a mere shaking (although in our original problem the 
boundary of the 'can' would in all probability prevent us from quite achieving 
1= 0.74 for that case even with painstaking stacking). It is now very 
tempting to assume that 1= 0.74048 ... is the densest possible packing of 
any kind in three dimensions. In fact it is often said that all scientists except 
mathematicians know that this is true. Remarkably, however, from the 
standpoint of rigorous mathematical proof the question remains open, since it 
has never been established that some very cleverly designed packing which is 
not ordered (that is, does not repeat itself in a regular manner) might not exist 
with an even denser packing. This particular dense random packing would be 
random in the sense that its pattern never repeated itself. but would also be a 
very special packing in that it had an infinitesimal probability of arising by 
chance (that is, by 'shaking'). The best that mathematicians have been able to 
prove beyond doubt is that no packing of spheres in three dimensions can 
have a packing factor I bigger than about 0.7796. However, this result is not 
very helpful for anyone actually trying to build a more efficient disordered 
packing, since the proof offers no clues as to how one should go about 
preparing any arrangement which comes close to this upper bound. 

Should we really take this possibility of a special random packing with I 
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larger than 0.740 48 seriously? That it is not a totally ridiculous notion is best 
envisaged by paying a little attention to what, in the present context, is 
affectionately referred to as the 'kissing number'. This kissing number is the 
number of identical spheres which can be arranged around a central sphere in 
such a way that all the surrounding ones just touch or 'kiss' the central one. In 
two dimensions we saw earlier, in arranging the packing of the first horizontal 
layer of the face-centred-cubic lattice, that this number was six. It is not 
necessary to have golf balls or billiard balls to answer the two-dimensional 
kissing question-pennies from your pocket will do. Put one down on the 
table and arrange others around it each to touch the original. In three 
dimensions, with a set of balls, the experiment is by no means so easy to carry 
out in a practical manner. 

This three-dimensional sphere-kissing-number problem was, interestingly, 
the subject of a famous dispute in the year 1694 between Sir Isaac Newton 
and a Scottish astronomer named David Gregory. Newton maintained that 
the kissing number was 12 (which is the number found in the face-centred­
cubic array) while Gregory believed that a 13th sphere could be squeezed in, 
although he was not able to prove it. The basic idea was that the 12 touching 
spheres from the face-centred-cubic packing could be rolled around the central 
one in such a way that the gaps, which are certainly there in this packing, 
could all be concentrated in one direction, thereby making room for an extra 
sphere to be inserted to touch the middle one. Only in the year 1874 was it 
finally established that the gap accumulated in this manner is not large 
enough to squeeze in the extra sphere, so that the correct answer to this 
particular kissing problem is Newton's, namely 12. 

In spite of this finding, it is possible to start building a cluster with a few 
spheres in a way which seems to be doing better (from a packing density 
point of view) than the face-centred-cubic packing. Consider, for example, a 
'seed' of four spheres packed together so that each touches the other three. 
When these four spheres are all touching, their centres are at the corners of 
what is known as a 'regular tetrahedron'. This is a figure with four identical 
triangular faces (i.e., it is a sort of triangular pyramid) each face of which has 
equal sides and angles. Since each sphere actually touches the other three, this 
must be the densest possible configuration for four spheres in three dimen­
sions. 

Now suppose that we add to this 'tetrahedral' seed other spheres, one at a 
time, so as to make up a new tetrahedral configuration at each stage. All that 
is required is for each ball to be added in such a way that it makes contact with 
three others. Take four billiard balls in contact and try adding the fifth; there 
seems to be no problem (although you might need a helping hand to actually 
set up the experiment). This looks great. If we continue in this manner then 
the packing certainly will have the maximum density possible; which is the 
upper limit f = 0.7796 mentioned earlier. What then is all the fuss about? The 
trouble is that as we proceed, there always comes a time when the next ball 
just cannot be added in the manner prescribed. At a certain stage of the 
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'growing' cluster, the surface acquires a shape which simply does not allow 
another sphere to be added that touches three existing ones. And when the 
breakdown comes it is disastrous, with large volumes of space now unavoid­
ably being wasted in a manner which reduces the packing density dramatically 
to values below the face-centred-cubic 0.74, back towards the experimental 
limit of about 0.64. 

What we have shown, in effect, is that three-dimensional space cannot be 
completely filled up with regular tetrahedra, in the way (for example) that it 
can be exactly packed with cubes. Filling space by fitting together similar 
shaped blocks is one of the oldest and most difficult of geometric problems, 
and the dilemma concerning the regular tetrahedra goes back over 2300 years 
to the days of Aristotle. He asserted (incorrectly as we now know) that, of the 
five regular solids which exist (these are solids with all side lengths and angles 
equal; see figure 12), the cube and the tetrahedron can be packed together to 
exactly fill all space. 

CUBE TETRAHEDRON 

U 
OCTAHEDRON 

DODECAHEDRON ICOSAHEDRON 

Figure 12 

The discovery of the regular solids, and the proof that there are only five of 
them, was one of the great mathematical achievements of the ancient Greeks. 
They were discussed in detail by Euclid. Plato seems to have been the first to 
suggest that these solids might be the ultimate particles (or 'atoms') from 
which all matter is made up. Aristotle argued that Plato's idea was incompat­
ible with reality since, of these five fundamental solid shapes, only two could 
pack together to successfully fill space without leaving gaps. A gap would 
mean an empty space which, according to Aristotle's ideas, could not exist in 
nature. Little did he realize that he had unwittingly made an errror affecting 
the number of balls that can be crammed into a can! Not for some 18 centuries 
after Aristotle made this mistake did the confusion become resolved. And 
even after the resolution, Aristotle's error persisted in various guises for a very 



How Many Balls Can you Shake into a Can? 123 

long time, raising its ugly head to confuse many a space filling issue and 
embarrass many a geometer over the years. 

So where does this leave us with regard to sphere packing7 Quite evidently 
the 'greedy algorithm' of trying to make the next step the most efficient 
(without any regard for future difficulties) is somewhat analogous to, and 
shares the same fate as, the earlier efforts to solve the bicycle building 
problem of the last chapter. Mathematicians (and scientists, since dense 
random packings have physical consequences in the atomic arrangements of 
liquids and glasses) are still trying to come up with computer algorithms that 
will randomly pack spheres more efficiently than! = 0.74048 but, as yet, alas 
no success. It begins to seem extremely probable that nature has the correct 
answer after all since nature's! = 0.64 is persistently about the best result 
which can be obtained by even the most elaborate computer efforts to date. 
And yet the rig our of a mathematical proof is still missing. Physicists and 
chemists 'know' the answer; mathematicians, on the other hand, have to leave 
the door open just a crack. 

But mathematicians, of course, being what they are, want to do much more 
than that. Why restrict your play to just one, two, or three dimensions7 A 
world of higher dimensions is out there to be toyed with and to confuse us 
further, if only we can gear ourselves up to 'look' at it. Difficult though the 
kissing problem may be in three dimensions (that is, packing as many balls as 
possible around a centre one so that each touches the latter) it is doubtless 
going to be even more problematic in the fourth dimension, at least from a 
practical standpoint, since most of us have trouble enough merely wrestling 
with the existence of such a dimension, let alone a fifth, sixth, or even higher 
members of the dimension family. 

In this respect mathematicians are much more fortunate than the rest of us 
since these higher dimensions (and in particular higher-dimensional spheres) 
are relatively easy to represent in a mathematical sense, even if they are tough 
to the common sense. For example, those of you who have done a little 
algebra and graph plotting in schooldays might recall that the equation for a 
circle is x2 + l = 1. By this we mean that if you take a piece of graph paper 
and plot y-values along one axis (say in a 'north' direction) and x-values along 
another at right angles to it (say 'east'), then those values of x and y which 
satisfy the above equation (like x = 1, Y = 0; x = J(1/2), y = J(1/2); x = 0, 
y = 1 and countless other pairs) 'map out' a circle with a centre at x = 
y = 0 and a radius of 1. Try it out if you are not familiar with the notion. In 
three dimensions we need another axis to represent 'up'. If we label this as the 
z-axis, then the mathematical equation for a sphere with centre at x = y = 
z = 0 and radius of 1 is just x2 + l + i = 1, a so-called 'unit' sphere. Since 
most of us do not have a three-dimensional piece of paper this is a little harder 
to verify, but rest assured that it is so. But, aha! We now begin to recognize a 
pattern. If we had a fourth dimension which we labelled w, then it would seem 
consistent to call the object defined by the equation w2 + x2 + l + i = 1 (if 
we could 'plot' it on a four-dimensional piece of paper) a 'four-dimensional 
unit sphere'. 
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As we go to higher dimensions we tend eventually to run out of letters, so 
that it is easier to label the 'axes' as diredions xl' x2' x3' x4' ... , Xn' ••• , for which 
notation we can happily write down the equation for a 100-dimensional unit 
sphere if required, namely, 

2222 222 
X I +X2 +X3 +X4 + •.• +X9S+X99+XlOO = 1. 

We may not know what to do with it, but that is not the point. The point is 
that the question of, for example, the kissing number in four, or even 100, 
dimensions is now just one of algebra and therefore has a precise answer 
which can be probed mathematically. Evidently, packing problems must 
therefore also have a mathematically well-defined representation and are 
consequently equally open to investigation. In this manner, we can break the 
bonds which lock us into a locally three-dimensional physical world, and a 
Euclidean universe of higher dimensions opens up for us to probe and ask 
questions about. 

Being able to define a unit sphere, or ball, in an (arbitrarily large) n­
dimensional space now enables us to answer questions like 'in what dimen­
sional Euclidean space does a ball of unit radius have the largest volume 
or surface area7' Although the mathematics may be beyond most of us, the 
procedure is well-defined and the answers tum out to be n = 5 for volume 
and n = 7 for surface area. Amazingly, for larger dimensions the volumes get 
smaller and smaller, approaching zero as n progresses to infinity. The infinite­
dimensional unit ball has no volume at all. Baseball or cricket would be a 
tough game in this limit! 

The search for dense sphere packings in multi-dimensional spaces is made 
simplest if we focus first on 'lattice packings'; that is, packings which repeat in 
some regular fashion. The easiest packing of all is then one where each sphere 
is placed with a centre on each 'lattice point'. In two dimensions these lattice 
points might most simply be the points x = m, Y = n, where m and n are 
integers, which make up the pattern of square centres on a checker board. The 
lattice is called D2 and is shown in figure 13a. Its packing fradion f can be 
calculated to be 0.785 398 ... (pi over 4 to be ex ad), but we already know that 
it is not the densest lattice packing in two dimensions. The densest is the 
hexagonal packing of figure 13b which formed the base of our carefully 
stacked oranges or cannonballs. By elementary geometry its packing fradion 
can be shown to be close to 0.9069 ... and it is called a 'laminated lattice'; in 
this case the laminated lattice of dimension 2, symbolized L2• The laminated 
lattice L3 in three dimensions is built up by stacking layers L2 in the third 
dimension in a fashion which 'nests' the succeeding layers in the deepest 
'holes' of the layer below. This, as we have seen from our earlier orange 
stacking experience, creates the face-centred-cubic lattice. It is labelled L3 and, 
as mentioned earlier, is known to be the densest lattice packing in three 
dimensions. 

This procedure of building up laminated lattices can be mathematically 
extended to four dimensions and higher. For example, the lattice L4 is formed 
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by stacking L3 lattices in the fourth dimension such that they nest together in 
the most efficient packing fashion. It is almost impossible to picture this 
because our simple minds are only able to visualize in the three-dimensional 
world of our physical experience. Mathematically, however, the procedure is 
quite precise and creates the sequence of laminated lattices L4, L5' L6, •.• and 
so on. Their properties have been studied in detail all the way up to 25 
dimensions. Strangely, although there is one, and only one, laminated lattice 
Ln in all dimensions n up to 10, and again in dimensions between 14 and 24, 
there are two laminated lattices in dimension 11, three each in dimensions 12 
and 13, and no less than 23 in dimension 25. 

PACKING 02 PACKING L2 

Figure 13 (a) Figure 13 (b) 

Out to the eighth dimension these laminated packings Ln have been proven 
to be the densest possible lattice packings, and in none of these dimensions 
has any denser amorphous (or non-lattice) packing yet been found. In fact, the 
laminated lattices are the densest known lattice packings for all dimensions 
out to 32 (examples of laminated lattices have, at this writing, been computed 
out to dimension 48) except for dimensions 10, 11, 12 and 13. Here, another 
sequence of lattice packings, called K packings, are known to be denser, while 
in dimenSions larger than 32 yet another (so-called P packing) arrangement 
does better. However, in none of the dimensions greater than eight is the best 
lattice packing known for sure, and the question as to whether a non-lattice or 
amorphous packing is ever densest of all remains an open one. Interestingly, 
amorphous packings have been found in dimensions 11, 12 and 13 which are 
denser than any of the lattice packings yet found in those dimensions. 

The size of the islands of packing knowledge in large dimensions compared 
with that of the ocean of ignorance can be gleaned by some recent work by 
N J A Sloane of Bell Laboratories who, in collaboration with other researchers 
in the field, has constructed mathematical packings in dimensions up to 100 000. 
In these uncharted waters the density of these new lattice packings is at least 
1040000 greater than any simple multi-dimensional extensions of cubic 
packing, but still a factor of 104000 smaller than are known (by general 
theorem) to be possible. 

The dimension of 24 is rather a special case. For it, the laminated packing 
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L24 is closer in density to a theoretically established upper limit than for any 
other dimension larger than eight (for which the exact solution for densest 
lattice packing is known). This packing was first discovered by John Leech of 
the University of Glasgow in 1965. It is almost certainly the densest lattice 
packing which exists in 24 dimensions. Each sphere in this lattice touches 
196560 others, which is also the kissing number in 24 dimensions. This last 
result is remarkable since the kissing problem has only ever been solved for 
four other cases, namely the trivial ones of one or two dimensions (with 
kissing numbers 2 and 6 respectively), three dimensions (with kissing number 
12 as was discussed earlier), and eight dimensions, for which the kissing 
number is 240. 

Coming down from these lofty heights, our final degree of ignorance 
remains that we still do not know how many balls can be shaken into a can, 
either in three dimensions or in any dimension larger than three. Indeed, if we 
state the shape of the boundary of the can and substitute circles for spheres, 
there are many questions which remain unanswered even in two dimensions. 
You are alL I am sure, familiar with the process of 'racking up' IS balls into a 
pool-table 'triangle' before the break shot which starts the game. This is just 
the problem of packing IS circles into an equal-sided triangle of the smallest 
possible side length, and it is not difficult to prove that this particular 'pool­
table' packing is the most efficient that can be achieved for this situation. If 
you now remove anyone ball from the 'rack' you find that the other balls are 
still all tightly locked together in the sense that none can move. This would 
seem to establish that the smallest triangle which can pack 14 balls is exactly 
the same size as that which can pack IS although, to my knowledge, no 
rigorous proof has been given. But what if a second ball is now removed from 
the rack? If you try it, you will find that the 13 remaining balls are certainly 
now free to move. The smallest triangle which can contain 13 balls is 
evidently smaller than that required for 14 or IS balls. But how much smaller? 
And what pattern do the balls take up in the most efficient (that is dense) 
situation? It is amazing that even this very 'simple' situation involving only 
two dimensions and so few variables has not yet been solved. 

The more general problem of packing identical circles, without overlap, 
into specified boundary shapes of smallest area, is one for which no general 
solution exists (even when the boundary region is as simple as a circle or a 
square). In each case the best possible packings have so far been located only 
for a rather small number of circles or for very special highly symmetric 
situations, like packing an exact square number (e.g., 4, 9, 16, 25,36, ... etc) of 
circles into a square. Even in cases where exact answers are known the results 
are full of surprises. Thus, for example, for the case of packing circles into a 
circular boundary of smallest area, we show the best possible packings in 
figure 14 for two to 10 circles. We note that, for the cases with eight or nine 
circles, the densest packing contains a circle which is completely free to move. 
This is certainly not what intuition would suggest, but true it is! And does 
figure IS look like the most efficient packing of 12 circles in a circle to you? 
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Figure 14 

Figure 15 

Well it is not. Can you think of a better one? There is at least one in which 
some circles only touch two of their neighbours, whereas in figure 15 each 
circle touches at least three neighbours-another seeming paradox. 

The game, of course, can also be played in three dimensions in the form of 
spheres packed inside the spherical boundary of smallest volume. Even less is 
known about this problem, except for the very smallest number of spheres. 
Cube packings into cubes is even more difficult unless, once again, the 
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numbers of cubes involved are exad cubic numbers (e.g., 8, 27, 64, 125, ... ) or 
very close to them. By varying the shapes involved, these packing problems 
can be cast into a virtually endless set of mind boggling formats. 

Returning again to two dimensions, for which most of the very few exad 
results have been firmly established, we show in figure 16 the most efficient 
packing of seven circles into a square. This one again is very hard to believe. 
In fad, I would imagine that the reader could win many a wager by offering 
large odds to friends (or even better, to enemies) that they cannot find a 
better way of packing these circles together. That unattached 'odd-one-out' 
just has to be able to squeeze in closer, surely. But rest assured, a better 
packing for seven circles cannot be found, so the money is yours. The proof 
was first given in 1965. 

Figure 16 

Finally, a mention must be made of the version of this packing game which 
involves packing squares within a square boundary. Suppose we want to pack 
as many as possible non-overlapping unit squares (that is, squares of side 
length 1) inside a square boundary of side length L. If L happens to be exadly 
equal to an integer (say N) then the answer is obvious, and a complete packing 
(with packing fradion f = 1) is trivially arranged. But what if. say, L is a little 
bit larger than N; maybe L = N + (1/10)7 What should we do in this case? 
One obvious attempt at a solution is to fill up the N by N square which was 
the exad solution for L = N and simply surrender the remaining narrow strip 
of uncovered area (of about NIS square units) as unavoidable waste. Indeed, 
this does appear to be about the best one can do if N is a small number. In 
general. however, better arrangements can certainly be achieved, although 
exadly what the best formation is remains uncertain for most cases. 

Such a sweeping statement can be made because of the existence of a proof 
that, as N becomes large, packings exist which leave an uncovered area 
considerably smaller than NIS. Although the minimum possible uncovered 
area is not known as a fundion of N, the existing proof establishes that the 
above 'N2-plus-unavoidable-waste' arrangement is certainly not the best if N 
is greater than about 80, and is probably not the best for N-values as small as 
30. On the other hand, exadly how we go about 'sqeezing-in' the extra 
squares is not at all obvious. 

In order to grasp the scale of the problem for larger numbers, imagine 1010 
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unit squares packed nicely into a large square boundary of side length L = 
105. They fit exactly, and the packing fraction is accordingly f = 1. Now 
increase the side length of the large square boundary by just one one-hundredth 
of a single unit; that is, to L = 105 + 0.01, an amount small enough to go 
unnoticed you might think. Yet that 'unavoidable' and almost invisibly thin 
strip of waste area now amounts to no less than 2000 s~uare units, and it can 
be established that a judicious shuffling about of the 101 unit squares enables 
at least another 520 (and probably more) squares to be added. Once again, 
however, how one actually achieves this in an optimum fashion remains 
completely unknown. 
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In-between Dimensions 

Until well into the 20th century, mathematics (particularly as it related to 
geometry) was still couched in the same idealistic concepts that had persisted 
since the days of Euclid. Curves were smooth (except possibly for an 
occasional sharp corner) and could be represented mathematically by func­
tions which were in some classical sense 'well-behaved'. At each point one 
could ask about the slope of a curve or about its degree of curvature and get 
sensible answers. Such 'smooth' curves were accepted as being fully capable 
of describing virtually all features of the orderly world in which we were 
considered to live. They were called 'analytic', and were special in a sense 
which I can perhaps get across to the non-expert by the following story 
concerning anti-aircraft gunnery. 

In the days before the heat seeking missile, the degree of success in 
shooting down aircraft with ground-based guns depended quite considerably 
on some knowledge of mathematics. The problem was that the target was a 
moving one, so that in order to hit it, it was necessary to aim at the point 
where the aircraft would be when the shell got there. Thus, if you aimed 
directly at the aircraft you always missed because, by the time the shell got 
there, the aircraft had moved on. Some correction had to be made. If the 
speed of the aircraft was known (or could be reliably estimated) then a 
'correction' could be worked out to take account of this effect. So far so good; 
the misses now became 'near misses' instead of 'far misses', but misses none 
the less. What was now wrong? 

The new problem was that, since these particular aircraft were still in the 
process of taking off, their velocity was not constant. In other words they 
were accelerating. But, in principle at least, this acceleration (which is the rate 
of change of velocity) could also be estimated and a further correction made. 
Now surely a hit could be made. But no! The acceleration was also not 
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constant, and yet a further refinement was called for. All this was very 
frustrating for the gunners, who finally gave up the calculations-supposing 
none the less that, if some superhuman could continue this correction process 
on forever, a hit would finally be assured (at least in theory). In actuality, they 
need not have felt so badly about their computational limitations, because it 
happens that even the full infinite number of corrections would be no help 
either. For example, if the moment that the shell was fired coincided with the 
pilot's realization that he had forgotten his lunch and would have to return for 
it, then the miss would still occur. 

The reason is simply that the spatial position of the aircraft at any future 
time is not determined even by a complete knowledge of its past motional 
history. But all smooth (that is analytic) curves in mathematics have this 
special property that an exact knowledge of part of the curve does precisely 
determine the rest of it. We therefore conclude that the aircraft position as a 
function of time is not analytic. Analytic functions are everywhere in 
mathematics (because they are 'easy' to write down and to calculate with) but 
are virtually nowhere in the real world. Nature is just not simple and orderly 
enough to fit such a description. Clouds are not spheres, mountains are not 
cones, lakes are not ellipses, lightning does not travel in a straight line. In fact, 
the closer we look at objects in nature, the more we realize that most of them 
lack smoothness in a very complete sense. This sense is that they seem to 
possess the same level of irregularity, on a smaller and smaller scale, the closer 
you come to them. Perhaps the most famous example of this was cited by Dr 
Benoit Mandelbrot, the famous French mathematician who pioneered the 
exploration of the rough edges between dimensions, in his classic paper in 
1967 entitled 'How long is the coast of Britain?'. 

If you imagine a space traveller approaching Earth in a direction towards 
the British Isles, then the closer he gets the more detail of the coastline 
becomes visible. Smaller bays and headlands that cannot be seen at all from a 
distance gradually become clear and then, on closer approach still, these bays 
and headlands can be seen to have structures of their own. On the scale of a 
yardstick the details of the rock formations would need to be measured, and 
on the centimetre scale, the positions of small pebbles would have to be 
noted. Finally, if you were intent on inducing complete craziness, you could 
attempt to measure around every grain of sand-assuming that you could 
stop the motion of the water. 

If 'best' estimates were made of the coastal length of the British Isles, then 
a peculiar effect would be noted. It is that the smaller the scale of 
measurement used for the project the longer the estimate would be. This is 
embarrassing enough, but what is particularly alarming is the fact that, if an 
effort is made to find a limit towards which these measurements are 
converging as the ruler gets shorter and shorter, then this limit seems to 
increase without bound (or in other words is infinite). In this sense the 
coastline of Britain in the limit of infinite precision is boundless or, if you 
prefer, is longer than any distance which you care to name. 
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Now this observation had, in fact, been made by others before Dr 
Mandelbrot gave it his attention. Not only did the length of coastline 
increase without limit as the length (say L) of the 'unit of measure' decreased, 
but it was known to increase in a power-law fashion; that is as L", where n is a 
negative number. For example, if n = -t, this would mean that every time 
the unit of measure was halved the coastline would increase by i to the power 
-i, a number (for those who remember the rules of algebra relating to 
fractions and powers) equal to the square root of 2. Those of you who rely 
more on the electronic calculator than algebra these days can push the yX 
button with y = 0.5, x = -0.5 and read the equivalent result 1.4142 .... 
Good estimates of this number n had already been made for many coastlines 
and land frontiers around the world, with n in the neighbourhood of - 0.2, 
but different (and seemingly reproducible) for different countries. 

If a coastline or frontier were smooth in the analytic sense we should 
expect n to be zero, in which case its length would converge on some nice 
finite value as the measuring rod L got smaller and smaller. This is exactly 
what one would expect for a one-dimensional 'line' like the perimeter of a 
circle. What Mandelbrot did was to write a relationship between the power n 
and the concept of dimension, which we shall symbolize by D, in the form 
1-D = n. For one-dimensional 'Euclidean' lines, with D = 1, this conforms 
with the expectation n = O. However, for frontiers and coastlines, with 
negative values of n, it led to values of D such as 1.23, 1.18 and the like 
and introduced for the first time the concept of fractional dimensions. 

The formal concept of fractional dimension had been used in a purely 
mathematical context as far back as 1919 by philosopher, author and (later in 
life) mathematician Felix Hausdorff, but only for rather pathological objects 
conjured up in the tortured minds of a few maverick geometers. Mandelbrot's 
claim was that the world was filled with such manifestations and that virtually 
every real-world object truly existed in the hitherto unknown region 'in­
between dimensions'. The number D, now called their fractal dimension, 
measures something quite precise about them and, in the limits D = 1 and 
D = 2, is quite consistent with the classical picture of one and two 
dimensions. Dr Mandelbrot coined the word 'fractals', from the Latin word 
fractus which means irregular, to describe all shapes with non-integer values 
of D. Although fractals are not restricted to the dimensional region between 
D = 1 and D = 2 we shall, for the sake of simplicity, consider this domain 
first. For the record, the fractal dimension of the West coast of Great Britain 
seems to be about 1.25. 

The fractal dimension of the West coast of Great Britain is only approxi­
mately known since it requires experimental measurement. The most precise 
ideas concerning fractals are obtained by inventing simple geometric pro­
cedures which lead to fractals. Perhaps the simplest of all, and the one which is 
most frequently used to introduce the idea of fractals, is the so-called Koch 
snowflake. In order to form this intriguing shape we start with an equilateral 
triangle (figure 17 (a)). Each side is then marked off into three equal parts, and 
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each centre part then removed and replaced by two sides of another smaller 
equilateral triangle for which the third side is the (now removed) centre span. 
The resulting shape is the 'Star of David' as shown in figure 17(b). The 
procedure has resulted in each side of the original triangle being replaced by a 
'kinky' line which is } times as long as the original. The new perimeter is 
therefore} times the length of the old one while the new straight edge is only 
} the length of the old. 

Figure 17 (a) Figure 17 (b) Figure 17 (e) 

If we call the original perimeter Po and edge length Lo' then the new 
perimeter PI = }po and the new edge length LI = -jLo' If we now repeat 
the process using the new sides, we proceed to a second even more jagged 
shape (figure 17 (e)). Once again the length of the new edge is -j that of the 
old (Lz = -jL I) while the perimeter is again increased by a factor of} (Pz = 
}PI ). Obviously, this procedure can be continued in principle ad infinitum, 
although the resulting 'snowflake' becomes more and more difficult to draw. 
After the fifth stage (e.g., Ps,Ls) the top side of the flake is shown in figure 18. 
Eventually, the 'spikes' become so numerous and so small that they just 
cannot be drawn by any means and, in the limit of progressing to infinity, 
there is ultimately a spike at every single point of the 'curve'. The curve has 
no continuous or smooth regions at all; it has become a 'fractal'. 

Figure 18 

Although we cannot draw this fractal as it approaches its limiting form we 
do know something very special about it. It is that at each stage of the 
building process, no matter how far along we are (Le., at the millionth, 
billionth or trillionth step), the perimeter Pn+ I of the (n + l)th stage will 
always be } times the perimeter Pn of the stage before it. In addition, the side 



134 Think of a Number 

length L + 1 of the (n + l)th stage will always be -j- of the length L of the stage 
" 4" 1 

before it. We may therefore write the equations P" + 1 = 3P" and L" + 1 = 3L" 
for any value of n whatsoever. According to Mandelbrot's definition of 
dimension D we should also write P" as a constant times (L,,) 1 - 0 and an 
equivalent equation for P" + 1 as the same constant times (LIl+ 1)1 - o. Dividing 
one of these last equations by the other we find the 'Mandelbrot equation' 

(P"+I/P.,) = (L"+IIL.,)I-O. 

But since P,,+ / P" = } and L,,+ / L" = -j- for any n, it follows immediately 
from the above equation that 

4 _ 11-0 

3-3 

The solution of this equation can be expressed in terms of logarithms in the 
form 

D = log(4)/log(3) 

which, for those of you who have a calculator with a log button on it, can be 
checked out numerically as D = 1.261859.... In comparison with the 
approximate estimate of 1.25 for the dimension of the West coast of Great 
Britain, the implication is that the Koch snowflake is just a tiny bit more 
'jagged' than this particular coastline. The word jagged is, however, quite 
insufficient to express this difference since each is infinitely jagged in the 
normal sense of the word, and this is precisely where the idea of fractal 
dimension is so valuable. It measures a well-defined property of these 
infinitely jagged curves in a way that enables us to compare them in a 
quantitative manner. 

The curve in figures 17 and 18, when continued to its infinitely jagged 
limit, was first explored by thf' German mathematician Helge van Koch (in 
1904) as a precise example of a continuous curve of infinite length whose 
properties could not be described by the mathematics of the day. In the 
decade or so which followed, many other such curves were identified and 
discussed. However, the 'mathematics establishment' and mainstream aca­
demic community of that time regarded them with great suspicion, referring 
to them as a 'gallery of monsters', 'pathological' or even 'psychotic'. They 
were treated as diabolical constructions which had little, if any, relevance for 
the real world. It is now apparent that almost precisely the opposite is true, 
fractals seeming to be almost everywhere in nature; from leaves and flowers 
to river banks and lake edges, and from the scattered paths of nuclear particles 
to the awesome expanse of galactic clusters throughout the heavens. 

The Koch snowflake is an example of what is called an ordered fractal in the 
sense that the rules for its construction are precise and exactly repetitive. Such 
ordered fractals have the property that any part of the curve continues to look 
exactly the same no matter how much we magnify it. We call it exactly self­
similar. Coastlines and the like are obviously not quite so precisely self­
similar. They possess this property in a statistical sense, and it is just this 
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averaged self-similarity which enables us to define fractional dimensionality 
for such cases. We therefore refer to these less precisely ordered fractals as 
'random fractals'. The implication is that self-similarity persists upon magnifi­
cation in a manner which involves some averaged property (namely the 
fractional dimension) over and above the random changes in the detailed 
form. 

Other ordered fractals are very easy to define and to construct in principle. 
In practice they are, of course, all impossible to draw, although computer 
graphic techniques are able to produce pictures covering many stages of their 
early repeated development. In order to produce curves of larger fractal 
dimension between 0 = 1 and 0 = 2 it is only necessary to define a more 
complicated manner of restructuring the line segment at each stage of the 
growth. We could, for example, start with a square and, instead of raising a 
triangle on the centre one-third of each edge, raise another square. At each 
stage of its growth this curve would increase the length of its perimeter by a 
factor ~ and, if you follow an analogous calculation to that used for the 
snowflake example, arrive at a fractional dimensionality of log(5)/log(3) = 
1.464 97 ... , or close to i. 

( b) 

(e) (d) 

Figure 19 

The question now arises as to whether we can study the gradual approach 
to 0 = 2 which, if the idea of a fractal dimension is to make any sense, should 
be a curve which fills up the whole of a two-dimensional area. Perhaps the 
most famous of such space filling curves was first proposed by the Italian 
mathematician Guiseppe Peano in 1890. The manner in which it is generated 
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is shown in figure 19. The procedure starts with a square and a dividing of 
each of the four sides into three equal segments. In this way one can imagine 
the square divided into nine smaller squares as shown in figure 19(a). The 
Peano curve then starts by drawing a straight-line diagonal from bottom to 
top and then replacing it with a continuous line through the diagonals of all 
the nine smaller squares, following the pattern of the arrows in that figure. In 
order to help in 'seeing' the shape of this curve it is usual to chop off the 
corners of each right-angle twist as shown in figure 19(b). Neglecting this 
corner chopping in our formal development. we note that each of the nine 
small squares now has a straight-line diagonal across it and therefore looks 
exactly like the original square when we started. We can therefore separate 
each small square into nine even smaller ones and continue the building-up of 
the Peano fractal to one with 92 = 81 (corner-chopped) line segments at the 
second building stage (figure 19(c)). This is then followed with 93 = 729 line 
segments at the third stage (figure 19(d)) and so on ad infinitum. 

It is, I think, fairly evident visually that this curve, when continued to the 
infinite degree of line fragmentation, will completely fill the area of the 
original square. It certainly looks like a D = 2 fractal. Is this in accord with 
Mandelbrot's definition of fractal dimension? Well, looking back to the first 
stages of the building process, the edge length L decreases by a factor of three 
at each stage while the perimeter length increases by a factor of three. Putting 
Pn+ / Pn = 3 and Ln+ / Ln = } in the Mandelbrot equation now leads to the 
numerical relationship 

1-0 
3 =.! 

3 

for dimension D. Even if you do not know much about logarithms it is only 
necessary to recall from chapter 1 the definition of a negative power or 
exponent (e.g., 3 - x = r) in order to be able to verify the physically 
relevant solution D = 2 (i.e., x = - 1). The formal definition is therefore 
consistent with our simpler concepts of integer dimensions. It is not difficult 
to invent other D = 2 fractals and, in honour of the inventor of the first such 
'devil curve', all D = 2 fractals are now usually referred to collectively as 
Peano curves. 

The concept of fractal dimension is by no means restricted to dimensions 
between D = 1 and D = 2. Particularly easy to imagine are fractals with 
dimensions smaller than one. These may easily be prepared in an ordered 
fashion. For example, if we start with a straight line and separate it into three 
equal parts, we can now consider removing the centre part completely. We 
are left with two lines each one-third the length of the original and with an 
equal length space between them. The new 'edge length' is } times the 
original and the new 'perimeter' is j times the original. Each of the two smaller 
line segments can now be split up in exactly the same fashion as was the 
original, and the procedure continued to infinity. We finish up with a sort of 
'grey line' (if the original was black) made up of an infinite number of 
infinitesimally small line fragments. It is an odd looking object but, using 
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Mandelbrot's formula, we can easily calculate its dimension. Noting from the 
building procedure that L" + 1 = ±Ln and Pn + 1 = ipn at every step n, it 
follows that 

an equation for which the solution is D = log(2)/log(3) = 0.6309 .... 
Obviously, similar 'cut-out' schemes can be invented using different details 
and leading to all sorts of other fractals with D between zero and one. In a 
sense the less grey the final fractal line becomes the smaller is the dimension 
until, as 0 approaches zero, the line disappears from view. An interesting 
physical model of this kind is provided by the structure of trees. The 
continued branching process, in which any branch splits into two smaller 
ones, and these smaller ones split again, and so on and so on, eventually 
generates a tree outline which Mandelbrot refers to as a 'fractal canopy' of 
dimension 0 = 0.6309 .... 

The concept of fractal dimensions can also be pursued to values greater 
than two. A perfectly flat sheet of aluminium foil, for example, is an excellent 
physical approximation to a two-dimensional surface. If, however, you 
wrinkle it up, you cause it to deform into a fractal of two-plus-some-fraction 
dimensions. The precise value of this fractal dimension depends on just how 
wrinkly the crumpled aluminium foil becomes and can be established (at least 
in principle) in a method exactly analogous to that used for the fractal 
snowflake curve. The only difference is that now we are concerned with 
progressive measures of area as we continually decrease the size of a 
'measuring plate', which now takes the place of our earlier measuring rod. 

As an ordered fractal of dimension 'two and a bit' we could, for example, 
start with a square-shaped area and divide it equally into nine smaller squares 
as was done for the Peano curve. This time, however, we consider raising a 
'cube' from the centre square by 'pulling it out' in the third dimension. The 
object so formed now looks like a square hat for a man with a square head, 
and contains 13 equal-sized small square areas-nine horizontal and four 
vertical. Each of these may now be used as starting squares for the second 
stage of the building process, which raises smaller 'hats' on each. The 
procedure can obviously be continued to infinity where, since the surface area 
increases by the fraction 1~ at each stage of development, the final surface 
area is infinite, indicating a fractal with dimension larger than two. I leave it to 
you to verify that the actual value of the fractional dimension of this crinkly 
object is log(13)/log(3) = 2.3347 .... 

Good approximations to random fractals with 0 larger than two can be 
generated using computer graphics and a random number generator. These 
simulated mountain ranges are statistically self-similar and they do lead to 
very realistic looking pictures, even using a minimum of computer time. They 
are rapidly beginning to demonstrate the power of mathematics in computer 
art, and seem to suggest that impressive new artistic concepts can be 
developed through the mathematical modelling of the structure of pictures. 
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In fact, this computer modelling process can easily be formally extended to 
fractals of more than three dimensions. Although the eye cannot fully 
appreciate these structures, it is possible to extract three-dimensional 
projections (or slices) of these four-dimensional objects and thereby bring 
them into our field of view. This hardly does them justice--in the same way 
that someone who had never seen a cube could not fully appreciate its 
properties by looking at a sequence of two-dimensional pictures of it-but 
seems to be the best that we are able to accomplish in the way of pictorial 
representation. 

The study of fractals is also providing useful sources of ideas in many 
scientific fields. Sponges, cloud formations, river catchments and particles of 
smoke may seem to have little in common, and yet each has recently been 
discussed in the scientific literature in terms of fractals. In the future they seem 
certain to have an impact on many diverse areas of science-particularly 
biology, geography and economics. Many research laboratories expend 
perceptible fractions of their entire basic-research budgets on the study of 
fractal systems, and whole research conferences are being devoted to the 
subject. And yet the whole enterprise is still in its infancy; the essential 
identity of fractals beyond their dimensional peculiarities has yet to be 
grasped. In many ways, as one eminent scientist has put it, the physics of 
fractals is a subject still waiting to be born. At present their major practical 
impact has been in computer graphics, particularly among groups who use 
fractals with ever greater frequency in the production of 'special effects' in the 
Star Wars-type of movie sequences. 
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The Road to Chaos 

The world of mathematics, though incomprehensible to many, is generally 
believed to be a rather orderly domain. Precise questions are very carefully 
asked and precise answers are sought, and often obtained. It is true that there 
may be a troublesome problem of logic lurking here and there among the 
more abstract depths of mathematical thought, but the kind of arithmetic that 
we can carry out on our pocket calculators-that, in a sense, is easy. Every 
question has a 'well-ordered' answer. Even that peculiar number 00 of chapter 
1, which confounded our calculator at first key-press, eventually succumbed 
to a little thought. 

Life in the world of the pocket calculator should surely hold no terrors. 
Arithmetic is a very precise discipline and the calculator (or, to the more 
ambitious among us, the computer) is a friend. It is there merely to help us 
numerically when we are not able to solve some problem (maybe an equation 
or a set of coupled equations) in a more formal manner. Some equations are so 
easy, for those who have had even a little bit of background in elementary 
algebra, that assistance in solution from calculators is not necessary. For 
example, the equation x 2 - 3x + 2 = 0 would happily be solved by most of us 
using algebraic factorization to give the exact solutions x = 1 and x = 2. 
However, if we did not know any better method, we could still probably 
stumble upon the answers by merely 'testing' a few of the simpler possi­
bilities. 

On the other hand, with a slightly more difficult equation like x3 - x2 -

3x + 3 = 0, a calculator might prove useful (although those with a little better 
algebraic skill ought still to be able to find the exact solutions for x). The rest 
of us might first try testing a few easy whole numbers (x = 1 seems to work 
again) but the other answers, and there are two more, are not quite so 
obvious. This is where the calculator helps; it enables us to 'zero-in' on an 
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accurate numerical approximation even if we cannot solve the equation 
exactly. For example, trying a value x = 1.7 on the left-hand side leads to a 
right-hand side of - 0.0770 ... , which is pretty close to the hoped-for value 
of zero. It therefore seems likely that x = 1. 7 is close to another solution, but 
how close? Trying in turn the values x = 1.71, 1.72, 1.73 and 1.74 leads (via 
pocket calculator) to the sequence of right-hand-side numbers - 0.0538 ... , 
-0.0299 ... , -0.0051 ... and 0.0204 .... Since the latter numbers 'pass 
through' zero (that is, change from negative to positive) somewhere between 
x = 1. 73 and x = 1. 74, we can assume that there is another solution for x 
which is larger than 1. 73 but smaller than 1. 74. In addition, we can approach 
this solution ever more closely by introducing more and more decimal places; 
or at least until the capacity of our calculator is exceeded. 

But how do we know that we can do this? Well, because simple 
mathematics is orderly. If you change the 'starting number' (in this case x) by 
a tiny amount, then you will only change the 'answer' on the right-hand side 
by a comparably tiny amount. In the present case this blind trust in the 
orderliness of arithmetic is fully justified, and we zero-in on a value x = 
1.73205080 ... , which is the best my particular pocket calculator can do in 
approximating the exact answer x = )3. The third answer, by the way, is 
x = -)3. 

Now, although we may suspect that the more dastardly of mathematicians 
could invent equations which, by cruel design, were less well-behaved near 
some special values of x (or even possibly a few which were badly behaved 
everywhere), we feel sure that these would not be 'simple' equations in the 
popular sense of the word, and this belief is not unreasonable. It was, in fact, 
very widely held among scientists and mathematicians until one day in 1960 
when Edward Lorenz, of the Massachusetts Institute of Technology, pro­
grammed his powerful computer to numerically approximate solutions to a 
setlof 13 coupled equations which modelled the Earth's atmosphere. 

Although this problem was arithmetically complicated (and therefore 
required the numerical help of a computer), each of the individual equations 
involved was of an elementary kind; the kind which were believed to behave 
in an orderly fashion. Just as we did for the much simpler case above, Lorenz 
took a trial set of numbers which seemed to be quite close to the exact 
solution, and proceeded to try to zero-in on an even more accurate 
approximation. Changing his trial numbers by a tiny amount he set the 
computer to 'try again' and went off for a cup of coffee while he awaited the 
new results. When he returned he found that the computer's new output was 
not just a small refinement of the earlier one, but was completely different. His 
first suspicion was that the computer had malfunctioned, but on rechecking 
everything a horrible truth dawned; for this set of equations, tiny changes in 
the starting numbers produced wild fluctuations in the 'answer'. This was the 
shattering of a weatherman's dream. 'I knew right then', he said, 'that if the 
real atmosphere behaved like this, long range forecasting of weather was 
Simply not possible'. 
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What Edward Lorenz had stumbled upon was the notion of chaotic 
behaviour. Chaos, in this sense, really means unpredictability. In the context 
of the meteorological equations it meant that a tiny change in the starting 
conditions (say a one degree change in temperature) could result in the 
difference between a day of sunshine or a day of torrential rain one month 
later. It implied that no degree of precision of meteorological knowledge 
(short of infinite precision concerning every relevant quantity) could achieve 
even an approximate degree of correct prediction sufficiently far into the 
future. In chaotic behaviour, even the slightest change in starting conditions 
becomes magnified to a degree which changes the final outcome beyond 
recognition. Moreover, the greater the difference between two sets of starting 
conditions the sooner this chaotic situation develops. 

The distressing conclusion, since in practice all measurements have some 
finite degree of experimental precision, is that the final behaviour of any 
chaotic system can never be predicted, not even in a qualitative manner. Yet 
not quite all is lost. Lorenz found, when he asked his computer to print out 
thousands of possible solutions to his equations as he changed the starting 
values by extremely small amounts, that the output was not completely 
devoid of pattern. The numbers were random, it was true, but only within 
certain ranges of possible behaviour. Could there be, after all, some method in 
this madness? For example, although we must now accept that we cannot 
predict much about the weather one year from today, we can nevertheless set 
out many situations which seem to fall outside the 'allowed ranges' of 
possibilities. There do exist, after alL some qualitative aspects of weather 
which we all recognize; winters are cold, summers are warm, there are 
monsoon seasons and hurricane seasons and fairly well-defined limits of low 
and high temperature extremes. What is the source of this ghost of 
orderliness within chaos? 

Before questions of this nature could be confronted it was necessary to find 
out exactly how simple mathematical equations strayed from the realm of 
orderliness to that of chaos, while still retaining the simplicity of form from 
which orderliness had come to be expected. The first task was to recognize 
what kinds of equations gave rise to chaotic solutions. The second was to 
study, if possible, the precise manner in which equations of this kind passed 
over from the realm of the predictable to the chaotic. One of the earliest clues 
came rather unexpectedly from a study in the mid-1970s of the yearly 
populations of seasonally breeding insects. 

The equations which were thought to determine the changes of insect 
population from season to season were, unlike the analogous weather 
forecasting equations, simple in the extreme--pocket calculator simple! 
Suppose, for example, there was a stable population which, due to particular 
environmental criteria, numbered 500 000. The model then suggested that if 
you started off in the first season with a population of one million times Xl 

(where Xl = 0.5 would therefore be the stable population), then the resulting 
population in the second season would be one million times x2 where 
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Xl = 2x l (l-x l ) 

and the right-hand side means 2 times Xl times I-Xl' Similarly, the 
population for the third season would follow according to 

X3 = 2xl (I -Xl) 

and so on down to season n + 1, for which the population of one million 
times x" + 1 would be related to the previous season's population of one 
million times xn in exactly the same manner, namely 

Xn+ 1 = 2xn(I -xJ 

The equation makes sense because, if in the first season there are too many 
insects for the environment to sustain (say 800000, or Xl = 0.8), then the 
second season will see some reduction to Xl equal to 2 times 0.8 times 0.2, or 
Xl = 0.32 (that is, 320000 insects). With an underpopulation the conditions 
should now be favourable for population growth and, from the third season 
equation, X3 equals 2 times 0.32 times 0.68, or X3 = 0.4352 (that is, 435200 
insects), confirming our expectations. 

Starting from season one with any x-value between 0 and 1 we can easily 
follow the predictions of the equations. Thus, from the above starting 
population having Xl = 0.8, we quickly generate a sequence of values (that is, 
xl' Xl' Xy x 4'''·) as follows: 

0.8, 0.32, 0.4352, 0.4916, 0.49986, 0.499999 

which shows that by the sixth season we have reached the stable population. 
In fact, you will find that you can start with any Xl you like between 0 and 1 
and always finish up with a stable limit of X = 0.5. What could be simpler 
than that! The stable value (in our case X = 0.5) is sometimes called a 'fixed 
point' and, since all roads seem to lead to it, it is also called a 'stable fixed 
point', or an 'attractor'. This is important because the above set of equations 
has another fixed point which may have escaped your notice. It is X = o. If you 
start with Xl = 0, then the sequence of numbers generated for Xl' Xy x 4' etc 
are all zero. This is the mathematical way of saying that, if you start with no 
insects at aIL you will be extremely fortunate to breed any, in spite of how 
many seasons you wait. The value X = 0 is therefore also a fixed point. 
However, it is an unstable fixed point in the sense that no matter how small a 
non-zero value you choose for Xl' the sequence of values xn will now always 
move away from X = 0 towards its attractor fixed point X = 0.5; try it and 
see. 

So the equations are at least not nonsensical; but they are also very far 
from chaotic. In fact they are extremely 'well-behaved', zeroing-in on 0.5 in a 
most orderly of fashions. But now let us suppose that the stable population is 
one million times 0.6875 (that is 687500 insects). There is nothing magic 
about this number; I have picked it solely because it is larger than X = 0.5 
(which is the particular direction I wish to investigate) and it has a general 
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generating equation for seasonal fluctations which is easy to write down. It is 

xll + 1 = 3.2xll(1 - x,,) 

and is changed from the earlier one only in replacing the multiplying factor 2 
on the right-hand side by 3.2. If you take your pocket calculator and start 
with Xl = 0.6875, you will quickly find that the entire generated sequence Xl' 

Xy .•. , XIl ' ••. has the same value 0.6875. This then is indeed a fixed-point 
solution. If you start with 687500 insects then you will have that number 
forever. But is X = 0.6875 an attractor? Well, check it out for yourself. If you 
do you will find that the sequence of xn -values begins to oscillate back and 
forth between two values, one near 0.799 and the other near 0.513. On my 
calculator, which can manage nine decimal places, the sequence finally settles 
down to a form 

a, b, a, b, a, b, a, b, ... 

where a = 0.799455490 and b = 0.513 044 510. What on earth has 
happened? Quite evidently, the fixed point X = 0.6875 is an unstable one. 
The stable situation describes a repetitive fluctuation between an overpopu­
lated season with 799455 insects (neglecting fractions of an insect to retain 
credibility) and an underpopulated one with 513 044 insects. Physically, this 
seems quite possible. Our equations have not led to an absurdity, but merely 
to a situation which is a little more complicated than we perhaps expected. 

However, worse is yet to corne! As we increase the value of our fixed point 
further, our so-simple equations begin to do the most incredible things. With 
a fixed point of X = ~ our governing equation becomes 

x ll + I = 3.5xll(1-x,,) 

and you can quickly check out that a population of X = ~ would happily 
reproduce itself forever. But what if we start off from another value of X (in 
fact any other except the trivial fixed point x = 0 which is present in all these 
systems)? Try it again on your calculator. Once more we find that the non­
trivial fixed point (this time x = ~) is not an attractor, but now the stable 
solution involves four numbers, rather than two, and the sequence settles 
down to a pattern 

a, b, c, d, a, b, c, d, a, b, c, d, ... 

with (again to my nine-decimal-place accuracy) a = 0.382819683, b = 
0.826940707, c = 0.500884210 and d = 0.874997264. Once more we 
can envisage the physical situation. In season 'a' there is an underpopulation 
which leads to an increase in numbers in the following season 'b'. But this has 
now produced an overpopulation which therefore leads to a decrease in 
season 'c'. Finally, 'c' is once more underpopulated and triggers the final 
increase to season 'd'. Without actually doing the calculation, you would 
probably expect that such an oscillating behaviour would eventually 
approach more and more closely the fixed-point value of x =~; but it 
never does-the oscillating values themselves are perfectly stable. 
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Thus, as the numerical constant in the generating equation has gone from 2 
to 3.2 to 3.5, the character of the stable limit has changed dramatically from a 
stable fixed point, to an oscillating 'two-cycle', to a repeating 'four-cycle'. 
One is tempted to ask how long this pattern of increasing complexity can go 
on? The answer, in a sense, is forever. You see, as the numerical constant 
increases beyond the value 3.5 last considered, the number of points in the 
stable cycling pattern begins to explode, through 8, 16, 32, 64, ... to ever 
larger powers of 2 as the 'equation constant' nears a special (so-called 
'critical') value close to 3.57. Beyond this critical value the situation becomes 
completely chaotic. By this we mean that the final pattern of numbers never 
repeats itself; in a sense it is cycling with an infinite number of points in the 
cycle pattern. 

Thus, our simple defining equation 

X,,+l = AX,,(I-x,,) 

has led us from a most orderly domain of mathematics, through increasingly 
complex (though still stable) cycling configurations, to completely chaotic 
behaviour-and all by a simple steady increase in the parameter A from 2 to 
about 3.6. For values of A larger than 3.6 the chaotic behaviour is maintained, 
but with the degree of chaos steadily increasing. To see what we mean by 
'degree of chaos' it will be necessary to examine at least one chaotic situation 
(i.e., using a value of A larger than the critical value in the defining equation) 
in some detail. 

One of the most fearful properties of chaos is that any two starting 
concentrations Xl' even those chosen arbitrarily close in value to each other, 
eventually move apart to patterns which have no inter-relationship what­
soever. Let us examine this particular chaotic property using our insect­
breeding defining equation, with A = 3.9. In particular, we shall consider the 
fate of two insect populations with the closely equal starting values of XI = 
0.100 and Xl = 0.101 (representing 100000 and 101000 insects) respect­
ively. The following columns of numbers (given only to a three-place decimal 
accuracy but actually calculated to a nine-place precision by my trusty pocket 
calculator) compare the fortunes of these two respective starting populations 
when governed by that innocent looking equation above through the first 14 
generations: 

Generation Set A Set B 

0.100 0.101 
2 0.351 0.354 
3 0.888 0.892 
4 0.387 0.376 
5 0.925 0.915 
6 0.271 0304 
7 0.771 0.825 
8 0.690 0.562 
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(cont) 

Generation Set A Set B 

9 0.835 0.960 
10 0.538 0.150 
11 0.969 0.497 
12 0.116 0.975 
13 0.399 0.095 
14 0.935 0.336 

It is seen that by the 10th season, any semblance of correspondence between 
the two sets of populations has completely disappeared. 

There is nothing at all magical about the particular defining equation which 
we have used to set up this mysterious progression from orderiiness to chaos. 
Countless other simple relationships can be written down which produce this 
same kind of behaviour. In fact, it is this uniformity which makes a study of 
the onset of chaos so fascinating. The common feature is the passage from a 
stable fixed point, through an endless sequence of cycle doublings, to chaos, 
as some equation parameter A gradually approaches its critical value (say at 
A = L, for Limit). The farther beyond the limiting value L the parameter A 
progresses, the fewer the number of generations required to lose all corre­
lation between two sets of nearly equal starting 'populations'. This enables us 
to differentiate between different degrees or strengths of chaotic behaviour in 
an obvious fashion. 

The most impressive display of universal behaviour is seen on approach to 
the critical limit A = L from the 'ordered' side, which exhibits the repeated 
cycle-doublings. Each of these doublings (or 'bifurcations', as the mathema­
ticians in their endless pursuit of simplicity prefer to call them) occurs when 
the parameter A reaches special values; say A = A" for the doubling to a 
cycle with 2" repeating values. Eventually this sequence of special A-numbers 
A = A" converges (as n progresses to infinity) on the limiting value A = L 
for which chaos sets in. It follows that the number L - A" gets smaller and 
smaller as n gets larger and larger. Quantitatively, it is found that the ratio 

A -A 
,,+! " = d 

A,,+2- A ,,+! " 

very quickly approaches a strange but precisely defined number as n increases. 
This number is 

d = 4.6692016 .... 

What is truly amazing is that this number d has exactly the same value for 
every model which exhibits a cycle-doubling route to chaos. This also implies 
that L - A" becomes proportional to d -" as n becomes large, with d again 
equal to the value set out above. Chaos therefore sets-in in a remarkably 
unchaotic manner-one, in fact, which is very precisely defined. At the onset 
of chaos all details of the specific defining equation seem to become irrelevant 
and a kind of universal behaviour takes over. 



146 Think of a Number 

But what does all of this have to do with real chaotic motion in a scientific 
sense? WelL it turns out that a rather wide range of real physicaL chemicaL 
and biological systems actually do follow a cycle-doubling route to chaos. 
These systems include the onset of turbulence in gases (a common example of 
which is the behaviour of smoke rising from the end of a cigarette), electrical 
instabilities in electronic circuits, and even the response of heart muscle to a 
pacemaker. What is even more impressive is the fact that experimental efforts 
to measure the d-value as defined by the ratio given above do appear, in the 
different scientific contexts, to point to a universal constant with d value close 
to that of 4.669 ... which 'falls out of' the mathematical theory. 

Impressive though these findings now appear, the new and seemingly 
rather bizarre ideas involved in the cycle-doubling road to chaos did not, at 
first, find willing acceptance among the mathematical Moguls of the academic 
world. The original demonstration (essentially just that set out in this chapter) 
was first given for the 'insect population' equations by a young physicist at 
Los Alamos using a pocket calculator. His name was Mitchell Feigenbaum, 
and his papers discussing the derivation of the universal constant d (which is 
now called Feigenbaum's constant, in his honour) were for three years, from 
1976-1979, consistently rejected by the editors of professional mathematical 
journals. After alL what of serious mathematical consequence could possibly 
result from doodling on a pocket calculator in this enlightened age? Only in 
1979, when an Italian physicist (who was attempting to solve by computer 
five messy equations which modelled real-life turbulence) observed the same 
cycle-doubling phenomenon, was Feigenbaum's work finally taken seriously. 

It then led to physical experiments which looked for, and found, the cycle­
doubling process in nature. The first such successful experiment took place in 
France, and consisted of heating a bath of liquid helium until it boiled into 
chaos. As the experimenters carefully observed the helium liquid approaching 
'the boil', they spotted convection currents begin to swirL and then to go 
through what were undoubtedly successive episodes of doubling. This 
pioneering work was quickly followed by other confirmations. There was 
indeed order along the road to chaos! One of the more recent and most 
fascinating applications has been an effort to model the heart's passage from 
rhythmic life sustaining beats to fatal spasms-a heart attack. Equations were 
derived which were able to reproduce a wide range of observed heart-rhythm 
disturbances. And again, before the disturbances set in, the equations 
exhibited unmistakable signs of a period-doubling route to heart-beat chaos. 

Although it is now known that cycle-doubling is not the only route to 
chaos, it does remain the classic example. As a result of Feigenbaum's 
pioneering work, serious study of the onset of chaos is now an active 
scientific discipline. Scientists in a variety of fields are rushing to make up for 
lost time. After all, chaos is everywhere, from the microworld of quantum 
physics to the macroworld of astrophysics. A scientific revolution is upon us, 
and to think that the spark was provided by the humble pocket calculator. 
How rapidly the new subject will develop, and to what extent its full promise 
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will be fulfilled, remains to be seen. However, it is important to bear in mind 
that what is being studied is the degree of orderliness of the onset of chaos. 
The chaotic state itself is still what the word implies. It means that, since an 
mfinite degree of accuracy is experimentally unattainable, the results of a 
'well-controlled' experiment need not always be reproducible. From the 
weatherman's standpoint, although a glance at the sky may still be sufficient 
to assess the weather for the next hour or so, and a careful monitoring of 
global weather statistics may enable tomorrow's forecast to be presented with 
some degree of confidence, long range forecasting is likely to forever remain a 
thankless task. 



16 

Super-mathematics and 
the Monster 

Examples of symmetry are all around us. Why, we ourselves are approxi­
mately symmetric about a vertical line (or more correctly a vertical plane) 
down our middle. In fact, so many objects around us have approximately this 
same so-called bilateral symmetry that, when we look in a mirror, it is not at 
all obvious that in the mirror world right has been changed into left, and vice 
versa. Why mirrors should only invert left and right (and not up and down) is 
itself a question which, should you choose to think deeply about it, will 
probably cause you a few sleepless nights. But this is not the question which 
is to be pursued in this chapter, so that I (rather unkindly) will say no more 
about it here. Some objects, of course, have other kinds of symmetry 
associated with them. The swastika, for example, possesses some sort of 
rotational symmetry, while a star has both a rotational symmetry and a 
bilateral one. Wallpaper, on the other hand, has a somewhat different kind of 
symmetry where the whole pattern can be displaced in various directions 
without looking any different. 

Let us now ask ourselves a little more precisely what we mean by 
symmetry, and then try to answer the question as to what objects with the 
same symmetry really do have in common. Symmetry is defined in terms of 
an 'operation' (which might be a reflection, a rotation, or a displacement) after 
the performance of which the object in question 'still looks the same'. As a 
simple example consider a square. Obviously, it can be rotated through 90 
degrees (clockwise or anti-clockwise) or through 180 degrees and 'still look 
the same'. These rotations are then referred to as symmetry operations of the 
square, but they are not the only ones. Clearly, we can reflect the square 
through either of its two diagonals, or either of two lines passing through its 
centre parallel to two of its sides. This makes seven operations and finally, if 
we add the 'stay as you are' operation, that makes eight. 

148 
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We say that there are eight symmetry operations under which a square 
remains invariant (which is the mathematical word for 'the same'). But, you 
may ask, what if I rotate the square through 270 degrees or 360 degrees, or 
tum it over? Are these not additional operations? The answer is no, and to 
make this clear we draw a point inside the square at any position which is not 
special (say just a little way down one edge from a comer). All operations 
which move this point to a different position but leave the rest of the square 
'invariant' are different symmetry operations. Any two seemingly different 
operations which move both the square and the point in the same way are, 
from a symmetry point of view, the same. 

With this out of the way we can say that the property which all squares 
have in common is the identity of its symmetry operations, but it goes deeper 
than this. You see, any two operations performed one after the other are 
always equivalent to another of the symmetry operations. In this sense the 
operations form a 'closed' set and if we label them by, say, the first eight 
letters of the alphabet, we can take a checkers board and, labelling the rows 
A,B,C,D,E,F,G,H and the columns in the same way, fill in the squares in a 
manner which will tell us exactly what happens with these square operations 
when we combine them. Thus, in row E and column F we write the operation 
which results from first doing operation E then operation F. Since the set is 
closed, the whole checker board will be filled with a special pattern of letters 
between A and H. This is called the 'multiplication table' for the symmetry 
operations of a square. The pattern tells us something more about the square, 
but what use is it? 

To answer this question let us consider the very simplest symmetry of all, 
the (approximate) symmetry of ourselves. This symmetry group (for the term 
'group' is given to sets of operations of this kind) has only two operations; 
the 'stay as you are' one, which we shall write as I (for identity), and the 
reflection 'through the plane down the middle', which we write as R (for 
reflection). If we use our wristwatch as the arbitrary point, the reflection takes 
it from our left wrist to our right one, or vice versa if we are left-handed. Any 
other operation, like turning a somersault, does not count as a new operation; 
it is still 'operation l' since it leaves the wristwatch exactly where it was 
before the event (assuming it did not come off!). Our own symmetry group is 
therefore composed of the two operations or 'elements' I and R. 

We can now write down its multiplication table. Since 'stay as you are' 
followed by reflection is the same as reflection, we write in symbols that IR = 
R. Similarly, we must also have RI = R, which is just the symbolic way of 
saying that reflection followed by 'stay as you are' is also the same as 
reflection. Finally, since one reflection followed by a second takes the 
wristwatch back to where it started, we have RR = 1. These four equations 
can be represented on a 2 by 2 multiplication-table checkers board in the 
manner 
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R 

R 
R R 

We now notice that it is possible to replace I and R by numbers and still 
obey the multiplication table if we interpret IR arithmetically as 'I times R', 
and so on. Moreover this can be accomplished in two separate ways; firstly, 
by putting 1=1, R = 1, and secondly, by putting 1= 1, R = -1. Each of 
these choices satisfies the four equations II = L IR = K RI = Rand RR = I 
as required. We say that we have found two 'representations'; I = 1, R = 1 
being called the symmetric representation and I = 1, R = - 1 the anti­
symmetric one. 

Where has this got us? Well, it tells us, for example, that any motion which 
takes place subject to forces which possess this LR kind of symmetry can be of 
only two fundamentally different types; symmetric or anti-symmetric. In 
order to understand this clearly it is only necessary to choose a simple 
example. In figure 20(a) we show three beads on a piece of straight wire. The 
outside beads are of the same mass (say m) while the centre bead is of a 
possibly different mass (M), and each outside bead is connected to the centre 
one by identical springs. It is clear from the figure that, for this system, the 
plane through the centre bead perpendicular to the wire is a plane of 
reflection symmetry. This arrangement is therefore subject to the symmetry 
restrictions spelled out above. 

m m 

(a) 

(b) .. ~:~--------~.----------~ 
(e) •• 

Figure 20 

Suppose now that we gently disturb the beads and set them into 
oscillatory motion. The above 'group theory' tells us that there are only two 
possible sorts of 'simple' motion, by which term I mean motion that repeats 
itself endlessly in simple oscillations (ignoring frictional slowing down). These 
so-called 'normal modes' are the symmetric and anti-symmetric modes 
illustrated in figures 20(b) and 20(c) respectively. But how do we know that 
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these are the relevant modes, and in what sense are they 'symmetric' or 'anti­
symmetric'? 

Let us look first at figure 20(b). In it, the arrows indicate the displacements 
of the masses at a particular moment of time. The end masses m are moving 
equally outward, and the centre mass M is stationary. Later on in the 
oscillation, the end masses will move equally inward with M still at rest. This 
motion is the symmetric mode because it has the same properties under I and 
R transformation as the symmetric representation I = I, R = 1. For example, 
when figure 20(b) is reflected through the reflection plane it turns into itself; 
i.e., the operation R is equal to 1. The operation L of course, meaning 'stay as 
you are', is always equal to 1. Note that in this symmetric mode the outside 
masses m must always be moving in an exactly 'opposite' fashion, while the 
centre mass M must be exactly at rest. Any motion of M would violate the 
symmetric-mode symmetry requirement of R = 1. 

Now let us look at figure 20(c); this is the anti-symmetric mode. In this 
mode the outside masses move equally in the same direction, and the centre 
mass can now also move. In fact, if we wish to keep the 'centre of gravity' of 
the entire mode fixed, then the centre mass must move in a direction opposite 
to that of the outside masses. And what happens if we reflect this mode in the 
reflection plane? It is easily seen from the figure that it reflects into its 
negative (that is, the arrows indicating displacement all tum around to the 
opposite direction). This means that. for this particular mode. the operation R 
is equivalent to - 1. Again, with I = I, we now identify this mode as 
conforming to one of the allowed representations-this time the I = I, R = 
- 1 anti-symmetric one. 

Now, in truth, if you set up the arrangement shown in figure 20(a) and you 
begin by just tweaking one of the end beads, the resulting motion will appear 
to be quite different from (and much more complicated than) either motion 
shown in figures 20(b) and 20(c). However, this motion (and any other which 
you can contrive by starting off in other ways) can always be described as a 
mixture of these two 'normal modes' in different proportions. In this sense, 
the symmetric and anti-symmetric normal modes are the fundamental modes 
from which all possible motions can be made up and their basic structures we 
know solely from the symmetry of the set-up. It is true that symmetry alone 
does not tell us all we might wish to know (the individual frequencies of the 
two normal modes for example; these depend on the detailed physics of the 
problem) but. amazingly, the fundamental pattern of each normal mode 
motion is completely determined by 'group theory', that is, by the manner in 
which the symmetry operations combine. 

Exactly the same sort of reasoning can be carried out for other symmetry 
arrangements, such as triangles, squares, rectangles and countless other 
shapes. For each, we can locate all the symmetry operations and work out the 
multiplication table and arithmetic representations. Although these represen­
tations do get more complicated as the number of symmetry operations 
(called the 'order' of the group) increases, and often require the use of more 
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sophisticated mathematical concepts like complex numbers, they exist and 
often tell us some amazing things. Sometimes it is that two seemingly quite 
different problems are, from a symmetry point of view, identicaL i.e., have 
multiplication tables which are identical even though the physical meaning of 
the symmetry operations is different. At other times it is that two or more 
representations (or normal modes) are specially related (turning into each 
other under symmetry operation) and must therefore all have the same 
'frequency' regardless of the physics of the situation. 

The same ideas can be applied to solid figures, like the cube, for example, 
which has 48 symmetry operations (24 involving rotations and 24 involving 
reflections). They can also be extended to include symmetry problems which 
concern lateral movement as well. For example, there are only 17 different 
symmetries of wallpaper. The equivalent problem in three dimensions is more 
formidable, there being no less than 230 possible symmetries which atom 
arrangements in crystals (for example) can have. They are called 'space 
groups' and play an extremely important role in determining and classifying 
the atomic structure of solids like table salt (sodium chloride) or iron metal. 

Experimentally, scientists determine atomic structures by focusing beams 
of X-rays or neutrons onto a sample and observing the way in which the 
beam is split up in different directions (scientists say 'is diffracted') on passage 
through the atomically ordered crystalline lattice. The special directions in 
which the diffracted beams emerge (and equally importantly those symmetry 
directions in which diffracted beams are rigorously absent) are determined by 
the space group of the crystal. Careful measurement of the directions and 
relative strengths of the diffracted beams therefore finally enables the complete 
atomic structure to be obtained. The known restrictions imposed by 'space­
group' symmetry simplify the task of identifying the atomic positions 
enormously. 

All the geometric symmetries so far discussed have concerned operations 
involving only discontinuous 'jumps' of some kind; like a rotation of 60 
degrees or a lateral movement of some fixed distance. There are other, so­
called 'continuous', symmetry groups which can be related to the symmetry 
of the circle (in two dimensions) or the sphere (in three). These figures remain 
unchanged even after rotation operations of infinitesimal size. They are of 
obvious interest to the scientist in connection with systems which possess 
axial symmetry or spherical symmetry respectively. 

Consider, for example, the case of the hydrogen atom. It is composed of a 
heavy nucleus (or point-sized mass as far as we are concerned) orbited by a 
single electron. The electron moves subject to motional equations which must 
contain within them the symmetry restrictions of spherical space. Although 
the mathematical details for this situation are beyond the scope of a book like 
this one, the possible orbits are just as clearly defined as were the symmetric 
and anti-symmetric modes of the three-bead problem discussed earlier. 
Unfortunately for most of us (who are not expert scientists) the electron 
cannot truly be pictured as a tiny particle, but more as a 'cloud' surrounding 
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the nucleus. The symmetry restrictions therefore show up in the allowed 
shapes for this cloud. The simplest shape is one with full spherical symmetry, 
and scientists call it an s state (although, oddly enough, the s here stands 
neither for spherical nor for symmetric; but that is another story). Others 
include clouds of dumb-bell-shaped lobes in increasingly complex orienta­
tional configurations, but all precisely defined by the continuous symmetry 
group of the sphere. 

Yet the enormous power of 'group theory' goes far beyond anything we 
have so far mentioned. To this point we have associated the group operations 
with the rearrangement of actual objects, like triangles, squares, cubes, 
spheres, and crystal structures. This is the realm of the scientist. Real 
mathematicians allow their minds to reach beyond the physical world. Many 
other symmetries, in addition to geometric ones, are 'out there' waiting to be 
discovered. Consider, for example, the clock arithmetic discussed in chapter 7. 
In performing addition sums on an ordinary 12-hour clock we note results like 
8+2 = 10, 8+6 = 2, 6+9 = 3, 6+6 = 0, etc. Under the operation of 
'addition' the numbers form a closed set (no new numbers appear on the 
right-hand side) and zero performs the function of 'stay as you are'. For a 
three-clock (instead of a 12-clock) we can easily write down all of the possible 
addition sums as follows: 

0+0 = 0 
1+1 = 2 

0+1 = 1 
1+2 = 0 

0+2 = 2 
2+2 = 1. 

If we now let the numerals 0, 1, 2, play the role previously reserved for 
symmetry elements, and let addition be adopted as the manner of combining 
them, then we quickly obtain the 'multiplication' table 

0 1 2 

0 0 1 2 
1 1 2 0 

2 2 0 1 

We can rewrite this in letter form by noting that 0 plays the part of the 
identity element (0 = f), and arbitrarily redefining 1 = A and 2 = B. Corres­
pondingly, we obtain 

I A B 

I I A B 
A A B I 
B B I A 

You should now find it very easy to verify that this is exactly the same 
multiplication table that results from examining the symmetry operations of 
the emblem of the Isle of Man, which is three legs, 120 degrees apart, kicking 
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each other around the central point where they join (in other words a figure 
with a threefold rotational symmetry but no reflection symmetry). 

Now we have something interesting. The same group multiplication table 
has arisen in two quite different contexts. Could it be that all order-three 
groups of operations have the very same table and, therefore, that this 'group' 
has an absolute significance over and above any particular example of 'order­
three symmetry' which we may have used to model it? The answer is yes, and 
the same is true of the order-two group discussed earlier. Are all order-four 
groups also the same? If you check out the 'multiplication' tables for a four­
clock and a rectangle you will find that this time the answer is no, but there 
are only two different groups of order-four and the two examples cited 
generate them. 

Upon analysing multiplication tables of higher order it becomes apparent 
that these 'objects', though obviously closely related to 'symmetry' in some 
general sense, do indeed have a reality over and above any specific context. 
When looking at these tables the mathematician sees only the pattern. To him 
the structure of the group of operations is the only important thing. The 
nature of the operations or elements is not important. but only the manner in 
which they interlock. With this in mind it is possible to define a 'group' in 
purely abstract terms and to create a kind of super-mathematics which is 
reflected in the patterns of the multiplication tables. There are only four rules 
which define this super-mathematics called 'group theory'. 

(1) A 'group' is a set of 'elements' A B, e ... etc, which can be combined 
with one another to get other elements. The combination of any two 
elements AB is also a member of the group. 

(2) One of the elements I is a 'stay as you are' or identity element, so 
that IA = AI = A for all elements A in the group. 

(3) For each element A in the group there is another A -] such that 
AA- 1 = A-1A = I. 

(4) For all elements A B, C in the group A(BC) = (AB)e where the 
brackets mean 'do that combination first'. 

It is now very easy for you to check out that these purely abstract rules are 
indeed obeyed by the specific examples we looked at earlier. Using these rules 
without any association of the elements A B, C etc with actual physical 
operations, the 'super-mathematician' is now able to deduce how many 
groups (that is, different multiplication table patterns) there are for any 
particular order. The list begins as follows: 

Order Number of groups 

1 1 

2 1 

3 1 
4 2 
5 1 
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(cant) 

Order Number of groups 

6 2 

7 1 

8 5 

9 2 

10 2 

11 1 

12 5 

Each group is a unique mathematical object with its own 'personality', and 
people who work in group theory get quite chummy with them and give 
them special names. Their ultimate significance, however, goes even deeper 
than this because, just as in arithmetic every integer possesses a unique 
factorization into a product of primes (for example, 60 = 2 x 2 x 3 x 5), so 
every group can be 'factored' in a certain sense. Some groups have smaller 
groups inside them in such a way that they can be expressed as the 'product' 
of these smaller groups. The 'prime numbers' of group theory are therefore 
those groups which can only be factored into themselves and the single 
identity element I. These are the building blocks of group theory. They are 
called the 'simple groups of finite order' and an effort to classify them 
completely has been underway for well over 100 years and has, in the mid-
1980s, just been completed. 

The sheer immensity of the task can be judged from the fact that the final 
proof occupies upward of 10 000 printed pages scattered over some 500 
articles in technical journals. Most of the work was done between the the late 
1940s and the early 1980s and has involved the efforts of more than 100 
mathematicians. Even when it is finally condensed and refined it is still 
expected to occupy well over 1000 pages of text. 

There are, perhaps not surprisingly, an infinite number of simple groups of 
finite order, in the same way that there are an infinite number of prime 
numbers. However, the group theoretical problem is more complicated 
because, not only are there several different kinds of infinite family, there are 
also certain renegades (called 'sporadic' groups) which do not fit into any of 
these infinite families. The simplest example of an infinite family is that of the 
clock-number groups with a prime number of elements; in other words the n­
clocks with n = 2, 3, 5, 7, 11, 13, etc. The other examples of infinite families 
of simple groups are much more difficult to classify in detail, but eventually 
17 more such families were constructed and it is now known that these 18 
families complete the list. 

The first five of the puzzling sporadic simple groups had been found 
as long ago as the 1860s. The smallest of these was of order 7920 and 
the other four of orders 95040, 443520, 10 200 960, and 244823040 
respectively. Quite evidently they were far from trivial entities and these five 
remained the only known sporadic simple groups for a whole century. 
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Then, in 1966, Zvonimir Janko, then at Monash University in Australia, 
discovered a sixth, thereby launching what might be called the modern 
era of sporadics. Thereafter these strange new sporadic creatures began 
to pop up at the rate of about one a year into and through the 1970s. 
The size of them was impressive indeed, many having more than 1010 

elements. The climax came in 1982 when Robert Griess Jr, of the Institute for 
Advanced Study in Princeton, constructed a sporadic group which was 
enormously larger than any other yet found. It came to be known as 
'the monster' because of its size. It possessed no less than 
808017424794512 875886459904961710757005754368000000000 
elements, which is about 8 x 1053, and therefore had more than 6 x 10107 

places in its multiplication table. It is now known to be the largest sporadic 
group which exists and must, of course, represent the symmetry properties of 
something pretty impressive. But what? It is, in fact, intimately connected 
with the symmetry properties of that extremely dense 24-dimensional 
laminated lattice packing L24 discussed in chapter 13. 

Ultimately, 26 sporadic groups were discovered, with the monster being 
the largest. The second largest, the 'baby monster' has about 4 x 1033 

elements which, although it still sounds pretty large (and is), is a factor of 
more than 1020 smaller in order than the monster itself. The smallest sporadic 
is the one mentioned earlier with 7 920 elements. The final proof concerning 
the complete classification of all the finite simple groups now claims that only 
26 sporadic examples exist; just 26 maverick groups which evade classifi­
cation as part of infinite families. These, together with the 18 infinite families 
referred to earlier, therefore form the ultimate building blocks of group theory 
or, in other words, of symmetry in its most general and abstract form. 

So, in a sense, the theory of groups has reached maturity. But where did it 
all start? The invention of symmetry groups is generally credited to the 
youthful genius Evariste Galois, a French mathematical prodigy, who died in 
his 21st year by a pistol shot received in a senseless 'duel of honour'. Born in 
1811, he was younger than Gauss by 34 years, although the venerable Gauss 
outlived him by almost a quarter of a century. Galois was barely 17 when he 
began to create that branch of mathematics which now provides insights into 
symmetries all the way from particle physics to Rubik's cube. His most 
famous work centred on an effort to understand why great mathematicians 
who had preceded him had managed to find general solutions to only a very 
few specific kinds of algebraic equation. 

Algebraic equations are ones like 

x+2 = 5 

x2 -4x+ 11 = 0 

x3 +2x2 -6x-2 = 0 

2x4 +x3 +5x-7 = 0 

3x5 -x4 -5x3 +2x2 -7 = 0 
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which contain various integer powers of the 'unknown' x, all with integer 
coefficients (some of which may, of course, be zero). The largest power 
involved is called the 'degree' of the equation, so that the equations above are 
examples of degrees one through five in order. The most general example of 
an algebraic equation of a particular degree (say four) can be written 

Ax4 +Bx3 +Cx2 +Dx+E = 0 

where A, B, C, D, and E can stand for any integers. The question to be 
answered is 'can this equation be solved in the form x = (some expression 
involving A, B, C, D, E conneded by the basic operations of arithmetic like 
+, -, -;-, x, powers and roots)?' And, in Galois' day, the answer for the 
most general equations of degree one through four was known to be yes. 
However, for degrees five and larger the answer was not known. 

The general answers for degrees one and two had been known since 
Babylonian times and are contained in all high school algebra books. The 
general solutions for 'cubic' (degree-three) and 'quartic' (degree-four) equa­
tions had been obtained in the 16th century. When Galois approached the 
problem in the 1820s, nearly 300 years of fruitless effort had been made by 
generations of great mathematicians to 'solve' the general 'quintic' (degree­
five) equation. 

Galois wrote his first paper on calculating solutions of fifth-degree 
equations when he was 17 years old, and over the following two years he 
derived the concept of 'groups'. This enabled him to set out in a systematic 
fashion the relationships which the solutions of various kinds of algebraic 
equations must have with one another by virtue of the symmetry properties 
of the equations themselves. The groups which he derived (now called Galois 
groups in his honour) showed clearly that no equation of degree larger than 
four possessed a general solution of the form sought. Three hundred years of 
effort to solve the general quintic had failed for the very good reason that no 
solution existed. Solutions do exist, of course, for particular quintic equations 
(with A, B, C, D, E set equal to specific numbers) but these solutions have to 
be obtained numerically rather than algebraically. 

Using the concepts of symmetry groups Galois was not only able to 
'dispose of' the problem for quintic equations; the power of the method was 
such that it could attack the eqUivalent problem for general algebraic 
equations of any degree. The power of 'symmetry' was dramatically demon­
strated for the first time. And although Galois-group symmetries are not 
diredly related to geometry, they are just as precisely determined as are 
rotations and refledions. However, he was so far ahead of his time that the 
full significance of his work took many more decades to be properly 
recognized. One can only imagine by how much this period would have been 
shortened had Galois himself survived to live out a more normal span of 
years. Algebra, in a sense, was set free by Galois. The focus moved from 
specific problems to generalizations and abstradions. It ushered in the era of 
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'modern algebra' or 'abstract algebra'; a super-mathematics in which oper­
ations are as abstract as the quantities they operate on. Only the shapes 
remain-much like the smile on the Cheshire cat-shapes which make up the 
theory of groups and which lead inevitably to The Monster. 
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